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Abstract 

Application of the Osmotic Virial Equation to Cryobiology 

Mathematical modelling of cellular osmotic responses to low 

temperatures is being increasingly used to overcome obstacles in the 

successful cryopreservation of cells and tissues. Current cryobiological 

models often contain simplifying assumptions regarding the solution 

behaviour of the complicated, multisolute intra- and extra-cellular 

solutions. In order to obtain more accurate predictions of cryobiological 

outcomes, equations derived from thermodynamic principles that more 

accurately describe the biological solution behaviour could be used to 

greatly advance the design of novel cryopreservation protocols.  

The general hypothesis of this thesis is that the application of the 

multisolute osmotic virial equation, with mixing rules derived from 

thermodynamic first principles, to solutions of interest in cryobiology will 

result in more accurate predictions of the multisolute solution behaviour, 

which will lead to improved cryobiological modelling and increased 

understanding of cellular responses to cryopreservation.  

Specifically, this thesis demonstrates that the osmotic virial 

coefficients, obtained from single-solute solution data, can be used in the 

multisolute osmotic virial equation to accurately predict the multisolute 

solution behaviour, without the need to fit multisolute solution data. The 

form of the multisolute osmotic virial equation proposed in this thesis was 



used to predict the solution behaviour of a range of multisolute solutions of 

interest in cryobiology.  

The equation commonly used in cryobiology to describe cellular 

osmotic equilibrium is based on ideal, dilute solution assumptions. In this 

thesis, a non-ideal osmotic equilibrium equation was derived and, 

combined with the multisolute osmotic virial equation, used to more 

accurately predict the osmotic equilibrium of human erythrocytes.   

The improved equations proposed in this thesis were combined with 

experimental measurements of the incidence of intracellular ice formation 

in order to further the understanding of the role of several important 

cryobiological parameters on the formation of intracellular ice.  

This thesis work has significantly contributed to the field of cryobiology 

by substantially improving the accuracy of two key equations used in the 

modelling of cellular osmotic responses to cryopreservation. The 

combination of accurate mathematical modelling and results from 

experiments will allow increased understanding of cellular responses to 

cryopreservation, leading to the design of novel cryopreservation 

protocols.  
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Chapter 1 - Introduction1 

Increasingly complex obstacles are arising in the search for 

successful cryopreservation protocols for a range of cells, tissues and 

organs. In order to solve these complicated issues, mathematical 

modelling is increasingly being used to interpret and understand 

experimental results; ascertain relationships between various parameters; 

and design novel cryopreservation protocols. The current cryobiological 

models, which often contain simplifying assumptions regarding the 

solution behaviour, qualitatively correlate with experimental results and 

allow general relationships between variables to be determined. However, 

in order to obtain more accurate predictions of cryobiological outcomes, 

the models need to more accurately capture the complicated biological 

behaviour. The application of equations, derived from thermodynamic 

principles, which more accurately describe the biological solution 

behaviour could be used to greatly advance the design of novel 

cryopreservation protocols.  

 

1.1. Cryobiology 

Cryobiology is the study of the effect of low temperatures, ranging 

from 4 oC to -196 oC, on biological systems. Cryopreservation has 

applications in many areas, including medical and life sciences research, 

                                                 
1
 A version of sections of this chapter has been accepted for publication. R.C. Prickett, 

J.A.W. Elliott, and L.E. McGann 2009. Cryobiology. (doi:10.1016/j.cryobiol.2009.07.011). 
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transplant medicine, conservation of biodiversity, reproductive medicine, 

agriculture, and food sciences, amongst others.  

Increasing numbers of cellular therapies and transplantation of natural 

and engineered cells, tissues, and organs are being utilized to treat 

numerous medical conditions. For example, blood cells are used on a 

daily basis to save lives by increasing red blood cell mass in both trauma 

and leukemia patients. In addition, stem cells are currently being 

investigated as viable treatments for a diverse range of diseases and 

conditions [8; 32; 48], which has made preservation of these cells 

increasingly important. Tissues and organs are transplanted to improve 

the quality of patients’ lives, in the case of cornea transplants to cure 

blindness or cartilage replacement to treat arthritis, and to save lives, in 

the case of heart, lung, and kidney transplants. However, in order to 

increase the efficacy and safety of cellular transfusions and tissue/organ 

transplantations, time is needed to process, screen, and transport the 

biological samples. Currently, cryopreservation is the only feasible method 

for long-term preservation of structure and function in natural and 

engineered cells, tissues, and organs. While some cells and tissues have 

been cryopreserved for decades and used clinically, there are many 

obstacles in the cryopreservation of other cells, tissues, and organs that 

need to be overcome before successful cryopreservation can be 

consistently achieved.  

2



Among these issues is the use of cryoprotective agents (CPAs), which 

are used to achieve high cell recovery after freezing and thawing. These 

additives, however, can cause adverse side effects if transfused into 

patients [9; 11; 53; 65; 88], but their removal from the cells pre-transfusion 

requires additional time and labour [9; 88] and can result in a decrease in 

the number of viable cells [9; 102].  

The successful cryopreservation of tissue and organs systems is 

complicated by the fact that extracellular ice formation damages the 

extracellular matrix (ECM) and disrupts the cell-ECM interactions. This 

results in structural and functional losses in the tissue and organs post-

thaw. In order to achieve successful low-temperature preservation of 

tissue and organ systems without the formation of ice, vitrification is being 

increasingly investigated [13; 22; 42; 66; 70; 75; 76; 85]. In order to vitrify 

tissue, extremely high CPA concentrations are required. Much research is 

focusing on designing novel cryopreservation solutions which contain 

multiple CPAs in order to obtain vitrifiable concentrations [21; 75; 76].  

The traditional approach to designing cryopreservation protocols has 

focused on empirical testing of constant cooling rates combined with 

various concentrations of different CPAs. However, in order to maximize 

the efficacy of cryopreservation protocols, a single constant cooling rate is 

often insufficient and more complicated protocols are required [59; 89; 93]. 

The conventional approach of trial-and-error testing of protocols is 

exceedingly time- and resource-consuming, and it is almost impossible to 

3



find optimal nonlinear protocols in this manner. In order to develop novel 

cryopreservation protocols, including those that involve complicated CPA 

cocktails, the avoidance of CPA usage, or nonlinear cooling profiles, new 

approaches to cryopreservation research are needed. Improved 

understanding of the solution thermodynamics of the complicated intra- 

and extra-cellular solutions in cryobiology will provide further insight into 

the cellular responses to low-temperatures and will further the design of 

novel cryopreservation protocols.  

 

1.1.1. Cryo-injury 

When cells are exposed to sub-zero temperatures, ice forms first in 

the extracellular solution. The formation of ice removes water from the 

solution, thus concentrating the extracellular solution. This causes an 

increase in the chemical potential of the extracellular water, which is 

equivalent to an increase in the osmolality or vapour pressure of the 

solution. Depending on the temperature, the cell responds to the 

increased osmolality in one of two ways. At relatively high sub-zero 

temperatures, the cell increases the osmolality of the intracellular solution 

by osmotically dehydrating, resulting in a shrunken cell with a 

concentrated intracellular solution. At lower sub-zero temperatures, the 

transport of water across the membrane is restricted, so the cell does not 

4



osmotically dehydrate. Thus, the intracellular water is supercooled2 and 

the cell attains equilibrium with the extracellular solution by forming ice 

inside the cell. These responses to the extracellular ice formation were 

expressed as a cohesive two-factor hypothesis of cryo-injury by Mazur 

[57]. It was known that when cells were either cooled too slowly or too 

rapidly they were damaged after thawing. According to Mazur's two-factor 

hypothesis, the damage from slow-cooling was attributed to the cell's 

exposure to concentrated solutions (often referred to as solution effects 

injury) and the damage from fast-cooling was attributed to the formation of 

intracellular ice. It was demonstrated that the relative cooling rates which 

were too low or too high were cell type specific and were shown to be 

dependent on the permeability characteristics of the cell [55]. Specifically, 

the hydraulic conductivity of the membrane and the temperature 

dependence of that permeability will dictate the cooling rates at which 

each type of damage occurs for that specific cell-type.   

The exact mechanisms of injury due to exposure to concentrated 

solutions or the formation of intracellular ice have not been completely 

elucidated. There have been many proposed mechanisms of injury for 

both solution effects injury and intracellular ice formation (IIF) injury. Many 

of the theories on solution effects injury involve damage to the cell 

membrane. Lovelock proposed that the high salt concentrations that cells 

are exposed to during cooling causes the cell membrane to become leaky, 

                                                 
2
 Supercooling is when a solution is below its thermodynamic freezing point without the 

formation of ice.  
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causing an increase in intracellular solute concentration and thus lysing 

upon warming [50]. Meryman proposed that membrane damage occurs 

when cells are excessively shrunken to a critical volume. This damage 

causes the membrane to become leaky, resulting in an increase in 

intracellular concentration and cells lysis upon warming [60]. Farrant and 

Morris proposed that the hypertonic solutions produced during cooling 

alter the cell membranes, but that the solutions themselves are not the 

damaging factors. The altered cell membrane is damaged when exposed 

to  another stress, such as the reduction in temperature during cooling 

(thermal shock) or dilution upon warming (dilution shock) [23].  

Many mechanisms of damage from IIF have also been proposed, 

including: mechanical forces acting on the cell membrane [7; 25; 58]; 

frictional forces from the water flux across the cell membrane [64]; 

increased intracellular solute concentration following the formation of ice 

which may alter intracellular membranes [23]; irreversible damage to the 

intracellular proteins caused by the formation of disulfide bridges which 

occurs due to intracellular ice crystals bringing proteins in close contact 

with each other [47]; and intracellular ice induced formation of intracellular 

gas bubbles during warming [61]. As with the solution effects injury, none 

of these mechanisms can explain the experimental observations of injury 

from intracellular ice for all cell types or under all conditions. However, 

even without understanding the exact mechanism, it is commonly believed 

that the membrane is the site of the IIF damage [4; 5; 15; 55; 56]. Acker 
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and McGann investigated the incidence of IIF and membrane damage on 

a cell-specific basis using a cryomicroscope system and found a direct 

correlation between the cells that experienced IIF and those with post-

thaw membrane damage [2; 4]. Whether the IIF is the cause or result of 

membrane damage is still unknown. 

 

1.1.2. Cryoprotective agents 

In order to mitigate the damage caused by freezing, compounds 

referred to as cryoprotective agents (CPAs) are often added to the cells 

before cooling. There are two types of CPAs: (i) permeating CPAs, which 

are typically low-molecular weight compounds that can cross the cell 

membrane; and (ii) non-permeating CPAs, which are larger molecules that 

are unable to cross the cell membrane. Common permeating CPAs are 

dimethyl sulphoxide (DMSO), glycerol (although at temperatures ≤ 4 oC, 

glycerol is a non-permeating CPA), propylene glycerol (PG), ethylene 

glycol (EG), to name a few. Sugars (trehalose, sucrose, glucose), starches 

(hydroxyethyl starch), and proteins (skim milk proteins, egg proteins) are 

commonly used non-permeating CPAs.  

The CPAs work by increasing the osmolality of the solution, which 

depresses the solution’s thermodynamic freezing point (this relationship is 

described in section (1.3.1)). By decreasing the temperature at which ice 

first forms, the CPAs also decrease the amount of ice formed. At a given 

temperature, the solute concentration is also reduced, since there is more 
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liquid water in the solution. Lovelock demonstrated that the addition of 

glycerol protects erythrocytes from damage during cooling by altering the 

phase diagram of the solution and reducing the high salt concentration 

during freezing [51]. Since permeating CPAs cross the cell membrane, 

there is an increase in the intracellular osmolality of the cell due to the 

increasing concentration of the intracellular solutes. With permeating 

CPAs the increase in osmolality occurs without a reduction in the cell 

volume. In other words, at equilibrium (extracellular osmolality = 

intracellular osmolality) the cell will have the same volume as in the 

isotonic solution, but the intra- and extra-cellular osmolalities are both 

increased. In the presence of permeating CPAs, cells can be cooled 

slowly without solution effects injury, since at any given temperature the 

intra- and extra-cellular salts and other biological solutes are less 

concentrated because there is less ice formed.  

Conversely, non-permeating CPAs cause an increase in the 

extracellular osmolality, but they cannot cross the cell membrane to 

increase the intracellular osmolality. Instead, the cell osmotically 

dehydrates until osmotic equilibrium is attained (extracellular osmolality = 

intracellular osmolality). The reduction in cell water corresponds to a 

reduction in the probability of IIF. Non-permeating CPAs are used to avoid 

the injury associated with IIF, as the cells have been partially dehydrated 

before cooling begins.  
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However, the use of CPAs often causes another type of damage to 

cells, which is referred to as toxicity. Toxicity-related injury from the CPAs 

is dependent on the concentration, temperature, and time of exposure 

[19]. Much research has focused on designing cocktails which contain 

multiple types of CPAs in order to achieve an overall high CPA 

concentration, but with each component at a low enough concentration to 

avoid the toxicity-related injury associated with each component. This has 

led to the development of very complicated, multisolute CPA solutions, 

often with three or more CPAs being utilized [21; 75; 76].  

In addition to being toxic to the cells which are being cryopreserved, 

CPAs often cause adverse effects in patients when the cells are 

transfused. In the case of hematopoietic stem cells cryopreserved in 

DMSO, complications ranging from nausea, headaches, or abdominal 

cramps to acute renal failure or transient global amnesia have been 

reported [9; 11; 53; 65; 88].  Thus, another area of current research is 

designing cryopreservation protocols that allow the reduction or 

elimination of CPAs, while still achieving high cell recovery post-thaw. This 

research area has proven very difficult, with only few examples of 

successful cryopreservation in the absence of CPAs [41; 82].  

 

1.2. Mathematical modelling in cryobiology 

In order to overcome some of the obstacles in cryopreservation, 

mathematical modelling has been increasingly utilized to assist in the 
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design of novel cryopreservation protocols [35; 49; 80; 81; 84; 89; 98]. The 

use of modelling to predict cellular responses to cryopreservation was 

pioneered by Mazur [55] and has since been adopted by many 

researchers [3; 17; 34; 49; 63; 64; 71; 72; 73; 80; 81; 90; 91; 94; 98]. 

Modelling has been used to interpret experimental results [3; 55; 63], 

investigate the impact of various parameters on cellular responses to 

freezing [55], determine the conditions which result in IIF [29; 30; 34; 55; 

71; 90; 94], calculate the transport of water and CPAs in cellular and 

tissue systems [1; 18; 31; 37; 62; 83], predict the behaviour of 

cryobiological solutions [20; 40; 44; 45; 46; 67; 68; 69; 100; 101], and 

design novel cryopreservation protocols [35; 49; 80; 81; 84; 89; 98].  

Mazur's landmark mathematical model of cellular osmotic response to 

freezing involved numerical solutions to an equation which coupled water 

transport across the cell membrane with an ideal, dilute solution 

assumption for the cytoplasm, an exponential equation for the temperature 

dependence of the membrane's water permeability, and a constant cooling 

rate [55]. The predicted cell volumes as a function of cooling rate were 

compared to the predicted cell volumes of cells cooled infinitely slowly (i.e. 

the equilibrium cell volume). At any temperature, the differences between 

the predicted volume of a cell cooled at a given rate and the equilibrium 

curve gave a prediction of how supercooled the cell was. Mazur assumed 

that cells which retained more than 10 % of their isotonic volume and were 

more than 2 degrees supercooled when the temperature reached a critical 
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value would experience IIF. This model allowed qualitative predictions of 

the conditions that could lead to IIF for different cell types.  

This basic approach of predicting the cellular osmotic response to 

sub-zero temperatures and using calculated predictors of cryo-injury has 

been taken up by other researchers.  The research group of McGann and 

Elliott [17; 80; 81] have developed a cellular osmotic simulation program 

which can be used to calculate cellular osmotic responses to (i) the 

addition/removal of CPAs at a constant temperature or as a function of 

temperature and (ii) any temperature profile (linear or nonlinear) in the 

presence or absence of CPAs. The simulations require various cell 

specific inputs, including permeability parameters, temperature 

dependencies of permeability parameters, isotonic cell volume, 

osmotically-inactive fraction, and isotonic intra- and extra-cellular solution 

compositions. The information obtained from this model includes the cell 

volume, intracellular solution composition, and degrees of intracellular 

supercooling as functions of time (or temperature). It has been shown that 

the calculated intracellular osmolality and the intracellular supercooling are 

accurate indicators of damage for both two-step and graded freezing 

protocols [79]. Those two calculated indicators are assumed to be related 

to the damage caused by solution effects and IIF, respectively. However, 

translating the calculated results of the model into predictions of cryo-

injury requires knowledge (or an assumption) of the levels of intracellular 

osmolality which leads to solution effects injury and the degree of 
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intracellular supercooling which leads to IIF. The model does not predict 

the magnitude of damage (i.e. how many cells in a population will be 

damaged by either mechanism), but allows for determination of conditions 

which are likely to lead to solution effects injury or IIF.  

Other researchers have focused on developing models to predict the 

probability of IIF [34; 71; 90; 94] using a water transport equation to 

determine the cellular osmotic response to extracellular ice coupled with 

either an assumed supercooling tolerance [55; 71] or an ice nucleation 

theory [34; 90; 94]. In all of the IIF models, the amount of intracellular 

supercooling is an important parameter in predicting the probability of IIF. 

These models have lead to an increased understanding of the conditions 

which lead to IIF and facilitated the development of hypothesis for the 

mechanisms of IIF. However, the models base the calculated amount of 

supercooling on ideal, dilute solution assumptions, which may result in 

erroneous calculations of the amount of intracellular supercooling at the 

IIF nucleation temperature or incorrect interpretation of the relationship  

between supercooling and IIF.  

In order to model cellular osmotic responses, there are several 

important equations and various cell type-specific parameters required. 

Equations for the (i) transport of water and solutes across the cell 

membrane, (ii) osmolality of the intra- and extra-cellular solutions as a 

function of solution composition (referred to herein as the solution 

behaviour), and (ii) cellular osmotic equilibrium are required. To extend the 

12



model to predicting IIF, an equation to predict nucleation is also required. 

The equations used to model cellular osmotic responses typically contain 

cell-type specific parameters, such as the membrane hydraulic 

conductivity (Lp), the solute permeabilities for each permeating solute (Ps), 

the temperature dependences of Lp and Ps (described with activation 

energies Ea
Lp and Ea

Ps), the isotonic cell volume (Vo), and the osmotically-

inactive fraction of the cell volume (b).  

One of the limitations of many of the equations that are commonly 

used in cryobiological modelling is that they contain ideal, dilute solution 

assumptions. Assuming that the intra- and extra-cellular solutions are 

ideal and dilute at isotonic conditions may be reasonable, but this 

assumption is definitely violated as the solutions are concentrated either 

by the addition of CPAs or by the increasing amount of ice as the 

temperature is reduced to -40 oC and below.   

The research group of McGann and Elliott has developed transport 

equations for water and solutes that are correct for non-ideal, non-dilute 

solutions [1; 18] and these equations should be incorporated into 

cryobiological models. Much cryobiology research has focused on 

predicting the solution behaviour of solutions of cryobiological interest, but 

the equations that have been developed contain several significant 

limitations which have prevented their applicability to a wide range of 

solutions. In addition, others have recognized that the ideal, dilute osmotic 

equilibrium equation (the Boyle-van’t Hoff equation) results in predictions 
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of the osmotically-inactive fraction that are larger than expected. 

Modifications to the Boyle-van't Hoff equation or explanations for the high 

osmotically-inactive fraction of erythrocytes have been proposed, but the 

corrections don’t eliminate the ideal, dilute solution assumption in the 

equation [10; 14; 24; 26; 28; 36; 54; 78; 86; 96; 99]. 

 

1.3. Thermodynamic relationships in cryobiology 

In mathematically describing cellular responses to cryobiology, there 

are several thermodynamic relationships which are important. Osmolality 

is a key cryobiological parameter because it defines the thermodynamic 

freezing point of the solution and is also the driving force for water 

transport across the cell membrane. Osmolality is defined by its 

relationship to the chemical potential and is related to several other 

thermodynamic quantities, such as freezing point depression, osmotic 

coefficient, and water activity. These quantities are often used 

interchangeably in cryobiological equations (with suitable unit 

conversions).   

 

1.3.1. Freezing point depression and osmolality 

Since osmolality and freezing point play such a large role in 

cryobiology, equations have been developed to predict both of these 

quantities for multisolute extra- and intra-cellular solutions. Osmolality and 
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freezing point depression are related to each other, so once one is known, 

the other can be determined.  

From the Gibbs-Duhem equation [74], the relationship between 

freezing point depression, FPT , of an aqueous solution and osmolality, 

 (osmoles/kg solvent), can be obtained [97] (see Appendix A).  
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where 
o

FPT is the freezing point of the pure solvent (water), FPT  is the 

freezing point of the solution, 1W  is the molecular weight of water 

(kg/mole), 
L

s 0

1  is the entropy per mole of pure liquid water (J/moleK), 
S

s 0

1  

is the entropy per mole of pure water in the solid phase (J/moleK), and R  

(J/moleK) is the universal gas constant. In the derivation of equation (1.1), 

the molar entropies of water, 
L

s 0

1 and  
S

s 0

1 , are assumed to be constant. 

The values for the constants in equation (1.1) can be found in Table 1.1. 

Equation (1.1) can be rearranged to yield osmolality as a function of the 

freezing point depression: 
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The nonlinear conversion between osmotic pressure and freezing 

point depression has been previously published [97]. However in that 

study the density of water is missing in the conversion between osmotic 
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pressure and osmolality, which results in a slightly different conversion 

between osmolality and freezing point depression.  

Equation (1.1) can also be used to convert osmolality to freezing point 

depression. Since the freezing point of the solution ( FPT ) appears on both 

sides of equation (1.1), equation (1.1) is usefully rearranged so that FPT  

appears only on the left hand side of the equation.   
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By neglecting the last term in the denominator, the conversion 

between freezing point depression and osmolality, equation (1.3), is 

linearized yielding the widely used equation [6; 38; 95; 97]:  

86.1 FP

o

FP TT  

or 

 86.1
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o
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(1.4) 

 

1.3.2. Osmotic coefficient and osmolality 

The osmotic coefficient, , is often used to express the osmolality of a 

solution. For a single-solute solution, the osmotic coefficient is defined as: 

m




 
(1.5) 

where m is the molal concentration of the solute (mole solute/kg solvent). 
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For a multisolute solution, the osmotic coefficient is defined as the 

osmolality divided by the total solute molality. 




i

im



 

(1.6) 

 

1.3.3. Water activity and osmolality 

In addition to the relationships between freezing point, osmolality, and 

osmotic coefficient, the relationship between water activity and osmolality 

is often needed. Many cryobiological solution theories provide predictions 

of the solution behaviour in water activity, which is then converted to 

osmolality or freezing point.  

Water activity, 1a , is defined through its relationship to chemical 

potential, 1 [74; 95]: 

111 ln aRTo    (1.7) 

where 1  is the chemical potential of water (J/mole), R  is the universal 

gas constant (J/moleK), and T  is temperature (K). The subscript 1 refers 

to the solvent (water) and the superscript o refers to the standard state.  

Using the approach of Landau and Lifshitz [43]3, osmolality,  

(osmoles/kg water), is defined by the following relationship to chemical 

potential: 

                                                 
3
 While many solution theories are written from an a priori assumption of dependence on mole 

fraction, Landau and Lifshitz [43] had a different a priori assumption involving dependence on 

molality.  
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 111 RTWo    (1.8) 

Comparing equations (1.7) and (1.8) gives the following relationship 

between water activity and osmolality: 

1

1ln

W

a


  
(1.9) 

 

The relationship between osmotic pressure, , and osmolality is: 

1RT   (1.10) 

where 1  is the density of water (kg/m3). Thus the relationship between 

osmotic pressure and water activity is: 

1

1ln



a
RT

  
(1.11) 

where 1 is the molar volume of water (m3/mole).  

These quantities are extensively used in the solution thermodynamic 

equations used to model cellular responses to cryopreservation.  

 

1.4. Multisolute solution models in cryobiology 

Due to the complicated intra- and extra-cellular solutions in 

cryobiology which contain a wide range of solutes, from electrolytes to 

CPAs to macromolecules, measuring all possible multisolute solutions is 

prohibitively time- and resource-consuming. Thus, an accurate predictive 

multisolute model is required. This need has long been recognized in 

cryobiology and many models for cryobiological solutions have been 
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developed [20; 40; 44; 45; 46; 67; 68; 69; 100; 101]. Within cryobiology, 

there are several different types of solution theories. The first is ideal, 

dilute solution theory in which interactions between solute molecules are 

not taken into account. This approach is often valid at very low solute 

concentrations, where the solute molecules are not interacting with each 

other. Additionally, some molecules (such as methanol) can be 

approximated as ideal solutes in water over a larger concentration range, 

up to almost 20 molal (i.e. interactions between methanol molecules in 

water do not contribute significantly to the solution behaviour). However, 

the ideal, dilute approach does not work well for the majority of relevant 

solutes in water past very low concentrations, including most CPAs, 

electrolytes, alcohols, and macromolecules.  

In order to account for the non-ideal behaviour of solutions, several 

solution theories have been developed. These include empirical fitting 

equations and solution theories developed from thermodynamic principles. 

The empirical solution theories require parameters that are obtained by 

fitting multisolute solution data in order to predict multisolute data. The 

fitting parameters capture the non-ideal behaviour of the solutes which 

arise from the interactions between the solute molecules. The parameters 

are unique for each particular solution and must be obtained from 

multisolute data for each new combination of solutes. These solution 

theories provide accurate results for the specific solutions for which the 

fitting parameters can be obtained; however, they can only be used to 
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make predictions of solution behaviour for which multisolute solution data 

are available, which greatly limits their applicability in cryobiological 

modelling. Examples of this type of solution theory are the equations 

developed by Pegg [67; 68], Pegg and Arnaud [69], Woods et al. [100; 

101], and Fahy [20].  

Some multisolute solution theories have been developed from 

thermodynamic principles and applied to cryobiological solutions. For 

example, the van Laar equations have been applied to predict the 

behaviour of red blood cell cytoplasm [44; 45; 46]. The van Laar equations 

use the van der Waal’s mixing rules, which are not accurate for many 

liquids, including solutions containing macromolecules or electrolytes [74]. 

The van der Waal’s mixing rules can be removed from the van Laar 

equations, but this requires the use of empirical constants, which restricts 

the usage of the van Laar equations to solutions for which multisolute 

solution data are available.  

The following section outlines some of the solution theories that have 

been applied in cryobiology to capture the non-ideality of the multisolute 

solutions, including the assumptions used in the equations and the 

limitations to each approach.  

(i) Empirical solution theories 

Pegg [67; 68] and Pegg and Arnaud [69] fit equations to data for 

melting point as a function of concentration for specific ternary and 

quaternary solutions in order to obtain empirical parameters for specific 
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combinations of solutes. The empirical parameters are typically functions 

of the mass ratio of the first solute to the second solute, (i.e. the R-value). 

Fitted equations for mixtures of DMSO + sodium chloride (NaCl) + water, 

glycerol + NaCl + water, and PG + glycerol + NaCl + water [67; 68; 69] 

were generated. The equations are in terms of total solute mass fraction 
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where mT  is the melting point of the solution (oC), a  and b  are fitting 

parameters which are typically functions of the R-value, 
i

iX is the total 

solute mass fraction (g/100g of solution), where i refers to each solute, 

and iX is the mass fraction of solute i (g/100 g of solution). The polynomial 

expansion in total solute mass fraction is truncated after sufficient 

parameters are included to describe the multisolute melting point data. 

The non-ideal solution behaviour is captured by the fitting parameters 

which account for the interactions between all of the solute molecules.  

Woods et al. also used this approach to develop equations to predict 

the melting point of solutions containing ethylene glycol (EG) + NaCl + 

water [100; 101].  

The constants in equation (1.12) are specific for each solution and 

cannot be applied to different combinations of solutes. When multisolute 
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solution data is available, this approach results in accurate predictions. 

However, it is limited to solutions for which multisolute solution data are 

available. In addition, data for each new combination of solutes must be fit 

to obtain new coefficients.  

Fahy fit functions to data for freezing point as a function of 

concentration for the ternary systems of glycerol + NaCl + water and 

DMSO + NaCl + water [20], of the form:  
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where T  is the temperature (oC), f is an empirical function that is 

obtained from the fit, 
i

ix  is the total solute mole fraction (moles 

solute/total moles) where i refers to each solute, and ix is the mole fraction 

of solute i (moles solute i/total moles).  

Fahy used equation (1.13), along with other relationships, to calculate 

the composition, water content, salt concentration, and unfrozen fraction 

as a function of temperature. As with Pegg’s equations, this approach 

results in highly accurate predictions, but is limited to solutions for which 

multisolute solution data are available and each new multisolute solution 

must be fit with a new function, f . 

 

22



(ii) Multisolute solution theories derived from thermodynamic principles 

Levin et al. proposed several models for the cytoplasm of an 

erythrocyte [44; 45; 46]. In two of these models, they assumed that the 

cytoplasm is an ideal solution with a certain amount of water bound to 

each solute [44; 46]. The papers referred to the solutes with bound water 

as "hydrated solutes". In one study, Levin et al. modelled the cytoplasm of 

an erythrocyte as a non-ideal, non-dilute, hydrated, pseudo binary solution 

of water and a "fictitious solute" [45]. The fictitious solute represents all the 

solutes which are in the cytoplasm of a red blood cell. Levin et al. used 

van Laar type equations for the activity coefficients of the two solution 

species (solute and solvent).  The van Laar equation uses van der Waal’s 

mixing rules, which are not accurate for many solutions [74], but Levin et 

al. addressed this limitation by replacing the mixing rules with empirical 

constants. The resulting equations for the solvent and solute activities, h

wa  

and h

ma  respectively, are: 
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where h

wa  is the water activity on a hydrated basis, h

ma  is the solute activity 

on a hydrated basis, h

wx is the water mole fraction on a hydrated basis, h

mx  
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is the solute mole fraction on a hydrated basis, and   and   are 

empirical constants. To determine the van Laar coefficients,   and  , the 

water activity of the cytoplasm as a function of concentration is required. 

This necessitates additional simplifying assumptions about the 

composition of the cytoplasm in order to determine the water activity. In 

addition, due to the use of empirical parameters, this approach is limited to 

the solutions for which multisolute solution data are available.    

(iii) Multisolute solution theories in the absence of multisolute data 

In order to predict multisolute solution behaviour, all of the previous 

solution theories describing non-ideal solutions require empirical 

parameters obtained by fitting the multisolute data of the solution of 

interest. Although these solution theories are accurate for the particular 

subset of solutions for which the empirical parameters can be determined, 

they cannot be applied to solutions for which there are no multisolute 

solution data. In order to address this disadvantage, many investigators 

have used the approach of adding single-solute solution osmolalities to 

predict multisolute solution osmolalities (or freezing point depressions) 

[39; 52]. Most recently, Kleinhans and Mazur used this approach to predict 

the freezing point depressions of four different mixtures of a CPA and 

NaCl in water [40]. They fit the data for freezing point as a function of 

concentration of single-solute solutions containing water plus either 

DMSO, glycerol, EG, or NaCl with cubic polynomials as functions of solute 

molality.  
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where FPT  is the freezing point of the solution (oC), 1C , 2C , and 3C  are 

fitting parameters, and m  is the solute molality. 

These coefficients were then used to predict the freezing point 

depressions of solutions containing water with two solutes. For a two-

solute solution, with a solute-A molality of mA and a solute-B molality of 

mB, the predicted freezing point is: 
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where S

FPT is the freezing point of the two-solute solution, A

FPT is the 

freezing point of a single-solute solution of solute A, and B

FPT is the 

freezing point of a single-solute solution of solute B.   

The summation of the freezing point depressions (or osmolalities) 

approach does allow prediction of multisolute solutions using only single-

solute data. The fitting parameters ( 2C and 3C ) account for the interactions 

between solute molecules of the same type. However this approach does 

not take into account the interactions between the different types of solute 

molecules (i.e. interactions between solute A and solute B). Nonetheless, 

this approach has been shown to work well in practice for the particular 

set of multisolute solutions in the Kleinhans and Mazur study.  
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All of the solution theories previously developed in cryobiology either 

(i) contain simplifying assumptions regarding the interactions between 

solute molecules (e.g. ideal and dilute solutions, approach of adding 

osmolalities) or (ii) require fitting of multisolute data to make predictions of 

the multisolute solution. Thus, a multisolute model which has takes into 

account the interactions between solute molecules and requires only 

single-solute information is required. Due to the large range of solutions of 

interest, the multisolute model must be shown to be accurate for 

combinations of many different types of solutes.  

 

1.5. Osmotic equilibrium 

Currently cellular osmotic equilibrium is described with the Boyle-van’t 

Hoff relation, which states that the product of osmolality and equilibrium 

volume of the osmotically-active portion of the cell is constant. This is 

equivalent to the ideal gas law and is thus only applicable to ideal, dilute 

solutions.  

It has been noted in the past that in some cases the Boyle-van’t Hoff 

relationship yields osmotically-inactive fractions higher than predicted from 

desiccation experiments [86] that measure the dry volume of the cell, 

which can be used as another estimate of the osmotically-inactive volume 

of the cell. The discrepancy between osmotically-inactive volume and dry 

volume has been discussed for human erythrocytes [86]. There have been 

many explanations for this difference, including bound water [10; 86; 96], 
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the movement of chloride ions between the extra- and intra-cellular 

solutions [10], the osmotic properties of intracellular solutes [24; 27; 54; 

78], the large entropy of dilution characteristic of macromolecular solutes 

[14], and erythrocyte membrane characteristics [28; 54; 99]. 

Improvements in how the osmotic equilibrium data is fit to the Boyle-van’t 

Hoff equation have also been proposed in order to obtain more accurate 

predictions for the osmotically-inactive fraction [36]. However, none of the 

proposed corrections to the Boyle-van’t Hoff eliminate the ideal, dilute 

solution assumption inherent in the equation.  

 

1.6. Current understanding of IIF in cryobiology 

As with the mechanism of injury from IIF, the conditions which lead to 

the nucleation of intracellular ice are not understood. Since there is 

evidence that the IIF behaviour of cells is greatly influenced by the 

presence of extracellular ice [56; 77], it is believed that the interaction 

between extracellular ice and the cell plays an important role in nucleating 

intracellular ice. There are three main theories of how extracellular ice 

nucleates intracellular ice: (i) the pore theory [3; 56]; (ii) the membrane 

failure hypothesis [7; 16; 64]; and (iii) the surface-catalyzed nucleation of 

intracellular ice [90].  

The hypothesis of the pore theory is that external ice grows through 

pores in the intracellular membrane to nucleate the supercooled 

intracellular water. Mazur [56] proposed the pore theory and stated that 
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above a critical temperature, the radius of the thermodynamically stable 

ice crystals are too large to grow through the intracellular pores (which 

have a radius of 3-8 Å). Thus, above this critical temperature the 

membrane will act as a barrier to extracellular ice, but below the critical 

temperature ice will grow through the membrane pores. Acker, Elliott, and 

McGann [3] refined Mazur's pore theory by including the effect of solutes 

and not neglecting the volume change on freezing in the capillary freezing 

point depression equation. They correlated the predictions of the critical 

temperature for ice growth through pores to intracellular ice propagation 

through gap junctions in monolayers.  

The membrane failure hypothesis presumes that extracellular ice 

initiates IIF when the supercooled cytoplasm is exposed to extracellular 

ice due to mechanical failure of the plasma membrane. Various causes of 

membrane failure during freezing have been proposed, including 

endocytotic vesiculation during osmotic shrinking, thermal perturbations of 

the membrane, and electrical transients at the advancing ice front [87]. 

Muldrew and McGann [64] proposed that the membrane damage is due to 

frictional forces acting on the membrane during water efflux from the cell. 

The damage occurs at a critical osmotic pressure gradient between the 

intra- and extra-cellular solutions.  

Unlike the previous two theories which assume that the barrier 

function of the membrane has to fail in order for IIF to occur, the theory of 

surface-catalyzed nucleation (SCN) assumes that the interaction between 
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the extracellular ice and the membrane causes a change in the internal 

surface of the membrane, which catalyzes the nucleation of intracellular 

ice [90].  

In an effort to further the understanding of the mechanism of IIF and 

predict its occurrence in various cell types, a range of mathematical 

models of IIF have been proposed. The first model of IIF was developed 

by Mazur [55]. He coupled a water transport model with a supercooling 

tolerance, a critical cell water volume percentage, and a critical IIF 

nucleation temperature. The critical cell water volume was set to 10% of 

the isotonic water content based on observations from yeast and E. coli. 

Mazur proposed that the critical nucleation temperature could be 

calculated from his pore theory [56], but due to lack of experimental 

measurements for some of the parameters the critical temperature was 

based on experimental observations from the cell type of interest. The 

supercooling tolerance was assumed to be 2 oC. This model provided 

qualitative predictions of IIF behaviour for a range of cell types [55].  

However, it provides predictions of the probability of IIF of 0 (no incidence 

of IIF) or 1 (100% incidence of IIF) and can thus not predict experimental 

observations of intermediate amounts of IIF. Pitt and Steponkus [71] 

modified Mazur's model to be able to predict transition regions between 0 

% IIF and 100 % IIF by assuming that the supercooling tolerance and IIF 

nucleation temperature were independent random variables that could be 

described using a Weibull distribution. Subsequent to their initial 
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modification of Mazur's model, various adjustments were made to the IIF 

model to enable predictions of a range of experimental observations of IIF 

in D. melanogaster embryos, rye protoplasts, bovine oocytes, and mouse 

oocytes [73]. In one study, Pitt et al. applied their model to predict the IIF 

behaviour of D. melanogaster embryos frozen in ethylene glycol [72]. The 

model predictions were less accurate in the presence of a CPA than 

without CPA present, but this represented the first attempt to make 

predictions of IIF behaviour in the presence of a CPA that could be 

compared to independent experimental data.  

In order to predict the IIF behaviour of human erythrocytes, Toscano 

et al. [94] proposed the first mechanistic model of IIF. The model 

incorporates the Turnball and Fisher nucleation theory and the water 

transport model utilized by Mazur. The prediction of the nucleation of IIF 

depends on a kinetic coefficient and a thermodynamic barrier, both of 

which are dependent on the composition of the intracellular solution.  

Toner et al. [90] proposed a model of IIF in which intracellular ice 

nucleation was catalyzed by the internal surface of the membrane (surface 

-catalyzed nucleation) or small particles in the intracellular solution 

(volume-catalyzed nucleation). Similar to the model of Toscano et al., the 

nucleation rates for both mechanisms are predicted using both a kinetic 

and thermodynamic coefficient, which are functions of the composition of 

the cytoplasm. The nucleation rate equations are strongly dependent on 

the degree of intracellular supercooling. The model was validated using 
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experimental measurements of IIF behaviour of mouse oocytes and gave 

accurate predictions for constant cooling rate experiments, but the 

predictions were less accurate for isothermal IIF experiments. In order to 

predict the occurrence of IIF in human hepatocytes, Toner et al. simplified 

the model [91], most notably by eliminating the volume-catalyzed 

nucleation mechanism.  In the simplified model the two nucleation 

parameters could be obtained from a single constant cooling rate 

experiment for each cell type. The incidence of IIF for a wide range of cell 

types, from mouse oocytes, one-cell mouse embryos, hepatocytes, D. 

melanogaster embryos, beta-islet cells, and rye protoplasts (cold-

acclimated and non-acclimated), was predicted using Toner's model and 

reasonable agreement attained for both constant cooling rate and 

isothermal experiments [33]. In addition, the model of Toner et al. was 

utilized to optimize a cooling protocol for mouse oocytes in the absence of 

permeating CPAs [35].  

In order to extend the model's applicability to freezing protocols with 

permeating CPAs, Karlsson et al. [34] made some modifications to Toner 

et al.'s model. In addition to predicting IIF in the presence of CPAs, the 

model of Karlsson et al. included a crystal growth model to predict the 

extent of intracellular crystallization and the size distribution of the 

intracellular ice crystals. The model developed by Karlsson et al. [34] 

represented the first mechanistic model of IIF in the presence of CPAs 

and the first incorporation of a crystal growth model with a nucleation 
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model. The model demonstrated that the effect of CPAs on IIF was 

dependent on the initial CPA concentration and rate of cooling. This model 

could be applied to optimize both conventional slow-cooling 

cryopreservation protocols and also vitrification protocols involving high 

CPA concentrations and rapid cooling. 

As experimental evidence has shown that cell-to-cell contacts alter 

both the incidence of and damage associated with IIF [2; 5], the 

mechanistic models of IIF have been applied by Irimia et al. to investigate 

the effect of cell-to-cell contact of attached cells on the incidence and 

propagation of IIF in multi-cell systems [29; 30]. The model accuracy was 

confirmed using experimental measurements of IIF in four-cell arrays and 

was then used to predict IIF propagation in tissues.    

The mechanistic models of IIF require several cell-specific 

parameters, including a kinetic coefficient and a thermodynamic 

coefficient, which are obtained from both isothermal and constant cooling 

rate experiments. Lack of experimental measurements for these 

parameters limits the applicability of the mechanistic models to a few cell 

types [33].  

Mathematical modelling has been extensively used in cryobiology to 

understand and predict the occurrence of IIF in cells and how parameters 

such as intracellular supercooling and cell volume influence the incidence 

of IIF [33; 34; 55; 71; 72; 73; 90; 91; 92; 94]. In addition to furthering the 

understanding of the cellular responses to freezing, the use of modelling 
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has contributed significantly to the optimization of cryopreservation 

protocols for several cell types [35; 49; 89]. Additional improvements to 

the models are needed, as many of the equations used to predict IIF and 

interpret the relationships between intracellular supercooling, cell volume, 

and IIF contain ideal, dilute solution assumptions [12; 16; 34; 35; 55; 71; 

72; 73; 90; 91; 92; 94]. In addition, using improved calculations to 

accurately determine the degree of intracellular supercooling and the 

cellular osmotic responses, the role of intracellular supercooling, cell 

volume, and extracellular ice nucleation temperature on incidence of IIF 

requires additional experimental investigation.  

 

1.7. Improvements proposed in this thesis 

This thesis work addressed two of the key limitations in current 

mathematical modelling of cellular osmotic responses to cryopreservation 

and demonstrated how the improved mathematical model can be 

combined with experimental measurements in order to gain additional 

understanding of cellular responses to cryopreservation. 

Firstly, an accurate, predictive multisolute solution theory that requires 

only single-solute information was shown to be applicable to a wide range 

of aqueous ternary solutions of cryobiological interest. The multisolute 

osmotic virial equation (OVE) with novel mixing rules that have been 

derived from thermodynamic first principles was used to predict the 

solution behaviour of aqueous solutions of (i) two low-molecular weight 
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CPAs, (ii) a protein and an ideal solute (which is used to model the 

cytoplasm of an erythrocyte); (iii) two proteins, (iv) a low-molecular weight 

CPA and an electrolyte, and (v) a macromolecule and an electrolyte. In 

addition, the use of the multisolute OVE to solutions containing 

electrolytes was shown to be as accurate as using a more complicated 

electrolyte solution theory.  

Secondly, a non-ideal osmotic equilibrium equation was derived that is 

correct for both ideal and non-ideal solutions. Using a non-ideal equation 

of state (the multisolute OVE) to express the intracellular solution 

osmolality as a function of solute concentration, the new non-ideal osmotic 

equilibrium equation was applied to the same data as the Boyle-van’t Hoff 

equation in order to obtain the predicted osmotically-inactive fraction.  

Finally, experimental measurements of the incidence of IIF following 

extracellular ice nucleation as a function of intracellular supercooling were 

made on a cryomicroscope which allowed cell-specific correlation of IIF 

with cell volume and post-thaw membrane integrity. In order to further 

investigate the role of cell volume and intracellular supercooling on the 

cellular osmotic response to the extracellular ice nucleation, a 

mathematical model was developed which incorporated the improved 

multisolute solution theory, the multisolute OVE, and the non-ideal osmotic 

equilibrium equation. Thus, the mathematical model used in this work 

does not contain ideal, dilute solution assumptions.  
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1.8. Objectives and hypothesis of this thesis 

1.8.1. General hypothesis 

The application of the multisolute osmotic virial equation, with mixing 

rules derived from thermodynamic first principles, to solutions of interest in 

cryobiology will result in more accurate predictions of the multisolute 

solution behaviour, which will lead to improved cryobiological modelling 

and increased understanding of cellular responses to cryopreservation.  

 

1.8.2. General objectives 

1) To develop predictive models of biological solutions.  

2) To further the understanding of the link between supercooling, cell 

volume, and intracellular ice formation.  

 

1.8.3. Specific research objectives 

1) Develop a mathematical model that accurately predicts multisolute 

solution osmolality for intra- and extracellular solutions of interest 

in cryobiology (Chapters 2 - 4). 

2) Develop a non-ideal osmotic equilibrium equation (Chapter 5). 

3) Use experimental measurements and improved cryobiological 

modelling to understand the relationship between the incidence of 
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IIF and several important parameters, specifically intracellular 

supercooling and cell volume (Chapter 6).   

 

The improvements in the solution thermodynamics and osmotic 

equilibrium equations used in cryobiological modelling proposed in this 

thesis will lead to increased understanding of cellular responses to 

cryopreservation. The combination of improved modelling and 

cryobiological experimentation may lead to the design of novel CPA 

solutions and cryopreservation protocols.  
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Table 1.1. Values for constants in the freezing point to osmolality 
conversion (equations 1.1 - 1.3). 

Constant Value 
o

FPT  
273.15 K 

1W  
1.802x10-2 kg/mole 

SL oo ss 11   
22.00 J/moleK 

R  8.314 J/moleK 
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Chapter 2 - Single-solute osmotic virial equation1 

2.1. Introduction 

There are many solutes of interest in cryobiology, including 

electrolytes, sugars, macromolecules, and others. The thermodynamic 

solution behaviour of these individual solutes is often of interest when 

choosing effective cryoprotective agents (CPAs). Solutes with large 

freezing point depressions at low non-toxic concentrations are promising 

candidates as CPAs.  

Solutes of interest in many areas, including cryobiology, have been 

extensively studied and the single-solute solution data is readily available 

in the literature for a wide range of solutes [2; 4; 8; 14; 18; 19; 28; 29; 34; 

35; 38].  

Multisolute data is also available for a number of solutions in 

cryobiology [2; 3; 6; 10; 14; 20; 21; 22; 30; 36; 39]. However, due to the 

number of possible combinations of solutes of interest, data is not 

available for all solutions of interest. A multisolute solution theory will be 

presented in Chapters 3 and 4 which requires only information from 

single-solute solutions to make predictions of a wide range of multisolute 

solutions.  

                                                 
1
A version of sections of this chapter has been published. J.A.W. Elliott, R.C. Prickett, 

H.Y. Elmoazzen, K.R. Porter and L.E. McGann 2007. Journal of Physical Chemistry B. 
111: 1775-1785.  
A version of sections of this chapter has been accepted for publication. R.C. Prickett, 
J.A.W. Elliott, and L.E. McGann 2009. Cryobiology. (doi:10.1016/j.cryobiol.2009.07.011). 
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The osmotic virial equation (OVE) is one of the most widely-used 

thermodynamic equations of state in biology, and the single-solute OVE is 

applicable to a variety of solutions containing water plus a single solute 

(see Figures 2.1 - 2.5). The objective of this chapter was to determine the 

single-solute osmotic virial coefficients for a wide range of solutes in 

water.  

 

2.2. Governing equations 

In the OVE, the osmolalities of single-solute solutions are represented 

as truncated polynomials in molality, where each solute has unique 

coefficients for terms of second or higher order in concentration.  

...
32
 iiiii mCmBm  (2.1) 

where   is the osmolality of the solution (osmoles/kg solvent), im is the 

molal concentration of the solute (moles solute/kg solvent), and iB  [(moles 

solute/kg solvent)-1] and iC  [(moles solute/kg solvent)-2] are the second 

and third osmotic virial coefficients for use with molality, respectively. It is 

common to see osmotic virial equations written as an expansion in 

molarity rather than molality. Since molality, unlike molarity, is not a 

function of temperature, it is practical to use molality for cryobiological 

modelling. If the osmotic virial equation is written in terms of molarity care 

must be taken in converting osmotic virial coefficients between various 

units.  

The single-solute OVE can also be written in terms of mole fraction: 
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 ...
3*2**  iiiii xCxBxA

 
(2.2) 

where ix is the mole fraction of the solute (moles solute/total moles of 

solution), and *

iB [(moles solute/total moles)-1] and *

iC  [(moles solute/total 

moles)-2] are the second and third osmotic virial coefficients for use with 

mole fraction, respectively. The quantity in the parenthesis in equation 

(2.2) is osmole fraction (~ ) so an additional conversion factor, *A , 

between osmole fraction and osmolality is needed. The conversion factor 

is  11

* 1
xW

A  , where 1W  is the molecular weight of the solvent (kg/mole) 

and 1x  is the mole fraction of the solvent (moles solvent/total moles).  

The values for the osmotic virial coefficients for a range of solutes for 

use in (i) molality are listed in Table 2.1 and (ii) mole fraction are listed in 

Table 2.2.  

Equations (2.1) and (2.2) are valid for non-electrolytes in solution. In 

order to extend the application of the OVE to electrolyte solutions, an 

additional fitting constant in the single-solute OVE, called the dissociation 

constant  dissk , is used to capture the complicated behaviour of single-

solute electrolyte solutions. 

    ...
32
 idissiidissiidiss mkCmkBmk

 
(2.3) 

 

This dissociation constant, also known as the van‟t Hoff factor [23],  

accounts for the additional non-ideality of the solution behaviour from 

several electrolyte effects. Thus, the “dissociation constant” may not be 
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exactly equal to two, even for electrolytes known to completely dissociate 

[13].  

For electrolytes, the single-solute OVE is written in terms of mole 

fraction as: 

    ...
3**2****  idissiidissiidiss xkCxkBxkA

 
(2.4) 

where *

dissk is the dissociation constant for use with mole fraction. The 

values for the dissociation constant and osmotic virial coefficients for 

sodium chloride (NaCl) and potassium chloride (KCl) are listed in Tables 

2.1 and 2.2 for use in molality and mole fraction, respectively.  

It can be argued that the single-solute OVE approach should not be 

used to describe the solution behaviour of electrolytes since: (i) the 

dissociation constant cannot be less than two for strong 1:1 electrolytes 

such as NaCl or KCl, and (ii) a constant cannot capture the complicated 

electrolyte solution behaviour, and that therefore an actual electrolyte 

solution theory, such the Pitzer-Debye-Huckel equations [24; 25], should 

be used.  

There has been much debate in the literature with respect to the 

question of complete or partial dissociation of NaCl [11].  Much of the work 

published on NaCl is based on the assumption of complete dissociation [1; 

24; 26; 29]. However, Heyrovska demonstrated that by assuming partial 

dissociation, equations can be developed that quantitatively explain the 

behaviour of aqueous NaCl solutions [12; 13]. Large amounts of 

experimental data on the densities of aqueous NaCl solutions have been 
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shown to agree with the equations developed using the assumption of 

partial dissociation [13]. Furthermore, the dissociation constant has been 

shown to be dependent on electrolyte concentration, reaching complete 

dissociation only at infinite dilution [23].  Using osmotic coefficient data, 

Heyrovska calculated the van‟t Hoff factor using [12]: 

   imm   21  (2.5) 

where  = the degree of dissociation, m is the molal concentration of the 

electrolyte, and i is the van‟t Hoff factor. The degree of dissociation    for 

aqueous NaCl solutions ranging from 0 to 6.144 mol/kg solvent has been 

shown to vary between 1 (completely dissociated) to less than 0.8 [13].  

This resulted in a van‟t Hoff factor ranging from of 2 ( = 1) to less than 

1.8 (  < 0.8).  

Many electrolyte solution theories have been developed to describe 

the complex solution behaviour of electrolytes in water. Among the most 

well-known is the Pitzer-Debye-Huckel electrolyte solution theory [24; 25].  

Pitzer and colleagues incorporated the Debye-Huckel equations into a 

solution theory to describe the behaviour of a wide range of electrolyte 

solutions. Unlike the OVE approach of using an additional fitting constant, 

the Pitzer-Debye-Huckel equations for solutions of electrolytes utilize an 

ionic-strength-dependent function to capture the electrolyte solution 

behaviour [24; 25]. Since this function depends on the ionic strength of the 

solution it has to be calculated for every electrolyte concentration. The 
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Pitzer-Debye-Huckel equation in osmotic coefficient, , for 1:1 electrolytes 

such as NaCl or KCl, is: 

21 mCmBf MXMX

   
(2.6) 

where 

MXB is the second osmotic virial coefficient, 

MXC is the third osmotic 

virial coefficient, f  is the „electrolyte effects‟ function based on Debye-

Huckel parameters, and m is the molality of the electrolyte.  

Converting osmotic coefficient to osmolality using equation (1.5), and 

noting for NaCl  = 2, gives: 

  32 2212 mCmBmf MXMX

   
(2.7) 

 

In addition to the electrolyte effects function, the second osmotic virial 

coefficient, 

MXB , is also dependent on the ionic strength of the solution and 

thus must be calculated at each electrolyte concentration.  

The electrolyte effects function is calculated using the Debye-Huckel 

slope, A , the ionic strength of the solution, I , and an empirical 

parameter, b : 
















 

Ib

I
Af

1
 

(2.8) 

 

The values for all of the empirical parameters in the Pitzer-Debye-

Huckel equation are listed in Table 2.3 [5; 24; 25].   

The second virial coefficient is calculated based on three empirical 

parameters, ,,
)1()0(

MXMX   and , and the ionic strength of the solution: 
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I

MXMXMX eB   
)1()0(

 
(2.9) 

 

The third virial coefficient, 

MXC , is a constant, which was obtained by 

fitting the Pitzer-Debye-Huckel equation to single-solute NaCl data.  

00127.0

MXC  (2.10) 

 

A comparison between the dissociation constant  dissk  and the Pitzer-

Debye-Huckel electrolyte effects function   12 f  for NaCl (Figure 2.6), 

demonstrates that the value obtained by fitting for dissk  is within the range 

of values for the  12 f  function calculated for a variety of NaCl 

concentrations. In addition, both the single-solute OVE and the Pitzer-

Debye-Huckel equation adequately captured the solution behaviour of an 

aqueous NaCl solution (Figure 2.7). The OVE fit shown in Figure 2.7 was 

obtained by fitting the OVE to the same data that was used to obtain the 

parameters for the Pitzer-Debye-Huckel equation that is also shown on 

Figure 2.7. The NaCl data used for the OVE fit and the Pitzer-Debye-

Huckel fit in Figure 2.7 was measured at 25 oC [29], versus the NaCl data 

used for the OVE fit shown in Figure 2.1, which was obtained at sub-zero 

temperatures. The osmotic virial coefficients for the fit shown in Figure 2.7 

are listed in Table 2.4.  

The single-solute OVE (equations (2.1) and (2.2)) and the Pitzer-

Debye-Huckel solution theory presented above (equations (2.6)-(2.10)) 
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are for solutions containing water plus one solute. The Pitzer-Debye-

Huckel solution theory is for electrolyte solutes, whereas the single-solute 

OVE can be applied to a wide variety of solutes, from electrolytes to CPAs 

to macromolecules. The application of the OVE to electrolyte solutions is 

straightforward, requiring only two fitting parameters to describe the 

solution behaviour of NaCl (the dissociation constant, dissk , and a second 

virial coefficient, B). Alternatively, the Pitzer-Debye-Huckel equation, 

which endeavours to also capture the solution behaviour of mixtures of 

electrolytes, contains more complexity. The Pitzer-Debye-Huckel equation 

has six empirical parameters and multiple functions that are ionic strength 

dependent [24; 25].  

 

2.3. Materials and methods 

2.3.1. Obtaining the single-solute phase diagrams 

Phase diagrams were either (i) measured by freezing point depression 

or (ii) obtained from the literature for various single-solute solutions. The 

phase diagram data were given as freezing point depression as a function 

of solute concentration, osmotic coefficient as a function of solute 

concentration, or as osmolality as a function of solute concentration. The 

data were converted to osmolality using the nonlinear conversion from 

freezing point depression, equation (1.2) or the conversion from osmotic 

coefficient, equation (1.5). Figure 2.8 shows that common practice of 

using the linear conversion between freezing point depression and 
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osmolality (equation (1.4)), as opposed to the nonlinear conversion, 

introduces over 7% error when the freezing point depression is 20 oC and 

over 18% error when the freezing point depression is 50 oC.  

The concentration units varied among the studies, but were all 

converted to molality. The concentration unit conversion equations can be 

found in Appendix B.  

(i) Freezing point depression measurements 

The freezing point depression data of glycerol (Sigma-Aldrich, 

Oakville, Ontario) in distilled, deionized water (CORNING Mega-PureTM 

system ACS), dimethyl sulphoxide (DMSO) (Sigma-Aldrich, Oakville, 

Ontario) in distilled, deionized water, and whey protein isolate (Power 

Pro®) (Dr. Paul Jelen, University of Alberta, Edmonton) in distilled, 

deionized water were collected2. The solutions were made on a mass 

basis in order to avoid any volume variations due to temperature. The 

solute masses were measured on an electronic mass balance (Mettler 

Toledo AB204-S, Greifensee, Switzerland). For the DMSO-in-water 

solutions and the glycerol-in-water solutions, the solutions were mixed 

using a vortex mixer (Cole-Palmer Model 4721-40, Vernon Hills, Illinois) 

for 10-15 seconds on a speed setting of 9 (out of 10). For both the DMSO 

+ water solutions and the glycerol + water solutions, the concentrations 

used ranged from 0 % to 44 % w/w. Above this concentration, the 

viscosity of the solutions limited the accuracy of the freezing point 

                                                 
2
Undergraduate student K. Porter measured the glycerol-in-water and DMSO-in-water 

data points.  
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depression measurements. For the whey protein-in-water solutions, the 

solutions were mixed on an electronic stirrer (Fisher Scientific Electronic 

Stirrer 2009, Fisher Scientific Ltd, Nepean, Ontario). Small amounts of the 

whey protein isolate powder were added to 10 g of the distilled, deionized 

water. The solution was mixed on the electronic stirrer until the powder 

dissolved. More whey protein isolate powder was added and the solution 

mixed on the electronic stirrer. This was repeated until all of the powder 

had been added to the water. The solution was covered with parafilm to 

avoid evaporation of water, placed on the electronic stirrer and mixed at 

500 rpm for 30 minutes. The solution was placed in a 37 oC water bath for 

30 minutes and then placed back on the magnetic stirrer at 500 rpm for 30 

minutes. This was repeated until the protein was completely dissolved. 

The concentration of whey proteins used ranged from 0 % to 35 % w/w. 

Above this concentration, it was difficult to dissolve the whey protein in 

water. 

Five millilitres (5 mL) of solution was transferred to a 50 mL 

disposable centrifuge tube (Fisher Scientific Ltd, Nepean, Ontario) using a 

disposable Pasteur pipette. A rubber stopper with a hole in the center was 

inserted into the top of the tube and a 0.125” type T thermocouple 

(OMEGA CPIN-18G-12, Laval, Quebec) was placed through the hole in 

the rubber stopper and lowered into the solution. The tube was lowered 

into a methanol bath (FTS Systems MC880 A1, Stone Ridge, New York), 

ensuring that the solution was completely immersed in methanol. The bath 
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was set to approximately 5 oC below the expected freezing point of the 

solution. The temperature data was gathered using a USB data acquisition 

system (OMEGA OMB-DAQ-55, Laval, Quebec) and accompanying 

software (OMEGA DAQVIEW XL, Laval, Quebec). The thermocouple was 

calibrated each day using the freezing point of distilled, deionized water. 

Each sample was allowed to reach thermal equilibrium with the 

methanol bath and then ice was nucleated in the sample using forceps 

cooled in liquid nitrogen (Praxair, Edmonton, Alberta). Ice was nucleated 

by briefly removing the sample from the methanol bath and touching the 

cold forceps to the side of the tube. For the glycerol + water and the 

DMSO + water solutions with solute concentration less than 15 % (w/w) 

and for the whey protein + water solutions, the samples were returned to 

the bath to complete the freezing process. For the glycerol + water 

solutions and the DMSO + water solutions with greater than 15 % (w/w) 

solute concentration, the samples were left at room temperature until the 

ice crystals reached the thermocouple (solutions >15% (w/w)). Upon ice 

nucleation in the sample, release of the latent heat causes a sharp 

increase to the freezing point of the solution and the sample remains at 

that temperature until the freezing process is complete. The freezing point 

was taken to be the average of the temperatures recorded for the entire 

plateau. Figure 2.9 is a typical temperature versus time graph for a 

freezing point depression measurement. The viscosity of the glycerol + 

water and the DMSO + water solutions of mass percentage greater than 
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15% (w/w) slowed the ice crystal growth and the release of latent heat. 

The glycerol and DMSO experimental values were compared to literature 

values [2; 14; 18; 28; 35] and were found to be consistent with the 

published results. (See Figures 2.2c and 2.2d). 

 (ii) Obtaining phase diagrams from the literature 

Phase diagrams for many single-solute aqueous solutions were 

obtained from the literature [2; 4; 8; 10; 14; 19; 28; 34; 38]. Various 

experimental methods were used to measure the phase diagrams, 

including freezing point depression measurements [19], differential 

thermal analysis (DTA) or differential scanning calorimetry (DSC) [2; 4; 10; 

14; 28], and membrane osmometry [8; 34; 38].  

It should be noted that measuring the phase diagram of viscous 

solutions using freezing point depression measurements, DTA, or DSC 

can result in inaccurate results due to the viscosity of the solution slowing 

the ice crystal growth and the release of latent heat, particularly at high 

concentrations.  

 

2.3.2. Fitting the single-solute osmotic virial equation to data 

After the data were converted to osmolality as a function of solute 

molality, linear regression was performed on the single-solute osmotic 

virial equation to obtain the osmotic virial coefficients for each solute. The 

single-solute OVE using concentration units of molality (equation (2.1) or 

(2.3)) or mole fraction (equation (2.2) or (2.4)) was fit to the single-solute 
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osmolality as a function of concentration data by minimizing the sum of 

squared errors (SSE). The SSE is defined as: 

 



m

1

2

i

ii fySSE  (2.11) 

where iy  is the value of the ith data point, if  is the value calculated from 

the OVE at the ith data point, and m is the number of data points. 

The SSE was minimized using the SOLVER function in Excel 

(Microsoft, Redmond, WA, USA). However, in some instances SOLVER 

may give results that are a local minimum in the data, not the absolute 

minimum. Thus, minimizing the SSE was be done using a matrix 

approach.  

The linear regression equation was generalized as: 

   


n

1i

ii xfy


 (2.12) 

where i


 is a vector that contained the regression coefficients,  xfi


 were 

the functions of the variable x  that were multiplied by the regression 

coefficients,   was a vector of the errors in the prediction, and n was the 

number of regression coefficients. The vector, y


, contained the values of 

the dependent variable for each data point.  

m
y

y

y

y


 2

1

  
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The individual functions, if , were known and 


 were the unknown 

coefficients. The A -matrix was defined as follows3:  

       
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
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














321

2232221

1131211

 

 

To minimize the SSE, the following equation was used to determine 

the vector, 


 [9]: 

  yAAA TT  1


 
(2.13) 

where TA is the transpose of the A -matrix and the superscript -1 indicates 

the inverse of the matrix. This gave a vector of the form: 

n









2

1

  

where 1 is the first regression coefficient, 2 is the second regression 

coefficient, 3 is the third regression coefficient, etc.  

To determine the confidence intervals of the regression coefficients, 

the model standard deviation,̂ , was needed: 

                                                 
3
 For linear regression the A -matrix is equivalent to the Jacobian matrix, which is defined 

as the derivative of the regression equation with respect to each regression coefficient. 

For nonlinear regression the Jacobian matrix should be used in place of the A -matrix. 
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nmnm 







yAyySSE TT 


̂  (2.14) 

 

The 95% confidence intervals were found using the following formula: 

  1

,
2

ˆ





ii

T

i AAt  
nm

 (2.15) 

where i is the ith regression coefficient (i = 1 to n) and nm,
2

t is the 

Student's t-test value at a significance of /2 and (m-n) degrees of 

freedom. For the 95 % confidence intervals, = 0.05.  

The single-solute OVE for non-electrolytes (equations (2.1) and (2.2)) 

does not have a linear coefficient, so the equation was re-arranged so that 

it was in the form: ...3

3

2

21  xxxy  . For example, rearranging 

equation (2.1) so that the linear term has a regression coefficient gives: 

...1 2 iiii

i

mCmB
m



 

(2.16) 

 

For electrolytes, there is a linear term in the OVE  dissk , so to solve for 

the osmotic virial coefficients, the y


vector contained the measured 

osmolality (not 1im ). Table 2.5 contains a summary of the matrix 

approach for each type of solute.  

In Excel, matrices were set up in order to determine the osmotic virial 

coefficients for each solute. To obtain the coefficients for use in molality 

for non-electrolyte solutes, matrices were set up in the following manner: 
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where the number in parentheses indicates the rank order of the data 

point (i.e. (1) indicates that this is the first data point, (2) is the second 

data point, etc).  
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A


n

n

  

where im  is the molality of the solute. To solve for the osmotic virial 

coefficients in mole fraction, the A -matrix contained mole fraction ( ix ) 

instead of molality. The number of columns in the A -matrix was 

determined by the number of regression coefficients that were being fit to 

the data (i.e. number of columns = n) and the number of rows in the A -

matrix was determined by the number of data points (number of rows = 

m).  

Using the matrix approach, the coefficients for increasing orders of the 

osmotic virial equation were quickly determined by simply adding 

additional columns to the A -matrix (containing increasing orders of the 

solute concentration) and using equation (2.13) to obtain the values for 


.  
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It was found that using the SOLVER function in Excel to minimize the 

sum of squared errors typically gave the same values as the matrix 

method for the osmotic virial coefficients.  

The coefficients in the single-solute OVE can be derived directly from 

knowledge of the interactions between solute molecules [27]. The second 

virial coefficient comes from interactions between two solute molecules; 

the third virial coefficient comes from interactions between three solute 

molecules, and so on. Because of this physical basis, only a small number 

of terms may be required in the single-solute OVE to accurately capture 

the solution behaviour of a wide range of solutes. To determine which 

order of polynomial adequately fits the single-solute data, increasing 

orders of the single-solute OVE (starting with linear) were used for each 

solute and the adjusted R2 parameter was calculated for each order of 

polynomial. The adjusted R2 is a measure of the goodness of fit of an 

equation to a data set, and it also takes into account the number of 

parameters in the fitted equation. The standard R2, often used to 

determine goodness of fit, does not take into account the number of 

parameters in the model and may erroneously increase with increasing 

number of parameters in the equation.  The adjusted R2 was used to 

assess the necessity of adding additional parameters to the model [9]. 

T

E

VAR

VAR
Radjusted 12

 (2.17) 

where estimates of the variances of the errors, EVAR , and the 

observations, TVAR , are defined as: 
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where y is the average of all of the data points. SSE is the sum of 

squared errors, also called the residual sum of squares, and TSS is the 

total sum of squares.  

Increasing orders of polynomial were used until the adjusted R2 

parameter either decreased or remained constant to the third significant 

figure (i.e. less than a 1% improvement was achieved by adding another 

parameter).  

 

2.4. Results 

Single-solute phase diagrams for many solutes were obtained from 

the literature. For non-electrolyte solutions, the data were fit to the single-

solute OVE in concentration units of molality (equation (2.1)) and mole 

fraction (equation (2.2)). The data for electrolytes were fit to equations 

(2.3) and (2.4).  The single-solute OVE fits are shown on Figures 2.1 to 

2.5. The solutes were grouped by type of molecules (i.e. electrolytes, 

common CPAs, sugars, alcohols, and macromolecules). The osmotic virial 

coefficients for use with solute molality are listed in Table 2.1 and for use 

with solute mole fraction in Table 2.2. Tables 2.1 and 2.2 also contain the 

69



concentration ranges that were used to fit for the coefficients of each 

solute and the solubility limits for the electrolytes and sugars [19; 35].    

The fits shown in Figures 2.1 to 2.5 demonstrate that the OVE 

adequately fit all of the single-solute solution osmolalities as a function of 

concentration data. The adjusted R2 for each fit was > 0.95 for the fits in 

molality and > 0.91 for the fits in mole fraction.  

The whey protein + water freezing point depression measurements 

had a large standard deviation (see Figure 2.5). The ice growth through 

the samples was slow, resulting in inaccuracies in the measurement. The 

slow ice growth may be due to the concentration of the whey protein in the 

water. In order to avoid the issues with ice growth through concentrated 

solutions, other studies have utilized membrane osmometry to measure 

the phase diagram of protein solutions [8; 34; 38].  

 

2.5. Discussion 

The single solute osmotic virial coefficients were determined for a 

wide range of solutes in water, including electrolytes, common CPAs, and 

macromolecules. The common CPAs, such as DMSO, glycerol, and 

ethylene glycol, exhibit non-ideal solution behaviour. Thus, those solutes 

have a significant effect on the osmolality (or freezing point depression) at 

a relatively low concentration, as opposed to a solute which is more ideal, 

such as methanol. However, many sugars are often used as CPAs, such 

as trehalose or sucrose, and these solutes have a smaller effect on the 
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osmolality of the solution at a given concentration. The protective effect of 

the sugar molecules during freezing or drying may not be due solely to 

freezing point depression. It has been suggested that the protective 

effects of sugars may be due to membrane and protein stabilization [7].   

It can be seen from Figure 2.5 and Tables 2.1 to 2.2 that the 

macromolecules are very non-ideal and have a marked effect on the 

osmolality at very low molal concentrations. Many macromolecules, such 

as hydroxyethyl starch [32; 33], skim milk powder (which contains whey 

proteins) [16; 37], and egg yolk (which contains a high protein content) 

[31] are used as part of cryopreservation protocols for many different cell 

types. These molecules are non-permeating CPAs, as they are too large 

to cross the cell membrane. Since the driving force for water transport is 

the osmolality difference between the intra- and extracellular solutions [15; 

17], the very non-ideal, non-permeating molecules increase the water 

transport at low concentrations. Thus, they act by dehydrating the cell at 

above zero temperatures, allowing for rapid cooling without the likelihood 

of intracellular freezing.  

In subsequent chapters, the single-solute osmotic virial coefficients 

will be used to make predictions of multisolute solution behaviour.  
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Table 2.1. Osmotic virial coefficients for use with solution molality.  

Solute † 
[Reference] 

kdiss 
[±95% CI

‡
] 

B 
molal-1 

[±95% CI
‡
] 

C 
molal-2 

[±95% CI
‡
] 

Adj. 
R2 

Max 
Molality 

Solubility 
limit § 

(molal) 
[Temp] 

NaCl 
[35] 

1.678 
[±0.02] 

0.044 
[±0.002] 

0* 1.000 5.111 
6.100  
[0 

o
C] 

KCl 
[35] 

1.772 
[±0.003] 

0 0 1.000 2.005 
3.726  
[0 

o
C] 

DMSO ** 

[2; 14; 28] 
1

††
 

0.108 
[±0.005] 

0 0.990 14.975  

Glycerol ** 
[2; 18; 35] 

1 
0.023 

[±0.001] 
0 0.996 10.859  

PG  
[4; 18; 35] 

1 
0.039 

[±0.001] 
0 0.997 19.713  

EG 
[35] 

1 
0.037 

[±0.001] 
-0.001 

[0.0001] 
1.000 24.166  

Methanol 
[35] 

1 
0.004 

[±0.0003] 
0 0.998 66.345  

Mannitol 
[35] 

1 0 0 1.000 0.999 
1.181  
[25 

o
C] 

Sucrose 
[35] 

1 
0.125 

[±0.002] 
0 1.000 2.115 

5.958  
[20 

o
C] 

Dextrose 
[35] 

1 
0.044 

[±0.001] 
0 1.000 2.379 

4.542  
[15 

o
C] 

Trehalose 
[19] 

1 
-0.394 
[±0.2] 

0.388 
[±0.2] 

0.998 1.108 
1.325 

[-1.2 
o
C] 

Hemoglobin 
[8] 

1 
49.252 
[±18.6] 

3.07x10
4 

[±1.83x10
3
] 

0.999 1.23x10
-2

  

BSA 
[34] 

1 
3.70x10

2 

[±3.62x10
2
] 

1.60x10
5 

[±4.25x10
4
] 

0.994 9.72x10
-3

  

OVL 
[38] 

1 
3.78x10

2 

[±14.9] 
0 0.990 1.95x10

-2
  

Whey 
proteins 

[this study] 
1 

3.99 x10
2
 

[±61.5] 
0 0.954 3.03x10

-2
  

†
In addition to the solutes shown in the table, some very non-ideal solutes can be described 

using the osmotic virial equation. For example, ethanol is a very non-ideal solute and requires 
three parameters to adequately fit the solution behaviour for use with molality. (B = 0.0376, 
C = -0.002, D = 0.000023, adj R

2
 = 0.999) (see Figure 2.3a).  

‡
95% confidence intervals were calculated using equation (2.15). 

§ 
A blank indicates that there is either no solubility limit or the solubility limit is unknown. 

*Where 0 appears in table, it indicates that the coefficient was not included in the fit (i.e. C = 0, 
indicates a quadratic fit was adequate).  

** Phase diagram also measured in this study. 

††  
Where 1 appears in the dissociation constant column, it indicates that there is no dissociation 

into ions of this solute.  
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Table 2.2. Osmotic virial coefficients for use with solution mole fraction. 

Solute 
[Reference] 

kdiss 
[±95% CI

‡
] 

B
1










totalmole

solutemole

 
[±95% CI

‡
] 

C
2










totalmole

solutemole  

[±95% CI
‡
] 

Adj. 
R2 

Max 
Mole 
Frac 

Solubility 
limit § 










totalmole

solutemole

[Temp] 

NaCl 
[35] 

1.663 
[±0.02] 

2.749 
[±0.1] 

0* 1.000 0.084 
0.099  
[0 

o
C] 

KCl 
[35] 

1.772 
[±0.003] 

0 0 1.000 0.035 
0.063  
[0 

o
C] 

DMSO ** 

[2; 14; 28] 
1

††
 

2.423 
[±1.4] 

27.231 
[±8.0] 

0.995 0.213  

Glycerol ** 
[2; 18; 35] 

1 
1.950 
[±0.1] 

0 0.998 0.164  

PG  
[4; 18; 35] 

1 
2.831 
[±0.08] 

0 0.999 0.262  

EG 
[35] 

1 
1.501 
[±0.07] 

0 0.999 0.303  

Methanol 
[35] 

1 
0.395 
[±0.02] 

0 0.999 0.545  

Ethanol 
[35] 

1 1.9949 -5.9843 0.999   

Mannitol 
[35] 

1 0 0 0.999 0.017 
0.021  
[25 

o
C] 

Sucrose 
[35] 

1 
7.182 
[±0.1] 

0 1.000 0.037 
0.097  
[20 

o
C] 

Dextrose 
[35] 

1 
2.513 
[±0.05] 

0 1.000 0.041 
0.076  
[15 

o
C] 

Trehalose 
[19] 

1 
-22.418 
[±9.3] 

1.250x10
3 

[±5.2x10
2
] 

0.998 0.020 
0.023 

[-1.2 
o
C] 

Hemoglobin 
[8] 

1 
1.978x10

4 

[±1.3x10
3
] 

0 0.960 2.21x10
-4

  

BSA 
[34] 

1 
9.535x10

4 

[±8.4x10
3
] 

0 0.961 1.75x10
-4

  

OVL 
[38] 

1 
2.310x10

4 

[±8.8x10
2
] 

0 0.990 3.51x10
-4

  

Whey 
proteins 

[this study] 
1 

2.20x10
4
 

[±4.6x10
3
] 

0 0.911 5.46x10
-4

  

‡
95% confidence intervals were calculated using equation (2.15). 

§ 
A blank indicates that there is either no solubility limit or the solubility limit is unknown. 

*Where 0 appears in table, it indicates that the coefficient was not included in the fit (i.e. C = 0, 
indicates a quadratic fit was adequate).  

** Phase diagram also measured in this study. 

††  
Where 1 appears in the dissociation constant column, it indicates that there is no dissociation 

into ions of this solute.  
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Table 2.3.  Pitzer-Debye-Huckel equation parameters [5; 25] 

Parameter Description Value 

f  

Pitzer-Debye-Huckel 
electrolyte effects 

function 















 

Ib

I
Af

1
 

A  Debye-Huckel slope 0.377* 

I  Solution ionic strength 

 mzmzI xm

22

2

1


 
where mz is the charge of 

the positive ion, xz is the 

charge of the negative ion, 
and m  is the molality of the 

solute. For a 1:1 electrolyte 
mI   

b  Empirical parameter 1.2 


MXB  2nd virial coefficient I

MXMXMX eB   
)1()0(

 
)0(

MX   0.0765 
)1(

MX   0.2664 

  Empirical parameter 2.0 


MXC  3rd virial coefficient 0.00127 

*Value for A is for water at 0 oC and saturated pressure [5].  

All other values can be found in [25].  

80



 

Table 2.4. Osmotic virial coefficients for NaCl fit to Robinson and Stokes 
data [29].  

Solute† 
[Reference] 

kdiss 
[±95% CI†] 

B* 
molal-1 

[±95% CI†] 
Adj. R2 

NaCl 
[29] 

1.673 
[±0.02] 

0.0508 
[±0.002] 

1.000 

 

†95% confidence intervals were calculated using equation (2.15) 
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Table 2.5. Summary of the approach used for linear regression of different 
forms of the single-solute osmotic virial equation.  

Type of solute 
[concentration units] 

y


 vector 

Conversion of 

coefficients in 


 to 

osmotic virial 
coefficients 

Non-electrolytes 
[molality] 

1im
 

1 = B 

 2 = C 
… 

Electrolytes 
[molality] 



 1 = kdiss 

 2 = B(kdiss)
2 

 3 = C(kdiss)
3 

… 

Non-electrolytes 
[mole fraction] 

1* ixA
 

 1 = B* 

 2 = C* 
… 

Electrolytes 
[mole fraction] 

*A  

 1 = kdiss
* 

 2 = B*(kdiss
*)2 

 3 = C*(kdiss
*)3 

… 
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Figure 2.1. Osmolality of single-solute aqueous electrolyte solutions as a 

function of (a) solute molality and (b) solute mole fraction. The NaCl and 

KCl data are from the CRC tables [35]. Equation (2.3) was fit to the data in 

molality and equation (2.4) was fit to the data in mole fraction in order to 

obtain the dissociation constant and the osmotic virial coefficients for each 

solute. The dashed line is for an ideal, dilute solute ( = m). The ideal, 

dilute line is not linear in the mole fraction graphs due to the nonlinear 

conversion between mole fraction and molality.  
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Figure 2.2. Osmolality of single-solute aqueous CPA solutions as a 

function of (a) solute molality and (b) solute mole fraction. The DMSO data 

are from various literature sources [2; 14; 28] and our measurements. The 

glycerol data are from various literature sources [2; 18; 35] and our 

measurements. The propylene glycol (PG) data are from various literature 

sources [4; 18; 35]. The ethylene glycol (EG) data are from the CRC 

tables [35]. Equation (2.1) was fit to the data in molality and equation (2.2) 

was fit to the data in mole fraction in order to obtain the osmotic virial 

coefficients for each solute. The dashed line is for an ideal, dilute solute  

( = m). The ideal, dilute line is not linear in the mole fraction graphs due 

to the nonlinear conversion between mole fraction and molality.  
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Figure 2.2 (cont'd). Osmolality of single-solute aqueous (c) DMSO and (d) 

glycerol solutions as a function of solute molality. The closed circles are 

data points measured in our lab. The other symbols are from various 

literature sources. The DMSO data are from [2; 14; 28]. The glycerol data 

are from [2; 18; 35]. The solid line is the osmotic virial equation in molality 

(equation (2.1)) fit to all of the data in order to obtain the osmotic virial 

coefficients for each solute.  
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Figure 2.3. Osmolality of single-solute aqueous alcohol solutions as a 

function of (a) solute molality and (b) solute mole fraction. The methanol 

and ethanol data are from the CRC tables [35]. Equation (2.1) was fit to 

the data in molality and equation (2.2) was fit to the data in mole fraction in 

order to obtain the osmotic virial coefficients for each solute. The dashed 

line is for an ideal, dilute solute ( = m). The ideal, dilute line is not linear 

in the mole fraction graphs due to the nonlinear conversion between mole 

fraction and molality.  
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Figure 2.4. Osmolality of single-solute aqueous sugar solutions as a 

function of (a) solute molality and (b) solute mole fraction. The sucrose, 

dextrose, and mannitol data are from the CRC tables [35]. The data for 

trehalose is from Miller et al. [19]. Equation (2.1) was fit to the data in 

molality and equation (2.2) was fit to the data in mole fraction in order to 

obtain the osmotic virial coefficients for each solute. The dashed line is for 

an ideal, dilute solute ( = m). The ideal, dilute line is not linear in the mole 

fraction graphs due to the nonlinear conversion between mole fraction and 

molality.  
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Figure 2.5. Osmolality of single-solute aqueous macromolecule solutions 

as a function of (a) solute molality and (b) solute mole fraction. The 

hemoglobin data are Adair‟s data published by Dick [8]. The bovine serum 

albumin data are from Vilker et al. [34]. The ovalbumin data are from 

Yousef et al. [38].  They whey protein data was measured in this study. 

Equation (2.1) was fit to the data in molality and equation (2.2) was fit to 

the data in mole fraction in order to obtain the osmotic virial coefficients for 

each solute. The dashed line is for an ideal, dilute solute ( = m). The 

ideal, dilute line is not linear in the mole fraction graphs due to the 

nonlinear conversion between mole fraction and molality.  
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Figure 2.6. A comparison between the dissociation constant  dissk  and the 

Pitzer-Debye-Huckel electrolyte effects function   12 f
 
for NaCl.  
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Figure 2.7. Osmolality of single-solute aqueous NaCl solutions as a 

function of solute molality. The open circles are data measured at 25 oC, 

obtained from from Robinson and Stokes [29] which were used by Pitzer 

and Mayorga [25] to determine the Pitzer-Debye-Huckel coefficients 

(Table 2.3). This data was used to obtain the single-solute NaCl osmotic 

virial coefficients at 25 oC (Table 2.4). The solid line is the single-solute 

osmotic virial equation in molality (equation (2.3)) fit to the data and the 

dashed line is the Pitzer-Debye-Huckel (equation (2.7)) fit to the data.  

Except at the highest NaCl concentrations, the dashed line is lying directly 

under the solid line and cannot be seen.  

90



 
 

 

Figure 2.8. Osmolality determined from the freezing point using either the 

linear conversion (equation (1.4)) or the nonlinear conversion (equation 

(1.2)).  

TFP 
(oC) 

 from eq. (1.2) 
(osm/kg solvent) 

 from eq. (1.4) 
(osm/kg solvent) 

% 
difference 

20 11.61 10.75 7.38 
50 32.93 26.88 18.36 
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Figure 2.9. Typical temperature measurements for a freezing point 

depression experiment. The closed diamonds are from a typical sample 

with less than 15 % (w/w) solute concentration. The open circles are from 

a typical sample with greater than 15 % (w/w) solute concentration. The 

freezing point is determined by the average temperature during the 

plateau.  
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Chapter 3 - Multisolute osmotic virial equation1 

3.1. Introduction 

In many areas of biology, including cryobiology, the solution behaviour 

of both the extracellular and intracellular solutions plays an important role. 

The osmolality difference between the extra- and intra-cellular solutions 

drives the water flux across the cell membrane [20; 30]. A non-ideal 

replacement for the osmotic equilibrium equation is presented in 

Chapter 5 which demonstrates that the osmolality as a function of 

concentration for the intracellular solution is needed in order to accurately 

calculate the cellular osmotic response. 

In cryobiology, the freezing point depression of solutions is also 

important. The freezing point determines the temperature at which ice can 

first form in the extracellular solution, how much ice will form at equilibrium 

at a given temperature, and the amount of supercooling in the intracellular 

solution. For these reasons, cryobiologists are interested in predicting both 

the osmolality and the freezing point depressions of multisolute extra- and 

intra-cellular solutions. 

There are many solutes of interest in cryobiology, from electrolytes to 

cryoprotective agents (CPAs) to macromolecules, and there are many 

combinations of these solutes. Since measuring the solution properties of 

                                                 
1
A version of sections of this chapter has been published. J.A.W. Elliott, R.C. Prickett, 

H.Y. Elmoazzen, K.R. Porter and L.E. McGann 2007. Journal of Physical Chemistry B. 
111: 1775-1785.  
A version of sections of this chapter has been accepted for publication. R.C. Prickett, 
J.A.W. Elliott, and L.E. McGann 2009. Cryobiology. (doi:10.1016/j.cryobiol.2009.07.011). 
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all possible combinations is prohibitively time- and resource-consuming, 

much work has been done to predict the solution behaviour of these 

complicated multisolute solutions using a range of solution theories [13; 

24; 26; 27; 28; 36; 37; 38; 48]. Solution theories have been developed for 

cryobiological solutions which are accurate for a certain subset of 

solutions, but these equations either require fitting of multisolute data, thus 

restricting them to solutions for which multisolute data is available [13; 27; 

36; 37; 38; 48], or they do not take into account all of the solute 

interactions [24; 26; 28]. The challenge is to develop a solution theory that 

(i) takes into account all of the solute interactions, (ii) is accurate for many 

solutions, and (iii) does not require fitting of multisolute data. 

The osmotic virial equation (OVE) has been widely utilized for 

predicting solution behaviour of complicated multisolute solutions [9; 16; 

17; 18; 22; 29; 32; 47; 50; 51; 52]. The osmolalities of single- or multi- 

solute solutions are represented as truncated polynomials in 

concentration, where each solute has unique coefficients for terms of 

second or higher order in concentration. The word “virial” is derived from 

the Latin word for force or energy, “vis” [19]. The coefficients in the virial 

equation can be obtained from knowledge of the forces between 

molecules [39]. As opposed to previous work done with the osmotic virial 

equation for multisolute solutions, the approach taken by this study differs 

in the treatment of the interaction term. Typically the determination of the 

cross coefficient, which is a measure of the interaction between two 
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different solutes in a multisolute solution, requires measurements of the 

multisolute system [16; 17; 18; 22; 29; 32; 50; 51; 52] in addition to the 

measurements of the single-solute systems used to determine the second 

virial coefficients of the pure species. However, in this study, mixing rules, 

which have been derived from thermodynamic first principles [11; 12], are 

used to predict the cross coefficient from measurements of single-solute 

solutions alone. 

The objective of this chapter was to demonstrate the applicability of 

this form of the multisolute OVE to a wide range of multisolute solutions, 

containing a broad selection of solutes including CPAs, small molecules, 

and macromolecules. The applicability of the multisolute OVE to solutions 

containing electrolytes will be demonstrated in Chapter 4.  

 

3.2. Governing equations 

3.2.1. Multisolute osmotic virial equation - general form 

For simplicity, first consider a form of the multisolute OVE (truncated 

to second order) for a ternary solution with non-electrolyte solutes, i and j: 

jiijjjiiji mmBmBmBmm 2
22
  (3.1) 

where im is the molal concentration of solute i (mole/kg solvent), iB is the 

second virial coefficient of solute i ((mole/kg solvent)-1), and ijB is the 

second virial cross coefficient for the two solutes, i and j ((mole/kg 

solvent)-1).  
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Equation (3.1) describes the contribution of each solute to the overall 

osmolality. The parameter iB  accounts for the interactions between two 

identical solute molecules of type i. This parameter is unique to each type 

of solute. The cross coefficient, ijB , accounts for interactions between 

solutes i and j. 

When determining the osmolality of a multisolute solution, it is often 

assumed that the contribution of each solute to the overall osmolality of 

the solution is additive [23; 24; 31], which is equivalent to setting ijB = 0. 

When the osmolalities of single-solute solutions are summed to predict 

osmolalities of multisolute solutions, the interactions between the different 

types of solutes are not accounted for, often leading to incorrect 

predictions of the solution osmolality. However, Kleinhans and Mazur 

demonstrated for certain combinations of CPAs + NaCl in water, that the 

adding osmolalities approach was adequate [24]. In Chapter 4, the 

predictions from Kleinhans and Mazur's adding-osmolalities approach will 

be compared to the predictions from the multi-solute OVE which has been 

adapted for solutions containing electrolytes.  

In order to determine the cross coefficient, ijB , most approaches 

require measurements of the ternary solution and the coefficient is found 

by regressing ternary data [16; 17; 18; 22; 29; 32; 50; 51; 52], similar to 

the methods outlined in Chapter 2 to determine the pure-species second 

virial coefficient from measurements of single-solute solutions. 

Alternatively, the cross coefficient can be predicted from detailed 
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molecular knowledge of solute-solute interactions [39]. For applications in 

biology it is desirable to be able to predict the cross coefficients from 

measurements of single-solute solutions alone. Mixing rules for the 

multisolute OVE have been derived from thermodynamic first principles, 

assuming a semi-dilute regular solution, which allow for the prediction of 

the osmotic virial cross coefficient using only the single-solute osmotic 

virial coefficients. The quadratic mixing rule is [12]: 

2

ji

ij

BB
B


  (3.2) 

 

For multisolute solutions which contain mixtures of highly non-ideal 

solutes such as proteins, a cubic mixing term is required. The cubic mixing 

term can also be derived from regular solution theory [11]: 

  3
1

kjiijk CCCC 
 
 (3.3) 

where ijkC is the third virial cross coefficient for solutes i,j, and k. 

Using the mixing rules in equations (3.2) and (3.3), the OVE can be 

written for any number of solutes: 

 
  kji

i j k

kjij

i j

i

ji

i

i mmmCCCmm
BB

m  


 3
1

2
  (3.4) 

 

It should be noted that for electrolytes, the molality of the electrolyte 

should be multiplied by its dissociation constant (kdiss) (see Chapter 2).  
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The multisolute OVE can also be written in terms of the solute mole 

fraction: 

 
 

















  kji

i j k

kjij

i j

i

ji

i

i xxxCCCxx
BB

xA 3
1

***

**

*

2
  (3.5) 

where ix is the mole fraction of the solute (moles solute/total moles of 

solution), and *

iB [(moles solute/total moles)-1] and *

iC  [(moles solute/total 

moles)-2] are the second and third osmotic virial coefficients for use with 

mole fraction, respectively. The quantity in the parenthesis in equation 

(3.5) is osmole fraction (~ ) so the conversion factor, *A , between osmole 

fraction and osmolality is needed.  

For two solutes in solution, the multisolute OVE written in terms of 

solute concentration in molality is: 

 

    2

32
3

1
2

323

2

2
3

1

3

2

2

3

33

3

223232

2

33

2

2232

33 mmCCmmCC

mCmCmmBBmBmBmm




 (3.6) 

where the subscript 2 refers to the first solute and subscript 3 refers to the 

second solute (subscript 1 is typically reserved for the solvent).  

Expressed in terms of solute mole fraction, the multisolute OVE is: 

 

    


















2

32

3
1

2*

3

*

23

2

2

3
1

*

3

2*

2

3

3

*

3

3

2

*

232

*

3

*

2

2

3

*

3

2

2

*

232
*

33 xxCCxxCC

xCxCxxBBxBxBxx
A  (3.7) 

 

These forms of the multisolute OVE (equations (3.6) and (3.7)) were 

used to predict the solution behaviour of a range of combinations of 
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solutes in water, including (i) glycerol + dimethyl sulphoxide (DMSO), (ii) 

hemoglobin + an ideal solute, and (iii) bovine serum albumin (BSA) + 

ovalbumin (OVL). The number of terms in the multisolute OVE depends 

on the number of single-solute osmotic virial coefficients required to 

describe each solute's solution behaviour.   

 

3.2.2. Multisolute osmotic virial equation - glycerol + DMSO 

When the solute concentration was expressed in molality, glycerol and 

DMSO both required only a second virial coefficient to describe their 

single-solute solution behaviour (see Table 2.1). Thus, the multisolute 

OVE for glycerol + DMSO expressed in molality is: 

  DGDGDDGGDG mmBBmBmBmm 
22

  (3.8) 

where Gm  is the molality of glycerol (mole/kg solvent), Dm  is the molality 

of DMSO (mole/kg solvent), GB  is the pure species second virial 

coefficient for glycerol for use in molality ([mole/kg solvent]-1), and DB  is 

the pure species second virial coefficient for DMSO for use in molality 

([mole/kg solvent]-1).  

When the solute concentration was written in mole fraction, glycerol 

required only a second virial coefficient and DMSO required a second and 

third virial coefficient to describe their single-solute solution behaviour (see 

Table 2.2). The multisolute OVE for use with mole fraction is: 
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  3***2*2**

DDDGDGDDGGDG xCxxBBxBxBxxA   (3.9) 

where Gx  is the mole fraction of glycerol (moles glycerol/moles total), 
Dx  

is the mole fraction of DMSO (moles DMSO/moles total), *

GB  is the pure 

species second virial coefficient for glycerol for use in mole fraction 

([moles/moles total]-1), *

DB  is the pure species second virial coefficient for 

DMSO for use in mole fraction ([moles/moles total]-1) and *

DC  is the pure 

species third virial coefficient for DMSO for use in mole fraction 

([moles/moles total]-2).  

 

3.2.3. Multisolute osmotic virial equation - hemoglobin + ideal solute 

The cytoplasm of a human erythrocyte is made up of predominately 

hemoglobin and other small molecules, such as potassium chloride (KCl).  

In this study, the proposed osmotic model of the cytoplasm is the known 

amount of hemoglobin and a calculated amount of ideal solute, where the 

amount of the ideal solute was taken to be the concentration required to 

bring the osmolality of the intracellular solution to its isotonic value once 

the contribution of the isotonic molality of hemoglobin was taken into 

account. The value for the isotonic osmolality of erythrocytes cited in the 

literature ranges from 275 mOsm/kg solvent to 315 mOsm/kg solvent [2; 

4]. The isotonic concentration of hemoglobin taken from the literature was 

35.1 gram / 100 mL cells [43]. This value was determined 
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spectrophotometrically and when converted to molality, gave a value of 

7.3 millimole/kg solvent [15; 44]. 

Hemoglobin required a second and third virial coefficient to describe 

its single-solute solution behaviour in molality (see Table 2.1) and the virial 

coefficients for an ideal solute are all zero. Thus, the multisolute OVE, 

written in terms of solute molality, for hemoglobin and an ideal solute is: 

32

HHHIHHHHI mCmmBmBmm   (3.10) 

where 
Im  is the molality of the ideal solute (mole/kg solvent), 

Hm  is the 

molality of hemoglobin (mole/kg solvent), HB  is the pure species second 

virial coefficient for hemoglobin for use in molality ([mole/kg solvent]-1), 

and HC  is the pure species third virial coefficient for hemoglobin for use in 

molality ([mole/kg solvent]-2). Even though the ideal solute has all zero 

virial coefficients, the quadratic mixing term still appears in the multisolute 

OVE.  

In order to determine the accuracy of the model, measurements of the 

cytoplasm were required. Electron spin resonance (ESR) has been used 

to measure the cell water volume as a function of extracellular solution 

osmolality. Two studies involving human erythrocytes [6; 33] measured 

the relative cell water volume (cell water volume / cell water volume at 

isotonic) as a function of the inverse relative osmolality (isotonic osmolality 

/ osmolality) using ESR. The relative cell water volume is equivalent to the 

inverse relative intracellular concentration (isotonic concentration / 

101



   

concentration) of all of the intracellular solutes combined into one 

“grouped solute”: 

m

m

V

V o

ow

w 
,

 (3.11) 

where wV  is the cell water volume, m  is the molal concentration of all 

intracellular solutes combined into one “grouped solute” and the subscript 

o refers to the isotonic condition. Equation (3.11) comes from the fact that 

the molal concentration of the intracellular solutes is equal to the number 

of moles of solute ( n ) divided by the water mass 


 
wwV

nm


where w is 

the mass density of water). Assuming that the number of moles of solute 

remains the same as water leaves the cell, the ratio of the concentration at 

isotonic ( om ) to the concentration at any anisotonic condition is equal to 

the ratio of cell water volume at the anisotonic condition to the cell water 

volume at isotonic.   

By taking the experimental measurements from Du [6]  and Moronne 

et al. [33] and inverting both o /  and owV , / wV  and multiplying the relative 

osmolality by the isotonic osmolality, the osmolality as a function of the 

relative intracellular grouped solute concentration was determined. The 

data were plotted as osmolality versus relative concentration since the 

isotonic concentration of the grouped solute was the least well known 

parameter. 
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At equilibrium, the osmolality of the cytoplasm is equal to the 

osmolality of the extracellular solution. In the absence of permeating 

solutes, the osmotic equilibrium is maintained by water transport across 

the cell membrane. As the cell dehydrates in hypertonic solutions, the 

contents of the cell concentrate at the same rate. The osmolalities of 

aqueous hemoglobin solutions were measured up to 12.3 millimole/kg 

solvent with no solute precipitation [5]. Applying the osmotic virial model of 

the cytoplasm to the most hypertonic data point measured by ESR, 

extrapolation to a hemoglobin molality of approximately 30 millimole/kg 

solvent was required. Incorporating the no-precipitation assumption, the 

relative concentration of hemoglobin is the same as the relative 

concentration of the ideal, dilute solute: 

oIIoHH mmmm ,, //   (3.12) 

where the subscript o refers to the isotonic condition.  

Equation (3.12) was used in equation (3.10) to express the ideal, 

dilute solute concentration as a function of the hemoglobin concentration 

and the isotonic concentrations of the ideal, dilute solutes and 

hemoglobin.  

3

,
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Substituting the normal hemoglobin concentration of 7.3 millimole/kg 

solvent [15; 43; 44]  in equation (3.10) and using a value of 289 mOsm/kg 

solvent as the isotonic osmolality (average value from Du [6] and Moronne 

et al. [33]), the isotonic concentration for the additional solutes in human 

erythrocytes was calculated to be 197 millimole/kg solvent. This value 

does not represent the amount of ideal, dilute solutes actually present in 

the cytoplasm of an erythrocyte, but rather the "effective concentration" of 

ideal, dilute solute needed to create a solution with an osmolality of 289 

mOsm/kg solvent, after the effect of the hemoglobin had been taken into 

account. The 197 millimole/kg solvent concentration of ideal, dilute solute 

accounted for the osmotic behaviour of all the solutes, including the 

dissociated ions, other than hemoglobin in the cytoplasm.  

 

3.2.4. Multisolute osmotic virial equation - bovine serum albumin + 

ovalbumin 

When the solute concentration was in molality, BSA required a second 

and third osmotic virial coefficient to describe its single-solute solution 

behaviour. In molality, OVL required only a second virial coefficient to 

describe its single-solute solution behaviour (see Table 2.1). Thus, the 

multisolute OVE for BSA + OVL is: 

  322

BBOBOBOOBBOB mCmmBBmBmBmm   (3.14) 
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where 
Bm  is the molality of BSA (mole/kg solvent), Om  is the molality of 

OVL (mole/kg solvent), 
BB  is the pure species second virial coefficient for 

BSA for use in molality ([mole/kg solvent]-1), OB  is the pure species 

second virial coefficient for OVL for use in molality ([mole/kg solvent]-1), 

and 
BC  is the pure species third virial coefficient for BSA for use in 

molality ([mole/kg solvent]-2).  

For solute concentration in mole fraction, BSA and OVL required only 

a second virial coefficient to describe the single-solute solution behaviour. 

The multisolute OVE in mole fraction for BSA and OVL is: 

  OOBBOOBBOB xxBBxBxBxxA **2*2**   (3.15) 

where Bx  is the mole fraction of BSA (moles BSA/total moles), Ox  is the 

mole fraction of OVL (moles OVL/total moles), *

BB  is the pure species 

second virial coefficient for BSA for use in mole fraction ([mole/total 

moles]-1), and 
*

OB  is the pure species second virial coefficient for OVL for 

use in mole fraction ([mole/total moles]-1).  

Equations (3.8), (3.13), and (3.14) were used to predict the multisolute 

osmolality of ternary aqueous solutions of DMSO + glycerol, hemoglobin + 

an ideal solute, and BSA + OVL, respectively, for solute concentration in 

molality. Equations (3.9) and (3.15) were used to predict the multisolute 

osmolality of the DMSO + glycerol and BSA + OVL aqueous solutions, 

respectively, for solute concentration in mole fraction. The predictions for 

the cytoplasm were not done in mole fraction, as the number of moles of 
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intracellular solute was not known, just the relative grouped solute 

molality.  

 

 

3.3. Materials and methods 

3.3.1. Obtaining the multisolute phase diagrams 

Phase diagrams were (i) measured by freezing point depression or (ii) 

obtained from the literature for various multisolute solutions. The phase 

diagrams have been converted to osmolality as a function of total solute 

molal concentration.  

(i) Freezing point depression measurements2 

Ternary glycerol (Sigma-Aldrich, Oakville, Ontario) + DMSO (Sigma-

Aldrich, Oakville, Ontario) + distilled, deionized water (CORNING Mega-

PureTM system ACS) solutions were prepared for two different values of 

the mass ratio (R) of glycerol to DMSO: 0.5 and 2.0. For R = 0.5, solutions 

with total solute mass percentages of 4%, 9%, 15%, 21%, 27% and 33% 

were studied. For R = 2.0, the total solute mass percentages chosen were 

3%, 6%, 9%, 12%, 15%, 21%, 27% and 33%.  The mass of water was 

chosen to ensure that at least 10 mL of solution was made and that the 

masses of glycerol and DMSO were easy to work with (at least 1g of 

each).  

                                                 
2
 Undergraduate student, K. Porter measured each data point once and I measured each 

data point twice (or for the R = 0.5: 15%, 21%, 27% and 33% w/w solutions, three times).  
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The samples were thoroughly mixed using an electronic stirrer (Fisher 

Scientific Electronic Stirrer 2009, Fisher Scientific Ltd, Nepean, Ontario) 

for at least 30 minutes at 500 rpm. Three millilitres (3 mL) of the solutions 

were transferred to a 12 x 75 mm KIMAX® test tube (Fisher Scientific Ltd, 

Nepean, Ontario) using a pipette. The same freezing process was 

followed for the ternary mixtures as for the binary mixtures (described in 

Chapter 2), except that a 0.04” diameter type T thermocouple (OMEGA 

TMTSS-040G-6, Laval, Quebec) was used. Freezing point depression 

measurements were converted to osmolality using equation (1.2).  

Measuring the phase diagram of viscous solutions using the freezing 

point depression method can result in inaccurate results due to the 

viscosity of the solution slowing the ice crystal growth and the release of 

latent heat, particularly at high concentrations. 

(ii) Obtaining phase diagrams from the literature 

Phase diagrams for the human erythrocyte cytoplasm [6; 33] and 

aqueous solutions of bovine serum albumin (BSA) + ovalbumin (OVL) 

[49], were obtained from the literature. The phase diagrams were 

measured by membrane osmometry [49] or electron spin resonance [6; 

33].  

 

3.4. Results 

The multisolute OVE, with mixing rules derived from thermodynamic 

first principles (equations (3.4) and (3.5)), requires only single-solute 

107



   

information to make predictions of multisolute solution behaviour. In 

addition to the multisolute OVE, other solution theories that allow 

predictions of multisolute solution behaviour using single-solute solution 

data are (i) ideal, dilute solution theory and (ii) adding osmolalities (or 

freezing point depressions). The predictions from these three solution 

theories are shown in Figures 3.1 to 3.3. For the predictions from the 

adding-osmolalities approach and the multisolute OVE, the single-solute 

osmotic virial coefficients determined in Chapter 2 were utilized.   

In order to assess which solution theory provided the most accurate 

predictions of solution osmolality, the errors in the predictions from all 

three solution theories were quantified. The percent error was calculated 

using: 

100% 



Measured

MeasuredPrediction
error

 
(3.16) 

 

For the predictions of solution osmolality done with the solute 

concentration in molality, the errors for each solution theory for each of the 

solutions studied are listed in Table 3.1 (the errors were calculated at the 

maximum measured total solute molality). In addition to determining the 

percent error at the maximum molality, the sum of squared errors (SSE) 

was calculated using equation (2.11) to assess how accurately each 

solution theory predicted the measured data points over the entire range 

of the solute concentration.  
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 



m

1

2

i

ii fySSE  (2.11) 

 

Since the SSE is a summation over all of the data points, the value 

obtained depends on the number of data points. Since each multisolute 

solution has a different number of data points, the values of the SSE 

should only be used to compare between solution theories for a specific 

solution. The SSE for each solution theory are also listed in Table 3.1.  

The results shown Table 3.1 demonstrate that the predictions of the 

multisolute solution osmolality from the multisolute OVE result in smaller 

errors than the practice of adding osmolalities or assuming ideal, dilute 

solution for the solutions studied. The multisolute OVE was shown to 

accurately predict the solution behaviour of ternary aqueous solutions of 

(i) two small molecular weight compounds (glycerol + DMSO); (ii) the 

cytoplasm of a human erythrocyte modelled as a mixture of hemoglobin 

and an ideal solute; and (iii) two macromolecules (BSA + OVL).  

For the aqueous glycerol + DMSO system, it can be seen in Figures 

3.1 (a - d) that the agreement between the experimental measurements 

and the predictions using the multisolute OVE for the R = 2.0 solutions 

was not as good as for the R = 0.5 solutions. This may be due to the 

increased amount of glycerol in the R = 2.0 solutions. The high viscosity of 

glycerol made accurate freezing point depression measurements 

progressively more difficult as the glycerol concentration increased. Also, 

the predictions in solute molality were more accurate than those in solute 
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mole fraction. When writing the equation for the excess Gibbs energy from 

which the multisolute OVE is derived [12], an a priori assumption was 

required regarding whether to express the concentration in molality or 

mole fraction. Landau and Lifshitz [25] chose to express the excess Gibbs 

energy in molality, whereas regular solution theory is written in terms of 

mole fraction [39]. For the multisolute solutions that were investigated in 

this thesis, the assumption of Landau and Lifshitz to use molality resulted 

in more accurate predictions of the solution behaviour.  

Figure 3.2 shows that modeling the cytoplasm of erythrocytes as a 

solution of hemoglobin and an ideal, dilute solute in water agreed 

remarkably well with ESR data for human erythrocytes [6; 33]. Note that 

the line in Figure 3.2 (a) is a prediction from equation (3.13) with no 

adjustable parameters. The dotted line is an extrapolation of the 

predictions beyond the range of hemoglobin data that was regressed to 

determine the osmotic virial coefficients for hemoglobin. It is important to 

distinguish the range where the hemoglobin coefficients were known to be 

accurate from the range in which the osmotic virial equation was 

extrapolated because the third osmotic virial coefficient is simply an 

empirical coefficient and its physical meaning is not clear. However, 

Figure 3.2 (a) shows that if the coefficients were assumed to be valid over 

the entire concentration range, the proposed osmotic virial equation 

(equation (3.13)) gave an accurate prediction of the osmolality of the 

cytoplasm.  
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In Figures 3.2 (b - c), the concentrations over which the parameters 

were fit was not differentiated from the concentrations over which the 

parameters were extrapolated. The predictions in Figure 3.2 (b) show that 

including both the hemoglobin and the ideal, dilute solute was important 

since assuming the cytoplasm was all hemoglobin or all ideal, dilute solute 

did not accurately predict the data as well as the proposed osmotic virial 

equation. Furthermore, Figure 3.2 (c) shows that the hemoglobin, the 

ideal, dilute solute and the interaction between the two types of solutes all 

contributed significantly to the total solution osmolality. At the maximum 

predicted osmolality, the hemoglobin contributed 13.1% of the total 

solution osmolality, the ideal, dilute solute contributed 53.4% of the total 

solution osmolality and the hemoglobin – ideal solute interactions 

contributed 33.5% of the total solution osmolality. The osmotic virial 

equation, with the proposed mixing rules for only two solutes (a protein 

and an ideal, dilute solute) captured the thermodynamic behaviour of the 

complicated biological solution in human erythrocytes within experimental 

error.  

For the aqueous BSA + OVL system, Figure 3.3 (a) shows that the 

agreement between the experimental measurements and the predictions 

using the proposed osmotic virial equation (equation (3.14)) was better 

than the predictions from the free solvent model. The free solvent model is 

a predictive solution theory that was used for the BSA + OVL solution by 

Yousef et al. [49]. Similarly to the multisolute OVE, the free solvent does 
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not require fitting of the multisolute data. However, when solute molality is 

used, the predictions from the free solvent model were less accurate for 

the BSA + OVL solution than those from the multisolute OVE. In Figure 

3.3 (b), it can be seen that the predictions from the multisolute OVE 

(equation (3.15)) were not as accurate in mole fraction. In mole fraction, 

the predictions from adding osmolalities are the most accurate, with both 

the free solvent model and the multisolute OVE over-predicting the 

osmolality. Again, the a priori assumption of Landau and Lifshitz [25] to 

express the concentration in terms of molality instead of mole fraction 

resulted in more accurate predictions of the solution behaviour of BSA and 

OVL in water.  

 

3.5. Discussion 

The single-solute osmotic virial coefficients provided in Chapter 2 

were used in the multisolute osmotic virial equation (OVE) to predict the 

aqueous solution behaviour of a variety of combination of solutes, 

including two CPAs, a protein and an ideal solute, and two proteins. The 

predictions were more accurate when the a priori assumption of Landau 

and Lifshitz [25] was used and the solute concentration was expressed in 

molality, as compared to the predictions when the regular solution theory 

convention of expressing the solute concentration in mole fraction [39] 

was used.   
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In the absence of multisolute solution data, the multisolute OVE 

should be used to predict multisolute solution behaviour. In addition to 

only requiring single-solute information to make predictions of multisolute 

solution behaviour, the mixing rules for the multisolute osmotic virial 

equation were derived from thermodynamic first principles [11; 12]. The 

multisolute OVE was shown in this thesis and other studies [47] to be 

accurate for a wide range of multisolute solutions. Depending on the type 

of solute and the units of concentration, a form of the single-solute OVE, 

equations (2.1) through (2.4), should be fit to the single-solute data to 

obtain the osmotic virial coefficients (Tables 2.1 and 2.2). Using those 

coefficients, the multisolute OVE can be used to predict the solution 

behaviour for a variety of combination of solutes. As with the single-solute 

OVE, the multisolute OVE can be written in other concentration units, but 

the single-solute osmotic virial coefficients used to make the predictions 

must be in the same concentration units as the predictions.  

When compared to other solution theories which only require single-

solute information, such as assuming an ideal and dilute solution or the 

practice of adding osmolalities, the multisolute OVE provided more 

accurate predictions for all of the solutions studied when the solute 

concentration is expressed in molality (see Table 3.1). The approach of 

adding osmolalities, recently utilized by Kleinhans and Mazur [24], has 

been shown to be accurate for three CPA + NaCl + water solutions, but 

did not work well for other multisolute solutions, such as aqueous mixtures 
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of two CPAs, a protein and an ideal solute, or two proteins (Figures 3.1.(a-

b), 3.2, 3.3 (a)). In addition to being less accurate for most non-ideal 

solutions, the ideal and dilute solution theory and the practice of adding 

osmolalities contain simplifying assumptions regarding the interactions 

between the solute molecules which are not thermodynamically correct for 

non-ideal solutions. The multisolute osmotic virial equation was more 

accurate for the more non-ideal mixtures, because the solute-solute 

interactions were taken into account. 

Many other solution theories have been proposed for multisolute 

solutions of interest in cryobiology [13; 24; 26; 27; 28; 36; 37; 38; 48]. 

These solution theories have resulted in accurate predictions of 

multisolute solution behaviour, but for a limited number of combinations of 

solutes.  

Predictions of multisolute solution behaviour are needed in 

cryobiology, since both osmolality and freezing point depression play such 

crucial roles in the cryopreservation process. In addition, since there is 

such a wide range of solutes present in cryobiological solutions, from 

proteins to electrolytes to CPAs, the solution behaviour of all of the 

different solutions of interest cannot be measured. The multisolute OVE 

with the proposed mixing rules is an accurate solution theory based on 

thermodynamic principles that allows predictions of multisolute solution 

behaviour using only single-solute information. More accurate predictions 

of the solution behaviour will lead to increased accuracy in modelling the 
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cellular response to cryopreservation protocols. It is believed that more 

accurate modelling will lead to the development of novel cryopreservation 

protocols for cells such as human hepatocytes, human corneal cells, 

human islets, and mouse oocytes [3; 8; 21; 46]. In addition, improvements 

to already established cryopreservation protocols, such as the reduction or 

elimination of CPAs, could be achieved using accurate cryopreservation 

modelling [40; 45].  

Since this thesis work was performed and published, the form of the 

multisolute OVE that has been shown to be accurate in this thesis has 

already been incorporated by other cryopreservation researchers for a 

variety of applications [1; 12; 35; 41; 42]. It has been used in (i) the 

development of non-ideal, non-dilute transport equations for cellular 

systems [12], (ii) modelling CPA and water transport in articular cartilage 

[1; 35], (iii) investigating cryo-injury and developing optimal protocols for a 

hematopoietic stem cell line (TF-1 cells) [41; 42], and (iv) developing a 

non-ideal, non-dilute osmotic equilibrium equation (Chapter 5). In addition 

to these applications, other researchers have agreed that the multisolute 

OVE should be used to model cryopreservation solutions [14] and have 

proposed to use it in future studies of anhydrous preservation of cellular 

systems [10].  
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Table 3.1. Percent error and sum of squared errors in using (i) ideal and 
dilute, (ii) adding osmolalities and (iii) multisolute OVE to predict each 
multisolute solution as compared to measured data.  

Solutes 
(R-value)

†
 

Max total 
solute 

molality 

Ideal, dilute 
Adding 

Osmolalities 
Multisolute OVE 

% error 
at max 

molality
‡
 

SSE 
§
 

% error 
at max 

molality
‡
 

SSE 
§
 

% error 
at max 

molality
‡
 

SSE 
§
 

Glycerol + 
DMSO 

(R = 0.5) 
6.0 33.8% 13.63 12.0% 1.76 1.1% 0.02 

Glycerol + 
DMSO 

(R = 2.0) 
5.7 30.2% 9.30 20.6% 4.52 8.5% 0.92 

Hb + ideal* 
[6; 33] 

m/mo  
= 2.8 

46.5% 0.59 30.2% 0.24 6.4% 0.013 

BSA + OVL 
(R=1.5) 

[49] 
0.01 87.4% 0.0089 36.9% 0.0014 12.7% 0.00015 

†R values are the mass ratios:
2

1

soluteofMass

soluteofMass
R  

‡Percent error calculated using eq. (3.16) at the maximum total solute 
molality at which osmolality was measured for each solution. 
 

§SSE calculated using eq. (2.11). The values of the SSE should only be 
compared for the different predictions for each specific solution, not 
between solutions.  
 
*Predictions of the RBC cytoplasm using the Hb + ideal osmotic virial 
equation model were done in relative concentration (m/mo) (see Figure 
3.2).  
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Figure 3.1. Osmolality of a glycerol + DMSO + water solution as a 

function of total solute molality for (a) R = 0.5 and (b) R = 2.0; where  

R = mass glycerol/mass DMSO. The diamonds are our experimental 

measurements, which have been converted from freezing point 

depression to osmolality using the nonlinear conversion, equation (1.2). 

The solid line is the prediction from the multisolute OVE, equation (3.8). 

The long-dashed line is the prediction from adding osmolalities and the 

short-dashed line is the prediction from assuming an ideal, dilute solution 

. 
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Figure 3.1 (cont’d). Osmolality of a glycerol + DMSO + water solution as a 

function of total solute mole fraction for (c) R = 0.5 and (d) R = 2.0; where 

R = mass glycerol/mass DMSO. The diamonds are our experimental 

measurements, which have been converted from freezing point 

depression to osmolality using the nonlinear conversion, equation (1.2). 

The solid line is the prediction from the multisolute OVE, equation (3.9). 

The long-dashed line is the prediction from adding osmolalities and the 

short-dashed line is the prediction from assuming an ideal, dilute solution 
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Figure 3.2 (a). Osmolality as a function of relative intracellular 

concentration for human erythrocytes. The closed diamonds  are the ESR 

data from Du [7] and the open circles are the ESR data from Moronne et 

al [34]. The solid line is predicted using the multisolute OVE (equation 

(3.13)) with hemoglobin and an ideal, dilute solute with no adjustable 

parameters. The dashed line is the extrapolation of equation (3.13) past 

the concentration range for which the hemoglobin parameters were 

determined.  
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Figure 3.2 (b). Osmolality as a function of relative intracellular 

concentration for human erythrocytes. The closed diamonds  are the ESR 

data from Du [7] and the open circles are the ESR data from Moronne et 

al [34]. The solid line is predicted using the multisolute OVE (equation 

(3.13)) with hemoglobin and an ideal, dilute solute. The short dashed line 

is predicted using the single-solute osmotic virial equation (equation (2.1)) 

with hemoglobin alone. The long dashed line is predicted using the single-

solute osmotic virial equation (equation (2.1)) with an ideal, dilute solute 

alone. 
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Figure 3.2 (c). Relative contributions to osmolality as a function of relative 

intracellular concentration for human erythrocytes. The closed diamonds 

are the ESR data from Du [7] and the open circles are the ESR data from 

Moronne et al [34]. The short dashed line is the calculated contribution of 

the hemoglobin to the total solution osmolality. The long dashed line is the 

calculated contribution of the ideal, dilute solute to the total solution 

osmolality. The cross-hatched line is the calculated contribution of the 

interactions between the solutes to the total solution osmolality. The solid 

line is the sum of the three contributions; the predicted total solution 

osmolality using the multisolute OVE (equation (3.13)) with hemoglobin 

and an ideal, dilute solute. 
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Figure 3.3. Osmolality of a BSA + OVL + water solution as a function of 

(a) total solute molality and (b) total solute mole fraction for R = 1.5, where 

R = mass BSA/mass OVL. The diamonds are experimental measurements 

from Yousef et al. [49]. The solid line is the prediction from the multisolute 

osmotic virial equation (equation (3.14) or equation (3.15)). The long-

dashed line is the prediction from adding osmolalities and the short-

dashed line is the prediction from assuming an ideal, dilute solution. The 

long-and-short-dashed line is a model from the literature [49].  
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Chapter 4 - Multisolute osmotic virial equation  

for use with electrolytes 

4.1. Introduction 

The osmolality as a function of concentration of multisolute solutions 

containing electrolytes is of great importance in many areas of biology, 

including cryopreservation. Electrolytes are ubiquitous in biological 

solutions and are often in solution with other solutes, such as 

macromolecules or CPAs. One of the predominant intracellular solutes is 

potassium chloride (KCl) and sodium chloride (NaCl) is found in many 

extracellular solutions, both in vivo (plasma) and ex vivo (phosphate 

buffered saline solutions). The solution behaviour of these complicated 

multisolute solutions plays a role in the cellular response to the 

extracellular environment.  

In order to extend the application of the osmotic virial equation (OVE) 

to electrolyte solutions, an additional fitting constant in the single-solute 

OVE, called the dissociation constant, is used to capture the complicated 

behaviour of single-solute electrolyte solutions. It can be argued that the 

single-solute OVE approach should not be used to describe the solution 

behaviour of electrolytes since: (i) the dissociation constant should not be 

less than two for strong 1:1 electrolytes such as NaCl or KCl, and (ii) a 

constant cannot capture the complicated electrolyte solution behaviour 

and an actual electrolyte solution theory, such the Pitzer-Debye-Huckel 

equations [25; 26], should be used.  
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There has been much debate in the literature with respect to the 

question of complete or partial dissociation of NaCl [12].  Much of the work 

published on NaCl is based on the assumption of complete dissociation [2; 

25; 27; 28]. However, others have shown that by assuming partial 

dissociation, equations can be developed that quantitatively explain the 

behaviour of aqueous NaCl solutions [13; 14]. Large amounts of 

experimental data on the densities of aqueous NaCl solutions have been 

shown to agree with the equations developed using the assumption of 

partial dissociation [14]. The dissociation constant has also been shown to 

be dependent on electrolyte concentration, reaching complete dissociation 

only at infinite dilution [24].  Using osmotic coefficient data, the degree of 

dissociation for aqueous NaCl solutions ranging from 0 to 6.144 mol/kg 

solvent was determined to vary between 1 (completely dissociated) to less 

than 0.8 [14].   

One of the most well-known electrolyte solution theories, the Pitzer-

Debye-Huckel equation for solutions of electrolytes [25; 26], utilizes an 

ionic-strength-dependent function to capture the electrolyte solution 

behaviour, as opposed to the OVE approach of using an additional fitting 

constant. The accuracy of the single-solute OVE and the  Pitzer-Debye-

Huckel equation for aqueous solutions of NaCl is shown in Figure 2.7. It 

was demonstrated that both of these approaches accurately capture the 

behaviour of single-solute aqueous NaCl solutions over a wide 

concentration range. In Chapter 2 it was shown that the application of the 
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OVE to electrolyte solutions is straightforward, requiring only two fitting 

parameters to describe the solution behaviour of NaCl (the dissociation 

constant, kdiss, and a second virial coefficient, B). Alternatively, the Pitzer-

Debye-Huckel equations, which endeavour to also capture the solution 

behaviour of mixtures of electrolytes, contain more complexity. The Pitzer-

Debye-Huckel equation has six empirical parameters and multiple 

functions that are ionic strength dependent [25; 26].  

Thus, the objective of this chapter was to demonstrate that, for 

multisolute solutions containing NaCl and a small non-electrolyte 

molecule, using the single-solute OVE to capture the electrolyte solution 

behaviour resulted in predictions that were as accurate as using an 

electrolyte solution theory to capture the electrolyte solution behaviour. In 

order to compare predictions of the multisolute solution behaviour, both 

the single-solute OVE for electrolytes and the Pitzer-Debye-Huckel 

equation for electrolytes were inserted into the multisolute OVE proposed 

in Chapter 3. The osmotic virial coefficients used in this chapter for the 

CPAs (glycerol and DMSO) are listed in Table 2.1. The osmotic virial 

coefficients used in this chapter for NaCl are listed in Table 2.41. 

In addition, this study also investigated the use of the multisolute OVE 

approach for aqueous solutions of macromolecules and electrolytes.  

There are many reports of varying ionic strength solutions affecting 

                                            
1
 The values for the NaCl osmotic virial coefficients used in this chapter are the values 

obtained from fitting the data from Robinson and Stokes data, as this was the data used 
in the  Pitzer et al. [26] study to obtain the parameters in the Pitzer-Debye-Huckel 
equation.  
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macromolecules in solution [6; 11; 37; 40], which has been attributed to 

changes in protein folding [41] and changes in the interactions between 

macromolecules [4; 5; 18; 29; 32; 36]. The system of hydroxyethyl starch 

(HES) and NaCl in water was used as a model to show how the 

multisolute OVE proposed in Chapter 3 can be utilized to capture the 

changing macromolecular solution behaviour in salt solutions. HES was 

chosen as the model macromolecule because it is an important solute in 

many biological applications, present in plasma expanders [3; 19] and 

cryopreservation solutions [3; 34; 35], among others.  

 

4.2. Overview of multisolute solute solution theories for aqueous CPA + 

electrolyte solutions: 

Various methods have been proposed to predict solution behaviour of 

aqueous solutions containing CPAs and electrolytes. As outlined in 

Chapter 3, many of these approaches require either (i) fitting of multisolute 

data to obtain empirical parameters [9; 10; 21; 22; 23; 38; 39] or (ii) 

simplifying assumptions regarding the interactions between solute 

molecules [17]. Recently, Kleinhans and Mazur investigated the use of the 

adding-osmolalities approach for several aqueous solutions containing a 

CPA and NaCl. The predictions from this approach were accurate for the 

specific concentration ranges and solutions they studied. However, this 

approach is not accurate for increasingly non-ideal solutions (see Figures 

3.1 - 3.3).  
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The form of the multisolute OVE proposed in Chapter 3 addresses the 

limitations of the previous multisolute solution theories that have been 

applied in cryobiology. This form of the multisolute osmotic virial equation, 

with mixing rules that were derived from first principles, is a solution theory 

derived from thermodynamic principles that takes into account solute-

solute interactions and allows predictions of multisolute solutions without 

the need to fit multisolute data.  

The form of the multisolute osmotic virial equation proposed in 

Chapter 3 is: 

 
  kji

i j k

kjij

i j

i

ji

i

i mmmCCCmm
BB
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 3
1

2
  (3.4) 

where the subscripts i, j, k refer to the individual solutes.  

For electrolytes, the molality of the electrolyte is multiplied by the 

dissociation constant throughout equation (3.4). Equation (3.4) can be 

used to predict multisolute solution behaviour based only on the single-

solute osmotic virial coefficients ( iB , iC ).  

Written for an aqueous solution containing one electrolyte solute 

(subscript 2) and one non-electrolyte solute (subscript 3), equation (3.4) is: 
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 (4.1) 

(The subscript 1 is usually reserved for the solvent, water).  

For small molecules, such as many CPAs and electrolytes, a third 

virial coefficient is not typically required to describe the single-solute 
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solution behaviour, so the cubic terms in equation (4.1) may be set to 

zero, giving:  

    3232

2

33

2

2232 mmkBBmBmkBmmk dissdissdiss   (4.2) 

 

However, macromolecules often require a third virial coefficient to 

describe the non-ideality of their solution behaviour. Thus, solutions 

containing a macromolecule and electrolyte will contain the 3

33cC  term, but 

the cubic mixing terms will still be equal to zero (provided the electrolyte 

does not have a third virial coefficient): 

    3

333232

2

33

2

2232 mCmmkBBmBmkBmmk dissdissdiss   (4.3) 

 

The multisolute OVE can be used to make predictions of a wide range 

of combinations of solutes using only single-solute information. Equation 

(4.2) was used to predict the solution behaviour of a multisolute aqueous 

solution containing an electrolyte and a small molecule. Equation (4.3) 

was used for aqueous solutions containing an electrolyte and a 

macromolecule.  

 

4.2.1. Combination of the OVE with the Pitzer-Debye-Huckel equation: 

In equations (4.1) to (4.3), the contribution of the electrolyte to the 

multisolute solution osmolality is predicted using the osmotic virial 

coefficients determined from fitting single-solute electrolyte solution data. 

However it can be argued that the predictions from the multisolute OVE for 
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the solution behaviour of an aqueous solution containing an electrolyte 

and a non-electrolyte could be improved by replacing the single-solute 

OVE approach with an electrolyte solution theory, such as the Pitzer-

Debye-Huckel equation, to capture the electrolyte solution behaviour. The 

purpose of this study was to compare the predictions from the multisolute 

OVE of the osmolality of aqueous multisolute solutions containing NaCl 

with a CPA, using either the OVE or the Pitzer-Debye-Huckel solution 

theory to capture the electrolyte solution behaviour.  

To make predictions of aqueous multisolute solutions containing an 

electrolyte and a CPA, the Pitzer-Debye-Huckel electrolyte solution theory 

was used to calculate the contribution to the total solution osmolality from 

the electrolyte and the multisolute OVE was used to calculate the 

contribution from the non-electrolyte solute and also the contribution from 

the interactions between the two different solutes. In order to accomplish 

this, the virial coefficients from the Pitzer-Debye-Huckel equation were 

made equivalent to the osmotic virial coefficients in the multisolute OVE so 

that they could be used in the multisolute OVE mixing rule.  

In the single-solute OVE for electrolytes, equation (2.3), it can be seen 

that the molality of the electrolyte is always multiplied by the electrolyte 

effects parameter (kdiss). In the Pitzer-Debye-Huckel equation for a single 

electrolyte in solution, equation (2.7), it can be seen that the electrolyte 

effects function,  12 f , only appears in the linear term. Comparing the 
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quadratic terms of the Pitzer-Debye-Huckel equation (2.7) and the OVE 

(2.3) for a single electrolyte solute shows: 

2
2 dissiMX kBB   (4.4) 

 

Looking at the linear terms: 

 12  fkdiss  (4.5) 

 

Combining equations (4.4) and (4.5) gives 
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Thus, the mixing rule for the osmotic virial equation becomes: 
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Using equation (4.7) with the multisolute OVE, equation (4.3), and 

using the Pitzer-Debye-Huckel equation for the electrolyte contribution to 

the osmolality gives: 
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  (4.8) 
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Equation (4.8) was compared to equation (4.3) (or equation (4.2) if C3 

= 0) to determine if using an electrolyte solution theory (the Pitzer-Debye-

Huckel equation) to determine the electrolyte contribution to the osmolality 

of a multisolute solution was more accurate than using the OVE to 

determine the electrolyte contribution to the total solution osmolality. In 

both equations the multisolute OVE was used to determine the 

contribution from the non-electrolyte solute and the mixing rule for the 

multisolute OVE shown in Chapter 3 was used to determine the 

contribution from the interactions between the electrolyte and non-

electrolyte solute. Equation (4.8) will be referred to herein as the PDH-

OVE approach and equation (4.2) is referred to as the multisolute OVE 

approach.  

 

4.3. Using the multisolute OVE to investigate electrolyte effects on 

macromolecule solution behaviour 

All of the work presented previously on this form of the multisolute 

OVE, equation (3.4),  has been using information from single solutes to 

make predictions of multisolute solution behaviour (Chapter 3 and [1; 8; 

20; 30; 31; 38]). However, in some cases only multisolute solution data is 

available. For example, most macromolecule solution behaviour is 

measured in varying ionic strength solutions [6; 16; 37; 40]. The ionic 

strength of a solution may have a marked effect on macromolecule 

solution behaviour [11; 37; 41]. In order to study the effect of salt 
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concentration on the solution behaviour of a macromolecule, the osmotic 

virial approach was adapted to use the multisolute OVE, equation (4.3) to 

determine single-solute osmotic virial coefficients in a range of different 

salt solutions. The osmotic virial coefficients of a macromolecule in varying 

salt concentrations were determined and assessed as a function of salt 

concentration. To determine the single-solute osmotic virial coefficients, 

the multisolute OVE was rearranged such that the quantities that were 

known were on the left hand side of the equation and the unknown 

quantities on the right hand side of the equation. Rearranging equation 

(4.3) for an aqueous solution of a macromolecule and electrolyte (where 

the molality of both solutes and the osmotic virial coefficients of the 

electrolyte are known) gives: 

 
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2
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The osmotic virial coefficients of the macromolecule, 3B  and 3C , were 

determined by fitting equation (4.9) to multisolute osmolality as a function 

of concentration data using linear regression. This was done in a range of 

salt concentrations to determine 3B  and 3C  as a function of salt 

concentration.  
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4.4. Materials and methods 

4.4.1. Fitting the OVE to data 

The osmotic virial coefficients for use with solute concentration in 

molality were determined for each CPA or electrolyte by fitting the single-

solute OVE, equation (2.3), to the single-solute data. The details of the 

fitting procedure are outlined in Chapter 2.  

The multisolute solution data for aqueous solutions of HES and NaCl 

was obtained from the literature [16]. The freezing point as a function of 

total solute concentration was measured for various R-values of HES in 

NaCl using differential scanning calorimetry (DSC), where R is the mass 

ratio of HES to NaCl  NaClmassHESmassR .  For cryobiological 

applications, mass ratios (or R-values) are often chosen to express the 

solution composition since as the solution freezes, pure water is removed 

as ice, so the solutes become concentrated, but the mass ratio of the two 

solutes remains constant. Jochem and Korber measured the phase 

diagrams for HES and NaCl in water for R-values ranging from 0.5 to 20 

[16].  

In order to determine the osmotic virial coefficients for HES in the 

different salt solutions, linear regression was performed using Excel 

(Microsoft, Redmond, WA, USA) using the matrix method for linear 

regression [7]. The confidence intervals were also calculated at various 

levels of significance. A detailed description of the linear regression 

procedure utilized to obtain the osmotic virial coefficients and the 
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statistical analysis done on the coefficients is described in Chapter 2. 

Table 4.1 shows the matrices that were used for the linear regression.  

 

4.5. Results 

4.5.1. CPA + NaCl + water solutions 

The multisolute OVE for an electrolyte and small molecule, equation 

(4.2), and the PDH-OVE approach, equation (4.8), were both used to 

predict the solution behaviour of a CPA and NaCl in water. Two different 

CPAs were chosen, DMSO and glycerol, and a range of R-values for each 

multisolute solution studied. The results for DMSO + NaCl + water can be 

found in Figure 4.1 (a-h), for R values ranging from 0.2 to 19.0. The 

results for glycerol + NaCl + water can be found in Figure 4.2 (a-g) for R-

values ranging from 0.25 to 9.0. In addition to the OVE approach and the 

PDH-OVE approach, two other predictions are also shown in the figures. 

The solution behaviour of the CPA + NaCl in water solutions was also 

predicted by adding the osmolalities of the single-solute solutions, which 

requires the same amount of information as the multisolute OVE,  

equation (4.2), but neglects the mixing term.  

  2

33

2

2232 mBmkBmmk dissdiss   (4.10) 

 

This approach is equivalent to the Kleinhans and Mazur approach of 

adding freezing point depressions [17]. In Figures 4.1 and 4.2, single-

solute osmotic virial coefficients from Chapter 2 were utilized in the 
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adding-osmolalities predictions, not the Kleinhans and Mazur coefficients. 

Thus, the predictions from the adding-osmolalities approach and the 

multisolute OVE approach utilize the same coefficients.  

The fourth prediction shown in Figures 4.1 and 4.2 was obtained by 

assuming that the mixtures of CPA and NaCl are ideal, dilute solutions. 

This approach assumes that none of the solute molecules are interacting 

with each other (i.e. all of the virial coefficients are equal to zero) and thus 

the osmolality is equal to the sum of the solute molalities. The dissociation 

constant for the electrolyte is still taken into account. Thus, the ideal, dilute 

solution osmolality is given by:  

32 mmkdiss   (4.11) 

 

The error in the predictions was quantified by calculating the percent 

error at the maximum solute molality and the sum of squared errors (SSE) 

over the entire concentration range. The percent error was calculated 

using equation (3.16) and the sum of squared errors (SSE) was calculated 

using equation (2.11). As mentioned in Chapter 3, the SSE depends on 

the number of data points and each multisolute solution has a different 

number of data points, the SSE values should only be compared for the 

different predictions of each multisolute solution and not amongst the 

various multisolute solutions.  

The percent errors at the maximum solute molality and the SSE for 

the four predictive multisolute solution theories are listed in Table 4.2.  
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The results in Table 4.2 demonstrate that the multisolute OVE and the 

PDH-OVE methods typically resulted in more accurate predictions than 

the practice of adding osmolalities or assuming an ideal, dilute solution. 

The only exception was that the practice of adding osmolalities was the 

most accurate for the glycerol + NaCl + water solutions containing high 

concentrations of glycerol. However, the discrepancy between the 

measured values and the predictions from the multisolute OVE for 

solutions containing high concentrations of glycerol could be due to 

difficulties in accurately measuring the freezing point of highly viscous 

solutions.  

 

4.5.2. HES + NaCl + water solutions 

The HES + NaCl + water phase diagrams from the literature [16] are 

shown in Figure 4.3. The lines on the graph show the fit to each phase 

diagram to obtain the HES osmotic virial coefficients for each R-value. The 

HES coefficients obtained by fitting the phase diagrams are listed in Table 

4.3. The values for the HES second and third osmotic virial coefficients, B 

and C respectively, were graphed as a function of the R-value (Figure 

4.4).  

The confidence intervals at varying levels of confidence were 

determined for each osmotic virial coefficient using the methods outlined 

in Chapter 3.  The levels of confidence (1-) were set at = 0.05, 0.0275, 

and 0.01. For all of the R-values except for the R = 0.5 solution, the 
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confidence interval bands at all levels of confidence followed the same 

trend as the actual data points. The 95 % confidence intervals (i.e.  = 

0.05) are shown on Figure 4.4 and listed in Table 4.3. As they were very 

close to the data points, the confidence interval bands for the CHES-values 

cannot always be clearly seen on the graph.  

For the R = 0.5 solution, the confidence interval bands for the osmotic 

virial coefficients did not follow the same trend as the actual data points at 

the different levels of confidence. For example, the BHES coefficient for the 

R = 0.5 solution is less than the BHES coefficient for the R = 1.0 solution. 

However, for the 95 % confidence intervals, the upper confidence limit of 

the BHES-value for R = 0.5 was essentially equal to the upper confidence 

limit of the BHES-value for R = 1.0. For the 97.5 % and 99 % confidence 

intervals, the upper confidence limit of the BHES-value for R = 0.5 was 

greater than the upper confidence limit for the R = 1.0.  Also, at the 99% 

confidence level, the lower confidence limit for the CHES-value at R = 0.5 

was less than the lower confidence limit for the CHES-value at R = 1.0, 

even though the CHES at R = 0.5 solution was greater than the CHES for the 

R = 1.0 solution. The difference between the trends in the data points and 

in the confidence intervals made it difficult to determine an optimal 

function to fit to the data when the R = 0.5 coefficient was included.  

In addition, the R = 0.5 solution contained twice as much NaCl as 

HES on a mass basis (or 1.54x104 times as much on a mole basis). Thus, 

this solution was most likely dominated by the NaCl solution behaviour, 
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making it difficult to obtain accurate HES parameters. For these reasons, 

the R = 0.5 osmotic virial coefficients were not included in the subsequent 

analysis to determine a relationship between the osmotic virial coefficients 

and the R-value.  

To provide an empirical equation for each of the HES osmotic virial 

coefficients as a function of R-value, functions of the following forms were 

fit to the data: 

    dcRb
aR

molalBHES  21 ))(ln(exp
1

 (4.12) 

  hfRmolalC g

HES 2  (4.13) 

where a = 0.460, b = 0.946, c = 1.575, d = -0.537, f = 1.078x103,  

g = -3.334, and h = 2.957x102. 

For aqueous solutions of HES in NaCl, the HES osmotic virial 

coefficients can be calculated at any R-value using equations (4.12) and 

(4.13). These equations were used to calculate the osmotic virial 

coefficients for R = 1, 2, 5, 10, and 20 (see Table 4.4). The calculated 

coefficients were then used to predict the measured phase diagrams 

(Figure 4.5).  

 

4.6. Discussion 

Predictions of the solution behaviour for aqueous multisolute solutions 

containing an electrolyte and a small non-electrolyte were made using four 

different predictive multisolute solution theories that do not require fitting of 

multisolute solution data. The multisolute solution theories utilized were: (i) 
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ideal, dilute solution theory, (ii) the practice of adding osmolalities, (iii) the 

multisolute OVE using the single-solute osmotic virial coefficients to 

capture the electrolyte solution behaviour, and (iv) the multisolute OVE 

using the Pitzer-Debye-Huckel equation [25; 26] to capture the electrolyte 

solution behaviour (PDH-OVE). In both of the multisolute OVE 

approaches, the solution behaviour of the non-electrolyte was captured 

using the single-solute osmotic virial coefficients and the interactions 

between the two different solutes were captured using a mixing rule for the 

multisolute OVE proposed in Chapter 3.  

For aqueous solutions containing a commonly used CPA (DMSO or 

glycerol) plus NaCl, the predictions from the multisolute OVE using the 

coefficients from the single-solute OVE to capture the electrolyte solution 

behaviour worked as well as using the Pitzer-Debye-Huckel equation to 

capture the electrolyte solution behaviour (Figures 4.1 and 4.2, Table 4.2). 

However, the OVE approach was much simpler to use, having only one 

additional fitting constant  dissk  versus the Pitzer-Debye-Huckel function 

  12 f , which contains the Debye-Huckel slope  A , an empirical 

parameter  b , and the ionic strength of the solution  I . In addition, the 

osmotic virial coefficients for the electrolyte are constants, whereas in the 

Pitzer-Debye-Huckel equation, the second virial coefficient  

MXB  is also a 

function of ionic strength and is calculated using three additional empirical 

constants ( ,,
)1()0(

MXMX   and ).  The multisolute OVE was shown to be 

an accurate predictive solution theory for multisolute solutions containing 
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one electrolyte, except in the glycerol + NaCl system at high glycerol 

concentrations. However, due to the increased complexity of solutions 

containing more than one electrolyte, it is not known if the multisolute OVE 

would accurately predict the solution behaviour of those complicated 

solutions. The Pitzer-Debye-Huckel equation has been shown to be 

accurate for mixtures of electrolytes [25].  

In addition, in Chapter 3 it was shown that the multisolute OVE 

approach is typically more accurate than adding osmolalities or assuming 

the solutions are ideal and dilute. The adding-osmolalities approach did 

provide accurate predictions for some solutions [17], but should not be 

used once the solutions become increasingly non-ideal (Figures 3.1 - 3.3). 

This is due to the fact that the adding-osmolalities approach does not take 

into account the interactions between the different types of solute 

molecules (i.e. between the electrolyte and the CPA) and these 

interactions become increasingly important as the concentration 

increases. The multisolute OVE predictions for the glycerol + NaCl + water 

solutions were not as accurate as the predictions from the adding-

osmolalities approach, but this may be due to difficulties in measuring the 

freezing point of increasingly viscous glycerol solutions.  

Additionally, the use of the multisolute OVE approach was 

investigated for aqueous solutions of a macromolecule (HES) plus an 

electrolyte (NaCl) to determine if the multisolute OVE could be used to 

capture the changing macromolecular solution behaviour in varying 
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concentrations of electrolytes.  The aqueous HES + NaCl system was 

chosen as a model since it plays an important role in biology [3; 19; 34; 

35].  The multisolute OVE was rearranged so that the single-solute HES 

osmotic virial coefficients could be obtained from multisolute solution data. 

Phase diagrams for different mass ratios of HES to NaCl in water (R = 0.5. 

1, 2, 5, 10 and 20) were obtained from the literature [16] and the 

coefficients for HES obtained for all of the R-values (Figure 4.3 and Table 

4.3). From the phase diagrams with different compositions of HES and 

NaCl, it can be seen that the varying salt concentration plays a role in the 

HES solution behaviour. The dependence of the HES osmotic virial 

coefficients on the salt concentration was determined by plotting the HES 

osmotic virial coefficients as a function of R-value and fitting a function to 

the data (Figure 4.4 and Table 4.4). Empirical equations obtained by fitting 

the HES osmotic virial coefficient values, equations (4.12) and (4.13), can 

be used to calculate the osmotic virial coefficients for HES in other 

concentrations of salt solutions. The calculated coefficients were used to 

predict the HES + NaCl + water solution behaviour (Figure 4.5). This study 

demonstrated that the multisolute OVE approach is a simple method to 

capture the changing macromolecular solution behaviour in different 

concentrations of aqueous salt solutions.   

Similar work using the virial coefficients to investigate how the solution 

behaviour of a macromolecule is affected by electrolytes has been done 

on aqueous solutions of lysozyme + NaCl [18]. In that study the virial 
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coefficients were calculated from predictions of the potential mean force 

between two lysozyme proteins in solutions with varying ionic strength and 

pH, and the predictions compared with experimental measurements. A 

dependence of the second virial coefficient on NaCl concentration was 

observed. As the NaCl concentration increased from approximately 0.2 

molar to 1.75 molar, the second virial coefficient of lysozyme decreased 

from approximately 3x104 mL/mol/g2 to -8x104 mL/mol/g2. Although the 

dependence on salt concentration does not follow the same trend as was 

observed with HES in this study, there is still a marked dependence of the 

lysozyme solution behaviour on the salt concentration. The differences in 

the behaviour of the macromolecules with changes in salt concentration 

may be due to differences in the structure and composition of the 

macromolecules: HES is a starch and lysozyme is a globular protein. As 

the experimental data for the lysozyme + NaCl solutions consisted of only 

one data point for each NaCl concentration, the multisolute OVE could not 

be fit to the data to obtain the lysozyme osmotic virial coefficients. 

There is other evidence of salts affecting macromolecule solution 

behaviour [6; 11; 37; 40]. Unfortunately, in each of these studies it was 

either not entirely clear how the osmolality and final solution composition 

were measured or the osmolality of the solutions were only measured for 

one concentration of electrolyte. Thus, the same type of analysis as was 

done with HES + NaCl + water data in this study could not be done on 

those data sets.  

150



 

The form of the multisolute OVE proposed in Chapter 3, utilizing 

mixing rules derived from thermodynamic principles, requires only single-

solute information to make predictions of multisolute solution behaviour.  

The application of the OVE to biological solutions is extremely attractive 

due to the wide range of solutes of interest and the seemingly limitless 

combinations of these solutes. It has been shown to be accurate for a 

wide range of multisolute solutions, from two small molecules, a protein 

and an ideal solute, two proteins, and now for solutions containing 

electrolytes. 
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Table 4.1. Summary of matrices and vectors used for linear regression to 
obtain HES osmotic virial coefficients. 

y


 vector   322

2

2232 mmkBmkBmmk dissdissdiss   

A matrix First column  

Second column 

23 mkm diss

 2

3m  

Conversion of 

coefficients in 


 to 

osmotic virial 
coefficients 

1 = B3 

 2 = C3 

…
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Table 4.2. Percent errors and SSE from the predictions from the multisolute solution theories that do not 
require fitting of multisolute data.  

Solutes 

[R-value]* 

 

Max total 
solute 

molality 

Ideal, dilute Adding Osmolalities Multisolute OVE PDH-OVE 

% error at 
max. 

molality† 
SSE ‡ 

% error at 
max. 

molality† 
SSE ‡ 

% error at 
max. 

molality† 
SSE ‡ 

% error at 
max. 

molality† 
SSE ‡ 

DMSO + 
NaCl 

[R=0.2] 

[15] 

5.1 30.9% 1.3x10
2
 6.4% 1.3 0.3% 1.2 0.1% 1.2 

DMSO + 
NaCl 

[R=19.0] 

[15] 

16.1 62.6% 2.1x10
3
 7.9% 28.8 1.5% 6.2 3.3% 13.6 

Glycerol + 
NaCl 

[R=0.67] 

[33] 

6.3 28.5% 14.4 6.5% 0.7 1.3% 0.2 2.1% 0.3 

Glycerol + 
NaCl 

[R=9.0] 

[33] 

17.2 16.1% 23.5 9.9% 5.5 30.5% 52.0 34.4% 68.4 

*
R values are the mass ratios:

2

1

soluteofMass

soluteofMass
R  

†
Percent error calculated using equation (3.16) at the maximum total solute molality at which osmolality was measured for each 

solution. 

‡ 
SSE calculated using equation (2.11). The values of the SSE should only be compared for the different predictions for each 

specific solution, not between solutions.  

1
6
0



 

Table 4.3. HES osmotic virial coefficients for varying mass ratios (R) of 
HES + NaCl + water solutions. 

 

NaClofMass

HESofMass
R  

B  
molal-1  

[±95% CI†] 

C 

molal-2 

[±95% CI†] 

0.5 -0.833 ± 0.638 7.85x104 ± 5.68x104 

1.0 -0.318 ± 0.132 1.11x104 ± 2.42x103 

2.0 -0.027 ± 0.074 1.36x103 ± 3.71x102 

5.0 -0.089 ± 0.079 3.98x102 ± 86.8 

10.0 -0.425 ± 0.205 3.54x102 ± 83.8 

20.0 -0.515 ± 0.256 1.96x102 ± 45.0 
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Table 4.4. Calculated HES osmotic virial coefficients for mass ratios  
(R) = 1, 2, 5, 10, and 20 of HES + NaCl + water solutions.   

NaClofMass

HESofMass
R  

B  
molal-1 

C 

molal-2 

1.0 -0.329 1.11x104 

2.0 -0.016 1.36x103 

5.0 -0.103 3.46x102 

10.0 -0.405 3.01x102 

20.0 -0.521 2.96x102 
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Figure 4.1 (a-h). Osmolality as function of total solute molality for DMSO + 

NaCl + water solutions (R ranging from 0.2 to 19.0). The closed diamonds 

are data from Hildebrandt [15]. The red solid line is the prediction from the 

multisolute OVE equation, equation (4.2). The purple long-and-short-

dashed line is the prediction from the PDH-OVE equation, equation (4.8), 

which is lying directly under the red OVE line and cannot be seen. The 

blue long-dashed line is the prediction from the adding-osmolalities 

approach, equation (4.10). The green short-dashed line is the prediction 

from assuming an ideal, dilute solution, equation (4.11). 
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Figure 4.1 (cont'd). Osmolality as function of total solute molality for 

DMSO + NaCl + water solutions (R ranging from 0.2 to 19.0).  
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Figure 4.1 (cont'd). Osmolality as function of total solute molality for 

DMSO + NaCl + water solutions (R ranging from 0.2 to 19.0).  
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Figure 4.2 (a-g). Osmolality as function of total solute molality for glycerol 

+ NaCl + water solutions (R ranging from 0.25 to 9.0). The closed circles 

are data from Shephard et al. [33]. The red solid line is the prediction from 

the multisolute OVE equation, equation (4.2). The purple long-and-short-

dashed line is the prediction from the PDH-OVE equation, equation (4.8). 

The blue long-dashed line is the prediction from the adding-osmolalities 

approach, equation (4.10). The green short-dashed line is the prediction 

from assuming an ideal, dilute solution, equation (4.11).  
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Figure 4.2 (cont'd). Osmolality as function of total solute molality for 

glycerol + NaCl + water solutions (R ranging from 0.25 to 9.0). 
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Figure 4.2 (cont'd). Osmolality as function of total solute molality for 

glycerol + NaCl + water solutions (R ranging from 0.25 to 9.0). 
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Figure 4.3.  Osmolality as function of total solute molality for HES + NaCl 

+ water solutions (R ranging from 0.5 to 20). The symbols are data from 

Jochem and Korber [16].  The solid lines are the rearranged multisolute 

OVE, equation (4.9), fit to the data.  
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Figure 4.4. The second and third osmotic virial coefficients, B and C, for 

HES in varying concentrations of aqueous salt solutions as a function of 

R-value. The closed symbols are the values determined for the virial 

coefficients at each R-value. The solid lines are equation (4.12) fit to the 

second virial coefficient (B) values as a function of R-value and equation 

(4.13) fit to the third virial coefficient (C) values as a function of R-value, 

respectively. The open symbols are the values of the 95 % confidence 

intervals for the osmotic virial coefficients at each R-value. The dashed 

lines are the upper and lower 95 % confidence bands (generated by 

connecting the values of the upper and lower values of the 95 % 

confidence interval at each R-value with a smoothed line).  
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Figure 4.5. Osmolality as function of total solute molality for HES + NaCl + 

water solutions (R ranging from 1 to 20). The symbols are data from 

Jochem and Korber [16].  The dashed lines are the predictions from the 

multisolute OVE, equation 4.3, using the calculated coefficients from 

equations (4.12) and (4.13), which are listed in Table 4.4.   
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Chapter 5 - A non-ideal replacement for the  

Boyle-van’t Hoff equation1 

5.1. Introduction 

Using the multisolute OVE model developed in Chapters 3 and 4 to 

express the intracellular solute concentration as a function of osmolality, a 

non-ideal osmotic equilibrium equation was developed to replace the 

ideal, dilute Boyle-van't Hoff equation.  

For many endeavors in which biological samples are manipulated ex-

vivo, including biopreservation, a description of the osmotic equilibrium (or 

equilibrium cell volume as a function of osmolality) is required. Currently 

cellular osmotic equilibrium is described with the Boyle-van‟t Hoff relation 

which states that the product of osmolality and equilibrium volume of the 

osmotically-active portion of the cell is constant. The equation arose when 

van‟t Hoff applied Boyle‟s law for gases (which states the product of 

pressure and volume is constant for ideal gases) to solutions, showing 

that for ideal, dilute aqueous solutions the product of osmotic pressure 

and volume is constant [30; 31]. Written in its usual form, the Boyle-van‟t 

Hoff equation is 

  bb
V

V

V

V

V

V o

o

bo

o

ow

o
























1

,
  (5.1) 

                                                 
1
A version of this chapter has been published. R.C. Prickett, J.A.W. Elliott, S. Hakda, and 

L.E. McGann 2008. Cryobiology. 57: 130-136.  
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where V is the cell volume (m3), oV  is the isotonic volume (m3), 
owV ,
 is 

the isotonic volume of water in the cell (m3),  is the osmolality 

(osmoles/kg solvent), o is the isotonic osmolality (osmoles/kg solvent), bV  

is the osmotically-inactive volume of the cell (i.e. the volume of the cell 

that does not participate in the osmotic response) (m3) and b = 
o

b

V
V

 is 

the osmotically-inactive fraction of the cell volume.  

To determine the osmotically-inactive fraction, equilibrium cell 

volumes are measured after the cells are exposed to solutions of known 

osmolality. These measurements have been performed using several 

techniques, including the use of electronic particle counters [10; 13; 19; 

33; 37], optical measurements under a microscope [35; 36], assessing 

packing volume following centrifugation [2; 25; 27], and light scattering 

[29], among others. The Boyle-van‟t Hoff equation is then used to 

determine the osmotically-inactive fraction of cells by extrapolating 

osmotic equilibrium measurements to infinite osmolality. This is commonly 

done using a Boyle-van‟t Hoff plot, which is the equilibrium relative cell 

volume 








oV
V plotted as a function of inverse relative osmolality 










 o . 

From equation (5.1), the value of the y-intercept of a linear fit of the data is 

the osmotically-inactive fraction, b. It can be noted from equation (5.1), 

that the osmotically-inactive fraction can also be determined from one 

minus the slope. Comparing the values obtained from the intercept and 
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one minus the slope is a method to check the self-consistency of the 

osmotic equilibrium data.  

It has been noted in the past that in some cases the Boyle van‟t Hoff 

relationship yields osmotically-inactive fractions higher than predicted from 

desiccation experiments [27] that measure the dry volume of the cell, 

which can be used as another estimate of the osmotically-inactive volume 

of the cell. The discrepancy between osmotically-inactive volume and dry 

volume has been discussed for human erythrocytes [27]. The osmotically-

inactive fraction for human erythrocytes determined using the Boyle-van‟t 

Hoff equation ranges from 0.41 to 0.48 [2; 18; 28]. This is at the higher 

end of the values found for other mammalian cell types (0.18 to 0.41 [7; 

10; 12; 19]). The dry volume fraction for erythrocytes measured by 

desiccation is 0.27 to 0.30 [2; 27]. There have been many explanations for 

this difference, including bound water [2; 27; 32], the movement of 

chloride ions between the extracellular and intracellular solutions [2], the 

osmotic properties of intracellular solutes [9; 11; 22; 26], the large entropy 

of dilution characteristic of macromolecular solutes [4], and erythrocyte 

membrane characteristics [15; 22; 34]. However, none of these 

hypotheses have been explicitly proven and much debate still surrounds 

the osmotically-inactive fraction of the erythrocyte.  

As stated when these equations first appeared [20; 24; 30; 31], the 

Boyle-van‟t Hoff and the van‟t Hoff equations are only thermodynamically 

correct for ideal, dilute solutions (even though osmolality appears in the 
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equations). Thus, contrary to what is commonly believed [6; 10; 16; 35], 

the product of osmolality and osmotically-active cell volume is not constant 

in solutions that are not ideal and dilute. It has been recognized that 

intracellular solutions are not always ideal and dilute [17; 21] and thus 

should not always adhere to the Boyle-van‟t Hoff relation. This was 

pointed out by Lucke and McCutcheon in 1932 [20], who stated  “To be an 

ideal osmometer both cell and medium would have to behave as ideal 

solutions and the membrane must be perfectly semipermeable”. The 

osmolality of erythrocyte cytoplasm is not equal to the intracellular solute 

molality, thus it is not an ideal, dilute solution, which can be seen in Figure 

5.1. Furthermore, since the osmotically-inactive fraction is found by 

extrapolating osmotic equilibrium measurements to infinite osmolality, the 

ideal, dilute solution constraint is obviously violated. Many have argued 

that most cell types, including erythrocytes, are „ideal osmometers‟  

because when the osmotic equilibrium data is plotted on a Boyle-van‟t 

Hoff plot (V/Vo versus o/) it appears to be well fit using a straight line (i.e. 

the Boyle-van‟t Hoff equation). However, most of the osmotic equilibrium 

data do not contain extremely hypertonic data points (i.e. data points close 

to zero on the x-axis) where the solutions have definitely diverged from an 

ideal, dilute solution. The problem in applying the Boyle-van‟t Hoff 

equation arises in the extrapolation to infinite osmolality to determine the 

osmotically-inactive fraction. It is at these extremely hypertonic conditions 

where the osmotic equilibrium data would show definite non-linear 
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behaviour and diverge from the Boyle-van‟t Hoff equation. Thus, when 

applying the Boyle-van‟t Hoff equation to the osmotic equilibrium data that 

is available, it may appear to fit, but the osmotically-inactive fraction that is 

obtained from extrapolating to the y-intercept may be erroneously large.   

Recognizing that the cytoplasm of the erythrocyte is not an ideal, 

dilute solution, others have made adjustments to the equations for the 

kinetics of water movement [8; 17; 21]. The water transport equations are 

derived from a chemical potential driving force, thus the non-ideality of the 

cytoplasm can be taken into account by using osmolality where 

concentration (or molality) had been used. While extracellular and 

intracellular osmolalities are equal at osmotic equilibrium, the equation to 

describe osmotic equilibrium (i.e. the Boyle-van‟t Hoff equation) results 

from applying conservation of mass to the intracellular solutes. Therefore, 

simply using a non-ideal osmolality in the Boyle-van‟t Hoff equation is not 

the correction that should be made to account the non-ideality of the 

cytoplasm. In the osmotic equilibrium equation, molality, not osmolality, 

should be used, even for non-ideal, non-dilute solutions. This will be 

shown in the derivation below.  

The objective of this chapter was to derive a non-ideal osmotic 

equilibrium equation to replace the Boyle-van‟t Hoff equation. Additionally, 

it was demonstrated that the anomalous osmotic behaviour of human 

erythrocytes can be corrected by using the non-ideal equation instead of 

the Boyle-van‟t Hoff equation.  Others have experimentally shown that the 
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observed anomalies in the osmotic equilibrium of erythrocytes disappear 

when the cytoplasmic solutes are removed from the cytoplasm and the 

cells become red cell ghosts [1; 18]. This supports the hypothesis of this 

work that the non-ideality of the cytoplasm (due in large part to the 

hemoglobin and its interactions with the other intracellular solutes) 

contributes to the observed difference between inferred osmotically-

inactive volume from the Boyle-van‟t Hoff equation and the measured dry 

volume.  

 

5.2. Governing equations 

In order to explain why the Boyle-van‟t Hoff equation is not applicable 

to solutions that are not ideal and dilute, the derivation of the osmotic 

equilibrium equation is required. Osmotic equilibrium equations result from 

assuming that the number of intracellular solute molecules remains 

constant and only cell water crosses the cell membrane in response to the 

changes in extracellular osmolality. This is the same as assuming ideal 

semipermeablity of the membrane and applying conservation of mass to 

the intracellular solutes.  

oss NN    (5.2a) 

or,  

owwoww VmVm ,    (5.2b) 

where Ns is the number of intracellular solute molecules, m  is the molality 

of intracellular solute molecules (mole/kg solvent), w  is the density of 
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water (kg/µm3), wV is the volume of osmotically active intracellular water 

(m3) and the subscript o refers to the isotonic condition. The water 

density, w , cancels out of equation (5.2b). 

The osmotically-active water volume of the cell is, by definition, the 

total cell volume minus the osmotically-inactive volume ( bV ).  

obw bVVVVV   (5.3) 

 

Combining equations (5.2b) and (5.3) gives 

   oooo bVVmbVVm  . (5.4) 

 

Equation (5.4) can be rearranged to give 

  b
m

m
b

V

V o

o

 1 . (5.5) 

 

Equation (5.5) is the general osmotic equilibrium equation arising 

directly from conservation of mass and does not contain dilute solution 

assumptions. This equation is correct for ideal and non-ideal solutions. 

Equation (5.5), not equation (5.1), should be used to determine the 

osmotically-inactive fraction, but a problem arises in applying the equation 

since the molality of intracellular solutes is not known. Thus, the van’t Hoff 

relation has been used to relate intracellular solute molality to osmolality. 

The van‟t Hoff relation, which is only thermodynamically correct for ideal, 

dilute solutions [30; 31], implies (see Appendix C) 
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m  (5.6) 

where   is the osmolality. Under equilibrium conditions, the intracellular 

osmolality (i) is equal to the extracellular solution osmolality (e), but 

given the different compositions of the intracellular and extracellular 

solutions, the solute molalities of the intracellular and extracellular 

solutions are not the same. Combining equation (5.6) with (5.5) yields the 

well-known Boyle-van‟t Hoff equation (equation (5.1)). The fact that the 

van‟t Hoff relation (equation (5.6)) is applicable only to ideal, dilute 

solutions is well established.  The analogy between ideal gases (product 

of pressure and volume is constant) and aqueous solutions (product of 

osmotic pressure and volume is constant) only holds for ideal solutions, or 

according to van‟t Hoff „for solutions which are diluted to such an extent 

that they are comparable to ideal gases‟ [30; 31]. Furthermore, in the 

Textbook of Physical Chemistry by Glasstone, it is clearly stated that the 

Boyle-van‟t Hoff equation (equation (50), page 663) and the analogous 

Morse equation (equation (68), page 671) are only applicable to dilute 

solutions [14]. By using equation (5.6) to relate osmolality to molality, the 

Boyle-van‟t Hoff equation includes an ideal, dilute solution assumption.  

Although this assumption may be valid at isotonic conditions, intracellular 

osmolality diverges increasingly from ideal at higher equilibrium 

osmolalities. Even though a straight line can often fit the data points on a 

Boyle-van‟t Hoff plot (V/Vo vs. o/), the Boyle-van‟t Hoff equation is not 

thermodynamically correct when extrapolated to infinite osmolality in order 
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to obtain the osmotically-inactive fraction. This may result in osmotically-

inactive fractions which are incorrect.  

In deriving a replacement osmotic equilibrium equation for the Boyle-

van‟t Hoff relation, it is important to note that if the cytoplasm is not an 

ideal, dilute solution, solute molality in equation (5.5) cannot be replaced 

with osmolality. At osmotic equilibrium, the intracellular and extracellular 

osmolalities are equal (i = e) and the equilibrium osmolality is usually 

known during the osmotic equilibrium experiments. The equilibrium 

osmolality must be used to determine the intracellular solute molality in 

order to correctly determine the osmotically-inactive fraction from equation 

(5.5). However, the extracellular solute molality does not equal the 

intracellular solute molality, since the two solutions have different solute 

compositions. Thus, an accurate description of the intracellular solute 

molality as a function of the equilibrium osmolality is required. Herein, a 

non-ideal equation of state for the relationship between osmolality and 

intracellular solution molality (the multisolute osmotic virial equation (OVE) 

from Chapter 3) was combined with the assumption that the number of 

intracellular solute molecules remains constant, to derive a non-ideal 

replacement for the Boyle-van‟t Hoff equation that is applicable for ideal, 

dilute solutions as well as many non-ideal, non-dilute solutions.  

When the osmolality begins to diverge from ideal, an expression for 

the intracellular osmolality as a function of molality,  m ,  is required. For 

multisolute solutions, such as  cytoplasm, the osmolality can be written as 
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a function of the individual solute molalities (shown in equation (3.13)) or 

the individual solutes can be grouped together to create an effective 

concentration of one "grouped solute" and the osmolality written as a 

function of that grouped solute molality (shown in equation (5.9)).  This 

function can be inverted to give: 

 mm  (5.7a) 

and its value at isotonic conditions 

 oo mm   (5.7b) 

where m  is either the molality of one of the intracellular solutes or is the 

molality of the grouped solute.  

Equation (5.5) can then be written:  

 
 
 

**1 b
m

m
b

V

V o

o





 (5.8) 

where *b  is a new osmotically-inactive fraction of the cell obtained without 

any ideal, dilute solution assumptions. 

The intracellular molality of solutes is generally not known, and for 

non-ideal solutions, the molality is related to the osmolality in a non-linear 

manner. As previously stated, the relationship,  m , can be determined 

using a non-ideal equation of state and in this study the multisolute OVE is 

used. The parameters in the OVE can be predicted by creating a model of 

the cytoplasm (as was demonstrated in Chapter 3 using hemoglobin and 

an ideal solute in the multisolute OVE) or found by fitting the single-solute 

OVE to experimental measurements of the cytoplasm.  
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5.2.1. Osmotic virial equation: Model for (m) 

In Chapter 3, the cytoplasm of a human erythrocyte was modelled as 

a solution of hemoglobin (Hb) and other solutes, where all other solutes 

were assumed to behave osmotically as ideal, dilute solutes. The 

hemoglobin, which is highly non-ideal, and the interactions between the 

hemoglobin and ideal solute contribute a significant portion to the 

cytoplasm osmolality and thus the cytoplasm is a very non-ideal solution. 

The form of the osmotic virial equation used to predict the osmolality of the 

erythrocyte cytoplasm was: 
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  (3.13) 

where   is the osmolality of the cytoplasm, Hm is the molality of 

hemoglobin, Im  is the molality of the ideal solutes, HB  is the second 

osmotic virial coefficient for hemoglobin ((mole Hb / kg water)-1), and HC  is 

the third osmotic virial coefficient for hemoglobin ((mole Hb / kg water)-2). 

Note that IB  and IC  are equal to zero and thus do not appear in equation 

(3.13). The osmotic virial coefficients for hemoglobin were determined by 

fitting osmolality as a function of molality data from aqueous solutions of 

hemoglobin (see Chapter 2) and are listed in Table 2.1. The virial 

coefficients take into account the interactions between the solute 

molecules in the solution. At the isotonic condition, the only unknown in 

equation (3.13) is the molality of the ideal solutes. For this study, the 

isotonic osmolality of the cytoplasm, which includes contributions from the 
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hemoglobin, the ideal solute, and their interactions, was taken to be 305 

mOsm/kg solvent. The isotonic concentration of hemoglobin taken from 

the literature is 35.1 gram / 100 mL cells [27]. This value was determined 

spectrophotometrically and when converted to molality, gives a value of 

7.3 millimolal [9; 28]. Using the above values and the values of the 

osmotic virial coefficients for hemoglobin listed in Table 2.1 in equation 

(3.13) and solving this equation for 
oIm  yields an isotonic concentration of 

the ideal solute of 208 millimole/kg solvent. This concentration is slightly 

different than the value in Chapter 3, which is because the isotonic 

osmolality used in the experiments in this chapter was slightly different 

than the isotonic osmolalities in the literature data [5; 23] utilized in 

Chapter 3. In Chapter 3, the isotonic osmolality utilized was 289 mOsm/kg 

solvent, which is the average of the isotonic osmolality of Du [5] and 

Morrone et al. [23]. The ESR measurements of Du and Morrone et al. 

were used to determine the accuracy of the model in Chapter 3. In this 

study, the isotonic osmolality is the measured osmolality (305 mOsm/kg 

solvent) of the isotonic phosphate buffered saline solution that was made 

for the osmotic equilibrium experiments. Both values are within the range 

of  isotonic osmolalities reported in the literature [2; 3].  

This proposed model is not the actual composition of the cytoplasm of 

the erythrocyte, but rather this is the effective concentration of an ideal 

solute needed to model the osmotic behaviour of the cytoplasm once the 

effects of the known amount of hemoglobin were taken into account (i.e. 
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the ideal solute is used to model the contribution from the rest of the 

molecules and the dissociated ions in the cytoplasm). This model worked 

extremely well for predicting the osmotic behaviour of the erythrocyte 

cytoplasm (see Figure 5.1).  

For each osmolality of interest, equation (3.13) was inverted to give 

the intracellular molality of hemoglobin at that osmolality,  Hm . The 

hemoglobin molalities were then used in equations (3.13) and (5.8) to 

determine the osmotically-inactive fraction.  

 

5.2.2. Osmotic virial equation: Best fit to measurements of (m) 

Since creating a model for the cytoplasm involves making an 

assumption about the composition of the intracellular solutes, an 

alternative is to fit experimental measurements of cell water volume using 

a form of the single-solute OVE. Electron spin resonance (ESR) has been 

used to measure the relative cell water volume (cell water volume / cell 

water volume at isotonic) of human erythrocytes as a function of inverse 

relative equilibrium osmolality (isotonic osmolality / osmolality) in two 

studies [5; 23].  To fit the ESR data, all of the intracellular solutes 

(including hemoglobin) were treated as one grouped solute to determine 

(m). This grouped solute represented the effects of all the solutes in the 

cytoplasm and their interactions were taken into account with the virial 

coefficients of the grouped solute. The ESR data was presented as the 

relative cell water volume (which was converted to relative intracellular 
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solute molality, see equation (3.11)) as a function of inverse relative 

osmolality, so the data was fit as 
o

  as a function of 
oGS

GS

m
m
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. The 

single grouped solute osmotic virial equation used is 
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where GSm  is the molality of all of the intracellular solute molecules 

grouped together, GSA  is the grouped solute linear coefficient, GSB  is the 

second virial coefficient for the grouped solute, GSC  is the third virial 

coefficient for the grouped solute (see Table 5.1) and the subscript o 

refers to the isotonic condition. This fit, along with the osmotic virial model 

(equation (3.13)) expressed as o  versus m / om  (or 
oGS

GS

m
m

,

)  is 

shown in Figure 5.1.  

For each osmolality of interest, equation (5.9) was inverted to give the 

relative grouped solute molality 








oGS

GS

m
m

,
 as a function of the relative 

osmolality 








o
 . The relative grouped solute molalities were used in 

equation (5.8) to determine the osmotically-inactive fraction. 

This made it possible to re-analyze osmotic equilibrium data with 

equation (5.8) and either the hemoglobin and ideal solute model (equation 

(3.13)) or the best fit of the grouped solute data (equation (5.9)).  
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5.3. Materials and methods 

Equilibrium volume measurements were performed by suspending 

human erythrocytes in hypertonic solutions of Dulbecco‟s phosphate 

buffered saline (PBS) (Invitrogen, Burlington, ON, Canada)2 . A 10X 

isotonic solution of PBS was diluted with an appropriate amount of 

distilled, deionized water (CORNING Mega-PureTM system ACS) to obtain 

1X, 2X, 3X, 4X and 5X isotonic PBS solutions. The osmolalities of the 

PBS solutions were measured using a calibrated freezing point depression 

osmometer (OSMETTETM, Model 5004 Automatic Osmometer, Precision 

System Inc.TM, Natick, MA, USA) before the addition of the cells.   

The erythrocytes used in this study were obtained from a normal 

human blood donor who consented to donating blood for research 

purposes at Canadian Blood Services. Ten (10) mL of blood was aliquoted 

into each of four 50 mL sterile plastic centrifuge tubes (Fisherbrand, Fisher 

Scientific Ltd., Nepean, ON, Canada), washed three times by 

centrifugation at 1500 g for 10 minutes and re-suspended in 1X isotonic 

PBS to a final volume of 45 mL. The isotonic (1X) PBS solution had an 

osmolality of 305 mOsm/kg solvent. After the third wash, the cells were 

diluted to a final concentration of 1.0 - 1.7 x106 cells/mL.  One hundred 

(100) L of this cell suspension was added to 10 mL of the hypertonic 

solution of interest. The cells were added to the hypertonic solution at 

                                                 
2
 The equilibrium volume measurements done in our lab were performed by undergraduate student 

S. Hakda 
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room temperature and were exposed to the solution for 30 seconds before 

being analyzed on the particle counter. 

A particle counter (Coulter® Z2
TM series, Beckman Coulter, 

Mississauga, ON, Canada) and cell size analyzer (The Great Canadian 

Computer Company, Spruce Grove, AB, Canada) were used to determine 

the cell volumes in the various hypertonic solutions.  Cells suspended in 

each hypertonic solution were run three times on the Coulter counter, 

except for the 5X PBS which was done twice. Between each hypertonic 

solution run, a calibration, consisting of three drops of the 10 m beads 

(Beckman Coulter, Mississauga, ON, Canada) in 10 mL of the hypertonic 

solution, was run yielding a calibration factor that was used to calculate 

the equilibrium volume of the cells in that hypertonic solution.  

The standard deviation in the five equilibrium cell volume 

measurements was determined for each hypertonic solution. The standard 

deviations are shown on the figures as the error bars.  

Osmotic equilibrium data were also obtained from two literature 

sources [27; 37]. Savitz et al. measured the equilibrium volume of 

erythrocytes using both the hematocrit and isotope dilution method  in 

anistonic solutions ranging from 192 to 480 mOsm/kg solvent [27]. Since 

both methods gave the same equilibrium volume results, the hematocrit 

data is used in this thesis. The Savitz et al. 1964 study [27] did not 

indicate the isotonic osmolality, but in a later paper [28], the authors used 

290 mOsm/kg solvent as the isotonic osmolality. However, the hematocrit 
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at 290 mOsm/kg solvent was not measured. Thus, for this thesis, the 

isotonic hematocrit was calculated from a second order polynomial fit to 

the reported Savitz et al. data. This resulted in a calculated isotonic 

hematocrit of 0.4413.   

Zhao et al. utilized an electronic particle counter to measure the 

equilibrium volume of human erythrocytes in anisotonic solutions ranging 

from 118 to 3186 mOsm/kg solvent [37]. The data point closest to 305 

mOsm/kg solvent was assumed to be their isotonic osmolality. Thus, for 

the Zhao et al. data points, an isotonic osmolality of 302 mOsm/kg solvent 

was used in this thesis, with a corresponding isotonic volume of 74.42 ± 

3.640 fL.  

Since the data from each source had a different isotonic osmolality, 

and therefore isotonic volume, each data set was divided by its own 

isotonic values before analyzing, ensuring that all data had a relative 

volume (V / oV ) equal to 1 when the inverse relative osmolality ( / o ) was 

equal to 1. For lack of more specific information, it was assumed that the 

isotonic concentration of hemoglobin was 7.3 millimolal for all data sets [9; 

28], and this resulted in a slightly different value for the isotonic 

concentration of ideal solute for each data set (see Table 5.2 for the 

values).   

Combining the osmotic equilibrium data from our study and the 

literature, the osmotically-inactive fraction was determined by linear 

regression using the methods described previously (Chapter 2). The 
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results are plotted on graphs where the ordinate values are the relative 

equilibrium cell volume measurements (V / oV ) and the abscissa values 

are either (i) the inverse relative osmolality ( o / ) for equation (5.1), or (ii) 

the inverse relative solute molality ( om / m ) for equation (5.8). The slope is 

equal to [1-b ] for equation (5.1) or [1- *b ] for equation (5.8). The intercept 

is equal to b  for equation (5.1) or *b  for equation (5.8). The 95 % 

confidence intervals for the slope and intercept were calculated using the 

method described previously (Chapter 2) for calculating confidence 

intervals for linear regression coefficients.    

 

5.4. Results 

The osmotic equilibrium data for human erythrocytes were analyzed 

using (i) the Boyle-van‟t Hoff equation (equation (5.1)),  (ii) the proposed 

non-ideal replacement equation for osmotic equilibrium (equation (5.8)) 

using the osmotic virial model of the cytoplasm (equation (3.13)) to 

determine  m  or (iii) the proposed non-ideal replacement equation for 

osmotic equilibrium (equation (5.8)) using the ESR data for human 

erythrocytes best fit with the osmotic virial equation (equation (5.9)) to 

determine  m .  
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5.4.1. Boyle-van’t Hoff equation 

The osmotic equilibrium measurements from our study and the 

literature [27; 37] for human erythrocytes are shown in Figure 5.2 as 

relative cell volume 








oV
V  versus inverse relative equilibrium osmolality 











 o . These data were fit to equation (5.1), the Boyle-van‟t Hoff 

equation, and the osmotically-inactive fraction (b ) determined from the y-

intercept was 0.51 ± 0.040. This value of the osmotically-inactive fraction 

is similar to other reported values for human erythrocytes which range 

from 0.41 to 0.48 [2; 18; 28].  

 

5.4.2. Non-ideal osmotic equilibrium equation, with osmotic virial model 

prediction. 

The intracellular solute molality of human erythrocytes was calculated 

as a function of equilibrium osmolality using the osmotic virial model in 

equation (3.13) and the same osmotic equilibrium data shown in Figure 

5.2 were re-plotted in Figure 5.3 as relative cell volume 








oV
V  versus 

inverse relative intracellular solute molality 







m

mo . Since the number of 

intracellular solute molecules remains constant, each solute concentrates 

at the same rate. Thus, the total solute molality ratio is equal to the 

hemoglobin solute molality ratio (which is also equal to the ideal solute 

molality ratio, see equation (3.12)). Using the new non-ideal osmotic 
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equilibrium equation (equation (5.8)), the osmotically-inactive fraction ( *b ) 

determined from the y-intercept is 0.38 ± 0.054.  

 

5.4.3. Non-ideal osmotic equilibrium equation, with ESR data osmotic 

virial equation best fit. 

Figure 5.4 is the plot of the same osmotic equilibrium data as in 

Figures 5.2 and 5.3, but using equation (5.9) fit to the ESR data fit [5; 23] 

to determine  m  of the cytoplasm. The relative cell volume was plotted 

versus relative inverse intracellular solute molality in Figure 5.4. The 

osmotically-inactive fraction ( *b ) determined from the y-intercept is 0.41 ± 

0.040. The osmotically-inactive fraction, *b , that results from the grouped 

solute fit agrees, within error, with the *b  resulting from the hemoglobin 

and ideal solute model.  

Table 5.3 displays all the values of the inferred osmotically-inactive 

fraction. Comparing the values from the two methods of obtaining the 

osmotically-inactive fraction from the same equation (i.e. intercept, and 

one minus the slope) is a test of the self-consistency of the data. The 

maximum difference between the values from the intercept and slope is 

0.03. 

 

5.5. Discussion 

Although the osmotic equilibrium data appeared to be linear when 

plotted on a Boyle-van‟t Hoff plot, Figure 5.5 shows that non-linearity did 
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occur at very hypertonic solutions (i.e. small values of o/). Furthermore, 

the extrapolation to the y-axis on the Boyle-van‟t Hoff plot gave 

erroneously large values for the osmotically-inactive fraction. Compared to 

an analysis of the same data with the Boyle-van‟t Hoff equation (equation 

(5.1)) (yielding osmotically inactive fractions of 0.49 - 0.51), the new non-

ideal osmotic equilibrium equation (equation (5.8)) resulted in osmotically-

inactive fraction of human erythrocytes 20 % lower (0.35 - 0.41) and closer 

to the results of dry volume obtained from desiccation experiments (0.27 - 

0.30) [2; 27]. 

ESR measures the water volume of the cell, independent of the total 

cell volume. Isotopically determining cell water mass is another approach 

to measure cell water independent of total cell volume (or mass). Both of 

these methods should result in an osmotically-inactive fraction of zero, 

since they are not measuring the cell solids. However, using the Boyle-

van‟t Hoff equation (equation (5.1)), the authors of those studies [5; 23; 

32] determined osmotically-inactive fractions in the range of 0.07 - 0.24, 

which could be interpreted as a measure of the non-ideality of the 

cytoplasm (i.e. the non-ideality in  m ).  These values are in the same 

range as the difference between the ideal b  (0.49 - 0.51) and the non-

ideal *b  (0.35 - 0.41) that was obtained here (see Figure 5.5).  

The cytoplasm of human erythrocytes does not behave as an ideal, 

dilute solution, particularly when cells are shrunken in very hypertonic 

solutions. The Boyle-van‟t Hoff equation commonly used to describe 
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cellular osmotic equilibrium is not thermodynamically correct for non-ideal, 

non-dilute solutions (even though osmolality appears in the equation). The 

non-ideal osmotic equilibrium equation presented in this chapter (equation 

(5.8)) describes the cytoplasm without making ideal, dilute solution 

assumptions and should be used to replace the Boyle-van‟t Hoff equation 

when determining an accurate value of the osmotically-inactive fraction is 

of importance.  

To use the replacement equation, the typical osmotic equilibrium 

measurements are still used (equilibrium cell volume as function of 

osmolality). A non-ideal equation of state may be used to obtain  m  for 

cytoplasm, which is inverted to obtain  m . The non-ideal equation of 

state may be predicted from a model (for example, the multisolute OVE 

model for hemoglobin and an ideal solute presented in Chapter 3) or 

found from a fit of experimental measurements (for example, ESR data). 

The non-ideal osmotic equilibrium equation (equation (5.8)) can then be 

used to determine the osmotically-inactive fraction, *b  from the 

appropriate plot of osmotic equilibrium measurements (for example, 

Figure 5.3 or Figure 5.4). The non-ideal osmotic equilibrium equation is a 

simple equation that can be applied to the entire range of solutions, both 

ideal and non-ideal, that are encountered during the biopreservation 

process.  
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Table 5.1. Osmotic virial coefficients for the solutes of the cytoplasm of 
human erythrocytes treated as a grouped solute (equation (5.9)).  

 Osmotic virial coefficients 

Solute A B C 

Cytoplasm  of 
Human Erythrocyte 

as a Grouped Solute 

[5; 23] 

1.03 

 

-0.230 

 

0.185 

 

 

Table 5.2. Isotonic values for each data set.  

 Isotonic values 

Data source 
Osmolality 

(mOsm) 

Hemoglobin 
concentration 

(millimolal) 

Effective ideal 
solute concentration 

(millimolal) 

Savitz et al. [27] 290 7.3 197 

Zhao et al. [37] 302 7.3 206 

S. Hakda 
measurements 

305 7.3 208 

 

Table 5.3. Values of osmotically-inactive fraction for erythrocytes obtained 
from the traditional Boyle-van‟t Hoff equation and from the non-ideal 
osmotic equilibrium equation. 

 

Traditional 
Boyle-van't 

Hoff 
(equation (5.1)) 

Non-ideal 
replacement  
(Hb + ideal)  

(equation (5.8)) 

Non-ideal 
replacement 

(Grouped solute fit)  
(equation (5.8)) 

b    
from intercept 

0.51 ± 0.040 0.38 ± 0.054 0.41 ± 0.040 

b 

from (1-slope) 
0.49 ± 0.040 0.35 ± 0.058 0.40 ± 0.041 
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Figure 5.1. Relative osmolality as a function of relative intracellular 

molality for human erythrocytes. The closed diamonds  are the ESR data 

from Du [5] and the open circles are the ESR data from Moronne et al. 

[23]. The red solid line is predicted using our multisolute OVE with 

hemoglobin and an ideal solute (equation (3.13), Chapter 3). The blue 

long-dashed line is the OVE best fit of the cytoplasm data, assuming all of 

the intracellular solutes are one grouped solute (equation (5.9)). The 

green short-dashed line is the prediction of the relative osmolality of the 

cytoplasm assuming an ideal, dilute solution.  
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Figure 5.2. Boyle-van‟t Hoff plot for human erythrocytes in phosphate 

buffered saline solutions. The green circles are from Savitz et al. [27], the 

red squares are from Zhao et al. [37] and the black diamonds are the data 

points measured by S. Hakda. The solid line is the fit to equation (5.1) 

using linear regression. The star on the x-axis shows the osmotically-

inactive fraction measured by desiccation experiments [2; 27].  
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Figure 5.3. Non-ideal osmotic equilibrium plot for human erythrocytes in 

phosphate buffered saline solutions, using our osmotic virial equation 

model for hemoglobin and an ideal solute (equation (3.13)) to determine 

 m . The green circles are from Savitz et al. [27], the red squares are 

from Zhao et al. [37] and the black diamonds are the data points 

measured by S. Hakda. The solid line is the fit to equation (5.8) using 

linear regression. The star on the x-axis shows the osmotically-inactive 

fraction measured by desiccation experiments [2; 27]. 
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Figure 5.4. Non-ideal osmotic equilibrium plot for human erythrocytes in 

phosphate buffered saline solutions, fitting the ESR data to the osmotic 

virial equation for one “grouped solute” (equation (5.9)) to determine  m . 

The green circles are from Savitz et al. [27], the red squares are from 

Zhao et al. [37] and the black diamonds are the data points measured by 

S. Hakda. The solid line is the fit to equation (5.8) using linear regression. 

The star on the x-axis shows the osmotically-inactive fraction measured by 

desiccation experiments [2; 27]. 
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Figure 5.5. Osmotic equilibrium plot for human erythrocytes in phosphate 

buffered saline solutions (a) over the entire osmolality range and (b) over 

the initial osmolality range. The solid line is the Boyle-van‟t Hoff equation 

(equation (5.1)). The dashed line is the non-ideal osmotic equilibrium 

equation (equation (5.8)) using the fit to the ESR data to determine  m . 

The difference between the osmotically-inactive fraction from the Boyle 

van‟t Hoff (b = 0.51) and the osmotically-inactive fraction from the non-

ideal osmotic equilibrium equation ( *b = 0.41) is a measure of the non-

ideality of the cytoplasm.  
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Chapter 6 - Effect of supercooling and cell volume on  

intracellular ice formation. 

6.1. Introduction 

In this chapter, the effects of intracellular supercooling and cell volume 

on the occurrence of intracellular ice formation (IIF) were investigated 

using experimental measurements and mathematical modelling. 

Modelling, in addition to being used to design cryopreservation protocols, 

has been frequently used to interpret experimental data in order to gain 

additional insight into the conditions which lead to cellular damage [1; 29; 

35; 43]. Modelling allows investigation into the relative importance of 

various parameters, such as intracellular supercooling and cell volume, on 

cellular responses to cryopreservation without the need to perform 

multiple experiments.  

As mentioned in section 1.6, the conditions which lead to the 

nucleation of intracellular ice are not well understood. Thus, relationships 

between calculated parameters and the incidence of IIF are often 

investigated in order to elucidate possible mechanisms of IIF.  However, in 

order to correctly indentify relationships between calculated parameters, 

such as intracellular supercooling, with experimental outcomes, such as 

IIF, the models used to calculate the parameters of interest need to be 

accurate.  
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6.1.1. Current understanding of IIF in cryobiology 

IIF has been linked to cell death for cells in suspension [2; 3; 21; 28; 

31; 32]. However, the exact mechanism of injury from the intracellular ice 

is unknown. Many mechanisms have been proposed [5; 14; 25; 36], but 

they have not been clearly corroborated with experimental evidence. Most 

evidence shows that the site of the IIF damage is the plasma membrane 

[3; 4; 29; 30].  

There is evidence that the temperature at which IIF occurs is 

influenced by the presence of extracellular ice [18; 30; 42].  It is believed 

that the interaction between extracellular ice and the cell plays an 

important role in nucleating intracellular ice. There are three main theories 

of how extracellular ice nucleates intracellular ice: (i) the pore theory [1; 

30]; (ii) the membrane failure hypothesis [5; 13; 36]; and (iii) the surface-

catalyzed nucleation of intracellular ice [51]. However, none of the theories 

of the mechanism of IIF can explain the experimental observations of IIF 

for all cell types.  

An overview of the range of mathematical models of IIF which have 

been proposed in an effort to further the understanding of the mechanism 

of IIF and predict its occurrence in various cell types was provided in 

section 1.6. In all of the mathematical models and many of the 

experimental observations of IIF, intracellular supercooling, cell volume, 

and extracellular nucleation temperature have been shown to be key 
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parameters which affect the nucleation of intracellular ice [8; 10; 13; 22; 

29; 38; 39; 40; 51; 54].  

 

6.1.2. The role of intracellular supercooling in IIF 

In order to accurately investigate the effect of intracellular 

supercooling on IIF in the presence of extracellular ice, accurate 

calculations of the degree of supercooling in the intracellular solution 

combined with experimental measurements of IIF under a range of 

conditions are needed. Many measurements of the incidence of IIF have 

been performed as a function of constant cooling rate, both in the 

presence and absence of CPA [10; 11; 13; 18; 38; 40; 41; 51; 53]. The 

decrease in extracellular temperature with time results in an increase in 

the intracellular supercooling with time. The inclusion of permeating CPAs 

adds additional complexity since permeating CPAs cause a depression in 

the freezing point of the intracellular solution. The freezing point 

depression is a nonlinear function that is dependent on the intracellular 

composition of all solutes. Thus, the concentration of all intracellular 

solutes, including the CPA, must be taken into account when determining 

the intracellular supercooling at the time of IIF. In addition, when 

extracellular ice is nucleated, the cell will respond osmotically due to 

osmolality and concentration gradients between the intra- and extracellular 

solutions, thus changing the intracellular solution composition. Thus, the 

intracellular supercooling is increasing with time due to the decreasing 
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temperature, but also decreasing due to the increase in intracellular 

osmolality with osmotic dehydration and the transport of CPAs into the 

intracellular solution.  

Others have performed isothermal (i.e. constant temperature) IIF 

experiments in order to determine the intracellular ice nucleation 

temperature, both in the presence and absence of CPAs [2; 3; 18; 35; 38; 

39; 53]. These experiments eliminate the complexity of changing 

intracellular supercooling with temperature, but the decrease in 

intracellular supercooling due to osmotic dehydration and transport of CPA 

into the intracellular solution must be taken into account.  

The degree of intracellular supercooling at the time of IIF can be 

determined from a non-ideal water and CPA transport model paired with 

an accurate model to predict the intracellular solution osmolality as a 

function of intracellular solute concentration.  Alternatively, measurements 

of the cell volume at the time of IIF can be coupled with an non-ideal 

osmotic equilibrium equation.  

Knowledge of the relationship between the intracellular supercooling 

and IIF may enable more accurate predictions of the incidence IIF and 

could lead to increased understanding of the mechanism of IIF in the 

presence of extracellular ice.  
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6.1.3. The role of cell volume and extracellular ice nucleation 

temperature in IIF 

Due to the stochastic nature of nucleation, the probability of a 

homogeneous nucleation event is a function of the sample volume [15]. 

For homogeneous nucleation, the predicted number of ice nuclei within a 

cell is dependent on the nucleation rate and the cell volume [22]. For 

heterogeneous nucleation, the probability of a nucleation event is 

proportional to the surface area of the nucleating agent [15]. It has been 

proposed that the heterogeneous nucleation of intracellular ice occurs via 

the surface of the plasma membrane acting as the nucleating site [51]. 

Thus, the probability of a nucleation event would depend on the surface 

area of the cell, which would be increased for larger cells. Determining the 

mechanism of ice nucleation (i.e. homogenous versus heterogeneous) is 

outside the scope of this study, but, assuming that the number of 

heterogeneous nucleation sites scales with the cell size, the probability of 

intracellular ice formation by either mechanism of nucleation would be 

increased for larger cells.  

In addition to the effect of cell volume on the predicted probability of a 

nucleation event, for spherical cells, the larger cells have a smaller surface 

area to volume ratio which decreases the rate of water movement across 

the cell membrane. Thus, as the extracellular osmolality increases due to 

the formation of extracellular ice, larger cells cannot osmotically dehydrate 
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as fast as smaller cells in order to maintain equilibrium with the 

extracellular solution and are thus more likely to have IIF.  

Decreasing extracellular ice nucleation temperature has been shown 

to increase the predicted probability and experimentally observed 

incidence of IIF [10; 18; 35; 53; 54]. However, the lower nucleation 

temperature is usually accompanied by an increase in the amount of 

intracellular supercooling at the time of extracellular ice nucleation; thus, 

de-coupling the effects of these two variables is difficult.  

The relative importance of the cell volume and the extracellular ice 

nucleation temperature on the incidence of IIF as a function of intracellular 

supercooling could be investigated by osmotically dehydrating the cells 

before nucleating extracellular ice. The exposure to hypertonic solutions of 

non-permeating solutes changes the intracellular osmolality, which 

decreases the temperature at which a given degree of intracellular 

supercooling is generated. By exposing the cells to hypertonic solutions, 

the relative effect of decreased cell volume, which would be expected to 

decrease the probability of IIF, and decreased extracellular nucleation 

temperature, which would be expected to increase the probability of IIF, 

on the incidence of IIF can be investigated.  
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6.1.4. Limitations of current IIF models 

The models used to predict IIF have enabled major advances in the 

design of cryopreservation protocols [22; 27; 50]. However, improvements 

could be made in the equations used to describe the intra- and 

extracellular solutions in order to enable more accurate predictions and 

relationships between variables.  In models used to predict the incidence 

of IIF and in calculations of the degree of intracellular supercooling at the 

time of experimentally observed IIF, the cytoplasm was typically treated as 

an ideal, dilute solution [8; 13; 22; 23; 29; 38; 39; 40; 51; 52; 53; 54], 

which becomes increasingly erroneous as the cells become more 

concentrated due to osmotic dehydration. The Boyle-van't Hoff equation, 

which contains an ideal, dilute solution assumption, is often used to 

calculate the intracellular osmolality at a measured volume [13; 38; 39; 

40]. The osmolality of a solution in equilibrium with ice at -30 oC is 

18.1 osmoles/kg solvent. This is 60 times greater than the isotonic 

osmolality of cells (0.3 osmoles/kg solvent) and also significantly greater 

than the osmolality range typically used to determine if the Boyle-van't 

Hoff equation adequately describes the cellular osmotic equilibrium [17; 

19; 26; 46; 56]. In addition, the linear conversion between the freezing 

point and osmolality is often used to determine the osmolality of the 

extracellular solution at a given temperature [13; 38; 39; 40]. It was 

demonstrated in Chapter 2 that the linear conversion gives increasingly 

large errors in the calculation of the osmolality as the temperature is 
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decreased. The nonlinear conversion (equation (1.2) should be used to 

more accurately determine the solution osmolality. 

The OVE presented in Chapters 2 through 4 is a simple, easy to apply 

solution thermodynamic model that allows accurate predictions of the 

osmolality (and thus supercooling) of complicated multisolute solutions, 

such as the cytoplasm of a cell. The non-ideal osmotic equilibrium 

equation presented in Chapter 5, combined with the multisolute OVE, 

provides accurate predictions of the composition of the intracellular 

solution as it becomes increasingly non-ideal due to osmotic dehydration. 

The multisolute OVE and the non-ideal osmotic equilibrium equation can 

be used to create a more realistic model of the cytoplasm which captures 

the solution non-ideality at higher solute concentrations.  

 

6.1.5. Objective 

The objective of this chapter was to investigate the link between the 

calculated intracellular supercooling, the measured cell volume, and the 

experimentally observed occurrence of IIF in the presence of extracellular 

ice for human umbilical vein endothelial cells (HUVECs) in suspension.  

Using a cryomicroscope, HUVECs were cooled to temperatures which 

gave specific degrees of intracellular supercooling, extracellular ice was 

nucleated and the incidence of IIF was measured.  
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The cryomicroscope is an advantageous experimental system for IIF 

studies, since it allows visualization of the cells as they are subjected to 

sub-zero temperatures and extracellular ice nucleation. Direct correlation 

between various parameters, such as IIF, cell volume, and post-thaw 

membrane integrity can be done on the cryomicroscope, which cannot be 

done using other experimental systems. In addition, the small sample 

volume used on a cryomicroscope allows for virtually instantaneous 

dissipation of the latent heat of fusion, keeping the cells at the desired 

sub-zero temperature with no rebound to the freezing point, as occurs with 

larger sample volumes. The cryomicroscope has been used for numerous 

IIF studies [1; 2; 8; 10; 12; 13; 18; 23; 27; 35; 38; 39; 40; 41; 53]. 

In order to investigate the relative importance of cell volume and 

extracellular ice nucleation temperature on IIF, experiments performed 

with cells at isotonic volume were contrasted with experiments performed 

with cells shrunken in a hypertonic solution of PBS. The extracellular ice 

was nucleated at a lower temperature in the hypertonic solutions versus 

the isotonic solutions for each degree of supercooling investigated.  

To investigate the incidence of IIF within a population of cells with a 

distribution of cell volumes, the initial cell diameters of the cells in isotonic 

PBS and in hypertonic PBS were measured and correlated with the 

incidence of IIF for one of the calculated degrees of intracellular 

supercooling.  
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In order to further understand the effect of cell volume on the cellular 

response to extracellular ice at a given degree of intracellular 

supercooling, a mathematical model was used to calculate the cellular 

osmotic responses. The multisolute OVE, the non-ideal osmotic 

equilibrium equation, and the non-linear conversion between freezing 

point depression and osmolality (equation (1.2)) were coupled with 

equations for the water transport across cell membranes and the 

temperature dependence of the water transport.  

The experimental measurements and the model were used together 

to gain further understanding of the role of cell volume, extracellular ice 

nucleation temperature, and intracellular supercooling on the incidence of 

IIF in HUVECs.  

 

6.2. Materials and methods - experimental and theoretical 

6.2.1. HUVEC cell culture 

HUVEC cells (LONZA, Walkersville, MD, USA) were grown at 37 oC in 

5 % CO2 in endothelial cell growth medium (LONZA), which consists of a 

basal medium augmented with eight reagents referred to as SingleQuots®. 

The added reagents are growth factors, cytokines, and other supplements, 

specifically human epidermal growth factor, hydrocortisone, fetal bovine 

serum, vascular endothelial growth factor, human fibroblast growth factor-

basic, insulin-like growth factor-I, ascorbic acid, and heparin. An antibiotic 
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(GA-1000: Gentamicin, Amphotericin-B) is sold with the SingleQuots®, but 

was not added to the culture medium. The final concentration of serum in 

the culture medium was 2 % (v/v). The cells were grown in 150 cm2 tissue 

culture flasks (Corning, Lowell, MA, USA) following the LONZA guidelines 

for HUVEC culture and were maintained at less than 80 % confluency for 

subculturing (approximately 3.0x105 - 3.3x105 cells per cm2). For use in 

experiments, cells were allowed to grow to 4.0 x105 cells per cm2.  Before 

an experiment the cells were trypsinized following the LONZA guidelines 

and counted on a Coulter® Z2
TM particle counter (Beckman Coulter, 

Mississauga, ON, Canada) to determine the cell number. 

 

6.2.2. Experimental solutions 

Following the centrifugation step of the trypsinization procedure, the 

supernatant was removed leaving approximately 200 L of solution. A 

washing step was not included to remove the trypsin, as this increased the 

cell clumping and decreased the cell viability.  

For the isotonic experiments, a small volume of the cell culture media 

(~ 200 to 300 L, depending on the cell count and the volume of solution 

left above the cell pellet) was added to the cells so that the cell 

concentration was approximately 10 - 19x106 cells/mL. To achieve the 

desired cell concentration of >5x106 cells/mL for the cryomicroscope 

experiments, 100 L of 1X phosphate buffered saline (PBS) was added to 

100 L of the cell suspension. The 1X PBS was made by diluting 10X PBS 
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(Invitrogen, Burlington, ON, Canada) with distilled water, using a 9 to 1 

ratio on a volume basis. The pH of the 1X PBS is adjusted to 7 - 7.1 by 

adding small amounts of sodium hydroxide (Sigma, Mississauga, ON, 

Canada). The osmolality of the 1X PBS was 280 - 300 mOsm/kg solvent. 

The osmolalities of all solutions were measured using an Osmette Micro 

Osmometer (Precision Systems, Natick, MA, USA). From the cell 

suspension diluted with 1X PBS, a 100 L aliquot was taken and mixed 

with a ten (10) L aliquot of SYTO® 13 (Molecular Probes, Eugene, OR, 

USA) and ethidium bromide (EB) (Sigma) stain using a pipette. The 

SYTO® 13/EB stain was prepared using 80 L of 2.5 mM (millimole 

solute/L solution) EB stock solution and 20 L of 5 mM SYTO® 13 stock 

solution, mixed with 700 L of 1X PBS. Final concentrations were 0.25 

mM EB and 0.125 mM SYTO® 13. SYTO® 13 is a live cell nucleic acid 

dye, which permeates the cell membrane of all cells and complexes with 

both RNA and DNA. When exposed to UV light, the SYTO® 13 fluoresces 

green. Ethidium bromide penetrates only cells with damaged membranes 

and forms a complex with nuclear DNA. Upon exposure to UV light, the 

EB fluoresces red. The dual fluorescence allows for visual differentiation 

of cells with intact and damaged membranes [55]. 

The final osmolality of the cell solution containing the stain was 320 - 

350 mOsm/kg solvent. The cell suspension was kept in an ice/water bath 

for the duration of the experiment (i.e. maximum two hours).  
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For the hypertonic experiments, after centrifugation and removal of 

the supernatant, a small volume of the cell culture media was added to the 

cell suspension so that the cell concentration was approximately 6 - 9 x106 

cells/mL.  A 150 L aliquot of the cell suspension was mixed with a 15 L 

aliquot of SYTO® 13/EB stain using a pipette. The cell suspension was 

kept in an ice/water bath for the duration of the experiment (i.e. maximum 

two hours). For each experimental run, 10 L of 10X PBS was mixed with 

50 L of the cell suspension solution (containing the SYTO® 13/EB stain) 

to achieve a final cell concentration of >5x106 cells/mL and a final 

osmolality of approximately 750 mOsm/kg solvent. The cells were 

exposed to the hypertonic solution for approximately 5 minutes before the 

start of the experimental run.  

   

6.2.3. Cryomicroscopy experiments 

The incidence of IIF in HUVECs following extracellular ice nucleation 

was investigated using isothermal holding experiments on a 

cryomicroscope in phosphate buffered saline (PBS) solutions without 

CPAs. The cryomicroscope system consisted of a Linkam FDCS196 

stage, TMS 94 temperature controller, and LNP93/2 liquid nitrogen pump 

(Linkam Scientific, United Kingdom) mounted on a Nikon Eclipse 80i 

microscope (Nikon, Mississauga, ON, Canada).  The desired temperature 

was set using the Linksys 32 temperature control software (Linkam 

Scientific). The sample loading apparatus consisted of a 0.17 mm thick 
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quartz crucible which was held by a crucible carrier (see Figure 6.1). 

When the crucible carrier was inserted in the cryostage, the quartz 

crucible was positioned on a silver cooling/heating element that was 

accurately controlled by a platinum temperature sensor mounted within 

0.5 mm of the surface of the silver block.  The temperature was regulated 

by the temperature control unit, which controlled the amount of heat 

generated and amount of liquid nitrogen (LN2) pumped into the 

heating/cooling block. The accuracy of the temperature control was within 

0.1 oC of the set temperature. Images were recorded using a Hamamatsu 

ORCA -ER camera (Hamamatsu, Hamamatsu City, Japan) and the NIS 

Elements Advanced Research software (Nikon). Figure 6.1 shows the 

entire cryomicroscope system. Prior to each experiment, the microscope 

alignment was configured to achieve even illumination (often referred to as 

Kohler illumination) across the entire field of view [37]. This ensured high-

quality images were captured.  

 A 2 L volume of the cell suspension was placed on the quartz 

crucible. The sample was covered with a 12 mm diameter glass coverslip 

and the crucible carrier inserted into the cryostage.  Under the UV light, an 

image of the SYTO® 13/EB fluorescence was captured so that the pre-

freeze membrane integrity of the sample could be assessed. Figure 6.2 is 

an example of a SYTO® 13/EB image used to determine the membrane 

integrity of a sample. The Hamamatsu ORCA-ER camera is a 

monochrome camera, so three pictures were taken (1 brightfield, 1 under 
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UV light with the FITC filter to capture the SYTO® 13 fluorescence, and 1 

under UV light with the Cy3 filter to capture the EB fluorescence) and the 

NIS-Elements software overlays the three images to construct images as 

seen in Figure 6.2. The number of green and red cells were counted 

manually from the individual pictures of the SYTO® 13 fluorescence and 

EB fluorescence, respectively. This ensures that any  cell showing even 

slight EB fluorescence was counted as membrane-damaged. The same 

field of view was used for the duration of the experimental run and only the 

cells with intact cell membranes pre-freeze were included in the 

subsequent IIF analysis. The microscope was switched to brightfield and 

the NIS Elements software set to capture an image every 500 msec and 

compile the images into a timelapse image file of the entire freezing and 

thawing process. The cryostage was cooled at 50 oC/min until the required 

experimental sub-zero temperature, corresponding to a specific degree of 

calculated intracellular supercooling, was reached. The expected 

osmolality of the isotonic solution was 300 mOsm/kg solvent, which gives 

a calculated freezing point depression of -0.6 oC. The expected osmolality 

of the hypertonic solution was 750 mOsm/kg solvent, which gives a 

calculated freezing point depression of -1.4 oC. The degrees of 

intracellular supercooling investigated were 2, 3, 4, 5, 7, and 10 oC. A 

metal probe cooled in LN2 (Praxair, Edmonton, AB, Canada) was used to 

nucleate ice in the experimental sample by touching the edge of the 

coverslip. After extracellular ice formation, the temperature was held 
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constant for a minimum of two minutes, during which time the incidence of 

intracellular ice formation (IIF) was determined using the standard flashing 

technique [6; 8; 13; 35; 38; 39; 40; 41; 49; 53]. When intracellular ice 

forms, the cell darkens or ‘flashes’. The flashing has been attributed to the 

formation of small intracellular ice crystals which scatter light. Figure 6.3 is 

a still image extracted from the timelapse images which shows the cells 

flashing. The number of cells that flashed was determined by watching the 

timelapse images and counting the cells which flash. The number of cells 

that flashed in specific time intervals (i.e. less than one second, between 1 

second and 60 seconds, and greater than 60 seconds) following 

extracellular ice nucleation was also determined. Following the two-minute 

hold, the temperature of the cryostage was increased at 50 oC/min to 20 

oC and held for two minutes. After thawing, the UV light was turned on and 

the post-thaw membrane integrity assessed using the SYTO® 13/EB 

stain. By using the same field of view for the entire run, each cell in the 

field of view was tracked from the pre-freeze membrane integrity picture, 

throughout the freezing and thawing process, to the post-thaw membrane 

integrity picture. For the cells that had intact membranes pre-freeze, the 

occurrence of IIF was correlated on a cell-specific basis with the post-thaw 

membrane integrity.  

For this study one experimental run  involved: (1) the pre-freeze 

membrane integrity assay; (2) the protocol described above for the 

measurement of the incidence of IIF; and (3) the post-thaw membrane 
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integrity assay. In one experimental run, the same field of view was used 

for the entire run and contained approximately 10 to 50 cells. For each 

degree of supercooling that was investigated, three experimental runs 

were conducted on one day and the results pooled so that the number of 

cells analyzed for each data point was at least 50 cells. This was repeated 

with cells from three different passages (n = 3) and the average and 

standard deviation calculated for the results from the three days.  

For the isotonic experiments, the cells for the three experimental runs 

at a specific degree of intracellular supercooling were taken from the same 

solution of cells in 1X PBS and SYTO® 13/EB stain. After the three runs at 

a specific degree of supercooling, a 100 L aliquot of the cells in 1X PBS 

was mixed with a new 10 L aliquot of SYTO® 13/EB stain for the 

experiments done at the next degree of supercooling. For the hypertonic 

experiments, after each experimental run on the cryomicroscope a new 

solution of 50 L of cells in SYTO® 13/EB stain was mixed with 10 L of 

10X PBS. After the three experimental runs at a specific degree of 

intracellular supercooling a new solution consisting of 150 L of cells 

mixed with 15 L of SYTO® 13/EB stain was made.  

The measured osmolalities for each experimental solution were used 

to calculate the amount of supercooling for each experimental run. The 

measured osmolalities for the isotonic experiments ranged from 320 - 350 

mOsm/kg solvent, which gave freezing point depressions of 0.6 to 0.7 oC. 

The measured osmolalities for the hypertonic experiments ranged from 
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610 - 880 mOsm/kg solvent, which gave freezing point depressions of 1.1 

to 1.6 oC. Since small volumes of solutions were used, the variability in 

solution osmolality could be explained by variations of a few microlitres of 

the components of the experimental solution (i.e. the cell suspension, the 

10 X PBS, the of SYTO® 13/EB stain, etc).  The variability in osmolality 

resulted in slight variations (≤ 0.4 oC) between experimental runs in the 

amount of intracellular supercooling at the time of extracellular ice 

nucleation.  

 

6.2.4. Cell volume measurements 

The cell diameters of the cells exposed to 4 oC of intracellular 

supercooling (isotonic and hypertonic) at the time of extracellular ice 

nucleation were measured using the measurement tool in the NIS 

Elements AR software. The diameters of the cells before extracellular ice 

was nucleated (referred to as the initial diameter) were measured and, for 

the cells that flashed, the diameters were measured at the time of flashing 

(referred to as the final IIF diameter); for cells that did not flash, the 

diameters were measured at the time that the last cell flashed (referred to 

as the final non-IIF diameter). When the measurements of the final IIF 

diameter were made, the time of flashing following extracellular ice 

nucleation was also recorded for the cells exposed to 4 oC of intracellular 

supercooling.  
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6.2.5. Statistical Analysis 

The cell diameter data were analyzed using SPSS version 12.0 (Lead 

Technologies, Charlotte, NC, USA). Results are expressed as mean ± 

standard deviation, unless otherwise specified. Multivariate analysis of 

variance (ANOVA) (including the Post-Hoc Scheffe test) was performed to 

compare the data from each of the three days to ensure that day to day 

variability was not statistically significantly. P-values less than 0.05 were 

considered significant. It was found that the results from the first day of the 

hypertonic experiments were significantly different than the results from 

the second and third day (p=0.008 and p=0.002, respectively). However, 

further statistical analysis showed that including the data from day 1 in 

subsequent comparisons did not affect the findings. Thus, the p-values 

reported are for the comparisons made with the data pooled from each of 

the three experiments.  

The diameters of the cells that flashed (IIF cells) were compared to 

the diameters of the cells that did not flash (non-IIF cells) using one-way 

ANOVA to determine if the IIF cells had diameters significantly different 

from the non-IIF cells.  Furthermore, one-way ANOVA was also use to 

compare the diameters of the cells in the isotonic solution to the diameters 

of the cells in the hypertonic solution.  
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6.2.6. Mathematical model - equations and specifications 

The model used to predict the cellular osmotic response to 

extracellular ice nucleation included the Jacobs and Stewart water 

transport equation [20], an Arrhenius temperature dependence of Lp, a 

multisolute OVE model (Chapter 3) of the cytoplasm which consisted of a 

protein and an ideal solute, the non-linear conversion between freezing 

point depression and osmolality (equation (1.2)), and measured cellular 

osmotic parameters, including the non-ideal osmotically-inactive fraction, 

b* [43]. The model was designed in the following manner and the values 

for all parameters used are listed in Table 6.1.  

(i) Cell osmotic parameters and composition at isotonic osmolality 

The volume of intracellular water, wV , was given by equation (5.3):  

obw VbVVVV *  (5.3) 

where  V  is the cell volume, bV  is the osmotically-inactive volume of the 

cell, and b* = 
o

b

V
V

 is the osmotically-inactive fraction of the cell volume 

determined from the non-ideal osmotic equilibrium equation presented in 

Chapter 5. The subscript o refers to the isotonic condition.  

Equation (5.3) was used to calculate the isotonic cell water volume 

( owV , ) from the isotonic volume of the cell ( oV ): 
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  oow VbV *

, 1  (6.1) 

It was assumed that the osmotically-inactive volume of the cell 

remained constant ( ob VbV * ) even as the cell osmotically dehydrates. 

Thus, the cell water volume can be calculated from the cell volume at 

anisotonic osmolalities by using equation (5.3). 

The mass of intracellular water ( wM ) was calculated using: 

www VM    (6.2) 

where w  is the density of water and was assumed to be constant with 

temperature (1x10-15 kg/m3).   

For the purposes of this model, the cytoplasm of the HUVECs was 

assumed to be made up of a protein and an ideal solute. A similar model, 

consisting of a protein and an electrolyte, has been used to model the 

cytoplasm of TF-1 cells [43].  The multisolute OVE was used to calculate 

the osmolality of the cytoplasm, using the same form as the model of the 

erythrocyte cytoplasm (Chapter 3): 
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where Im  is the molality of the ideal solute (mole/kg solvent), Pm  is the 

molality of the intracellular protein (mole/kg solvent), PB  is the second 

225



virial coefficient for the protein for use in molality ([mole/kg solvent]-1), and 

PC  is the third virial coefficient for the protein for use in molality ([mole/kg 

solvent]-2).  

The isotonic concentration of intracellular proteins of HUVECs is not 

known. For erythrocytes, the concentration of hemoglobin is 7.3 millimole 

Hb/kg solvent [16; 46; 47]. Thus, the isotonic concentration of intracellular 

protein for the HUVECs was assumed to be 7.3 millimole protein/kg 

solvent. The osmotic virial coefficients of the intracellular protein were 

assumed to be those of hemoglobin (see Table 2.1), which is the only 

intracellular protein that has been characterized in this thesis work. It can 

be seen from Figure 2.5 that the solution thermodynamics of three 

proteins (hemoglobin, ovalbumin, and whey protein) are quite similar, so 

assuming that the intracellular proteins of a HUVEC will display similar 

behaviour is justified. The ideal solute concentration in the cytoplasm at 

isotonic osmolality was calculated in the same manner as was done in 

Chapter 3 for the erythrocyte cytoplasm, using an isotonic osmolality for 

the HUVEC of 300 mOsm/kg solvent [43], which gave an isotonic ideal 

solute molality of 205 millimole/kg solvent. 

The number of moles of protein and ideal solute were calculated using 

the mass of intracellular water, wM ,: 

wII

wPp

Mmn

Mmn




 (6.4) 
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where pn  and In  are the number of moles of protein and ideal solute, 

respectively. For the circumstances that are being modelled, it was 

assumed that only water crosses the cell membrane. Thus, the numbers 

of moles of protein and ideal solute remained constant.  

(ii) Extracellular ice nucleation 

When extracellular ice is nucleated at a given temperature, the 

extracellular osmolality (e) of the unfrozen solution in equilibrium with the 

ice is defined by the relationship between the freezing point depression 

and osmolality (equation (1.2)): 
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(1.2) 

 

It was assumed that the extracellular solution is in equilibrium with ice 

at all times, so the extracellular solution osmolality was calculated from 

equation (1.2). The increase in extracellular osmolality creates a 

difference between the intracellular and extracellular solutions, so there 

will be water efflux from the cell in order to increase the intracellular 

osmolality. The Jacobs and Stewart [20] water transport equation used to 

model the efflux of water is: 

 ei

wp ARTL
dt

dV
   (6.5) 
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where 
dt

dV
 is the change in cell water volume with time, pL  is the 

hydraulic conductivity of the cell membrane (m3/m2/min/atm), A  is the 

cell surface area (m2), R  is the universal gas constant (8.21x1013 

m3atm/mole K), T  is the absolute temperature (K), w  is the density of 

water (kg/m3), and   is the osmolality (where superscripts i = 

intracellular and e = extracellular). Since only water moved across the cell 

membrane under these conditions, the rate of change of cell water volume 

also represented the rate of change of total cell volume. Note that the 

change in volume with time was negative when the osmolality of the 

extracellular solution was greater than the osmolality of the intracellular 

solution, indicating water efflux from the cell. The temperature 

dependence of pL  was described with the Arrhenius equation: 
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where  TLp  is the value of pL  at the temperature of interest 

(m3/m2/min/atm),  
refp TL  is the pL  at a reference temperature 

(m3/m2/min/atm), refT  is the reference temperature (K), aE  is the 

activation energy of pL  (J/mol), R  is the universal gas constant (8.314 

J/moleK), and T  is the temperature of interest (K).  
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The change in cell water volume (and total cell volume) was 

calculated by numerically solving equation (6.5) using Euler's method [7] 

and choosing a time increment  t  that was sufficiently small, meaning 

that reductions in the time increment did not change the results from the 

model.  The cell water volume was calculated after each time increment: 

     tARTLtVttV eipww  1)(  (6.7) 

 Once the cell water volume was calculated, the mass of intracellular 

water at time  tt   was calculated from equation (6.2).  

With water efflux, the intracellular solutes become more concentrated 

and the osmolality of the intracellular solution increases. The molalities of 

the intracellular solutes at time  tt  , recalling that the number of moles 

of protein  pn  and the number of moles of the ideal solute  In  remain 

constant, were calculated, from: 
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 (6.8) 

  

The osmolality of the intracellular solution was calculated at time 

 tt   using the molalities of the intracellular solutes at time  tt   in 
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equation (6.3). Calculations using the above equations were repeated until 

osmotic equilibrium (i = e) was reached. 

 

6.3. Results 

6.3.1. Percentage of IIF and percentage of cells with damaged 

membrane post-thaw  

The percentage of cells with IIF in the presence of extracellular ice 

and the percentage of cells with damaged membranes post-thaw as a 

function of calculated intracellular supercooling in the isotonic PBS 

solutions are shown on Figure 6.4, which shows that the incidence of IIF 

increased with increasing intracellular supercooling. Also, the percentage 

of cells with damaged membranes post-thaw was similar to the 

percentage of cells with IIF for all degrees of intracellular supercooling. On 

a cell-specific basis, Table 6.2 shows that 85 % of the cells with IIF were 

membrane-damaged post-thaw, while 98 % of the cells without IIF had 

intact membranes post-thaw.  

The percentage of cells with IIF and the percentage of cells with 

damaged membranes post-thaw as a function of supercooling in the 

hypertonic PBS solutions are shown on Figure 6.5. As with the isotonic 

experiments, the incidence of IIF increased with increasing supercooling. 

However, at a given degree of supercooling, a smaller percentage of cells 

in the hypertonic solutions had IIF as compared with the same degree of 
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supercooling in the isotonic solution. Similar to the isotonic experiments, 

the percentage of cells with damaged membranes post-thaw was similar 

to the number of IIF cells for each degree of supercooling. On a cell-

specific basis, Table 6.3 shows that 82 % of the cells with IIF were 

membrane-damaged post-thaw, while 90 % of the cells without IIF had 

intact membranes post-thaw.  

A comparison of the percentage of IIF cells in the isotonic and 

hypertonic solutions is shown on Figure 6.6. The lines connecting the data 

points are sigmoidal best fit lines of the form: 

 )exp(1
%

cSC

b
aIIF


  (6.9) 

where a , b , and c  are fitting parameters and SC  is the calculated 

amount of intracellular supercooling (oC). The fitting parameters were 

obtained by minimizing the sum of squared errors (SSE) between the 

predicted values of % IIF from equation (6.9) and the measured values of 

% IIF. The equation for the SSE can be found in Chapter 2 (equation 

(2.11)).  

Figure 6.6 shows that the incidence of IIF was higher in the isotonic 

solution than in the hypertonic solution for a given degree of intracellular 

supercooling. A common measure to summarize the IIF behaviour of cells 

is the temperature at which 50 % of cells experience IIF [18; 35; 39; 51; 

53]. In this study, the amount of intracellular supercooling required for 50 
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percent IIF (% IIF) was calculated from Figure 6.6 for both the isotonic and 

hypertonic experiments. For the isotonic, experiments, 50 % IIF was 

predicted to occur at 3.9 oC of supercooling (which corresponds to an 

extracellular ice nucleation temperature of -4.5 oC). For the hypertonic 

experiments, 50 % IIF was predicted to occur at 7.5 oC of supercooling 

(corresponding to an extracellular ice nucleation temperature of  -8.9 oC).  

 

6.3.2. Effect of cell volume on IIF  

The incidence of IIF was lower in the hypertonic solutions for all 

degrees of intracellular supercooling. The only physical variables which 

were different between the two sets of experiments are the extracellular 

ice nucleation temperature and the volumes of the cells. The lower 

extracellular ice nucleation temperature in the hypertonic solutions was 

expected to increase the incidence of IIF at a given degree of intracellular 

supercooling; however, the incidence of IIF in the hypertonic solutions was 

decreased at a given degree of supercooling. This indicated that the cell 

volume was playing a role in the decreased incidence of IIF in the 

hypertonic solutions. In order to examine this further, the diameters of the 

cells with IIF and the diameters of the cells without IIF were measured for 

a given amount of supercooling in both the isotonic and hypertonic 

experiments. For the 4 oC of intracellular supercooling experiments, the 

cell diameter before extracellular ice was nucleated (referred to as the 

initial diameter) for IIF and non-IIF cells were measured. For the IIF cells, 
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the cell diameter at the time of IIF (referred to as the final IIF diameter) 

was also measured. For the non-IIF cells, the cell diameters at the time 

the last cell flashed were measured (referred to as final non-IIF diameter). 

The results are listed in Table 6.4 as the average cell diameter ± the 

standard deviation. In order to determine if there is a statistically 

significant difference between the cell diameters, one-way ANOVA was 

performed (< 0.05 level of significance). For the isotonic experiments, 

there was a significant difference (p < 0.001) between the initial diameters 

of the IIF and non-IIF cells, with the IIF cells being significantly larger. This 

difference was also seen in the hypertonic experiments, with the IIF cells 

again being significantly larger (p < 0.001).  

The initial diameters (i.e. diameter before extracellular ice nucleation) 

and final diameters (i.e. diameter at the time of flashing) of the IIF cells in 

the isotonic and hypertonic solutions were not significantly different 

(p=0.05 and p=0.112, respectively). Thus, even though the cells in the 

hypertonic solution were shrunken due to osmotic dehydration, there were 

larger cells in the population with a volume that was not significantly 

different than the cells in the isotonic solution. These larger cells were 

more likely to have IIF. Since there was a small number of the cells in the 

hypertonic solution with volumes that were not significantly different than 

the volume of the cells in the isotonic solution, the incidence of IIF was 

reduced in the hypertonic solution.   
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The initial diameters and the final diameters of the non-IIF cells in the 

isotonic and hypertonic solutions were significantly different (p < 0.001), 

which was expected since the cells in the hypertonic solution were 

shrunken due to the efflux of water.  

It should also be noted that there was a difference between the 

diameter of the IIF cells before extracellular ice nucleation (initial diameter) 

and the diameter of the IIF cells at the time of flashing (final IIF diameter), 

indicating that the cells osmotically dehydrated in the presence of 

extracellular ice before IIF occurred. Since the osmolality of the 

intracellular solution increased as the cell shrinks, the actual amount of 

intracellular supercooling in the cells at the time of IIF was less than the 

amount at the instant of extracellular ice nucleation. The results shown on 

Figures 6.4 to 6.6 show the incidence of IIF as a function of the initial 

intracellular supercooling (i.e. at the time of extracellular ice nucleation) 

and did not take into account the decrease in intracellular supercooling 

due to osmotic dehydration.  

 

6.3.3. Mathematical modelling to investigate effect of cell volume  

To investigate the impact of cell volume on the cellular osmotic 

response to extracellular ice nucleation, the mathematical model outlined 

in section 6.2.6 was used to calculate the cell volumes and degree of 

intracellular supercooling for hypothetical HUVECs of two different 

volumes. The calculations were done assuming an isotonic cell volume of 
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1115 m3 (approximately 75 % of the measured isotonic volume (1486 

m3) for HUVECs [43] and an isotonic cell volume of 2230 m3, while 

keeping all other cellular osmotic parameters equal. The assumed cell 

volumes were chosen to represent cells at the smaller and larger ends of 

the cell population. The extracellular ice nucleation temperatures 

investigated corresponded to the 4 degrees of intracellular supercooling 

experimental conditions (extracellular ice nucleation at -4.6 oC and -5.4 

oC). The calculated cell volume as a function of time curves following 

extracellular ice nucleation are shown in Figure 6.7. In order to express 

the graphs on a similar scale, the volumes were expressed as relative cell 

volume (cell volume divided by the isotonic cell volume). At the time of 

extracellular ice nucleation, the cells in the hypertonic solution were 

already shrunken, so they had a relative cell volume of approximately 

0.75; whereas the cells in the isotonic solution had a relative cell volume 

of 1.0.  

The cell water volume, relative cell water volume (cell water 

volume/cell water volume at time of extracellular ice nucleation), and 

intracellular supercooling were also calculated. During the 4 oC 

supercooling experiments, all of the cells with IIF nucleated within 37 

seconds of extracellular ice nucleation (see Figure 6.8).  Thus, the 

calculated values of cell water volume, relative cell water volume, and 

intracellular supercooling are shown for the first 60 seconds following 

extracellular ice nucleation (Figures 6.9 - 6.11).   
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6.4. Discussion 

6.4.1. Comparison between this study and previous studies 

Experimental measurements of the incidence of IIF as a function of 

intracellular supercooling were done in this study at isothermal sub-zero 

temperatures and without CPAs. The relative importance of the effects of 

cell volume and extracellular nucleation temperature at a given degree of 

intracellular supercooling were investigated by suspending the cells in 

PBS solutions of differing osmolality (either  = 320 - 350 mOsm/kg 

solvent or  = 610 - 880 mOsm/kg solvent). Many other measurements of 

the incidence of IIF have been done for a range of cell types in various 

conditions [10; 11; 13; 18; 35; 38; 39; 40; 41; 51; 53]. In most of the 

previous studies, the incidence of IIF was correlated with extracellular ice 

nucleation temperature, not intracellular supercooling. The results from 

this study agree with the previous studies which show increasing IIF with 

increasing intracellular supercooling, which, in solutions with the same 

osmolality, occurs as the extracellular ice nucleation temperature 

decreases [10; 35; 41; 53; 54]. It should be noted that direct comparison 

between this study and previous studies on the relationship between IIF 

and degrees of intracellular supercooling is difficult due to the fact that in 

previous studies, the correlation of the incidence of IIF with intracellular 

supercooling is usually complicated by multiple factors, including: (i) 

changing temperature, (ii) permeating CPAs, and (iii) ideal, dilute solution 

assumptions used to calculate the degree of supercooling. The high 

236



correlation between the incidence of IIF and post-thaw membrane damage 

shown in this study is similar to previous correlations for cells in 

suspension [2; 3]. The results from this study also agree with the previous 

hypothesis that the incidence of IIF decreases with decreased cell volume 

[29]. This study investigated the effect of cell volume on the incidence of 

IIF both for a population of cells in isotonic and hypertonic solutions for 

various degrees of intracellular supercooling and also on a cell-specific 

basis for cells in isotonic and hypertonic solutions for one specific degree 

of intracellular supercooling. 

 

6.4.2. Effect of cell volume on incidence of IIF for population of cells in 

isotonic and hypertonic solutions 

From the measurements of IIF made for the population of cells in the 

isotonic and hypertonic solutions, the experimental results indicated that, 

at the conditions studied, the cell volume played a more significant role in 

the incidence of IIF than the extracellular ice nucleation temperature. At a 

given degree of intracellular supercooling, a smaller percentage of cells 

had IIF in the hypertonic PBS solutions as compared to cells in isotonic 

PBS, even though the extracellular ice nucleation temperature in the 

hypertonic PBS solutions was 0.8 oC lower than in the isotonic PBS.  
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6.4.3. Effect of cell volume on incidence of IIF on a cell-specific basis 

for cells in isotonic and hypertonic solutions 

From the cell-specific correlations between the incidence of IIF and 

cell volume for the 4 oC supercooling experiments in the isotonic and 

hypertonic experiments, it was concluded that the cells which have a 

larger diameter before extracellular ice nucleation in both the isotonic and 

hypertonic solutions had IIF, while the smaller cells did not. This 

corresponds with the prediction that the probability of a nucleation event 

increases with cell volume.  

Comparing the diameters of the cells with IIF in the isotonic and 

hypertonic solutions demonstrated that IIF cell diameters in the two 

solutions were not significantly different, even though the cells in the 

hypertonic solution were shrunken due to efflux of water. This suggests 

that there may be a critical cell volume for IIF at a specified degree of 

supercooling, regardless of the extracellular ice nucleation temperature. 

Since the population of cells in the hypertonic solution were shrunken due 

to the efflux of water, there were fewer cells in the hypertonic solutions 

with the larger volume which leads to IIF. Thus, the percentage of IIF cells 

in the hypertonic solution was less than in the isotonic solution. Additional 

cell volume measurements for other degrees of intracellular supercooling 

would need to be done in order to verify the hypothesis of a critical volume 

for IIF at a given degree of intracellular supercooling. These results 
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confirmed that cells with a smaller diameter before extracellular ice 

nucleation have a decreased probability of IIF.  

The measured diameters of the IIF cells at the time of IIF indicated 

that the cells shrink in response to the increased extracellular osmolality 

due to extracellular ice nucleation before IIF occurs. Thus, the amount of 

intracellular supercooling was reduced at the time of IIF as compared to 

the instant that extracellular ice was nucleated.  

 

6.4.4. Results from model and interpretation of experimental results 

From the calculated cellular osmotic responses it was demonstrated 

that the larger cells do not osmotically dehydrate in the presence of 

extracellular ice as quickly as the smaller cells. The calculated intracellular 

supercooling of the larger cells was greater at any given time than that of 

the smaller cells. The model demonstrated, that in addition to the effect of 

volume on nucleation which is expected from the stochastic nature of 

nucleation, the predicted cellular osmotic responses of the larger cells to 

extracellular ice nucleation resulted in a higher probability of IIF as 

compared to smaller cells.   

 

6.4.5. Assumption in the model of intracellular solution of HUVECs 

The cytoplasm of the HUVECs was modelled as an aqueous solution 

of protein and an ideal solute, with an isotonic protein concentration of 7.3 
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millimole/kg solvent. The assumed protein concentration was greater than 

the assumed protein concentrations used by Ross-Rodriguez (3.65 

millimole protein/kg solvent)  [43] and by de Freitas et al. (4 millimole 

protein/kg solvent) [9] in simulations of TF-1 cells and islets, respectively. 

However, subsequent to these thesis studies, a measurement of the 

solution thermodynamics of the HUVEC cytoplasm was made [43]. In 

Appendix D, the comparison between the protein and ideal model used in 

this thesis and the measured solution properties is shown. The 

comparison shows that the protein + ideal solute model works well for 

capturing the non-ideality of the cytoplasm. 

 

6.4.6. Translation of results into cryopreservation applications 

The knowledge that smaller cells can withstand more supercooling 

before experiencing IIF could be used to design novel cryopreservation 

protocols. The cells could be osmotically dehydrated before cooling using 

non-permeating CPAs and then rapidly cooled without the probability of 

IIF. This idea has been previously used by other researchers [24; 33; 48] 

and this study reinforces the applicability of such an approach for cells in 

suspension. In fact, from this study it appears that the addition of 

supplementary non-permeating CPAs would not be necessary and 

hypertonic solutions of PBS would enable the avoidance of IIF. In addition, 

nucleating extracellular ice in the sample at a high sub-zero temperature 

and allowing the cells to equilibrate with the extracellular ice before 
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subsequent cooling to lower temperatures may confer protection from IIF 

at the lower temperatures. The cells osmotically dehydrate during the 

equilibration and would thus be able to withstand more supercooling. The 

concept of using isothermal holding steps to dehydrate cells as part of a 

cryopreservation protocol has been proposed for human hepatocytes [18] 

and is one of the principles used in the design of two-step cooling 

protocols [34; 44; 45]. 

241



6.5. References 

[1] J.P. Acker, J.A.W. Elliott, and L.E. McGann, Intercellular ice 

propagation: Experimental evidence for ice growth through 

membrane pores. Biophysical Journal 81 (2001) 1389-1397. 

[2] J.P. Acker, and L.E. McGann, Cell-cell contact affects membrane 

integrity after intracellular freezing. Cryobiology 40 (2000) 54-63. 

[3] J.P. Acker, and L.E. McGann, Membrane damage occurs during the 

formation of intracellular ice. Cryo-Letters 22 (2001) 241-254. 

[4] J.P. Acker, and L.E. McGann, Innocuous intracellular ice improves 

survival of frozen cells. Cell Transplantation 11 (2002) 563-571. 

[5] E. Asahina, Frost Injury in Living Cells. Nature 196 (1962) 445-446. 

[6] R. Chambers, and H.P. Hale, The formation of ice in protoplasm. 

Proceedings of the Royal Society of London Series B-Containing 

Papers of a Biological Character 110 (1932) 336-352. 

[7] S.C. Chapra, and R.P. Canale, Numerical methods for engineers : with 

programming and software applications, WCB/McGraw-Hill, 

Boston, 1998. 

[8] R.C. de Freitas, and K.R. Diller, Intracellular ice formation in three-

dimensional tissues: Pancreatic islets. Cell Preservation 

Technology 2 (2004) 19-28. 

242



[9] R.C. de Freitas, K.R. Diller, J.R.T. Lakey, and R.V. Rajotte, Osmotic 

Behavior and Transport Properties of Human Islets in a Dimethyl 

Sulfoxide Solution. Cryobiology 35 (1997) 230-239. 

[10] K.R. Diller, Intracellular freezing: effect of extracellular supercooling. 

Cryobiology 12 (1975) 480-5. 

[11] K.R. Diller, Intracellular freezing of glycerolized red-cells. Cryobiology 

16 (1979) 125-131. 

[12] K.R. Diller, and E.G. Cravalho, A cryomicroscope for the study of 

freezing and thawing processes in biological cells. Cryobiology 7 

(1970) 191-9. 

[13] M.F. Dowgert, and P.L. Steponkus, Effect of Cold-Acclimation on 

Intracellular Ice Formation in Isolated Protoplasts. Plant Physiology 

72 (1983) 978-988. 

[14] J. Farrant, and G.J. Morris, Thermal Shock and Dilution Shock as 

Causes of Freezing Injury. Cryobiology 10 (1973) 134-140. 

[15] N.H. Fletcher, The chemical physics of ice, Cambridge U.P., London, 

1970. 

[16] J.C. Freedman, and J.F. Hoffman, Ionic and osmotic equilibria of 

human red blood cells treated with nystatin. J Gen Physiol 74 

(1979) 157-85. 

[17] D.Y. Gao, Q. Chang, C. Liu, K. Farris, K. Harvey, L.E. McGann, D. 

English, J. Jansen, and J.K. Critser, Fundamental cryobiology of 

243



human hematopoietic progenitor cells I: Osmotic characteristics 

and volume distribution. Cryobiology 36 (1998) 40-48. 

[18] C.L. Harris, M. Toner, A. Hubel, E.G. Cravalho, M.L. Yarmush, and 

R.G. Tompkins, Cryopreservation of isolated hepatocytes: 

Intracellular ice formation under various chemical and physical 

conditions. Cryobiology 28 (1991) 436-444. 

[19] C.J. Hunt, S.E. Armitage, and D.E. Pegg, Cryopreservation of 

umbilical cord blood: 1. Osmotically inactive volume, hydraulic 

conductivity and permeability of CD34(+) cells to dimethyl, 

sulphoxide. Cryobiology 46 (2003) 61-75. 

[20] M.H. Jacobs, and D.R. Stewart, A simple method for the quantitative 

measurement of cell permeability. Journal of Cellular and 

Comparative Physiology 1 (1932) 71-82. 

[21] J.O.M. Karlsson, E.G. Cravalho, and M. Toner, Intracellular Ice 

Formation - Causes and Consequences. Cryo-Letters 14 (1993) 

323-336. 

[22] J.O.M. Karlsson, E.G. Cravalho, and M. Toner, A Model of Diffusion-

Limited Ice Growth inside Biological Cells during Freezing. Journal 

of Applied Physics 75 (1994) 4442-4445. 

[23] J.O.M. Karlsson, A. Eroglu, T.L. Toth, E.G. Cravalho, and M. Toner, 

Fertilization and development of mouse oocytes cryopreserved 

244



using a theoretically optimized protocol. Human Reproduction 11 

(1996) 1296-1305. 

[24] C.T. Knorpp, W.R. Merchant, P.W. Gikas, H.H. Spencer, and N.W. 

Thompson, Hydroxyethyl starch - Extracellular cryophylactic agent 

for erythrocytes. Science 157 (1967) 1312-&. 

[25] J. Levitt, Sulfhydryl-disulphide hypothesis of frost injury and 

resistance in plants. Journal of Theoretical Biology 3 (1962) 355-&. 

[26] C. Liu, C.T. Benson, D.Y. Gao, B.W. Haag, L.E. Mcgann, and J.K. 

Critser, Water Permeability and Its Activation-Energy for Individual 

Hamster Pancreatic-Islet Cells. Cryobiology 32 (1995) 493-502. 

[27] J. Liu, E.J. Woods, Y. Agca, E.S. Critser, and J.K. Critser, 

Cryobiology of rat embryos II: A theoretical model for the 

development of interrupted slow freezing procedures. Biology of 

Reproduction 63 (2000) 1303-1312. 

[28] P. Mazur, Physical Factors Implicated in the Death of Micro-

Organisms at Subzero Temperatures. Annals of the New York 

Academy of Sciences 85 (1960) 610-629. 

[29] P. Mazur, Kinetics of Water Loss from Cells at Subzero Temperatures 

and the Likelihood of Intracellular Freezing. J Gen Physiol 47 

(1963) 347-69. 

245



[30] P. Mazur, Role of Cell Membranes in Freezing of Yeast and Other 

Single Cells. Annals of the New York Academy of Sciences 125 

(1965) 658-&. 

[31] P. Mazur, The role of intracellular freezing in the death of cells cooled 

at supraoptimal rates. Cryobiology 14 (1977) 251-72. 

[32] P. Mazur, Freezing of living cells: mechanisms and implications. Am J 

Physiol 247 (1984) C125-42. 

[33] L.E. McGann, Differing actions of penetrating and nonpenetrating 

cryoprotective agents. Cryobiology 15 (1978) 382-390. 

[34] L.E. McGann, and J. Farrant, Survival of tissue culture cells frozen by 

a two-step procedure to -196 degrees C. I. Holding temperature 

and time. Cryobiology 13 (1976) 261-8. 

[35] K. Muldrew, and L.E. McGann, Mechanisms of Intracellular Ice 

Formation. Biophysical Journal 57 (1990) 525-532. 

[36] K. Muldrew, and L.E. Mcgann, The Osmotic Rupture Hypothesis of 

Intracellular Freezing-Injury. Biophysical Journal 66 (1994) 532-

541. 

[37] Microscope Alignment for Köhler Illumination, M. Parry-Hill, R.T. 

Sutter, and M.W. Davidson.(accessed on August 30, 2009) 

[38] R.E. Pitt, M. Chandrasekaran, and J.E. Parks, Performance of a 

kinetic model for intracellular ice formation based on the extent of 

supercooling. Cryobiology 29 (1992) 359-373. 

246



[39] R.E. Pitt, S.P. Myers, T.-T. Lin, and P.L. Steponkus, Subfreezing 

volumetric behavior and stochastic modeling of intracellular ice 

formation in Drosophila melanogaster embryos. Cryobiology 28 

(1991) 72-86. 

[40] R.E. Pitt, and P.L. Steponkus, Quantitative analysis of the probability 

of intracellular ice formation during freezing of isolated protoplasts. 

Cryobiology 26 (1989) 44-63. 

[41] W.F. Rall, P. Mazur, and J.J. McGrath, Depression of the ice-

nucleation temperature of rapidly cooled mouse embryos by 

glycerol and dimethyl sulfoxide. Biophysical Journal 41 (1983) 1-12. 

[42] D.H. Rasmussen, M.N. Macaulay, and A.P. Mackenzie, Supercooling 

and nucleation of ice in single cells. Cryobiology 12 (1975) 328-

339. 

[43] L.U. Ross-Rodriguez, Cellular osmotic properties and cellular 

responses to cooling, Department of Laboratory Medicine and 

Pathology, University of Alberta, Edmonton, Alberta (2009), pp. 219 

[44] L.U. Ross-Rodriguez, J.A.W. Elliott, and L.E. McGann, 

Characterization of cryobiological responses in TF-1 cells using 

interrupted freezing procedures. Cryobiology (Accepted) (2009). 

[45] L.U. Ross-Rodriguez, J.A.W. Elliott, and L.E. McGann, Investigating 

cryoinjury using simulations and experiments: 1. TF-1 cells during 

247



the two-step freezing (rapid cooling interrupted with a hold time) 

procedure. Cryobiology  (Submitted) (2009). 

[46] D. Savitz, V.W. Sidel, and A.K. Solomon, Osmotic Properties of 

Human Red Cells. Journal of General Physiology 48 (1964) 79-94. 

[47] A.K. Solomon, M.R. Toon, and J.A. Dix, Osmotic properties of human 

red cells. J Membr Biol 91 (1986) 259-73. 

[48] A. Sputtek, G. Singbartl, R. Langer, W. Schleinzer, H.A. Henrich, and 

P. Kuhnl, Cryopreservation of red-blood-cells with the 

nonpenetrating cryoprotectant hydroxyethyl starch. Cryo-Letters 16 

(1995) 283-288. 

[49] P.L. Steponkus, and M.F. Dowgert, Gas bubble formation during 

intracellular ice formation. Cryo-Letters 2 (1981) 42-47. 

[50] M.R. Tijssen, H. Woelders, A. de Vries-van Rossen, C.E. van der 

Schoot, C. Voermans, and J.M. Lagerberg, Improved postthaw 

viability and in vitro functionality of peripheral blood hematopoietic 

progenitor cells after cryopreservation with a theoretically optimized 

freezing curve. Transfusion 48 (2008) 893-901. 

[51] M. Toner, E.G. Cravalho, and M. Karel, Thermodynamics and kinetics 

of intracellular ice formation during freezing of biological cells. 

Journal of Applied Physics 67 (1990) 1582-1593. 

[52] M. Toner, E.G. Cravalho, and M. Karel, Cellular-Response of Mouse 

Oocytes to Freezing Stress - Prediction of Intracellular Ice 

248



Formation. Journal of Biomechanical Engineering-Transactions of 

the Asme 115 (1993) 169-174. 

[53] M. Toner, R.G. Tompkins, E.G. Cravalho, and M.L. Yarmush, 

Transport phenomena during freezing of isolated hepatocytes. 

AIChE Journal 38 (1992) 1512-1522. 

[54] W.M. Toscano, E.G. Cravalho, O.M. Silvares, and C.E. Huggins, 

Thermodynamics of Intracellular Ice Nucleation in Freezing of 

Erythrocytes. Journal of Heat Transfer-Transactions of the Asme 97 

(1975) 326-332. 

[55] H.Y. Yang, J. Acker, A. Chen, and L. McGann, In situ assessment of 

cell viability. Cell Transplantation 7 (1998) 443-451. 

[56] G. Zhao, L.Q. He, H.F. Zhang, W.P. Ding, Z. Liu, D.W. Luo, and D.Y. 

Gao, Trapped water of human erythrocytes and its application in 

cryopreservation. Biophysical Chemistry 107 (2004) 189-195. 

 

 

249



Table 6.1. Parameters used in the mathematical modelling of HUVECs. 

Cellular osmotic parameters 

Parameter Value Source/Notes 

osmotically-inactive 
fraction, b* 

0.524 [43] 

Membrane hydraulic 
conductivity, Lp  

at Tref = 20 oC 
0.147 m3/m2/min/atm [43] 

Activation energy of Lp, 
Ea 

5.61 x 104 J/mol 
[43]  

(converted from 
kcal/mol) 

Isotonic cell volume, Vo 
1115m3  

or 2230 m3 

Assumed values;  
~ 75 % and 150 % of 
the measured isotonic 

volume of HUVECs 
[43] 

Intracellular solution parameters 

Isotonic concentration of 
protein 

0.0073 mole/kg solvent  

Isotonic concentration of 
ideal solute 

0.205 mole kg/solvent 
Calculated from 
equation (6.3) 

Second osmotic virial 
coefficient for protein, BP 

49.3 (mole/kg solvent)-1 Chapter 2 

Third osmotic virial 
coefficient for protein, CP 

3.07x103 (mole/kg solvent)-2 Chapter 2 

Solvent properties 

Density of water, 1 1 x 10-15 kg/m3 

Neglected 
temperature 

dependence of 
density 

Molecular weight of 
water, W1 

1.802x10-2 kg/mole  

Difference in molar 
entropy of water in liquid 

state and solid state 






 

SL

ss 0

1

0

1  

22.00 J/mole K  

Freezing point of pure 
water, TFP

o 
273.15 K  
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Table 6.2. Percentage of cells with intact and damaged membranes for 
cells undergoing IIF and cells not undergoing IIF in isotonic solutions. 

IIF cells non-IIF cells 

Intact 
membrane 

Damaged 
membrane 

Intact 
membrane 

Damaged 
membrane 

15 % 

(204/1361) 

85 % 

(1157/1361) 

98 % 

(846/859) 

2 % 

(13/859) 

 

Table 6.3. Percentage of cells with intact and damaged membranes for 
cells undergoing IIF and cells not undergoing IIF in hypertonic solutions. 

IIF cells non-IIF cells 

Intact 
membrane 

Damaged 
membrane 

Intact 
membrane 

Damaged 
membrane 

18 % 

(106/573) 

82 % 

(467/573) 

90 % 

(1178/1311) 

10 % 

(133/1311) 
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Table 6.4. Cell diameters (average ± standard deviation) for cells 
undergoing IIF and cells not undergoing IIF for isotonic and hypertonic 
experiments. 

 Isotonic Hypertonic 

 IIF cells Non-IIF cells IIF cells Non-IIF cells 

Initial (m) 18.6 ± 5.6 16.4 ± 3.6 16.7 ± 5.8 13.2 ± 3.6  

Final (m) 17.7 ± 5.6 13.3 ± 3.8 16.2 ± 5.8  10.8 ± 3.3  
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Figure 6.1. (a) Picture of entire cryomicroscope system, and (b) close-up 

of crucible carrier and quartz crucible for samples. 

Quartz crucible 

Crucible carrier 

(a) 

(b) 
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 Figure 6.2. Image of SYTO® 13 (green)/EB (red)  fluorescence used for 

membrane integrity assay. Green cells have intact membranes and red 

cells have damaged membranes.  
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Figure 6.3. Image of cells flashing due to intracellular ice formation. This 

image is from the cells in isotonic PBS with 10 degrees of intracellular 

supercooling at the time of extracellular ice nucleation (Tnuc = -10.6 oC),  

approximately 7 seconds after extracellular ice was nucleated. 
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Figure 6.4. Percentage of cells with IIF (closed diamonds) and percent 

cells membrane damaged post-thaw (red circles) for isotonic experiments. 
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Figure 6.5. Percentage of cells with IIF (closed diamonds) and percent 

cells membrane damaged post-thaw (red circles) for hypertonic 

experiments. 
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Figure 6.6. Percentage of cells with IIF for isotonic (blue triangles) and 

hypertonic (yellow diamonds) experiments. The solid lines through the 

data points are sigmoidal best fit lines. The equations from the best fit 

lines were used to calculate the amount of intracellular supercooling 

required for 50 % IIF.  

258



 

Figure 6.7. Calculated relative cell volume (volume / isotonic volume) as a 

function of time for cells in isotonic solution ( = 300 mOsm/kg solvent) 

with extracellular ice nucleated at -4.6 oC (4 degrees of intracellular 

supercooling) and cells in hypertonic solution ( = 750 mOsm/kg solvent) 

with extracellular ice nucleated at -5.4 oC (4 degrees of intracellular 

supercooling).  
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Figure 6.8. Histogram of number of cell undergoing IIF as a function of 

time following extracellular ice nucleation for (a) isotonic experiments and 

(b) hypertonic experiments.  
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Figure 6.9. Calculated cell water volumes for 2230 m3 cells and 1115 

m3 cells in isotonic ( = 300 mOsm/kg solvent) and hypertonic solutions  

( = 750 mOsm/kg solvent).  
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Figure 6.10. Calculated relative cell water volumes  

(cell water volume/isotonic cell water volume) for 2230 m3 cells and  

1115 m3 cells in isotonic ( = 300 mOsm/kg solvent) and hypertonic 

solutions ( = 750 mOsm/kg solvent).  
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Figure 6.11. Calculated intracellular supercooling for 2230 m3 cells and 

1115 m3 cells in isotonic ( = 300 mOsm/kg solvent) and hypertonic 

solutions ( = 750 mOsm/kg solvent).  
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Chapter 7 - Overall Discussion and General Conclusions 

7.1. Summary of thesis 

Increasingly complex obstacles are arising in the search for 

successful cryopreservation of a range of cells, tissues and organs. These 

challenges include: (i) designing complicated, multisolute CPA solutions in 

order to achieve successful low-temperature storage of cells and tissues; 

(ii) reducing or eliminating CPAs from the cryopreservation of cells in order 

to minimize toxicity-related damage and adverse patient reactions; and (iii) 

developing nonlinear cooling profiles to maximize efficacy of 

cryopreservation protocols for specific cell types. The traditional approach 

of empirical testing of protocols to find an optimum is time- and resource- 

consuming and new approaches to cryopreservation are needed, 

particularly to address the preservation of engineered cells and tissues 

that are being developed for a wide range of clinical applications.  

One of the most rapidly growing areas of cryopreservation research is 

the use of mathematical modelling to interpret and understand 

experimental results; ascertain relationships between various parameters; 

and design novel cryopreservation protocols. However, there are 

significant limitations in the equations that are commonly used in 

cryobiological modelling. The equations used to describe the solution 

thermodynamics of the intra- and extra-cellular solutions either contain 

simplifying assumptions regarding the solute interactions or require fitting 
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of experimental data. Thus, they are very limited in the solutions to which 

they can be applied.  

This thesis addressed the limitations in two key equations that are 

used in cryobiology: the equation to describe the osmolality as a function 

of concentration of complicated multisolute solutions and the equation for 

the osmotic equilibrium of cells. Experimental measurements were paired 

with a model developed using the improved equations in order to gain 

additional insight into the IIF behaviour of cells.  

This thesis demonstrated that the multisolute osmotic virial equation 

(OVE) accurately predicts the osmolality as a function of concentration of 

a variety of types of non-ideal multisolute solutions, including aqueous 

solutions containing two CPAs, a protein and an ideal solute, two proteins, 

a CPA and an electrolyte, and a macromolecule and an electrolyte. This 

multisolute OVE, with novel mixing rules derived from thermodynamic first 

principles, requires only single-solute data to make predictions of 

multisolute data. In this work, the single-solute osmotic virial coefficients, 

for use with solute concentration in molality and mole fraction, were 

determined for a wide range of solutes, including electrolytes, CPAs, 

alcohols, sugars, and macromolecules. The single-solute coefficients can 

be used to determine the efficacy of different solutes as potential CPAs 

based on their thermodynamic freezing point depression (or osmolality) as 

a function of concentration. Most importantly, the single-solute coefficients 

can be used in the multisolute OVE to predict the osmolality as a function 
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of concentration for multisolute solutions. This equation represents the first 

solution thermodynamic model for cryobiological solutions which does not 

contain overly simplifying assumptions regarding solute interactions or 

require fitting of multisolute data.  

The accuracy of the OVE for solutions containing electrolytes was 

compared to a more complicated electrolyte solution theory, the Pitzer-

Debye-Huckel equation. The single-solute OVE was shown to fit the 

solution data of aqueous NaCl solutions as well as the Pitzer-Debye-

Huckel equation. In addition, for solutions containing a CPA + NaCl in 

water, the predictions from the multisolute OVE were as accurate using 

the OVE to capture the behaviour of the multisolute solution as those 

using the Pitzer-Debye-Huckel equation (to capture the behaviour of the 

NaCl in the multisolute solution) combined with the multisolute OVE (to 

capture the behaviour of the CPA and solute interactions in the multisolute 

solution). The OVE is a much simpler approach than the Pitzer-Debye 

Huckel equation, requiring only two fitting parameters to capture the NaCl 

solution behaviour versus the six empirical parameters and multiple 

functions required in the Pitzer-Debye-Huckel equation.  

The form of the multisolute OVE that has been shown to be accurate 

in this thesis has already been incorporated by other researchers in the 

field of cryopreservation for a variety of applications [1; 4; 8; 10; 11] and 

cited as an accurate and simple method to model cryopreservation 

solutions [5].  In addition to being used to develop a non-ideal osmotic 
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equilibrium equation in this thesis, the proposed form of the multisolute 

OVE has been used in (i) the development of non-ideal, non-dilute 

transport equations for cellular systems [4], (ii) modelling CPA and water 

transport in articular cartilage [1; 8], and (iii) investigating cryo-injury and 

developing optimal protocols for a hematopoietic stem cell line (TF-1 cells) 

[10; 11]. The use of the multisolute OVE has been proposed in future 

studies of anhydrous preservation of cellular systems [2]. 

A new non-ideal osmotic equilibrium equation was derived in this 

thesis which is thermodynamically correct for ideal and non-ideal 

solutions. Combining the non-ideal osmotic equilibrium equation with the 

multisolute OVE, the inferred osmotically-inactive fraction of human 

erythrocytes was brought into closer agreement with the measured values 

of the dry volume of the cell. Improved predictions of the osmotically-

inactive fraction of the cell allow for more accurate calculations of the 

amount of water in the intracellular solution. This in turn leads to more 

accurate predictions of intracellular supercooling and intracellular solute 

composition.  

This thesis also combined experimental measurements of IIF as a 

function of calculated intracellular supercooling with the improved 

equations to study the interactions between intracellular supercooling, 

extracellular ice nucleation temperature, and cell volume on the incidence 

of IIF. The experimental results from this study indicate that, at the 

conditions studied, the cell volume played a more significant role in the 
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occurrence of IIF than the extracellular ice nucleation temperature. At a 

given degree of intracellular supercooling, the incidence of IIF was lower 

for cells in hypertonic solutions as compared to cells in isotonic solutions, 

even though the extracellular ice nucleation temperature in the hypertonic 

solutions was lower than in the isotonic solution for the same amount of 

intracellular supercooling.  

Furthermore, correlating cell volume measurements with the incidence 

of IIF on a cell-specific basis in the two different osmolality solutions 

showed that there may be a critical cell volume for IIF at a specified level 

of supercooling, regardless of the extracellular ice nucleation temperature. 

A comparison of the cell diameters between the cells with IIF in the two 

solutions, both before extracellular ice nucleation and at the time of 

flashing, demonstrated that the diameters in the two solutions were not 

significantly different, even though the cells had osmotically dehydrated in 

the hypertonic solution. IIF still occurred in cells that retained a larger 

volume in the hypertonic solution. Since there were fewer cells that 

retained the critical volume in the population of cells in the hypertonic 

solution, the incidence of IIF in the hypertonic solution was lower than in 

the isotonic solution.  

From the stochastic nature of ice nucleation it is expected that a larger 

volume will result in a higher likelihood of a homogeneous nucleation 

event. However, the larger cell volume also influences the cellular osmotic 

response on ice nucleation in the extracellular solution, leading to 
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conditions more favourable for IIF. A mathematical model was developed 

using the improved equations from this thesis to further investigate the 

role of cell volume on cellular osmotic responses. The results from the 

mathematical model indicated that the larger cells have more intracellular 

water and, when the extracellular osmolality increases due to extracellular 

ice formation, the larger cells lose water less rapidly than the smaller cells. 

This is due to their smaller surface area to volume ratio, although the cells 

are assumed to have the same hydraulic conductivity. This resulted in the 

intracellular solution of the larger cells remaining more supercooled than 

that of the smaller cells, which resulted in a higher probability of IIF. Thus, 

the results from the mathematical model indicated that, in addition to the 

effect of volume on nucleation which is understood from the stochastic 

nature of nucleation, the cellular osmotic responses of the larger cells to 

extracellular ice nucleation result in conditions which are more favourable 

to IIF as compared to smaller cells.   

The knowledge that cells with smaller volumes can withstand more 

supercooling before IIF could be used to design novel cryopreservation 

protocols. These novel protocols could include the pre-freeze exposure to 

non-permeating hypertonic solutions or nucleating extracellular ice at a 

high subzero temperature, to allow some dehydration of the cells before 

rapid cooling without IIF. The use of exclusively non-permeating CPAs has 

been used by other researchers [6; 7; 12]. This study reinforces the 

applicability of such an approach for cells in suspension and also indicates 
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that any hypertonic solution, or the use of extracellular ice formation to 

create a hypertonic solution, confers protection to the cell, even in the 

absence of conventional CPAs.  

 

7.2. Limitations of this study 

There are several limitations inherit in this study that should be 

discussed and their implications understood. Certain assumptions were 

made in the derivation of the multisolute OVE which cannot be expected 

to be valid for all solutions. The form of the multisolute OVE in this thesis 

is consistent with regular solution theory, with the additional assumption of 

a semi-dilute solution [3; 4]. However, even with these assumptions, the 

OVE has been shown to be relatively accurate for very non-ideal aqueous 

solutions, including solutions of two proteins in water and solutions 

containing an electrolyte plus another solute in water.  

None of the multisolute solutions investigated in this thesis contained 

two solutes that both had third osmotic virial coefficients, so the cubic 

mixing rule presented in Chapter 3 has not been tested in these studies. In 

addition, the applicability of the multisolute OVE to aqueous solutions 

containing more than two solutes has not been experimentally verified. It 

is expected that the multisolute OVE will provide more accurate 

predictions for both of these types of solutions than the other solutions 

theories that do not require fitting of multisolute data. This thesis has laid 
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the groundwork for additional studies on the applicability of the multisolute 

OVE for increasingly complex solutions.  

The non-ideal osmotic equilibrium equation presented in Chapter 5 is 

limited by the lack of knowledge of the osmolality as a function of 

concentration ((m)) for the intracellular solutions of cells other than 

erythrocytes. There are very few measurements of the solution properties 

of the cytoplasm for living, nucleated cells. However, a novel method has 

been reported for measuring the solution properties of living cells and the 

solution properties for several cell types published [9]. The non-ideal 

osmotic equilibrium equation should be applied to additional cell types and 

verified using an independent measure of the osmotically-inactive fraction 

(i.e. the measured dry volume). In addition, new experimental methods 

should be developed that can accurately measure the equilibrium cell 

volume of the cells at very high osmolalities, where the non-ideality in the 

osmotic equilibrium would be more apparent. 

The other proposed explanations for the deviation between the 

predicted and measured values of the osmotically-inactive fraction of 

erythrocyte may have been developed at least partly to describe 

observations that were actually due to ideal, dilute solution assumptions in 

the osmotic equilibrium equation. Using the non-ideal osmotic equilibrium 

equation developed in this thesis and incorporating the hypotheses which 

account for the additional complexity of the erythrocyte (i.e. the 

involvement of the cytoskeleton in the osmotic response) may result in 
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even closer agreement between the inferred osmotically-inactive fraction 

and the measured dry volume.  

The incidence of IIF was measured for cells equilibrated in an isotonic 

solution and a hypertonic solution to investigate the relative importance of 

cell volume and extracellular ice nucleation temperature as a function of 

intracellular supercooling. Cell diameter measurements were performed 

only for cells with 4 oC of intracellular supercooling at the time of 

extracellular ice nucleation in the solutions with two different osmolalities. 

The results from the cell diameter measurements warrant further detailed 

investigation.  

Although the mathematical model used to further investigate the role 

of cell volume on cellular osmotic responses to extracellular ice nucleation 

was not compared against other cryobiological models, the individual 

equations within the model had been previously shown in the thesis to be 

improvements over the other equations commonly used in cryobiology. 

This mathematical model does not predict for the incidence of IIF - it is a 

cellular osmotic model. Correlating the results from this model to 

cryobiological outcomes requires knowledge of the level of intracellular 

supercooling and cell volume that are required for IIF within a specific cell 

type. This is another area that warrants further detailed investigation.  
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7.3. Implications of this thesis 

The multisolute solution theory investigated in this thesis is the first 

non-ideal solution theory for cryobiological solutions which has been 

derived from thermodynamic principles and can be applied to multisolute 

solutions without the need to fit multisolute data. Already this work has 

been cited seven times in the 30 months since its publication and the 

equation has been applied to various areas of cryobiology research, 

including in tissue systems.  

The non-ideal osmotic equilibrium equation represents a method to 

more accurately determine the true osmotically-inactive fraction of cells. 

The ideal, dilute Boyle-van’t Hoff relationship is commonly used in 

cryobiology, as the osmotically-inactive fraction is an important cellular 

parameter. The osmotically-inactive fraction of a cell determines how 

much water is available to act as a solvent for intracellular solutes, which, 

in turn, determines the cellular osmotic responses. The non-ideal osmotic 

equilibrium equation proposed in this thesis was recently used in a study 

which proposed a novel method to measure the intracellular solution 

behaviour of various cell types [9]. The non-ideal osmotic equilibrium 

equation predicts a lower osmotically-inactive fraction for several cell 

types, compared to the predictions from the Boyle-van’t Hoff equation. 

Furthermore, the fit of the non-ideal osmotic equilibrium equation to the 

data was improved as compared to the fit of the Boyle-van’t Hoff for those 

cell types.  These improvements in the predictions of the osmotically-
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inactive fraction will have far-reaching effects in interpreting and 

understanding cellular responses during cryopreservation.  

The mechanism of IIF is still not understood and ascertaining the 

relationship between IIF and other variables, such as intracellular 

supercooling and cell volume, is important in developing protocols which 

avoid IIF. Experimental measurements of the incidence of IIF as a function 

of intracellular supercooling for a specific cell type under a range of 

conditions allows correlation of IIF with important parameters (including 

cell volume and post-thaw membrane integrity). The combination of 

experimental measurements with improved modelling provides a 

compelling platform for better understanding of the role of cell volume and 

intracellular supercooling in IIF. Using improved mathematical models to 

interpret experimental results gives additional insights into important 

relationships between variables and may contribute to the successful 

design of protocols. 

 

7.4. General conclusions and recommendations 

As the use of mathematical modelling becomes even more prevalent 

in cryobiology, the challenge is to develop equations that use the 

information that is available, while still capturing the complicated 

behaviour of biological systems as accurately as possible. The equations 

proposed in this thesis provide significant improvements over the 

equations that are currently being utilized in cryobiology.  

274



The multisolute OVE proposed herein has already been incorporated 

by other cryobiology researchers for a variety of applications [1; 2; 4; 5; 8; 

10; 11]. In the absence of multisolute data of the solutions of interest, it is 

the only solution theory that does not assume ideal, dilute solution 

behaviour or ignore the interactions between the different types of solutes 

in solution. Thus, it should be used in cryobiological models to improve 

predictions of cellular osmotic responses, intra- and extra-cellular 

supercooling, and intra- and extracellular solution compositions.    

As measurements of the solution properties of the cytoplasm for more 

cell types are performed and published, the non-ideal osmotic equilibrium 

equation should also be incorporated into cryobiological modelling. 

Improved predictions of the osmotically-inactive fraction will make cellular 

osmotic models more accurate.  

The combination of mathematical modelling and experimental 

measurements demonstrated in this thesis is a valuable approach to 

gaining additional insight from experimental observations and 

understanding relationships between key parameters. The correlation of 

experimental observations of IIF with accurate calculations of intracellular 

supercooling may contribute to more accurate predictions of the effect of 

intracellular supercooling on IIF.   

Equations that capture the complexity of the biological solutions over 

a range of concentration and temperatures may contribute to the design 

novel cryopreservation protocols. For example, Woelders and Chaveiro 
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recently proposed a novel design criteria for developing protocols which 

avoid IIF and solution effects injury, which involves cooling the cells as 

fast as possible, while remaining below a constant level of supercooling 

[13]. Woelders and Chaveiro assumed a supercooling tolerance of 2 oC 

and also used ideal, dilute solution assumptions in the design of the 

protocols. The work from this thesis should be used to develop more 

accurate constant supercooling protocols, without ideal, dilute solution 

assumptions.  

The conclusions from this thesis have the potential for significant 

impact on the field of cryobiology, by improving the models used to predict 

cellular responses to cryopreservation and further elucidating the link 

between critical cryopreservation parameters, such as IIF, intracellular 

supercooling, and cell volume. These improvements will improve 

understanding and aid in the design of novel CPA cocktails and innovative 

cryopreservation protocols.  
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Appendix A: Relationship between freezing point depression  

and osmolality 

Pure component equations 

The Gibbs-Duhem relation for a pure component is [36]: 

0 ndVdPSdT  (A1) 

where S  is entropy, T  is temperature, V  is volume, P  is pressure, n  is 

the number of moles, and  is the chemical potential of the pure 

component.  

 

The pressure and temperature dependence of the chemical potential 

are needed. To find the pressure dependence of the chemical potential, 

the temperature is set to be constant so that equation (A1) gives: 

 
dP

n

V
d

ndVdP







 0

 (A2) 

where nV , the molar volume. Assuming that the substance is 

incompressible (  = constant) equation (A2) can be integrated to give: 

     
refref PPPTPT   ,,  (A3) 

 

To determine the temperature dependence, set the pressure to be 

constant so that equation (A1) gives: 

dT
n

S
d

ndSdT








 0

 (A4) 
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where snS  , the molar entropy. Assuming that the molar entropy, s , 

does not depend on temperature, equation (A4) can be integrated to give: 

     TTsPTPT refref  ,,   (A5) 

 

Substituting equation (A3), evaluated at Tref, for  PTref ,  in equation 

(A5) gives: 

       TTsPPPTPT refrefrefref   ,,  (A6) 

 

Realizing that the above derivation was for a pure component, 

equation (A6) can be written for the pure solvent, water, denoted with 

subscript 1, in a multicomponent solution.  

       TTsPPPTPT ref

o

ref

o

refref

oo  1111 ,,   (A7) 

where o

1 is the partial molar volume of water and os1  is the partial molar 

entropy of water. The superscript o refers to the pure component.  

 

Multicomponent equations 

For a multicomponent solution of solvent (subscript 1) and solute 

(subscript 2): 

     oo PTxPT 1121 ,,,    (A8) 

where 2x is the mole fraction of the solute and   is the osmotic pressure. 

 

Substituting equation (A7) into (A8) gives: 
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         o

ref

o

ref

o

refref

o TTsPPPTxPT 111121 ,,,   (A9) 

 

At equilibrium (i.e. the freezing point), assuming that curvature effects 

can be neglected:  

FP

SL TTT   (A10) 

RSL PPP   (A11) 

SL

11    (A12) 

where LT  is the temperature of the liquid, ST is the temperature of the 

solid and FPT  is the freezing point temperature, LP  is the pressure of the 

liquid, SP  is the pressure of the solid, RP  is the pressure at which the 

freezing process is occurring, L

1 is the chemical potential of the water in 

the liquid solution, and S

1  is the chemical potential of the pure water in the 

solid ice.  

 

Substituting equation (A9) into the equilibrium equation (A12) gives: 

     

     S

ref

o

ref

So

refref

o

oL

ref

o

ref

Lo

refref

o

TTsPPPT

TTsPPPT

SSS

lOLLL





111

1111

,

,




 (A13) 

 

Since the freezing process is occurring at constant pressure, set the 

reference pressure to be RP  and the reference temperature to be the 

freezing point of the pure solvent, 
o

FPT . Using this reference point and the 

other two equilibrium conditions, equations (A10) and (A11), gives: 
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   FP

o

FP

oo

FP

o

FP

o TTsTTs
SLL

 111   (A14) 

 

Rearranging and substituting 1RT  (where FPTT   in this case) 

into equation (A14) gives: 




FP
oo

FP
oo

o

FP

o

FPFP RT
ss

W
RT

ss
TTT

SLSL

L



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







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
















11

1
1

11

1  (A15) 
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Appendix B: Concentration unit conversions 

Single-solute solutions: 

(i) Mole fraction to molality 

For a binary solution, containing a solvent (subscript 1) and a solute 

(subscript 2) and assuming 100 moles total of solution, the mole fraction of 

the solute, 2x , is: 

21

2
2

nn

n
x


  (B1) 

10021  nn  (B2) 

where 2x  = mole fraction of solute (moles solute/total moles), 1n  = number 

of moles of solvent and 2n  = number of moles of solute. Combining (B1) 

and (B2): 

10022  xn  (B3) 

 100100 21  xn  (B4) 

 

The mass of the solvent, 1M  (g), is: 

111 WnM   (B5) 

where 1W is the molecular weight of the solvent (g/mole). 

The molality of the solute, 2m  , is: 

g

kg
M

n
m

1000

1
1

2
2



  (B6) 

where 2m has units of moles of solute per kilogram of solvent.  
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(ii) Mass fraction to molality 

For a binary solution containing 100 g of solution total, the mass 

fraction of the solute, 2X , is: 

21

2
2

MM

M
X


  (B7) 

10021  MM  (B8) 

where 2X  = mass fraction of solute (g solute/g total), 1M  = mass of 

solvent and 2M  = mass of solute. Combining (B7) and (B8): 

10022  XM  (B8) 

 100100 21  XM  (B9) 

 

The number of moles of solute, 2n , is: 

2

2
2

W

M
n   (B10) 

where 2W is the molecular weight of the solute (g/mole). 

g

kg
M

n
m

1000

1
1

2
2



  (B11) 

 

(iii) Mass fraction to mole fraction 

Using 1M from equation (B9) and 2M from equation (B8): 

1

1
1

W

M
n   (B12) 
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2

2
2

W

M
n   (B13) 

Combining equation (B12) with (B13), the mole fraction of the solute, 

2x , is: 

21

2
2

nn

n
x


  (B13) 

 

(iv) Mass per volume solvent to molality 

For a binary solution with concentration expressed as grams of solute 

per 100 mL of solvent ( 2c ), the molality ( 2m ) of the solution is: 

kg

g

W

c
m 10001

2

2
2 
















   (B14) 

where 1  is the density of water (g/mL).  

 

Multisolute solutions: 

(i) Total solute mass fraction to molality, mole fraction, and mass fraction: 

Consider a ternary solution, containing a solvent (subscript 1) and two 

solutes (subscripts 2 and 3). For a given mass ratio (R-value) of the first 

solute (subscript 2) to the second solute (subscript 3), and a known solute 

mass fraction, TX . The mass of water is: 

 1001001  TXM  (B15) 
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where 
100

32

321

32 MM

MMM

MM
XT







  

321 ,, MMM being the mass (g) of solvent, first solute, and second solute, 

respectively.  

 

The R-value is defined as: 

3

2

M

M
R   (B16) 

Equation (B16) can be used to express either of the solute masses as 

a function of the other solute mass and the R-value.  

 

The total solute mass is: 

 10032  TT XMMM  (B17) 

 

Using equation (B16) to express the mass of the first solute as a 

function of the mass of the second solute and the R-value: 

32 MRM   (B18) 

 

Equations (B17) and (B18) can be combined to give the mass of the 

second solute: 

1

100
3






R

X
M T  (B19) 
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Once all of the masses are known, the moles of each solute can be 

determined: 

3

3
3

2

2
2

1

1
1

W

M
n

W

M
n

W

M
n







 (B20) 

where M is the mass (g) and W is the molecular weight (g/mol).  

Each solute concentration can then be expressed as the mass 

fraction, mole fraction, or molality.  

Mass fraction: 
100

2

321

2
2

M

MMM

M
X 


  (B21) 
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3
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M

MMM

M
X 


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Mole fraction: 
321

2
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
  (B22) 
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3
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nnn
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
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Molality: 

g

kg
M

n
m

1000

1
1

2
2



  (B23) 

g
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n
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1
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3
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
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Appendix C: The van’t Hoff relation 

The van’t Hoff relation [29,30] is: 

RTV   (C1) 

where  is osmotic pressure (Pa), V  is volume per mole (L/mole), R is the 

universal gas constant (8.314 x10-3 L Pa/mole K), and T is temperature 

(K).  

 

This can then be written as 

nRTV   (C2) 

or  

RT
V

n
  (C3) 

where V is volume in litres and n is the number of moles of solute.  

 

Converting osmotic pressure to osmolarity, using 

RT*   (C4)

where *  is osmolarity (osmoles/L solution), gives for (C3) 

RT
V

n
RT *  (C5)

 

van’t Hoff states that this equation is valid when the volume of the 

solute molecules is negligible compared to the volume of the solution 

[29,30] so V can be assumed to be the volume of the water.  


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Multiplying both sides of the equation by the inverse of the density of 

water (1/w): 

 
ww

RT
V

n
RT




11*








  (C6)

 

Canceling RT from both sides of equation (C6) and realizing 
w


1* is 

equal to osmolality () (when the volume of solution can be approximated 

as the volume of solvent) and 
wV

n



1
is equal to molality gives 

m  (C7) 

 

Thus, equation (C7) is equivalent to the van’t Hoff relation (equation 

C1) and is only applicable to ideal, dilute solutions. This is stated by van’t 

Hoff [29,30] and other sources that show the derivation of the van’t Hoff 

equation [14]. It is the use of the van’t Hoff relation in the Boyle-van’t Hoff 

equation that makes the Boyle-van’t Hoff equation only applicable to ideal, 

dilute solutions.  
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Appendix D: Comparison between protein + ideal model and 

measured solution properties of the HUVEC cytoplasm 

In a recent study, the solution properties of the HUVEC cytoplasm 

were measured [1]. Using osmotic equilibrium data, the second osmotic 

virial coefficient, BHUVEC, was measured for all of the intracellular solutes 

as one 'grouped solute' (similar to the approach used in Chapter 5 for the 

human erythrocytes). The measured BHUVEC from that study was 2.437 

(mole/kg solvent)-1. Using that measured value, a comparison to the 

protein plus ideal solute model used in Chapter 6 was made (Figure D.1). 

Figure D.1 shows that the proposed protein + ideal solute model of the 

cytoplasm agrees very well with the measured solution properties of the 

HUVEC cytoplasm. In addition, Figure D.1 shows that the ideal, dilute 

solution model does not agree well with the measured solution properties 

of the cytoplasm.   
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Figure D.1. The calculated osmolality as a function of the relative 

intracellular solute concentration. The solid red line is the predicted 

osmolality using the protein + ideal model from Chapter 6. The purple 

long-dashed line is the predicted osmolality using the measured BHUVEC 

value from the literature [1] (where  = mHUVEC + BHUVECmHUVEC
2). The 

green short-dashed line is the predicted osmolality from the ideal, dilute 

solution model ( = m).  
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