
Learning-based Routing in Mobile Wireless
Sensor Networks?

Fatemeh Kazemeyni1,3, Mario A. Nascimento2, Ilangko Balasingham3,
Olaf Owe1, and Einar Broch Johnsen1

1 Department of Informatics, University of Oslo, Norway
{fatemehk,einarj,olaf}@ifi.uio.no

2 University of Alberta, Canada
mn@cs.ualberta.ca

3 The Intervention Center, Oslo University Hospital, Institute of Hospital Medicine,
University of Oslo, Norway

ilangkob@medisin.uio.no

Abstract. Limited energy supply is a chief concern when dealing with
wireless sensor networks (WSNs). Thus, among other issues, routing pro-
tocols for WSNs should be designed with the goal of being energy efficient
in the first place. For static networks this is already a challenge, given
that different domains and application requirements lead to different con-
straints, and it becomes an even more complex problem when nodes in
the WSNs are mobile. In this paper we address this very problem and
propose centralized and decentralized routing techniques that are help
prolong the nodes lifespan. The main idea is to explore the movement
patterns of the nodes, through simple but effective learning, in order to
use the most effective and less costly routing paths. Our experiments,
using a real dataset, show that our proposed decentralized approach is
twice as more energy-efficient than the centralized one, while being only
marginally less effective. In addition, both outperform the well-known
AODV protocol for ad-hoc mobile networks.

1 Introduction

Wireless sensor networks (WSNs) consist of wireless sensor nodes which collabo-
rate with each other to gather data from the environment and transmit the data
to base-stations or sink nodes. Sensor nodes are usually small in size, and con-
sequently they have limited resources, especially regarding their energy supply.

Wireless sensor nodes use routing protocols to communicate with each other
and to find the path to transmit the data that is sensed to a designated sink node
(or nodes). Message transmission is one of the most energy expensive activities in
WSNs. So, an energy efficient routing protocol has an important role reducing
the energy consumption of the WSNs. In most of these protocols, the nodes

? Technical Report TR 12-01. January 2012. Dept. of Computing Science. University
of Alberta. Canada. All rights reserved. Submitted for publication.

broadcast their messages to all nodes that are within the range of their data
transmission. This range is determined by the power used for the transmission.

For example, in the standard AODV protocol [1], each time a source node
needs to send a data message, it requests a routing path to the destination.
This request is rebroadcasted through the neighbors until a path is found. The
resulting path should then be sent to the source node, which uses this path
to send the data messages to the destination. The routing paths are stored in
routing tables. A node may need a new routing path when it moves to a new
location or when the routing path changes due to the movement of any of nodes in
the routing path. This kind of routing technique is not always feasible. Especially
in large-scale ad-hoc networks, nodes cannot always find and store all the routing
paths efficiently because of lack of memory and high energy cost. In ad-hoc
wireless sensor networks, nodes can move and change their location. Therefore,
they may often enter or exit the signal ranges of each other. Consequently, the
previous routing paths may not be valid any more. If nodes move frequently,
the cost of finding the routing path increases dramatically. The energy cost is
not the only problem of WSNs with moving nodes. The frequent disconnection
between the nodes causes increasing the rate of the packet loss.

In this paper, we propose routing protocols which find the most probable
routing path for mobile WSNs, considering the frequent movement of nodes. The
idea of the proposed protocol is based on the nodes’ movement patterns. Each
node’s movement may have some kind of pattern. For instance, the daily activity
of the patients in the different locations of the hospital, may have a traceable
pattern. People, e.g., going to or returning from work, or public transit vehicles
may also exhibit movement patterns that may be explored. This pattern could
be calculated, for every pair of nodes, as the probability of being connected. This
probability is used to find the most probable existing routing path, when nodes
need to send a message to the sink node.

We introduce centralized and decentralized approaches for our probabilistic
routing protocol. In the centralized protocol, the routing paths are computed
centrally, by “special” nodes which we call processing nodes. Processing nodes
have the information of the whole network. Nodes request a processing node for
the best and most probable routing path, when they need to send a message.
The processing node uses well-known Dijkstra’s Shortest Path Algorithm [2] to
find the best path. Note that the notion of best is determined as a function
of the cost of the edges, i.e., communication links between the nodes, of the
network. As we discuss later in the paper, we assign those costs based on the
likelihood of existence and reliability of these edges, thus the best route is the
one with higher probability of a successful message. In the centralized protocol,
nodes should inform the processing node(s) about their situation and should
communicate with it to ask for the routing path. These message exchanges may
be costly in terms of energy, hence rendering this approach not very efficient. In
the decentralized protocol, sensor nodes are responsible for finding the routing
path. Each node learns which neighbor node has the best message transmission

history. Then, when a node needs to find a routing path for a message, it chooses
the neighbor that has the highest chance of transmitting the message successfully.

Protocol evaluation is usually done through simulation-based tools, such as
NS-2, OMNeT+, and extensions such as Castalia [3] and SensorSim [4]. Instead,
we use simulation tools based on formal techniques, which provide us an ab-
stract way to model and analyze our protocols. Formal techniques can simulate
the behavior of the protocol’s model and also prove the correctness of it, by in-
specting all reachable states of a system. Usual network simulators cannot prove
the correctness of the protocol’s properties, because it is practically impossible
to exhaustively test the protocol in all the possible situations, but can provide
quantitative information about the protocol’s behavior.

We develop a formal, executable model of our protocol in rewriting logic [5].
This model is analyzed using Maude [6], which is a formal modeling tool. To
have a better analysis of the system, we feed our formal model with real data.
By feeding a formal model of a protocol with real mobile traces, we could have
a more reliable analysis of the model, in addition to taking advantages of the
formal analysis. The protocol’s analysis includes studying the performance of
the protocols and checking the correctness of the protocol’s behavior.

This paper is structured as follows. Section 2 review briefly some related
research. Section 3 presents our main contribution, the centralized and decen-
tralized versions of the propose routing protocol. Section 4 discusses the modeling
of the proposed protocols and Section 5 describes the case study which is used to
analyze the protocol and results of the validation of the model. Finally, Section 6
concludes the paper.

2 Related Work

The efficiency of routing protocols are discussed in several recent research studies.
The authors of [7] provide an overview of features and mechanisms of energy-
aware routing protocols. Studies, such as [8] and [9], aim at reducing the power
consumption of the routing process, using cluster head election and multi-hop
transmission. Another energy aware localized routing protocol is introduced in
[10], and is based on distance-based power metrics. There are a few works which
consider the frequent movement of the nodes and its role on the successful mes-
sage transmission and the energy efficiency of the network. Q-probabilistic rout-
ing [11] is a geographical routing algorithm which uses Bayesian algorithm to to
find the routing path. This protocol achieves a trade-off between the network’s
energy usage and the number of message retransmission. Parametric Probabilis-
tic Sensor Network Routing Protocol [12] is another protocol which uses probabil-
ities, based on the nodes’ distances, for message retransmission. The PROPHET
protocol [13] introduces the delivery predictability factor to choose the messages
which are sent to the other nodes, in networks which do not guarantee fully
connected networks. In our protocol, we do not need to know the position or the
distance of the nodes. We maximize the successful message transmission rate
(success rate) of the protocol in an energy efficient way, considering the proba-

bility of the link existence and the link reliability. In the decentralized version of
our protocol, we also use the delivery history as a means to predict the success
rate of the protocol.

Formal methods are much less explored to analyze the WSNs, but recently
start to appear. The TinyOS operating system has been modeled as a hybrid
automaton [14] and the UPPAAL tool which has been used to model the LMAC
protocol [15] and also to verify the temporal configuration parameters of radio
communication [16]. Ölveczky and Thorvaldsen show that Maude is a well-suited
modeling tool for WSNs [17]. Maude is used to model and analyze the efficiency
of the OGCD protocol [17] and the LMST protocol [18]. A process algebra is
introduces specifically for active sensor processes such as sensing [19]. We follow
this line of research and use Maude as a tool to develop a routing protocol for
WSNs.

3 The Proposed Routing Protocol

This section explains our proposed routing protocols for WSNs, based on the
nodes’ movement patterns and the probability associated to the communication
links. Assume that we have a WSN with nodes which move frequently. In this
network, a sensor node has some information, e.g., answers to a query, which
need to be sent to the sink node. The problem is how to find the best routing
path between the sensor node and the sink node. In this work we consider the
best routing path to be the one which is the most reliable and has the higher
probability of existence during the message transmission. (We assume that nodes
use the same amount of energy to transmit the messages to all their neighbors.)
Our contribution is in the design of protocols that allow such best routing path
to be obtained at an overall low-energy cost. We proposed two protocols, one
centralized and another, more robust and flexible, which is decentralized. In
the centralized protocol, the routing decisions are made one or more so-called
proceessing nodes. In the decentralized protocol, routing decisions are made
autonomously by the nodes themselves. We note that in some situations, e.g.,
when processing are often not reachable, the decentralized protocol is the only
feasible option. In the following, both the centralized and decentralized versions
of the proposed protocol are discussed.

3.1 The Centralized Approach

We assume that a WSN is a graph G = (S,L), which S = {n1, n2, ..., nN} is the
set of nodes and L = {li,j ∀i, j ∈ S s.t. ni is within radio range of nj} is the set
of the edges (communication links) in G. Our main problem is to find the path
that is most likely to deliver a message between two nodes. In order to that we
need to keep up-to-date the costs of G’s edges updated, and this costs energy.
Each link in the graph has a weight that could be based on the cost of the link
and other possible properties of the link and the nodes. By having these weights,
we use Dijkstra’s algorithm to choose the routing path.

Each link li,j ∈ L has a probability which we call the existence probability
or EPli,j

. This probability could be calculated using the history of the existence
of the network links. We note that if two nodes are not within radio range
from each other, a link between them effectively does not exist. Assume that an
initial probability is defined for each link li,j , between two nodes i and j. The
rate that two nodes meet during a period of time could increase or decrease the
initial probability according to a learning factor f . Hence we update EPli,j

as
EPli,j

× (1− f) + f if two nodes i and j meet within a predefined time interval
T , or as EPli,j × (1− f) otherwise [20].

The initial probability of the links and the time interval T could be defined
specifically for each network which is being studied, based on its properties.
Some possibilities could range from a conservative one, e.g., EPli,j

= 0 ∀i, j ∈ S,
to a more optimistic one EPli,j

= N × (πω2/A) ∀i, j ∈ S, where ω and A are
the radius of the radio range and the total area under study, respectively, that
is, assuming all nodes are uniformly distributed within the area of study.

We use the combination of the existence probability of the link, in addition to
its reliability, as the weight of each link. The reliability of the link is important,
as well as its existence. If a link exists but it is not reliable, messages could be
lost. The reliability of a link could depend on different factors. For example,
the physical nature of the environment between two nodes could change the
reliability of their link in time. For simplicity we consider the average historical
reliability of the link li,j as a probability RPli,j

, which is obtained from the
network’s history based on the channel quality between every pair of node i and
j.

The probability that matters most, and the one that is assigned as cost to
each network link li,j , denoted as Pli,j is the combination of these two indepen-
dent probabilities: RPli,j and EPli,j , namely Pli,j = RPli,j × EPli,j .

We use Dijkstra’s algorithm with the network’s links cost being the proba-
bility Pli,j

to find the most probable path between two nodes in the network.
This is a centralized process which is performed in the processing node. When
sensor nodes move, they inform the processing node about their new situation.
Each time that a node needs to find a routing path to another node, it sends a
message to the processing node and asks for the routing path. The processing
node sends a reply message to the node which includes the result path. These
message passings between the processing node and the sensor nodes cost energy,
in addition, the processing nodes may not be always reachable. This lead to the
need of a decentralized algorithm.

3.2 The Decentralized Approach

In the decentralized version of our proposed routing protocol, each node decides
locally which node should be chosen as the next node in the routing path. Nodes
just have the information of themselves and their neighbors, not the the total
information of the network. There are some methods which can be used in these
situations, such as the “ant colony” [21] (the same as what the AODV routing
protocol uses). But these methods frequently rebroadcast messages asking for

routing paths, which makes them less energy-inefficient. In the proposed proto-
col, each node collects information from previous message transmissions in order
to learn how to to predict the best route. We note that nodes do not have all
the information ideally needed to decide about the total path, but use what is
available to them, as per our following discussion, to pass the message to the
node which is in the most probable path to the destination. We use acknowl-
edgment (ACK) messages to infer the probability of existence and the reliability
of the routing paths to each destination node. The source node s can calculate
the acknowledgment probability APs,e,d for the messages to the destination d

through the neighbor node e, as APs,e,d = ackNume
s,d

msgNume
s,d

. Where, msgNume
s,d and

ackNume
s,d are the number of the sent data messages from node s to d and the

number of the ack messages from node d to s, respectively, in both cases through
the neighbor node e. After a sufficiently large learning period, this ratio can give
us an estimate about the probability of the existence of a routing path is. Con-
sequently, it shows the capability of a successful message transmission through
that path. The node s updates the value of APs,e,d, each time it receives an
ACK message. The source node s can then calculate the probability os success
delivery Ps,e,d for each neighbor node e, regarding the destination node d, using
Ps,e,d = RPls,e

+APs,e,d.
After computing the value of Ps,e,d for all the current neighbor nodes e,

the source node s chooses the neighbor that yields the highest probability and
sends the message to it. This process is repeated in each node which receives the
message, until the message is received to the destination, or it is eventually lost,
e.g., due to a link failure.

4 Modeling

We utilized Maude [6], as a formal modeling tool, to implement and analyze our
proposed routing protocols. Maude provides an executable model, in addition
to different tools for testing and validating the model. It is also able to run
the model through one path of the state space like a simulator or go through
all the reachable states of the model to search for the system failure. Maude
could prove if the properties of the system hold and if the model works correctly
regarding to these properties. To gather some quantitative data from the protocol
functionality and performance, we ran simulations, with each simulation lasting
for a predefined number of time units that is captured by rewrite steps, i.e. one
time unit corresponds to one rewrite step.

A formal model is an abstract presentation of a system (or a protocol). This
abstraction helps us to overview the protocol and find its failures more easily.
On the other hand, the abstraction hides some details of the reality from the
model. In a network protocol, which has many entries where its behavior is not
deterministically predictable or under control, abstractions could affect the result
of the model. The goal is to make the result of the modeling more reliable and
more real, as much as possible. We combine the formal model with the reality, by
feeding the real data as entries to the initial configuration of the model. To the

best of our knowledge, real datasets have not been combined with formal models
in other works. In our initial configuration of the model, the movements of the
nodes and the time and length of the movements are provided from a public
available dataset. In the following we explain our case study and the results of
running the model after applying the proposed protocols on this data.

In continuation of this section, we define a formal model of the proposed
routing protocols in rewriting logic [5]. A system configuration is a multiset
of objects and messages inside curly brackets. Following rewriting logic (RL)
conventions, whitespace denotes the associative and commutative constructor
for configurations. The term 〈O : Node | Attributes〉 denotes a Node object,
where O is the object identifier, and Attributes a set of attributes of the form
Attr : X where Attr is the attribute name and X the associated value. RL
extends algebraic specification techniques with transition rules: The dynamic
behavior of a system is captured by rewrite rules supplementing the equations
which define the term language. From a computational viewpoint, a rewrite rule
t −→ t′ may be interpreted as a local transition rule allowing an instance of the
pattern t to evolve into the corresponding instance of the pattern t′.

In the sequel, we explain the rules and equations modeling wireless sensor
networks, node movements, message passing, and the centralized and decentral-
ized routing protocol, using the rewriting logic tool Maude [6].

4.1 Unicast and Broadcast

Unicast messages have the form
(M from O P to O’)

where M is the message body (possibly with parameters), O the source, O’ the
destination, and P the sending power used. Multicasting is modeled by allowing
a set of destinations and equations which expand the destination set:
eq (M from O L P to noneOids) = none .
eq (M from O L P to O’; Os)
= (M from O L P to O’) (M from O L P to Os).

Here, Os denotes a set of object identities (with “;” as multiset constructor).
Wireless broadcasting uses messages
(M from O L P to all)

where all is a constructor indicating that the message is sent to all nodes within
range. We want to model lossy channels, in order to have a more realistic model.
In a lossy channel, data messages could be lost. To capture this behavior, we use
a conditional rule that removes the messages with a predefined probability.
ceq (M from O L P to O’) 〈O’ :Node | A 〉 = 〈O’: Node | A 〉 if sampleBernoli(P).

Here, the messages are lost with the probability of P and sampleBernoli(P)
is a function that returns true in the P percent of times. In all the rules and
equations, the CONF is the systems configuration and the savedPower attribute
shows the amount of the node’s remaining energy. After each activity such as

sending and receiving a message, this value is decreased depending on how much
power is consumed for that activity. We use Pmin(P) and Pmax(P) to refer
to the predefined amount of energy that nodes consume when they perform
short-range and wide-range communication, based on their power capability P.
A time variable T is added to the global configuration of the system to resolve all
nondeterminism. Execution marks are added to the left-hand sides of all rewrite
rules, as well as scheduled execution marks to their right-hand side, in order to
make the new subconfiguration active at a later time, after a random interval
of time has passed, following an exponential probability distribution with some
fixed rate parameter, in our case 0.1. The random length of this interval is
generated using an operation denoted sampleExpWithRate, in Maude. Note
that, in the current implementation, the rates corresponding to the exponentially
distributed waiting times of all scheduled execution marks are equal to 0.1.
However, these rates can be given different values for each sensor, to simulate
different sensor processor speeds.

4.2 Movement Messages

The rows of the dataset that we used to feed to our model, specify the Identities
of two nodes which meet each other, in addition to the time and the length
of their meeting, in the form of [O O’ T’ EndT]. In our model, each row of
dataset is captured by a movemsgT O’ T’ EndT to O message which notices
node O to move towards node O’ at time T’ for the length of EndT. In the
initial configuration, all the movemsgT messages are generated, based on the
list of all rows in the dataset, utilizing the multimoveT equation. In the Move
rule, when the time T reaches the time T’, node O moves and send a unicast
message SingleHELLO to the node O’, including all the required information.
The infoREP attribute stores all the information of the node’s neighbors to
calculate the routing path existence probabilities. The LinkR is an equation that
returns the reliability which is assigned to each node’s message transmission. If
the time is not right for the movement when the movemsgT is captured, the
Wait to Move equation reschedules it for another time.

The SingleHELLO message is received by the neighbor send info1
and neighbor send info2 rules. In neighbor send info1 rule, node O’
receives the message from O for the first time. It sends an acknowledgment
message HelloACK to the moving node, including the same information as in
the SingelHELLO message. It also updates its neighbors’ information. Each
row in the neighbor attribute stores the neighbor id ID, its link reliability
F, the power which is needed to communicate with it FPOW, its link existence
probability EP, and the time until then this neighbor will be around the node
EndT+T. The INITPROB equation returns a predefined value as an initial value.
The inFList(FRT,O) equation checks for the existence of an element in the
list FRT which is related to the node O. The equation rmListNat(LLN, O,
nil) removes all the elements related to nodeO from LLN.

In the neighbor send Info2 rule, nodes has previously met and need to
update the previous information and probabilities. Here, the FindRow equation

find the related rows and changeTable change them. When a node receive
a HelloACK message, it updates its information using what is received by this
message. In the node get neighbors1 equation, node O does not have previ-
ous information of node O’, despite of the node get neighbors2 rules. Node
O also sends a INFOtoPN message to the processing node to send the required
information to the processing node PN. In the decentralized protocol, these two
previous rules are replaced by the dc node get neighbors1 and dc node
get neighbors2, which does not send any information to PN. When PN re-
ceive this message, it updates its nodesInfo attribute. This attribute contains
the same information as the infoREP attribute of the node O, in addition to the
identifier O attached to it. Here, we also have two rules PN get info1 and PN
get info2 for two cases that PN has or has not previous information about the
connection between O and O’. The remove equation deletes the rows related to
communication between these two nodes.

op multimoveT_ :ListListNat → Msg [ctor] .
eq multimoveT nil = none .
eq multimoveT (ML LL) =
(movemsgT second(ML) third(ML) (forth(ML)-third(ML)) to first(ML))(multimoveT LL).

crl [Move] :{ (movemsgT O’ T’ EndT to O)
〈O :Node | id: ID, power: P, infoREP: LLN,savedPower: SPOW, A 〉 CONF execute(O) T }
−→
{(SingleHELLO from O P F Pmin(P) EndT LLN to O’)
〈O :Node | id: ID, power: P, infoREP: LLN,savedPower: (SPOW-Pmin(P)) , A 〉
CONF [T +sampleExpWithRate(0.1), execute(O)] T }
if T > T’ ∧ F :=LinkR(O).

crl [Wait_to_Move]{ (movemsgT O’ T’ EndT to O)
〈O :Node | id: ID, A 〉 CONF execute(O) T }
−→
{ (movemsgT O’ T’ EndT to O)
〈O :Node | id: ID , A 〉 CONF [T +sampleExpWithRate(0.1), execute(O)] T }
if T < T’ .

crl [neighbor_send_Info1] :
{(SingleHELLO from O P F FPOW EndT LLN’ to O’)
〈O’ :Node | id: ID’,power: P’ ,savedPower: SPOW’ , infoREP: LLN,
neighbors: FRT’ , A’ 〉 execute(O’) T CONF }
−→
{ (HelloACK from O’ P’ F’ Pmin(P’) EndT LLN to O)
〈O’ :Node | id: ID’,power:P’,savedPower:(SPOW’-Pmin(P’)),infoREP: (LLN’ LLN1),
neighbors: ([O#F#FPOW#EP#(EndT+T)]FRT’) , A’ 〉
[T +sampleExpWithRate(0.1), execute(O’)] T CONF }
if F’ :=LinkR(O) ∧ EP :=INITPROB ∧
inFList(FRT’,O) = false ∧ LLN1 :=rmListNat(LLN, O, nil) .

crl [neighbor_send_Info2]:
{(SingleHELLO from O P F FPOW EndT LLN’ to O’)
〈O’:Node | id:ID’,power:P’,savedPower:SPOW’,infoREP:LLN,neighbors:FRT,A’ 〉
execute(O’) T CONF}
−→
{(HelloACK from O’ P’ F’ float(Pmin(P’))EndT LLN to O)
〈O’:Node | id:ID’,power:P’,savedPower:(SPOW’-Pmin(P’)),infoREP:(LLN’LLN1),

neighbors:FRT2, A’ 〉
[T+sampleExpWithRate(0.1), execute(O’)] T CONF }
if inFList(FRT,O) = true ∧ MLF:=FindRow(FRT,O) ∧
F’:=LinkR2(ID’) ∧ EP:=EProb(T,fifth(MLF),forth(MLF)) ∧
FRT2:=changeTable(FRT,[O#F#FPOW#EP#(EndT+T)],nil)
∧ LLN1:=rmListNat(LLN,O,nil) .

crl [node_get_neighbors1]:
{(HelloACK from O’ P’ F FPOW EndT LLN’ to O)
〈O:Node | id:ID,power:P,savedPower:
SPOW,neighbors:FRT,infoREP:LLN,A〉 execute(O) T CONF }
−→
{(INFOtoPN [O’#F#FPOW#EP#EndT] from O to PN)
〈O:Node | id:ID,power:P,savedPower:(SPOW-Prec(P)),neighbors:
([O’#F#FPOW#EP#(EndT+T)] FRT),infoREP:(LLN’LLN1),A 〉
[T+sampleExpWithRate(0.1),execute(O)] T CONF }
if EP:=INITPROB ∧ inFList(FRT,O’) = false ∧
LLN1:=rmListNat(LLN,O,nil).

crl [node_get_neighbors2]:
{(HelloACK from O’ X’ Y’ P’ F FPOW EndT LLN’ to O)
〈O:Node | id:ID,xLoc:X,yLoc:Y,power:P,savedPower:SPOW,
neighbors:FRT,infoREP:LLN,A 〉 execute(O) T CONF }
−→
{(INFOtoPN [O’#F#FPOW#EP#EndT] from O to PN)
〈O:Node | id:ID,xLoc:X,yLoc:Y,power:P,savedPower:(SPOW-Prec(P)),
neighbors:([ID’#F#FPOW#EP#(EndT+T)]FRT2),infoREP:(LLN’LLN1),A 〉
[T+sampleExpWithRate(0.1),execute(O)] T CONF }
if inFList(FRT,O’) = true ∧ FRT2:=remove(FRT,O’,nil)∧
MLF:=FindRow(FRT,O’)∧EP:=EProb(T,fifth(MLF),forth(MLF))
∧ LLN1:=rmListNat(LLN,ID,nil).

crl [dc-node_get_neighbors1] :
{ (HelloACK from O’ P’ F FPOW EndT LLN’ to O)
〈O:Node | id:ID,power:P,savedPower:SPOW,neighbors:FRT,infoREP:LLN,A 〉
execute(O) T CONF }
−→
{〈O:Node | id:ID,power:P,savedPower:(SPOW-Prec(P)),
neighbors:([O’#F#FPOW#EP#(EndT+T)]FRT),infoREP:(LLN’LLN1),A 〉
[T+sampleExpWithRate(0.1),execute(O)] T CONF }
if EP:=INITPROB ∧ inFList(FRT,O’) = false ∧ LLN1:=rmListNat(LLN,O,nil).

crl [dc-node_get_neighbors2] :
{(HelloACK from O’ P’ F FPOW EndT LLN’ to O)
〈O:Node | id:ID,power:P,savedPower:SPOW,neighbors:FRT,infoREP:LLN,A 〉
execute(O) T CONF }
−→
{〈O:Node | id:ID,power:P,savedPower:(SPOW-Prec(P)),neighbors:
([float(ID’)#F#FPOW#EP#(EndT+T)]FRT2),infoREP:(LLN’LLN1),A 〉
[T+sampleExpWithRate(0.1),execute(O)] T CONF }
if inFList(FRT,float(ID’)) = true ∧ FRT2:=remove(FRT,float(ID’),nil)∧
MLF:=FindRow(FRT,O’)∧ EP:=EProb(T,fifth(MLF),forth(MLF))∧ LLN1:=rmListNat(LLN,O,nil).

crl [PN-get-info1]:
{(INFOtoPN [O’#F#FPOW#EP#LAST] from O to PN)
〈PN:PNode | id:ID,nodesInfo:FRT,A’ 〉 execute(PN) T CONF }
−→
{〈 PN:PNode | id:ID,nodesInfo:([O#O’#F#FPOW#EP#(LAST+T)]FRT),A’ 〉
[T+sampleExpWithRate(0.1),execute(PN)] T CONF }

if inFList2(FRT,O,O’) = false .

crl [PN-get-info2]:
{(INFOtoPN [O’#F#FPOW#EP#LAST] from O to PN)
〈PN:PNode | id:ID’,nodesInfo:FRT,A’〉 execute(PN) T CONF }
−→
{ 〈PN:PNode | id:ID’,nodesInfo:([O#O’#F#FPOW#EP#(LAST+T)]FRT2),A’〉
〈O:Node | id:ID,A 〉 [T+sampleExpWithRate(0.1),execute(PN)] T CONF }
if inFList2(FRT,O,O’) = true ∧ FRT2:=remove(FRT,O,O’,nil).

During the run of the model, data messages which are related to the sensed
data are generated at random times. This process is captured by the Data-Msg
equation. This equation generates the DCDATAMSG messages for the model of the
decentralized protocol and the AskRoute messages for the centralized protocol.
The number of the messages which are generated for each node O is equal to the
number of the messages in its message queue MsgQ.
ceq [Data-Msg] :
{〈 O:Node | id: ID,MsgQ: Y,savedPower: P,power: POW,A 〉
execute(O) T CONF }
=
{〈 O:Node | id:ID,MsgQ: (Y-1),power: POW,savedPower: (P-Pmax(POW)),A 〉
[T +sampleExpWithRate(0.1), execute(O)] T CONF
(DCDATAMSG O "sink") ∗∗∗OR ∗∗∗(AskRoute "sink" T from O to PN) }
if (Y > 0) .

4.3 The Centralized Model

In this section, the rules and the equations of the centralized protocol are pre-
sented. Node S asks for a routing path to node D from PN, by sending the
AskRoute message. In PN-rec-AskRoute rule, PN finds the most probable
routing path and send it to S by a RouteReply message. The processing node
uses Dijkstra algorithm to find the routing path. Our Dijkstra model is based
on the model in [22]. But we modified this model to be suited to our protocol.
Mainly, we changed the weight equation which computes the weight of the links
between nodes (or graph edges), according to Section 3.1. The Dijkstra algorithm
in [22], returns a numerical value which is the cost of the shortest path. Since
we need the actual routing path, we defined the DijkstraP equation which
returns the selected node’s links by the Dijkstra algorithm. The findPath is
an equation which applied on top of the DijkstraP equation and returns the
total path between the nodes S and D, based on the links which are selected by
the DijkstraP equation, andAllIDs(FRT) returns all the nodes’ identifiers
in FRT. More information about the Dijkstra model could be found in [22].
crl [PN-rec-AskRoute]:
{(AskRoute D LastT from S to PN)
〈S:Node | id:X,index:N,power:POW,savedPower:P,Ac 〉 〈D:Node| id:Y,A 〉
〈PN:PNode | id:ID,nodesInfo:FRT,A’ 〉 execute(PN) T CONF }

−→
{(RouteReply D PATH LastT from PN to S)
〈S:Node | id:X,index:(N+1),power:POW,savedPower:(P-Pmax(POW)),Ac 〉 〈D:Node | id:Y,A 〉
〈PN:PNode | id:ID,nodesInfo:FRT,A’ 〉 [T+sampleExpWithRate(0.1),execute(PN)] T CONF }
if PATH:=findPath(X,X,Y,DijkstraP(FRT,X,AllIDs(FRT),nil),nil).

op findPath :ListFloat Float Float ListListFloat ListFloat → ListFloat.
ceq findPath(loc#LF,loc1,loc’,LLF,LF1) =
findPath(loc,loc1,loc’,LLF,LF1) # findPath(LF,loc1,loc’,LLF,LF1)
if LF 6= nil ∧ LF \neq loc’.
eq findPath(loc1#loc’,loc1,loc’,LLF,LF1) = loc1#loc’.
ceq findPath(loc,loc1,loc’,LLF,LF1) = if (LF 6= nil) then
findPath(LF,loc1,loc’,LLF,LF1#loc) else nil fi
if LF :=getConnected(LLF,loc) ∧ loc 6= loc’∧ inLF(LF,loc’) = false.
ceq findPath(loc,loc1,loc’,LLF,LF1) = loc#loc’
if LF :=getConnected(LLF,loc)∧ loc 6= loc’ ∧ inLF(LF,loc’) = true.
ceq findPath(loc,loc1,loc’,LLF,LF1) = LF1#loc’ if (loc = loc’).

op DijkstraP :ListListFloat Float ListFloat ListListFloat → ListListFloat .
op DijkstraP :ListListFloat Map{Float, Float} ListFloat ListListFloat → ListListFloat .
eq DijkstraP(nil,loc,OidL,LLF’) = nil.
ceq DijkstraP(LLF,loc,OidL,LLF’) = nil if inLF(OidL,loc) = false.
eq DijkstraP(LLF,loc,OidL#loc#OidL’,LLF’) = DijkstraP(LLF,loc 7→0.0,loc#OidL#OidL’,LLF’).
eq DijkstraP(LLF,(loc 7→0.0,MOF),nil,LLF’) = LLF’.
ceq DijkstraP(LLF,MOF,loc#OidL,LLF’) = DijkstraP(LLF,MOF’,sort(OidL,MOF’),LLF1)
if MOF’:=update(LLF,MOF,loc,getConnected(LLF,loc)) ∧
LLF1 :=updateNL(LLF,MOF,loc,getConnected(LLF,loc),LLF’).

op sort :ListFloat Map{Float, Float} → ListFloat .
ceq sort(OidL#F#OidL’#F’#OidL",MOF) = sort(OidL#F’#OidL’#F#OidL",MOF)
if minor(MOF[F’],MOF[F]).
eq sort(OidL,MOF) = OidL[owise].

op getConnected :ListListFloat Float → ListFloat .
eq getConnected(nil,F) = nil.
ceq getConnected(MLFLLF,F) = if first(MLF) = F then (getConnected(LLF,F)#F1)
else getConnected(LLF,F) fi
if F1:=second(MLF).

op minor :[Float] [Float] → Bool .
eq minor(F, undefined) = true .
eq minor(undefined, F) = false .
eq minor(F, F’) = F < F’ .
eq minor(FF, FF’) = false [owise] .

op update :ListListFloat Map{Float, Float} Float ListFloat → Map{Float, Float} .
eq update(LLF, MOF, loc, nil) = MOF .
ceq update(LLF,MOF,loc,loc’#OidL) = if minor(add(MOF[loc],F),MOF[loc’]) then
update(LLF,insert(loc’,add(MOF[loc],F),MOF),loc,OidL) else update(LLF,MOF,loc,OidL) fi
if F :=weight(LLF,loc,loc’).

op updateNL :ListListFloat Map{Float,Float} Float ListFloat ListListFloat →
ListListFloat .
eq updateNL(LLF,MOF,loc,nil,LLF’) = LLF’.
ceq updateNL(LLF,MOF,loc,loc’#OidL,LLF’) = if minor(add(MOF[loc],F),MOF[loc’])
then updateNL(LLF,insert(loc’,add(MOF[loc],F),MOF),loc,OidL,[loc#loc’]LLF’)
else updateNL(LLF,MOF,loc,OidL,LLF’) fi
if F :=weight(LLF,loc,loc’).

op weight :ListListFloat Float Float → Float .
eq weight(nil,F,F’) = 0.0 .
ceq weight(MLF LLF,F,F’) = (third(MLF)∗fifth(MLF)) if first(MLF) = F ∧ second(MLF) = F’.
ceq weight(MLF LLF,F,F’) = weight(LLF,F,F’) if first(MLF) 6= F .
ceq weight(MLF LLF,F,F’) = weight(LLF,F,F’) if second(MLF) 6= F’ .

In the node-rec-RouteReply rule, node S which receives the RouteReply
message, retrieves the next node F from the selected routing path, to send a
data message DATAMSG to it, including the rest of the selected routing path
LF. It only happens if at that time, node F is in the neighborhood. Otherwise,
no message is generated (the node-rec-RouteReply-timeout rule). The
node-rec-RouteReply-no path rule captures the situations that PN could
not find any routing path. The node-rec-DATAMSG and node-rec-DATAMSG-
timeout rules retransmit the data message, similarly. Finally, in the dest-rec-
DATAMSG rule, the destination node receives the data message.

crl [node-rec-RouteReply] :
{(RouteReply D (ID#F#LF) LastT from PN to S)
〈S:Node | id:ID,reqid:N,NumOfSentMsg:N1,savedPower:P,power:POW,neighbors:LLF,A 〉
execute(S) T CONF }
−→
{(DATAMSG (N+1) S D LF LastT from S to object(F))
〈S:Node| id:ID,reqid:(N+1),NumOfSentMsg:(N1+1),power:POW,savedPower:
(P-(Prec(POW)+Pmin(POW))),neighbors:LLF,A 〉
[T+sampleExpWithRate(0.1),execute(S)] T CONF }
if LastT < fifth(FindRow(F,LLF)).

crl [node-rec-RouteReply-timeout] :
{(RouteReply D (ID#F#LF) LastT from PN to S)
〈S:Node | id:ID,reqid:N,savedPower:P,power:POW,neighbors:LLF,A〉 execute(S)T CONF }
−→
{ 〈S:Node | id:ID,reqid:N,power:POW,savedPower:(P-Prec(POW)),neighbors:LLF,A〉
[T+sampleExpWithRate(0.1),execute(S)] T CONF }
if LastT > fifth(FindRow(F,LLF)).

rl[node-rec-RouteReply-no path]:
{(RouteReply D nil LastT from PN to S) 〈S:Node | id:ID,reqid:N,A 〉 execute(S) T CONF }
−→
{ 〈S:Node | id:ID,reqid:N,A 〉 [T+sampleExpWithRate(0.1),execute(S)] T CONF } .

crl [node-rec-DATAMSG] :
{(DATAMSG MsgID S D PATH LastT from O1 to O)
〈O:Node | id:ID,savedPower:P,power:POW,neighbors:LLF,A 〉
〈O’:Node | id:ID’,A’ 〉 execute(O) T CONF }

−→
{(DATAMSG MsgID S D LF LastT from O to O’)
〈O:Node | id:ID,savedPower:(P-(Prec(POW)+Pmin(POW))),power:POW,neighbors:LLF,A 〉
〈O’:Node | id:ID’,A’ 〉 [T+sampleExpWithRate(0.1),execute(O)] T CONF }
if (F#LF):=PATH ∧ F = ID’ ∧ D 6= O ∧ LastT < fifth(FindRow(F,LLF)).

crl [node-rec-DATAMSG-timeout] :
{(DATAMSG MsgID S D PATH LastT from O1 to O)
〈O:Node | id:ID,savedPower:P,power:POW,neighbors:LLF,A 〉
〈O’:Node | id:ID’,A’ 〉 execute(O) T CONF }
−→
{〈O:Node | id:ID,savedPower:(P-(Prec(POW)+Pmin(POW))),power:POW,neighbors:LLF,A 〉
〈O’:Node | id:ID’,A’ 〉 [T+sampleExpWithRate(0.1),execute(O)] T CONF }
if(F#LF):=PATH ∧ F = ID’ ∧ D 6= O ∧ LastT > fifth(FindRow(F,LLF)).

rl [dest-rec-DATAMSG] :
{(DATAMSG MsgID S D PATH LastT from O1 to D)
〈D:Node | id:ID,NumOfRecMsg:N,savedPower:P,power:POW,A 〉 execute(D) T CONF }
−→

{〈D:Node | id:ID,NumOfRecMsg:(N+1),power:POW,savedPower:(P-Prec(POW)),A 〉
[T+sampleExpWithRate(0.1),execute(D)] T CONF } .

4.4 The Decentralized Model

This section describes the model of our decentralized routing protocol. Each
node O which needs to send a data message, generates a DCDATAMSGmessage and
increase the number of the sent messages in its attributes value. The start-DC1
and start-DC1 rules are used to transmit the DCDATAMSG to the destination.
The first rule captures the situations that there is no previous information about
the required routing path in the routing table. Otherwise, the second rule is
applied. The routingTable attribute is used in the decentralized protocol to
decide about the next routing node. It includes the neighbor’s ID, the destination
node’s ID, the number of the sent messages to the destination, the number of the
received acknowledgment messages from the destination and the last node which
is chosen to retransmit a message to this destination. The BestREP equation
chooses the best node with the highest link probability in the neighborhood.
The getREP equation retrieves the acknowledgment probability of the neighbor
node ID1 and destination node ID’.When the destination node receives the
DCDATAMSG message, it sends an acknowledgment message DCACK to the nodes
which transmit the DCDATAMSG message.
rl [start-DC] :
(DCDATAMSG O D)〈O:Node| id:ID,reqid:MsgID,NumOfSentMsg:N,A 〉
−→
(DCDATAMSG (MsgID+1) noneOids D from O to O)
〈O:Node | id:ID,reqid:(MsgID+1),NumOfSentMsg:(N+1),A 〉 .

crl [start-DC1] :
{(DCDATAMSG MsgID PL D from O1 to O)
〈O:Node | id:ID,routingTable:LLN,infoREP:LLN’,neighbors:LLF,savedPower:P,
power:POW,NumOfSentMsg:N,A 〉 〈D:Node| id:ID’,A’ 〉 execute(O) T CONF }
−→
if Neighbour(LLF,D) = false then
if Id 6= 0 then
{(DCDATAMSG MsgID (PL;O) D from O to O’)
〈O:Node | id:ID,routingTable:([ID ID’ 1 0 Id]LLN),infoREP:LLN’,
neighbors:LLF,savedPower:(P-Pmin(POW)),power:POW,NumOfSentMsg:N,A 〉
〈D:Node | id:ID’,A’〉 [T+sampleExpWithRate(0.1),execute(O)] T CONF }
else{〈O:Node | id:ID,routingTable:LLN,infoREP:LLN’,neighbors:LLF, savedPower:P,
power:POW,NumOfSentMsg:N,A 〉 〈D:Node | id:ID’,A’ 〉
[T+sampleExpWithRate(0.1),execute(O)] T CONF } fi
else {(DCDATAMSG MsgID (PL;O) D from O to D)
〈O:Node | id:ID,routingTable:([ID ID’ 1 0 ID’]LLN),infoREP:LLN’,neighbors:LLF,
savedPower:(P-Pmin(POW)),power:POW,NumOfSentMsg:N,A 〉
〈D:Node| id:ID’,A’ 〉 [T+sampleExpWithRate(0.1),execute(O)] T CONF } fi
if inLLN(LLN,ID’) = false ∧ IDc:= NodeID(O1) ∧ Id:=BestREP(LLF,LLN’,ID’,ID,IDc,T,0,0.0)
∧O’:=object(Id).

crl [start-DC2] :
{(DCDATAMSG MsgID PL D from O1 to O)
〈O:Node | id:ID,routingTable:LLN,infoREP:LLN’,neighbors:LLF,savedPower:P,
power:POW,NumOfSentMsg:N,A 〉 〈D:Node | id:ID’,A’〉 execute(O) T CONF }
−→

if Neighbour(LLF,D) = false then
if Id 6= 0 then
{(DCDATAMSG MsgID (PL;O) D from O to O’)
〈O:Node | id:ID,routingTable:([ID ID’(X+1) Y Id]LLN1),infoREP:LLN’
,neighbors:LLF,savedPower:(P-Pmin(POW)),power:POW,NumOfSentMsg:N,A〉
〈D:Node | id:ID’,A’〉 [T+sampleExpWithRate(0.1),execute(O)] T CONF }
else {〈O:Node | id:ID,routingTable:(LLN[ID ID’ X Y Z]LLN1),infoREP:LLN’,
neighbors:LLF,savedPower:P,power:POW,NumOfSentMsg:N,A 〉
〈D:Node| id:ID’,A’ 〉 [T+sampleExpWithRate(0.1),execute(O)]TCONF } fi
else {(DCDATAMSG MsgID (PL;O) D from O to D)
〈O:Node | id:ID,routingTable:(LLN[ID ID’(X+1) Y ID’]LLN1),infoREP:LLN’,
neighbors:LLF,savedPower:(P-Pmin(POW)),power:POW,NumOfSentMsg:N,A 〉
〈D:Node| id:ID’,A’ 〉 [T+sampleExpWithRate(0.1),execute(O)] T CONF } fi
if IDc:=NodeID(O1) ∧ Id:=BestREP(LLF,LLN’,ID’,ID,IDc,T,0,0.0)∧ O’:=object(Id).

op BestREP :ListListFloat ListListNat Nat Nat Nat Float Nat Float → Nat .
eq BestREP(nil,LLN,ID’,ID,IDc,T,N,F) = N .
ceq BestREP(MLF LLF,LLN,ID’,ID,IDc,T,N,F) = if T < fifth(MLF) then
if F1 > F then BestREP(LLF,LLN,ID’,ID,IDc,T,ID1,F1)
else BestREP(LLF,LLN,ID’,ID,IDc,T,N,F) fi
else BestREP(LLF,LLN,ID’,ID,IDc,T,N,F) fi
if ID1:=first(MLF) ∧ F1:=getREP(LLN,ID1,ID’)+(second(MLF)∗forth(MLF)).

op getREP :ListListNat Nat Nat → Float .
eq getREP(nil, ID1 ,ID’) = 0.0 .
eq getREP([IDc ID X Y Z] LLN1,ID1,ID’) = if ID = ID’ then if IDc = ID1 then (X/Y)
else getREP(LLN1,ID1,ID’) fi else getREP(LLN1,ID1,ID’) fi.

rl [dest-rec-DC-msg] :
{(DCDATAMSG MsgID PL D from O1 to D) 〈D:Node | id:ID’,NumOfRecMsg:N,A’ 〉 execute(D) T CONF }
−→
{(DCACK MsgID from D to PL) 〈D:Node | id:ID’,NumOfRecMsg:(N+1),A’ 〉
[T+sampleExpWithRate(0.1),execute(D)] T CONF }.

rl [rec-DCACK] :
{(SingleDCACK MsgID from D to O) 〈O:Node | id:ID,routingTable:(LLN’[ID ID’ X Y Z] LLN),A 〉
〈D:Node | id:ID’,A’ 〉 execute(O) T CONF }
−→
{〈O:Node | id:ID,routingTable:(LLN’[ID ID’ X (Y+1) Z] LLN),A 〉
〈D:Node | id:ID’,A’ 〉 [T+sampleExpWithRate(0.1),execute(O)] T CONF }.

5 Experiments

We used the dataset of iMotes devices in Intel Research Cambridge Corporate
Laboratory [23] to evaluate the performance of the proposed centralized and
decentralized model. An iMote is a small and self-contained device, which is able
to communicate and transmit data to the other iMotes through radio links. This
dataset represents Bluetooth sightings of the iMotes nodes which are carried
by some 16 admin staff, researchers and interns of Intel’s lab for six days, in
January 2005. One iMote is placed at a kitchen as the stationary node. Only the
information of 9 iMotes are available, because the others had frequently reset.

Each row of the dataset includes a pair of these iMote nodes which meet, in
addition to the starting time and the length of this meeting. The information
about the reliability of links are not available in the dataset. So, we assigned

the equal value of 3/4 to all the links between all the nodes. That is, we assume
that the links are fairly reliable, which is a reasonable assumption, otherwise
the very attempt to use such WSN should be questioned. We assume that nodes
use their a given transmission power to reach their neighbors, and also that this
transmission power is ten times larger than the cost of receiving a message; using
such power ratio frees our experiment from any particular radio model. In our
experiments, we assume there is one processing node which is always reachable
for all nodes, and all nodes (but one that is stationary) move according to the
dataset’s specification. Finally, every nodes has an initial energy budget of 1000
units.

Finally, we run experiments to investigate the protocol’s efficiency (energy-
cost), effectiveness (delivery rates) and also to investigate some formal properties
of the protocol using the Maude model.

5.1 Investigating the Protocol’s Efficiency

In the first experiment, each node send one single data message to the sink. The
purpose of this experiment is to study the overhead cost of the learning phase in
these protocols, as well as the cost incurred by the nodes in the centralized ap-
proach in updating the processing node every time they mode. Figure 1 compares
the average remaining energy of all the node which send the data message by us-
ing centralized and decentralized protocolsafter running the simulation for 3000
time ticks. The figure shows that the decentralized protocol consumes nearly
1/3 less energy than the centralized protocol at the end of simulation run. Since
there is one message being delivered we claim that the process of keeping the
processing node up-to-node is to be blamed as a non-trivial consumer of energy.

Even though one could argue that, we could have compared our protocols
with another protocol, e.g., AODV, we argue that we would not learn anything
because AODV does not have a learning phase and since there is only one mes-
sage being sent, AODV’s would be (unrealistic) competitive. Nonetheless, the
next experiments includes a comparison to AODV.

We did another experiment to study the power consumption of the network
when all the nodes regularly send data messages. In this experiment, each node
has 50 data message in its queue. The data messages are sent from different nodes
to the sink node, at random times during the simulation. Figure 2 represents the
average of the remaining energy of all nodes during running the decentralized,
the centralized and the AODV routing protocol models. Again, each simulation
run for 3000 time ticks, and we assume there is no message interference in the
network. This experiment, which is more faithful to the normal operation of
a WSN, allows one to better appreciate the cost of the route requests in the
centralized protocol (in addition to the cost of maintaing the processing node
up-to-date)

For comparison with our protocols, we now add the AODV protocol to our
experiment. In AODV we assume that the links are not probabilistic and they
always exist and the messages always reach to the sink. Note that those are
rather optimistic assumptions. In AODV each time that a node needs to send

Fig. 1. The comparison of the average energy consumption of the centralized and the
decentralized routing protocols for one data message.

a message after it moves, it needs to request a new routing path to the sink.
This process is done by broadcasting several route request messages through
intermediary nodes. These messages are followed by route reply messages. This
routing path discovery process is costly for the network. We assume that nodes
also use their minimum power to broadcast the messages in AODV.

As before, both the centralized and the decentralized protocols spend some
time in the beginning for learning. We also investigated two scenarios for the
centralized protocol. In the first scenario (denotes as “centralized protocol (1)”),
we assume, as in the previous experiment, that communicating with the pro-
cessing node is as costly as communicating with a neighbor node. In the second
scenario (denoted as “centralized protocol (2)”) is similar to the similar situation
with the first scenario except that nodes use twice as much power to communi-
cate with the processing node. While this improves the chances that a processing
node is reached, it also consumes more energy, i.e., these scenarios investigates
the power consumption of the network when the cost of reaching the process-
ing node increases. The results shows that, in the long term the decentralized
protocol consumes 45.9%, 53.5% and 59.7% power less than the first and second
scenarios of the centralized protocol and the AODV protocol, respectively. In
addition, we note that (i) our proposed protocols consume less energy that the
AODV protocol, and (ii) the decrease in the average amount remaining energy
in relatively less pronounced for the decentralized protocol, which is a desirable
feature as well.

Fig. 2. The comparison of the average remaining energy of nodes in the decentralized
protocol, the centralized protocol (1), the centralized protocol (2), which employs twice
as much power to reach the processing node, and the AODV routing protocols.

For a better representation of the protocols’ energy consumption character-
istics, we generated graphs which show the maximum, average and minimum
amount of the energy consumed by all the nodes in a simulation. The scenario
is the same as considered in Figure 2. These graphs are generated for the de-
centralized protocol (Figure 3), the centralized protocol (1) (Figure 4) and the
centralized protocol (2) (Figure 5). As expected the gap between maximum and
minimum is relatively tighter in the centralized version, suggesting that it is
more robust.

In our last experiment in this section, all nodes continue moving and sending
messages at random intervals until the first node dies, i.e., it runs out of energy.
In both the centralized and the decentralized protocols, we show the minimum
amount of energy among all nodes. Here we compare only the centralized proto-
col(1) and the decentralized proposal. Figure 6 shows that the first node dies in
the centralized protocol after approximately 5000 time ticks, while the most de-
plete node in the decentralized protocol still has almost half of its initial energy
budget. This experiment suggests that the life time of the network when apply-
ing decentralized protocol is at least twice longer than when using centralized
protocol.

Fig. 3. The comparison of maximum, average and minimum amount of the remaining
energy of the nodes in the decentralized protocol.

Fig. 4. The comparison of maximum, average and minimum amount of the remaining
energy of the nodes in the centralized protocol(1) .

Fig. 5. The comparison of maximum, average and minimum amount of the remaining
energy of the nodes in the centralized protocol(2).

Fig. 6. The comparison of minimum remaining energy of nodes the decentralized and
the centralized protocol.

5.2 Investigating the Protocol’s Effectiveness

While the above experiments discuss the energy efficiency of the proposed pro-
tocols we also need to consider their effectiveness, i.e., what are their actual
delivery rates, after all a highly efficient protocol that does not lead to a good
delivery rate is of very little practical use.

Considering the successful message transmission rate as the metric of interest,
the centralized protocol, as expected, is more effective than the decentralized. On
average, the successful message transmission rate of the centralized protocol is
87.1%, while it is 83.6% for the decentralized protocol. According to the average
power consumption in Figure 2, the decentralized protocol uses nearly 50% less
power more than the centralized protocol at the cost of being merely about 4%
less effective. We believe this is quite acceptable trade-off. Furthermore, we note
that even though the decentralized protocol made wrong decisions in a few cases,
in other cases the centralized approach was not able to deliver its message due,
for instance, to unreachability of the processing nodes. That is, the decentralized
protocol revealed itself to a very good alternative to the centralized one, as well
to the well-known AODV protocol.

5.3 Investigating the Formal Properties of the Protocol

In addition to the quantitative analysis of the performance of the proposed
protocols, we took the advantage of the formal modeling methods to prove the
validity of the model, regarding its correctness properties. The correctness of
our proposed protocols is formalized as a Linear Temporal Logic (LTL) formula
of �((MSG(m, s, d)∧MPP(m, s, d))∨ (¬MSG(m, s, d)∧¬MPP(m, s, d))). The
predicate MSG(m, s, d) is true if a data messagem is sent from node s to node d.
The predicate MPP(m, s, d) is true if the chosen routing path for m is the most
probable path between nodes s and d. This formula means that in all states of
the system, the most probable paths are chosen for messages. In other words,
there is no state in which this property is violated.

The Maude environment has a search tool that searches for failures (the
negation of the correctness property) through all possible behaviors of the model.
We used this tool to search all the reachable final states of the system to find out
if the most probable path is always chosen. For this experiment, nodes only send
one message to have a limited search state space. The search tool did not find
any violation of the property, meaning that the expected routing path is chosen
in all the reachable traces of the model’s run, thus asserting the correctness of
our proposed protocol.

6 Conclusion

In this paper, we proposed a base routing protocol for WSNs with mobile nodes.
This protocol has both centralized and decentralized versions suitable for dif-
ferent network scenarios. We aimed at the energy-efficiency operation of the

network, while improving the rate of successful message transmission. The re-
sults show a trade-off between the centralized and the decentralized versions of
the protocol. The first one is slightly more effective, while the second one is much
more efficient. Both versions of the protocol outperform the well-known AODV
protocol in term of energy efficiency and are also more robust, in particular the
decentralized version.

In out future work, we are going to refine the protocol by capturing more
detailed patterns from the nodes’ movement, e.g., temporal patterns. From the
modeling view point, we plan to perform probabilistic reasoning of the model
via statistical model checking and statistical quantitative analysis.

7 Acknowledgements

This work was partially supported by NSERC DIVA Strategic Network, and it
was completed while the first author was visiting the University of Alberta.

References

1. C. E. Perkins and E. M. Belding-Royer, “Ad-hoc on-demand distance vector rout-
ing,” in WMCSA, 1999, pp. 90–100.

2. E. W. Dijkstra, “A note on two problems in connection with graphs,” Numerische
Mathematik, vol. 1, p. 269âĂŞ271, 1959.

3. H. N. Pham, D. Pediaditakis, and A. Boulis, “From simulation to real deployments
in WSN and back,” in International Symposium on a World of Wireless, Mobile
and Multimedia Networks (WoWMoM’07). IEEE, 2007, pp. 1–6.

4. S. Park, A. Savvides, and M. B. Srivastava, “SensorSim: a simulation framework
for sensor networks,” in Proc. 3rd Intl. Symposium on Modeling Analysis and Sim-
ulation of Wireless and Mobile Systems (MSWiM 2000), A. Boukerche, M. Meo,
and C. Tropper, Eds. ACM, 2000, pp. 104–111.

5. J. Meseguer, “Conditional rewriting logic as a unified model of concurrency,” vol. 96,
pp. 73–155, 1992.

6. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J. F.
Quesada, “Maude: Specification and programming in rewriting logic,” vol. 285, pp.
187–243, Aug. 2002.

7. B. S. Olagbegi and N. Meghanathan, “A review of the energy efficient and secure
multicast routing protocols for mobile ad hoc networks,” 2010.

8. M. Liu, J. Cao, G. Chen, and X. Wang, “An energy-aware routing protocol in
wireless sensor networks,” Sensors, vol. 9, no. 1, pp. 445–462, 2009.

9. J. Wang, J. Cho, S. Lee, K.-C. Chen, and Y.-K. Lee, “Hop-based energy aware
routing algorithm for wireless sensor networks,” IEICE Transactions, vol. 93-B,
no. 2, pp. 305–316, 2010.

10. I. Stojmenovic and X. Lin, “Power-aware localized routing in wireless networks,”
pp. 1–5, 2000.

11. R. Arroyo-Valles, R. Alaiz-Rodriguez, A. Guerrero-Curieses, and J. Cid-Sueiro,
“Q-probabilistic routing in wireless sensor networks,” in Intelligent Sensors, Sensor
Networks and Information, 2007. ISSNIP 2007. 3rd International Conference on,
dec. 2007, pp. 1 –6.

12. C. L. Barrett, S. J. Eidenbenz, L. Kroc, M. Marathe, and J. P. Smith, “Parametric
probabilistic routing in sensor networks,” Mob. Netw. Appl., vol. 10, pp. 529–544,
August 2005.

13. A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in intermittently
connected networks,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 7, pp. 19–
20, July 2003.

14. S. C. Ergen, M. Ergen, and T. J. Koo, “Lifetime analysis of a sensor network with
hybrid automata modelling,” in Proceedings of the First ACM International Work-
shop on Wireless Sensor Networks and Applications (WSNA’02), C. S. Raghaven-
dra and K. M. Sivalingam, Eds. ACM, 2002, pp. 98–104.

15. A. Fehnker, L. van Hoesel, and A. Mader, “Modelling and verification of the LMAC
protocol for wireless sensor networks,” in Proc. 6th Intl. Conf. on Integrated Formal
Methods (IFM’07), J. Davies and J. Gibbons, Eds., vol. 4591, 2007, pp. 253–272.

16. S. Tschirner, L. Xuedong, and W. Yi, “Model-based validation of QoS properties of
biomedical sensor networks,” in Proceedings of the 8th ACM & IEEE International
conference on Embedded software (EMSOFT’08), L. de Alfaro and J. Palsberg,
Eds. ACM, 2008, pp. 69–78.

17. P. C. Ölveczky and S. Thorvaldsen, “Formal modeling, performance estimation,
and model checking of wireless sensor network algorithms in Real-Time Maude,”
vol. 410, no. 2-3, pp. 254–280, 2009.

18. M. Katelman, J. Meseguer, and J. C. Hou, “Redesign of the LMST wireless sen-
sor protocol through formal modeling and statistical model checking,” in Proc.
10th Intl. Conf. on Formal Methods for Open Object-Based Distributed Systems
(FMOODS’08), G. Barthe and F. S. de Boer, Eds., vol. 5051, 2008, pp. 150–169.

19. J. S. Dong, J. Sun, J. S. 0001, K. Taguchi, and X. Zhang, “Specifying and verifying
sensor networks: An experiment of formal methods,” in 10th International Confer-
ence on Formal Engineering Methods (ICFEM’08), S. Liu, T. S. E. Maibaum, and
K. Araki, Eds., vol. 5256, 2008, pp. 318–337.

20. S. Shakya, J. McCall, and D. Brown, “Using a markov network model in a univariate
eda: an empirical cost-benefit analysis,” in Proceedings of the 2005 conference on
Genetic and evolutionary computation, ser. GECCO ’05. ACM, 2005, pp. 727–734.

21. M. Dorigo and T. Stutzle, Ant colony optimization. Cambridge, MA: MIT Press,
2004.

22. A. Riesco and A. Verdejo, “The EIGRP protocol in Maude,” Dpto. Sistemas In-
formáticos y Computación, Universidad Complutense de Madrid, Tech. Rep. SIC-
3/07, 2007, http://maude.sip.ucm.es/eigrp.

23. J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau, “CRAW-
DAD trace cambridge/haggle/imote/intel (v. 2006-01-31),” Downloaded from
http://crawdad.cs.dartmouth.edu/cambridge/haggle/imote/intel, Jan. 2006.

