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ABSTRACT

Disc-iminant functions which are potentially useful in
tree breeding are uwiscussed, The choice is between BLUP
(Best linear unbiased predictor) and selection index.
Selection indices are computationally less demanding and are
favoured by tree breeders at the present time. The
discriminant function should acéurately predict genetic
values and incorporate economic values to give a prediction

of genetic worth.

There are four contributions to the development and
application of discriminant functions to tree breeding:

1. In a maritime pine (Pinus pinaster Ait.)
provnenance-progeny trial rank correlations for
predicted random genetic effects using BLUP and
selection index were high (.998). Caution should be
used in extrapolating results to other populations and
experimental designs,

2. Selection index formula are adapted to include
heterogeneity among within-provenance
variance-covariance matrices. Practical application of
the formula requires sampling 20 to 30 families from
each provenance in provenance-progeny trials,

3. Choice of economic values can reduce efficiency of
selection indices. The sensitivity of the prediction
variance, prediction error variance and efficiency of

selection indices to changes in economic values are

iv



assessed. Low prediction variance and relatively high
genetic worth variance are associated with inefficient
indices. The economic values which result in low
effeciency depend on the phenotypic and genetic
matrices of the breeding population.

4. Classical decision making technigues are applied to
selection of economic values in the construction of
selection indices for a maritime pine breeding
population produced from a hierarchical mating design.
Economic values for minmax and Bayes strategies are
determined for density traits in the martime pine

breeding population.

In the future BLUP should play a more prominent role in
tree breeding because breeding populations will become more
inbred and breeders will want to predict genotype
performance over a range of different site types. The
problems of incorporating BLUP predictions into tree

breeding are discussed.
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CHAPTER ONE
INTRODUCTION

I. Introduction

Breeders attempt to improve populations by selecting
the 'best' individuals to be the parents of the next
generation. The objective of the breeder is to select the
subset of individuals which will maximize expected genetic
gain, Genetic values of quantitative traits cannot be
measured directly, they can only be predicted as
mathematical functions of phenotypic values. These functions
are known as discriminant functions because truncation
selection of the population on the basis of function values
will discriminate the superior genotypes. The problem has
become one of finding the function which most accurately
predicts the breeding value (Bulmer 1985, Henderson 1963,
Henderson 1977, Searle 1974). The input values of the
function are the phenotypic or record values of several
traits and the economic values of the traits, The output is
a linear combination of economically weighted breeding
values which maximizes the economic value of the selected

population.

Although discriminant functions have been used in tree
breeding most applications have involved mass selection
(Cotterill 1985). There are some examples where the index
has incorporated information from relatives (Baradat 1976;

Talbert 1984). One of the most advanced applications of
1



selection index in tree breeding is in the maritime pine
(Pinus pinaster Ait.) improvement prograam in southern France
where a library of computer programs have been developed and
selection index is a routine technique used in selection
(Baradat 1976; Baradat 1379; Baradat 1982). Generally animal
breeders have been much more sophisticated than tree

breeders in their use of discriminant functions (Henderson

1973; Henderson and Quaas 1976).

It is the objective of this contribution to review the
discriminant functions used in plant and animal breeding and
to propose areas in which further work is required to adapt

these functions to the tree breeders requirements,

I11. Discriminant functions

Discriminant functions are used by staticians. A
discriminant is a fun;tion which separates a population into
two distinct groups. The objective being to correctly assign
individuals to a group. There are several different
approaches to the problem (Anderson 1984). Discriminant
functions used in plant and animal breeding are based on the
techniques developed by statisticians. Genetics and
statistics are combined to produce functions which provide
the breeder with values which can be used to assign superior

genotypes to the selected population.

Discriminant functions in genetic selection can be
classified into three major groups:

1. Best prediction



2. Best linear prediction (Selection index)
3, Best linear unbiased prediction (BLUP)(Henderson

1973).

There are several symbols used in this introduction,
The first time a symbol is used a written explanation is
given. A table of symbols is also included which gives an

explanation of symbols used in the text (Table I-1).

A. Best prediction

The best predictor is the function which produces the

prediction which minimizes the variance:
E(w - @)% ...(1-1),

where w is the value to be predicted, and

w is the prediction,
The function may be linear or non-linear. Best prediction is
demanding in that it requires a knowledge 2f the forms and
parameters of the joint distribution of the phenotypic
predictors and genetic values. These parameters are rarely
known, as a consequence best precliction has recieved little

attention from breeders.

B. Best linear prediction (selection index)

Best linear prediction (selection index) is a linear
function which minimizes the value of formula I-1. Best
linear predicticn requires a knowledge of only the means and

variances of the joint distribution of the phenotypic



predictors and the genetic values. The most widely known
selection index is the Smith-Hazel selection index (Smith
1937; Hazel 1943; Lin 1978).

Table I-1., List of symbols

Symbol Explanation

genetic worth

predicted genetic worth

phenotypic weighting

phenotypic value

economic value

genetic value

predicted genetic value

vector of phenotypic weightings
vector of phenotypic values

matrix of the genetic variance
vector of economic values

vector of genetic values

vector of predicted genetic values
the phenotypic value of the i*" individual

the phenotypic value of the half-sib family
to which the i*" individual belongs

the within-family phenotypic value of the
individual

the phenotypic variance matrix

the covariance between the phenotypic values
and additive genetic values

vector of predicted genetic values

design matrix of fixed effects

matrix of the variance of the error effects
design matrix of random genetic effects
variance of the genetic effects vector
vector of unknown fixed effects

vector of unknown genetic effects

vector of record values

numerator relationship matrix

additive genetic variance
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Selection indices can be of varying degrees of complexity.
There are three major types:
1. Multiple trait selection where information from

related individuals is not included (mass selection).



2. Single trait selection where information from related
individuals is included.
3. Multiple trait selection where information from

related individuals is included,

i. Smith-Hazel selection index

a. Multiple trait selection where information from related
individuals is not included

The selection index is a multiple linear regrzssion of
economically weighted genetic values on weighted phenotypic

values. The index value of an individual is:
I =bp, +bp, +...% bqpq oo (1-2),

where I is the index value of the individual,
b1...bq are the phenotypic weightings or b values, and
p,...p  are the phenotypic values.
The index value to be predicted is a linear combination of
economically weighted genetic values for each trait. The 'b'
values are calculated to maximize the genetic worth of the
selected population. The genetic worth is a linear

combination of genetic values:
= v + +, ..+ V L.l fI-
W av, a,v, v, '1-3),

where w is the genetic worth of the individual,
RS are the economic values of the q traits,
and

Vyee.v are the genetic values of the g traits.



For example consider the tree breeder who wants to select
for height, diameter and volume. If the economic values are
correct, the 'b' values will improve the height, diameter
and volume so that the economic value of future populations
produced from the selected population is maximized,

b. Single trait selection where information from related
individuals is included

When the breeder wants to take advantage of the genetic
structure of the population it is possible to incorporate
the phenotypic values of related individuals to improve the
prediction of genetic values., Phenotypic values of related
individuals are included by decomposing an individual's
phenotypic value into iinear components of phenotypic values
of the genetic groups within the population., For example the
phenotypic value of an individual in a population of

half-sib families can be decomposed according to the linear

model:

P, = P, * P e (1I-4),

1

where p is the phenotypic value of the i*™® individual,
P is the phenotypic value of the half-sib family to
which the i*" individual belongs, and
P is the within-family phenotypic value of the it
individual. |
The half-sib family and within-family phenotypic values are

use to predict the genetic value of the individual. The

selection index for a single trait becomes;



I = b1p‘ + b2p2 +ooo+ bnpn o'o(I-S)y

where b1...bn are the b values applied to the phenotypic
values of the genetic groups, and
P,.++p_ are the phenotypic values of the genetic
groups.
For examplé consider a tree produced by a heirarchical
mating design. There are three phenotypic predictors:
1. The phenotypic value of the male parent family.
2. The phenotypic value of the female parent family,

3. The within family phenotypic value for the individual.

c. Multiple trait selection where information from related
individuals is included.

Incorporating information on related individuals into

multiple trait selection gives a new index:

I = b1,1p1'1 + bl,zpl,z tooot bn'qpn'q .10(1—6)'

where I is the index value of the individual,
bm...bn'q are the b values of n genetic groups for g
traits, and
pm...pn’q are the phenotypic values of the n genetic
groups for the g traits.
This is a combination of the previous two indices, for
example if a breeder wants to select for height, diameter
and volume in a breeding populatioa produced by a

heirarchical mating design. There will be nine 'b' values.

These nine values are split into 3 sets of 3, each set



corresponding to the 'b' values for the male parent family,
female parent family and within family phenotypic values.
Within each set the three 'b' values correspond to the
height, diameter and volume traits. The 'b' values will

maximize the gain in economic value,

The calculaticon of 'b' values in the Smith-Hazel
selection index is based on the derivation of selection
index formula (see Appendix I.). The 'b' values which

maximize expected economic gain are given by the formula:
b=V'Ca...(I-7)

wvhere b is a (nxg) x t vector of b values,
v' is the inverse of a (nxq) x (nxq) matrix of the
variance of the phenotypic predictors,
C is a (nxq) times q matrix of covariances between
phenotypic predictors and genetic values, and
a is a g times 1 vector of economic values of n
subvectors of the same g economic values.
In the previous example of multiple trait selection in a
population produced by a hierarchical mating design the V
matrix would be block diagonal, each block corresponding to
a phenotypic predictor. The individual blocks would be 3x3
corresponding to the height, diameter and volume. The
covariance matrix C is a 9x3 matirx which is subdivided into
3 submatrices each of which are of order 3x3, The 3
submatrices correspond to the covariances between:

1. The individual's genetic values and the male family



phenotypic values.,
2. The individual'é genetic values and the female family
phenotypic values.,
3. The individual's genetic values and the within family
phenotypic values.
The individual elements of the submatrices correspond to the
covariance between phenotypic predictor and genetic values
for height, diameter and volume., The a vector is of order
3x1, each element being the relative economic value for

height, diameter and volume,

ii. Baradat's selection index

The original concept of selection index was derived
assuming 'a' values are known. Once the 'a' values had been
determined 'b' values were calculated. Rouvier (1969)
proposed that genetic values of individuals be predicted
using information on relatives and then economic values be
applied to the predictions to give the predicted genetic
worth of the individual. This concept was applied to tree
breeding by Baradat (1979). The prediction formula has a
slightly different form for Baradat's selection index than
for the Smith-Hazel selection index. The vector of genetic

values of an individual is calculated by the formula:
$=Cc'v'p ...(1-8),

where Vv is a (nxqg) x 1 vector of predicted genetic values,
and

p is a (nxg) x 1 vector of phenotypic predictors.
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The index value of each individual is:
I = a"A’ ...(I"g).

This index appears to be different from the Smith-Hazel
selection index because there is no formula for the classic
'b’ values. Given the same 'a' values the methods are

equivalent. For proof of the equivalence of these methods

see Appendix II,

iii. Fixed effects and selection index

Previously the discussion has been limited to a model
of random éenetic effects. In forest genetics most
experiments have levels of environmental effects in addition
to genetic effects. For example a progeny field trial can be
laid out in a number of ways over a number of sites, Within
sites, experimental designs range in complexity from
randomized complete block to an incomplete latin square
(Montgomery 1984). Blocks represent within site |
environmental effects and can be considered fixed or random.
Talbert (1984) calculated a selection index for loblolly
pine (Pinus teada L.) assuming that block effects were
random. The block effects were included in the calculation
of the components of the V matrix., Baradat (1986) considered
blocks to be fixed and removed the effects before
calculating the selection index. There are other examples of
blocks being treated as fixed effects in forest genetics
(Christophe and Birot 1979). The removal of block effects is

applicable to any design, however when the breeder is faced



"

vith an incomplete block design he or she is obliged to
remove the block effects. There are breeders who neglect
block effects. This creates a selection index of individuals
with biased random effects. There is no proof that a
selection index will maximize gain in this case (Henderson

1963).,

I1f fixed effects are included, the prediction model
becomes a mixed model. Fixed effects are generally estimated
in the analysis of variance and then selection index
predictions are calculated from the random phenotypic
effects. The predicted value is a combination of fixed
effects estimates and the random predictions for the genetic

values,

C. Best linear unbiased predictor (BLUP)

BLUP was developed by C.R. Henderson over a number of
years. The first publication explaining the basic BLUP
theory was in 1963 (Henderson 1963). Since then there have
been numerous publications concerning BLUP (Henderson 1984).
The theoretical basis of BLUP is based on the original
approach taken by Henderson which broke away from selection
index theory. Henderson concentrated on the accurate
prediction of genetic values. Later Portnoy (1982) and
Bulmer (1985) proved that accurate prediction maximizes
gain. BLUP has the advantage of requiring only a knowledge
of the variance components of the joint distribution of

phenotypic and genetic values (Henderson 1973). The basic
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problem BLUP was developed to solve was the mixed model
prediction, for example breeders need to predict random

genetic effects and fixed environmental effects (Henderson

1973).

The acronym BLUP explains the basis of the BLUP
derivation, The BLUP prediction is an unbiased predictor
i.e. the expectation value of the records within a given
fixed effect have an expectation value equal to the value of
the fixed effect plus the mean. The predictor is best linear
because within the class of unbiased predictors the
predictor is the one which gives minimum variance (Henderson
1973). The derivation and application of BLUP estimates are
based on:

1. The derivation of the basic BLUP formula,

2. The proof of the equivalence of BLUP to selection
index when fixed effects are maximum likelihood
estimates.

3. The use of mixed model methodology to determine BLUP
solutions.

For a precise mathematical explanation of these steps the

reader is refered to Appendix III,

BLUP was originally used in animal science for sire
evaluation (Henderson 1973). BLUP has the advantage of
estimating herd year season fixed effects from record values
and a knowledge of the variance components. There were

potential computational difficulties but these were avoided
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by considering only one trait and a relatively small number

of sires,

The mixed model equations for the estimates of B and u
are (Searle 1972): :

-1 -1 -1 1 (1-10)
Z2'R X Z2'R 2 +D

X'R'K X'R'Z B | _ X'Ry
u Z'R y

where ¥ is a design matrix of the fixed effects,

' is the inverted matrix of the variance of the

R
error effects vector,

2 is a design matrix of the random genetic effects,

D' is the inverted matrix of the variance of the
genetic effects vector,

B is a vector of unknown fixed effects,

u is a vector of the unknown genetic effects, and

y is a vector of record values.

D can be decomposed into:

2

D=Aaa 000(1_11),

where A is the numerator relationship matrix for the
individuals represented in the genetic effects
vector, and

2 o, . . .
0" is the additive genetic variance,

To illustrate some of the numerical analysis and
computing problems consider the example of a population of
one thousand trees. The breeder wants to predict the genetic

value of 3 traits for each tree. The D and R matrix would be



14

of order 3,000 x 3,000. There would be in excess of 3,000

unknowns in the system of eguations.

For the single variable case the model can be
simplified (see Appendix III). A major breakthrough in the
calculation of BLUP estimates for large data sets was the
development of an algorithm based on mendelian principles to
invert the relationship matrix for large data sets
(Henderson 1976; Quaas 1976). The use of iterative
techniques to solve the BLUP equations allowed equations
with up to 100,000 unknowns to be solved (Schaeffer and
Kennedy 1986). These two developments coupled with increased
performance of computer hardware have lead to multiple trait
BLUP applications to predict breeding values of individual
animals in cattle, sheep and pig breeding (Blair and Pollak
1984; Hudson and Kennedy 1985; Quaas and Pollak 1980),
Despite these advances there is still a computational
problem in predicting breeding values in very large breeding

programs (Blair and Pollak 1984).
D. Some additional discriminant functions

i. Restricted discriminant functions

Breedérs in both animal and plant breeding have used
restricted disriminant functions. These functions maximize
gain in genetic worth with the restriction that gain in one
trait is controlled at a level specified by the breeder.
There are several types of restricted selection indices

(Mallard 1972). The formula for restricted BLUP has also
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been derived (Henderson 1984), This contribution will not
consider restricted discriminant functions because these

functions are a special case of a more general problem,

ii. Base indices

Williams (1962) used the term base index to refer to an
index which consisted of economically weighted phenotypic
values. When genetic variances cannot be accurately
determined the base index can give gains which are
equivalent to those for more complexed indices (Elgin et al.
1970). However when accurate estimates of genetic variances
are available more sophisticated indices should produce

greater gains.,

E. Variance component estimation

The efficiency of selection indices and BLUP is
dependent on the accurate estimation of variance components.
There have been several studies reviewing the estimation of
variance components (Searle 1974, Kennedy 1981). In an
attempt to avoid repeating previous studies this series of
contributions will choose one method of variance component
estimation. This will allow efforts to be concentrated on
the other aspects of disriminant functions used in breeding.
Searle (1974) remarked on the potential of the synthesis
method to estimate variance components. The major problem
was the computational eiffort required to compute the
variance components. A new sum of sguares algorithm

developed by Dr. T. Taerum at the University of Alberta has
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solved the computational problem, Kennedy (1981) found that
analysis of variance methods for variance compecients
estimation compared favourably with other estimators.
Therefore the synthesis method will be used in the analysis

in the subsequent series of contributions (chapters II, III,

IV and V).

111. Requirements of Tree Breeding

All breeding programs follow the basic schema of
selection of superior genotypes which will produce superior
individuals either for the next generation of the breeding
cycle or for production of a new improved crop. The genetics
of the base population, rep;oductive physiology and crop
production methods influence the prediction methods which
are used to select superior genotypés. In agriculture wheat
breeders are presented with a base population within which
there appears to be little apparent variation. Improvement
is achieved by selection among highly inbred lines. The
wheat breeder can quickly produce new varieties and is
relatively confident about the economic value of the final
improved production crop. The relatively homogeneous
cultivated fields in which wheat is grown allow the breeder
to concentrate his efforts on the performance of the inbred
lines in a limited number of relatively homogenous

environments.

In contrast the tree breeder is generally faced with a

base population which has a large amount of within and
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between population variatidn. The long production cycle,
normally between 60 and 120 years in conifers, reduces the
confidence in the predicted economic value of the final
crop. There is a large amount of environmental variation
within and between forest site types. Most forestry sites
are not cultivated. The tree breeder therefore requires a
prediction method which can predict the genetic value of
individuals selected from heterogeneous populations grown on
heterogeneous sites. In addition a prediction method must be
capable of allowing for uncertainty in the economic

contribution of each trait to the end product value.

A. Heterogeneous sites

The breeder requires an accurate prediction of genetic
values of trees planted out in field trials where there are
several levels of environmental effects. If the breeder
considers environmental effects as fixed effecés the
prediction model is a mixed model. BLUP was derived to solve
a similar problem in animal sciences (Henderson 1973).
However the development of a BLUP program for use in a tree
breeding program would require considerable effort. Computer
programs for selection indices are easier to develop for the

moderately large data sets analysed at the present time in

tree breeding programs.

There is a need to compare BLUP results with selection
index after records have been adjusted for fixed effects

using analysis of variance estimates of fixed effects., If
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there is no practical difference between BLUP and selection
index predictions the tree breeder could use the less
computationally demanding selection index. At the present
time most tree breeders are struggling to predict genetic
values of individuals on a single site. Comparison of BLUP
and selection indices results for genotypes on a single site
would give a practical assessment of the potentiﬁl losses of

using selection indices instead of BLUP.

B. Heterogeneous populations

Accurate prediction of genetic values when
variance-covariance matrices are homogeneous within a
population has been proven to maximize gain in truncation
selection (Portnoy 1982)., Bulmer (1985) asserts that
truncation selection on the basis c¢f the most accurate
prediction always maximizes gain., It is unlikely populations
selected from species with large geographical ranges will
have homogeneous among-population variance-covariance
matrices., Populations at different ends of a geographical
range would most likely have been subject to different
selective forces. The gene frequencies and therefore the
variance-covariance matrices would be different. There are
no selection index formulae incorporating heterogeneous
among-population variance-covariance matrices. There is a
need to derive formulae which incorporate heterogeneous
among population variance-covariance matrices. The
predictions should then be compared with the predictions

using homogeneous variance-covariance matrices to see if
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there are any practical differences.

C. Uncertainty over economic values

Once the breeder has accurately predicted genetic
values he or she must determine economic values. The most
certain thing in tree breeding is the uncertainty over
future economic values, Baradat (1979) recognised this
uncertainty and performed a sensitivity analysis of expected
gain in individual traits to changes in economic values.
There have been studies which simulated the effects of
errors in economic weights on the efficiency of selection
indices (Vandepitte and Hazel 1977). The senstitivity of the
variance of predicted genetic worth, the prediction error
variance and the efficiency of the index to changes in
economic values have not been studied on a real breeding
population. Information on this sensitivity will give the
breeder additional information when choosing economic

values,

Classical decision making theory provides several
different technigues to take account of uncertainty
(Blackwell and Girshick 1954). These technigques have never
been applied to the choice of economic values in tree
breeding or any genetic selection. Basic gain formulae would
have to be adapted so that the gain for several possible
economic values could be calculated. However once optimum
strategies were developed at least they could be defended by

the basic logic of decision making. It would still be up to
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the breeder to choose the economic values but he or she

would now have additional information to aid decision
making.

IV, Research methods

Prediction of genetic values or any unknown values is a
comparatively new science., They are no tests such as the F
test to test the signifiéance of results (Henderson 1984).
In animal science many scientists have contributed to the
development of BLUP applications. The general form is an
adaption of an existing formula to solve a specific problem,
then an examination of results from applying the new formula
to a data set., It would be logical that development of
selection index formula in tree breeding would follow the
same pattern, Predictions considered to be superior should
be checked against predictions which are regarded as
theoretically inferior, The objective should be to produce
predictions which give practical differences in selected
populations, There are a number of parameters which can be
used to assess the qQuality of an index:

1. Variance in the predicted genetic worth,
2. Prediction error of the genetic worth,
3. Efficiency measured by the correlation between
predicted and actual genetic worth (Henderson 1973),
Two indices can be compared using the correlation between
rankings for each index and the number of individuals ranked

in an upper truncated group for each index.
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V. Conclusions

At the present time the most significant contribution
to the application of discriminant functions to tree
breeding would be to:

1. Establish the practical equivalence of BLUP and
selection index when fixed effects are estimated in
the analysis of variance,

2., Adapt selection index formula to take account of
heterogeneous among population variances.

3, Assess the sensitivity of predicted genetic worth,
prediction error variance and index efficiency to
potential changes in economic values,

4, Apply classical decision making techniques to
selection of economic values.

Where appropriate, new indices should be evaluated and

compared against existing indices,



22

V1. Literature cited

Anderson, T.W. 1984 An introduction to multivariate
statistical analysis, Second edition. John Wiley and
Sons, New York 724 pages.

Baradat, P. 1976 Use of juvenile-mature rel:-cionships and
information from relatives in combined multitrait
selection. In Proceedings of the IUFRO joint meeting of
genetic working parties on advanced generation breeding.

INRA. pp. 121-138,

Baradat, P. 1979 Selection combinee multicaractere chez le
pin maritime. Divers modeles d'index de selection
utilizes, 104 eme Congres de Societes Savantes. Fasc. 2.

pp. 299-314,

Baradat, P. 1982 Genetique quantitative modeles statistigues
et genetigues de base. INRA, 204 pages.

Baradat, P. 1986 personnal communication,

Blackwell, D, and M,A, Girshick. 1954 Theory of games and
statistical decisions., Dover Publications, Inc. New York.

345 pages.

Blair, H.T. and E.J., Pollak. 1984 Comparison of an animal
model and equivalent reduced animal model for
computational efficiency using mixed model methodology.
Journal of Animal Science 58:1090~-1096,

Bulmer, M.G. 1985 The mathematical theory of qQuantative
genetics. Clarendon Press, Oxford, 254 pages,

Christophe, C. and Y, Birot. 1979 Genetic variation within
and between populations of Douglas fir. Silvae Genetica
28:197-206.

Cotterill, P.,P, 1985 On index selection II, Simple indices
which require no genetic parameters or special expertise
to contruct. Silvae Genetica 34:64-68.



23

Elgin, J.H., Hill R.R, and K.E., Zeiders. 1970 Comparison of
four methods of multiple trait selection for five traits
in alfalfa. Crop Science 10:190-193,

Hazel, L.N. 1943 The genetic basis for constructing
selectlon indexes, Genetics 28:476-490,

Henderson, C.R. 1963 Selection index and expected genetic
advance., In Statistical Genetics and Plant Breeding,
National Research Council Publication No. 982, National
Academy of Science, Washington, D.C. pp. 141-163,

Henderson, C.R. 1973 Sire evaluation and genetic trends. In
Proceedings of the Animal Breeding and Genetics Symposium
18 Honor of Dr. J.L. Lush, Blacksburg, Virginia. pp.
10-41,

Henderson, C.R. 1976 A simple method for computing the
inverse of a numerator relationship matrix used in
prediction of breeding values., Biometrics 32:69-83.

Henderson, C.R, 1977 Prediction of future records, In
Proceedings of the International Conference on
Quantitative Genetics, Edited by Pollak, E., O,
Kempthorne and T.B, Bailey. The State University Press,
Ames Iowa pp. 615-638,

Henderson, C.R., 1984 Applications of linear models in animal
breeding. University of Guelph. Guelph, Ontario 462
pages.

Henderson, C.R. and R.L. Quaas. 1976 Multiple trait
evaluation using relatives records, Journal of Animal
Science 43:188-197,

Hudson, G.F.S. and B.W. Kennedy. 1985 Genetic evaluation of
swine for growth rate and backfat thickness. Journal of
Animal Science 61:83-91.

Kennedy, B.W. 1981 Variance component estimation and
prediction of breeding values. Can. J. Genet. Cytol,
23:565-578.



24

Lin, C.Y., 1978 Index selection for genetic improvement of
quantitative characters. Theor. Appl. Genet. 52:49-56,

Mallard, J. 1972 La theorie et la calcul des index de
selection avec restrictions: synthesis critique.
Biometrics 28:713-735.

Montgomery, D.C. 1984 Design and analysis of experiments.
2nd Edition, John Wiley and Sons, New York, 538 pages.

Portnoy, S. 1982 Maximizing the probability of correct
ordering random variables using linear predictors,
Journal of Multivariate Analysis 12:256-269,

Quaas, R.L. 1976 Computing the diagonal elements and the
inverse of a large numerator relationship matrix.
Biometrics 32:949-953,

Quaas, R.L. and E.J. Pollak. 1980 Mixed model methodology
for farm and ranch beef cattle testing programs. Journal
of Animal Science 51:1277-1287.

Rouvier, R. 1969 Ponderation des valeurs genotypigques dans
la selection par index sur plusieurs caracters.
Biometrics 25:295-308.

Schaeffer, L.R, and B.W. Kennedy. 1986 Computing strategies
for solving mixed model equations. Journal of Dairy
Science 69:575-579,

Searle, S.R., 1972 Linear models. John Wiley and Sons, New
York. 532 pages.

Searle, S.R., 1974 Prediction, mixed models, and variance
components. In Reliability and biometry, statistical
analysis of lifelength. SIAM, Philadelphia pp. 229-266.

Smith, H.F, 1937 A discriminant function for plant
selection. Ann, Eugen. 7:240-250,

Talbert, C.B. 1984 Analysis of several approcaches to
multiple-trait index selection in loblolly pine( Pinus .
teada L.). Phd. Thesis The University of North Carolina,

Raleigh 106 pages.



25

Williams, J.S., 1962 The evaluation of a selection index.
Biometrics 18:375-393,

Vandepitte, W.M, and L.N, Hazel. 1977 The effect of errors
in economic weights on the accuracy of selection indexes.
ann., Genet, Sel., Anim, 9:87-104.



CHAPTER TWO

COMPARISON OF MIXED BLUP AND SELECTION INDEX PREDICTIONS IN
A MARITIME PINE PROVENANCE-PROGENY TRIAL

I. Introduction

Traditionally, selection indices (best linear
predictors) have been used to predict genetic values in tree
breeding (Cotterill and Jackson 1985). Many of the linear
models in tree breeding experiments are mixed models. In
theory best linear unbiased predictors (BLUP) have better
properties for prediction of genetic effects in mixed models
(Henderson 1963). BLUP predictions are eguivalent to
selection index predictions when random genetic values are
predicted from phenotypic values which have been calculated
from record values adjusted by maximum likelihood estimates
of fixed effects (Gianola and Goffinet 1982). The
computational time required to produce BLUP estimates is
much greater than that required to calculate selection index
values (Baker 1986; Schaeffer and Kennedy 1986). To produce
maximum likelihood estimates of fixed effects to ensure that
selection index values are exactly the same as BLUP
estimates is also computationally demanding (Henderson
1973). To estimate fixed effects in the analysis of variance
and then calculate selection indices from adjusted record
values is much less demanding. Tree breeders have continued
to use selection indices as opposed to BLUP because
selection indices are computationally less demanding. In

theory selection index predictions are biased (Henderson
26
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1963). The practical differences between BLUP and selection
index predictions in tree breeding populations have not yet

been investigated.

It is the objective of this contribution to compare the
rankings of individuals in a maritime pine (Pinus pinaster
Ait.) provenance-progeny trial ranked on the basis of BLUP
and selection index with fixed effects estimated in the

analysis of variance.

11. Materials and methods

There are no computer progfamé available for the BLUP
model to predict individual génotypgs in a
provenance-progeny trial. A BLUP model was developed in
order to make an accurate comparison between BLUP and
selection index. To avoid many of the numerical analysis
problems involved in the calculation of BLUP estimates for
large data sets a small data set was choosen and the
analysis was limited to a single trait. The objective being
to obtain BLUP equations which could be solved by inversion
of the coefficients matrix. There are several symbols used
in this contribution. The first time a symbol is used a
written explanation is given. A table of symbols is also
included which gives an explanation of symbols used in the

text.



Table II-1.

List of symbols

Symbol

Explanation

1ijk

u
BLOCK1
PROVi

FAMj(i)

€ 5i)

(o T I )

o<

NO DN X
o

o

tree nested within

recorg value of the k*
provenance in the 1t

the j*"family in the i
block

mean for all records 1n the analysis
Block effect of the 1" block

Provenance effect of the i*!

Phenotypic family effect of the i** family in
the 1~ provenance
W1th1qlfam11y effect of the k"
the j family

predicted additive value
Index value

vector of covariance between phenotypic
predictors and the additive genetic value
matrix of variance of phenotypic predictors
vector of phenotypic predictors

vector of record values

design matrix of fixed effects

vector of unknown fixed effects

design matrix of random effects

vector of unknown random genetic effects
vector of residual effects

design matrix of random provenance additive
genetic effects

vector of unknown provenance additive genetic
effects

design matrix of random within provenance
additive effects

vector of unknown within provenance additive
genetic effects

numerator relationship matrix for provenances

numerator relationship for individuals

ratio of residual variance to the provenance
additive genetic variance

ratio of residual variance to the
within-provenance additive genetic variance
variance of residual effect in BLUP model
within-family variance

within-provenance additive genetic variance

variance of provenance genetic effects

s th th

provenance

individual in

provenance variance
family variance
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Table I1I-1, List of symbols (continued)

Symbol Explanation

v variance-covariance of residual random
B effects vector of the BLUP model after fixed
effects have been removed
R variance-covariance matrix of the residual

effects in the BLUP model

A. Biological material

The basic data was taken from a 12-year-old
provenance-progeny trail of maritime pine. The complete
trial comprised 795 individuals from 68 half-sib families
taken from 12 provenances planted in three replications with
five incomplete blocks in each replication., Forty families
from seven provenances in three incomplete blocks of the
experiment were used for the comparison of BLUP and
selection index predictions. Each tree was measured for
height. To provide accurate variance component estimates the
variance components were estimated from the complete data
set. Block effects were considered fixed in both BLUP and

selection index predictions.,

B. Selection index model
The basic linear model in the analysis of variance is:

, ¥ € i) v (I1I-1)

Y = u + BLOCK + PROV  + FAM
1ijk 1 i jli

where ¥, is the record value (height) of the k™ tree
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nested within the jth family of the it provenance
in the 1*" block;

u is the mean for all records in the analysis;

BLOCK is the effect of the 1™ block;

PROV, is the phenotypic effect of the i*" provenance;

FAM, ., is the phenotypic family effect of the j*
family nested in the i*" provenance, and

e, ;) 15 the phenotypic effect of the k™ individual
nested within the j*" family in the i®

provenance.

The fixed effects and the random phenotypic effects
were estimated from the linear model by the UANOVA analysis
of variance program developed by Dr T. Taerum at the
University of Alberta (Appendix V). Variance components were

estimated in the same program (Appendix V).

The selection index calculation was the one pioneered
by Baradat (1982). The index value is a linear combination
of economically weighted predicted additive genetic values.
In the case of single trait selection no economic weightings
are required. In the provenance-progeny trial model the
additive genetic value of an individual is the sum of two
independent additive values. The two additive values are:

1. The provenance additive value.
2. The within-provenance additive value.
The prediction formula for the additive'genetic value of

each individual is:
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v =c'V'p ...(11-2),

where Vv is the predicted additive value;
¢ is a vector of the covariance between the phenotypic
predictors and the additive génetic value,
V' is the inverse of the variance matrix of the
phenotypic predictors, and
p is a vector of the estimated phenotypic values.
The individual's provenance and within-provenance additive
values were predicted using equation I1I-2, The total
additive value of the individual or in this case the
selection index value was given by adding these two
predictions. The ¢ and v matrices are determined from
basic genetic and statistical principles (Appendix IV), A

numerical example of the selection index calculation is

given in Appendix VI,

C. BLUP model

BLUP models were originally developed for sire
evaluation in animal science., Later models were developed to
evaluate individual animals (Henderson and Quaas 1976). The
individual animal model will be used here because it is
equivalent to the selection index model where genetic values
of individuals are predicted. The BLUP model is based on the

basic linear model:
y = X8 + Za + eb ...(I1-3),

where y is a vector of record values,
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X is a design matrix of fixed effects for each record,

p-is a vector of unknown fixed effects,

2 is a design matrix of random effects,

a is a vector of unknown genetic effects, and

eb is a vector of residual effects.
The model requires modification to include the two sets of
random additive genetic values in the provenance-progeny
model i.e. provenance additive value and within-provenance

additive value. The modified linear model is:
y=X8+2a +2Za +eb e (I1I-4),

where y is a vector of record values,
X is a design matrix of fixed effects for each record;
B is a vector of unknown block effects,
zZ is a design matrix of random provenance additive
genetic effects,
zZ is a design matrix of random within-provenance
additive genetic effects,
a, is a vector of unknown provenance additive genetic
effects,
a, is a vector of within-provenance additive génetic
effects, and
eb is a vector of residual effects.
The provenance and within-provenance additive genetic
effects are considered to be independent of each other.
Using mixed model methodology to set up the BLUP equation

gives (Henderson 1977):
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X' R'Z R'z, B 'y
-.1 Y
z1:x 2'2 +G s 2'C , als= 2'y | (11-5)
' ' 3 ]
2,'8 2,'% 2,'2, + G, s, a 2,'y

where qu is the inverse of the numerator relationship
matrix for the provenances,

G;‘ is the inverse of the numerator relationship
matrix for individuals,

s, is the ratio of the residual variance to the
provenance additive genetic variance, and

s, is the ratio of the residual variance to the

within-provenance or individual additive genetic

variance.

G, is an identity matrix, G, is a block diagonal
matrix. The blocks of the block diagonal matrices are of
order equal to the number of individuals within a family.
The diagonal elements of the blocks are all equal to one.
The off diagonal elements are equal to 0.25. The s, ratio

is:

2
o
S1 = Lz ...(11-6)
%o

where oe; is the variance of the residual effects in the
linear model (II-4), and
aG: is the variance of the provenance genetic effects.

2 . . .
The term o, 1is calculated from the variance components 1n

the analysis of variance and is equal to:
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2202 -30_ % ... (11-7),
FAM

where a: is the variance of the residual calculated in the

analysis of variance, and
oF»f is the family variance calculated in the analysis
of variance,
The variance aG: is by definition equal to the component

Omwj calculated in the analysis of variance. The s, ratio

is:
S =ﬂ_ooo(II-8),

where o: is the within provenance additive genetic
variance,.

The term aeb2 is calculated in the same way as for S, The

variance o: was calculated from the variance components in

the analysis of variance and is equal to four times aFM:.

BLUP estimates were calculated by premultiplying the vector

on the right hand side of the mixed model equations (II-5)

by the inverse of the coefficient matrix. A numerical

example of the BLUP calculation is given in Appendix VI.

D. Prediction of performance values

Breedercs want to predict the performance of genotypes.
I1f the genotypes are measured in blocks or replications
tHere are a number of linear combinations which the breeder
can use to assess performance. The breeder may be interested
in the performance of the genotypes when the fixed block

effects have been removed. Breeders may be interested in
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including fixed block effects or an average value for all

the fixed block effects in predictions (Henderson 1973).

In this study each individual was given a BLUP
estimated score and a combination of selection index and
analysis of variance estimates for:

1. Random provenance additive genetic effect plus random
within-provenance additive genetic effect.

2. Fixed block effect plus random provenance additive
genetic effect plus random within-provenance additive
genetic effect,

3. Average fixed block effect plus random provenance
additive genetic effect plus random within-provenance
additive genetic effect.

The performance of each tree in the breeding population was
predicted by BLUP and a combination of selection index
scores and fixed effects estimated in the analysis of
variance. Trees were ranked on predicted performance values
and the rank correlation between the BLUP and the selection
index score rankings was calculated. The number of trees
which occurred in the top 18 (top ten percent) for both BLUP

and selection index scores was determined.

I1I. Results and discussion

The information obtained can be used to compare the
prediction methods. The rank correlations and the trees in
the selected population provide information for estimating

the practical differences between prediction methods. If the
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rank correlation is high and the top 18 ranked trees are the
same for both prediction methods the breeder is free to
choose the computationally less demanding method. Comparison
of predicted values and an examination of the elements of
each prediction formula will give insights into situations

wvhere prediction methods may differ significantly.

The rank correlations and the trees selected in the top
18 ranked on the basis of predicted additive genetic effects
for both BLUP and selection index predictions show that if
the breeder is only interested in random additive genetic
effects the selected populaticn is the same for both
prediction methods (Tables II-2 and I1I-3). The populations
selected when the linear combination of predicted average
block effects plus the predicted random additive genetic
effects is used as a performamance measure are identical for
both prediction methods (Tables II-2 and 1I-3). When a
linear combination of block plus random additive genetic
effects is predicted there are substantial differences
between the selected populations for each prediction method.

(Table 11-3),.

Table I1I-2 Rank correlation between BLUP and selection index
rankings for linear combinations of fixed and random effects

Random Blesk + random Block(ave) +
random

.998 .910 .998
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Table 1I-3 Number of trees which ranked in the top 18
individuals of both BLUP and selection index predictions

Random Block + random Block(ave) +
random
18 9 18

The rank correlations for pefformance based on random
genetic effects are high but the predicted performance
values of the trees differ slightly (Table I11-4).

Table 1I-4 Block, provenance, family and predicted values of

the trees ranked in the top 18 on the basis of predicted
random effects for both BLUP and selection index predictions

Identification Prediction
Block Provenance Family BLUP Index
2 3 4 271.6 264.8
2 3 4 225,2 218.3
2 3 4 190.3 i83.5
1 1 2 188.2 189.0
3 6 2 167.1 172.1
2 4 2 159.0 160.1
3 5 3 158.3 155.8
3 7 3 153.4 145.1
i 1 2 147.5 148.3
1 1 2 147.5 148.3
2 3 4 143.8 137.0
1 3 1 136.6 144.3
2 5 3 132.4 135.4
3 6 2 132.3 137.3
3 6 3 130.5 135.4
3 6 2 126.5 131.1
1 1 2 124,3 125.1
3 5 3 123.4 121.0

The difference between the two predicted values can be
traced to the way in which the block effects are estimated.
In the selection index method block effects are estimated

and then record values are adjusted. The genetic effects are
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then predicted from the adjusted recorc values. This is a
two stage process. In BLUP the fixed and random maximum
likelihood estimates are calculated at the same time., The
two stage process of adjusting records for fixed effects and
then calculating selection index predictions will give
exactly the same results as BLUP if the fixed effects are
maximum likelihood estimates (Gianola and Goffinet 1982),
Thus the difference between random predictions must be due

to the different block estimates for BLUP and selection

index calculations.

The maximum likelihood estimates for fixed effects are

given by the formula:
f= (X'V'E)(X'V'y) ...(11-9),
The V matrix in the maximum likelihood estimate is equal to:
V =262' + R ,,.(II-10),

where Z is the design matrix of random genetic effects,
G is the variance covariance matrix of the random
genetic effects vector, and
R is a diagonal matrix of residual effects (Henderson
1984).
The V matrix in genetic experiments is not always diagonal
because the G matrix can have several covariance terms. The
covariance terms are the covariances between related
individuals. The analysis of variance method assumes that V

is a diagonal matrix. Each diagonal term is a linear
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combination of the error variance and the random effect

variance as calculated in the analysis of variance,

The similarity of the predicted random genetic effects
estimates indicate a certain robustness of random
predictions to different fixed effects estimates. In certain
populations the V matrix méy depart significantly from a
diagonal matrix. For example in a population which is highly
inbred and has low effective population size there would be
a large number of related individuals. It is likely that
'BLUP and selection index predictions of random genetic

effects would diverge in such circumstances.

There is a marked difference between the BLUP and
selection index prediction values for the linear combination
of average block effect plus random additive genetic effects
(Table 11-5), however rankings for both prediction methods
are the same (Table I1I1-2). An explanation can be found in
the method of calculation. BLUP estimates for block effects
are based on unadjusted raw record values. The block
estimates in the analysis of variance are calculated from
deviations from the overall mean. The BLUP estimate is
therefore much larger because it includes the mean. The
rankings are not changed because the average of the block
estimates is a constant. Adding a constant to the values
will not change the rank correlation, It will be the same as
the rank correlation when trees are ranked according to

predicted random additive genetic values.
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Table 1I-5 Block, provenance, family and predicted values of
the trees ranked in the top 18 on the basis of predicted
random effects and an average value of all block effects for
both BLUP and selection index predictions

Identification Prediction
Block Provenance Family BLUP Index
2 3 4 942.6 265.5
2 3 4 896.2 219,1
2 3 4 861.3 184,2
1 1 2 859,.2 189.8
3 6 2 838, 1 172.9
2 4 2 830.0 160.9
3 5 3 829.3 156.6
3 7 3 824.4 145,8
1 1 2 818.5 149, 1
1 1 2 818.,5 149, 1
2 3 4 814.9 137.8
1 3 1 807.6 145,1
2 5 3 803.4 136.1
3 6 2 803.3 138.0
3 6 3 801.5 136,5
3 6 2 797.5 132.2
1 1 2 795.3 125.9
3 5 3 794,2 121.8

When the objective is to predict a linear combination
of fixed biock and random genetic effects there are
substantial differences in predicted values and rankings. An
examination of the block number of the trees which were
found only in the top 18 of the selection index rankings and
those found only in the top 18 of the BLUP rankings showed
that the block estimates are £he major factor reducing the

rank correlations (Tables II-6 and I1I-7).
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Table I1-6 Block, provenance, family and predicted values of
the trees ranked in the top 18 for BLUP but which did not
occur in the top 18 for selection index on the basis of
predicted random and fixed block effects

Identification Prediction
Block Provenance Family BLUP Index
1 3 1 840,7 120.5
1 1 4 840.6 113.1
1 3 4 838.0 115.5
1 3 1 834.9 114.7
1 1 5 830.5 103,7
1 3 4 826,4 103.9
1 2 3 824.3 93,6
1 2 5 820.9 90.5
1 3 1 817.4 Q7.2

Table 11-7 Block, provenance, family and predicted values of
the trees ranked in the top 18 for selection index but which
did not occur in the top 18 for BLUP on the basis of
predicted random and fixed block effects

Identification Prediction
Block Provenance Family BLUP Index
3 6 2 806.1 178.5-
3 5 3 797.2 162.2
3 7 3 792.3 151.5
2 4 2 782.5 133.4
3 6 2 771.2 143.7
3 6 3 769.4 142.,1
3 6 2 765.4 137.9
3 5 3 762.3 127.4
3 6 2 753.8 126.3

Table II1-8 Fixed effects block and mean estimates for BLUP
and selection index.

Estimate Mean Block 1 Block 2 Block 3
BLUP - 750.6 623.5 638.9
Index 673.3 22.6 ~26.7 6.4

The differences between BLUP estimates for block 1 and the
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other blocks are greater than the same differences for block
effects estimated in the analysis of variance (Table I1I-8).
This difference explains the influx of individuals from
block 1 into the top 18 ranked BLUP predictions. When
selection index predictions are used, individuals from Block
3 replace individuals from Block 1 in the top 18 ranked
individuals (Tables 1I-6 and II-7). The BLUP block estimates
are maximum likelihood estimates and the analysis of
variance estimates are least squares estimates. These
estimates do effect rankings when they are directly included
in the prediction. In theory the maximum likelihood estimate
is better because it give an unbiased estimate. The V'
matrix takes into account the relationships between the
genetic groups. The constraints provided to solve equations
may also have an effect on the estimates.. If the breeder has
the computational capabilities he or she would be best

advised to use the BLUP fixed effects estimates.

The results show that if the breeder wants to predict
random additive genetic effects when fixed effects have been
removed, analysis of variance estimates of fixed effects
give almost identical rankings as the BLUP estimates. The
rank correlation may be lower in other populations where
there are many related individuals and the V matrix departs
significantly from a diagonal matrix. Considering the extra
computational effort required for BLUP estimates the breeder

can reduce the computional problems and obtain the same

selected population by using selection index and analysis of
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variance estimates. If a population has a large number of
related individuals selection index predictions should be

viewed with some caution,

The results are based on data from one experiment.
These results are dependent on experiméntal data and
experimental design., Some caution shouid be exercised in
extrapolating the results to other situations. When the
relative magnitude of fixed and random effects are different
from those in the experiment results may not be applicable.
Analytical methods exist which would be more appropriate for
extrapolation of results to other data sets particularly

with respect to BLUP estimations (Henderson 1975).

IV. Conclusions

In the provenance-progeny study analysed in this
experiment results show breeders wanting to include fixed
effects in their predictions should use BLUP estimates. If
the breeder wants to rank individuals on the basis of random
genetic effects after removal of fixed effects selection
index with records adjusted using analysis of variance
estimates for fixed effects will give the same results as
BLUP. The breeder can use selection index, reducing the
computational demands, without loosing any efficiency in

selection,

For more highly inbred populations or populations with
low effective numbers the breeder is advised to use BLUP

estimates, Caution should be used in extrapolating the



results to other data sets.
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CHAPTER THREE

SELECTION OF SUPERTOR GENOTYPES FROM SEVERAL POPULATIONS
WITH HETEROGENEITY AMONG WITHIN-POPULATION VARIANCES

1. Introduction

When the breeder wants to predict genetic values to
select the best genotypes from several different provenances
there is an assumption made that the genetic and phenotypic
variance-covariance matrices are all the same (Searle 1974),
In statistical terminology within-provenance
variance-covariance matrices are assumed to be homogeneous
among populations. When provenances are sampled from species
that have wide geographical ranges there is little to
justify the above assumption. The discriminant function that
most effectively selects superior genotypes is the index
which most accurately predicts breeding value (Bulmer 1985,
Henderson 1977). The selection index constructed by Baradat
(1979) is based on this principle but assumes that
within-provenance variance-covariance matrices are
homogeneous among populations. Adaption of prediction
formulae to incorporate heterogeneous variance-covariance
matrices would in theory provide a more accurate prediction

and therefore a more efficient selection index.

The objective of this contribution is to derive the
prediction formulae when there is heterogeneity among
within-provenance variance-covariance matrices. The rankings
of predicted genotypes will be compared with the rankings of

47
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predicted genotypes when the within-provenance

variance-covariance matrices are assumed to be homogeneous

among populations,
I1. Materials and methods

A. Biological material

A 12-year-old provenance-progeny trial of maritime pine
(Pinus pinaster Ait.) containing a total of 68 half-sib
families from 12 provenances was measured fcor height,
circumference and stem lean. The 12 provenances were sampled
from the species range in south-west France. Six half-sib
families were sampled in each provenance, except for
provenance 10 in which only five families were sampled and
provenance 12 in which only three families were sampled.
Seven hundred and ninety five trees from the 68 half-sib
families were planted out in three replications, Each
repliéation was subdivided into five incomplete blocks,

making a total of 15 incomplete blocks.

B. Statistical techniques

The basic input values for selection index calculations
are:
1. The variance components of random genetic and
phenotypic effects.
2. Estimates of random phenotypic effects.
The linear model for each record value includes fixed
replication and block effects. To obtain the basic input

values for selection index calculations the independent



49

variables were standardized and the fixed effects removed.

The adjusted records followed the linear model:

'Yijk = u + PROVi + FAMj“) + ekﬁi) veo{I1I-1)

where ¥ is the adjusted record value for the ijk"

individual,

u is the mean value of all records,

PROV, is the phenotypic effect of the i*" provenance,

FAM, ., is the phenotypic family effect of 3 family

nested within the i‘*" provenance, and

€ (i) is the within-family phenotypic effect of the k"

individual nested within the j*" family.

All variance-covariance components and phenotypic
effects were estimated using the UANOVA program developed by

Dr. T. Taerum at the University of Alberta (Appendix V.).

There are several symbols used to explain the
derivation and calculation of selection index values. The
first time a symbol is used a written explanation is given.
A table of symbols is also included which gives an

explanation of each symbol used in the text (Table III-1).



Table II11-1, List of symbols

Symbol

Explanation

u
PROVi

FAMj( i)
eHjH
pRévi
FAM_ |

eHjH

LD < QO

A
1
2
g
FAM{PROV )
2

€

HEE Q

mean of all records th
phenotypic effect of the i~ provenance

phenotypic family effect of the 5*™ family
nested within the i"" provenance o
within-family phenotypic effect of the k
individual nested within the j& family
estimated phenotypic effect of the if
provenance .
estimated phenotypic family effect of the j
family nested with the i~ provenance
estimated within-family phenotypic effect of
the k" individual nested within the j*
family

average of all records

average of all record values in the it
provenance o
average of all record values in the j
family in the i"" provenance

the record value for the ijk individual

o . o o « th
number of individuals in the i*" provenance

number of individuals in the j* family in
the i*" provenance

number of families in a provenance

additive genetic value of the ijk*
individual

vector of phenotypic predictors

vector of predicted genetic values

matrix of the covariance among the phenotypic
predictors and genetic values

matrix of the variance among the pehnotypic
predictors

matrix of the genetic variance

vector of economic values

quitive genetic variance-covariance in the
1" provenance

family variance-covariance for the i®
provenance genetic worth

within-family variance for the i*" provenance

h

h

genetic worth
predicted genetic worth
selection index value
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i. Derivation of selection index formulae

The selection index calculated was the one proposed by

Baradat(1979):
I =a'C'V'p ...(111-2),

where I is the index of predicted genetic worth,
a is a vector of economic values,
C is the matrix of the covariance between the genetic
value and the phenotypic predictors,
V' is the inverted matrix of the variance of the
phenotypic predictors, and

p is a vector of phenotypic predictors.

When the variance-covariance matrices are considered to
be homogenous the elements of the C and V matrices can be
calculated (Appendix IV.). The calculation of the elements
of the C and V matrices changes as the number of individuals
in a family and the number of families within a provenance
changes. The variance-covariance components calculated in
the analysis of variance, from which the elements of the C
and V matrices are calculated, are pooled estimates that
remain unchanged from provenance to provenance. The
inclusion of heterogeneous variance in the prediction
formulae requires:

1. Proof of the validity of the substitution of the
pooled family and within-family variance-covariance

matrices for all provenances by the family and
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within-family variance-covariance matrix for each
provenance in the prediction formulae.
2. Calculation of the family and within-family variance

components for each provenance.

ii. validation of variance component substitution

The substitution of pooled within-provenance
variance-covariance component estimates by separate
provenance variance-covariance component estimates for each
provenance will be validated if it can be shown that the
elements of the C and V' matrices within a provenance can
be determined without referencé to the within-provenance
components : the other provenances. The components of the
selection index formula are derived from the linear model

(I11-1). The phenotypic predictors are estimated from the

basic records:

PRc‘)vi =¥ -¥ ...(111-3),

FAM =Y -% ,..(111-4),
j{i) ij. i..

& = Y = ? ooo(III—s),

€51 ijk ij.
where PR@Vi is the estimate of the phenotypic effect of the

i*" provenance,

FﬁMj“) is the estimate of the phenotypic effect of the
i*" family nested within the i*" provenance,

é“j“ is the estimate of the phenotypic effect of the
k™™ individual nested within the j*" family in the
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i*" provenance,

is the average of all the record values,

is the average of all the record values in the i‘"
provenance, |

is the average of all the record values in the j*"

[2-]]

ij.
N N + th
family in the i'" provenance, and

Yo is the record value for the ijk*™ individual.

It is important to note that the estimated phenotypic
predictors within a provenance are calculated from
within-provenance record values and the average of all the
records. Provided the grand mean is an unbiased estimate all
the phenotypic predictors in any given provenance are
independent of within-provenance record values in the other

provenances.

a. Calculation of the elements of the C matrix

The C matrix is the covariance matrix between an
individual's phenotypic predictors and an individual's
additive value. The additive genetic value of the individual
is split into two parts:

1. The provenance additive genetic value.

2. The within-provenance additive value.
The expectation value of the covariance between the
individual's estimated phenotypic predictors and its
provenance additive value is by definition equal to the
provenance variance component. This is true even if

variance-covariance matrices are heterogeneous among
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provenances,

The expectation value of the covariance between the
individual's estimated phenotypic predictors and its
within-provenance additive genetic value is derived by
determining which individuals contribute to the phenotypic
predictors., The covariance between each of the individual
phenotypic values that contribute to the estimate of each
predictor and the individual's additive genetic value is
then expressed in terms of the within-provenance additive
genetic variance (Appendix IV.). The individual phenotypic
values are estimated from the within-provenance record
values and the overall mean. Given that the overall mean is
a constant for the whole population, the phenotypic
predictors of the individuals within a provenance are
independent of the within-provenance deviations of the other
provenances. Therefore, all the covariances between an
individual's phenotypic predictors and its within-provenance
additive value can be expressed in terms of
within-provenance additive variance for that given
provenance. The substitution of the within-provenance
variance-covariance terms in the formula for the elements of

the C submatrices gives (Appendix IV.):

. (n.. - 1)(1 - ,25)
Cov(aijk,PROVi) = L VA, velo(I1I-6),

n .
ij.
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& - - < _ _1 -
Cov(aiﬁ,FAMj“)) = [.25(niy 1) + 1] [nij ) ] VAi(III 7),
. .25(n . = 1) + 1
Cov(a,. ,e  ...) = 4 VA ...(111-8),
ijk k(ji) n i

i..
where n  is the number of individuals in the it

provenance,

n,. is the number of individuals in the j*" family in
the i*" provenance,

a,, is the additive genetic value of the i3kt
individual, and

VA, is the additive genetic variance-covariance as

calculated from the family variance-covariance

. s h
component in the i‘" provenance.

b, Calculation of the elements of the V matrix

Given that the mean is an unbiased estimate, the
expectation of the variance of the phenotypic values can be
expressed in terms of provenance and within-provenance
variance components. The derivation of the equations is the
same as the calculation of expectation values of the sum of
squares in the analysis of variance (Searle 1372). The
elements of the V submatrices when heterogeneity among

within-provenance variance components is included are:

nf
2 2 2 2
R n . ‘o
i.. PROV =, ij.  FAM(PROV{) 1 )
J:
5 > + ——q .. 4111-9),
PROV n n e)
i.. i..
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1 1 )
—_— - —| o “(111-10),
n &)

0 2= —dde—emp % ., (1I1-11),
e n eu)
ij.
where nf is the number of families in the i*" provenance,

2

. . . . +th
o is the family variance-covariance for the it
FAM(PROV { )

provenance, and
. s . . . th
o, ? is the within family variance for the i
(W)
provenance.

iii. Calculation of family and within-family variance
components for each provenance

The hierarchical linear model in the analysis of
variance is suited to the calculation of separate
within-provenance variance components for each provenance.
The analysis of variance can be performed separately on each
provenance. The grand mean in the analysis of variance when
all the provenances are included is different from the mean
when only one of the provenances is considered. The mean
when only one provenance is included is equal to the grand
mean when all the provenances are included plus the
provenance effect for that provenance. The expectation of
the mean squares of the within-provenance effects for any
given provenance will be the same in both analyses. The
analysis of variances of the individual provenances will

provide an estimate of the within-provenance
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variance-covariance components for each provenance based on
the expected mean squares of the within-provenance
deviations for that provenance. The individual
within-provenance estimates will vary becauﬁé of sampling
variation. The pooled estimates based on several provenances

will be less sensitive to sampling variation.

iv.Selection indices

Selection index scores or predicted genetic worth
values were calculated for each individual. Two indices were
calculated:

1. Assuming that within-provenance variance-covariance
components were homogeneous among populations.

2. Adaption of prediction formulae to include
heterogeneity among within-provenance
variance-covariance matrices.

Height circumference and lean were all given an economic

value of 1.0,

v. Evaluation of selection indices

The two indices scores on the martime pine breeding
population were compared using:

1. Rank correlation.

2. The individuals selected at 5% selection intensity.
The index that incorporates heterogeneity among
within-provenance variance-covariance matrices has a number
of different C and V matrices. Eagh provenance has different

C and V matrices. Changing the C and V matrices will alter
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the prediction variance, genetic worth variance and the
efficiency of the index. The three index properties were
calculated for each provenance to give an idea of quality of

prediction within each provenance.

1. Variance of predicted genetic worth was calculated by

the formula:

a'c'vica ...(I11-12),

2. Variance of genetic worth was calculated by the

formula:

a'Ga ...(I11-13),

where G is a matrix of genetic variance-covariance,
3. Efficiency as measured by the correlation between

genetic worth and predicted genetic worth calculated

by the formula:
r(w,w) = (a'c'v'’ca)”® (a'6a)™®’ ...(111-14),

where W is the predicted genetic worth; and
w is the genetic worth.
Input values and numerical examples of calculations for
selection index, variance of predicted genetic worth,
variance of genetic worth and efficiency are given in

Appendix VII.

IT1I. Results and discussion

The weighted average of all the within-provenance

variance-covariance components was equal to the
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variance-covariance components when homogeneity was assumed.

This confirmed the theory of the calculation of separate

within-provenance variance-covariance components,

The rank correlation between the two indices was 0.66,

The composition of the selected population (best 40 trees)

changed from the index based on homogeneous variances to the

index
could

1.

based on heterogeneous variances. Three major groups

be identified:

A group of trees which occurred in the selected

population for both homogeneous and heterogeneous
selection index rankings. These trees came from
provenances 1, 4, 6, 8 and 11 (Table II1I-2).

A group of trees which occurred only in the selected
population for homogeneous selection index rankings.
These trees came from six provenances. Over half these
trees come from provenance 2 (Table III-3).

A group of trees which occurred only in the selected
population for heterogeneous selection index rankings.
The majority of these trees came from provenances 1

and 12 (Table 111-4).

Heterogeneous index values were higher than the homogeneous

index

values (Tables II1I-3 and 111-4),
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Table 111-2 Provenance, families anq ipdex values of
individuals in the best 40 of both indices.

Individual identification Index values

Provenance Family Homogeneous Heterogeneous
1 2 2.19 6.01
8 4 2,12 4,42
8 4 2.06 4.85
1 2 1.88 3.89
11 3 1.86 4.1
11 2 1.83 3.04
11 2 1.83 2.42
1 2 1.79 3.29
11 3 1.72 3.09
1 2 1.72 4.90
6 2 1.71 2.55
11 3 1.65 3.24
4 2 1.55 2,30
11 3 1.55 2.83
1 2 1.52 3.50
11 3 1.51 3.08

Examination of the variance of the predicted geneti:
worth, variance of genetic worth and correlation r(w,w)
showed:

1. High variances of predicted genetic worth and genetic
worth are associated with provenances 1 and 12 (Table
I1I-5). The correlation r{w,w)is greater than one in
these two provenances (Table II1-5),

2. A negative genetic worth variance is associated with
provenance 2 (Table III-5). The correlation r(w,w) was
calculated but it is undefined because the square root

of a negative number is undefined (Table III-5).
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Table I1I1-3 Provenance, families and index values of trees
which occurred only in the selected group ranked on
homogeneous index values,

Individual identification Index values

Provenance Family Homogeneous Heterogeneous
9 4 2.81 0.36
9 4 2.19 0.62
7 4 2.12 0.32
2 2 2.11 0.60
2 2 2.08 -0.35
10 3 2.04 1.25
2 3 1.97 -0.19
2 3 1.86 0.08
9 6 1.86 0.51
2 2 1.81 -0.46
10 1 1.81 1.91
S 4 1.78 0.55
2 3 1.72 0.12
2 3 1.70 0.26
2 4 1.69 0.58
3 6 1.68 1.24
7 4 1.67 -0.50
2 3 1.66 0.17
4 3 1.65 i.40
2 2 1.63 0.24
7 4 1.61 0.53
2 1 1.53 -0.95
2 4. 1.53 -0.54
10 3 1.52 1.50

High correlation r(w,w) values of provenances 1 and 12
are associated with high heterogeneous selection index
values. However, provenance 10 has a high correlation value
but the heterogeneous index values of the trees from
provenance 10 are not high enough for them to be ranked in
the selected popula” ion (Tables III-2 and II1I-4). The factor
which causes a high correlation is the difference between
the variance of the genetic worth an. th> variance of the

pfedicteﬂ genetic worth (Table III-5). There are two ways to
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Table 111-4 Provenance, family and index values of trees
which occurred only in the selected group ranked on
heterogeneous index values.

Individual identification Index values

Provenance Family Homogeneous Heterogeneous
12 3 0.46 8.39
12 2 1.35 6.24
1 2 1.24 5.88
12 2 1.16 5.57
1 4 0.63 4,95
12 1 0.90 4,80
12 3 -0.42 4,70
12 2 1.05 4,57
12 3 -0.44 4,35
12 2 0.92 4,26
12 1 1.04 4,11
12 2 0.96 3.54
11 5 1.37 3.45
1 2 0.96 3.12
12 1 0.89 2.97
1 1 1.23 2.82
12 3 -0.46 2.71
1 5 0.36 2.69
1 2 1.18 2.67
12 3 -0.60 2.59
6 1 0.50 2,44
1 1 1.22 2.43
6 6 1.15 2.41
8 1 1.12 2.30

obtain large differences between these values:
1. A combination of average predicted genetic worth
variance and low genetic worth variance.
2. A combination of high predicted genetic worth variance
and average genetic worth variance.
The variance of predicted genetic worth in provenance 10 is
average. The cause of the high correlation is the low
genetic worth variance (Table III-5). The high correlation

value of the trees in provenances 1 and 12 are due to a
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combination of average genetic worth variance value and high
prediction variance values, Results show that high
prediction variance values in the heterogeneous index are
associated with trees that are selected in the heterogeneous
index but not selected with the homogeneous index.

Table I1I-5 Variance of predicted genetic worth, variance of
genetic worth and the correlation r(w,w) for each provenance

Provenance Variance Variance Correlation

predicted genetic r(w,w)

genetic worth
worth

1 6.93 2.69 1.60
2 0.22 -0.29 0.87
3 0.52 0.52 1.00
4 0.81 1.29 0.80
5 0.29 0.59 0.70
6 1.66 1.67 1.00
7 0.49 0.%51 0.98
8 3.67 2.98 1.11
9 0.17 0.46 0.61
10 1.92 0.38 2.26
11 3.56 3.42 1.02
12 18,35 7.56 1.60

These results can be explained by sampling variation.
vSampling variations of between group components in the
multivariate case can cause non-positive definite
variance~covariance matrices (Hill and Thompson 1978). This
indicates the presence of negative variance estimates. The
effects of these negative estimates produce an unstable
index {Hill and Thompson 1978). There are a number of ways
to estimate variance components. Some estimators are more
appropriate than others depending on the experimental design

(Kennedy 1981). Changing the method of variance component
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estimation in this example will have negligible effect.
Sampling more families within each provenance and use of an

appropriate variance component estimator would stablize the

index,.

The table of the eigen values of each
variance~-covariance matrix for within-provenance variance
components of each provenance show a number of negative
eigen values (Table III-6).

Table 11I1-6 Eigen values of within-provenance
variance-covariance matrices for each provenance

Provenance Family Within family
Eig-1 Eig-2 Eig-3 Eig-1 Eig-2 Eig-3
1 -0.05 0.01 0.61 0.10 0.70 0.93
2 -0.06 -0.03 0.05 0.14 0.83 1.45
3 -0.03 0.01 0.11 0.16 0.56 1.34
4 0.00 0.06 0.27 0.11 0.71 1.82
5 -0.01 0.05 0,11 0.12 0.74 1.46
6 0.00 0.13 0.23 0.09 0.58 1.23
7 -0.09 0.0t 0.08 0.13 0.78 1.32
8 -0.06 0.00 0.33 0.14 0.77 1.28
9 0.00 0.02 0.24 0.13 0.56 1.79
10 -0,08 0,0t 0.18 0.11 0.87 1.17
11 -0.10 0.00 0.42 0.11 0.76 1.94
12 -0.10 0,03 1.04 0.13 1.04 1.43

All the negative values are for family variance-covariance
matrices. None of the within-family matrices have negative
eigen values (Table II1I-6). The family variance-covariance
matrices in provenances 1 and 12 both have one high positive
eigen value, one low positive eigen value and one low
negative eigen value. This eigen value combination tends to
be associated with inflated index scores (Tables III-4 and

I11-6). A possible cause in provenance 12 is the low number
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of families in the provenance, however this cannot explain
the situation in provenance !, Provenance 2 is unique in
having two low negative eigen values and one positive eigen
value. This eigen value combination tends to be associated
with low index scores (Tables III-3 and I1I-6), The
non-positive definite family variance-covariance matrices
affect the C'V"' and C'V''C matrices. The affect is depencent
on. the eigen value combination, This is seen in the high
variance of predicted genetic worth and the high index value
scores for the individuals from provenances 1 and 12 which
enter the selected group when heterogeneous
variance-covariance components replace the homogeneous
variance-covariance components in the selection index

(Tables III-3 and 111-4),

It is not possible to propose any rules for eigen value
combinations which could be used to assess the stablity of
future indices. The breeder should look at the eigen values
and be suspicious of the index if any of these values are
negative. High prediction variance or negative genetic worth
variance will confirm that the phenotypic and genetic
variances have not been accurately estimated. The index can
only be improved if a greater number of families in each

provenance are sampled.

IV. Conclusion

The selection index formula can be modified to take

account of heterogeneity of within-provenance
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variance-covariance matrices among provenances, The
individual within provenance family variance-covariance
estimates are subject to sampling variations. If the breeder
wants to predict additive genetic values taking into account
heterogeneous among provenanée variance-covariance terms the
number of families must be greater than six. Christophe and
Birot (1979) suggested that in excess of 20 families per
provenance should be tested in a second sampling after
initial experiments had identified those provenances of
interest. The results of this contribution confirm this
strategy for breeders who want to predict the genetic worth
cf individuals from provenances wheré it is suspected that
there is heterogeneity among within-provenance

variance-covariance matrices.
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CHAPTER FOUR

SENSITIVITY OF SELECTION INDICES TO CHANGES IN ECONOMIC
VALUES

I. Introduction

Selection index theory is based on the premise that
genetic, phenotypic and economic parameters are known., The
effects of sampling variation in genetic and phenotypic
parameters has been studied extensively (Harris 1964; Hayes
and Hill 1980). Results (Harris 1964) indicate 500 to 1000
individuals are required for the selection index to be
reasonably efficient. In tree breeding experiments there are
génerally more than 1000 trees in a single experiment. Tree
brenders are generally more concerned about uncertainty over

economic values of traits because of the long rotation age

of tree crops.

A selection index is a prediction based on economically
weighted genetic values (genetic worth). There has been some
work on the effects of sampling errors in the determination
of economic values on the efficiency of an index (Smith
1983; Vandepitte and Hazel 1977). The effects of varying
economic values on expected gain have been determined by
sensitivity analysis (Baradat 1979). There has been no work
on the sensitivity of the prediction variance, prediction
error variance and efficiency to potential changes in

economic values.

68
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It is the objective of this contribution to assess the
sensitivity of the index properties:
1. Prediction variance
2. Prediction error variance
3. Efficiency

to changes in economic values.,
11. Materials and methods

A. Biological material

A 12-year-o0ld provenance-progeny trail of maritime pine
(Pinus pinaster Ait.) was measured for height, circumference
and stem lean. There were a total of 795 trees from 68
half-sib families collected from 12 provenances in south
west France. The trees were planted out in three
replications, each replication subdivided into five
incomplete blocks, making a total of 15 incomplete blocks.

B. Determination of basic components for selection index
calculation

The basic input values for the selection index
calculations are estimates of random phenotypic effects and
variance estimates of the random phenotypic effects
calculated in the analyses of variance. The dependent
variables were standardized before the effects were
calculated in the analyses of variance. The linear model for
each record contains a fixed replication and block effect.
Each record value was adjusted to remove the fixed block and

replication effects. Random effects were calculated using
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the UANOVA analysis of variance program developed at the
University of Alberta by Dr. T. Taerum (appendix V.).

Variance and covariance components were calculated in the

UANOVA program (appendix V.).

C. Selection index calculation

The selection index was the one used by Baradat (1979),
There are a number of symbols (Table IV-1) reguired to
explain the calculation of index values and the properties
of an index. The first time a symbol is written an
explanation is provided. In addition an explanation of all
the symbols found in this chapter is given in Table IV-1,

Table IV-1, List of symbols

Symbol Explanation

vector of phenotypic predictors

vector of predicted genetic values

matrix of the covariance among the phenotypic
predictors and genetic values

matrix of the variance among the phenotypic
predictors

matrix of the genetic variance

vector of economic values

variance of predicted genetic worth

variance of the genetic worth

genetic worth
predicted genetic worth
the selection intensity

< Qv

HEE Q QU@

In the provenance-progeny trial model the predicted additive
genetic value of an individual is the sum of two independent
predicted additive values:

1. The within-provenance additive value..

2. The provenance additive value.
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Because each of the predictions are independent they can be
summed to give the total additive value of an individual.
The index values or predicted genetic worth values are given

by the linear combination:
w=a'v.,..(1v-1),

where w is the predicted genetic worth or index value,
a is a vector of economic values for each trait, and
v is a vector of predicted genetic values.

The genetic values are predicted from the formula:
¢ =c'v'p ...(1v-2),

where C is the covariance matrix between the phenotypic
predictors and the genetic values,
V is the variance of the phenotypic predictors, and
p is a vector of phenotypic predictors.
The construction of the C and V matrices is given in
appendix IV, For the provenance model there are three
phenotypic predictors:
1. Provenance phenotypic value.
2. Family within provenance phenotypic value.
3. Within-family phenotypic value.
If three traits are incorporated into the selection p is a 9
x 1 vector, ¥ is a 3 x 1 vector, a is a 3 x 1 vector -na

is a scalar.
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D. Sensitivity analysis

The index values change~as the economic value vector a
changes (see equation(IV-1)). There is great uncertainty
over the economic value of a given trait. Baradat (1979)
developed a sensitivity analysis to assess the effects of
changing economic values on expected gain values. The
sensitivity procedure used by Baradat was employed here to
test the effects of changing economic values on prediction
variance, prediction error variance and efficiency. The
economic value for height was held constant at 1.0. The
assumption of holding the economic value of height to 1.0 is
restrictive as the index may have better properties in some
cases if height was allowed to take a negative value,
Increasing height is so important in most improvement
programs it is difficult to argue that it should have a

negative value.

A range of economic values for circumference and lean
were used to produce a total of 121 different indices based
on the same predicted genetic values. The range of
circumference and lean economic values are given in Table
IV-2. The prediction variance of genetic worth, the
prediction error variance of genetic worth and the

efficiency of the index were calculated for each of the 121

indices.
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Table IV-2. Range of economic weightings for circumference
and lean

Circumference ~-10 -8 -6 -4 -2 1 2 4 6 8 10
Lean -10 -8 -6 -4 -2 1 2 4 6 8 10

E. Calculation of index properties

i. Prediction variance

The prediction variance is the variance of the
predicted genetic worth. It is derived from the regression

of genetic values on phenotypic values (Rao 1965):
gy’ = a'C'vica ...(1v-3),

where oaz is the prediction variance,
a is the vector of economic values,
C is matrix of the covariance between the genetic
values and the phenotypic predictors, and
V is the matrix of the variance of the phenotypic
predictors.
The variance of the predicted within-provenance plus
provenance additive values is the sum of a'C'v'Cca for each
predicted value (Kendall and Stuart 1958). In the remainder
of this contribution 032 will refer to the variance of the

predicted within-provenance plus provenance additive values.

ii Prediction error variance

The prediction error variance is the expectation value

of the squared difference between the value to be predicted
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and the prediction i.e.:

E(w - @)% ...(IV-4),

where w is the genetic worth, and
w is the estimated genetic worth.
The prediction error variance can be calculated from

experimental data by the formula:

0, .95 =a'Ga-a'C'Vica ...(IV-5),

2 . . . .
where o ¢ 1is the prediction error variance, and

(w -
G is the genetic variance matrix (Henderson 1973),

The prediction error variance given by the formula above is

the difference between the variance of the genetic worth and

the variance of the predicted genetic worth.
iii. Efficiency

The efficiency of an index is defined as the ratio of
expected gain to truncation selection on the basis of
predicted (index) values (w) to the expected gain from
truncation selection on the basis of actual values (w)

(Bulmer 1985). The expected gain using the predicted values

is:
ia"; ...(IV"'S),

where i is the selection intensity; and

o5 is the standard deviation of th: predicted values.

The expected gain using actual values is:
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io, ...(1V-7),

where o, is the standard deviation of the genetic worth
values.
The ratio between the two gains gives the relative
efficiency:
io,

Relative efficiency = TJL ...(1V-8).
io

v

The above ratio is equal to the correlation between the

predicted and actual genetic worth values (Bulmer 1985):
R(&"w) .'i.(IV-g)'

The relative efficiency is calculated from equation (IV-8).
Rewriting equation (IV-8) and expressing the genetic
variance and predicted genetic variance in terms of the a, C
and V matrices gives:
(a'c'vica)’®
(a'Ga)®

.. (IV-10).

The efficiency formula above is the ratio of the standard
deviation of genetic worth to the standard deviation of

predicted genetic worth.

A summary table of the three index parameters which are
used to assess the sensitivity of the index to changes in
economic values is given in Table IV-3. Numerical examples
of the calculation of parameter values and the values
plotted in the figures in this chapter are given in appendix

VIII.
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Table IV-3., Summary of index parameters

Property Expectation value Formula
Prediction (w)? a'Cc'vi'ca
variance

Prediction error (@ - w)? a'Ga - a'C'v'ca
variance

(a'c'v'ca)®
(a'Ga)"®

Efficiency R(wW,w)

The sensitivity of the index parameters was determined by

changing the values of the a vector so that each property

A

was calculated for the 121 combinations of 'a' values in

tabkle IV-2.

11I. Results and discussion

To interpret the results of the sensitivity analysis 6
response surfaces were produced, one each for the basic
values from which the properties were calculated and one for

each of the properties (Table IV-4).
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Table IV-4 Response surfaces and formula for calculating
basic values

Response surface Formula
Prediction variance a'c'vi'ca
Genetic worth variance a'Ga

Prediction standard (a'c'v'ca)®
deviation

Genetic worth standard (a'Ga)"®
deviation

Prediction error variance a'Ga - a'C'v'ca

(a'C'V'ca)’®
(a'Ga)’®

Efficiency

’

A. Prediction variance response surface

The shape of the response surface is like a river
valley (Figure IV-1,). The bottom of the river valley runs
from the economic value coordinates, circumference -4.0 lean
-10.0, to the coordinates, circumference 2.0 lean 10.0
(Figure 1V~1). The steepness of the valley walls is not
equal. The steepest slope on the valley sides is between the
economic value coordinates, circumference -4.0 lean -10.0,
and coordinates, circumference 10.0 léan -10.0 (Figure
iV-1). The shallowest valley side is between the economic
value coordinates, circumference -4.0 lean -10.0, and

cordinates, circumference -10.0 lean -10.0 (Figure IV-1.).
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The response surface cshown in Figure IV-1 is explained
by the structure of the C'V'C matrix (Table 1V-5),
Table IV-5. C'V''C matrix

Height Circumference Lean
Height : 0,331 0.262 -0.078
Circumference 0.262 0.230 -0.067
Lean -0.078 -0.067 0.030

Increasing the economic value of a trait in the a vector
will increase the influence of the C'V 'C components
associated with that trait on the scalar produced by tha
vector matrix mutiplication a'C'v'Ca. The influence of any
single trait on the prediction variance is cdependent on:

1. The economic value of the trait and the economic
values of the other traits in the a vector.

2. The magnitude of the variance and covariance
components associated with the trait in the c'v'c
matrix.

To clarify the explanation, consider X to be the matrix
produced by the c'v'c product with the iﬁdividual elements

X,,rKypr 001Xy, Where the subscripts refer t _.raits 1 to 3 (1

117
= height, 2 = circumference, 3 = lean). The scalar value of
the prediction variance is the result of the addition of 9
scalar products produced in the vector matrix multiplication

a'Xa. The prediction variance is equal to:

a,a. x

11

gt 3@, X, teeot ajagx,, ... (IV-11),

where a,...a, are the economic values of traits 1...3,
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X,, is the variance component associated with trait 1,
and
x,, is the covariance component associated with trait

1 and 2 in the C'V''C matrix.

Each of the nine scalars is the product of economic value

prsGucts and a variance or covariance component in the

-1 . N - .
c'v''Cc matrix. There are three economic value variance

products and six economic value covariance products. The six

products between economic values and covariance compcnents

are three identical pairs of products because the c'v'c

matrix is symetrical. The traits associated with the three

basic

economic value and covariance products are:
height-lean
circumference-lean

height-circumference

Two points should be noted:

1.

The variance components in the c'v''c are always
multiplied by the square of the economic value of the
trait associated with the variance component,
Increasing the absolute value of the economic value of
a trait will increase the contribution of the economic
value variance product,

The covariance components in the c'v'C are always
multiplied by the product of the economic values of
the traits in the covariance component. The product of
economic values and covariance components may be

negative if the economic value cross product is of
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different sign to the covariance component,

The interaction of the economic values and the c'v'c
components to produce the prediction variance value will be
demonstrated by explaining how the a values in the a vector
and the components in the c'v''c (Table 1V-5) interact to
produce the prediction variance at the economic value
coordinates:

1, circumference +10.0
lean -10.0
2. circumference -10.0
lean -10.0
3. circumference -2,0
lean -10.0
i, circumference +10.0 lean -10.0
The products between the economic values of the variance
components are all positive. Using the X matrix terminology
and substituting 'a' values into formula IV-11 the scalars

from each of the economic value variance products are:
1%, 100x,, 100x,, ...(IV-12),

The products between the economic values and the
covariance between height and lean are positive. To improve
the explanation the symbol xv will be used to express the
absolute value of the elements in the X matrix. Substituting
the 'a' values into formula IV-11 gives the economic
covariance product 10xv,,. The products between the economic

values and the covariance between circumference and lean are
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positive. Substituting the 'a' values gives an economic
value covariance product 100xv,;. The products betweei the
economic values and the covariance between height and
circumference are positive. Substituting the 'a' values

gives an economic value covariance product 10x,,.

Adding all i‘he economic value variance-covariance

products gives the prediction variance:

X,, + 100x,, + 100x,, + 2(10x,,) + 2(10xv,;) + 2(100xv,,)

o--(IV—13)t

Economic value products and variance-covariance components
have combined to give positive values for all the scalars.
The 'a' values are the most extreme values considered in

this analysis. Therefore the prediction variance is maximum.
ii. circumference -10.0 lean -10.0

The scalars from each economic value variance product

are the same as in the first example i.e.

1x,, 100x,, 100x,, veo (IV-14).

1

The products between the economic values and the covariance
between height and lean are positive. Substituting the ‘a'
values gives the economic value covariance product 10xv,;.
The products between the economic values and the covariance
between circumference and lean are negative. Substituting

the 'a' values gives an economic value covariance product

-100xv,,. The products between the economic values and the
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covariance between height and circumference are negative,
Substituting the 'a' values gives an economic value

covariance product -10x,,.

Adding all the economic value variance-covariance

products gives the prediction variance:

x,, + 100x,, + 100x,, + 2(-10x,,) + 2(-100xv,;) + 2(10xv,,)

(1v-15),

The negative values of the economic value covariance
products for height and circumference, and circumference and
lean, reduce the maximum prediction variance in comparison
to the first example (Figure IV-1),

iii. circumference -2.0 lean -10.0

The products between the economic values and the

variance components are:
1x,, 4x,, 100%,, ...(IV-16).

The products between the economic values and the covariance
between height and lean are positive. Substituting the 'a'
values gives the economic value covariance product 10xv,;.
The products between the economic values and the covariance
between circumference and lean are negative. Substituting
the 'a' values gives the economic value covariance product
~20xv,,. The products between the economic values and the
covariance between height and circumference are negative.

Substituting the 'a' values gives the economic value
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covariance product -2x,,.

Adding all the econcmic value covariance products gives

the prediction variance:
Xpp + 4%y, + 100x,; + 2(-2x,,) + 2(10xv,;) + 2(-20xv,,) (1v-17).

Given the relative magnitude of the variance-covariance
components the components tend to cancel each other out and

produce a low prediction variance value (Figure IV-1},

The gradient between two points on the response surface
is dependent on the sign of the economic value coordinates
of the points. The effect of the sign of the economic value
of lean and circumference on the sign of the procduct of the

economic value and covariance is given in Table IV-6.

The gradient is dependent on which quadrant of the
surface the slope is located i.e. the sign combinations of
the economic values. If the sign of the products of the
economic values and covariance is negative and the products
for the other components are positive, changing the 'a’
values will not give a steep gradient. When all the economic
value covariance products are positive the gradient will be
steep. This explains the steep gradient in the guadrant
where the economic value of lean is negative and the
economic value of circumference is positive. Within a given
guadrant the steepness of a slope depends on the direction

of the slope with respect to the economic value axis. Slopes
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parallel to the lean economic value axis will slope more
gradually than slopes parallel to the circumference economic
value axis because of the greater magnitude of the
circumference components in the C'V 'C matrix.

Table IV-6. Effect of economic values on sign of economic
value variance covariance product

Economic values Product of economic values and
covariance components

lean circumference lean lean height
height circumference circumference
covariance covariance covariance

+ + - - +

+ - - + -

- + + + +

- - + - -

The major reason for the small lean components is the
heritability of lean (0.11). The matrices of the additive
genetic variance-covariance components expressed as a
percentage of phenctypic variance-covariance components
shows that lean is under very weak genetic control compared
to height and circumference (Table IV-7).

Table IV-7. Matrix of additive genetic variance-covariance
expressed as a percentage of phenotypic variance-covariance.

Height Circumference Lean-
Height 65.55 61.72 65.08
Circumference 61.72 51.08 36.84
Lean 65.08 36.84 10,98

The low values for lean in the C'V''C matrix is a difect
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Figure IV-2. Response surface of genetic worth

vartance to changes LN economic vatues
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result of this poor genetic control. The components of the
v'' are not affected by the degree of genetic control.
However the components of the C matrix will be smaller if

the traits associated with the compunents have low
heritabilities,

B. Genetic worth variance

The general shape of the genetic worth variance
response surface is the same as the prediction variance
surface (Figure IV-2). The similarity in the shape is a
result of the proportions of the individual
variance-covariance components of the C'V'C (Table IV-5)
and G (Table IV-8) matrices being very similar in both
matrices. For example the largest component in both matrices
is the height variance. The lean variance component is the
lowest in both matrices. There are some minor differences in
the proportions of the two matrices. The relative magnitude
of the covariance between circumference and lean changes
slightly. In the G matrix the covariance between
circumference and lean is roughly equal to the lean variance
component (Table IV-8). In the C'V''C matrix the covariance
between circumference and lean is approximately double the
lean variance component (Table IV-5). This change has no
major effect on the response surface because of the low

value of the circumference-lean covariance components.

The gradients of the genetic worth surface are steeper

(Figure IV-2). The reason for this is that the components of
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the G matrix are larger than the components of the c'v'c
matrix (Tables IV-5 and IV-8). Thus any increase in an 'a'
value will increase the genetic worth variance more than the
prediction variance.

Table IV-8. G matrix

Height Circumference Lean
Height 0.502 0.403 -0.117
Circumference 0.403 0.379 -0,098
Lean -0.117 -0.098 0.103

C. Standard deviation of prediction

The response surface of the prediction standard
deviation is the same basic shape as the prediction variance
surface (Figures IV-1 and IV-3). There are some differences
in gradients between the surfaces. The extreme gradient
between the economic value coordinates, circumference -1.0
lean -10.0,and coordinates, circumference 10.G lean -10.0,
in the prediction variance surface is reduced in the
standard deviation surface (Figures IV-1 and IV-3.). The
change in surface gradients can be explained by the

properties of the square roots of numbers between 0 and 100.

D. Standard deviation of genetic worth

The response surface for the standard deviation of
genetic worth (Figure IV-4) has the same basic shape as the
response surface for the variance of genetic worth (Figure

IV-2). As in the prediction variance and standard deviation



89

Figure IV-3. Response surface of prediction

standard deviagiion to changes in economic values
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Figure IV-4. Response surface of genetic worth

standard deviation to checnges in economtc values
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comparison the gradients are altered.

The most significant difference when the genetic worth
standard deviation response surface (Figure IV-4) was
compared to the prediction standard deviation response
surface (Figure IV-3) occurred in the gradient between
economic value coordinates, circumference -2.0 lean 1.0, and
coordinates, circumference 2.0 lean 10.0. The genetic worth
standard deviation surface rises whereas the prediction
standard deviation surface is flat (Figures IV-3 and IV-4).
The differences between the surfaces can be explained by the
differences between the C'V'C and G matrices. The C'V''C
components almost cancel each other out in the a'c'vica
product when the a values have the same values as the
coordinates above to give ac'V’'ca values between 0.347 and
1.26. Given the scale of the prediction standard deviation
the surface jointing the two coordinates appears to be
almost flat. The components of the G matrix almost cancel
each other oﬁt in the a'Ga product at economic value
coordinates, circvmference -2.0 lean 1.0, to give the value
of 0.667. The slightly different configuration of the G
matrix and the greater value of the components combine to
give a much higher variance value (7.67) at economic value
coordinates circumference 2.0, lean 10.0. The square root of
the genetic worth variance gives the value of the genetic
standard deviation at both points on the surface (0.816 and
2.772). Given that the scale of the genetic worth standard

deviation is from 0.0 to 10.0 the surface appears to rise



Figure IV-5. Response surface of prediction

error variance to changes LN economic vcilues
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Filgure IV-b6. Response surface of correlation

R(w,w) to changes in economic values
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going from standard deviation values 0.816 to 2.772 (Figure

1v-4),

E. Prediction error variance

The response surface for the prediction error variance
shows that the components of the c'v’'Cc and G have the same
proportions, The difference between the c'v''c and G matrix
components is exagerated as the effect of economic value
increases, the highest prediction error variance values

occur at the extreme economic values (Figure IV-5).

F. Efficiency

The shape of the response surface for R(w,¥%) is
alarming because of the areas where the correlation drops
sharply and the importance breeders place on the value of
the correlation (Figure IV-6). The correlation drops sharply
at extreme lean economic values and intermediate

circumference economic values.

The drop in the correlation can be explained by the
differences between the structure of the G and C'V''C
matrices which caused the differences in response surfaces
observed when comparing the differences between the
prediction standard deviation and the genetié worth standard
deviation response surfaces. The structure of the G matrix
prcduces a relatively large genetic standard deviation value
at the economic value coordinates, circumference +2.0 lean

-10.0. The difference between the standard deviations at
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this point produces a low correlation value, There are
greater differences between the prediction standard
deviation and the genetic worth standard deviation at other
economic value coordinates. The important factor is the low
prediction variance coupled with the relatively large
difference between the prediction standard deviation and

genetic worth standard deviation.

The highest correlation occurs at economic value
coordinates, circumference 10.0 lean -10.0 (Figure IV-6).
This is also the point of highest prediction variance
(Figure IV-1). The difference between the prediction
variance and the genetic worth is substantial. The
difference between the prediction standard deviation and the
genetic worth standard deviation is much smaller because of
the properties of square roots. In this case the prediction
variance is 46.7 and the genetic worth variance is 78.7. The
difference between the two values is reduced by taking the
square roots. The prediction variance increases as economic
values increase. The genetic worth variance increases in the
same proportion unless there are differences between the G
and C'V’'C matrices. The higher the prediction variance the
greater would be the reduction in the difference going from
variance to standard deviation. It can be concluded that the
economic value coordinates which give the highest prediction

variance will give the highest correlation (R(#,w)).
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Without a knowledge of the G and c'v’'c matrices it is
not possible to predict in advance where the area of low
correlation (R(w,%)) will be on the response surface. The
data analysed in this contribution shows that if certain
economic values are choosen the index may be inefficient.
Areas of potential inefficiency are characterised by:

1, Low prediction variance
2. Low genetic worth variance values but relatively high

when compared with prediction variance.

The above results are for standardized data. The scale
transformation from standardization gives a range of
potential prediction variance values between 1 and 100. It
may be potentially interesting to transform the data so the
lowest prediction variance has a greater numerical value.
The properties of square roots would reduce the difference
between prediction variance and genetic worth variance to

give higher R(%,w) values.

G. Choice of economic values

Many breeders especially those associated with
improving organisms which have shorter production cycles
than trees may consider that economic values can be
determined with 5ome accuracy. However in forestry there is
considerable uncertainty over future economic values.
Additional information on index efficiency and prediction
variance will become more important when the precision of

the economic value prediction is low.
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The properties examined in this contribution provide
several potential criteria on which the choice of economic
values can be based. The most logical parameter to maximize
is the correlation R(#,w) because of its relationship to
efficiency. There are other properties such as prediction
variance and genetic worth variance which are components in

the R(%,w) calculation and can be related to optimum

efficiency values.

1f the breeder is certain of the economic values he or
she will just have to accept the r(w,#) value. However if
there is a range of possible economic values because of a
lack of precision in the prediction of future economic
values the breeder may consider a slight change in economic
values to improve r(w,®). To obtain an efficient index the
breeder should select economic values which give high
prediction variance. The high prediction variance would

avoid potentially inefficient indices.

IV. Conclusion

The index properties were sensitive to potential
changes in the economic values. Sensitivity of the
properties to changes in economic values can be explained by
the structure of the C'V''C and G matrices. These depend on
the traits selected and the breeding population. It is
important for breeders to look at the response surfaces and
explain them in terms of breeding population parameters.

Inefficient indices have low prediction variance and



relatively high genetic worth variance. Efficient indices
have high prediction variance. The breeder should be aware

of potential changes in the r(#,w) correlation.
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CHAPTER FIVE

SELECTION STRATEGIES INCORPORATING RISK AND UNCERTAINTY OVER
ECONOMIC VALUES IN TREE BREEDING

I. Introduction

In multiple trait selection the tree breeder must
choose the economic weights at the time of selection. In
theory these economic weights should reflect economic values
at the time when the improved crop is to be harvested. There
is uncertainty over determining the economic value at the
time when the improved crop will be harvested. The breeder
takes a risk in choosing a set of economic weights at the
time of selection. There are decision making techniques to
minimize the effects of the uncertainty and reduce risk from
the choice of economic weightings (Chernoff and Mosses

1959).

It is the objective of this contribution to apply the
appropriate decision making technigues to produce selection
strategies which incorporate risk and uncertainty in future
economic values. These strategies will be applied to the

selection index pioneered by Baradat (1976).

The breeding population for which the selection
strateqy was developed is a population of maritime pine
(Pinus pinaster Ait.) produced by a hierarchical mating
design. It was evident that the male and female parents did
not have the same genetic variance. Selection index formulae

will be derived for populations produced from male parents
100
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which are considered independent from the female parents.
The traits under selection were the internal wood qQuality

traits sampled from increment cores.
I11. Materials and methods

A. Biological material

Increment cores were taken from one tree in each plot
of a 10-year-old maritime pine controlled pollination
progeny trial. The mating design was hierarchical with each
one of thirty male parents mated to nine or fewer different
females to produce 236 full-sib families. The families were
laid out in 110 incomplete blocks. Maritime pine grown in
the region where the data were collected, lean because of
the stress of the prevailing wind. In theory the stem should
be one half compression wood and one half normal wood (Ohta
et al. 1985). Increment cores were taken in the direction of
maximum lean at breast height. The 3028 increment cores were
cut at the pith and the specific gravity of each piece
determined by Smith's maximum moisture content method (Smfth
1954). Three variables were then determined for each sampled
tree:

1. Density of the increment core portion with the minimum
density.

2. Density of the increment core portion with maximum
density,

3. Mean density of the increment core.

These variables will be refered to as minimum, maximum and
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mean density. The maximum density was considered to be the
density of the compression wood portion of the increment
core. The minimum density was considered to be the density
of the portion of the increment core which is free of
compression wood. Logically the breeder would want to
increase the minimum and the mean density while reducing the
maximum density. Therrfore when considering multiple trait
selection, reductions in maximum density and increases in

minimum and mean densities will be considered desirable.

B. Statistical amalysis

There are a number of symbols reguired in thu text. The
first time a symbol occurs it is defined. A list of symbols

is also given in Table V-1,

The basic input values for selection index calculations
are random phenotypic effects and variance components
estimated in the analysis of variance. Fixed effects were
removed from each record. The linear model of the ajusted

record 1is:

Vi = B+ M+ Fyyy * ey o0 (V-1)

where ¥, is the adjusted record value,

M. is the effect of the male family i,

1

Fici) is the effect of the female family j nested
within paternal family i, and
€ (5i) is the residual effect.of the k individual

h

nested within the j*" maternal family.
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Table V-1, List of symbols

Symbol

Explanation

D O

record value of the k* individualhin the j,,
female family nested within the i male
family
overall mean
effect of the i*" male family

effect of the i female family nested within
the i*" male family
residual effect of the k" individual nested
within the j*" female family ,
estimated phenotypic value of the i°
family ‘n
estimated phenotypic value of the i~ female
family nested within the i*" male family
estimg;ed within family phenotypic value of
the k™" individual nested within the j
female family

vector of predicted additive genetic values
matrix of covariance between phenotypic
predictors and the additive genetic values
vector of phenotypic predictors

average record value

average record value within the i°
family "
average record value within the j*" female
family nested within the i, male family

number of individuals in the i*" male family

number of individuals in the ;™ female
family nested in the i male family N
number of female families nested in the i°
male family

additive genetic wvalue from male parent

selection intensity
economic value vector at the time of

selection
economic value vector at the time of harvest

genetic worth at the time of harvest
predicted genetic worth at the time of
harvest

residual

genetic worth at the time of selection
predicted genetic worth at the time of
selection

h

th

male

" male

The data.was analysed using the UANOVA program developed at
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the University of Alberta by Dr T. Taerum (Appendix V). The
phenotypic effects and variance components output from
UANOVA provided the basic data for the construction of the
selection indices,

Table V-2, Variance-covariance of male family

Minimum Mean Maximum
density density density
Minimum
density 31,03 29,717 27.65
Mean
density 29,77 28.45 26.28
Maximum
density 27.65 26.28 24,10

Table V-3, Variance-covariance of female family

Minimum Mean Max imum
density density density
Minimum
density 17.47 17.17 16.31
Mean
density 17.17 16.59 15,39
Maximum
density 16.31 15.39 13.83

The male and female family variance components were
different (Tables V-2 and V-3). In theory these
variance-covariance matrices should be similar. The maternal
variance should be slightly greater bescause of the addition
of dominance variance. It wias concluded that the male
parents had different genetic variance from the female

parents.,
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C. Modification of prediction formula

Baradat's selection index uses phenotypic predictors to
predict genetic values for multiple traits. The predicted
genetic values are then economically weighted to give the

predicted genetic worth of each individual,

In the heirarchical mating design genetic values are
predicted from three phenotypic predictors:
1. The male family phenotypic predictor,
2. The female family phenotypic predictor.
3. The within-family phenotypic predictor.

Each phenotypic predictor can be estimated from the record

values:
ﬁi = Yi-. - ?” ...(V"'z),
Bi = ¥, - ¥ ...(v-3),
Pk = Yy - ?ij. oo (V-4),

h

where pi is the estimated phenotypic value of the i*™ male

family,

pj is the estimated phenotypic value of the 3™ female

h

family nested within the i*" male family,

pk is the estimated within family phenotypic value of
the k™ individual nested within the jth female

family,

¥  is the average record value,

h

¥. 1is the average record within the i*™ male family,

l..

¥.. is the average record value within the jth female

family nested within the i*" male family,
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Y is the record value of the k" individual nested
within the j*" female family.

The formula for the prediction of genetic values is:
¢ =Cc'V'p ...(V-6),

where ¢ is the predicted additive genetic value vector,
C is the covariance between the phenotypic predictors
and the genetic values,

-1 . o o .
is the inverse of the variance-covariance matrix

v
of the phenotypic predictors, and

p is a vector of phenotypic predictors.

i. Calculation of covariances between genetic values and
phenotypic predictors

The covariances between the phenotypic predictors and
the additive genetic values (C) requires a modification of
the basic formulae derived for the hierarchical mating
design (Baradat 1982). The additive genetic value of the
individual due to the male parent contribu:ion is considered
to be independent of the additive genetic value of the
individual due to the female parent contribution. The
covariance between the individual's additive genetic value
due to its female parent and the phenotypic predictors can
be calculated by expressing the expectation value of the
phenotypic predictors in terms of the individual phenotypic
values which contribute to the phenotypic predictor. The

covariance between the individual phenotypic values and the
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maternal additive genetic values can be expressed in terms

of

the maternal additive variance., The same principle can be

used to determine the covariance between the individual's

additive genetic value due to its female parent and the

phenotypic predictors.

To express the covariance in terms of the additive

variance the covarisnce between the individual's phenotypic

value and the additive value to be predicted is based on

certain rules derived from basic genetic theory:

1.

The covariance between the paternal additive value of an
individual and the phenotypic value of that individual is
0.5 of the paternal additive variance.

The covariance between the maternal additive value of an
individual and the phenotypic value of that individual is
0.5 of the maternal additive variance.

The covariance between the paternal additive value of an
individual with the phenotypic value of any individual
belonging to the =:me female family is 0.25 of the
paternal additive variance.

The covariance between the paternal additive value of an
individual and the individual phenotypic value of any
individuals belonging to the same male family is 0.25 of
the paternal additive genetic variance.

The covariance between the maternal additive value of an
individual and the individual phenotypic value of any
individual in the same female family is 0.25 of the

maternal additive genetic variance.
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6. The covariance between the maternal additive value of an
individual and the individual phenotypic value of any of
the individuals not belonging to the same maternal family

is zero.

Consider the covariance between the three phenotypic
predictors and the maternal additive genetic value of
individual ijk. The expectation value of the covariance
between the individual's maternal additive value and its

estimated male family phenotypic value is:

COV(AFIJR’Y1-~ - Y_..) ...(V"7),

where AF,,, is the maternal additive genetic value of

individual ijk.

The ¥, - ¥ is the average of n; individual
phenotypic values. One of these values is the individual
phenotypic value of the i§k*" individual. The covariance
between this individual and the maternal additive value to
be predicted is 0.50u?. There are n;;, - 1 individual
phenotypic values which belong to the same half sib family.
The covariance between each of these individuals and the

additive value to be predicted is 0.250”2.

The expectation value of the covariance between the
phenotypic predictor and the maternal additive value can now
be rewritten as:

.5+ (n”. - 1).25

aM? ...(v-8),

n;..
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h

where n,  is the number of individuals in the i*" male

family,

ny;. is the number of individuals in the j" female
family, and

°A: is the maternal genetic variance.

To express the expectation value of the covariance
between the female family phenotypic value and the maternal
additive genetic value of an individual in terms of the
maternal additive genetic variance the female family

phenotypic value is rewritten as:

Y - ? = (Yl - ? ) - (Y - Y“.) ..-(V"g).

ij. ie.- e v i..

The expected covariance between the maternal additive value

and the individual phenotypic values above is:

Cov(AF,,,, ¥, - ¥ ) - Cov(AF,,,¥, - ¥ ) ...(v-10).

Applying the logic and the genetic relationships derived
above these covariances can be rewritten in terms of the

maternal additive variance:

.5 + (n,. - 1).25 .5+ (n;. - 1).25
j. ij. 2
nyj. n;..

The expected covariance between the within-family phenotypic
value and the maternal additive genetic variance is:

[ (.5 + (n; - 1).25) ]

l.5 -
Nyj.

OAFZ ao-(V—12)o
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The covariances between the paternal additive values
and the phenotypic predictors are determined in the same way
as the covariances with maternal additive values. The
expected covariance between the paternal additive value of
the individual ijk and its male family phenotypic value is:

-5 + (ni.. - 1)'25

Oy +oe (V-13),

n; ..

2 . Cgsa . . _
where o0,,” is the paternal additive genetic variance.

The expected covariance between the paternal additive
value of the ijk™ individual and the female family

phenotypic value is:

0 (v-14).

[.5 +(n, - 1.25 .5+ (n, - 1).25 ] )

nyj. ' n;..

The expected covariance between the paternal additive
value of the ijk*™ individual and the within-family

phenotypic value is:

l (.5 + (n.. - 1).25)
.5 - lj.

n.

] 0y «ee(V-15).
ij.

In multiple trait selection the additive genetic
variance in the above equations is replaced by the genetic
covariance for the non diagonal elements in the sub-matrices
which make up the C matrix. The V and C matrices change as

the individual's male and female family changes.
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ii. Calculation of elements of V matrix

The three phenotypic predictors are considered
independent. The V' matrix is therefore diagonal or block
diagonal in multiple trait selection. The individual
elements of V can be calculated if it is assumed that the
variance of male families, female families and individuals
within families are known. The expectation of the variance
of the phenotypic values can be expressed in terms of the
variance components in exactly the same way as the
expectation value of the sum of squares is determined to
estimate variance components in the analysis of variance

(Searle 1972). The variance of the phenotypic predictors can

thus be expressed as:

Oﬁiz = 2 + aez .oo(v-16)'
n n.
i i.
2 pe 2.
EREDI
2 = 2 1 1 2
063 = 2 OF(M) + i oe c(V_17)y
n;.. nyy. n;..
n,. -1
Oﬁkz = 2 Uez ...(V"18),

where nf is the number of female families in the i*® male
family.

All the variance component subscripts in equations V-16,
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v-17 and V-18 relate to the linear models in equation V-1,
V-2, V-3 and V-4. In multiple trait selection the off
diagonal elements of the diagonal blocks of v are
calculated from the same formula. Covariance components are
substituted for variance components in equations V-16, V-17

and V—180

111. Incorporation of decision making theory into selection
of economic values

A. Decision theory

Decision theory assumes that the decision maker has a
number of strategies., These strategies have several
potential outcomes depending on the circumstances or state
of nature. In the context of tree breeding the strategy
represents the economic weightings at the time of selection.
The state of nature represents the economic weightings at
the time the improved crop is harvested. The outcomes are
evaluated in terms of gain in genetic worth. For example if
a breeder chooses strategy n, and state of nature p occurred
at the point of harvest, the expected gain in genetic worth

would be the value in cell np of Table V-4.
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Table V-4, Representation of outcome values for n strategies
and p states of nature,

Strategy
Teos RS o}
1 1,1 1,n
State
of
Nature
p p.i p.,n

There are a number of decision making techniques which
have been developed for the case when there is risk and
uncertainty concerning the outcome of a particular strategy.
This contribution will deal with the application of minmax,
Bayes, minmax regret and Bayes regret techniques to the

chcice of optimum economic weightings in genetic selection.

Minmax theory is pessimistic in nature and is based on
the sure-thing principle (Savage 1954). The sure-thing
principle has been developed into the minmax rule for
selection among competing strategies. This rule is best
demcnstrated by reference to Table V-4. Strategies 1 to n
are evaluated on the minimum gain obtainable in the worst
possible outcome for each strategy. For example if state of
nature 'p' gave the lowest outcome for the first strategy
then the value for the first strategy would be the outcome

in the position 1,p in Table V-4. The optimum strategy would
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be the strategy which had the highest minimum value and

would be referred to as the minmax strategy.

I1f the a priori probabilities of the states of nature
can be determined then the decision maker can calculate
Bayes strategy. The strategy is given a value which is a
linear combination of the values of each potential outcome
multiplied by the a priori probability. The optimum strategy
is the strategy with the highest value and is called Bayes

strategy.

Both minmax and Bayes strategies can be calculated on
the basis of regret. In this case the values of the outcomes
in Table V-4 are assessed in terms of regret. Regret is
expressed as the difference between the outcome of the
strategy to be evaluated and the strategy which gives the
maximum outcome value for the state of nature. The objective
is to choose the strategy which minimizes regret. For the
minmax philosophy the outcome which gives the highest regret
is assigned to the strategy. The strategy with the lowest
value is selected as the minmax regret strategy. The
strategy values for the Bayes regret technique are
calculated in the same way as for the Bayes technique except
regret values are assigned to the outcomes for the states of
nature. The strategy value with the lowest regret is the

Bayes regret strategy.

Minmax strategies have been proposed for decision

making in tree breeding (Namkoong 1981). There is a problem
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because most techniques assume that the function giving the
outcome value (gain) is linear. With respect to changes in
economic weightings gain in genetic worth is not a linear
function. This contribution treats economic weightings as
discret units in order to avoid the problems of the

non-linearity of the gain function,

B. Calculation of strategy values

The calculation of gain in genetic worth for each
possible outcome for a given strategy requires a
modification of the gain formula. Gain in a variable say x,
which is assumed to be jointly normally disfributed with
anothér variable y, from selection based on y values is
given by the formula:

o
Gain=i—% ,..(v-19),

o
¥

where i is the selection intensity,

Oy.y is the covariance between x and y, and

g, is the standard deviation of y.
When selection indices which predict genetic worth are used
to rank individuals the gain in genetic worth is given by

the formule:

~
ww

i -_— -oo(v_zo)]
o4

where o0 is the covariance between the predicted genetic
worth based on the economic values at the time of
selection and the genetic worth based on the

economic value at the time when the improved crop
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is harvested, and
ooz is the standard deviation of the predicted genetic
worth based on the economic values at the time of

selection.

To calculate the gains in genetic worth for Table V-4
it is necessary to adapt the formula for the gain in genetic
worth., For a given strategy a{ of the gain formula is
easily determined. The variance of the predicted genetic
worth based on the economic values at the time of selection

is:
a,'C'vica, ...(v-21),

where a_ is the economic weight vector at the time of
selection,
Calculation of o is more complex. The covariance between
the predicted genetic worth based on the economic values at
the time of selection and the genetic worth at the time when
the improved crop is harvested requires some mathematics but
the basic logic has already been expounded in statistical
genetics texts (Bulmer 1985). The genetic worth of an
individual based on the economic values at the time of

harvest 1is:

* A%

w =W o+ e ...(v-22),

where w' is the genetic worth at the time of harvest,

#' is the predicted genetic worth based on the

economic values at the time of harvest, and
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e is the residual.

The genetic worth of an individual based on the economic

values estimated at the time of selection is:
w=Ww+e ,..(V-23)

where w is the genetic worth based on the economic values
estimated at the time of selection,

is the predicted genetic worth based on economic

>

values estimated at the time of selection, and

e is the residual.
The expectation values E(w), E(w'), E(¥) and E(#') are by
definition all zero. Therefore the covariance between w' and
% is given by multiplying equation (V-22) by % and taking

expectation values to give:
Cov(w',w) = Cov(w',d) ...(Vv-24).

The covariance (#',w) can be rewritten in terms of the basic

variance~-covariance matrices of the selection index:
1yt
a,'C'Vi'cag ...(V-25),

where a, is the vector of economic weightings at the time of
harvesting.

The outcome values can be calculated by the formula:

a.'c'vica
H S ...(V—26).

Gain = i = z
(ag'C'V Cag)’

For a given strategy a, is constant and a, changes as the

state of nature changes. Strategy values were calculated for
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two sets of economic values: firstly, a range in which both
negative and positive econonmic values were included (Téble
v-5), and secondly, a range in which only positive economic
values were included (Table V-6). The range of economic

values for the states of nature is the same as the range of
economic values for the strategies. The logic is that a

rational individual would only choose those economic values
which he or she considered possible at the time of harvest.

Table V-5, First set of economic weights (minimum density
held constant)

Mean
density -10 -8 -6 -4 -2 1 2 &4 6 8 10
Maximum
density =-10 -8 -6 -4 -2 1 2 &4 6 8 10

Table V-6. Second set of economic weights (minimum density
held constant)

Mean

density 0 2 4 6 8 10 12 14 16 18 20
Maximum

density 0 2 4 6 8 10 12 14 16 18 20

Numerical examples of the calculation of the C and V
matrices and the determination of stragety values are given

in appendix IX.

IV. Results and discussion

The results are specific to one breeding population,
but they are also of interest to all breeders as they can
provide information which is relavent to their own programs.
All procedures were repeated for selection intensities of

1.4 and 1.96. Strategy values were plotted against economic
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weightings to give additional information on the sensitivity
of departures from optimum strategies. The response surfaces
were the same for both selection intensities; the only
difference was that the outcome values were numerically
greater for the selection intensity of 1.96. The results
presented here are for the 1,4 seliction intensity, because
the response surface of the optimum outcome values for each
strategy has more gradual gradients and is more easily

interpreted.

Table V-7. Economic weightings of the optimum strategies for
first set of economic values

Minmax Minmax Bayes Bayes
regret regret
Mean
density 8 -10 2 2
Maximum
density 10 -10 1 1

Table V-8, Economic weightings of the optimum strategies for
second set of economic values

Minmax Minmax Bayes Bayes
regret regret
Mean
density 4 6 1 1
Maximum
density 6 8 1 1

In theory the standard and regret strategies should be
the same (Blackwell and Girshick 1954). The Bayes strategy
is the same as the Bayes regret strategy for both sets of
economic weightings (Tables V-7 and V-8). The minimax

strateqgy differs from the minmax regret strategy for the



Figure V-1. Surface of strategy values for

minmax technigue (first set of economic vatues)

--50.0

Lues
-100.0

()
.0

girategy V@
-150.0

i
o !

f
o
%0
4
O

(/1
7
()
()
)
b
X
A

o:’
()
h
s
)

A
A

A

‘g
0.0
0
ﬂf
Qg
¢
'0

(
g
g
i
4
¥
5

K

‘0
o
&




121

N

-y

Figure V-2. Surface of strategy values for minmax

regret technique (first set of economic values)
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first and second set of weightings. The minmax and minmax
regret strategies for the first set of weightings are almost
exact opposites (Table V-7). In contrast, for the second set
of weightings the strategies are similar. An explanation of
these departures from theoretical expectations can be scen
in the surfaces of the strategy values for the minmax and
minmax regret techniques (Figures V-1 and V-2). The surface
of the minmax regret strategy values is a mirror image of
the minmax strategy values surface. Both surfaces have three
peaks: one for positive economic weightings, one for
negative economic weightings and one for the transition
between positive and negative economic weightings (Figures
v-1 and V-2). The minmax regret technique selected the
optimum strategy associated with the peak for the negative
economic weightings, while the minmax technigue selected the
optimum strategy associated with the peak for the positive
economic weightings. Outcome values for the minmax regret
and regret strategies are very similar at the three peaks on
the response surface. The change in optimum strategies
between minmax and minmax regret strategies is caused by the
assumption that the economic values are discrete integers.
The economic weightings for the true optimum strategy are
not integer values. The integer economic values give
strategy ‘outcome values each side of the optimum strategy
outcome. The proximity of the minmax and the minmax regret

strategies for the second set of economic values confirms
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Figure V-3. Surface of strategy values for minmax

technique (second set of economic values)
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Figure V-4. Surface of strategy values for Bayes

technique (second set of economic values])
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this explanation. The Bayes and Bayes regret strategies

coincide, because the strategy values in the Bayes technique
are a weighted average or in this case an average of all the
states of nature. This reduces the effects of the assumption

that the economic weights are discrete integer values,

A comparison of the surfaces of the strategy values for
Bayes and minmax techniques shows that the Bayes optimum
value is on a plateau compared with a sharpe peak for the
minmax values (Figures V-3 and V-4). The implications are
that if the tree breeder accepts the logic of the minmax
argument he or she has little flexiblity. On the other hand
with the Bayes technique non-optimal strategy values on the
same plateau as the Bayes strategy could be choosen without
a potential of loss in gains (Figure V-4). It is unlikely
that all surfaces of strategy values determined by Bayes
technique would be the same shape if different a priori

probabilities were choosen.

The optimum strategies for all techniques changed as
the range of ecomomic values changed (Tables V-7 and v-8).
This would be expected because of the way the outcome values
are calculated. It does have significance for the tree
breeder. He or she must decide what the potential range of

economic values is before applying any of these techniques.

The minmax technique has an advantage because the
decision maker only has to decide what are the potential

economic weightings. There is no requirement to give
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probabilities to potential economic weightings. In contrast
the Bayes strategy requires a priori probabilities. This
requirement may be useful in tree breeding as it will
concentrate breeders and decision makers' minds on the

relevant questions,

V. Conclusion

The results presented here are for one breeding
population, the phenotypic and genetic variances obviously
influence the results. The application of decision making
techniques to selection decisions is of interest to all
breeders. Several conclusions are of interest. Bayes and
minmax strategies change as the range of economic values
considered changes. The breeder must decide on the range of
economic values to be considered. When Bayes strategies are
to be determined it is necessary to determine a priori
probabilities for the states of nature. Response surfaces
showing the values for a range of selection strategies for a
given decision making technique give the breeder additional
information. The results of the present study indicate that
small departures from minimax optimum straegies can result

in inefficient selection.
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CHAPTER SIX
PREDICTION METHODS FOR THE FUTURE

I. Introduction

The best prediction method is the one which most
accurately predicts the genetic worth of an individual. The
method has to accurately predict genetic values and
incorporate economic values into the prediction of genetic
worth. At the present time tree breeders prefer to use
selection index instead of BLUP because it is
computationally less demanding than BLUP. When the breeder
is only interested in predicting random genetic effects on
one site, selection index gives essentially the same results
as BLUP (Chapter II). Statistical decision making can be
incorporated into the choice of economic values in the

selection index calculations (Chapter V),

It is the objective of this contribution to look ahead
to the future demands of tree breeding and to look at
potential problems with BLUP and selection indices and to

propose some solutions to these problems.

I11. Future demands of tree breeding

Any predictions of future trends are subject to
personal bias. There is obviously a great deal of discussion
on the breeding methods to be used, this discussion will be
avoided. It will be assumed that breeders will need to
predict the performance of genotypes. The predictions of

128
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genotype performance will be influenced by five factors.
1. Genotypes will be planted ovef several different site
types.
2. Because of the large number of crosses genotypes will
be planted over several years.
3, Populations will be more inbred.
4. There will still be a need to predict gains.
5. There will still be uncertainty over the economic
values of the improved crop when it is harvested.
Considering these requirements any future prediction should
include site and planting year. In addition it should be

possible to incorporate inbreeding and give expected gain

values.

11I. Mixed model predictions

Mixed models have been used to predict random genetic
values in tree breeding (Baradat 1979). Genetic values are
predicted after within site (block) fixed effects have been
removed. In the future tree breeders will be dealing with
more effects, for example, year of planting and site
effects. There is some debate over which factors are
considered random and which factors are considered fixed.
Obviously genetic effects are random. The classification of

environmental effects is more debatable.

Consider an example of a breeder who has crossed a
large number of trees. Progeny are planted over several

years on several different sites. The linear model for the
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record of an individual is:

' = -
V' S M TS tA VB +6 te . (VI-1),

klm
k*" block on the it

where Y'ij is the record value of the 1" genotype in the
" site planted in the j*" year,

u is the mean of all records,

S, is the effect for the i site,

A, is the effect for the j*" year,

B, is the effect for the k™ block,

G, is the effect for the 1'™ genotype, and

e is the residual effect.
The site, year and block effects could all be considered
random. Burdon (1979) proposed a selection index to predict
genetic values when sites and blocks are considered to be
random. The theory of the method is sound, but there are two
major problems.

1, Future performance values of individuals cannot be
predicted.

2. When there is a large number of sites the V matrix

would be large and therefore difficult to invert.

A better approach would be to assume that all the
environmental effects are fixed. The fixed effects could be
estimated by a least squares procedure using the analysis of
variance or by the BLUP procedure in which fixed effects are
maximum likelihood estimates. Once the individual effects in
the linear model have been estimated a predicted performance

value can be calculated for each genotype. The predicted
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performance value is a linear combination of genetic and
fixed environmental effects., For example consider a breeder
who wants to predict the performance of genotypes on several
sites which have been planted over several years. If all the
fixed effects are not removed from the record values before
the genotypic effects are predicted the predictions will be
biased. The year of planting effect cannot be reproduced
when the new crop is planted. Considering the fact that the
genotypes will be planted over a number of years the year of
planting effects in future crops should be very close to
zero. Thus the year of planting should be considered in the
prediction of genetic values but can be neglected in the

prediction of future performance values of genotypes.

Site effects should be included in the prediction of
future performance values because the site effects can be
reproduced and will affect the average performance values
"depending on the area of each site type. The effect of block
within site is difficult to reproduce although it is
considered fixed. Any prediction of performance values must
include an average block value for each site. The predicted

performance value of a genotype planted on a site iss
POV = &+ § + B+ G ...(VI-2),

where PPV is the predicted performance value,
i is the estimated mean value,
Si is the estimated site effect,

Bi is the average of estimated block effects within
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site i, and

Gl is the estimated genetic effect of genotype 1.

IV. BLUP versus selection index

Tree breeders have not used BLUP or selection indices
extensively. There are a few examples of selection indices
in tree breeding (Cotterill 1985). BLUP has not been used
because it was developed in animal science and because it

requires complex computations.

I1f either of these methods are to accurately predict
the future performance of genotypes, predictions must
include unbiased fixed and random effects. In simple
experiments rankings on the basis of random genetic values
are the same for both BLUP and selecﬁion indices (Chapter
I1). Fixed effects estimates differ, in theory BLUP is more

correct.

As tree breeding programs progress breeding populations
will become more inbred. Both selection index and BLUP can
incorporate inbreeding when calculating random effects
(Henderson 19763 Baradat 1982). Inbreeding is incorporated
into the estimation of fixed effects in the BLUP
calculations (Chapter IV). It is not obvious how inbreeding
can be included in the estimation of fixed effects in the

analysis of variance calculation.

Flexibility is an important trait of any prediction

method. BLUP is extremely flexible because of the
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flexibility of the basic linear model on which BLUP is based
(Henderson 1974). The model allows the breeder to
incorporate fixed, random and the interactions between fixed
and random effects in predictions (Henderson 1974).
Estimation of fixed effects in the analysis of variance and
selection index predictions of random effects is a
reasonably flexible model. However some development is
necessary to incorporate interactions between fixed and

random effects into the prediction process.

The numerical analysis problems in calculation of the
BLUP estimates are considerable. Many of the problems have
been solved (Schaeffer and Kennedy 1986). The solutions to
the problems have not yet been adopted in tree breeding
because selection index calculations are less demanding. The
major effort in selection index calculations is the
calculation of phenotypic effects. When numbers are small
and data sets are balanced the calculations are relatively
simple. As data s.ts become larger and more imbalanced the
computational effort to calculate effects will be greater.
For example the effort to calculate the phenotypic effects
for 20,000 trees each measured for three traits is
considerable. It will be possible to do these calculations
but some modifications of existing software will be
required. It can be concluded that the numerical analysis
problems of selection index calculations will be greater in
the future when data sets are larger. The difference between

the computational demands of BLUP and selection index



134
predictions will be reduced.

The importance of BLUP in tree breeding programs will
increase in the future because of BLUP's flexibility and
ability to include inbreeding in mixed model predictions.
There are a number of potential problems with BLUP

applications in tree breeding programs.

V. Potential problems of implementing BLUP in tree breeding

There are two major problems with BLUP implementaticn.
The first is a numerical analysis problem. The second is
that there is no way to calculate expected gain as is done

in selection indices.

2. Numerical analysis

There are some important points to be noted in the
development of BLUP applications in animal science. The
first application of BLUP was for sire evaluation (Henderson
1973). This was single trait evaluation, There were a large
number of animals, but the dimension of the random effects
part of the coefficients in the BLUP equation is of the
order of the number of sires (Henderson 1973). The numerical/
analysis problems were not overwhelming and the model had |
immediate application on a national and international scale.
Algorithms by Henderson (1976) and Quaas (1976) helped solve
some of the numerical analysis problems and allowed the
method to be expanded to the prediction of individual

animals. Use of iterative solutions to solve for unknowns in
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the BLUP ecuations extended capabilities so that equations
with more than 100,000 unknowns could be solved (Schaeffer
and Kennedy 1986). Development of the methods was largely
confined to Cornell University and the University of Guelph.

Models developed there had national applications.

In forestry there is a much greater range of types of
genetic experiments. Mating designs range from open
pollination to complete diallel crosses (Zobel and Talbert
1984)., Experimental layouts of field trials cover the
complete range from randomized complete block to incomplete
latin squares (Montgomery 1984). BLUP models are flexible
and in theory models exists which are directly related to
tree breeding problems (Henderson 1974, Henderson 1988).
These models have not been used in forestry. To understand
the BLUP prediction models and computer programs a

reasonable level of statistics and numerical analysis is

required.

There is a question over the level of numerical
analysis in tree breeding. Cotterill (1985) comments on the
"lack of special expertise and computing programs required
to construct the Smith-Hazel indices". The Smith-Hazel
indices refered to by Cotterill were indices for mass
selection that are relatively easy to construct. If his
assessment is correct problems with BLUP will be enormous.
Tree breeders are fully employed establishing trials and

taking field measurements. There are two possible solutions:
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1. Establishment of a research project to develop BLUP
models for use in tree breeding.
2. Evaluation of BLUP models used in animal science with
a view to direct transfer to tree breeding.
The solutions to the numerical analysis problems have been
determined (Henderson 1976; Schaeffer and Kennedy 1986). The
new generation of personal computers should be powerful
enough to remove any hardware limitations. It is a question

of allocation of resources to implement the solutions.

B. Expected gain calculations and BLUP

BLUP gives unbiased predictions of genetic values. When
economic weights have to be included in multiple trait BLUP
they are calculated in other experiments and then applied to
the genetic values (Henderson and Quaas 1976). BLUP is based
on accurate prediction and is not concerned with maximizing
gain, however gain is maximized by accurate prediction
(Bulmer 1985). Because of the emphasis on accurate
prediction no method for calculating gain has been
developed. Tree breeders need to be able to calculate gain
because:

1. Decision makers who allocate resources in forestry and
outside of forestry require some method of calculating
potential gains.

2. There is uncertainty over economic values of traits at
the time when the new improved crop will be harvested.
This uncertainty can be incorporated into decision

making when choosing economic values if gain
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calculations can give the gains for a set of economic
values at the time of selection and for a range of
sets of economic values at the time when the improved

crop is harvested (Chapter V).

i. Calculation of gain for decision makers

Any gain calculation must take into account the mixed
model in the BLUP predictions. Consider an example of
selected genotypes planted out in blocks over several sites,
If the breeders objective is to maximize gain over several

sites the linear model the breeder wants to predict is:

PPV = 40 + § + B + G1 «eo (VI-3),

1 1.

Expected values of a population produced by random mating of

the selected population grown on a given site (i) will Dbe:
E(PPV ) = 4 + § + B + E(G) ...(VI-4),
T 1 1. T

where PPVT is the predicted performance value of the
genotypes in the group selected by truncation
selection, and
G, is the random genetic effects of the genotypes in
the selected group.
The general formula for expected gain from truncation

selection on the basis of predicted values is:

Gain = i %g%g—:—;& (Var (&)%) ...(VI-5),

where i is the selection intensity;
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Cov(x,%) is the covariance between the prediction and

the value to be predicted; and
Var (%) is the variance of the prediction (Bulmer
1985).

Bulmer showed that:
Cov(x,%) = vVar(x) ...(VI-6),.
Equation (VI-5) can now be rewritten as:

Gain = i var(&)® ...(VI-7).

The variance of Var(&) could be estimated directly from the

BLUP predictions. The expected value of trees gown on a site

say site 'i' is given by the linear combination:
Site, + Block average + Expected Gain ...(VI-8).

Gains over several sites could be calculation from gains

each site.

ii. Gain formula for selection strategies incorporating
uncertainty over economic values

The gain formula for incorporating uncertainty over
economic values into selection index is:
aC'Vica y
sp o jH S -
Galn - 1 -1 (a C'v Ca ) -.O(VI 9),
asC'V Cas 5 s

where C'V 'C is the variance of the prediction,

on

a, is a vector of the economic values at the time of

harvest, and

a is a vector of the economic values at the time of
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selection,
The above formula can be easily adapted by replacing the
C'V'C by the variance of the random BLUP effects. The
minmax and Bayes strategies can now be determined to give

optimum 'a' values on a given site (Chapter V).

VI. Conclusions

The importance of BLUP in tree improvement will
increase in the future because BLUP mixed model predictions
are flexible and can include inbreeding in fixed effects
estimation. There will be problems with the numerical
analysis and computing skiils required to obtain BLUP
predictions. These problems can be solved. Success will
depend on the resources allocated by decision makers.
Expected gain values to truncation selection for BLUP have
not been derived. Formulae used in gain calculations in
index selection can be adapted provided the breeder is

willing to accept the estimate of the variance of the random

BLUP predictions,
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APPENDIX I.

DERIVATION OF SELECTION INDEX FORMULA

Consider the problem cf multiple trait selection based
on an index which combines the phenotypic values from n
genetic groups for q traits. The joint distribution of the
pheuotypic and genetic values are assumed to be multivariate

normal with a variance-covariance structure:
G C

c' \'

where G is a g x g matrix of the variance and covariance
among the g unknown genetic values,
C is a g x (n x q) matrix of the covariances among the
n x g phenotypic predictors and the g unknown
genetic values, and
V is a (n x q) x (n x g) of the variances and
covariances among the n x g phenotypic
predictors.
Breeders are generally concerned with additive genetic
values. Henceforth the term genetic value will be defined to

mean "additive genetic value".

The genetic worth of an individual with g genetic

values can be written as a linear combination:

W=av +,..+av ...(AI-1),
11 a g

where W is the genetic worth of the individual,
142
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a,...a_are the relative economic values of the g
traits, and
V...V are the genetic values of the g traits,
The objective of the breeder is to determine the b values
which maximize the genetic worth (W) of the individuals in
the selected population. The b vclues are applied to the

phenotypic values to give a linear combination known as the

selection index:

I = b1'1p1'1 +.'.+ b p ..'(Al-z)'

n,g - n,q

where I is the index value of the individual,
b ...b are the b values fcor the phenotypic traits,

1,1 n,qg

and

R are the phenotypic values of the p traits in

the n genetic groups.

1f the relative economic values of the g traits are
known the expected genetic worth of an individual in the
breeding population is predicted by a linear function of

phenotypic values such that:
E(W|1) = u, + B (I - u) ...(AI-3),

where I is a linear combination of phenotypic values
(selection index),
“ is the mean genetic worth of the individuals in the
population,
B, . is the regression coefficient of the regression of

the linear combination W on the linear
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combination I, and

N is the average index value for the population.

The mean genetic worth from truncation selection on the

basis of selection index values in the base population is:

E(w'r-ll'r.) =k, * Bw,I(IT. - ul) ... (AI-4),

where WT. is the mean genetic worth in the selected
population,
iT. is the mean index value in the selected
population, and

‘. is the mean genetic worth in the base population.

The mean genetic worth in the base population is a
constant, therefore the expected gain in genetic worth from

truncation selection is:
B (i. “1) «e. (AI=5),
Standardizing the selection differential gives:

B ioI .o (AI-6),

w,I

where i is the standardized selection differential or
selection intensity, and
o is the standard deviation of the'selection index.
Expressing the terms in the form of their basic linear

components B can be rewritten as:

1

a'Cb(b'Vvb) ...(AI-7),
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where a is a vector of economic values, and
b is a vector of index coefficients,

and o can be rewritten as:

(b'Vb)'® ...(AI-8).

Substituting the values for B | and 0 into equation (AI-6)

gives:

i(a'Cb)(b'Vb) '(b'Vb)'® ...(AI-9).

I1f the relative economic weights are known the expected
gain in genetic worth is maximized by maximizing the
correlation between I and W. The proof of this statement is
given by multiplying eqguation (AI-9) by (a'Ga)*(a'Ga)”®

which gives:
(a'Ga) ®(a'Ch)(b'Vb) "*(a'Ga) ™" ...(AI-10).

The last three terms are esquivalent to the correlation
coefficient between I and W. The first term (a'Ga)’® is
constant when the economic values are known. Thus the B
values which maximize the value of the correlation between I

and W will maximize gain,

The b values which maximize the correlation between I
and W are determined by eqguating the partial derivative of

the correlation coefficient to zero giving:

—=0 .l.(AI.-11).
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All the solutions to the above equations are proportional to

the solutions:
vb = C'a ...(AI_12).

Premultiplying both sides by V' gives the classic equation

for the b values of the selection index:

b=V'C'a...(AaI-13),



APPENDIX II.

EQUIVALENCE OF BARADAT'S INDEX TO SMITH-HAZEL SELECTION
INDEX

The equivalence of the two methods can be proved

algebraically. Baradat's index can be written as:
a'C'vip ...(AII-1),

The b values in the classic Smith-Hazel index are:
b=V'Ca...(AII-2).

Substituting the above expression for the b values in the

Smith-Hazel index gives:
(v'ca)'p ...(AII-3).
The two indexes are eguivalent because:
(vi'ca)' = a'C'V’ ...(AII-4),

1n Baradat's index the 'b' wvalues are never calculated
directly, but C'V 'p is equivalent to the index value of the
Smith-Hazel index when the 'a' values in the Smith-hazel

index are egual to one.
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APPENDIX I1I.

DERIVATION AND CALCULATION OF BLUP PREDICTIONS

The derivation of BLUP is based on the minimization of
the prediction error under the constraint that the estimate
is unbiased. The BLUP fromula will be derived for a single
trait and then the modifications required for multiple trait
selection will be described. The BLUP predictions are based

on the linear model:
y =XB + 2a +e ...(AIII-1),

where y is a vector of record values which can be measured

in an experiment,

X is a design matrix of the fixed effects for each
record,

B is a vector of unknown fixed effects,

2z is a design matrix of the random genetic effects for
each record,

a is a vector of the unknown genetic effects, and

e is a vector of residual effects,

The derivation and application of BLUP is based on
three mathematical procedures:

1. The derivation of basic BLUP formula.

2. The proof of the equivalence of BLUP to selection
index when fixed effects are maximum likelihood
estimates.

3. The use of mixed model methodology to determine BLUP

148
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solutions.

1. Derivation of basic BLUP formula

The prediction of an unbiased genetic value within a linear

combination of fixed effects is:

g=k'B+v ...(AIII-2),

where g is the value of the genotypes within the k'B fixed
effects combination,
k' is a line vector of the linear combination of fixed
effects,
B is a column vector of the fixed effects, and
v is the genetic value of the genotype.

The objective is to predict g with a linear combination of y

values :

§=t'y ...(AIII-3),

where § is the prediction of g,

t is a line vector of the coefficients which when
applied to the y vector gives §, and
y is a vector of record scores or subclass means.
The best linear prediction part of the definition requires

that the variance of the prediction error be minimized:
Var(t'y - g) = t'Vt - 2t'c + V ...(AIlI-4),

where V is the variance-covariance matrix of the y values,

and



150

c is a vector of the covariance between the genetic
value of the genotype within the fixed effects
and the y records.

The unbiased prediction part of the definition requires

that:
t'X = k ...(AIII-5),

The minization equation which satisfies the above constraint

is:
F = (t'Vt - 2t'c + V) + 2A(t'X - k) ... (AIII-6),

where A is a vector of lagrangian multipliers.
Equating the partial derivatives of F with respect to t and

A to zero gives the equations:

= .. (ATII-T7).

The solutions for t can be calculated by inverting the
coefficients matrix. Multiplying the t vector by the records

vector y gives an unbiased predictor of g.

I1. The equivalence of BLUP to selection indices when fixed
effects are maximum likelihood estimates.

The equivalence of BLUP to selection indices has been
proved by both Goldberger (1964) and Henderson (1963).
Henderson (1984) gave a much simpler proof based on the
manipulation of the basic BLUP equations (eguation

(AIT1I-7)). The first set of equations are solved for t:
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t =-v'+v'ie ...(AIT1-8).

Substituting the t value in the second set of equations

gives:
XV'RA = -k + XV 'c ...(AIII-9).
Rearranging terms gives the value for A:
A= —(X'V'E)k + (X'V'R)R'Ve ...(AIII-10).

Substituting the value X\ back into the first set of

equations gives:

t = -V'R(X'V'R)k - V'R(R'V'E) X'V c + Ve ... (AIII-11).
Multiplying throughout by y gives:

t'y = k' (B'V'R)E'V'y + ¢'V'(y - R(X'V'E)X'Vy)
... (AIII-12).

Substituting the maximum likelihood estimate

f= (X'V ') XV''y gives:

t'y = k'f+ c'V'(y - X8) ...(AIII-13).

Note that the coefficients for BLUP are not the same as
the b coefficients in the Smith-Hazel index. The c¢'V '(y -
Xf) is the same as the selection index proposed by Bulmer
with the records adjusted with maximum likelihood estimates
of the fixed effects. The t values of BLUP are the

coefficients which when applied to a vector of y values give
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an unbiased estimate for a desired linear combination of
fixed effects and the selection index of the records

adjusted with maximum likelihood estimates.

I11. Mixed model methodology to determine BLUP solutions

In the previous section BLUP solutions could be

computed after B has been estimated from the formula :
g = (R'V'E)XV'y ...(AIII-14).

v'' is not diagonal and if it is large will require
considerable computational effort to invert it. Thus the -
solution is of limited application for solving practical
problems. Mixed model equations of the maximum likelihood
estimates of B and u can be calculated by maximizing the

joint distribution giving the eguations below (Searle 1972):

X'R'X X'R'2 B X'Ry
- » . ., fAIII-1s)
Z'R'X Z'R'Z + D u 'Ry

where R' is the inverted matrix of the variance of the
error effects vector, and
D' is the inverted matrix of the variance of the
genetic effects vector.

D can be decomposed into:

D = Aaaz ... (AIII-16),

where A is the numerator relationship matrix for the
individuals represented in the genetic effects

vector, and
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082 is the additive genetic variance.
Multiplying throughout by oe2 gives:

x'x x'z B xQY
I = (AT11-17)
Z2'X 2'2 +D o, u 2'y

Henderson (1976) and Quaas (1976) derived a method of
inverting D' based on mendelian principles that allowed
very large matrices to be inverted. The solutions for B and
u can be found by iterative methods which allow equations
with up to 100,000 unknowns to be solved (Schaeffer and
Kennedy 1985). If the coefficient matrix is inverted then
the number of variables which can be solved for will depend

on the computer hardware and will generally be limited to

under 300.

BLUP multiple trait selection is based upon
modification of equation (AIII-15) (Henderson and Quaas
1976). The linear model is expanded to include multiple

traits. In the case of selection for three traits, the

linear model would be:

Y1 xl Bi z1 u1 e1 ’
y,| = X, B, | * Z, ul + le, {AIII-18)

where yy,y, are the record vectors for traits one two and
three,
XXX are the design matrices of the fixed effects of
trait one, two and three for each record,
B'BJ% are the column vectors of the unknown fixed

effects for trait one, two and three,
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z 2,2 are the design matrices of the unknown random
effects of trait one, two and three for each
record,

uuu are the column vectors of the unknown genetic
effects for traits one, two and three,and

eee are the column vectors of the residuals for
trait one, two and three,

The logic is the same as in the single trait BLUP. The mixed
model solutions are more complex. The X and Z matrices of
equation (AIII-15) are replaced by the partitioned matrices
in equation (AIII-18)., Equation (AIII-15) cannot be
simplified because R is no longer diagonal. R is a series of

diagonal submatrices:

g”g‘zgw (AIII-19)
R21R22R23 e '
31 32 33

where R ...R  are diagonal submatrices with the diagonal
elements equal to variance-covariance between the
residual effects for traits one, two and three.

The D matrix becomes:

D11D12D13

D DD ...(AIII-20),
p?'p?2p??
3173233

wvhere D ....D, are the product of the relationship matrix A
and the genetic variance-covariance between

traits one, two and three.

Clearly the problem is a more complex computational
problem than single trait BLUP. Henderson and Quaas (1976)

considered the single animal model, which meant that the Z



155

matrix was an identity matrix. Even when the model is
restricted to the single animal model there is still a
problem with the size of the model and the computational

effort required to solve the equations (Quaas and Pollak
1980) .
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APPENDIX 1V,

CONSTRUCTION OF BARADAT'S SELECTION INDEX FOR
PROVENANCE-PROGENY MODEL

The selection index is a weighted vector of predicted
additive genetic values. The predicted additive genetic

values are calculated from the formula:
¥ =C'V'pv ...(AIV-1),

wvhere ¥ is a vector of predicted additive genetic value,

C is a matrix of the covariance between the additive
genetic values to be predicted and the phenotypic
predictors,

v'' is a matrix of the variance of the phenotypic
predictors, and

pv is a vector of phenotypic predictors.

To simplify the explanation, the construction of the
index will be described for the prediction of the
individual's within-provenance additive genetic value. The
prediction of the provenance additive genetic value is
achieved by modifying the C matrix. This modification will
be described in the construction of the C matrix Although we
are only concerned with the individual trees additive
genetic value it has several predictors. Consider a
population of trees grown from seed collected from several
mother trees within each of several provenances. The trees

developed from the seed of a single tree will all belong to

157
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the same half sib family. The trees developed from the seed
of each tree in a provenance will all have a common
provenance phenotypic value. Thus an individual's phenotypic
value can be decomposed into three phenoEypic values that

can predict its breeding or additive genetic value.

If the additive genetic values of more than one trait
are to be predicted then the predictor becomes a linear
combination of the phenotypic values of each trait. Assuming
that the objective of the selection is to improve a linear
combination of three traits the prediction formula expressed
in matrix form would be:

~1

N v1 pvl
[\7] = [C102C3] v, | |pv, | (ATV-2)
3 PV,
where ¥ is a 3x1 sub-vector of the individual's predicted
additive genetic value for the three traits,
C, is a 3x3 sub-matrix of the covariances between the
individual's provenance phenotypic values and the

individual's additive genetic values for the

three traits,

C, is a 3x3 sub-matrix of the covariances between the
individual's family phenotypic values and the
individual's additive genetic values for the
three traits,

C. 13 a 3x3 sub-matrix of the covariances between the

3

individual's within family phenotypic values and

the individual's additive genetic values for the
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three traits,

is a 3x3 sub-matrix of the variance-covariance of

vl
the individual's provenance phenotypic values for
the three traits,

V, is a 3x3 sub-matrix of the variance-covariance of
the individual's family phenotypic values for the
three traits,

V. is a 3x3 sub-matrix of the variance-covariance of

3
the individual's within family phenotypic values

for the three traits,

pv, is a 3x1 sub-vector of the individual's provenance
phenotypic values,

pv, is a 3x1 sub-vector of the indiviaual's family
phenotypic values, and

pv, is a 3x1 sub-vector of the individual's within
family phenotypic values.

The phenotypic values are determined from the linear model:

Y, = # + PROV, + FAM;,, + e,; ...(AIV-3),

where Y, is the record value of the k™ individual in the
jth family belonging to the it provenance,
u is the overall mean,
PROV, is the phenotypic value of the i*" provenance,

FAM,(;, is the phenotypic value of the jth

family in the
« th
i~ provenance,

is the within family phenotypic value of the Kt
h

€xij)
individual in the j* family of the if



160

provenance.

The three phenotypic predictors and the individual's

phenotypic value can be calculated from the basic data:

IND,, = ¥y - ¥ ... (AIV-4)
PROV, = ¥, - ¥  ...(AIV-5)
FAM;, = ;. - ¥, ...(AIV-6)
€in = Yign ¥ oo (AIV-7)
where ¥ is the average of all the record values;
4 is the average of all the record values in the ith

provenance, and

;5. is the average of all the record values in the j*

. . « th
family in the i*" provenance.

1. Construction of the C matrix

The covariance between the additive genetic values of
the individual and thé estimated phenotypic predictors is
determined by expressing the sxpectation value of the
estimated phenotypic predictors in terms of the estimated
phenotypic values of the individuals which contribute to the
predictor. If the estimates of the individual phenotypic
values are unbias the covariance between the individual
phenotypic values which form the phenotypic predictor and
the individuals additive genetic values can then be
expressed in terms of additive genetic variance. Two
important genetic relationships are required for further

understanding of the discussion.
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1. The expected covariance between an individual's additive
genetic value and its estimated phenotypic value
expressed as Y, - ¥ is the additive genetic variance
(va).

2. The expected covariance between an individual's additive
genetic value and the estimated phenotypic value of the
individuals in the same half sib family is a quarter of

the additive genetic variance (.25VA),

A. Covariance between the individual's additive genetic
value and its provenance phenotypic value

Consider the covariance between the additive genetic
value of the ijk*" individual and the estimated phenotypic

value of the individual's provenance:

Covla.

s (F5.0 = ¥ 0] ... (A1vV-8).

where a;,, is the additive genetic value of the ijk®
individual.

There are n,  individual phenotypic values in (¥, - ¥ ).

One of these phenotypic values is from the ijk™ individual.

The covariance of this value with a;s;, will be equal to VA,

There are n;; - 1 individual phenotypic values in (¥, -

¥ ) which are half sib relatives of the ijk™ individual.

Their covariance with a;; is (n;; - 1).25VA. The expectation

of the covariance between the estimated provenance

phenotypic value and the additive genetic value of the ijkth

individual can be rewritten as:
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L VA ...(AIV-9),

n;.

B. Covariance between the individual's additive genetic
value and its family phenotypic value

The estimated family phenotypic value for the j*
family nested within the i*" provenance must be rewritten so
that all deviations are expréssed as deviations from the

grand mean:

- % =(¥.. -¥ ) - (¥.

ij. i.. ij. i..

- ¥ ) (A1v-10).

The covariance between the individual's additive genetic

value a,, and the family phenotypic predictor is:

Covla,,, (¥, - ¥ ) - (3, - ¥ )1 ...(a1v-11)
Cov[aljk'(ﬁlj_ - ?..‘)] = Cov[al]k'(?l-' - Y...)] ..'(AIV_12)'
One of the n;; inidividuals in the ¥, - ¥ s ¥, - Y .

The expected covariance between the Y., - ¥  and the
additive genetic value a; is equal to VA, The rest of the

individuals in the 3

family nested in the i‘" provenance
are half sib relatives if the ijk*" individual. Their
covariance with a;;, is (n;; - 1).25VA. Therefore the
expectation of the covariance term is:

.25(n,, - 1) + 1
L VA ...(AIV=-13).

Ny,
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The expectation of the second covariance term in formula
AIV-12 has been derived previously. Substituting the
expected values in equation AIV-12 gives the expected
covariance between the individual's additive genetic value

a,;, and its family phenotypic value:
.25(n,; - 1) + 1 .25(n;; - 1) + 1
L VA - VA ...(AIV-14).

Nyj. n;..

C. Covariance between the individual's additive genetic
value and its within-family phenotypic value

The covariance between the estimated phenotypic value

é,;, and the additive genetic value of the ijk*™ individual
is: Cov[aijk'((Yijk -¥ ) - (Yij. - ¥ )]
= covla,, (¥, = ¥ )1 - covla,, (¥ - ¥ )] ... (AIV-15)

The first term in the above eguation is eqgual to VA. The
expectation of the second term has been determined
previously :

va + ((n,. - 1).25VAa)
L ... (AIV-16).

N5,

Writing the first and second terms together gives:

VA + ((n, - 1).25VA)
VA - : <o (AIV-17).

Ny,

Rearranging terms gives:

(n;,, - 1){(1 - .25)
VA ...(AIV-18).

nyj,
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The C,, C, and C, sub-matrices can now be calculated.
The model is complicated by spliting the additive variance
into two components:
1., Additive variance among provenances.
2., Additive variance within provenances.
VA is calculated from the family variance estimated in the
analysis of variance. The model changes only slightly to
include the additive variance among provenances. The only
difference being that the covariance matrix between the
estimated provenance phenotypic values and the additive
genetic values of an individual changes. The among
provenance additive genetic variance is added to each
element of the C, matrix. The additive genetic variance
among provenances is equal to the provenance variance as

measured in the analysis of variance.

I1. Construction of the V matrix

The expectation values of the variance of the estimated
phenotypic values can be expressed in terms of variance
components in the same way as the expected mean squares are
expressed in terms of variance components in analysis of

variance.

A. Variance of provenance phenotypic value

Consider the variance of the estimate of a provenance

phenotypic value. The expectation of the estimate of the i'"

provenance phenotypic value expressed in terms of the
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components of the linear model is:
nf
[ni“PROVi + 'Fi$FAMﬂi)
3

... (AIV-19).,

n;..

. o . . . « th
where n, is the number of individuals in the 1

provenance,

n.. is the number of individuals in the j®

5. family in

the i*" provenance, and

nf is the number of families in the i*" provenance.

The variance of the i'" provenance phenotypic value is:
p P y

_nf
2 2 2 2
N Oppov ¥ Znij. O eam(prROV) 1
> .
— + —0 7 ...(AIV-20).

e
n;. n;..

The elements of the variance-covariance sub-matrix V, can
now be determined. The appropriate covariance terms are
substituted for variance when determining the non-diagonal

elements of the sub-matrix.

B. Variance of family phenotypic value

The elements of the V, sub-matrices are derived in a

similar manner to formula AIV-20 to give the formula:

FAM{PROV)
n;..

nf
2 2
n, - )n,.
[ i.. & ij. ] ) 1 1 ,
2 o + |— - —| o ...(AIV-21).
Ny,
The elements of the variance-covariance sub-matrix V, can
now be determined. The appropriate covariance terms are
substituted for variance when determining the non-diagonal

elements of the sub-matrix.
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C. Variance of the within-family phenotypic value

The elements of the V, sub-matrices are derived in a
similar manner to formula AIV-20 to give the formula:

n,. -1
—L— 0 % ...(AIV-22).

D5,

The elements of the variance-covariance sub-matrix V, can
now be determined. The appropriate covariance terms are
substituted for variance when determining the non-diagonal

elements of the sub-matrix.

The V' and C matrices change as the family and
provenance of the individual for which the additive value is

. . 2
to be predicted changes. The variance components 0 p.q; «

2 2

Y and VA remain the same but the values n,

FaM ! WFAM n

o jor ML

and nf change.



APPENDIX V.

UANOVA PROGRAM

This appendix includes a brief conceptual discription
of the UANOVA program and the way it calculates effects, sum
of squares and variance components for type I sum of
squares. More complex algorithms have been developed for
type 111 sums of squares, however the basic concepts are the
same. For more detailed questions about the UANOVA program
the reader is refered to Dr. T. Taerum who developed the
program at the University of Alberta. Tests using data sets
from standard texts show that UANOVA gives the same results

as SAS (Taerum 1987).

1. Calculation of effects

The algorithm for calculating the effects is the basic
algorithm on which all UANGVA results are based. Basic input
values for the algorithm are:

1. Identfication vectors assigning treatment levels to

each cell.

2. The mean value of all the records in each cell refered
to as the cell mean.

3. The number of records in each cell.

Consider the data set in Table AV-1. There are two
treatments provenance and family. The provenance treatment
has three levels and the family treatment has two levels.

Height is measured on each individual.

167
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Table AV-1. Basic data for example

Individual Provenance Family Height
1 1 1 18
2 1 1 17
3 1 1 16
4 1 2 11
5 1 2 9
6 1 2 7
7 2 1 13
8 2 1 12
9 2 1 11
10 2 2 2
1 2 2 4
12 2 2 6
13 3 1 13
14 3 1 12
15 3 1 14
16 3 2 6
17 3 2 5
18 3 2 4

The input values for the algorithm for the data set are
given in Table AV-2.

Table AV-2. Input values for algorithm

Identification vectors

Provenance Family Number of Cell mean
records
1 1 3 17
1 2 3 9
2 1 3 12
2 2 3 4
3 1 3 13
3 2 5

The algorithm for finding the effects for each level of each

treatment has five basic steps. Steps 1 and 2 initialize ‘the
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algorithm., Steps 3, 4 and 5 are the basic iteration
procedure which continues until the residuals are
insignificant. The basic steps are:
1. Calculation of the overall mean.
2. Subtract overall mean from cell means to give
residuals.
3. Calculate effects from residuals weighted by the
number of individuals in each cell.
4. Subtract effects from residuals to give new residuals.
5. Check residuals against zéro value., If significantly
different go to step 3 and calculate effects for next
treatment in the linear model.
When residuals are not significantly different from zero the
effects of each level of each treatment are given by summing
all the effects estimates for each iteration for that level
of treatment. The algorithm will be demonstrated using the
data set in Table AV-1,
Step 1:
Calculation of overall mean:
Sum = i8 + 17 + 16 + 11 + 9 + 7 + 13 + 12 + 11 + 2 + 4 +
6 + 13 + 12 + 14 + 6 + 5 + 4 = 180
overall mean = 180 =+ 18 = 10
Step 2:

Subtract overall mean from cell means:
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Cell identified by

Provenance Family Cell mean Overall Residual

mean
1 1 17 10 7
1 2 9 10 -1
2 1 12 10 2
2 2 4 10 -6
3 1 13 | 10 3
3 2 5 10 -5
Step 3:

Calculate effects from residuals:
Provenance 1 first estimate
3 x 7 =21
3 x -1 =+-3
18 + 6 = 3
The residual is multipied by the number of records in the
cell. In the example above 3 x 7 and 3 x -1. The total is
then divided by the number of individuals in the cells which
recieved treatment level provenance 1. In this case 18 + 6.
Provenance 2 first estimate
3 x2=26
3 x -6 =-18
-12 + 6 = =2

Provenance 3 first estimate

3 x3=29
3 x -5 = -15
-6 + 6 = —1
Step 4:

Subtract effects from residuals:
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Cell identified by

Provenance Family 0ld Effect New

residual residual
1 1 7 3 4
1 2 ~1 3 -4
2 1 2 -2 4
2 2 -6 -2 -4
3 1 3 -1 4
3 2 -5 -1 -4
Step 5:

Check residuals against zero value, if all residuals greater
then zero go to step 3 to estimate family effects,

Step 3:

Calculates effects from new residuals:

Family 1 first estimate

3 x 4 =12
3 x 4 = 12
3 x 4 =12
36 + 9 =4¢

Family 2 first estimate

3 x -4 = =12
3 x -4 = -12
3 x -4 = -12
-36 + 9 = -4
Step 4:

Subtract effects from residuals:
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Cell identified by

Provenance Family 01d Effect New

residual residual
1 1 4 4 0
1 2 -4 -4 0
2 1 4 4 0
2 2 -4 -4 0
3 1 4 4 0
3 2 -4 -4 C
Step 5:

_ Check residuals against zero value, All residuals not

significantly different from zero therefore end iterations.

In the above example the residuals converge to zero
after one round of iterations, this is because the design is
balanced. When designs are unbalanced the residuals will not
converge to zero after the first round of iterations. A
treatment effect estimate is the sum of all the estimates

calculated at each iteration before convergence is reached.

I1. Calculating the sum of squares from effects

The sum of squares are calculated from the effects
estimates and the number of records in each treatment level.
In the example the provenance effects were estimated to be:

+3

Provenance 1

-2

Provenance 2

-1

Provenance 3
There are six records in each provenance. The provenance sum
of squares is the sum of the sum of squares for each
provenance level. The sum of squares for a given provenance

level is:
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(effect)® x number of records in treatment level.

In the example the sum of squares for provenance ic:

+3% x 6 = 54
-2 x 6 = 24
-1 x 6 =6

84

The sum of squares for family is:

+4% x 9 = 144
-4% x 9 = 144
288

The errcr sum of squares is calculated from the cell means
and the record values. The residual or error effect is the
difference between the call mean and the record value. The
error effects in the example are:

1, o, -1, 2, 0, =2, 1, 0, -1, -2, 0, 2, 0, =1, 1, 1, 0, -1
The error sum of squares is the sum of the square of these
values, that is 24.

This method of calculating sum of squares is very simple. It
is based on an accurate estimate of the effects. A summary
table of the sum of squares and means squares for the sample

data is given in Table AV-3.
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Table AV-3, Summary of sum of squares and mean squares for
sample data

Treatment df Sum of Mean squares
squares

Provenance 2 84 42

Family 3 288 96

Residual 12 24 2

I11. Estimating variance components

The variance components are estimated by the synthesis
method. The synthesis method uses the design matrix of the
linear model. The design matrix of the data in the example

is:

u P1 P2 P3 F1 F2 F3 F4 F5 F6
1 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0
1 1 0 0 0 1 0 0 0 0
1 1 0 0 0 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 1 0 0
1 0 1 0 0 0 0 1 0 0
1 0 1 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 1 0
1 0 0 1 0 0 0 0 1 0
1 0 0 1 0 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 1

where u is the mean vector of the design matrix,
P1 is the first provenance effect vector of the design

matrix,
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is the second provenance effect vector of the

design matrix,

P3

F1

F2

F3

F4

F5

F6

is the third provenance effect vector of the design

matrix,

is the first family effect vector of the design

matrix,

is the second family effect vector of the design

matrix,

is the third family effect vector of the design

matrix,

is the fourth family effect vector of the design

matrix,

is the fifth femily effect vector of the design

matrix, and

is the sixth family effect vector of the design

matrix.

Note that each family in each provenance has a separate

vector in the design matrix. The synthesis method gives the

expectation of the sum of squares in terms of the variance

components by passing the design matrix vectors associated

with each treatment level through the sum of squares

algorithm, Coefficients for variance components in the

expectation are calculated by summing the sum of squares

algorithm output for each design matrix vector associated

with the treatment.
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Using the UANOVA sum of squares algorithm there are two

Stages=

1. Bstimation of effects using the vector of the design

matrix as input.
2. Cajculaticn of the sum of sQuares from the effects

egtimated from the design matrix,

1, gstimation of effects

The procedure will be demonstrated using the sample

data. Consider the design matrix vector for provenance 1.

Applying the 5 steps of the effects algorithin described
earlier gives:
Step 1t
Calculation of the overall mean:
Sumb= 1+ 1+1+1+1+1+0+0+0+0+0+0+
0t0+0+0+0-=26
Ovéryll mean = 6 + 18 = ,33
Step 22

Syptract overall mean from cell means:
Cell ldentified by

Provehapnce Family Cell mean Overall  Residual

mean
1 1 i .33 .66
1 2 1 .33 .66
2 1 0 33 -.33
2 2 0 33 -.33
3 1 0 .33 -.33
3 2 0 .33 ~-.33
Step 3@

Cajculate effects from residuals:

Provelance 1 first estimate

0

+



3 x ,66

L}

2.0

3 x ,66 2.0

4.0 + 6 = .66
Provenance 2 first estimate

3 x -,33 -1.0

3 x -,33

-1.0
-2,0 + 6 = -,33

Provenance 3 first estimate

3 x -,33 = -1,0
3 x -,33 = -1,0
-2,0 + 6 = -,33
Step 4:

Subtract effects from residuals:
Cell identified by

Provenance Family 0ld

residual
1 1 .66
1 2 .66
2 1 -.33
2 2 -.33
3 1 -.33
3 2 -.33
Step 5:

Check residuals against zero value.

Effect

.66
.66
-.33
-.33
-.33
-.33

New
residual

OOOQCOO0O

All residuals are not

177

significantly different from zero therefore end iterations.

The same algorithm is applied to the P2 and P3 design

matrix vectors. The effects estimated by the algorithm for

P1, P2 and P3 vectors are:



Provenance Family P1 P2
1 1 .66 -.33
1 2 .66 -.33
2 1 -.33 .66
2 2 -.33 .66
3 1 -.33 -.33
3 2 -.33 -.33

P3
-.33
-.33
-.33
-.33

.66
.66
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" The residual of each provenance effect vector is zero., When

the family design matrix vectors are passed through

the

algorithm there are provenance and family effects. The

provenance effects are used to calculate the coefficient of

the family variance component in the provenance sum

of

squares, The family effects are used to calculate the

coefficient of the family variance component in the family

sum of squares. The provenance effects estimated by

algorithm for the F1 to F6 vectors are:

Provenance Family F1 F2 F3 F4 F5
1 1 .33 W33 -=.17 =17 =17
1 2 .33 W33 =17 =.17  =,17
2 1 -.17 =17 .33 .33 ~=,17
2 2 -.17  -.17 .33 33 -=.17
3 1 -.17 =,17 =-,17 =-,17 .33
3 2 =17 =17 =17 =,17 .33

The Family effects for the uesign matrix vectors F1

are:

5]

)
gooooowm

Provenance Family F

OOCOoOONUIN

WWMNN —
[ N\ S I
L
OOOOUITU —
OCOUIOOoO W
|
. *
COUTUNNO O

2. Calculation of sum of squares

the

Fée

-1
-.1
-1
-1
.3
'3

7
7
7
7
3
3

to F6

1

TOIOCOOOCOo
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There are two sums of squares calculations one for the
provenance sum of sguares and one for the family sum of
squares, The coefficients for the provenance variance
components for the provenance sum of squares expectaticn is
equal to:
provenance sum of squares P1 + provenance sum of squares P2
+ provenaice sum of squares P3,

The provenance sum of squares for P1 is:

+,66° x 6 = 2.66

-.33* x 6 = .66
-.33 x 6 = .66
4.00

The provenance sum of squares for P2 is:

-.33" x 6 = ,66
+.66° x 6 = 2,66
-.33° x 6 = .66

4.00

The provenance sum of squares for P3 is:

-.33* x 6 = .66

~.332 x 6 = .66
+.66° x 6 = 2.66
4.00

The coefficient for the provenance variance components in
the provenance sum of squares is:

4.0 + 4,0 + 4.0 = 12,0
The coefficient for the family variance component in the

provenance sum of squares is egual to the sum of the sum of
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squares provenance calculated from the provenance effects
estinmated from the the vectors F1 to F6. The provenance sum
of squares for F1 are:

+.33% x 3 = .33

+.33° x 3 = .33
-.17* x 3 = ,08
-.17 x 3 = .08
-.17" x 3 = ,08
-.17° x 3 = .08

1,00

The provenance sum of squares for F2 are:

+.33 x 3 = ,33

+.332 x 3 = .33

2

-.17" x 3 = ,08
-.17 x 3 = ,08
-.172 <« 3 = ,08
~.17 x 3 = ,08

1.00

The provenance sum of squares for F3 are:

.08

1
.
—_
~J

X
w
{]

-.17" x 3 = .08
+.33% x 3 = ,33
+.33° x 3 = .33
-.17° x 3 = .08
-.172 x 3 = ,08

1.00

The provenance sum of squares for F4 are:



-.17" x 3 = ,08
-.17° x 3 = ,08
+.33 x 3 = ,33
+,33° x 3 = ,33
-.17 x 3 = ,08

-.17" x 3 = ,08
1.00

The provenance sum of squares for F5 are:

-.17* x 3 = ,08
-.17° x 3 = .08
-.17° x 3 = .08

-.172 x 3 = .08

+.33% x 3 = .33
+.33* x 3 = .33
1.00

The provenance sum of squares for F6 are:

-.172 x 3 = .08

-.17* x 3 = .08

-.17* x 3 = .08

L[]

-.17* x 3 = .08
+.33 x 3 = ,33
+.33% x 3 = .33
1.00
The coefficient for the family variance components of the
provenance sum of squares is:

1.0 + 1,0+ 1,0 + 1,0 + 1,0 + 1.0 = 6.0
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The coefficient of the provenance variance component in
the expectation value of the family sum of squares is zero
because the provenance vectors in the design matirx gave no
family efZects. The coefficient of the family variance
component for the family sum of squares is the sum of the
sum of squares of the fawily effects calculated from the
design vectbrs F1 to F6.

The family sum of squares for F1 are:

+,5° x 3 = 0,75

-.5° x 3 = 0,75

- ~
i 5\1

The family sum of squares for F2 are:

-.5° x 3 =0.75
+.5° x 3 = 0.75
1.50

The family sum of squares for F3 are:

+.5° x 3 = 0.75
-.5° x 3 = 0.75
1.50

The family sum of squares for F4 are:

-.8* x 3 = 0.75
+.5° x 3 = 0.75
1.50

The faily sum of squares for F5 are:

+.5° x 3 = 0.75

-.52 x 3 = 0.75

1.50



183

The family sum of squares for F6 are:

-5 x 3 = 0,75
+.52 x 3 = 0,75
1.50

The coefficient for the family variance component in the
family sum of squares is:

1.5+ 1,5+ 1,56+ 1,5+ 1,5 +1,5 = 9.0
The coefficients for the expectation value of the mean
squares are obtained by dividing the coefficients for the
sum of squares by the degrees of freedom which where used to
calculate the mean squares. The coefficient for error or
residual variance in the mean squares is always one. A
summary table ci the expected mean squares is given in Table
AV-4,

Table AV-4, Summary of expected mean squares calculated by
synthesis method

Treatments Expected mean squares
2 2 2
Provenarnce o + 30 + b0
e, tam(prov?z prov
"Family(Provenance) o
e, tam{prov)
Residual

The UANOVA progrza is efficient in terms of computer
time. The effects and sum of squares algorithm are quicker
than other methods vsed in standard statistical packages
{Taerum 1987). The synthesis method has not been extensively

used in computer programs because of the effort required to
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compute sum of squares in conventional programs., The
efficient sum of squares algorithm in UANOVA removes the
computational difficulties. Type III or unique sum of
squares can be calculated using the same basic principle as
described above. Effects are least squares effects and are

orthgonalised before sum of squares are calculated,

The UANOVA program was used in this thesis because it
had the following advantages:

1. The program calculates effects which are the
phenotypic value inputs for selection index
calculations.

2. Large data sets can be handled efficiently by'the
program,

3. The results produced by the program are the same as
the results produced by SPSS and SAS (Taerum 1987).

4. Program output includes variance-covariance matrices

of dependant variables in the linear model.
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APPENDIX VI,

INPUT VALUES AND NUMERICAL EXAMPLES OF CALCULATIONS IN
CHAPTER TWO.

Input values and selection index calculations can be
represented in a written format. BLUP calculations require
the inversion of a 189 x 189 matrix which is impossible to
represent in any presentable form, Numerical examples of the
BLUP calculation will use a small data set which is not

related to the data used in Chapter two but has the same

structure,

I. Selection index calculations

The basic input values for the selection index
calculations in Chapter two are the phenotypic effects and
the variance components., Provenance, family and within
family phenotypic effects are given in Tables AVI-1, AVI-2
and AVI-3,

Table AVI-1. Provenance phenotypic effects

Provenance Height

36.615
-11.930
-21.201

29.631
-16.732

24,527
-23.796

NO U W -

186



Table AVI-2. Family phenotypic effects

187

Provenance Family Height

-36.506
161.307
-24.139
-26.602
14.411
-88.854
-71.558
58.730
-29.248
-14,582
16.641
48.762
111,958
~77.860
-97.426
187.453
-39.966
-85.029
-10.269
115,938
-198.921
-24.196
88.574
29.756
17.633
-16.723
150.850
-101.294
~67.628
-39.827
157.718
52.936
-94,241
-52.720
-51.064
=-79.717
90.690
88.695
-119.644
-102.169
23.739

NNNNIN NN UTUTUIOIUTE > D D B D W WWWWWRIN N NN N - b b et od
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Table AVI-3, Within-family phenotypic effects

Individual Provenance Family Height
1 1 1 -100.046
2 1 1 99,954
3 1 1 -0.04%6
4 1 1 -0.046
5 1 2 62.454
6 1 2 -7.546
7 1 2 ~7.546
8 1 2 -47,.546
9 1 3 -52,546
10 1 3 -62.546
11 1 3 57.454
12 [ 3 57.454
13 1 4 139,954
14 1 4 ~-20.046
15 1 4 -60.046
16 1 4 -60,046
17 1 5 19,954
18 1 5 69.954
19 1 5 -50,046
20 1 5 ~40,046
21 1 6 62,454
22 1 6 -147.546
23 1 6 62,454
24 1 6 22.454
25 2 1 69,954
26 2 1 -0.046
27 2 1 -70.046
28 2 2 -0.046
29 2 2 9.954
30 2 2 -10.046
31 2 3 47,454
32 2 3 -182.546
33 2 3 ~42,546
34 2 3 177.454
35 2 4 52,454
36 2 4 112.454
37 2 4 ~-57.546
38 2 4 -107.546
39 2 5 -17.546
40 2 5 112.454
41 2 5 -177.546
42 2 5 82.454
43 2 6 ~20.046
44 2 6 8.954
45 2 6 9.954
46 3 1 118.884
47 3 1 28.884
48 3 1 38.884
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Table AVI-3, Within-family phenotypic effects {(continued)

Individual Provenance Family Height
49 3 1 -1,116
50 3 1 4.752
51 3 1 . —45,248
52 3 1 -145,248
53 3 2 -20.461
54 3 2 29,539
55 3 2 169.538
56 3 2 29.538
57 3 2 55,407
58 3 2 -34,593
59 3 2 -64.593
60 3 2 -164.593
61 3 3 -29,952
62 3 3 40,048
63 3 3 30.048
64 3 3 50.048
65 3 3 -164.084
66 3 3 ~44,084
67 3 3 -54,084
68 3 3 35.916
69 3 3 135.916
70 3 4 -215.461
71 3 4 -55.461
72 3 4 -75.461
73 3 4 -95.461
74 3 4 0.407
75 3 4 80.407
76 3 4 220.407
77 3 4 140.407
78 3 5 10.312
79 3 5 -29.688
80 3 5 40.312
81 3 5 -69.688
82 3 5 96,180
83 3 5 -203.820
84 3 5 156,180
85 3 6 -0.599
86 3 6 9.401
87 3 6 195.269
88 3 6 -124,731
89 3 6 -214.,731
90 3 6 135.269
91 4 1 89.992
92 4 1 -50.008
93 4 1 39.992
94 4 1 -50.008
95 4 1 -30.008
96 4 2 ~67.508
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Table AVI-3, Within-family phenotypic effects (continued)

Individual Provenance Family Height
97 4 2 B2.492
98 4 2 2,492
99 4 2 -17.508
100 4 3 66,659
101 4 3 -23.341
102 4 3 -43,341
103 4 4 -70,008
104 4 4 -60,008
105 4 4 -0,008
106 4 4 129,992
107 4 5 59,992
108 4 5 -60,008
109 4 6 79.992
i10 4 6 -80.,008
111 5 1 -80.098
112 5 1 19.902
113 5 1 -40,098
114 5 1 19.902
115 5 1 -114.847
116 5 1 55,153
117 5 1 85.153
118 5 1 55.153
119 5 2 -301.794
120 5 2 28.206
12 5 2 63.456
122 5 2 43.456
123 5 2 83.456
124 5 2 £3.456
125 5 3 45,736
126 5 3 -74.264
127 5 3 -84,264
128 5 3 10,986
129 5 3 80.985
130 5 3 20,986
131 5 4 21,599
132 5 4 891.599
133 5 4 81.599
134 5 4 51.599
135 5 4 -193.151
136 5 4 -53.151
137 5 5 -223.793
138 5 5 0.956
139 5 5 20.956
140 5 5 130.956
141 5 5 70.956
142 6 1 -117.937
143 6 1 -47.,937
144 6 1 32.063




191

Table AVI-3, Within-family phenotypic effects (continued)

Individual Provenance Family Height
145 6 1 92,063
146 6 1 42,063
147 6 2 -14,937
148 6 2 -4,937
149 6 2 55,063
150 6 2 -34,937
151 6 3 90.063
152 6 3 130,063
153 6 3 -79.937
154 6 3 -139,937
155 6 4 76.729
156 6 4 -53.271
157 6 4 -23.271
158 6 5 25,063
159 6 5 85.063
160 6 5 -34,937
161 6 5 -74.937
162 6 6 93.396
163 6 6 -106.604
164 6 6 13.396
165 7 1 10,063
166 7 1 -9,937
167 7 2 30.063
168 7 2 40,063
169 7 2 -69.937
170 7 3 172.063
171 7 3 32,063
172 7 3 2,063
173 7 3 -7.937
174 7 3 ~1987.937
175 7 4 -139.937
176 7 4 140,063
177 7 5 12,563
178 7 5 62.563
179 7 5 -67.437
180 7 5 ~7.437
181 7 6 -22.437
182 7 6 -92.437
183 7 6 57.563
184 7 6 57.563




192

The variance components are given in Table AVI-4,

Table AVI-4. Height variance components,

Provenance Family Within-family

Variance 178.419 2153,608 11123,047

In addition calculation requires a knowledge of the
number of trees in each family and provenance. These values
can be calculated from the number of individuals in each
family (Table AVI-5).

Table AVI-5, Number of trees in each family.

Provenance : Family

1 2 3 5 6
1 4 4 4 4 4 4
2 3 3 4 4 4 3
3 7 8 9 8 7 6
4 5 4 3 4 2 2
5 8 6 6 6 5
6 5 4 4 3 4 3
7 2 3 5 2 4 4

The variances and phenotypic effects are the input values

from which genetic values are predicted.

A. Prediction of genetic values

The formulae for the calculation of the C and Vv
matrices for the three variable case are derived in Appendix
IV. The calculation of the elements of the V matrix and the
€ vector for the single variable case is exactly the same as

for the three variable case. The first individual in the
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second family of the first provenance will be used as an

example to demonstrate the calculation method.

i. Calculation of the ¢ vector

The ¢ vector is a 3 by 1 vector. There are two types of

additive values:

1. Additive genetic values among provenances

2. Additive genetic values within provenances
The selection index which predicts both additive values adds
the provenance additive genetic variance to the first entry
in the c vector (Appendix IV). To calculate the elements of
the ¢ vector the among provenance additive genetic variance
and the within-provenance additve genetic variance must be
calculated. The among provenance additive genetic variance
is equal to the provenance variance component (Table AVI-4),
The within provenance additive variance is equal to four

times the family variance that is:
4 x 2153.608 = 8614.432

The first element in the c vector is calculated from formula
AIV-9, The formula requires the input of the number of trees
in the provenance and the number of trees in the families
within the provenance for provenance 1 (Table AVI-5).

Substituting these values in formula AIV-9 gives:
(((0.25 x (4.0 - 1.0)) + 1.,0) + 24) x VA

Substituting the additive genetic variance components for

height gives:
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(((0.25 x (4,0 - 1,0)) + 1,0) + 24) x 8614.432
= 628,136

To complete the first element of the ¢ vector the provenance

additive variance must be added to give:

628,136 + 178,419 = 805,56

The second element in the ¢ vector is given by substituting
the correct values in formula AIV-14., Substituting the
number of trees in the family and the number of trees in the

provenance the formula becomes:

((((0.25 x (4.0 = 1.0)) + 1.0) + 4.0) x VA)
- ((((0.25 x (4.0 - 1,0)) + 1,0) + 24,0) x VA)

Substituting the within-provenance additive genetic variance

for height gives:

((((0.25 x (4.0 - 1,0)) + 1.0) = 4,0) x B614.43)
- ((((0.25 x (4.0 - 1.0)) + 1,0) + 24,0) x 8614.43)

= 3140,45

The third element in the c vector is given by substituting
the correct values in formula AIV-18. Substituting the
number of trees in the family and the number of trees in the

provenance the formula becomes:
(((4.0 - 1.0) x (1,0 - 0.25)) + 4.0) x VA)

Substituting the within-provenance additive genetic variance
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for height gives:
(((4.0 - 1,0) x (1,0 - 0.25)) + 4.0) x B8614,432
= 4845,618
In summary the complete ¢ vector is:

806.56
3140.45
4845,62

ii. Calculation of the V matrix

The V matrix is a 3 by 3 diagonal matrix. The first
diagonal element is given by substituting the correct values
in formula AIV-20, Substituting the number of trees per

family and the number of trees in the provenance gives:

((5760___ % + 960 + 576) + ((1 + 24)0 °
PROV e

FAM(PROV)
Substituting the variance components from Table AVI-4 gives:

(((576 x 178.42) + (96 x 2,153.61)) + 576) + ((1 + 24) x
11123.05)

= 1000.815

The second diagonal element is given by substituting the
correct values in formula AIV-21, Substituting the number of
trees per family and the number of trees in the provenance

gives:
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(((576 - 96) + 576) x o %) + (((1+4) = ( 1+ 24)) x

oez)

Substituting the values for the variance components from

Table AVI-4 gives:

(((576 - 96) + 576) x 2153.,61) + (((1 + 4) - ( 1 + 24)) «x
11123.05)

= 4111,977

The third diagonal element is given by substituting the
correct values in formula AIV-22, Substituting the number of

trees per family and the number of trees in the provenance

gives:
(4 - 1) +4) xo?

Substituting the value for the variance component from Takle

AVI-4 gives:
((4 - 1) =+ 4) x 11123,05

= 8342,29

In summary the complete V matrix is:

1000.82 0.00 0.00
0.00 4111.98 0.00
0.00 0.00 8342.29
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iii. Prediction of genetic values from the c vector, V

matrix and phenotypic predictors

Formula II-2 is used to predict genetic values. The ¢

vector and V matrix fcr the first individual in the second

family of the first provenance have beeen calculated above.

The phenotypic predictors can be read off Tables AVI-1,

AVI-2 and AVI-3, The p vector is:

36.615
161,308
62,453

The V matrix must be inverted for formula II-2. The inverse

of the V matrix calculated above is:

0.00095¢ 0.000000
0.000000 0.000243
0.000000 0.000000

Substituting the ¢ vector, V'

formula I1I-2 gives the answer
described above was performed

calculations in the main text

0.000000

0.000000

0.000120
matrix and p vector in
188.92. The calculation
with a calculator., The

were performed on a main frame

computer. Allowing for rounding errors the predicted value

above verifies the value on line 4 of Table II-4 in the main

text,

II. BLUP calculations

The data set used to demonstrate the BLUP calculation is

given in Table AVI-6.
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Table AVI-6, Data set for BLUP calculation example

Block Provenance Family Height

700
750
800
850
900
700
850
750
650
800
850
800
750

RN s w
WWWWNNNNN o e
NN = AN = 2NN -

The variance components in Table IVI-4. will be used in the

demonstration calculation.

The BLUP formula is given in formula II-5. The BLUP
calculation can be split into 3 distinct phases:
1. Calculation of the coefficients matrix on the left
hand side of the equation.
2. Calculation of the matrix vector products on the right
hand side of the equation,
3. Premultiplication of the right side of the eqguation by
the inverse of the coefficients matrix to give the

solution to the effects which are to be predicted.

A, Calculation of the coefficients matrix

The basic elements in the coefficients matrix are X,

z,2, G, G,, s, and_sz. The X matrix is:

2! 1
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e e 0000000

Note that the mean is not included this is necessary in

order to ensure that the coefficients matrix is of full

rank. The consequence of this is that the mean is confounded

This is normal in BLUP calculations.

with each fixed effect.

atrix is

The Z m

1
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T e 000000000

The z? matrix is:
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The X, Z, and Z, matrices combine in the coefficients,

matrix to produce the matrix:
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To complete the coefficients matrix Gf’s1 must be added to

the z 'z part of the coefficients matrix and qusz must be

added to the Z,'2, part of the matrix. The Z'%Z part of the

coefficients matrix 1is:
4
0
0

The G1 matrix is:

1
0
0

oo

0
1
0

OO

0
0
1

The inverse of the 62 matrix is the same as the G2 matrix.

The scalar S is given in formulae II-6 and II-7.

Substituting the variance components from Table AVI-4 in

formula II-7 gives:

11123.047 - (3 x 2153.608)
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= 4663,823

The variance of the provenance additive genetic effect is
equal to the variance component associated with the
provenance effect (Table AVI-4), Substituting the variance

components in formula II-6 gives:
4663.823 + 178.419
= 26,1397

Multiplying the inverse of the G matrix by this scalar

gives:
26.1397 0.0000 0.0000
0.0000 26.1397 0.0000
0.0000 0.0000 26.1397

Adding this matrix to the zl'zlmatrix gives:

30.1397 0.0000 0.0000
0.0000 31.1397 0.0000
0.0000 0.0000 30,1397

The Z?'Z2 part of the coefficients matrix is:

OCOO0OO0OO0OOOOOOOOD -
COO0OOCODOCOOOO 20O
COOO0OO0O0CO0OOD-00
OO0 O0OO0OOO0OO0O =000
QOO OCOOOCO—-00O00O0
OO0 OO0O0CO—-000OOO
OO0 —_~O0O00OCDOOO
ejejoloelePYoeolololofolol o
COOOO ~COOOO0OOCO
QOO -2 O00O0OO0O0OOCOO
e lolelolofololoNoNeNe]
QOO0 0CO0OOCOO0O0OOOO
OO0 O0OOCOCOCOOOO0O

The G, matrix is given on page 203. The Gz_l matrix is given
on page 204. The s scalar is given in formula II-8. The oej
has been calculated previously and the o: is four times the

family variance. Substituting the variance components in
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formula I1-8 gives:
4663,.823 + B614.432
= 0.541396

Multiplying the GZ” by this scalar gives the matrix on page
205. Adding this matrix to 2,'?, gives the matrix on page
206. The completed coefficients matrix can be seen on page

207,
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B. Calculation of the matrix vector products on the right
hand side of the equation

The X'y vector is the product of the X matrix and the y
vector. The X matrix has been given in the previous section.
The y vector is a vector of record values given in column ¢
of Table AVI-6. The Z 'y and zz'y are also vector matrix
products of the vector y and matrices which have been given
previously. The completed vector on the righthand side of

formula I1I-5 is:

4700
5450
3100
3850
3200
700
750
800
850
900
700
850
750
650
800
850
800
750

C. Premultiplication of the right hand side of the equation
by the inverse of the coefficients matrix

Inverting the coefficients matrix and pfemultiplying
the vector on the righthand side of ther equation by the

inverse gives a vector:

785.150
773.100
-1.950
1.550
-1.200



The

the effect and estimates are given in Table AVI-7,

-85.950
-48.450
39.050
76.550
98.350
-51.450
43.700
-31.300
-106.300
49,250
86.750
24.250
-13.250
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vector above contains the BLUP estimates for the effect

Table AVI-7, BLUP estimates of effects
Effect Estimate
Block 1 785,150
Block 2 773.100
Provenance 1 -1.950
Provenance 2 1.550
Provenance 3 -1,200
Tree 1 -85,950
Tree 2 -48,450
Tree 3 39.050
Tree 4 76.550
Tree 5 98, 350
Tree 6 ~-51.450
Tree 7 43,700
Tree 8 -31.300
Tree 9 -106.30
Tree 10 49,250
Tree 11 86.750
Tree 12 24.250
Tree 13 -13.250
III. Conclusion

The reader should be cautioned that the BLUP

calculation above is only one example of the many possible

BLUP calculations. It is an unusual example as the

provenance effects were considered random so that the



210

comparison could be made with selection index scores and
rankings., For a comprehensive understanding of BLUP the
reader is refered to the literature cited in the Chapters

one and two.



APPENDIX VII,

INPUT VALUES AND NUMERICAL EXAMPLES OF CALCULATIONS IN
CHAPTER THREE

I. Phenotypic effects

The basic input values for the calculations in Chapter
three are the are the phenotypic effects and the variance
components. These effects were calculated from the
standardized record values. The phenotypic effects for the
index based on homogeneous family variance and the index
based on heterogeneous family variance are the same,
Provenance, family and within family phenotypic effects are
given in Tables AVII-1, AVII-2 and AVII-3,

Table AVII-1, Provenance Phenotypic effects

Provenance Height Circ. Lean
1 0.0602 -0.1890 ~-0.1890
2 0.3074 0.2650 -0.2650
3 -0.0491 0.0784 -0.0784
4 ~0.0852 0.0920 0.0920
5 -0.1490 -0.0928 -0.0928
6 -0.1472 -0.2528 -0.2528
7 0.1424 0.1365 0.1365
8 -0.1227 =0.1145 0.1145
9 -0.2106 ~0.1749 -0.1749
10 0.1201 0.1309 0.1309
11 0.2030 -0.0862 0.0862
12 -0.1529 0.3659 0.3659
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Table AVII-2, Family Phenotypic effects

212

Provenance Family Height Circ. Lean
1 1 0.3564 0.1694 -0.0073
1 2 0.9053 0.9630 0.4477
1 3 -0.1623 0.0089 -0.0870
1 4 -0.6079 ~0.6762 -0.2034
1 5 0.1416 -0.0016 -0.0294
1 6 -0.4505 -0,1665 -0.0338
2 1 -0,.1389 -0.0982 0,1898
2 2 0.3076 0.1887 ~0,.0258
2 3 0.3790 0.1462 0.1334
2 4 -0.1042 ~0.1669 -0.2413
2 5 -0.1457 ~0.2208 0.0410
2 6 -0.4261 0.1601 -0.2580
3 1 -0.4401 ~0.2659 -0.3120
3 2 0.0252 ~0.0120 0.0199
3 3 -0.0332 -0.2174 -0.1008
3 4 -0.2711 ~0.1441 0.1644
3 5 0.1465 0.1851 0.0983
3 6 0.5038 0.4524 0.1396
4 1 -0.2278 ~0.3887 -0.4424
4 2 0.3326 0.5234 0.1655
4 3 0.2232 0.1934 0.6751
4 4 -0.5961 ~0.4686 -0,1914
4 5 -0.2689 ~0.4957 ~0.,2138
4 6 0.3263 0.4610 -0.1725
5 1 -0.0608 0.0222 -0,1039
5 2 0.5321 0.5345 0.4450
5 3 -0.1617 -0.1937 0.1794
5 4 -0.0119 ~0.1411 0.2355
5 5 0.0745 0.0056 -0.7095
5 6 -0.3711 ~0.2095 -0.0130
6 1 0.0278 -0.,1411 -0.6692
6 2 0.6175 0.3553 0.6377
6 3 -0.,6011 -0.4338 0.3709
6 4 ~0.2904 -0.2296 -0.2310
6 5 0.1402 0.3696 0.2820
6 6 0,2374 0.2180 -0,3380
7 1 -0.0598 0.2857 -0.2398
7 2 -0.2332 -0.2670 -0.,1083
7 3 0.0645 -0.1462 0.6443
7 4 0.3869 0.1782 -0.3873
7 5 0.0077 -0.0929 -0.1434
7 6 -0.2443 0.1349 0.2289
8 1 0.0430 -0.1223 -0.5601
8 2 -0.7249 -0.4845 -0.0829
8 3 ~-0,1391 -0.4091 0.2649
8 4 0.7202 0.6450 -0.0934
8 5 ~-0.2219 ~0.0489 0.2374
8 6 0.1568 0.1252 0.1710




Table AVII-2, Family Phenotypic effects (continued)
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Provenance Family Height Circ. Lean
9 1 0.4029 0.3131 0.0613
9 2 -0.3289 -0,5137 -0.1957
9 3 -0.3043 -0.1361 0.0133
9 4 0.4700 0.5371 0.5488
9 5 -0.1987 -0.0650 0.0776
S 6 -0.0286 -0,1488 -0.5915
10 1 0.1193 0.0754 0.1154
10 2 ~0.2454 -0.1652 -0.0666
10 3 0.6230 0.2954 0.0457
10 4 -0.3348 -0.3814 -0.0184
10 5 ~0.0903 0.1965 ~-0.1036
11 1 ~-0.9115 -0.7635 -0.1666
11 2 0.7837 0.5402 -0.1489
11 3 0.4595 0.4498 0.0733
11 4 ~0.1652 0.0310 -0.1016
11 5 -0.0331 -0.1429 0.1462
11 6 0.0435 -0,0551 0.2996
12 1 0.3835 0.6506 -0,2289
12 2 0.5574 0.3734 0.2815
12 3 ~0.6644 -0.6870 -0.0779




Table AVII-3, Within-family Phenotypic effects
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Individual Provenance Family Height Circ. Lean
1 1 1 0.8789 . 0,9063 0,6188
2 1 1 0.7989 -0,1337 -0.4212
3 1 1 0.1189 1,0063 0,9688
4 1 1 -0.7911 -1,6537 -1.4612
6 1 1 0.3103 0.5983 11,0101
7 1 1 -0.4397 (,0383 -0.8999
8 1 1 -0.4397 10,0383 -0.0299
9 1 1 0.8110 0,5738 -0.5552
10 1 1 0.2010 -0.4662 0.6648
11 1 1 -0,2490 -0.0862 -0.3852
12 1 2 -0.2819 -0.4584 -1,1769
13 1 2 -1.0319 -1,2084 0.2031
14 1 2 -0.1319 -0.0784 0.5531
15 1 2 -0.1319 -0.1684 0.0331
16 1 2 -0.4319 -0.6384 0.3831
17 1 2 0.1802 1,009t 0.5891
18 1 2 0.9696 0.4737 -0.0956
19 1 2 0.4396 -0,0063 11,2944
20 1 2 0.4396 1.4237 -0.0956
21 1 2 0.1396 00,2837 -2.8756
22 1 2 -0.7198 -0.6009 0.2491
23 1 2 0.5602 -0,0309 0.9391
24 1 3 0.6470 0.4154 0.1912
25 1 3 1.0270 1.0754 0.0112
26 1 3 0.3470 0.,6054 0.7112
27 1 3 0.6590 0.3629 0.0473
28 1 3 -0.4010 0.2729 ~-1.5127
29 1 3 -0.8510 -1,0571 0.0473
30 1 3 -1.,1510 -0.9571 0.9173
31 1 3 -1.0010 -1,2471 0.7473
32 1 3 -0.2216 0.017¢ -0.1175
33 1 3 ~0.2816 -0.4626 0.2325
34 1 3 0.6184 0.4874 -0.1175
35 1 3 0.6184 0.4874 -1.1575
36 1 4 0.2590 -0.3246 0.5983
37 1 4 -0.9510 -0.9846 0.4183
38 1 4 -0.3410 -0.7046 -0.9717
39 1 4 1.0190 0.715¢ -0.2717
40 1 4 -0.0410 0.6254 -0.6217
41 1 4 -1.1710 -0.6146 0.2483
42 1 4 1.2390 1.,1854 0.2483
43 1 4 0.2590 0.2454 -0.2717
44 1 4 -0.4890 -0.6571 0.6343
45 1 4 -0.7890 -0.6571 0.6343
46 1 4 -1.1690 -0.7571 0.8043
47 1 4 -1,0090 -0.6571 0.6343
48 1 4 0.47289 -1.6257

0.6510
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Table AVII-3, Within-family Phenotypic effects (continued)

Individual Provenance Family Height Circ. Lean
49 1 4 0.1210 0.5729 0.4643
50 1 4 1.6604 1.8274 -1.4404
51 1 4 0.4504 0.5974 -0.5804
52 1 4 0.1504 -0.1626 0.2896
53 1 4 0.1504 -0.7226 0.8096
54 1 5 -0.2595 0.5102 0.4226
55 1 5 0.4905 0,.8002 0.4226
56 1 5 0.3405 0.3302 0.5926
57 1 5 0.1905 -0,9098 -0.9674
58 1 5 0.5025 0.5576 0.9786
59 1 5 -0.1775 -0,2924 -0.9314
60 1 5 -0.6275 -0.2924 0.1086
61 1 5 -1,0875 -1.1424 0.8086
62 1 5 0.3119 0.9622 -2.3161
63 1 5 0.6819 0.7722 0.6439
64 1 5 -0.,2181 -1,0278 0.8139
65 1 5 -0.1481 -0.2678 -0.5761
66 1 6 0.4615 0.1043 0.7786
67 1 6 0.5315 0.1943 0.0786
68 1 6 0.0815 0.1943 -0.4414
69 1 6 -0.8864 -1,0882 0.8146
70 1 6 0.4230 0.6463 -0.5701
71 1 6 -1,1570 -1,1537 -1.260!
72 1 6 0.4230 0.1763 0.2999
73 1 6 0.1230 0.9263 0.2999
74 2 1 1.1734 0.948% -0.1712
75 2 1 0.5634 0.7689 0.3488
76 2 1 0.4934 0.9489 0.6988
77 2 1 -0.0297 0.1623 -0,0743
78 2 1 -0.47897 -0.4077 -0.2443
79 2 1 -0.2597 -0.2177 0.4557
80 2 1 1.0303 0.9223 -1.1143
81 2 1 -0.6634 -0.5805 -0.9801
82 2 1 -0.2134 -0.7705 -0.1101
83 2 1 -0.5934 -0.3905 0.9299
84 2 1 0.3166 0.2795 0.7599
85 2 1 -1.1576 =-1.1827 1.3222
86 2 1 ~-0.6276 -0.1427 -0.0678
87 2 1 -0.0276 0.1373 -2.1478
88 2 1 0.4224 0.4273 -0.7578
89 2 1 0.0524 -0.9027 1.1522
90 2 2 0.3548 0.3884 -0.2078
91 2 2 -0.0252 0.0084 -0.5478
92 2 2 -0.4752 -0.5616 0.6622
93 2 2 0.0548 0.1084 0.3222
94 2 2 -1.8283 ~-1.6281 0.2490
95 2 2 -1.6320 =-1.2410 0.7233
96 2 2 1.0080 0.9390 1.2433
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Table AVII-3., Within-family Phenotypic effects (continued)

Individual Provenance Family Height Circ. Lean
97 2 2 -0.5720 -0,1910 -1,0167
98 2 2 0.6638 0.1468 -0,4444
99 2 2 0.7438 1.0868 0.9456
100 2 2 1.1938 -0.1432 -0,4444
101 2 2 0.5138 1.0868 -1,4844
102 2 3 -0.4800 -0,.,3317 -1.4366
103 2 3 -0.4800 -0.6117 0.6434
104 2 3 -0.2500 -0.0417 0.4734
105 2 3 0.6600 0.8083 -0.7466
106 2 3 0.5890 0,3766 0.7468
107 2 3 0.8990 1.8866 -1,8532
108 2 3 -0.6%10 -0.3834 0.9168
109 2 3 -1,1410 -0.7634 0.7468
110 2 3 -0.2431 0.0217 -1,6897
111 2 3 0.8169 1.0617 1,0903
112 2 3 -0.0931 ~-0.8383 0,5703
113 2 3 -0.7267 -1.3912 -0.3455
114 2 3 0.2533 0.5088 0,5245
115 2 3 0.5533 0.4188 0.3545
116 2 3 0.3333 =-0.7212 0,0045
117 2 4 -0.8964 -0.3985 -0.2497
118 2 4 -0.8964 -1,0585 -0.7697
119 2 4 -0.3664 -0.7785 0.7903
120 2 4 0.5405 -0,1451 0.5471
121 2 4 1.0368 2.0521 0.8514
122 2 4 -0.1274 -0.4502 -0.8463
123 2 4 -1.1074 -1.0201 0.8937
124 2 4 -0.8874 -0.9301 0.5437
125 2 4 1.0005 1.4649 -1,5429
126 2 4 1.2668 -0,0279 0.6714
127 2 4 0.4368 1.2921 -0,8886
128 2 5 0.8781 0.4176 0.9013
129 2 5 0.1981 -0.3424 10,7213
130 2 5 0.7281 0.3276 0.,0313
131 2 5 0.8081 0.5176 -0.3187
132 2 5 0.5850 0.5810 0.1282
133 2 5 -1.1786 0.0282 -2.1676
134 2 5 -0.2686 0.2182 1.4724
135 2 5 -0.3486 -~0.6418 -2.1676
136 2 5 -0.1629 0.1760 1.0048
137 2 5 0.2871 0.4560 -1,0852
138 2 5 -0.6129 -0.3940 0.3048
139 2 5 -0.9129 -1.3440 1.1748
140 2 6 1.3073 1.,4547 -1,1386
141 2 6 0.5573 -0.6253 0.4214
142 2 6 0.5573 0.6047 0.4214
143 2 6 -1.3958 -1.5119 0.6982
144 2 6 -0.1158 1.2381 -0.8618
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Table AVII-3., Within-family Phenotypic effects (continued)

Individual Provenance Family Height Circ, Lean
145 2 6 -1.,4995 -1,8747 10,1325
146 2 6 0.7605 1.5353 -0.3875
147 2 6 0.6463 0,9231 -0.5152
148 2 6 -0.8637 -2.0069 0,3548
149 2 6 0.0463 0.2631 0.8748
150 3 1 0.2054 0.,1502 0.4222
151 3 1 0.8854 0,8102 -0,2678
152 3 1 0.8730 0.8365 -0.8139
153 3 1 -0.5670 -0.3035 1.0961
154 3 1 -0.7170 -1.0635 1.0961
155 3 1 -0.5670 -0.5835 -0.1139
156 3 1 0.2812 0.7807 -0.3261
157 3 1 -0,2488 -0.0693 -0.8461
158 3 1 -0.7788 -0,3593 0.1939
159 3 1 1.0084 00,2853 -0.2001
160 3 1 -0.6516 -0.8547 -0.3701
161 3 1 -0.0516 -0.0047 -0.8901
162 3 1 0.3284 0.3753 1.,v199
163 3 2 0.6160 1.1583 00,3112
164 3 2 -0.7440 -0.5417 0.3112
165 3 2 -0.8940 -1.4917 1.3512
166 3 2 0.1829 -0.2969 0.0636
167 3 2 -0.4171 -0.5769 0,0636
168 3 2 0.8629 1.2231 -0.2864
169 3 2 0.4929 -0.0169 0.0636
170 3 2 0.1829 0,0831 0.2336
171 3 2 ~-0.1295 0.6695 -1,6925
172 3 2 -0.4295 -0.5605 0,7375
173 3 2 -0.5095 -0.0805 0.3875
174 3 2 0.2587 0.0537 -0.1647
175 3 2 0.3387 0.4237 -0.3447
176 3 2 0.1887 -0.0463 -1.0347
177 3 3 -0.2995 -0.1428 -0.1604
178 3 3 0.3005 0.3272 -1.5504
179 3 3 ~-0.8295 -0.9928 -0.3304
180 3 3 0.2205 -0.5228 0.1896
181 3 3 0.9275 0.9521 -1.9680
182 3 3 0.7075 1.2421 -0.0580
183 3 3 1.0075 0.6721 -1,7°80
184 3 3 0.3875 1.0521 0.2820
185 3 3 -1.4249 -1,2016 0.7858
186 3 3 0.2351 0.2184 ~0.4242
187 3 3 0.1551 0.3184 1.1358
188 3 3 -0,1449 -0.4416 -0.2542
189 3 3 0.0851 0.3184 0.9658
190 3 3 0.0232 -0.3074 -0.1164
181 3 - 3 -1.7068 0.2626 (0.7536
182 3 3 -0.6568 -1.6374 1.2736
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Table AVII-3, Within-family Phenotypic effects (continued)

Individual Provenance Family Height Circ. Lean
193 3 3 1.0032 -0.1174 1.2736
194 3 4 -1,0530 -1.,6419 1,5023
195 3 4 -0,2930 -0.3219 0,9823
196 3 4 0.2370 -0,2219 -0.5777
197 3 4 -0.,7430 -0.0319 0.6323
198 3 4 -0.4960 -0,0771 0.7347
199 3 4 -0,1160 0.0229 -0,1353
200 3 4 -0,3584 -1,1907 -0,5014
201 3 4 1.0716 1.1793 -1,5414
202 3 4 1.6816 2,0393 -1,7214
203 K 4 0.4098 1,0335 -1,7536
204 3 4 0.8698 0,9335 0.6764
205 3 4 -0.,4202 -1.,1465 0.5064
206 3 4 -0,7902 -0.5765 1,1964
207 3 5 -0.4537 0.2637 -1.2414
208 3 5 0.0663 0,3537 -0.2014
209 3 5 -0.3961 0.1001 -2.8276
210 3 5 -0.0961 -C,.,1899 1,8124
211 3 5 0.6539 0.6601 00,3024
212 3 5 -0.3079 0.5142 0.2602
213 3 5 0.6721 1.1742 -0,2598
214 3 5 -1.5179 =~-2,1358 0.9602
215 3 5 0.4521 -0.8158 1.1302
216 3 5 -0,1807 -0.3611 0.0462
217 3 5 -0.0307 0.,0189 11,0862
218 3 5 1.2493 0,.5889 -1,1638
219 3 5 -0.,1107 -0.1711 0.3962
220 3 6 0.5060 1.2614 -1,4720
221 3 6 -0.7740 -0.6286 -0.7820
222 3 6 0.3560 0.7914 -0.2620
223 3 6 0.5060 0.7914 0,0880
224 3 6 -0.1470 -0.9538 0.0104
225 3 6 0.0130 -0.3838 -1.1996
226 3 6 -0.1470 0.1862 -0.5096
227 3 6 -0.4470 -1,6138 0.5304
228 3 6 0.2206 0.8726 1.3842
229 3 6 0.9706 0.3026 0.3442
230 3 6 -0.0794 0.0226 -0.0058
231 3 6 -0.4413 -0.6032 0.4820
232 3 6 -0.2213 0.3368 0.,1320
233 3 6 -0.2213 -1.7432 0.1320
234 3 6 -0.0940 1.3614 1.1280
235 4 1 1.0456 1.4194- 0.0249
236 4 1 0.1356 -0.2806 0.1949
237 4 1 0.8956 1.3294 -1.,1951
238 4 i -0.4644 -0.1906 -0.6751
239 4 1 -1.0644 -0.6606 0.7149
240 4 1 1.3681 1.2437 0.2419
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Table AVII-3, Within-family Phenotypic effects (continued)

Individual Provenance Family Height Circ, Lean
241 4 1 . -0,5219 0,1037 10,0719
242 4 1 0.2381 -0.5563 -0.4481
243 4 1 0.2381 0.8637 0.0719
244 4 1 -1,2726 =-1,1175 0.6333
245 4 1 -0,2239 -1,1723 -0.3376
246 4 1 -0,3739 -0,9823 0.7024
247 4 2 -0.2635 0.5051 -0.1191
248 4 2 0.1065 -0.0649 -1,3391
249 4 2 1,0865 1.5451 1.0909
250 4 2 -0.7453 -1,0380 1.0125
251 4 2 -0.7453 -1,1280 -0.,2075
252 4 2 -1,9553 ~-1,9780 -0.,0375
253 4 2 -0.6428 -0,1637 -0.6805
254 4 2 0,7872 0,3063 0.1895
255 4 2 1.1665 1.2551 -1,1591
256 4 2 0.6252 0,3503 1.6900
257 4 2 0.7052 0.6303 0.4700
258 4 2 -0.,1248 -0,2197 -0.9100
259 4 3 0.5139 1,2040 -0.6456
260 4 3 -0.4661 -0.4060 -0.1256
261 4 3 -1.0879 -1,1791 0.8260
262 4 3 0.4221 0.0509 0.4760
263 4 3 1.3221 0.9109 -1,4340
264 4 3 0.4221 -0.5191 -0.9040
265 4 3 -0.7654 -0.7848 0.1830
266 4 3 -1.7454 -1,6448 2.6130
267 4 3 0.4439 -0.4060 1.2644
268 4 3 -0.1561 0.1640 -0.6456
269 4 3 -1.3661 -0.7860 -0.4756
270 4 3 1.7926 2.1992 -0.9165
271 4 3 0.7326 0.1092 0.8135
272 4 3 0.5026 0.4892 0.6435
273 4 3 0.4326 1.4392 -0.5765
274 4 3 -0.9974 -0.8408 -1.0965
275 4 4 -0.6904 -0.9684 1.2470
276 4 4 1.0396 1.4016 -2.5730
277 4 4 -0.0904 -0.,1184 1.0770
278 4 4 0.4879 0.5285 -0.0514
278 4 4 0.1179 0.0585 -0.0514
280 4 4 -0,0321 -0.1315 1.1686
281 4 4 0.3604 -0,2171 0.8656
282 4 4 -0.6896 -0.6871 -2.,0844
283 4 4 ~-1.3116 -0.4531 0.6361
284 4 4 0.8084 0.5869 -0.2339
285 4 5 -0.7194 -0.4611 1.2295
286 4 5 0.3406 -0.2811 -0.5005
287 4 5 0.4106 0.6689 0.8895
288 4 5 0.7906 0.6689 -1.0205




220

Table AVII-3. Within-family Phenotypic effects (continued)

Individual Provenance Family Height Circ. Lean
289 4 5 0.5388 1,5058 -1,7989
290 4 5 0.8388 -0.1042 0.4511
291 4 5 0.5388 0.5558 -0.9389
292 4 5 -0.8687 -1,2299 1.1981
293 4 5 -0.8687 -0,7599 -0.5419
294 4 5 0.7913 0.5701 -0.3719
295 4 5 -0.3507 -0.3359 -0.0814
296 4 5 0.0193 -0.,0459 0.9586
297 4 5 -0.9607 -0.5159 -0,4314
298 4 5 -0.5007 -0.2359 0.9586
299 4 6 1.0966 1.9932 -2,.5519
300 4 6 0.0466 -0.2868 0.2281
301 4 6 -1.0134 -1.3268 -0.2919
302 4 6 -0,1251 0.2701 0.4897
303 4 6 -0.4351 -0.6799% 0.6697
304 4 6 0.0949 0,6501 -0.5503
305 4 6 -0,7351 -0.1099 0.8397
306 4 6 0.6474 0.5644 0.3667
307 4 6 0.1174 -1,0456 0.5367
308 4 6 1.0274 1.5144 -2.0633
309 4 6 -0.3334 -0,7568 0.9281
310 4 6 ~-0.2646 -0.4316 1.6972
311 4 6 -0.7946 -0.9116 0.8272
312 4 6 0.3354 0.3284 -1.4328
313 4 6 - 0.3354 0.2284 0.3072
314 5 1 0.6278 0.7297 0.1818
315 5 1 0.0178 0.,3497 -0.5182
316 5 1 0.1778 -0.1303 0.3518
317 5 1 -0.5822 -0.7903 0.1818
318 5 1 1.0942 1,2028 -0.0816
319 5 1 1.4742 1.9628 0.6084
320 5 1 1.3242 0.6428 -0.6016
321 5 1 -0.7860 -1,0868 -0.5506
322 5 1 -0.9360 -0.5168 0,.1394
323 5 1 -0.5660 -~0.4268 0.3194
324 5 1 -1.8460 -1.9368 -0.0306
325 5 2 -0.4231 -0.2692 0.9030
326 5 2 0.4069 10,7708 0.2130
327 5 2 -0.7331 -0.5492 0.9030
328 5 2 0.0433 0.2140 1.3397
329 5 2 -0.5667 0.5940 0.1197
330 5 2 0.7933 0.8740 -1.9603
331 5 2 0.6433 -0.4460 -0.4003
332 5 2 0.6433 0.9740 -2.1403
333 5 2 -0.3369 -0.3756 0.3406
334 5 2 -0.4069 -1.4156 1.5606
335 5 2 0.0431 0.1944 -0.1794
336 5 2 -0.1069 -0.5656 -0.6994
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Table AVII-3. Within-family Phenotypic effects (continued)

Individual Provenance Family Height Circ. Lean
337 5 3 -0.4008 -0,9536 0.9871
338 5 3 0.3492 0,.9464 -3.5229
339 5 3 0.8792 0.2764 0.817M
340 5 3 -0.7808 -1.0436 1,1571
341 5 3 0.7292 1.0364 -0.0529
342 5 3 0.5156 -0.0004 0.8938
343 5 3 -1.5944 -1,.4204 0.5538
344 5 3 ~-0.2444 -0.1904 -0.6662
345 5 3 -1,2244 -1,2304 0.5538
346 5 3 0.5954 11,8800 -1,4852
347 5 3 -0.,3146 -0.0200 -1.4852
348 5 3 0.5954 -0.6800 1.1248
349 5 3 0.8954 1.,4000 1.1248
350 5 4 1.0258 1.2711 0.6927
351 5 4 0.7958 1.3611 0.1727
352 5 4 -0.4042 -0.6289 -0.6973
353 5 4 0.0458 0.0311 -0,1773
354 5 4 -0.9178 -1.,0957 0.2594
355 5 4 -0.,3178 =-0,7157 0.0794
356 5 4 0.8122 0.3243 0.9494
357 5 4 -0.8478 -0.6257 0,2594
358 5 4 0.2120 0.3047 -0.2097
359 5 4 -0.1580 -0.8353 -1,0797
360 5 4 ~0.0880 -0.2653 -0.7297
361 5 4 -0.1580 0.8747 0.4803
362 5 5 0.1095 -0.2070 0,0958
363 5 5 -0.3405 -0.0170 0.,0958
364 5 5 -0.3405 -0.3070 0.0958
365 5 5 -0.4905 -0.3070 0.0958
366 5 5 0.2759 -0,.,7738 -0.6875
367 5 5 1.1059 1.0262 0.1825
368 5 5 0.7259 0.2762 0.3525
369 5 5 0.2759 1.0262 0.1825
370 5 5 -2.5143 -1,9234 -0.1166
371 5 5 0.0557 -0.9834 0.4034
372 5 5 0.2757 0.2566 0.0534
373 5 5 0.2757 0.4466 0.4034
374 5 5 0.5857 1.4866 -1.1566
375 5 6 0.10417 0.0094 0.2795
376 5 6 0.1041 -0.0905 =-1.1105
377 5 6 -0.4259 -0.6506 -0.0705
378 5 6 0.2541 0.3895 0.7995
379 5 6 - 0.8803 1.3230 0.8371
380 5 6 1.3303 1.8930 -1.3229
381 5 6 0.2003 -0.1870 0.0671
382 5 6 -1.3195 -1.4074 0.1862
383 5 6 -0.1895 0.2026 0.0162
384 5 6 -0.6395 -1.0274 -0.3338
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Table AVII-3, Within-family Phenotypic effects (continued)

Individual Provenance Family Height Circ. Lean
385 5 6 -0.0395 -0.4574 0.0162
386 5 6 -0.2595 10,0126 0.5362
387 6 1 0.6292 0.7609 0,0231
388 6 1 0.0992 -0,3791 0,2031
389 6 1 -0.4308 -0.4691 0,5431
390 6 1 0.24%2 0.7609 -2.2269
391 6 1 -0.6306 -0,1960 10,2274
392 6 1 -1.3106 -0.8560 0,0574
393 6 1 -0.0306 0.0940 0.2274
394 6 1 0.9650 11,2309 0,2231
395 6 1 -0.0950 -0,18%1 0.,5731
396 6 1 0.5850 -0.5691 0,2231
397 6 1 -0.0950 -0,1891 -0.2969
398 6 1 0.0650 0.0009 0.2231
399 6 2 0.1056 -0.,1200 -2,3083
400 6 2 0.1456 0.8300 -1,0983
401 6 2 -1.3244 -1,0700 0.2917
402 6 2 -0.1642 -0.6968 -0,5440
403 6 2 -0.3942 -0.5968 0,.6660
404 6 2 -0.6942 -1,1668 1.1860
405 6 2 0.0715 -0.4099 1.3617
406 6 2 1.2015 1.9601 1.1817
407 6 2 0.6015 0,7301 -0.0283
408 6 2 0.4515 0.5401 ~0.7183
409 6 3 -0.9289 -0.9354 0.0307
410 6 3 0.8111 0.3846 -1.6993
411 6 3 0.5011 0.2946 -0,1393
412 6 3 -0,0189 0.1046 0.7307
413 6 3 -0.3989 0.,0046 1.4207
414 6 3 0.7513 1.,9077 -0.4651
415 6 3 1.0613 0.2877 0.4049
416 6 3 -0.0787 -0,0823 0,9249
417 6 3 -0.0631 -0.4654 -0.9794
418 6 3 -0.7431 -0.6534 0.,9306
419 6 3 -0.8931 -0.8454 -1,1594
420 6 4 -0.1904 -0.3903 -0.7443
421 6 4 -0.4204 -0.0203 -0.0543
422 6 4 -1,0204 -0.8703 0.2957
423 6 4 -0.1702 -0.5871 -0.0200
424 6 4 0.6598 0.5529 -1,2400
425 6 4 0.2798 0.0729 -0.3700
426 6 4 -0.9202 -0.6771 0.5000
427 6 4 -0.0845 0.0798 1.0157
428 6 4 -0.0045 0.2698 -0.0243
429 6 4 0.4455 -0.0202 0.4957
430 6 4 1.4255 1.5898 0.1457
431 6 5 -0.6183 -0.8093 0.2973
432 6 5 -0.6983 -0.4293

-0.0527
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Table AVII-3, Within-family Phenotypic effects (continued)

Individual Provenance Family Height Circ, Lean
433 6 5 -0.7683 -0,5193 0.8173
434 6 5 -0.6983 -0.8093 0.9873
435 6 5 -0.8980 -1.0861 0.8416
436 6 5 0.7620 0,.,4239 -1,4084
437 6 5 0.6120 0,3339 -0,.3684
438 6 5 0.6120 -0,2361 1.0216
439 6 5 1.2976 2,.,7008 -2.6328
440 6 5 0.3976 0.4308 0.4972
441 6 6 -0.8753 -1,0378 =-0.3234
442 6 6 -0,2053 -0.3778 -0,1534
443 6 6 0.4249 0.0953 0.5709
444 6 6 0.0549 -0.3847 0.4009
445 6 6 0.0549 0.6653 -0.2991
446 6 6 -0.,0251 -0.2847 0.0509
447 6 6 0.8906 1.0422 0.9166
448 6 6 -0.3194 0.2822 -1.1634
449 7 1 0.1486 1.2687 0.7470
450 7 1 0.2286 -0.2513 -0.4730
451 7 1 ~-0.4514 0.4187 -1.1630
452 7 1 -0.0722 -0.5244 0.4144
453 7 1 -0.2222 -0.8044 0.9344
454 7 1 0.0171 0.1657 0.2751
455 7 1 -0.1329 -0.2143 -0.7649
456 7 1 -0.5129 -1,3543 0.1051
457 7 1 0.9971 1.2957 -0.0749
458 7 2 0.1708 0.4921 -0,5115
459 7 2 0.4008 -0.3579 0.5285
460 7 2 -0.3592 0.21217 -0.8615
461 7 2 -1.1799 =-1.2910 0.5459
462 7 2 -0.7999 =-1.2910 0.7259
463 7 2 0.8601 0.6990 0.5459
464 7 2 0.1893 0.2392 0.7567
465 7 2 0.4193 0.1492 -0.2833
466 7 2 0.3393 0.8092 -0.4633
467 7 2 -0.0407 0.3392 -0.9833
468 7 3 0.1053 0.3710 -1.1477
468 7 3 0.5553 0.0910 -0.1077
470 7 3 -0.5047 -0.6690 0.0723
471 7 3 -0.2047 -0.7590 0.5923
472 7 3 -1.4662 -0.6419 -0.0495
473 7 3 -0.8662 -0.3519 1.1605
474 7 3 0.0438 0.0281 -1.9595
475 7 3 -0.1062 -0.2619 0.4705
476 7 3 0.3345 0.2879 0.9597
477 7 3 1.0945 1.0479 -0.9503
478 7 3 1.0145 0.8579 0.9597
479 7 4 -1.,9992 -2.1329 0.2495
480 7 4 0.4208 0.5271 -1.1405
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Table AVII-3, Within-family Phenotypic effects (continued)

Individual Provenance Family Height Circ. Lean
481 7 4 -0.21892 0.8071 0.2495
482 7 4 -0.8899 -0.7960 0.0969
483 7 4 -1.0307 -1,0558 00,4777
484 7 4 -0,1307 -0.4858 -0.,0423
485 7 4 0.8493 0.5542 0.8277
486 7 4 0.4793 -0.2958 0.6477
487 7 4 1,0701 0,.6340 -1,2931
488 7 4 1.4501 2,2440 -0.0731
489 7 5 -0.7438 -0.7214 0,4934
490 7 5 -0.5138 0.1286° 0.8434
491 7 5 -0.5938 0.4186 -0.8966
492 7 5 0.9955 10,9955 -3.8292
493 7 5 -0.4345 -0.3345 0.5108
494 7 5 -0.2045 0,2355 -0.1792
495 7 5 -0,1345 0.1455 0.6908
496 7 5 0.1848 -0.1244 0.0216
497 7 5 0.0248 -1.1644 00,2016
498 7 5 0.3348 -0.2144 1.0716
499 7 5 1.0848 0.6356 1.0716
500 7 6 -0.2636 -0.8511 -0,5231
501 7 6 -0.4236 -1,3312 1.2169
502 7 6 0.3364 -0,0012 11,0469
503 7 6 -1.2443 -0.9343 -1,3657
504 7 6 0.8850 1,5459 -0.,6450
505 7 6 0.2750 0.7859 0.3950
506 7 6 0.4350 0.7859 -0.1250
507 8 1 0.0737 -0.2827 -0.0790
508 8 1 0.0037 0.0073 0.0910
509 8 1 -0.1463 -0.5627 -1.1190
510 8 1 -0.5263 0.0973 -0.5990
511 8 1 -0.6664 -0.0701 0.4930
512 8 1 1.2759 -0.1146 0.6066
513 8 1 -0.0141 0.9254 0.6066
514 8 2 -0.8904 -0.2884 0.5723
515 8 2 0.0096 -0,0084 0.7523
516 8 2 -0.2904 -0.,0084 0.9223
517 8 2 -0.5104 -0.5784 0.0523
518 8 2 -0.3604 -0.0584 0.7523
519 8 2 0.6295 0.1042 0.4543
520 8 2 -0.1205 -0,5658 -0.0657
521 8 2 0.2495 0,3842 -1,9757
522 8 2 0.6018 0.0597 -1.862t
523 8 2 0.6818 0.9997 0.3979
524 8 3 -1.2577 -=0.8449 0.4182
525 8 3 -0.4078 -0.9223 -0.0498
526 8 3 0.7922 0.4977 1.3402
527 8 3 0.3945 0.8332 0.0638
528 8 3 0.3632 -3.0562

0.6945
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Table AVII-3. Within-family Phenotypic effects (continued)

Individual Provenance Family Height Circ. Lean
529 8 3 -0.2155 0.0732 11,2838
530 8 4 1.4338 0.7609 0,2301
531 8 4 0.4538 0.4709 -0.6399
532 8 4 -0.2262 -0,1891 -0.4699
533 8 4 -0.0762 -0,18¢1 -0,2999
534 8 4 0.2437 0.0135 0.2722
535 8 4 1.2937 1.3435 1.1422
536 8 4 0.2437 -0.3665 0.6222
537 8 4 -0.9140 -1.,6410 0,3957
538 8 4 -1.1440 -0.,1310 -2,7343
539 8 4 -0.7640 -0.1310 10,9157
540 8 4 -0.5440 0.0590 0,5657
541 8 5 1.3949 0.7845 -0.8345
542 8 5 0.1849 -0.0655 0.0255
543 8 5 0.1149 0.2145 -0.1445
544 8 5 -1,1751 -1,2055 0,3755
545 8 5 0.5470 0.5626 -1.0190
546 8 5 0.0970 0.0026 -0.4990
547 8 5 0.5470 0.3726 0.8910
548 8 5 -1.9152 -1,7529 1.4675
549 8 5 0.2048 1.0871 -0.2625
550 8 6 0.1885 -0.4286 0.1449
551 8 6 -0.4915 -0.5286 0.3149
552 8 6 0.4185 0.3314 0.6649
553 8 6 -0.2615 -0.3386 0.6649
554 8 6 0.0207 -0.0804 1.5305
555 8 6 -0.8793 -0.9305 0.8305
556 8 6 -0.3493 -0.1705 -0.2095
557 8 6 0.1707 1.3396 ~-0.8995
558. 8 6 -0.6316 -0.4160 0.7170
559 8 6 0.7284 1.1940 -1.0230
560 8 6 0.4284 -0.0360 -2.5830
561 8 6 0.6584 0.0640 -0.1530
562 S 1 0.0815 0.5897 0.1566
563 9 1 -0.3785 -0.3603 0.5066
564 9 1 ~-0.3785 0.2997 i.1966
565 9 1 -0.3700 -0.7469 -0.0325
566 8 1 ~-0.5200 -0.5669 -0.2125
567 S 1 -1.4300 -1.3169 1.0075
568 S 1 1.2522 -0.0218 -0.0086
569 S 1 0.5722 0.6382 0.1614
570 9 1 0.6422 0.0682 -0.5286
571 9 1 0.3422 1.0182 -0.5286
572 S 1 0.5689 0.8897 -0.2793
573 9 1 0.1889 -0.3403 -2.3693
574 g 1 -0.5711 -0.1503 0.9307
575 S 2 1.2642 =-0.0016 -0.2826
576 9 2 1.4142 1.5084 0.2474
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Table AVII-3. Within-family Phenotypic effects (continued)

Individual Provenance Family Height Circ. Lean
577 9 2 0.6542 -0.0016 0.0674
578 S 2 0.6542 0.4684 0.4174
579 S 2 -0.1674 -0.,0182 0.5784
580 9 2 -0.9174 -0.6782 0,5784
581 S 2 -0.7674 -0.6782 0.7484
582 9 2 -0.5052 -0,1431 0.2523
583 9 2 -0.1352 0.2369 -0.6177
584 > 2 0.9248 0.8069 -0.4377
585 9 2 -0,1352 -0.5231 1.1223
586 S 2 0.2416 1.0584 -1,5785
587 9 2 -0.4384 -0.5516 0.3315
588 9 2 -0.6684 -0.3616 -2.0985
589 - S 2 -1.4184 -1,1216 0.6715
590 9 3 1.1597 1.3216 -0.6045
591 9 3 -0.,2703 -0.0084 0.2655
592 9 3 0.2597 0.4716 -0.6045
593 ) 3 -0.3503 -0.5684 0,2655
594 9 3 -0.0419 -0,1150 0.5964
595 9 3 -0.7597 -0.809% 1.1503
596 S 3 -0.2297 -0.2399 -0,7597
597 9 3 -0.3097 -0.3299 0.8003
5398 9 3 " -0,1597 -0.4299 0.9703
599 9 3 -1,5929 -0.5584 0.6995
600 9 3 -0.6929 -0.3684 0.5295
601 9 3 -0.7629 -0.9284 0.1795
602 9 3 -0.0829 -0.4584 0.1795
603 9 3 0.6671 0.4916 -2,4305
604 9 3 1.6981 0.8350 -0.9636
605 S 3 1.4681 1.6950 -0.2736
606 9 4 -0.8960 -0.4930 1.1625
607 S 4 -0.2160 0.2670 0.9925
608 9 4 -1.4260 -1.5330 1.1625
609 S 4 0.0840 0,.5570 -0.9175
610 9 4 -1.6476 -~-1.3496 -0.9365
611 9 4 -1.1176 -0.6896 -0.7665
612 S 4 -1.4976 -1.729%6 -0.0665
613 S 4 -0.7376 -0.3096 1.4935
614 9 4 -0.7854 0.5055 -0.9126
615 9 4 0.4246 00,4155 0.8274
616 9 4 0.2746 -0.0545 0.3074
617 9 4 0.1246 0.9855 -0.9126
618 9 4 1.0214 0.0070 0.0266
619 S 4 1.6314 1,0470 -0.8334
620 9 4 2.6814 1.0470 0.2066
621 9 4 2.0814 1.,3270 -0.8334
622 S 5 0.6853 0.5892 -0.0110
623 9 5 0.0753 0.1092 -1.0510
624 9 5 0.4553 0.2992 -0.8710




227

Table AVII-3, Within-family Phenotypic effects (continued)

Individual Provenance Family Height Circ. Lean
625 9 5 -0.1447 -0.8308 0.1690
626 9 5 -1.0463 -1,1275 0.8499
627 9 5 0.7637 0.,7625 1.1899
628 S 5 -0.1141 0.2577 -1.3862
629 9 5 -0.4141 -0.7823 0.0038
630 9 5 0.1159 0.,0677 0.1738
631 9 5 -G.7141 -1,0723 0.8738
632 9 5 0.7127 1.8382 -0.0970
633 S 5 -1.5473 -1,1908 0.6030
634 9 5 1.1727 1.0792 -0.4470
635 ) 6 -0.3966 0,1964 -0.6830
636 9 6 -0.8466 -0.4636 0.5370
637 9 6 -0,3166 =-0.2736 -0,1530
638 9 6 0.0534 -0,1736 0.5370
639 9 6 1.5718 1,0397 -0.6920
640 8 6 -0.,7360 -1,1751 0.5518
641 S 6 -0.6560 -0.5051 0.7218
642 S 6 0.9208 0.8864 -0.9389
643 9 6 -1,4892 -1,1036 -0.4189
644 9 6 -2.1692 -1,4836 0.2711
645 S 6 0.4708 -0.0636 0.2711
646 9 6 2.1718 2,2697 -0.5220
647 S 6 1.4218 0.8497 0.5180
648 10 1 -0.3730 -0.4790 -0.4967
649 10 1 0.3770 -0.,1990 1.2433
650 10 1 -0.3030 -0,0090 0.2033
651 10 1 0.4570 0.9410 0.5533
652 10 1 1.7034 1.5370 -1.0703
653 10 1 0.0434 0.0270 0.1397
654 10 1 0.0434 1.2570 0.3197
655 10 1 -1.0866 -0.,7330 -1.5903
656 10 1 -0.9105 -0.8369 0.3942
657 10 1 -0.1505 -0.5469 -0.8158
658 10 1 -0.6105 -0.7369 0.2242
659 10 1 -0.1505 -0.2669 -0.1258
660 10 1 -0.7774 -0.6086 0.8177
661 10 1 0.5026 0.2514 1.1677
662 10 1 0.7326 0.2514 0.8177
663 10 1 0.5026 0.1514 -1.,7823
664 10 2 -0.2374 -0,1493°  0.0247
665 10 2 -0.2374 0.0407 1.2347
666 10 2 0.5126 0.9807 -1.0153
667 10 2 -0.6174 -0.5293 0.0247
668 10 2 0.0290 -0.,0233 0.4811
669 10 2 1.0190 -0.6833 -1.,7689
670 10 2 0.1890 0.4567 0.8311
671 10 2 -1.3210 -1.4433 -0.8989
672 10 2 -2.4248 0.7356

-1.7272
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Table AVII-3., Within-family Phenotypic effects (continued)

Individual Provenance Family Height Circ, Lean
673 10 2 0.0652 -0.0272 -0.4744
674 10 2 0.7183 0,3911 1.1590
675 10 2 0.5683 0.,4911 0.,1190
676 10 2 0.8683 11,2511 -1,0910
677 10 2 0.8683 0,9611 0.6390
678 10 3 -0.2274 0,2323 -0.7296
679 10 3 -0.5374 -0.6177 1,3504
680 10 3 -0.8374 -0,3377 -1.0796
681 10 3 -0.6074 -0.4277 0.6604
682 10 3 0.5151 0.1743 0.8513
683 10 3 -0.3849 -0.5857 0.5013
684 10 3 -0.4649 -0.4957 1.5513
685 10 3 0.6482 0.7826 -1,6752
686 10 3 1.1782 0,4026 0.0648
687 10 3 0.7182 0,8726 -1.4952
688 10 4 0.9872 0.0703 -0.8001
689 10 4 -0.0628 0.2603 1.1099
690 10 4 0.4336 0.1063 -0.8537
691 4 1.4836 1.7163 0.1863
692 4 0.9536 0.6763 -1,7237
693 4 -0.6002 -0.9377 0,0908
694 4 -0,0702 -0.2777 0.6108
695 4 -0.1502 -0.6577 1.6508
696 4 -0.3702 0.,1923 0.0908
687 4 -1.8271 -0,9924 -0.0058
698 4 -0.7771 -0.1494 -0.3558
699 5 -0.0645 0,0713 1.1828
700 5 0.5119 0.3873 0.2592
701 5 0.8919 0.3873 0.6092
702 5 1.1119  0.9573 0.7792
703 5 -0.2481 -0,0827 -0.9508
704 5 0.4319 0.7673 1.1282
705 5 0.7319 0.8573 =-0.9508
706 5 -0.7420 -1,1367 0.1637
707 5 -0.5%20 -0.2767 0.3337
708 5 0.2380 0.4833 ~0.3563
709 10 5 ~0.2220 -0.8467 1.2037
710 10 5 -2.0489 -1,5684 -3.4028
711 11 1 0.6567 0.5878 0.3680
712 11 1 0.1267 0.4878 0.5480
713 11 1 -0.4033 -0.2722 0.0180
714 11 1 1.0988 1.0346 ~1.6827
715 11 1 0.2688 -0.2954 -0.8127
716 11 1 1.5488 1.8846 -0.8127
717 11 1 -0.9941 -0.8093 0.6360
718 11 1 -0.3941 -0.5293 -0.4040
719 11 1 -0.2341 -0.4293 0.9860
720 11 1 -1.6741 -1.6593 1.1560
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Table AVII-3, Within-family Phenotypic effects (continued)

Individual Provenance Family Height Circ. Lean

721 11 2 -0.1343 -0,.,0558 -0.3129
722 11 2 -0.3543 0,1342 -0.4929
723 11 2 -0.7343 0,.,1342 -0.4929
724 11 2 0.7678 0.7710 -1.1537
725 11 2 0.6878 -0,1790 0.2363
726 11 2 0.1578 =-0.2690 -0,1137
727 1 2 -0.1952 -0.6929 0.9950
728 11 2 -0.1952 00,1571 1.3350
729 11 3 -2.6960 -1.4117 -0.0458
730 11 3 -1,7160 -1,1317 0.8242
731 11 3 0.8811 0,.,7244 -0,5071
732 11 3 0.9511 0.9144 0.0129
733 11 3 -0.0289 -0.7956 -1.0271
734 11 3 0.2011 -0.,4156 0.7129
735 11 3 -0.5681 -0.8186 =-0.5950
736 11 3 1.0919 1.4514 11,1350
737 11 3 1.0919 0.8814 -0.7750
738 11 3 0.7919 0.6014 0.2650
739 11 4 -0.6168 -0.0154 0.9474
740 I 4 0.0632 0.7446 -2.1726
741 1 4 -0.1047 -0.6085 -0,2334
742 11 4 0.8053 0.4315 0.6366
743 11 4 -0.9347 -0.7985 -0.0634
744 11 4 -0,1047 -0.3285 0.6366
745 11 4 0.3023 0.6676 1.2154
746 11 4 -0.5277 -0.6524 0.8654
747 11 4 0.0023 -0.5624 0.6954
748 11 4 -0.5277 -0.3724 -0.1746
749 11 4 1.6432 1.4946 -2.3526
750 11 5 0.8116 0.2376 -0.1680
751 11 5 0.1316 -0.5224 0.1820
752 11 5 ~0.5384 -0.9024 0.8820
753 11 5 -1.2184 -0.9024 0.1820
754 11 5 -0.9984 -0.9924 0.1820
755 11 5 1.2807 1.6906 =-3.3700
756 11 5 1.3607 1.8806 1.4900
757 11 5 -0.8293 -0.4894 0.6200
758 11 6 -0.3828 -0.9851 1.3667
759 1 6 -0.6028 -0.0351 -0.5433
760 11 6 -0,0028 -0.2251 0.3267
761 11 6 -0.4707 -0.3482 1,0559
762 11 6 0.5364 0.2778 -1.4853
763 11 6 0.7664 1.2278 -0.9653
764 11 6 0.1564 0.0878 0.2447
765 12 1 -0.2117 -0.7836 0.2331
766 12 1 -0.3617 -0.3036 0.9331
767 12 1 0.2383 -0.5936 1.1031
768 12 1 0.4109 0.6830 -1.3820
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Table AVII-3. Within-family Phenotypic effects (continued)

Individual Provenance Family 'Height Circ. Lean
769 12 1 0.4109 -0.2670 0.8780
770 12 1 -0.1091 1,6330 -1,3820
771 12 1 -0.1138 -0.5140 0.8483
772 12 1 -0.2638 0.,1460 -1,2317
773 12 2 -0.2452 0.5445 0.0580
774 12 2 -0,0152 -0,1255 -1.3320
775 12 2 0.6074 0.4911 =-0,1772
776 12 2 -1.2826 -1,8789 1,3928
777 12 2 0.7574 0.2011 0.6928
778 12 2 0.4574 0.8611 0.1728
779 12 2 0.3827 -0.4259 -0.5468
780 12 2 0.3127 0.9941 0.6632
781 12 2 0.0027 -0.0459 0.8432
782 12 2 -0,9773 -0.6159 -1,7668
783 12 3 0.0803 0.1852 -0.3024
784 12 3 0.5403 1.3252 0.7376
785 12 3 0.7603 1.0452 -1,5224
786 12 3 -0.5974 -0.9013 =-0.9118
787 12 3 1.4826 2.2187 1,3482
788 12 3 -1.1772 -1,0981 -1,2276
789 12 3 ~0.1972 -0.0581 0.6824
790 12 3 -0.3472 -0.6181 1.2024
791 12 3 ~-0.1572 0.0419 -0.3576
792 12 3 0.4881 -0.3952 -0,2172
793 12 3 0.7181 0.5548 -1,2572
794 12 3 -1.3219 -1.,6252 1.5228
795 12 3 ~0.2719 -0.6852 0,3028

I1. Variance components

The provenance variance components for the homogeneous

and heterogeneous family variance model are the same (Table

AVII-4),
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Table AVII-4., Provenance variance-covariance components

Height Circumference Lean
Height 0.010 0.003 0.003
Circumference 0.003 0.019 -0.006
Lean 0.003 -0.006 0.011

The family variance-covariance components for the
homogeneous family variance model are given in Table AVII-S,

Table AVII-5, Family variance-covariance components for
homogeneous family variance model

Height Circumference Lean
Height 0.123 0.100 -0.030
Circumference 0.100 0.090 -0.,023
Lean -0.030 -0,023 0.023

The within-family variance components for the homogeneous
family variance model are given in Table AVII-6,

Table AVII-6. Within~family variance-covariance components
for homogeneous family variance model

Height Circumference Lean
Height 0.633 0.550 -0,162
Circumference 0.550 0.742 -0.237
Lean -0.162 -0,237 0.938

The family variance components are different for each
provenance in the heterogeneous family variance model (Table
AVII-7). The within-family variance components are different
for each provenance in the heterogeneous family variance

model (Table AVII-8).
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Table AVII-7, Family variance-covariance components for

heterogeneous family variance model

Height Circ, Lean
Provenance 1
Height 0,296 0.281 -0.113
Circumference 0.281 0,276 -0.116
Lean -0,113 -0.116 -0.011
Provenance 2
Height 0.041 -0.022 -0,020
Circumference -0.022 -0,037 0.019
Lean -0,02n 0.019 -0.041
Provenance 3
Height 0.073 0.054 ~0.017
Circumference 0.054 0.028 -0.012
Lean -0.017 -0.012 -0.,030
Provenance 4
Height 0.083 0,112 -0.060
Circumference 0.112 0,150 -0.059
Lean -0,060 -0,059 0.094
Provenance 5
Height 0.042 0.030 -0,.021
Circumference 0.030 0.005 -0,015
Lean -0.021 -0,015 0.103
Provenance 6
Height 0,132 0.089 -0.030
Circumference 0.089 0.064 -0.038
Lean -0,.030 -0.038 0.170
Provenance 7
Height -0.005 -0.035 0,030
Circumference -0.035 -0.033 0.056
Lean 0.030 0,056 0.054
Provenance 8
Height 0.200 0.160 0.041
Circumference 0.160 0.127 0.030
Lean 0.041 0.030 -0.055
Provenance 9
Height 0.060 0.078 -0.062
Circumference 0.078 0.097 -0.092
Lean -0.062 -0,082 0.099
Provenance 10
Height 0.130 0.069 -0.054
Circumference 0.069 0.044 -0.026
Lean -0.054 -0.026 -0.068
Provenance 11
Height 0.263 0.203 0.022
Circumference 0.203 0.147 0.039
Lean 0.022 0,039 -0,093
Provenance 12
Height 0.512 0.520 -0.068
Circumference 0.520 0.530 0.002
Lean -0.068 0.002 -0.069
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Table AVII-B. Within-family variance-covariance components
for heterogeneous family variance model

Height Circ, Lean
Provenance 1
Height 0.445 0.396 -0.046
Circumference 0,396 0.560 -0.054
I.2an -0,046 -0.,054 0,725
Provenance 2
Height 0.631 0.590 -0.091
Circumference 0.590 0.864 -0.,229
Lean -0,091 -0.,229 0.928
Provenance 3
Height 0.441 0.400 -0,227
Circumference 0.400 0.719 -0,311
Lean -0.227 -0.311 0.896
Provenance ¢
Height 0.684 0.651 -0.301
Circumference 0.651 0.863 -0.443
Lean -0,301 -0.443 1.098
Provenance 5
Height 0.623 0.621 -0.090
Circumference 0.621 0.903 -0,191
Lean -0,090 -0, 191 0.801
Provenance 6
Height 0.417 0.410 -0,178
Circumference 0.410 0.617 -0,271
Lean -0.178 -0,271 0.873
Provenance 7
Height 0.533 0.500 -0.106
Circumference 0.500 0.774 -0,232
Lean -0.106 -0,232 0.938
Provenance 8
Height 0.541 0.372 -0,150
Circumference 0.372 0.477 -0,143
Lean -0.150 -0.,143 1.166
Provenance 9
Height 1.028 0.748 -0.270
Circumference 0.748 0.761 -0.269
Lean -0.270 -0.269 0.694
Provenance 10
Height 0.623 0.442 0.111
Circumference 0.442 0.485 0.102
Lean 0.111 0.102 1.036
Provenance 11
Height. 0.867 0.725 -0.373
Circumference 0.725 0.813 -0.406
Lean -0.373 -0.406 1.141
Provenance 12
Height 0.465 0.495 -0.007
Circumference 0.495 0.915 -0.223

Lean -0.007 -0.223 1.232
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111, Number of trees in each family

The calculaticns also require a knowledge of the number
of trees in each family and the number of trees in each
provenance, These values can be calculated from the number
of trees in each family (Table AVII-9)..

Table AVII-O, Numbér of trees in each family

Provenance ~ Family

1 2 3 4 5 6
1 11 12 12 18 12 8
2 16 12 15 11 12 10
3 13 14 17 13 13 15
4 12 12 16 10 14 15
5 11 12 13 12 13 12
6 12 10 11 11 10 8
7 8 10 11 10 11 7
8 7 10 6 11 9 12
9 13 15 16 16 13 13
10 16 14 10 11 12
11 10 8 10 11 8 7
12 8 10 i3

IV. Calculation of C and V matrices

The C and V matrices are the basic matrices from which
the genetic worth is predicted and the prediction parameters
such as prediction variance are calculated. The C and V
matrices change as the family changes. When family variance
components are assumed to be homogeneous the magnitude of
the changes depends on the number of trees in a family and
the number of trees in a provenance. For the range of the

number of trees within a family in the data set there was no
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significant difference between the C and V matrices among

families., In the heterogeneous family variance model there
are considerable differences for the C and V matrices for

each provenance because of changes in variance components

(Tables AVII-7 and AVII-8).

" A. Calculation of C and V matrices for homogeneous family
variance model

All the values for prediction variance and prediction
error variance for the homogeneous family variance model in
Chapter three are based on estimates calculated from the

first family in provenance 6.

i. Calculation of the elements of the C matrix

The C matrix is a 9 by 3 matrix made up of three
submatrices as explained in Appendix AIV. There are two
types of additive genetic variance:

1. Additive genetic variance among provenances
2, Additive genetic variance within-provenances
The selection index which predicts both additive values adds

the provenance variance to the C matrix (Appendix IV).

To calculate the elements of the C matrix the among
provenance and the within-provenance additive variance must
be calculated. The among provenance additive variance 1is
equal to the provenance variance components (Table AVII-4).
The within-provenance additive variance is equal to four

times the family variance (Table AVII-10).



Table AVII-10. Within-provenance variance-covariance
components for homogeneous family variance model
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Height Circumference Lean
Height 0.492 0.400 -0.120
Circumference 0.400 0.360 -0.092
Lean -0.120 -0.092 0.092

The elements of the C1 matrix are calculated from

formula AIV-9, Substituting the number of trees in a family

and the number of trees in a provenance gives:

(((0.25 x (12,0 -1.0)) + 1.0) + 62.0) x VA

Substituting the additive genetic variance components for

height from Table AVII-10 gives:

(((0.25 x (12.0 - 1.0)) + 1,0) + 62.0) x 0.492

= 0.030

The calculation of the other elements of the C1 matrix is

the same except the appropriate within-provenace additive

genetic variance or covariance replaces the height
within-provenance additive genetic variance. The

within-provenance elements of the Camatrix are:

Height Circumference

Height 0.030 0.024
Circumference 0.024 0.022
Lean -0.007 -0.006

Lean
-0.007
-0.006

0.006

To obtain the final C, matrix the among provenance additive

genetic variance must be addded (Table AVII-4). The final C,

matrix is:
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Height Circumference Lean
Height 0.040 0.027 -0.004
Circumference 0.027 0.041 -0.012
Lean -0.004 -0.012 0.017

The elements of the C, matrix are given by substituting the
correct values in formula AIV-14, Substituting the number of
trees in the family and the number of trees in the

provenance in the formula gives:

((((0.,25(12.0 - 1,0)) + 1.,0) + 12.0) x VA)
- (((0.25 x (12.0 = 1,0)) + 1.0) + 62) x VA)

Substituting the within-provenance additive genetic variance

for height from Table AVII-10 gives:

((((0.25(12.0 - 1.0)) + 1.0) + 12,0) x 0.492)
- ((((0.25 x (12,0 - 1.0)) + 1,0) + 62) x 0.492)

= 0.124

The calculation of the other elements of the C2 matrix are

the same except the appropriate within-provenance additive

variance or covariance replaces the height within-provenance

additive variance, The C2 matrix is:

Height Circumference Lean
Height 0.124 0,101 -0.030
Circumference 0.101 0.091 -0.023
Lean -0.030 -0.023 0.023

The elements of the C, by substituting the correct values in

formula AIV-18., Substituting the values for the number of
trees in the family and the number of trees in the

provenance gives:
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(((12,0 - 1,0) x (1,0 - 0.25)) + 12.0) x VA
= 0.338

The calculation of the other elements of the C, is the same
except the appropriate within-provenance additive variance
or covariance repalces the height within-provenance additive

variance. The C3 matrix is:

Height Circumference Lean

Height 0.338 0.275 -0.083

Circumference 0.275 0.248 -0.063

Lean -0.083 -0.063 0.063
In summary the complete C matrix is:

0.040 0.027 -0.004

0.027 0.041 -0.012

-0.004 -0.012 0.017

0.124 0.101 -0.030

0.101 0.091 -0.023

-0.030 ~0.023 0.023

0.338 0.275 -0.083

0.275 0.248 ~0,063

-0.083 -0.063 0.063

ii. Calculation of elements of V matrix

The formulae for calculating :he elements of the V
matrix are given in Appendix IV (Formulae AIV-20, AIV-21 and

AIV-22). There are three block diagonal matrices.

The elements of the first block matrix are given by
substituting the correct values in formula AIV-20.
Substituting the correct values for the number of trees in
the provenance and the number of trees in the family in the

formula gives:
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((38440 % + 6500 %) + 3844) + ((1 + 62) x ¢ ?)
‘ PROV e

FAM{PROV}
Substituting the height variance components gives:

(((3844 x 0.010) + (650 x 0,123)) + 3844) + ((1 + 62) «x
0.633)

= 0.041

The calculation of the other elements of the first block
diagonal matrix is the same but the appropriate variance or
covariance components replace the height variance component.

The. first block diagonal matrix of the V matrix is:

Height Circumference Lean
Height 0.041 0.029 -0.005
Circumference 0.029 0.046 -0.014

Lean -0.005 -0.014 0.030
The elements of the second block matrix are given by
substituting the correct number of trees in the family and

in the provenance into formula AIV-21, The formula becomes:

(((3844 - 650) + 3844) x o Yy + (((1 + 12) = (1 + 62))

FAM{PROV)

xaz)
e

Substituting the values for height from Tables AVII-5 and

AVII-6 gives:

(((3844 - 650) = 3844)‘X 0.123) + (((1 = 12) - (1 + 62)) «x
0.633)

The calculation of the other elements of the second block
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diagonal matrix is the same except the appropriate variance
or ccvariance components replace the height variance

components., The second block diagonal matrix is:

Height Circumference Lean
Height 0.145 . 0,120 -0.036
Circumference 0.120 0,125 -0,035
Lean -0.036 -0.035 0.082

The elements of the third block diagonal matrix are given by
substituting the correct values for the number of trees in

the family in formula AIV-22. The formula becomes:
(11 2 12) x o°
Substituting the value for height frcm Table AVII-6 gives:
(11 + 12) x 0.633
= 0,580

The calculation of the other elements of the third block
matrix is the same except the appropriate variance or
covariance component replaces the height variance component.

The third block diagonal matrix of the V matrix is:

Height Circumference Lean
Height 0.580 0.504 -0.149
Circumference 0.504 0.680 -0.217
Lean -0.149 -0.217 0.860

In summary the completed V matrix is:
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0.041 0,029 -0.005 0.000 0.000 0,000 0.000 0.000 0.000
0.029 0.046 -0.014 0,000 0.000 0,000 0.000 0,000 0.000
-0.005 -0,014 0.030 0.000 0.000 0,000 0.000 0,000 0.000
0.000 0.000 0.000 0.144 0.120-0.036 0.000 0,000 0.000
0.000 0.000 0.000 0.120 0.125-0.035 0.000 0,000 0.000
0.000 0.000 0.000 -0.036 -0.035 0,082 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.580 0.504 -0.149
0.000 0.000 0.000 0.000 0.000 0.000 0.504 0.680 -0.217
0.000 0.000 0.000 0.000 0.000 0.000 -0.149 -0,217 0.860

B. Calculation of C and V matrices for heterogeneous family
variance model

The C and V matrices for the heterogeneous family
variance model are calculated by substituting the correct
values in the same formulae used in the homogeneous family
variance model. The C and V matrices different for each for
each provenance, The family and within-family variance
components change for each provenance. Therefore new
families were choosen for the calculation of the C and V
matrices used in the calculation of the prediction variance,
genetic worth variance and efficiency (Table AVII-11).

Table AVII-11, Families from which C and V matrices were
calculated for the estimation of index parameters

Provenance 1 2 3 4 5 6 7 8 9 10 11 12
Family 5 4 4 4 4 4 4 4 5 4 4 3

The C and V matrices in the next section have been
calculated from the number of trees in the first family in
the sixth provenance. This family has been choosen so that
subsequent values of selection index scores can be checked
against values in the main text. In addition calculating

index parameter estimates from a different family than those
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in Table AVII-11 will demonstrate that the parameters are

relatively insensitive to changes in family sizes for the

data set used in the analysis.

i. Calculation of the elements of the C matrix

The calculation is the same as for the homogeneous

model except the family variance for provenance 6 is taken

from Table AVII-7. The completed C matrix is:

ii., Calculation of the elements of the V matrix

0.042
0.025
-0.004
0.133
0.090
-0.030
0.363
0.245
-0.083

0,025
0.034
-0.015
0,090
0.064
-0.038
0.245
0.176
-0.105

-0.004
-0.015
0.052
~0.030
-0.038
0.171
-0.083
-0.10%
0.468

The calculation is the same as for the homogeneous

model except the family and within-family variance

components are taken from Tables AVII-7 and AVII-8. The

completed V matrix is:

.039
.025
.005
.000
.000
.000
.000
.000
.000

DOO0O0OO0OO0OOQOQO

0.025 -0.005 0,000
0.040 -0.017 0.000
-0.017 0.054 0.000
0.000 0.000 0.138
0.000 0.000 0.101
0.000 0.000 -0.037
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000

0.000 0.000
0.000 0.000
0.000 0.000
0.101 -0.037
0.095 -0.050
~0.050 0.200
0.000 0.000
0.000 0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.382
0.376

0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.376 -0.163
0.566 -0.248

0.000 0.000 -0.163 -0.248 0.800

V. Calculation of selection index values

Selection index values are calculated by substituting
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the appropriate values in formula III-2, In Chapter three it
is assumed that the economic values are all 1.0. The € and V
matrices have been calculated above for the family 1 in
provenance 6. The vector of phenotypic predictors is
composed of three sub-vectors:

1. The vector of provenance phenotypic predictors.

2. The vector of family phenotypic predictors.

3. The vector of within-family phenotypic predictors,
The vector of provenance phenotypic predictors for
provenance 6 is given in Table AVII-1, The vector of family
phenotypic predictors for family 1 in provenance 6 is given
in Table AVII-2, The vector of within-family phenotypic
predictors for tree 10 in family 1 in provenance 6 is given
in Table AVII-3. In summary the p vector is:

-0.147
-0.253
0.253
0.028
-0.141
0.668
0.585
-0.569
0.223
Substituting the economic values, the C matrix for the
homogeneous family variance model, the V matrix for the
homogeneous family variance model and the p vector in
formula III-2 gives a homogeneous selection index score of
0.499. This value agrees with homogeneous selection index

value for the tree in family 1 in provenance 6 given in

Table III-4,
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Substituting the economic values, the C matrix for the

heterogeneous family variance model, the V matrix for the

heterogeneous family variance model and the p vector in

formula I1I-2 gives a heterogeneous selection index score of

2.44, This value agrees with heterogeneous selection index

value for the tree in family 1 in provenance 6 given in

Table II1I-4,

VI. Calculation of variance of predicted genetic worth,
variance of genetic worth and efficiency of the selection

index

The calculation of the variance of the genetic worth

requires that the G matrix is equal to four times the family

variance-covariance matrix plus the provenance

variance-covariance matrix. The G for the homogeneous family

variance model is calculated from the values given in Tables

AVII-4 and AVII-5., The G matrix for the homogeneous family

variance model is:

Height
Height 0.502
Circumference 0.403
Lean -0.117

Circumference Lean
0.403 -0.117

0.379 -0.098

-0,098 0.103

The G matrix for the heterogeneous family variance model is

calculated from values given in Tables AVII-4 and AVII-7.

The G matrix for the heterogeneous family variance model for

provenance 6 is:

Height
Height 0.538
Circumference 0.359
Lean ~-0,117

Circumference Lean
0.359 -0.117

0.275 -0.158

-0.158 0.691
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A, Variance of predicted genetic worth

The variance of the predicted genetic worth is
calculated by substituting the appropriate values in formula
I11-12. The C and V matrices for the homogeneous family
variance model have been calculated previously. The a vector
is assumed to be a vector of ones. The variance of the
predicted genetic worth for the homogeneous family variance
model is calculated to be 0,826, The variance of the
predicted genetic worth for the heterogeneous family
variance model using the € and V matrices calculated for
provenance 6 is 1,659, This value agrees with the value in

Table III-5,

B. Variance of genetic worth

The variance of the genetic worth is calculated by
substituting the appropriate values in formula III-13, The G
matrix for the homogeneous family variance model has been
calculated previously. The variance of the genetic worth for
the homogeneous family variance model is calculated to be
1.360, The variance of the genetic worth for the
heterogeneous family variance model using the G matrix
calculated for prcvenance 6 is 1.672. This value agrees with

the value in Table III1-5.

C. Efficiency of selection index

The efficiency is calculated by substituting the

appropriate values into formula III-13. The a'C'V 'Ca and
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a'Ga values have been calculated previously for the
homogeneous family variance model and for provenance 6 for
the heterogeneous family variance model, Substituting the

homogeneous family variance model values into formula III-13

gives:
0.826%° x 1,367%°

= 0.779

Substituting the heterogeneous family variance model values

for provenance 6§ into formula III-13 gives:
1.659°° x 1,6727"°
= 0.996

This v.lue agrees with the value in Table III-5,

VII. Conclusion

The preceding sections of this appendix have
demonstrated how the basic input values fit into the
formulae given in the main text and Appendix IV. Calculated
values agree with those values given in the main text., If
the reader desires to check the calculations it is important
to start at the beginning of the calculation and go through
each step in the computer. If matrices which are produced at
various stages are taken out of the computer and then read
in rounding and truncation errors will give values which do

not agree with those in the main text.



APPENDIX VIII,
NUMERICAL EXAMPLES OF CALCULATIONS IN CHAPTER FOUR.

1. Introduction

The numerical values which are calculated in Chapter
four are presented in the form of response surfaces. The
values on the response surfaces represent index parameters.
Formulaé for calculating each of these parameters are given
in Table IV-4, There are two basic elememts in these
formulae i.e. a'C'V''Ca and a'Ga. In Chapter four it is
assumed that the family variance is homogeneous so the
values calculated for a'C'V 'Ca and a'Ga in the homogeneous
family variance model in Chapter three can be used to verify
calculations in Chapter four. The values calculated in
Appendix VII for the homogeneous family variance model are:

a'Cc'viica = 0.826
a'Ga = 1,360
The a vector in the calculation above is assumed to be a
vector of ones. In Chapter four the a vector is changed and
the parameter values are recaculated. The response surface

represents the parameter values for a range of a values.

II1. Values plotted in Chapter four

The values plotted in Chapter four are given in Tables

AVIII-1, AVIII-2, AVIII-3, AVIII-4, AVIII-5 and AVIII-6.

247
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Table AVIII-1, Prediction variance response surface values

Circumference Lear economic values

economic

values ~10 -8 ~6 -4 -2 1 2 4 6 8 10
-10 9.377 10.598 12.076 13.811 15.803 19.272 20.557 23.320 26.339 29.616 33.149
-8 4.848 5.532 6.472 7.669 9.123 11.786 12.802 15.027 17.508 20.247 23.243
-6 2.157 2.302 2.705 3.364 4.280 6.136 6.883 8.570 10.514 12.715 15,173
-4 1.302 0.909 0.774 0.895 1.274 2.323 2.801 3.950 5.357 7.020 8.939
-2 2.283 1.353 0.680 0.263 0.104 0.347 0.556 1.167 2.036 3.161 4.543
1 7.199 5.462 3.982 2.759 1.793 0.826 0.632 0.436 0.498 0.816 1.392
2 9.756 7.750 6.002 4.510 3.275 1.904 1.575 1.111 0.904 0.953 1.260
q 16.248 13.704 11.417 9.388 7.615 5.437 4.840 3.838 3.093 2.604 2.373
6 24.576 21.49¢ 18.670 16.102 13.792 10.807 9.%941 B8.401 7.118 6.092 65.323
8 34.741 31,121 27.759 24.654 21.805 18.014 16.879 14.801 12.981 11,417 10.110
10 46.742 42.585 38.685 35.042 31.655 27.058 25.654 23.038 20.679 18.578 16.733

Table AVIII-2., Genetc worth variance response surface values

Circumference Lean economic values

economic

values =10 -8 -6 -4 -2 1 2 4 6 8 10
-10 23.382 23.126 23.694 25.086 27.302 32.171 34.206 38.894 44.406 50.742 57.902
-8 15.270 14.230 14.014 14.622 16.054 19.747 21.390 25.294 30.022 35.574 41.950
~6 10.190 B8.366 7.366 7.190 7.838 10.355 11.606 14.726 18.670 23.438 29.030
-4 8.142 5.534 3.750 2.790 2.654 3.995 4.85¢ 7.190 10.350 14.334 19.142
-2 9.126 65.734 3.166 1.422 0.502 0.667 1.134 2.686 5.062 8.262 12.286
! 16.287 11.719 7.975 5.055 2.959 1.360 1.239 1.615 2.815 4.839 7.687
2 20.190 15.230 11.094 7.782 5.294 3.107 2.790 2.774 3.582 5.214 7.670
4 30.270 24.526 19.606 15.510 12.238 8.875 8.166 7.366 7.390 8.238 9.910
6 43.382 36.854 31.150 26.270 22.214 17.675 16.574 14.990 14.230 14.294 15.182
8 59.526 52.214 45.726 40.062 35.222 29.507 28.014 25.646 24.102 23.382 23.486
10 78.702 70.606 63.334 56.886 51.262 44.371 42.486 39.334 37.005 35.502 34.822
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Table AVIII-3, Prediction standard deviation response

surface values

Circumference Lean economic values

economic

values =10 -8 -6 -4 -2 1 2 & 6 8 10
-10 3.062 3.255 3.475 3.716 3.975 4.390 4.534 4.829 5.132 5.442 5,758
-8 2.202 2.352 2.544 2.769 3.020 3.433 3.578 3.876 4.184 4.500 4.82t
-6 1.469 1.517 1.645 1.834 2.069 2.477 2.624 2.927 3.243 3.566 3.895
-4 1.141 0.95¢ 0.880 0.946 1.129 1.524 1.674 1.988 2.314 2.649 2.990
=2 1.511 1.163 0.82¢ 0.513 0.322 0.589 0.746 1.080 1.427 1.778 2.131%
1 2.683 2.337 1.996 1.661 1.339 0.909 0.795 0.66! 0.706 0.904 1.180
2 3.123 2.784 2.450 2.124 1.810 1.380 1.255 1.054 0.9%1 0.976 1.122
4 4.031 3.702 3.379 3.064 2.759 2.332 2.200 1.959 1.759 1.614 1.540
6 4.957 4.636 4.32% 4.013 3.714 3.287 3.153 2.898B 2.668 2.468 2.307
8 5.894 5.579 5.269 4.965 4.670 4.244 4.108 3.847 3.603 3.379 3.180
10 6.837 6.526 6.220 5.920 5.626 5.202 5.065 4.800 4.547 4.310 4.09%
Table AVIII-4. Genetic worth standard deviation response
surface values

Circumference Lean economic values

economic

values -10 -8 -6 -4 -2 1 2 4 6 8 10
=10 4.835 4.809 4.868 5.009 5.225 5.672 5.849 6.237 6.664 7.123 7.609
~8 3.908 3.772 3.744 3.824 4.007 4.444 4.625 5.029 5.479 5.964 6.477
-6 3.192 2.892 2.714 2.681 2.800 3.218 3.407 3.837 4.321 4.84)' 5.388
-4 2.853 2.352 1,936 1.670 1,629 1.999 2.203 2.681 3.217 3.786 4.3795
-2 3.021 2.395 1,779 1.192 0.709 0.817 1.065 1.639 2.250 2.874 3.505
1 4.036 3.423 2.824 2.248 1.720 1.166 1.113 1,271 1.678 2.200 2.773
2 4.493 3.903 3.331 2.790 2.301 1.763 1.670 1.666 1.893 2.283 2.769
4 5.502 4.952 4¢.428 3.938 3.498 2.979 2.858 2.714 2.718 2.870 3.148
6 6.587 6.07% 5.581 5,125 4.713 4.204 4.071 3.872 3.772 3.78) 3.896
8 7.715 7.226 6.762 6.329 5.935 5.432 5.293 5.064 4.90S 4.835 4.846
10 8.871 8.403 7.958 7.542 7.160 6.661 6.518 6.272 6.083 5.958 5.901
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Table AVIII-5, Prediction error variance response surface

values

Circumference

Lean economic values

economic

values ~10 -8 -6 -4 -2 1 2 ] 6 8 10
~10 14.005 12.528 17.618 11.275 11.499 12.899 13.649 15.574 18.067 21.126 24.753
-8 10.422 8.698 7.542 6.953 6.931 7.96%7 8.588 10.267 12.514 15.327 18.707
-6 8.033 6.064 4.662 3.826 3.558 4.219 4.723 6.156 8.156 10.723 13.857
-4 6.841 4.625 2.976 1.895 1.380 1.672 2.053 3.240 4.994¢ 7.315 10.203
-2 6.843 4.381 2.486 1.159 0.398 0.320 0.578 1.519 3.026 5.101 7.743
1 9.088 6.257 3.993 2.296 1.166 0.534 0.607 1.179 2.317 4.023 6.295
2 10.434 7.480 5.093 3.272 2.020 1.203 1.21y 1,663 2.678 4.261 6.410
4q 14.022 10.822 8.189 6.122 4.623 3.438 3.326 3.528 4.297 5.634 17.537
6 18.806 15.360 12.480 10.168 B8.422 6.868 6.633 6.589 7.112 8.202 9.859
8 24.785 21,093 17,967 15.408 13.417 11,493 11,135 10.845 11.121 11.965 13.376
10 31.960 28.021 24.649 21.844 19.607 17.313 16.832 16.296 16.326 16.924 18.089
Table AVIII-6. Efficiency response surface values

Circumference Lean economic values

economic

values =10 -8 -6 -4 -2 1 2 4 6 8 10
=10 0.633 0.677 0.714 0.742 0.761 0.774 0.775 0.774 0.770 0.764 0.757
-8 0.563 0.623 0.680 0.72¢ 0.754 0.773 0.774 0.7717 0.764 0.754 0.744
-6 0.460 0.525 0.606 0.684 0.739 0.770 0.770 0.763 0.750 0.737 0.723
-4 0.400 0.405 0.454 0.566 0.693 0.763 0.760 0.741 0.719 0.700 0.683
-2 0.500 0.486 0.463 0.430 0.455 0.721 0.700 0.659 0.634 0.619 0.608
1 0.665 0.683 0.707 0.739 0.778 0.779 0.714 0.520 0.42t 0.411 0.425
2 0.695 0.713 0.736 0.761 0.786 0.783 0.751 0.633 0.502 0.428 0.405
q 0.733 0.748 0.763 0.778 0.789 0.783 0.770 0.722 0.647 0.562 0.489
6 0.753 0.764 0.774 0.783 0.788 0.782 0.774 0.749 0.707 0..,53 0.592
8 0.764 0.772 0.779 0.784 0.787 0.78! 0.776 0.760 0.734 0.699 0.656
10 0.771 0.777 0.782 0.785 0.786 0.781 0.777 0.765 0.748 0.723 0.693
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I11I. Verification of plotted values

The plotted values will be verified using economic
values of 1.0 for each trait. The predicted genetic and
genetic worth variances have been calculated previously. The
calculated values agree with the values in Tables AVIII-1
and AVIII-2. The response surface values for the prediction
standard deviation and the genetic standard deviation are
the square root of the variances. The calculated values are:

(a'c'v'ca)®® = 0.909

(a'Ga)®® = 1,166

These values agree with those in Tables AVIII-3 and AVIII-4,
The prediction error variance is the difference between the
genetic worth variance and the predicted genetic worth
variance. The calculated value is 0.534. This value agrees
with the value in Table AVIII-5, The efficiency has been
calculated in Appendix VII the value is 0.779. This value

agrees with the value in Table AVIII-é6.

IV, Conclusion

The values plotted in Chapter four have been verified
for one set of economic values. The reader may verify the
plotted values for other sets of economic values. To obtain
the same results as in the tables in this appendix the basic
input values given in Appendix VII should be used. Potential
errors from truncation should be avoided when calculating

values.



APPENDIX 11X,

INPUT VALUES AND NUMERICAL EXAMPLES OF CALCULATIONS IN
CHAPTER FIVE,

I. Input values

The basic input values for the calculations in chapter
V are the are the variance-covariance matrices, the number
of trees in each family family and the economic weightings.
The calculation of the minmax and Bayes strategies in
chapter V are based on a matrix of 121 x 121, This matrix is
difficult to represent on a page so a reduced subset of
economic weightings has been choosen to demonstrate the

techniques.

A. Variance-covariance matrices

The male and female family variance-covariance matrices
are given in Tables V-2 and V-3. The within-family
variance-covariance matrix is given in Table AIX-1,

Table AIX-1. Within-family variance-covariance matrix

Minimum Mean Maximum
density density density
Minimum
density 294,27 243,07 182.07
Mean
density 243.07 280.29 314.80
Maximum
density 192,07 314.80 435,77
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B. The number of trees in each family

The number of trees in each family is given in Table
AIX-2,

Table AIX-2. Number of trees in each family

Male Female Family
Family
1 2 3 4 5 6 7 8 9
1 15 11 10 11 12 12 13 14
2 7 13 13 14 13 14 15 13
3 14 10 14 13 11 13 14 11 14
4 16 15 15 13 12 12 12 6 13
5 11 12 15 14 15 14
6 15 14 13 14 15 14 12 i1 12
7 11 9 14 15 12 11 14 11
8 10 13 8 15 14 13 15 13
S 13 13 12 14 15 12 15 13 12
10 12 15 15 15 9 13 13
11 14 15 15 12 13 9 15 13
12 13 8 15 15 14 14 14 10
13 14 14 11 14 13 13 14 14
14 12 13 11 14 12 14 12 13
15 11 11 7 14 14 12 13 16
16 13 12 12 10 13 14 15
17 12 12 15 13 13 13 11 15
18 13 12 15 13 13 13 11 15
19 13 15 - 11 15 13 13 10
20 13 15
21 11 13 15 11 14 13 13
22 12 15 12 12 14 11 10 12 11
23 13 14 15 14 15 13 12 8
24 10 9 11 13 15 15 14 9
25 13 15 14 13 13 12 14 15
26 15 14 13 14 15 15 14 15 12
27 14 13 8 15 9 15 11 13
28 11 11 14 15 12 12 13 13
29 10 11 13 13 15 15 11 13 14
30 11 12 12 12 14 14 13 9 12
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C. Economic weigthings

The economic weigthings used in chapter V are given in
Tables V-5 and V-6, The sconomic weightings used in the
numerical examples in this appendix are given in Table

AIX-3,

Table AIX-3. Set of economic weights in numerical example
(minimum density held constant).

Mean

density =10 ~5 1 5 10
Maximum

density -10 -5 1 5 10

II. Calculation of gain

Gain is calculated by substituting tje correct values
in formula V-26. The C and V matrices vary from family to
family the example in this appendix will used the fourth
female family nested within the thirteenth male family. The
values vary because of the number of trees in the male and
female family. The values for the number of trees in each
family can be read off Table AIX-2. There are two
independant genetic values to be predicted. There are
therefore two C'V''C matrices which can be added together to
give the combined C'V 'C matfix. The C matrices are
different for the prediction of additive genetic values of
individual trees due to the male parent contribution and for
the prediction of the additive genetic value of the
individual tree due to the female parent contribution. The

V' matrix is the same for each predited additive value.
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A. C matrix for prediction of the additive genetic value of
the individual due to the male parent contribution

There are three sub-matrices which correspond to the
covariance between the genetic values and:
1. The male family phenotypic predictors
2. The female family phenotjpic predictors

3. The within-family phenotypic predictors

i. The C sub-matrix between the genetic values and the male
family phenotypic predictors

The individual elements of the sub-matrix are given by
substituting the correct values into formula V-13,
Substituting the number of trees in the female and male

families in the formula gives:
((.5 + ((107. = 1.) x .25)) + 107.) x o °

The paternal genetic variance (omf) is given by multiplying
the male family variance-covariance by 4. For example the
minimum density paternal additive genetic variance would be
4 times 31.03 (Table V-2). Substituting this value in

formula V-13 gives:
((.5 + ((107. - 1.) x ,25)) + 107.) x 124,12
= 31,32

The caluclation of the other elements of the sub-matrix is
the same except the appropriate paternal additive genetic

var‘ance or covariance replaces the paternal additive
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genetic variance for minimum density. The completed

sub-matrix is:

Minimum Mean Maximum
density density density
Minimum
density 31.32 30.05 27.91
Mean
density 30,05 28,72 26.53
Maximum
density 27,91 26.53 24,32

ii. The C sub-matrix between the genetic values and the
female family phenotypic predictors

The individual elements of the sub-matrix are given by
substituting the correct values into formula V-14,
Substituting the number of trees in the female and male

families in the formula gives:

(((.5 + ((14, - 1,) x .25)) + 14.)
- ((.5 + ((107. = 1.) x .25)) + 107.)) x am2

Substituting the paternal additive genetic variance for

minimum density gives:

(.5 + ((14. - 1,) x ,25)) + 14.)
= ((.5 + ((107. - 1.) x .,25)) + 107.)) x 124.12

= 1,93

The caluclation of the other elements of the sub-matrix is
the same except the appropriate paternal additive genetic
variance or covariance replaces the paternal additive

genetic variance for minimum density. The completed



sub-matrix is:

Minimum Mean Max imum
density density density
Minimum
density 1.93 1.85 1.72
Mean
density 1.85 1,77 1.63
Maximum
density 1.72 1.63 1.50
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iii. The C sub-matrix between the genetic values and the
within-family phenotypic predictors

The individual elements of the sub-matrix are given by

substituting the correct values into formula V-15,

Substituting the number of trees in the female family in the

formula gives:
(.5 = ((.5 + ((14. = 1.) x .25)) + 14.)) x o °

Substituting the paternal additive genetic variance for

minimum density gives:
(.5 - ((.5+ ((14, - 1.) x .25)) + 14.)) x 124,12
= 28.81

The caluclation of the other elements of the sub-matrix is
the same except the appropriate paternal additive genetic
variance or covariance replaces the paternal additive
genetic variance for minimum density. The completed

sub-matrix is:



Minimum Mean Maximum
density density density
Minimum '
density 28.81 27.64 25.67
Mean
density 27.64 26.42 24.40
Maximum
density 25,67 24.40 22,30
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In summary the completed C' matrix is:

31,32 30.05 27.91 1.93 1.85 1.72 28.81 27,64 25.67
30.05 28.72 26.53 1.85 1.77 1.63 27.64 26.42 24.40
27.91 26.53 24.32 1.72 1.63 1.50 25,67 24.40 22.38

B. C matrix for prediction of the additive genetic value of
the individual due to the female parent contribution

There are three sub-matrices which correspond to the
covariance between the genetic values and:
1. The male family phenotypic predictors
2. The female family phenotypic predictors

3. The within-family phenotypic predictors

i. The C sub-matrix between the genetic values and the male
family phenotypic predictors

The individual elements of the sub-matrix are given by
substituting the correct values into formula V-8,
Substituting the number of trees in the female and male

families in the formula gives:

2
F

((.6 + ({(14. = 1,) x .25)) = 107.) x o,

The maternal genetic variance (UM?) is given by multiplying
the female family variance-covariance by 4. For example the

minimum density maternal additive genetic variance would be
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4 times 17,47 (Table V-3). Substituting this value in

formula V-8 gives:
((.5 + ((14,- - 1,) x ,25)) + 107.) x 69.88
= 2,45

The caluclation of the other elements of the sub-nistrix is
the same except the 'appropriate paternal additive genetic
variance or covariance replaces the maternal additive
genetic variance for minimum density. The completed

sub-matrix is:

Minimum Mean Maximum
density density density
Minimum
density 2.45 2.41 2.29
Mean :
density - 2.41 2.33 2.16
Maximum _
density 2.29 2.16 1.94

ii, The C sub-matrix between the genetic values and the
female family phenotypi« predictors

The individual elements of the sub-matrix are given by
substituting the correct values into formula V-11.
Substituting the number of trees in the female and male

families in the formula gives:

(((.5 + ((14. = 1.) x .25)) + 14.)
- ((.5 + ((14. = 1.) x .25)) + 107.)) x o *

Substituting the maternal additive genetic variance for

minimum density gives:
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(((.5 + ((14, - 1,) x ,25)) + 14.)
- ((,5 + ((14, - 1,) x .25)) + 107.)) x 68.88

= 16.27

The caluclation of the other elements of the sub-matrix is
the same except the appropriate maternal additive genetic
variance or covariance replaces the paternal additive
genetic variance for minimum density. The completed

sub-matrix is:

Minimum Mean Maximum
density density density
Minimum
density 16.27 15,99 15.19
Mean
density 15,99 15.45 14,33
Max imum
density 15,19 14,33 12.88

iii, The C sub-matrix between the genetic values and the
within-family phenotypic predictors

The individual elements of the sub-matrix are given by
substituting the correct values into formula V-12.
Substitutiig the number of trees in the female family in the

formula gives:
{5 - (.5 + ((14. = 1,) x .25)) + 14.)) x aA;

Substituting the maternal additive genetic variance for

minimum density gives:
(.5 - ((.5 + ((14. - 1.) x ,25)) + 14.)) x 69.88

= 16.22
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The caluclation of the other elements of the sub-matrix is

the same except the appropriate paternal additive genetic

variance or covariance replaces the paternal additive

genetic variance for minimum density. The completed

sub-matrix is:

Minimum
density
Mean

density
Maximum
density

Minimum
density

16'22
156.94
15.15

Mean
density

15,94
15.40
14.29

In summary the completed C' matrix is:

2.45
2.41
2.29

2.29 16,27
2.16 15.99
1.94 15,18

15,99 15,19
15,45 14.33
14,33 12.88

Max imum
density

15.15
14,29
12.84

15.94 15,15
15.40 14,29
14,29 12.84

[62é 0 o)

— 0N
(S0 3 V)

C. V matrix for prediction of additive genetic values

There are three sub-matrices which correspond to:

1. The variance of the male family phenotypic predictors.

2. The variance of the female family phenotypic

predictors.

3. The variance of the within-family phenotypic

predictors.

i. The V sub-matrix of the male family phenotypic predictors

The individual elements of the sub-matrix are given by

substituting the correct values into formula V-16.



262

Substituting the number of trees in the male and female

families in the formula gives:

(((11449, «x a:) + (1439, x oHMf)) + 11449,) + ((1, + 107,)

Xaz
e

Sustituting the variance component values for minimum

density (Tables V-2, V-3 and AIX-1) gives:

(((11499, x 31,03) + (1439 x 17.47)) + 11449) + ((1. + 107.)
x 294.27)

= 35.98

The calculation of the other elements of the sub-matrix is
the same except the appropriate variances and covariances
replace the minimum density variance components. The

completed submatrix is:

Minimum Mean Maximum
density density density
Minimum
density 35.98 34.20 31.50
Mean
density 34,20 33.15 31.16
Maximum
density 31.50 31.16 29.91

ii The V sub-matrix of female family phenotypic predictors

The individual elements of the sub-matrix are given by
substituting the correct values into formula V-17.
Substituting the number of trees in the male and female

families gives:
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(((11449, - 1439.,) + 11449.) x o 2)
F(M)

+ (1. + 14.) = (1. +107.)) x o)

Substituting the variance component value for minimum

density gives:

(((11449, - 1439,) + 11449.) x 17.47)
+ (((1. + 14,) - (1, + 107.)) x 294,27)

= 33.54

The calculation of the other elements of the sub-matrix is
the same except the appropriate variance or covariance
components replace the minimum density variance components.

The completed sub-matrix is:

Minimum Mean Max imum
density density density
Minimum
density 33.54 30.10 26.18
Mean
density 30.10 31.91 33.00
Maximum
density 26.18 33.00 39.14

ii The V sub-matrix of within-family phenotypic predictors

The individual elements of the sub-matrix are given by
substituting the correct values into formula V-18.

Substituting the number of trees in the female family gives:

((14. - 1.) + 14.) x oe2

Substituting the variance component value for minimum

density gives:



((1¢, -

1.) + 14,) x 294,27

= 273.25
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The celculation of the other elements of the sub-matrix is

the same except the appropriate variance or covariance

component replaces the minimum density variance component.

The complete submatrix is:

Minimum
density
Mean

density
Maximum
density

Minimum Mean Maximum
density density density
273.25 225,71 178.35
225,71 260,27 292,31
178.35 292,31 404.64

In summary the completed V sub-matrix is:

35.98
34.20
31.50

0.00
.00
.00
.00
.00
.00

QOO0 O

34.20
33.15
31.16
0.00
0.00
0.00
0.00
0.00
0.00

31.50
31.16
29.91
0.00
0.00
0.00
0.00
0.00
0.00

0.00 0.00 0.00 0.00
0.00 0,00 0.00 0.00
0.00 0,00 0.00 0.00
33.54 30.10 26.18 0.00
30.10 31.91 32,00 0.00
26.18 33.00 39.14 0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00 0.00 0.00273.25 225,71 178.35
0.00 0.00 0.00 225.71 260,27 292,31
0.00 0.0C 0.00 178.35 292,31 404.64

D. Calculation of C'V 'C matrices

There are two C'V'C matrices:

1. The C'V''C matrix associated with the additive genetic

value due to the male parent contribution.

2. The C'V''C matrix associated with the additive genetic

value due to the female parent ccntribution.

Using the C and V matrices calculated previously and

substituting the values into C'V’'C gives the matrix for the
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male parent contribution:

Minimum Mean Maximum

] density density density
Minimum
density 30.89 29,62 27.47
Mean
density 29.62 28.45 26.45
Max imum
density 27.47 26.45 24,66

Substituting the C and V values for the female parent

contribution in C'V’'C gives:

! Minimum Mean Maximum
density density density

Minimum .
density 9,74 9.57 9.04
Mean
density 9.57 9.44 8.97
Max imum
density 9.04 8.97 8.57

Adding the two matrices gives:

Minimum Mean Maximum
density density density
Minimum
density 40.64 39,18 36.51
Mean
density 39.18 37.89 35.42
Maximum
density 36.51 35.42 33.23

E. Substitution of C'V 'C matrix in the gain formula

Substitution of the C'V''C matrix in formula V-26 will
give the expected gain. Selection intensities of 1.4 and
1.96 were choosen in the main text. To simplify the
calculations in this appendix a selection intensity of 1.0
will be assumed. Consider the example of economic weightings
at the time of selection of:

Mean density = 1.

Minimum density = -10.
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Maximum density = -10,
Substituting the values in as'C"V"Cas gives 12723.42. Taking
the square root of this value gives 112.80 which is the

denominator in formula V-26.

Assuming economic weigths at the time of selection to

be:
Mean density = 1,

-5.

Minimum density

-5.

Maximum density
Substituting the above values in aH'C'V”CaS gives 6003.57
which is the value of the numerator in formula V-26, Taking
the selection intensity to be 1.0 the expected gain from
selection based on the above combination of economic weights

at the time of selection and at the time of harvest is:

1. x (6003.57 + 112,80)

III. Calculation of min-max strategy

The expected gain values for the range of economic

values considered in this appendix are given in Table AIX-4.
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Table AIX-4. Expected gain for ranges of economic values,

Values at Economic values at selection time
harvest
time

1 -10 -10 1 -5 -5 111 1655 1 10 10
1 -10 -10 112.80 112.80 -112.80 -112.80 -112.80
1 -5 -5 53,23 53.23 -53,23 -53.23 -53.,23
111 -18.28 -18.28 18.28 18.28 18,28
1565 -65.93 -65,93 65.93 65.93 65.93
1 10 10 -125.50 -125.50 125.50 125.50 125,50

The minimum outcome values for each set of economic values
at selection time are given in Table AIX-5.

Table AIX-5. Minimum outcome values for each set of ecunomic
values at selection time,

Economic values at selection time

1 =10 =10 1 -5 -5 T 11 155 1 10 10

Minimum
values -125.50 -125.50 -112.80 -112.80 -112.80

The strategy or economic values at selection time which
gives the maximum minimum value in Table AIX-5. is the
minmax strategy. In the above example three strategies have

the maximum value of -112.80.
IV. Calculation of Bayes strategy
Bayes strategy is based on the gain values in Table

AIX-4, The Bayes strategy requires that probabilities be

assigned to the economic values at harvest time. There is
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little or no information on these values so it is assumed as
in Chapter five that each set of economic values is equally
probable. In this case each set of values has a probability
of .2. The value for the strategy value of economic weights

of 1 -10 -10 at selection time is:

(112 x ,2) + (53.23 x ,2) + (-18.,28 x ,2) + (-65.93 x ,2) +
(-125.50 x ,2)

= -8.74

The optimum strategy or Bayes strategy is the strategy which
has the highest value. In this case there are three
strategies which are equal with a value of 8,74,

Table AIX-6. Bayes strategy values for each set of economic
values at selection time.

Economic values at selection time

1 -10 =10 1 -5 -5 111 155 110 10

Strategy
values -8.74 -8.74 8.74 8.74 8.74

V. Calculation of minmax regret strategy

The minmax regret strategy is based on similar logic to
the minmax strategy except the values by which stragties are
assessed are regret values. Regret is expressed as the
difference between the highest value outcome given a set of
economic weightings at harvest timc. For example consider

the gains matrix in Table AIX~4. The regret for economic
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values of 1 1 1 at selection time if the values at harvest
time turn out to be 1 -10 -10 is 112,8 - 112,8. The regret
is 225,6. Table AIX-7 contains the regret values which have
been determined from the gain values in Table AIX-4,

Table AIX-7. Expected regret values for ranges of economic
values,

Values at Economic values at selection time
harvest
time

1 -10 -10 1 -5 -5 1 11 155 1 10 10
1 -10 ~-10 0.00 0.00 225,60 225,60 225.60
1 -5 ~-§ 0.00 0.00 106.46 106.46 106.46
11 1 36.56 36.56 0.00 0.00 0.00
155 131.86 131.86 0.00 0.00 0.00
1 10 10 251.0 251.0 0.00 0.00 0.00

The rational human being is assumed to select the strateqy
which minimizes regret. Thus when considering regret the
minmax strategy will be the one which minimizes the maximum
regret. There are three sets of economic weightings which
have the minimum maximum regret value of 225.60 (Table
AIX-8).

Table AIX-8. Maximum regret values for each set of economic
values at selection time.

Economic values at selection time

1 =10 -10 1 -5 -5 111 155 1 10 10

Max 1mum
values 251.0 251.0 225.6 225.6 225.6




270

VI. Calculation of Bayes regret strategy

The Bayes regret strategy is calculated in the same way
as the Bayes strategy except regret values are used and the
best strategy is the one which has the lowest regret values,
In this case there are three strategies with the lowest
regret value of 66.41 (Table AIX-9),

Table AIX-9. Bayes regret strategy values for each set of
economic values at selection time,

Economic values at selection time

1T -10 -10 1 -5 -5 111 1565 110 10

Strategy
values 83.88 83.88 66.41 66.41 66.41

VII, Conclusion

The numerical examples above have been calculated on a
computer, The intermediate values to the calculation shown
above will not give the same answers as the computer because
values have been rounded to enable a clear presentation of
values. If the reader wishes to verify the calculate values
it will be necessary to start with the basic input values
and then compair computer output with the rounded values
given in this appendix. A note of caution should be added
the reader who can work through the examples above does not
necessarily understand the calculation. The reader is

recommended to the references in Chapter five if he or she
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wants to understand the mathematics.



