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Abstract

Over the coming decades, global population and energy consumption are projected to increase

dramatically, with the latter doubling by 2050 as per the most conservative estimates. Much of

this demand is likely to be met with increased use of fossil fuels. The burning of fossil fuels is

a major contributor to the ever-increasing CO2 concentration in the atmosphere, a major driver

of climate change. In order for countries and companies to meet their climate targets, they must

undergo a transition to low or CO2-free energy sources (wind, solar, hydroelectric, for example).

Solar power, typically harvested using photovoltaic and solar thermal devices, is considered one

of the most promising renewable energy technologies due to the sheer quantity of solar irradiation

impinging upon terrestrial earth. Organic photovoltaics (OPVs) are a subset of PV technology

that are thin, lightweight, printable using roll-to-roll and spray coating technologies, flexible, and

can be made semi-transparent. These features enable this class of photovoltaics to be considered

in markets and locales otherwise inaccessible to traditional silicon devices, which are heavy and

cumbersome. Organic photovoltaics comprise many layers that need to be manufactured with great

care in order to yield devices capable of producing substantial power, in a reproducible fashion.

The central layer in this stack is the critical light absorbing layer that consists of two or three, and

occasionally more, different organic molecules.
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The work described within this dissertation looks at the application of Design of Experiments

(DOE) and machine learning (ML) for optimizing OPV device bulk heterojunctions (BHJs) that are

based on small-molecule components. Typically in an academic setting, researchers are directed to

optimize any given system via a one-variable-at-a-time (OVAT) approach in order to discern the

effect of that one variable on the desired output. However, given the complexity and number of

variables in the manufacturing of OPV devices, this approach is often too lengthy and expensive to

implement robustly across more than a couple of variables. In addition, the variables are typically

co-dependent, interrelated, and convoluted, and thus independent optimization of each variable

is not possible, resulting in unsatisfactory optimization. In addition to the design of experiments

(DOE), we then apply machine learning (ML) methods to further optimize device manufacturing

processing parameters to provide the equivalent of a topological map that aids researchers in

determining the best next steps for arriving at optimum performance. DOE is a sampling method

that reduces the number of experiments required to investigate a large parameter space. As a result,

wider ranges or more variables can be investigated simultaneously. With experimental data derived

from DOE, the ML approach is used to interpolate device efficiencies across the entire parameter

space investigated. The combination of DOE and ML enables the identification of the values that

truly matter with respect to arriving at the highest efficiency devices, with a fraction of the material

and time required via OVAT optimization.
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Preface

Chapter 1 serves as an introduction to photovoltaics, their place relative to other energy technologies

and an explanation of organic photovoltaics in particular.

Chapter 2 is based on a manuscript titled “Bulk-heterojunction Optimization of All Small-

molecule Organic Photovoltaic Devices Using Design of Experiment and Machine Learning

Approaches” authored by Aaron Kirkey, Erik J. Luber, Brian C. Olsen and Jillian M. Buriak.

I carried out the manufacturing, testing and characterization of the photovoltaic devices. Erik

Luber aided with the analysis of the results obtained and formulating working theories of systems

investigated. Erik Luber and Brian C. Olsen oversaw the use of the optimization method with Brian

C. Olsen wrote the code required to implement the machine learning algorithm. Jillian M. Buriak

and Erik J. Luber helped prepare and edit the manuscript and JillianM. Buriak supervised the entire

project.

Chapter 3 will conclude the findings from Chapter 2 and propose future directions and projects

stemming from this work.
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1
Introduction

1.1 Overview

This thesis explores the application of Design of Experiment to the optimization of the bulk

heterojunction (BHJ) of three organic photovoltaic (OPV) architectures via commonly employed

manufacturing processing parameters. Chapter 1 will provide the necessary background in

photovoltaics. It will start with the case for photovoltaics, and will be followed by a brief history
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of photovoltaic research and an introduction to the different families of photovoltaics. This chapter

will also explain more thoroughly the structure and working principles of OPVs and, in particular,

the nuanced details about the components within the light absorbing layer in these devices.

1.2 The Case for Photovoltaics

The world’s population is on pace to grow from 7.6 billion in 2018 to 9.7 billion by 2050,1 and

the world’s energy consumption is projected to grow along with it, from 20 TW in 20182 to 28-

30 TW in 2050, assuming steady increases in energy efficiency, population and GDP growth.2

Meeting this growing energy demand will be difficult, particularly with the additional constraint

of meeting Paris Climate Agreement targets.4 After ratification, the Paris Agreement was signed

by 197 parties that agreed to dramatically curtail their CO2 emissions as soon as possible. CO2 is a

major driver of anthropogenic climate change,5,6 and is largely produced through fossil fuel-based

generation of electricity and transportation.7 In 2018, fossil fuels and renewables (wind, solar and

hydroelectric) accounted for 80% and 15% of global primary energy sources,2 respectively, and by

2050 the International Energy Agency expects the share of fossil fuels to fall to 69% and renewables

to nearly double to 28%, as shown in figure 1.1.2

This shift in energy sources will require unprecedented growth of renewable energy production.

Fortunately, photovoltaics seem poised to meet this increase in production. More solar energy

strikes the terrestrial earth in 1.5 hours than is globally consumed in a year.8 This means that the

resource base for solar energy is orders of magnitude larger than all other renewable energy sources

combined.9 Additionally, in recent years utilities-scale photovoltaics have reached grid parity with

conventional fossil fuel power plants, as shown in figure 1.2. This drop in price is largely due the

reduction in photovoltaic module costs over that same time period.10
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Figure 1.1: Global primary energy consumption in 2018 and the projected total in 2050 in the IEA reference
case, by source. IEA International Energy Outlook 2019. All rights reserved.2
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Figure 1.2: LCOE of renewable energy source in 2010 and 2019. Data point values and colored rectangles
represent themean price and range of prices from installations that year, respectively. Copyright © IRENA.10

1.3 Organic Photovoltaics

The photovoltaic effect was discovered in 1839 by french physicist Edmon Becquerel at the age

of 19. However, it wasn’t until the 1950s that a practical photovoltaic device was manufactured

at Bell Labs.11 Since then, the types of photovoltaic technologies have proliferated and major

advancements have beenmade in the device efficiencies as shown in the iconic National Renewable

Energy Laboratory (NREL) solar efficiency chart, shown in figure 1.3.

Solar cells can be loosely grouped into three generations. The first generation consists of

mono- and poly-crystalline silicon-based devices. These devices are stable (demonstrating little

degradation over 25 years) and efficient, and as a result make up 90% of the global PV market.12

While costs have dropped impressively over the past two decades, silicon PVmodules remain thick

and heavy due to silicon’s poor absorptivity of silicon caused by it’s indirect bandgap. Module
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Figure 1.3: NREL record laboratory solar cell efficiency chart by technology type, accessed June 27, 2020
from https://www.nrel.gov/pv/cell-efficiency.html.

thickness limits silicon PV energy payback times and overall costs. The second generation devices

consist mainly of thin film technologies such as copper indium gallium selenide (CIGS),cadmium

telluride (CdTe), and gallium arsenide (GaAs). Although these second-generation devices can be

made thin since they are direct bandgap compounds, they comprise scarce and toxic elements.

Perovskite, organic, dye-sensitized and quantum dot solar cells, constitute the third and more

experimental generation of photovoltaics. Some technologies have carved out their own sections of

the market that make use of their specific advantages. For example, gallium arsenide (GaAs) solar

cells are typically used for space applications where materials cost is considerably less important

thanweight. Organic photovoltaics (OPVs) are one of the youngest families of photovoltaic devices

that are unique because they use organic semiconductors rather than inorganic semiconductors to

produce electricity. As of 2020, the OPV device efficiency record stands at 17.4%,13 as shown by

red circles in figure 1.3. This result highlights how quickly these devices are becoming competitive

from an efficiency standpoint. Additionally, these devices can be manufactured to be thin, flexible,
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lightweight and semi-transparent, and may have energy payback times as short as 24 hours (at least

in theory), compared to the time scale of 1-3 years for silicon.14–18 They can also be manufactured

with high-throughput techniques like roll-to-roll printing and spray coating.19 This promise of

inexpensive manufacturing makes OPVs very promising for widespread adoption.

1.4 Working Principles of a Solar Cell

Solar cells convert incident light into power. Power conversion efficiency (PCE) is the measure

used to quantify and compare their effectiveness. In the dark, a solar cell acts as a diode, allowing

current to flow easily in one direction while restricting flow in the opposite direction. Under

illumination, a solar cell acts as both a diode and a current source that generates current that

travels with the diode direction. An ideal cell can be modelled mathematically using the following

equation:

I = IL − I0(e
qV
kT − 1) (1.4.1)

where I is the total current, IL is the current produced under illumination, I0 is the saturation

current, q is the elementary charge of 1.6 × 10-19 coulombs, V is the voltage produced by the cell,

k is the Boltzmann constant with a value of 1.38 × 10 -23 J/K and T is the temperature in Kelvin.

In practice, however, devices contain material defects and sources of resistive losses that result in

a deviation from this behaviour, and thus a solar cell can be more accurately represented by the

simplified equivalent circuits diagram in figure 1.4.

Power conversion efficiency (PCE) is the measure of a solar cell’s ability to convert light into

electricity and is obtained typically via a J-V test. Standard J-V tests are carried out at room
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Figure 1.4: Simplified equivalent circuits model of a solar cell, accessed on June 29, 2020 from
https://pvpmc.sandia.gov/modeling-steps/2-dc-module-iv/diode-equivalent-circuit-models/, where I L is
the light-generated current, I D is the current loss from recombination, I sh is the current loss from shunt
resistance, R sh is the shunt resistance, R s is the series resistance, and I and V are the current and voltage
produced by the cell.

Figure 1.5: Typical J-V curve for a photovoltaic device and inset shows the equation for fill factor.20

temperature in ambient humidity (not always a fixed humidity) while the device is illuminated

under simulated light termed air mass 1.5 global (AM1.5G). This light matches the average spectral

composition and intensity of sunlight at 48.2° from the equator (which is closest to most population

centers). Under these conditions, it’s possible to extract useful photovoltaic metrics such as PCE,

Jsc, Voc from a device. A typical J-V is shown in figure 1.5.

PCE =
Pmax

Pin

=
FF · Jsc · Voc

Pin

(1.4.2)
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The other factor that needs to be considered for a high efficiency solar cell is the fill factor, which

is a measure of the quality of the junction. It represents the ratio of the maximum power generated

by the solar cell (area of blue outline) to the product of the short circuit and open circuit voltages

(area of red outline), the equation is shown inset in figure 1.5. With these variables measured, PCE

of a device can be calculated as shown in equation 1.4.2.

1.5 Organic Solar Cell Architecture

Organic solar cells get their name from the fact that they are assembled from organic

semiconductors with sufficient bandgaps to capture light and produce current. In an OPV, there

are five main steps in the production of current: 1) photoexcitation, 2) exciton diffusion, 3) exciton

dissociation, 4) carrier migration and 5) charge extraction. All five steps are shown below in

figure 1.6. Inside a silicon solar cell, photoexcited electrons produced from absorption of light

have enough thermal energy at room temperature to become freed from their corresponding nucleus

and thus can contribute to current in a device. This is due to silicon’s inherently large relative

permittivity of 11.7,21 which allows electrons to be electronically isolated from the hole that is

left at their initial energy level. Organic semiconductors on the other hand have lower relative

permittivities of 2 - 4.22 This means that when light is absorbed by organic semiconductors,

electrons are excited to higher energy levels from the HOMO to the LUMO (lower and upper edges

of bands in figure 1.6, respectively) but remain bound to the molecule itself as their thermal energy

is not sufficient to free them in any meaningful abundance. Photon absorption and the resulting

photoexcitation is shown in figure 1.6b) labelled (1). Additionally, as an electron is promoted from

the HOMO to the LUMO, a vacancy is formed at the energy level previously occupied by the

electron. This is referred to as a hole, a positively-charged quasiparticle and charge carrier. Being

that the electron has a negative charge and the hole the absence of a negative charge (thus a positive
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Figure 1.6: a) Structure of a bilayer and a bulk heterojunction25 and b) Major processes involved in current
production in an OPV: 1) photoexcitation, 2) exciton diffusion, 3) exciton dissociation, 4) carrier migration
and 5) charge extraction.

charge), the two carriers are attracted to one another. This electrostatic binding of an electron and a

hole is referred to as an exciton, which is an inherently unstable quasiparticle. Excitons themselves

are not charge carriers capable of producing current but if they overcome the exciton binding energy

holding them together and split, two charge carriers are formed, an electron and a hole. In an organic

solar cell, this splitting is accomplished by migration of an exciton to an interface with different

material (step 2) and the transfer of either the electron or the hole to an adjacent molecule (step

3). As a result, OPV devices contain at least two light-absorbing organic semiconductors, one that

donates an electron (donor material) and one that accepts them (acceptor material). At this point,

electrons and holes are free to travel to their respective electrodes (step 4). However, current losses

can still occur as a result of defects in the donor or acceptor material and/or interfaces with the

interfacial layers and/or electrodes. Very nuanced discussions in charge losses can be found in

various good reviews on the topic.23 If charge carriers reach the electrode, charge extraction (step

5) can occur and current is produced.

In 1995, A.J. Heeger et al. produced the first OPV device with a bulk heterojunction (BHJ).26

A BHJ is a single layer containing an intimate mixture of the donor and acceptor materials. This

morphology dramatically increases the interfacial area between donor and acceptor molecules and
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thus increases likelihood of exciton dissociation and current generation. A simplified comparison

of a bilayer photoactive layer and a BHJ are shown in figure 1.6a). This concept proved so useful

that in current research nearly all OPV devices contain BHJs.

1.6 Bulk Heterojunction Components

Historically, BHJs comprised a polymer donor such as P3HT (poly(3-hexylthiophene-2,3-diyl))

and a fullerene derivative such as PC71BM ([6,6]-Phenyl-C71-butyric acid methyl ester).27,28 Low

bandgap polymers are widely used as the donor however and an array of such donors have been used

in research for over a decade.29 Small molecule donors (SMDs) have garnered significant interest

in the past few years,30–34 largely because SMDs are free from problems that commonly afflict

polymers such as batch-to-batch variability of molecular weight and challenges of purification.35,36

Fullerenes, the most commonly used acceptor component of the BHJ, exhibit weak absorptivities

in the visible range and their energy levels are not easily modulated.37

Non-fullerene acceptors (NFAs) overcome these challenges by offering chemical tunability,

absorption profiles complementary to most donor materials, and easily tuned HOMO and

LUMO levels.34,39–41 As a result, NFAs have surged in popularity and now feature in nearly

all high PCE devices. NFAs are organized into a few chemically related families such as:

PDI,42 and A-D-A-style acceptors with former being the most popular. A-D-A acceptors

are composed of an electron-rich moiety (donor) in the center with electron-poor moities

(acceptors) on either end. Y6 (2,2’-((2Z,2’Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-

dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2”,3’‘:4’,5’]thieno[2’,3’:4,5]pyrrolo[3,2-

g]thieno[2’,3’:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-

3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) and ITIC (3,9-bis(2-methylene-(3-

(1,1-dicyanomethylene)-indanone))-5,5,11,11- tetrakis(4-hexylphenyl)-dithieno[2,3-d:2’,3’-d’]-s-
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Figure 1.7: Structures of various non-fullerene acceptors that have replaced fullerene derivatives in
popularity and performance.38

11



Figure 1.8: Structures of the donor material, DRCN5T and the three acceptor materials ITIC, IT-M and
IT-4F, that constitute the BHJ mixtures in this work.

indaceno[1,2-b:5,6-b’]dithiophene) as well as it’s many related derivatives38,43,44 are the most

widely used in as shown in figure 1.7 (ITIC-Th, m-ITIC, IT-M, ITCC, IT-2F).

These acceptors offer the possibility of excellent tunability of absorption properties through

versatile organic syntheses.45,46Despite these advantages, achieving an ideal nanoscalemorphology

in a BHJ comprising both small molecule donors and acceptors is challenging. The fine balance

between the interconnected and competing factors that promote crystallization of both molecular

components in the blend, the kinetics of self-assembly of the nanostructured BHJ, as well as

physical factors such as solvent evaporation during film casting and thermal annealing, renders

this process difficult to optimize.47–49
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1.7 Design of Experiments

In spite of the wide range of combinations of processing parameters, BHJs are typically

optimized in a one-variable-at-a-time (OVAT) fashion, resulting in lengthy and often incomplete

or unsatisfactory device optimization. In addition, the actual process of optimization of OPV

devices is often not described in any real detail in the literature, and thus little is known about

combinations that did not work. It is therefore difficult to ascertain whether OVAT optimization

has indeed led to the “best” possible performance for a given set and range of variables tested

as these parameters are often interconnected and convoluted—varying one could affect others

simultaneously.50 In addition, anthropogenic biases can influence decision-making in a negative

manner.51An optimizationmethod previously introduced by our research group for OPVs combines

Design of Experiment (DOE) andmachine learning (ML) approaches to (i) reduce the time required

to optimize an OPV system, and (ii) increase the probability of discovering a true optimum.52

DOE is a rational method that samples large parameter spaces in a sparse but mathematically

deliberate fashion that minimizes bias. ML-based algorithms are then combined with the

DOE methodology to visually interpret the results and provide guidance for future experimental

optimization conditions.

Much of the landscape of the ML literature in the area of OPV uses computational methods

to screen candidate molecules for high power conversion efficiencies (PCEs)53–56 to accelerate

materials discovery.57 In the broader space ofmaterials for clean energy applications, the combining

of (sparse) experimental data with ML approaches is growing as the methods become more

accessible, widely known and demonstrated. A very recent example is the concept of autonomous

self-driving laboratories that perform experimentation and analysis, and even suggesting next steps,

as shown for thin film materials for perovskite-based PV and other electronic devices.58 Another

example describes the application of a response-surface methodology to tailor the phase and size
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of Ni2P nanoparticles, which are used as catalysts for hydrogen evolution reactions.59 Machine-

learning-in-the-loop has been used to optimize the synthesis of PbS colloidal quantum dots for

solar cells.60 An iterative ML approach enabled the optimization of transparent conductive oxides

that serve as the basis for OPV and other optoelectronic devices.61 In terms of method development,

Aspuru-Guzik’s Phoenics algorithm demonstrates a generalizable Bayesian approach for systems

and devices with scant sampling (such as OPV devices) that are “black-box unknown objective

functions.”62

In this work, all-small molecule OPV devices containing the donor molecule DRCN5T and

one of three NFAs ITIC, IT-M or IT-4F, whose structures shown in figure 1.8, were optimized

using an ML and DOE based approach. This work aims to explore the efficacy of the DOE+ML

methodology for optimizing new BHJs based upon combinations of small molecules that have

not seen much prior exploration. We show how this approach can be used to explore a large

parameter space with little prior knowledge in an iterative fashion. The optimization of multiple

processing parameters simultaneously, reducing the number of experiments required to explore

such a parameter space to a fraction of what is required for OVAT optimization.
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2
Optimization of OPV device bulk

heterojunctions

The OPV devices in this study had an inverted device architecture with ZnO and MoOx interfacial

layers and ITO andMg/Al as the electrodes, as shown in figure 2.1. In normal architecture devices,

holes are collected at the ITO and electrons at the metal back electrode and in inverted architecture

devices either charge carrier is collected at the opposite electrode. In practice, some BHJ blends
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perform better with normal or inverted architecture for a multitude of reasons.63 The BHJs consisted

of the small-molecule donor DRCN5T and one of 3 non-fullerene acceptors, ITIC, IT-M or IT-4F.

The flatband HOMO and LUMO levels as well as the chemical structures of the donor and acceptor

materials are shown in figure 2.1.

DOE is more effectively implemented with some preliminary information since the variable

space for a new material or device is often so vast—the first step of choosing a starting point may

be difficult. Preliminary exploration can provide useful insights into simple questions of solubility

of the components being studied, their thermal stability, and other specifics of the system being

evaluated. Since little was known of these combinations of compounds for formulating an optimal

BHJ, preliminary cells were prepared to evaluate three fundamental parameters: (i) exploration

of three of the most typically used chlorinated solvents to determine which, if any, would result

in uniform films of the small-molecules comprising the BHJ, (ii) whether thermal annealing was

linked to efficiency,64–66 and (iii) a rough range of ratios of the two components in the BHJ that

would result in OPVs with efficiencies greater than ~1%. An initial screening of commonly used

chlorinated solvents, chloroform, 1,2-dichlorobenzene and chlorobenzene, showed that only layers

comprising the components of the BHJ cast from chloroform yielded continuous films when spin-

cast onto the ZnO layer, as shown in figure A.2. Thermal annealing was deemed essential as all

devices fabricated without thermal annealing had PCEs less than 0.5%. Lastly, BHJs with donor

fractions less than 0.5 generally showed low (< 0.5%) power conversion efficiencies, thus providing

a lower boundary for optimization. These preliminary exploratory devices also revealed that the

BHJ films often appeared non-uniform by visual inspection and were accompanied by particulates

and streaks (even with filtration through a 0.22 μm PTFE filter prior to spin-casting); preparation

of devices in duplicate was especially important to account for experimental variability.

With the preliminary exploration complete, the DOE approach centered on the optimization

of 4 BHJ processing parameters: total solution concentration of the donor and acceptor, the ratio
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Figure 2.1: a) Structures of the donor (DRCN5T) and acceptor molecules (ITIC, IT-M and IT-4F), b) OPV
device flatband diagram aligned at vacuum level. Values for the HOMO and LUMO levels are derived from
the following references: DRCN5T,67 ITIC,68 IT-M,69 IT-4F,70 and all other materials.71

of donor:acceptor (represented by the donor fraction), the thermal annealing temperature, and the

duration of the thermal annealing. Layer thickness is in part dictated by the viscosity of the BHJ

solution used for spin-casting and thus solution concentration is a proxy for layer thickness.72 Total

concentration refers to the total weight of donor and acceptor dissolved in a known volume of

chloroform. Donor fraction refers to the weight fraction of the donor material to the total weight

of donor and acceptor dissolved in solution.

The goal of the first round of DOE optimization is to sample a parameter space sufficiently

wide to try to encompass all performance maxima (in this case, the PCE) within the range of

chosen processing parameters. It is not feasible to investigate the entire parameter space of any

given system, and larger ranges will require a larger number of levels (sampling points in a

range) in order to capture sharper features of the response landscape. If for example, a donor

fraction range of 0.1–0.9 is chosen, the number of levels (different values of donor fractions

tested) required to attain useful resolution of this parameter range would require a burdensome

number of devices. The information presented in table 2.1 displays the processing parameters,

ranges, and levels investigated in the first round of optimization for the DRCN5T/ITIC BHJ
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combination. A full factorial design (i.e. testing every possible combination of levels for each

parameter) of this parameter space would consist of a total of 42 × 32 = 144 experiments/devices.

The production of 6-device batches of OPVs, takes ~6 hours in our case, meaning that a full factorial

design would require roughly 144 hours of hands-on experimental time. Even without accounting

for the necessity of preparing devices in duplicate, this first round of exploratory DOE quickly

becomes experimentally prohibitive. Given this fact, the number, range and/or levels of processing

parameters could be reduced in order to decrease the number of devices manufactured, or one could

apply a different sampling method. Employing the latter, a generalized subset design (GSD) would

reduce the DOE array to a more tractable number of experiments, where the number of experiments

is reduced by an integer fraction of the full factorial amount.73 The degree of integer reduction is

chosen to be as large as possible while still realizing close to the same number of experiments at

each parameter level (See the Appendix for a more detailed description of integer reduction).

2.1 DRCN5T/ITIC-based BHJs

Table 2.1: Parameters, ranges and levels for the first round of Design of Experiment optimization of
DRCN5T/ITIC cells.

BHJ concentrations (mg/ml) 5.0 7.5 10.0 12.5

Number of experiments 4 6 6 4

Donor Fractions 0.6 0.7 0.8 0.9

Number of experiments 4 6 6 4

Annealing Temperatures (°C) 120 140 160
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Table 2.1: Parameters, ranges and levels for the first round of Design of Experiment optimization of
DRCN5T/ITIC cells.

Number of experiments 7 6 7

Annealing Time (seconds) 100 200 300

Number of experiments 7 6 7

Through implementation of integer reduction of the DOE array using the GSD algorithm, the total

number of experiments was reduced from 144 reduced to 20, with a close to equal number of

experiments performed at each different parameter level. A detailed list of each of the parameter

levels for each of the 20 experiments can be found in figure A.3. For all experimental conditions,

at least two chips comprising 5 cells each (10 cells total) were fabricated and tested.

Before analysis, the data is passed through a filter that excludes non-representative data

(statistical outliers) that would otherwise skew the analyses. Devices exhibiting anomalous metrics

compared to others made under the same experimental conditions can be systematically identified

and excluded according to precise rejection criteria. Examples of devices with anomalous metrics

include those with shorts in the device, and thus should be rejected as non-representative. Here

we apply a universal rejection of Voc < 0.65 V, which is likely to result from a device defect.

On average, 8 devices from each experiment will pass the data filter but some combinations of

processing parameters lead to devices that are more likely to be rejected. The data that does pass

this filter comprises the dataset analyzed in the following steps.

An analysis of variance (ANOVA) is then conducted in order to quantify the relative

contribution of each processing parameter.52 A lower percent contribution means that the
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processing parameter has little impact, relative to the other parameters within the range tested. The

ANOVA in figure 2.2 shows the contribution of all 4 processing parameters, total concentration,

donor fraction, annealing temperature, and annealing duration on the PCE from the first round

of DRCN5T/ITIC optimization. The ANOVA reflects the data acquired from the 20 experiments

outlined in figure A.3. Donor fraction and total concentration influence the PCE to the greatest

degree over the ranges tested with annealing temperature contributing very little. It is important

to note that the small contribution from annealing temperature does not mean that annealing

temperature is an insignificant processing parameter, but rather that the range tested was too narrow

to have a major effect on performance. Each processing parameter influences PCE as noted by the

variance of the Jsc, Voc, FF, Rsh, or Rsr to different degrees; a set of ANOVA for each round of

optimization is provided in the Appendix, as well as pair plots for each processing parameter and

photovoltaic metric (Jsc, Voc, etc.). A pair plot is simply a scatter plot of any two studied metrics

(e.g. Jsc vs total concentration) that can be used to graphically assess any correlations between any

two parameters/metrics of interest. The pair plots for every pair of parameters/metrics are shown

in figure A.8. From these pair plots, it becomes clear that PCE is most heavily influenced by donor

fraction (as previously concluded from the ANOVA). Subplots of figure A.8 e,m show that devices

with a donor fraction of 0.8 had dramatically higher PCE and Jsc than other donor fractions.

The topographic-style maps shown in figure 2.3 are a digestible and succinct representation of

the data from the experiments outlined in figure A.3, of the first round of DRCN5T/ITIC blend

optimization. The maps relate an output (in this case PCE, but in other cases Jsc or FF) to the

processing parameters. Each data point represents the champion device from every one of the

prescribed devices in the experimental list in figure A.3. The entire array of PCE plots for the first

round of DRCN5T/ITIC optimization includes all 4 processing parameters. In this figure, within

a row, every map has the same annealing duration [e.g. maps (a), (b) and (c) contain data points

of devices that had annealing durations of 300 s] and within a column, every map has the same
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Figure 2.2: ANOVA plot from the first round of optimization of the BHJ comprising DRN5T/ITIC,
revealing the relative contribution of each processing parameter on the resulting PCE. In the range tested,
the annealing temperature has little influence on PCE.

annealing temperature [e.g. maps (a), (d) and (g) contain data points of devices that were annealed

at 120 °C].

As previously mentioned, Jsc and PCE are highly correlated and this observation is corroborated

by the similarity between the Jsc ML maps in figure A.10 and the PCE maps in figure 2.3. Devices

produced at a total concentration <8 mg/mL displayed relatively low PCE (figure 2.3) and Jsc

(figure A.10), independent of donor concentration and annealing temperature. Films spin-cast from

solutions of lower concentrations would be expected to lead to thinner films and thus to lower short-

circuit currents as fewer photons can be absorbed.

The most promising region of the parameter space for producing high efficiency devices in

figure 2.3 is found at total concentrations >10 mg/ml, donor concentrations of ~0.75–0.8, and

an annealing temperature of ~140 °C. This information from the first round of optimization was

then used to inform the new parameter ranges for the second round of optimization. 4 total

concentrations of 8, 11, 14 and 17 mg/mL, 3 donor fractions of 0.65, 0.75, and 0.85, 3 annealing

temperatures of 130, 140 and 150 °C, and 3 annealing times of 1.5, 4 and 6.5 min were selected
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Figure 2.3: ML-generated PCE maps for the first round of optimization of the DRCN5T/ITIC BHJ devices.
This set of maps shows the effect of all four processing parameters on PCE, with areas of higher PCE
represented by yellow, and lower by blue.
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Figure 2.4: ML-generated PCE maps for the second round of optimization of the devices based on a BHJ
composed of DRCN5T/ITIC. These maps are acquired at a higher sampling resolution in a narrower range
of parameter space than the first round of optimization, shown in figure 2.3.

for the second round of optimization. The number of experiments of a full factorial design of 108

was reduced to 20 by using the integer reduction method explained earlier and are enumerated in

figure A.3, labelled ITIC Round 2. The correspondingmaps for the second round of DRCN5T/ITIC

BHJ mixtures are shown below in figure 2.4.

From the plots in figure 2.4, it is clear that the optimum donor fraction appears to be captured

within the studied range, suggesting that a maximum PCE is achieved at value of ~0.76. The PCE is

influenced dramatically by donor fraction in this round of optimization, and the effect of annealing

temperature is small, as shown in figureA.7. The chosen range for the donor fraction in this round of

optimization (0.65–0.85) may simply be wider than the other processing parameters. As an extreme

example, if a range of annealing temperatures from 10–1000 °C had been chosen, the ANOVA
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would certainly have shown that temperature would have a much larger effect on PCE than donor

fraction; here, such a narrow temperature range would be expected to be less significant. Devices

manufactured with a donor fraction of 0.75 displayed the highest PCE and were accompanied by

maximization of the Jsc, as shown in figure A.9m. PCE varies little across total concentration,

annealing temperature, and annealing time, as shown in figure A.9 f,g,h, respectively.

Lastly, it is important to note the sparsity of data points in certain individual maps. When

reducing the number of experiments used to explore a parameter space, there is always an inherent

trade-off between sampling resolution and number of devices fabricated. Comparing the champion

device from the first and second rounds of optimization, the PCE increased from 3.5% to 4.3%, the

Jsc from 9.2 mA/cm2 to 10.2 mA/cm2, Voc from 0.89 V to 0.96 V, while the FF remained unchanged

at 0.43. This increase in PCE from round one to round two of optimization highlights the iterative

power of this approach. It allows researchers to narrow ranges of processing parameters or to

exclude certain parameters altogether in order to investigate more promising (higher PCE) areas

identified in the first round of optimization.

2.2 DRCN5T/IT-M-based BHJs

The related derivative, IT-M, varies only by the addition of two methyl groups on the extreme ends

of the ITIC molecule, and has similar HOMO/LUMO levels to that of the parent ITIC, as shown in

figure 2.1. As described earlier for the parent ITIC derivative, preliminary screens of DRCN5T/IT-

M devices showed that thermal annealing is required to achieve a PCE greater than 0.5%. These

tests also showed that at an annealing temperature of 140 °C and increasing annealing time from

8 min to 32 min had no effect on PCE. Device PCEs increased with annealing times up to 8 mins

and plateaued. As a result, for the first round of optimization, a fixed annealing time of 8 min was

chosen, thereby eliminating time as a variable to optimize. The processing parameters optimized
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Figure 2.5: Maps of PCEs as generated via ML methods for the first round of optimization for the
devices comprising a BHJ of composition of DRCN5T/IT-M. A fixed annealing time of 8 min reduces the
dimensionality of this round of optimization to 3 processing parameters, reducing the parameter space and
increasing data point density.

in the first round included (i) BHJ solution total concentration, (ii) BHJ solution donor fraction,

and (iii) annealing temperature at a fixed annealing time of 8 min. Having reduced the number of

processing parameters from 4 to 3, if each parameter has 3 levels, the full factorial design would

have 27 distinct experimental conditions that can be reduced to just 9 experiments using GSD

sampling. The table of processing parameters levels for the first round of optimization as well as

the experiment list can be found in the Appendix, in figure A.16. The resulting PCE maps from

the first round of DRCN5T/IT-M optimization along with the corresponding ANOVA plots, are

presented below in figure 2.5.

The plots in figure 2.5 a,b,c show the effect of annealing at temperatures of 120, 140 and 160

°C, respectively. Scanning the plots from left to right reveals that devices annealed at higher

temperatures exhibit higher PCEs. This observation is corroborated by the ANOVA for PCE in

figure A.21, which highlights the contribution that annealing temperature plays on the PCE. The

linkage between temperature and PCE is the focus of the next round of optimization. Annealing

devices at 160 °C increased the PCE primarily through an increase in the FF of figure A.26b.

Given the shallower LUMO level of IT-M (-3.98 eV),69 compared to ITIC (-3.83 eV),68 the
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Figure 2.6: Maps of PCEs as generated via ML methods for the second round of optimization of
DRCN5T/IT-M-based devices. An optimal annealing temperature of 160 °C was identified, leaving two
processing parameters to optimize, the donor fraction and total concentration.

observed decrease in Voc shown in figure A.27 is expected.74,75 As shown in figure A.20, the total

concentration of the BHJ solutions influences PCE and Jsc very little and as such the range was

extended substantially for the second round of optimization.

In the second round of optimization of the DRCN5T/IT-M combination, higher annealing

temperatures of 160, 180 and 200 °Cwere chosen, as well as a narrower range of BHJ solution donor

fractions of 0.6, 0.7 and 0.8. With 3 levels per parameters, this yields a full factorial design of 27

unique experimental conditions that were reduced to just 9 after GSD integer reduction. The table of

processing parameters for the second round of optimization and corresponding list of experiments

can be found in the Appendix, figure A.16. Devices annealed at 200 °C had substantially lowered

Vocs, dropping from roughly 0.9 V to values ranging from 0.7–0.2 V. Figure A.18a shows the

distribution of PCEs for devices made under each set of experimental conditions; experimental

labels match those assigned in figure A.16 for round 2. Figure A.18c displays the number of devices

from each experimental condition to pass the data filter; it shows that devices that were annealed

at 200 °C were all rejected by the data filter based on low Vocs (experiment #2, #6 and #8). While

it is important to include data from devices with high and low PCEs, it seems that annealing at 200
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°C is detrimental. In some instances, devices annealed at 180 °C also showed drops in Voc of up

to 0.3 V, and most devices annealed at 180 °C had lower PCEs than those annealed at 160 °C, as

shown in figure A.23g. At this point, instead of continuing forward as planned, devices annealed at

180 and 200 °C were omitted from this analysis as focusing on devices annealed at 160 °C seemed

more fruitful, providing more consistent and reproducible results.

The experiments originally designated to be annealed at 180 or 200 °C, as per the generated

list in figure A.16, were instead run at 160 °C. The resulting map can be found in the Appendix

as figure A.28. This map contains some high PCE features that were deemed worthy of further

exploring. As a result, specific devices were prepared in order to increase the density of data

points in this promising parameter space. The map derived from this more granular data for the

DRCN5T/IT-M BHJ composition is shown in figure 2.6, and it shows a rather flat PCE landscape.

In the range tested, the total solution concentration of BHJ components and the donor fraction

had equal contributions on the resulting PCE, as shown in PCE ANOVA in figure A.21. PCE did

not vary with a total concentration of 20-26 mg/mL and donor fractions of 0.65–0.70. After this

second round of optimization, the champion device had a PCE of 5.9%, Jsc = 12.2 mA/cm2, FF

= 0.53 and a Voc = 0.93 V. This champion device shows little improvement from the first round

of DRCN5T/IT-M optimization whose champion had a PCE of 5.7%. The fact that no further

improvement in PCE was noted in generation two suggests that a maximum has been reached

and that further optimization of these parameters will probably not be fruitful, which is useful

information.

2.3 DRCN5T/IT-4F-based BHJs

The IT-4F derivative has two pairs of fluorines on the extreme ends of the ITIC molecule,

further lowering the HOMO and LUMO levels compared to the two acceptors described thus
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far. Preliminary devices demonstrated the need to optimize all 4 processing parameters. Three

levels were chosen for every parameter except for annealing temperature where two levels were

chosen. This yields 81 possible combinations that were reduced using GSD sampling to a list of

13 experiments, that can be found in figure A.32. Based upon the results with ITIC and IT-M,

narrower windows of BHJ solution donor fraction (0.6–0.8) and annealing temperatures (150 and

170 °C) were chosen. Figure 2.7 below displays the results from the first round of optimization.

Comparing the columns of subplots in figure 2.7, devices annealed at 150 °C exhibit

substantially higher PCEs than devices annealed at 170 °C. This finding is corroborated by the

pair plots in figure A.37. The maps in figure A.39 display similar topologies, suggesting that an

increased Jsc for devices annealed at 150 °C is the main driver of increased PCE. Figure A.33a

shows that annealing temperature most heavily influences PCE within this range.

Devices prepared with lower total concentrations (representing the bottom half of each map

in figure 2.7) exhibited higher PCEs. Figure A.37 f,h demonstrate that lower total concentrations

and longer annealing times result in devices with higher PCE. The device with the highest PCE

(experiment #11 figure A.32) had a BHJ solution concentration and donor fraction of 16 mg/mL

and 0.7, respectively, and was annealed at 150 °C for 12 min. The distribution of PCEs varies

little with different donor fractions (figure A.37e) and as a result, a fixed donor fraction of 0.7 was

chosen for all devices in the second round of optimization.

For the second round of optimization, annealing temperatures of 130 and 150 °C, total

concentrations of the BHJ solutions of 13, 16 and 19 mg/mL, and longer annealing times of 12, 20

and 28 min, were chosen. GSD sampling enabled a reduction of experimental conditions to a list

of 6 experiments, which are outlined in figure A.32, titled Round 2. The resulting PCE maps are

presented in figure 2.8. Since the BHJ solution donor fraction was not optimized in this round, the

axes for these maps are different from the earlier maps. The x- and y-axes of each plot correspond to
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Figure 2.7: Maps of PCEs as generated via ML methods for the first round of optimization of the devices
with BHJs comprising DRCN5T/IT-4F. This set of maps shows the effect of all 4 processing parameters on
PCE, with higher areas of PCE represented by yellow, and lower by blue.
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Figure 2.8: ML-generated PCEmaps for the second round of optimization of devices with BHJs comprising
DRCN5T/IT-4F BHJ. This set of maps shows the effect of all 4 processing parameters on PCE with higher
PCE areas represented by yellow and lower PCE by blue.

annealing temperature and total concentration of the BHJ precursor solution, respectively. The plots

differ in their annealing times, as indicated on each panel. Comparing the two plots in figure 2.8,

it is clear that annealing devices at 150 °C resulted in higher efficiency devices than annealing at

130 °C. The ANOVA in figure A.34 labelled PCE shows that annealing temperature indeed has

the largest effect on the PCEs, followed by annealing time, and finally by the total concentration

of the BHJ solution. Figure A.38 e,g show that both annealing time and total concentration had

little effect on the PCE over the ranges tested. Interestingly, an annealing temperature of 150 °C

seems required in order to achieve a high shunt resistance in these parameter ranges (figure A.34

Rsh). A similar effect was found for non-optimal donor fractions in the first round of ITIC device

optimization (figure A.6 Rsh). The second round of IT-4F optimization yielded the best performing

device in this study with a PCE = 7.5%, Jsc = 15.2 mA/cm2, FF = 0.62 and a Voc = 0.80 V. ##

What was learned about optimization of OPVs comprising these 3 ITIC derivatives? {#sec:results-

learned}

30



All three of the ITIC derivative-based BHJs exhibited the highest observed performance with a

donor-rich BHJ, in the range of 0.7–0.8. It is possible that without a systematic screening process

that allows for the exploration of such large parameter spaces, the compositions of BHJs might

have been too narrow to have found the islands of higher PCEs greater than a few percent. It has

been reported that the donor molecule DRCN5T readily crystallizes upon annealing at 120 °C,

which is thought to promote phase segregation and the formation of percolated pathways.67 ITIC,

on the other hand, requires higher temperatures to induce crystallization,76 and thus higher ideal

annealing temperatures, in the range of 160 °C, are considered essential for optimum performance

(table A.1).77 A compromise would be needed when combining these two components, and thus

the optimal annealing conditions would be difficult to predict. The identification of different

conditions to arrive at optimal performance of these three combinations of BHJs highlights the lack

of generality when one embarks upon the optimization of a new BHJ, even when the molecules are

structurally related.

Table 2.2: Photovoltaic metrics of champion devices after 2 rounds of optimization. Average PCE values
and standard deviation in brackets. Averages based on 10, 43 and 35 devices for ITIC, IT-M and IT-4F,
respectively.

Acceptor

Molecule PCE (%) Jsc (mA/cm2) FF Voc (V)

ITIC 4.3 (3.9 ±

0.39)

10.3 (9.9 ± 0.48) 0.43 (0.42 ±

0.022)

0.96 (0.94 ±

0.012)

IT-M 5.9 (5.4 ±

0.69)

12.2 (11.5 ±

0.77)

0.53 (0.50 ±

0.043)

0.93 (0.92 ±

0.024)

IT-4F 7.5 (6.2 ±

0.85)

15.2 (13.5 ±

0.78)

0.62 (0.58 ±

0.049)

0.80 (0.78 ±

0.016)
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Figure 2.9: JV curves of the champion devices for all 3 small-molecule donors that were investigated in this
work, ITIC, IT-M, and IT-4F, with the donor DRCN5T. The experimental conditions used to fabricate these
champion devices were identified after two rounds of the DOE and ML optimization for each composition.

As expected from their previously measured LUMO levels,68–70 the Voc values of champion

devices decrease in the order of ITIC (~0.98 V) > IT-M (~ 0.93 V) > IT-4F (~0.80 V). This

admittedly small dataset seems to suggest a trade-off between Voc and Jsc and FF; similar trade-

offs have been previously identified with other small-molecule acceptors by Cheyns et al.75

Additionally, Ma et al. found that matching the crystallinity of the donor and acceptor polymers

improved device efficiency,78 and the same phenomenon is likely to hold for small-molecule OPVs

as well.

Given that we have very little in the way of mechanistic rationale to link processing parameters

with device properties, it is very difficult to know a priori what ranges of parameters could lead to

the highest device parameters, especially since there is often a non-linear output from a set of multi-

dimensional input parameters that have varying degrees of correlation. Moreover, despite small

changes in the donor molecular structure, the range of optimal processing conditions changes in

unpredictable ways given that these factors are so intertwined and convoluted. These conclusions

highlight one of the strengths of this approach to device optimization: while traditional methods
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typically sample only a handful of parameters over smaller ranges and test these parameters

independently, the DOE-based analyses enable investigation of a broad swath of variables, enabling

rational exploration of novel systems with only scant prior knowledge.

2.4 Experimental

2.4.1 Device Fabrication

IThe donor and acceptor materials, DRCN5T, ITIC, IT-M and IT-4F were purchased from Ossila,

and solvents were purchased from Sigma-Aldrich. All materials and solvents were used as received

without further treatment unless otherwise stated. ITO coated glass substrates were purchased

from Delta Technologies (8–12 Ω/sq). ITO glass was sequentially sonicated in dichloromethane,

deionized water, and 2-propanol each for 10 min and then dried with an Ar gun (99.998% Ar). The

ITO substrates were then cleaned for 10 min in an air plasma with a Harrick plasma cleaner (1.0

torr, PDC 32G, 18W). Zinc acetate dihydrate, ethanolamine and 2-methoxyethanol were purchased

from Sigma-Aldrich. ZnO sols were prepared according to prior literature,79 and the ZnO solution

left for 12 hours before the first use. The age of ZnO precursor solution varied from one day to two

weeks and within this time frame, no discernible differences in device performance were noted.

Both ZnO and BHJ layers were cast using static dispensing from a pipetter with sufficient solution

to wet the entire substrate (100 µL), followed by spin-casting. After plasma cleaning, the substrates

were again cleaned with a stream of Ar and the ZnO layer was then immediately deposited. 120

μL of ZnO sol was spin-cast in air for 60 s at a spin speed of 4000 rpm and an acceleration of 900

rpm/s. The cast films were then annealed in air at 200 °C for at least 30 minutes.79 BHJ precursor

solutions (chloroform solvent) containing the donor and acceptor components were prepared in

an Ar atmosphere glovebox and heated overnight at 40 °C in sealed amber glass vials with a
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teflon cap. The DRCN5T/ITIC BHJ precursor solutions were formulated from concentrated stock

solutions of DRCN5T and ITIC in chloroform and diluted to arrive at chloroform solutions of

the desired concentration and donor fraction. The DRCN5T/IT-M and DRCN5T/IT-4F solutions

used to fabricate were, however, individually prepared by dissolution in chloroform directly (no

stock solutions). Before spin-casting, the chloroform solutions were filtered through a 0.22 μm

PTFE filter. BHJ films were prepared by spin-casting 100 µL of BHJ solution at 4000 rpm and an

acceleration of 900 rpm/s for 30 s onto Ar-cleaned ZnO-coated ITO sheets and were immediately

transferred to a glovebox for thermal annealing in an N2 atmosphere. Annealing was carried out on

a hotplate topped by an aluminum block with a thermocouple insert to ensure accurate temperature

and uniform heat distribution. The top electrodes were then deposited as follows: a hole blocking

layer of molybdenum oxide (8 nm) and top electrodes comprising Ag (20 nm) and Al (60 nm)

were deposited at 0.1, 2.0 and 2.5 Å/s, respectively using thermal evaporation under high-vacuum

conditions (~5×10-6 Pa). Device areas were 0.155 ± 0.01 cm2.

2.4.2 Characterization

Thickness measurements of the BHJ films were performed using a Digital Instruments/Veeco

multimode AFM in tapping mode and the resulting data were processed using Gwyddion.80 PV

characteristics were measured at ~25 °C in air under AM 1.5G simulated light (Pico Variable LED

source from G2V Optics Inc. at 100 mW/cm2 equivalent intensity from 400 nm to 1100 nm) with

a light source calibrated as previously described.52
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2.4.3 Machine learning approaches

The machine learning algorithm used was implemented using Scikit-learn, where a standard scalar

and a support vector machine (VSM) using a radial basis function (RBF) kernel with an epsilon of

10-5, a tolerance of 10-5, a regularization parameter (C) of 1.0 and gamma values as indicated in

(table 2.3).52

Table 2.3: Compliance values for each round of optimization. Higher values mean more compliant fitting.

Acceptor Molecule Round 1 Round 2

ITIC 0.08 0.08

IT-M 0.06 0.33

IT-4F 0.03 0.08
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3
Conclusion and Future Work

3.1 Conclusion

A machine learning based approach was used to optimize devices with small-molecule donor

DRCN5T and one of the NFAs, ITIC, IT-M and IT-4F. This method enabled the sampling of large

parameter spaces of systems with little to no prior information. The effects of donor fraction,

BHJ solution concentration, thermal annealing time and temperature on device performance were
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elucidated. Eachmixture was very heavy in donor fraction (0.7-0.8) and required thermal annealing

in order to exhibit diode behaviour. Thermal annealing at temperatures greater than 120 °C were

required in all cases to produce devices with PCEs > 1%. It seems the crystallization of the donor

material DRCN5T was critical to the performance of devices. The chemical similarity of the

donor and acceptor materials appear to form a highly-intermixed phase whose de-mixing is driven

primarily by the crystallization of the donor. This limited device photocurrents and fill factors

despite strong absorption of the films. Champion devices for each acceptor material are 4.3, 5.9

and 7.5% for ITIC, IT-M and IT-4F respectively. Higher PCEs for all three mixtures were achieved

in the second round of optimization, highlighting the strength of this method when used iteratively.

3.2 Future Work

This work serves as an example of this approach to optimizing novel OPV BHJ systems. Given

the complexity of an OPV device, there are numerous other parameters that should be optimized,

including the interfacial layers and electrodes. This optimization approach can also be considered

for most aspects of OPV development, with directions that range from from molecular synthesis to

global cost/efficiency relationships.

In this work, standard interfacial layers of MoOx and ZnO were used, but there is, however, a

growing list of materials that can be used as electron transporting and hole transporting interfacial

layers.81–83 Additionally, there are many different experimental methods for modulating and

inducing the ideal nanoscale morphology of the BHJ layers. Solvent vapour annealing (SVA)

is heavily employed for this task for BHJs comprising small molecules.36,70 Typically, the exact

experimental parameters for SVA are reported very inconsistently and with significant lack of

detail. This situation presents an excellent setting to implement this DOE and ML-based approach

method as the parameter space is large and there is some prior knowledge, but none that is
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systematic. For example, authors typically only comment on the duration of the SVA step and

the solvent used, but the exposure of the BHJ films to the solvent vapour is dependent on (obvious)

variables such as the vapour pressure in the chamber, which in turn would depend on a multitude

of factors, including surface area of solvent reservoir, volume of the chamber, temperature to name

a few. A solvent-flow system84 would most easily render SVA a reproducible and reliable method

for BHJ modification.

Finally, a ML- and DOE-based approach would be useful in matching donor and acceptor

materials that have already been synthesized. In light of the amount of resources (including time)

and effort directed at designing new materials, testing existing materials with a wider range of

components seems promising and easier. Since not all promising donor or acceptor materials prove

fruitful in all BHJs, such an approach is important to make such a determination. When the acceptor

used in this work, ITIC was paired with the small molecule donor, NDTSR, only devices with PCEs

<2.0 % were obtained while devices with the same donor and the ITIC derivative IDIC achieved

a PCE > 8.0%.76 On the other hand, when mixed with other donor materials ITIC can achieve

PCEs >11.0% with other donors.85 Given the wide range of donor and acceptor materials present

in the literature, the matching of donor and acceptor components could prove much more useful

than synthesizing new materials. Matching materials seem to involve many variables, including

the HOMO/LUMO levels, the propensity to crystallize, the solubility, and the absorption ranges all

play important roles. Additionally, it is unlikely that all of these variables are independent of one

another, and such convolution means that OVAT optimization is likely to miss the true maximum

of the system.
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A
Appendix

A.1 Explanation of the integer reduction of the GSD.

If the integer reduction becomes sufficiently large, however, it is no longer possible to always have

the same number of experiments done at each level. The degree of non-uniformity in sampling

each level is used as a metric to help choose what integer number of experiments should be chosen.

Specifically, for every level of integer reduction, the polydispersity of the levels for each parameter
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is measured, which is defined as the standard deviation in the number of times a level is sampled,

divided by the mean number of times a level is sampled. It was found that increasing the integer

reduction in the number of experiments as much as possible, while maintaining a polydispersity of

the levels for all parameters below 20%, was a generally useful cutoff that would yield a trackable

number of experiments while still providing a reasonable sampling of the parameter space. The

resulting list of prescribed devices is shown in figure A.3 a).

A.2 Additional Figures

Figure A.1: Device fabrication flowchart. Care was taken to ensure the cleanliness of the substrates prior
to and following deposition of all layers. As shown in the following figure, imperfections in the BHJ were
often noted (BHJ on the left with slight streaking), which necessitated fabrication of duplicates.
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Table A.1: Processing parameters yielding champion devices after two rounds of optimization. *ITIC-
containing BHJs were prepared from concentrated solutions of DRCN5T (24 mg/mL) and ITIC (11 mg/mL),
BHJ spin speed = 4000 rpm; ** BHJ spin speed 4000 rpm; †BHJ spin speed = 2000 rpm. Champion average
thicknesses of ITIC = 133 nm, IT-M = 148 nm, IT-4F = 89 nm.

Acceptor

Molecule

Total

Concentration Donor Fraction

Annealing

Temperature

(°C)

Annealing Time

(min)

ITIC 17* 0.75 140 4

IT-M 22** 0.7 160 8

IT-4F 16† 0.7 150 20

Figure A.2: BHJ films with the same concentration spin-cast onto a layer of ZnO/ITO from chloroform
and from 1,2-dichlorobenzene, left and right respectively. Films cast from 1,2-dichlorobenzene show poor
wettability and thus chloroform was chosen as the spin-casting solvent throughout this work.
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Figure A.3: Tabulation of the processing parameter levels, number of experiments at each level and list of
experiments for the first and second round of optimization of the DRCN5T/ITIC BHJ blend.

Figure A.4: Plots the performance of devices that were accepted (green) and rejected (red), and the standard
deviation of devices and the number of devices accepted for each experimental condition for the first round
of DRCN5T/ITIC BHJ blend optimization.
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Figure A.5: Plots showing performance of devices that were accepted (green) and rejected (red), and the
standard deviation of devices and the number of devices accepted for each experimental condition for the
second round of DRCN5T/ITIC BHJ blend optimization.
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Figure A.6: ANOVAs of the relative contribution of the processing parameters on PCE, FF, Jsc, Voc, Rsh

and Rsr for the first round of DRCN5T/ITIC BHJ blend optimization.
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Figure A.7: ANOVAs of the relative contribution of the processing parameters on PCE, FF, Jsc, Voc, Rsh

and Rsr for the second round of DRCN5T/ITIC BHJ blend optimization.
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Figure A.8: Pair plots comparing processing parameters to PCE, Jsc, FF or Voc, for the first round of
DRCN5T/ITIC BHJ blend optimization.

Figure A.9: Pair plots comparing processing parameters to PCE, Jsc, FF or Voc, for the second round of
DRCN5T/ITIC BHJ blend optimization.
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Figure A.10: ML-generated Jsc map for the first round of DRCN5T/ITIC BHJ blend optimization.
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Figure A.11: ML-generated map of FFs for the first round of DRCN5T/ITIC BHJ blend optimization.
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Figure A.12: ML-generated Voc map for the first round of DRCN5T/ITIC BHJ blend optimization.
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Figure A.13: ML-generated Jsc map for the second round of DRCN5T/ITIC BHJ blend optimization.
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Figure A.14: ML-generated map of FFs for the second round of DRCN5T/ITIC BHJ blend optimization.
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Figure A.15: ML-generated Voc map for the second round of DRCN5T/ITIC BHJ blend optimization.
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Figure A.16: Tabulation of the processing parameter levels, number of experiments at each level, and list of
experiments for the first and second round of DRCN5T/IT-MBHJ blend optimization. All experiments in the
second round of optimization were replaced by the same experiments except with an annealing temperature
of 160 °C and combined with the experiments outlined in round three.

Figure A.17: Plots displaying the performance of devices that were accepted (green) and rejected (red), the
standard deviation of devices and the number of devices accepted for each experimental condition for the
first round of DRCN5T/IT-M BHJ blend optimization.
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Figure A.18: Plots displaying the performance of devices that were accepted (green) and rejected (red),
the standard deviation of devices and the number of devices accepted for each experimental condition for
the second round of DRCN5T/IT-M BHJ blend optimization. Experiments 2, 6 and 8 were all annealed at
200 °C and were rejected by the data filter. This round of optimization was repeated with a fixed annealing
temperature of 160 °C, with some supplemental experiments.

Figure A.19: Plots displaying the performance of devices that were accepted (green) and rejected (red), the
standard deviation of devices and the number of devices accepted for each experimental condition for the
second round of DRCN5T/IT-M BHJ blend optimization.
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Figure A.20: ANOVAs of the relative contribution of the processing parameters on PCE, FF, Jsc, Voc, Rsh

and Rsr for the first round of DRCN5T/IT-M BHJ blend optimization.
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Figure A.21: ANOVAs of the relative contribution of the processing parameters on PCE, FF, Jsc, Voc, Rsh

and Rsr for the second round of DRCN5T/IT-M BHJ blend optimization.
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Figure A.22: Pair plots comparing processing parameters to PCE, Jsc, FF or Voc, for the first round of
DRCN5T/IT-M BHJ blend optimization.

Figure A.23: Pair plots comparing processing parameters to PCE, Jsc, FF or Voc, for the second round of
DRCN5T/IT-M BHJ blend optimization showing the low PCE of samples annealed at 180 °C, in box g) in
the top right corner.
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Figure A.24: Pair plots comparing processing parameters to PCE, Jsc, FF or Voc, for the second (at 160 °C)
and third round of DRCN5T/IT-M BHJ blend optimization.

Figure A.25: ML-generated Jsc map for the first round of DRCN5T/IT-M BHJ blend optimization.
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Figure A.26: ML-generated FF map for the first round of DRCN5T/IT-M BHJ blend optimization.

Figure A.27: ML-generated Voc map for the first round of DRCN5T/IT-M BHJ blend optimization.

Figure A.28: ML-generated PCE map for the second round of DRCN5T/IT-M BHJ blend optimization.
This map served as the skeleton for higher resolution sampling of the parameter space.
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Figure A.29: ML-generated Jsc map for the second round of DRCN5T/IT-M BHJ blend optimization.

Figure A.30: ML-generated FF map for the second round of DRCN5T/IT-M BHJ blend optimization.
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Figure A.31: ML-generated Voc map for the second round of DRCN5T/IT-M BHJ blend optimization.

Figure A.32: Tabulation of the processing parameter levels, number of experiments at each level for the
first and list of experiments for the first and second round of DRCN5T/IT-4F BHJ blend optimization.
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Figure A.33: ANOVAs of the relative contribution of the processing parameters on PCE, FF, Jsc, Voc, Rsh

and Rsr for the first round of DRCN5T/IT-4F BHJ blend optimization.
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Figure A.34: ANOVAs of the relative contribution of the processing parameters on PCE, FF, Jsc, Voc, Rsh

and Rsr for the second round of DRCN5T/IT-4F BHJ blend optimization.
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Figure A.35: Plots displaying the performance of devices that were accepted (green) and rejected (red), and
the standard deviation of devices and the number of devices accepted for each experimental condition for
the first round of DRCN5T/IT-4F BHJ blend optimization.

Figure A.36: Plots displaying the performance of devices that were accepted (green) and rejected (red), and
the standard deviation of devices and the number of devices accepted for each experimental condition for
the second round of DRCN5T/IT-4F BHJ blend optimization.
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Figure A.37: Pair plots comparing processing parameters to PCE, Jsc, FF or Voc, for the first round of
DRCN5T/IT-4F BHJ blend optimization.

Figure A.38: Pair plots comparing processing parameters to PCE, Jsc, FF or Voc, for the second round of
DRCN5T/IT-4F BHJ blend optimization.
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Figure A.39: ML-generated Jsc map for the first round of DRCN5T/IT-4F BHJ blend optimization.
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Figure A.40: ML-generated FF map for the first round of DRCN5T/IT-4F BHJ blend optimization.
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Figure A.41: ML-generated Voc map for the first round of DRCN5T/IT-4F BHJ blend optimization.
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Figure A.42: ML-generated Jsc map for the second round of DRCN5T/IT-4F BHJ blend optimization.

Figure A.43: ML-generated FF map for the second round of DRCN5T/IT-4F BHJ blend optimization.
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Figure A.44: ML-generated Voc map for the second round of DRCN5T/IT-4F BHJ blend optimization.
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Figure A.45: ML-derived predictions of fit for the first round of DRCN5T/ITIC BHJ blend optimization.
Gamma (or compliance) values were reduced until a device deviated from the linear trendline. This gamma
value represents the least accommodating fit that is capable of producing a topology that tracks to the
experimental data.
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Figure A.46: ML-derived predictions of fit for the second round of DRCN5T/ITIC BHJ blend optimization.
Gamma (or compliance) values are reduced until a device deviates from the linear trendline. This gamma
value represents the least accommodating fit that is capable of producing a topology that tracks to the
experimental data.
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Figure A.47: ML-derived predictions of fit for the first round of DRCN5T/IT-M BHJ blend optimization.
Gamma (or compliance) values are reduced until a device deviates from the linear trendline. This gamma
value represents the least accommodating fit that is capable of producing a topology that tracks to the
experimental data.
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Figure A.48: ML-derived predictions of fit for the second round of DRCN5T/IT-MBHJ blend optimization.
Gamma (or compliance) values are reduced until a device deviates from the linear trendline. This gamma
value represents the least accommodating fit that is capable of producing a topology that tracks to the
experimental data.
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Figure A.49: ML-derived predictions of fit for the first round of DRCN5T/IT-4F BHJ blend optimization.
Gamma (or compliance) values are reduced until a device deviates from the linear trendline. This gamma
value represents the least accommodating fit that is capable of producing a topology that tracks to the
experimental data.
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Figure A.50: ML-derived predictions of fit for the second round of DRCN5T/IT-4F BHJ blend optimization.
Gamma (or compliance) values are reduced until a device deviates from the linear trendline. This gamma
value represents the least accommodating fit that is capable of producing a topology that tracks to the
experimental data.
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