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A b s tra c t

A control theory model for radiotherapy treatment of cancer, based on the Lotka- 

Voltera competition system, is created to analyze the dynamics of interaction of 

cancer and healthy tissues. Using standard stability analysis, the stability of the 

system is described and qualified as ”treatment” or ’’cure” . The key feature of the 

model is the use of a harvesting-type control term to represent radiotherapy, where 

radiation-induced harvesting is equivalent to the reduction of cancer cell concentra­

tion. Furthermore, four different methods of radiation delivery are modelled w ith four 

different control mechanisms. Perturbation analysis is used to model the side-effects 

and accidental harvesting of healthy cells by radiation. Finally, the model is validated 

with numerical examples with the use of a Matlab differential equation solver.
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Chapter 1

Introduction

This thesis is an attempt to model the dynamics of cancer reduction through treat­

ment by radiotherapy. The goal is to create a mathematical model that successfully 

describes the following features of a treatment strategy:

1. an early detection leads to a successful treatment,

2 . different types of disease require different treatment plans,

3. the outcome of the treatment depends on the initial conditions (conditions at 

the time of diagnosis) as well as on the characteristics of the disease,

4. very small side-efTects and treatment inaccuracies do not affect the outcome.

To lay the foundation for the work, in Chapter 2 we present medical and mathematical 

background, along with definitions, theorems, and the outline of mathematical theory. 

In Chapter 3, we introduce the control theory competition model. The model is 

a dynamical system of ordinary differential equations with control. The control is 

used to represent the reduction of cell concentration due to radiation. Standard 

stability analysis [19] is used to derive conditions leading to a stable, positive internal

1
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equilibrium; a stable, positive internal periodic solution; or a complete eradication of 

cancer. These results, in practical terms, may be described as “cure” , “treatment” , 

or “death” as follows:

1 . a “cure” is the case where cancer concentration tends to zero (cancer eradication),

2 . a “treatment” is a stable positive equilibrium or a stable positive periodic solution,

3 . a “death” is caused by the solutions case where the healthy tissue concentration

tends to zero (healthy tissue extinction).

This project features four different mechanisms of radiation delivery. They include 

continuous, constant radiation, continuous radiation that is proportional to the in­

stantaneous cancer concentration, continuous radiation that is proportional to the 

ratio of cancer to healthy cell concentration, and periodic administration of radia­

tion. These mechanisms reflect some current practices and practicality of radiation 

administration. Perturbation analysis is used in Chapter 4 to model the side-effects 

of radiation. We use perturbation analysis to reflect the realities of radiotherapy such 

as careful administration of radiation and some little  expected side-effects. Finally, 

Chapters 5 and 6 provide numerical examples and conclusions respectively. To solve 

the system numerically, we select parameter values that meet the stability conditions 

as well as generalize some of the available data. Unfortunately, to the best knowledge 

of the author, not all parameters may be generated from experimental data. This 

need to collect more information and data is outlined in the conclusion in Chapter 6 . 

Furthermore, we provide a discussion on the implications of this work, directions for 

future research, selection of treatment plans, and testing of this theory.

2
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Chapter 2

M otivation and Project Outline

Cancer is becoming a crucial field of research given its increased incidence in North 

America in recent decades. In fact, the 2004 press release from the Canadian Cancer 

Society estimates that there will be close to 150 thousand new cases and 68 thousand 

deaths in Canada in that year. This represents an increase from predictions in 2003 of 

140 thousand new cases and 67 thousand new deaths [6 ]. However, the emergence of 

new technologies has the potential for significant morbidity and m ortality reduction 

[15, 21].

The term “cancer” encompasses diseases with enormous diversity [15, 21]. For 

example, cancers may vary in terms of the organ system they affect, their interactions 

with healthy tissue, and their ability to differentiate, replicate, and metastasize [1, 

15, 21].

All cancers requiring treatment have high differentiation and proliferation rates. 

To support this rapid growth, cancer cells often compete with the surrounding tissue 

for various resources to support their cell function. Such resources may include oxy­

gen, space, and nutrients such as phosphorous [14]. Cancer, if  left to run its course 

without treatment, may also interfere with the normal functioning of the organism ei-

3
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ther by mass effects, or by the release of substances that induce biochemical changes 

in the organism [15, 21]. However, medical research and practice have developed 

procedures and treatments that can be successful in lim iting or even curing a vari­

ety of cancers. Included in these developments are surgery, chemotherapy, radiation 

therapy, immunotherapy, and other primary or adjuvant interventions [7, 15, 21, 22].

In this work, we concentrate on radiotherapy as the primary treatment strategy 

as it has been proven to be an effective tool in combating cancer [18, 21]. Radiation 

therapy is a treatment procedure that uses radiation to kill malignant cells. This 

treatment targets rapidly reproducing cells such as those in cancer [22]. Therefore, 

when cancer cells are irradiated, there is a lesser effect on more slowly reproducing 

surrounding healthy cells. As such, the intent of this project is to model the dynamics 

and interactions of healthy and cancer cells under these conditions.

There have been numerous mathematical models developed recently that mainly 

focus on the natural history of cancer and do not analyze the effects of treatment. 

The American Institute of Mathematical Sciences, publisher of the Discrete and Con­

tinuous Dynamical Systems Journal, has devoted an entire issue of their publication 

to this topic [12]. It  includes 21 papers on the subject of mathematical models in 

cancer. O f these models, most deal with the modeling of cancer without treatment. 

However, the paper by Burden, Ernstberger, and Fister [5] from that issue deserves 

a special mention. Their paper deals with the topic of optimal control. The authors 

apply similar assumptions to the ones in this work. However, unlike this project, Bur­

den et al describe optimal control conditions of cancer treatment by immunotherapy. 

This project joins research in [5, 8 , 20, 23] and others to model cancer responses to 

particular treatment strategics.

Unlike many other publications on the topic of mathematical modeling of cancer, 

here control theory is applied to model radiotherapy as the means to influence the 

competitive dynamical system by cell harvesting. The control theory application to

4
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model harvesting in a dynamical system has been previously used in [4]. There, 

however, the model represents a predator-prey type of dynamics.

To simplify the model, we assume that the concentrations of cancer and healthy 

cells exist in the same region of the organism. We do not take into account the 

spacial distribution of cancer. Rather, we model the continuous change in the total 

concentrations of cancer and healthy cells when influenced by radiation. We consider 

the radiation of a cluster of cancer cells with the surrounding healthy tissue. We 

expect some radiation to “miss” the cluster and affect healthy cells in the vicinity  

thus changing the dynamics of the system. We also assume that radiation does not 

have a long lasting effect on the rates of proliferation or the nature of competition. 

To simplify the model, such recovery times are assumed to be negligible. Further 

work, perhaps considering the mathematical delay theory, is needed to address the 

recovery issue. W ith  the above assumptions, the dynamics of the competitive system 

is affected by simple removal of cancer and healthy tissue by radiation.

2.1 System Introduction and Definitions

As previously stated, to simplify the development of the model, we assume that the 

nature of interaction of cancer and healthy cells is a competition for resources, and 

that cancer cells will presumably win without treatment.

We assume that there is a maximum concentration of healthy tissue and a max­

imum concentration of cancer cells supported by the organism. These maximum  

values are each called the carrying capacity or K .  Furthermore, we assume that the 

optimal rate of net growth of healthy tissue and of cancer, their proliferation, is di­

rectly proportional to the current concentration of each population. The constant of 

proportionality in this instance, a , is referred to as the proliferation coefficient. One 

more assumption is required to account for the interaction between healthy and can-

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cer tissue. It  is often assumed that the rate of decrease in a population concentration 

due to competition is directly proportional to the product of the two populations 

concentrations. The product is justified by noting that the probability of interaction 

changes as the population size of each changes. The proportionality constant in the 

competition term, /3, is referred to as the competition coefficient.

Traditionally, the following Lotka-Voltera system is used to model competition

[10]:

(2.1)

where

X\ =  au^'iO ~  ~  @\x \ x 2

x 2 =  a 2X2( l  ~  - P i x \X2,

d_
dt

x i represents the concentration of the competitor that loses (healthy cells), 

x 2 represents the concentration of the competitor that wins (cancer cells), 

a, >  0 are the respective proliferation coefficients,

>  0 are the respective carrying capacities,

fa  >  0 are the respective competition coefficients,

* = 1,2.

In the absence of radiation, cancer (i.e. x 2) wins resulting in the following con­

ditions [10]:

(2 .2 ) l<\ <  ^  and I \ 2 >  j -

This produces one globally stable equilibrium at (.T |,.t2) =  (0, K 2) for positive initial 

values [10].
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We assume that the administration of radiation removes a large amount of cancer 

cells and a small amount of healthy cells from the system. Here, the terms “large” 

and “small” are used as a relation to the appropriate cell population at a particular 

location in the organism. Radiotherapy is in fact a control mechanism on the rates 

of change of x,- by harvesting them. System (2.1) is modified to account for this:

x‘i =  a tX i ( l  -  j f t )  - /? ix ,x 2 - i h ( t , x i , x 2)

(2.3) x:2 =  a 2x2( l  -  j £ )  -  P2 X1X2 -  rf2{ t , x u x 2)

r j i ( l , x u x2) <  r j 2 ( t , x i , x2).

Here, r) i ( t ,x i , x 2) >  0, i =  1,2, are the controls due to radiation, and c*i, a 2, /?l5 /?2, 

K \ ,  and K 2 satisfy condition (2.2).

2.2 Project Outline

In practice, different types of cancers require different modes of delivery of radiation 

and different amounts of radiation [1, 7, 15, 21]. That and the fact that the effect 

of radiation on healthy cells (i.e “harvesting” of healthy cells) should ideally be zero 

leads us to consider the following four possible control mechanisms:

Case 1: T] i ( t ,xu x 2) =  0, 7/2(/, x i, x2) =  7 ,

Case 2: x u  x 2) =  0, ?/2(<, x u x 2) =  7 x 2,

Case 3: ?/i(^,x1,x 2) =  0, 7}2( t , x u x 2) =  7 ^ ,

( 7  n k T  <  t <  (nk +  l ) T  
Case A: 7]i(t, x i ,x 2) =  0, r]2{ t , x , ,x 2) =  <

(0  (nk  +  1)7’ <  t <  (n +  1 )kT,

where 11 € N, T  is the length of time of radiation exposure, A: — 1 is the rest time 

between radiation exposures, and k T  is the total time between the any two treatments

7
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(the period of the function).

Case 1 represents a general irradiation of a cancer by a steady and constant 

amount of radiation. Case 2 assumes that the amount of radiation is directly pro­

portional to the concentration of cancer cells. Case 3 assumes the dosage is set 

proportional to the ratio of concentrations of cancer cells to healthy cells. Case 4 

considers a periodic administration of radiation. In Chapter 3, several necessary con­

ditions and theorems will be developed to discuss the flow of the solutions and the 

stability of various equilibria in Cases 1, and 3. The following Dulac [19] criteria is 

applied to set conditions for the absence of periodic solutions.

T h e o re m  1 (D u la c ’s C r ite r ia ) .  Let LI be a simply connected region in 9R2. Let

where f i ( x i ,  £2), 7*2(^1 ? X2 ) €  C '(f2 ). I f  there exists a function

? j^ ( B f \ ( x i ,  X2 )) +  ■£^(B f2 ( x l , X 2 ))  is not identically zero and 

does not change sign iti LI. Then the system has no closed orbit entirely in Q.

In case number two, Lyapunov Theory will be used to derive global stability 

conditions of the internal equilibrium. To prove the existence of periodic solutions in 

Case 4, we will use the following theorem by Massera [17]:

T h e o re m  2 (M a s s e ra ’s T h e o re m ). I f  a system of O D E ’s is o f second order and i f  

all its solutions exist in the future, and i f  one of them is bounded in the future, then 

a periodic solution exists.

A more plausible model should account for healthy tissue damage due to radia­

tion. Perturbation analysis [3, 13, 19] of system (2.3) will be used in Chapter 4 to 

model such effects.

x\ f l ( X i , X 2)

X2 f 2 ( X l , X 2)

3 € C x(n ) such that

8
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Chapter 3

Control Mechanisms

3.1 Introduction to Control

The term “control” is typically used to describe external modifications to the dy­

namics of the system [16]. We will devote the next four sections to study system of

equations (2.3) under the following different external interventions:

Case 1: constant control,

Case 2 : control proportional to the concentration of cancer cells,

Case 3: control proportional to the ratio of concentrations of cancer to healthy tissue,

Case 4: periodic control.

9
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3.2 Case 1

3.2.1 Existence o f Equilibria

Consider the following system:

(3.1)
x’l =  a i £ i ( l  — j ± )  — f3 XX XX 2

x 2 =  a 2x 2{ 1 ~  j £ ) ~  P 2 X Xx 2 -  7 .

Let a =  a xa 2 -  (}xfi2K xK 2. In the absence of radiation, i.e. 7  =  0, the system (2.1)

generates the following isoclines:

Ti : x x — I \ x — ^ r L x 2

(3.2)
r 2 : * ,  =  g  -  ^ x 2.

The sign of a describes the nature of the interaction between healthy and cancer cells.

Consider the slopes of Ti and f^ in (3.2). If

When a >  0 (respectively a <  0) the isoclines (3.2) produce graphs as shown 

in Figure 3.1 (respectively Figure 3.2). The two isoclines do not intersect since we 

restrict our analysis to the case when cancer wins the competition (conditions (2 .2 )). 

When radiation is introduced, the equations of isoclines (3.2) will change to:

(3.3)

(3.4)

10
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G r if f i*  of r ,  a»d G ra fiit of r ,  anc f

5  os

e
i

I

u

Figure 3.1: Isoclines of (2.1): a >  0 Figure 3.2: Isoclines of (2.1): a  <  0

Notice that on f^ the lim it liml 2_>o+ =  —oo.

In addition, on F3, +dx 2 02 K2 02xj and d?2
dx\ =  ~ ^ 3  • Thus, r 3 w ill have the

shape as depicted in Figures 3.3 and 3.4 with the vertex (maximum value of aq) at:

02 02 V h  2 V /

In the positive Xi X2 plane these isoclines may intersect twice, once, or zero times as 

in Figures 3.3 and 3.4. The number of intersections depends on the size of 7  and the 

dynamics of cancer-healthy tissue interaction represented by a.

The boundary equilibria on the X2 axis will exist if 0 =  ^  or,

equivalently, 0 =  a 2x \  — A'2a 2X2 +  7 A 2 has positive solutions. Therefore,

(3.5)

7 <

7 =

7  >

C1 2K 2

~ T
a 2I \ 2

1<2 l< 2
two positive real solutions 0 <  x 2 <  — , —  <  x 2 <  h ' 2

l<2
=> one positive real solution X2 =

4 2

—-—-  =>■ no positive real solutions.
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O m  1 C f'JT ja ' in f 3 m

 r.

"" r,

Figure 3.3: Isoclines of (3.4): a <  0 
Changes in shape of 1̂ 3 for different val 
ues of 7 : 71 <  72 <  73-

To develop conditions necessary foi 

system (3.4):

C ttt t C fw iQ M tn rjU ilnc re tM t

Figure 3.4: Isoclines of (3.4): a >  0. 
Changes in shape of Ta for different val­
ues of 7 : 71 <  72 <  73 <  74 <  7s-

an internal equilibrium first we solve the

(3.6) ax  2 — bx 2 +  a i / \ 27 =  0 ,

where a =  Q1O2— P 1P2 K  1 A'2 and b =  Kici\(ct2 — Kxfa)-  The solutions of this quadratic

equation (3.6) are _____________
b ±  J b 2 -  4aai A'27

* 2 = ------------- 2a-------------- •

This X2 defines the location of an internal equilibrium. The equilibrium from now on 

is labeled as £ ’ =  (x i* , a^*)-

Conditions (2.2) =S> b >  0 since /32A'i <  0:2- Variable a, however, may be positive,

12
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negative, or zero. Therefore, by conditions (3.3), the solutions to (3.6) are:

» b — y/b2 — 4ac*i A 27 . • 1 ,
a <  0 =>• x 2 = ------------- ----------------  is the only potential solution,

2 a
*  7(3.7) a =  0 x 2* = ---------—  is the only possible solution,

<*2 -  Pafti_________
„  , 6 ±  \ / 62 — 4aai A'27 . . 1 , .

a >  0 => x 2 = ------------- ----------------  gives two potential solutions.
2a

There may also be a single solution when is tangent to I V  In this case, x 2 =  ^  

and 7  =  =  SL$ 2-(at2 — f a K x ) 2 or 7  =  In order to have a solution in the

first quadrant, x j*  should also satisfy: 0 <  X \ '  <  K \ .  Thus (3.4) =$■ 0 <  x 2" <

We obtain the following further restrictions on 7 :

(3 8 ) a _ _ o . „ < 7 < - ^ ,

f 0 <  7  <  [ k 2 -  , (one solution.)

( A"2 “  I f )  <  7  <  “  ^ a/' i  )2’ ( two solutions.)

Note that (3.8) must be satisfied concurrently with (2.2), (3.5), and (3.3) since the 

existence of internal solutions must guarantee the existence of solutions on the axis. 

In Chapter 5, numerical examples of when all of these conditions are satisfied con­

currently will be provided.

3.2.2 Local Stability of Internal Equilibria

The local stability of the internal equilibria in Case I  (system (3.1)) may be deter­

mined by considering the variational matrix of system (3.1). Let M  represent the

13
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variational m atrix. Then

M  =

(3.9)

d i ]  dx \  
dx\ dx2
dxo dxo
dx \  d x -2 _

<*l(l — 2-̂ j-) ~ P \ X 2  ~ P l x l

- I 3 2x 2 a 2( l  -  2 j £ )  - /32x i

We would like to study the stability of the internal equilibrium, E m — (x { * , x 2*). 

This equilibrium is found at the intersection of  isoclines Tj and ( i j  =  0 and 

x 2 =  0 respectively). The conditions for the existence of such an equilibrium are 

derived in section 3.2.1. Notice that when x \  =  0, P \ x 2 =  « i ( l  — J^); and when 

x 2 =  0, (32X\ +  ^  =  a 2( l  -  j £ ) .  Therefore, m atrix (3.9) evaluated at E * =  (x i* ,:^ * )  

is simplified to:

(3.10) A T =
~ P l X \

~ p 2 x 2

The eigenvalues (A) are the solutions of the equation:

0 =  det(A / -  A /*) =

(3-11) /  x ,- X-2

A', l< 2

7  \ , X \  
— « ) +  OLl~rrx2 )  A i

*2 1a 2— ---------- -
A 2 x 2'

-  p ^ 2x x' x 2 .

I f  a 2^  — ^ 7  <  0, then the eigenvalues are of opposite signs and the equilibrium is a 

saddle point. However if &2 ^  ~  >  0, then <21^ ( 0 2 ^ -  -  ^ 7 ) -  P\P 2 X \ * x 2* may

14
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be negative (a saddle point equilibrium), or positive. We simplify the expression:

X l  / * 2 7  I p o * *«17T  «277---------   -  P lP2X l  X2 =
h i  V A 2 x 2* 1
Xi

x 2 * K i I \ 2
T {x2 (070:2 -  /3i/32I < i K 2) -  a i l \ 27] =

Xi
—— \ x 2 a -  a i K t f ] .

x 2" I \  1 K 2

Since the equilibrium is located at x 2* given by (3.6), we obtain the following:

Xi

x 2* I \ \ K 2

x 2* l< i l< 2

X i *

6 ±  y/b2 — 4aoti A'27

2 a
a -  on A'27

2b2 ±  2by/b2 — Aaai I \ 27  — 4aai A'27

4a
-  a i A'27

2ax2' K i K 2
 xi
2ax2

[b2 ±  by/b2 — 4aai A 27 — 4aai A'27 ] =

■A' A~ ~  4 a a ^ )  i  b \ /b 2 ~  4aai A'27]

x i ' y / b 2 -  A a a i K - a  r~ —  -------— -
 \ ----—— -------- ( y /b 2 - 4 a a , A 27 ± 6 ) .

2ax2 h i  I \ 2

In  the case where a >  0,

2 7 * \A 2 ~  4ao! A'27 / 7i — :------ ^ , n  . n
 ^----- — — -------- (y /b2 -  4 a a i A 27 +  b) >  0 ,

2ax2 A 1A 2
x i ’ y /b2 -  4aa , A'27  r -   -------—-
 ^ ------— — -------- ( \ /& 2 -  4 a a , A 27  -  6) <  0.

2 a x2 A 1A 2

. , . . b + \ / b 2 - 4 a a \ K ' 2 ' t  1 . » b - y / b 2 —ia a iK ^ - y
These expressions correspond to x 2 =  — y—   and to x 2 =  — *— —---------

respectively. In the case where a <  0,

2a

x 1 ’ y/b2 — 4a a i  A'27 

2ax2* K i  K 2
(y /b2 — 4a«i A'27  — 6) <  0.

15
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This expression corresponds to the only possible internal equilibrium when a <  0
b—v /6 2 —4 a a i A'27

located at x2 =  — *— ^ ---------.

Therefore, the equilibrium at x2* =  b v h .^ aaih21 js a saddle point for both 

a <  0 and a >  0.

The equilibrium at z 2* =  fe+V 6 corresponds to positive a 2^  — Here

o t i - r r  +  <*277-------- 77  >  0 =*> Re(A1(2) <  0.
A 1 A2 x 2

Therefore, the equilibrium at x 2’ =  6—̂  -^aojJl21 js stable.

3.2.3 Stability of the Equilibria of System (3.1)

To study the stability of different equilibria, we determine the flow in various regions 

defined by isoclines and fY  

First we calculate j j i :

i f ,  x, 11 ~  i f f  ~ & 1! -  j )
3' ~  Xl ( a i  f a , ' )

The sign of this derivative together with the separate signs of x\  and f 2 describes the 

flow of the solutions to system (3.1).

Consider two points (AT, AT) and (^A T ,0). A t point (AT, A'2), the denominator 

in (3.12) is equal to —K \ K 2^ i <  0. From the equation of Ti in (3.2), the right side 

of Ti at (a ;i,x2) =  (AT,A T) is AT — ^ p -A T - This is negative since f^-AT >  1 by 

conditions (2 .2 ) given in section 2 .1. Therefore the point (AT, A'2) is above Fi. A t 

the second point, (x i,;r2) =  ( |A T ,0 ) , the denominator of (3.12) is equal to \K\CX\  

and it is positive. The right side of the equation of T1 is equal to AT since .r2 =  0. 

Therefore the point (£A T,0) is below T| and to the right of x\  =  0. Since along Ti

16
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and for all Xj =  0 , the derivative x'j =  0 , the denominator of ^  changes its sign only 

along I \  and along the x2 axis. Thus, we make the following generalization:

Generalization 1: For any point (xi,x"2) above (respectively below) T) and 

to the right of the X2 axis, the denominator of (3.12) and x’i are negative 

(respectively positive).

Similarly, x2 =  0 along r 3. Therefore, the numerator of ^  changes its sign along 

F3. In section 3.2.1, we showed that f 3 has the vertex at

, q 2 2 /o27 /AVy

( I , ’ I2 )  =  l A - f t V T r ' V ^ 7

This vertex is in the positive quadrant if 7  <  (see conditions (3.5)). Then the 

point ^0 , ■ \ J ^ L j  is to the left of the vertex, and the point j  is to the right.

A t point ^0, \ J the numerator of (3.12) is as follows:

'A '27 / a 2 /A '27 I  q 2
x2 =  \ l  —   7

q 2 \  A'2 V «2  V  A'27

Since 7  <  we get a 2 — >  0. Therefore, the numerator (and x 2) is

positive. At point 1 the numerator of (3.12) is as follows:

/ A '27 / «2 / A'27 n °2 I  «2
*2 =  \ / ------  «2 -  TT“ \ /  P2^T - 7 l

« 2  \  A '2 V «2  P 2 V  A'2 7

'A '2 7  / _ 2  / 0 2 7
V q 2 \  V  A  2

Therefore, the numerator (and x’2) at this point is negative. We generalize these

17
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results below:

Generalization 2: I f  (x ^ x ^ ) is any point on I^  in the positive quadrant, 

then at any point (x t ,x 2) such that aq <  x x (respectively X\ >  x t ), the 

numerator of (3 .12) and x 2 are positive (respectively negative).

We combine the above results into the following theorems describing the stability 

of various equilibria. Consider the existence of a single internal equilibrium ( E ) and 

two boundary equilibria £ ;(0 ,x 2|), £ ),((),x 2J  on the x 2 axis (see Figure 3.5). Also, 

consider four different regions (labeled 1 through 4 in Figure 3.5). By Generalization 

1, x*! is positive in regions 1 and 2 and xq is negative in regions 3 and 4. By Gener­

alization 2, x2 is positive at all points in regions 2 and 3, and negative at all points 

in regions 1 and 4. Therefore (as illustrated by Figure 3.6) the following hold:

Region 1: x'j > 0 and x 2 <  0 => 4*2. < 0 and the flow is down and to the right,

Region 2: xq >  0 and x 2 >  0 =>■ ^  > 0 and the flow is up and to the right,

Region 3: x'i <  0 and x 2 >  0 =t* ^  < 0 and the flow is up and to the left,

Region 4: x ( <  0 and x 2 <  0 => ^  >  0 and the flow is down and to the left.

The following theorem describes the stability of the equilibria.

Theorem  3. The internal equilibrium E  is a saddle point, the boundary equilibrium 

Ei is unstable, and the boundary equilibrium Eh is locally stable.

Proof. Since the flow in regions 1 through 4 is as described above, E  is a saddle point 

equilibrium, Ei  is an unstable equilibrium, and Eh is a stable equilibrium. □

Let E  and E  represent two equilibria in the interior (possible only if a >  0), and 

E i ( 0 , x 2() and Eh{0 ,x 2h) represent equilibria on the x 2 axis (see Figure 3.7). Consider 

the 5 regions (labeled 1 through 5 in Figure 3.7). Generalizations 1 and 2 imply the 

following:

18
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C u a  I Ih *  Flow D igram

Ca m I:  SlabltyQf Q vliM m ifandTivQ fto irtarYE qu ltonA

Figure 3.5: A =  E. B = E,(0 ,*2l), Figure 3.6: The flow diagram in the re-
C  =  E h( 0 , x 2J .  Numbers 1 through 4 * 10ns 1'2’3 and 4' Sn,a11 anows show
indicate regions between the isoclines. tlle direction whlch the solutions wil1

cross the isoclines.

Region 1: xq > 0 and x 2 < 0 =4> < 0 and the flow is down and to the right,

Region 2: x \  > 0 and x-z >  0 => >  o and the flow is up and to the right,

Region 3: x i  < 0 and X2 < 0 => ^  <  0 and the flow is down and to the left,

Region 4: x'i < 0 and x 2 > 0 =*> ̂  > 0 and the flow is up and to the left,

Region 5: X\ >  0 and x 2 <  0 ^  >  0 and the flow is down and to the right.

Figure 3.8 illustrates the flow in each of the regions. The above leads to the 

following theorem.

Theorem 4. The internal equilibrium B is a saddle point. The internal equilibrium 

E  is locally stable. The boundary equilibrium Ei is unstable. Finally, the boundary 

equilibrium Eh is a saddle point.

Proof. Since the flow in regions 1 through 5 is as described above, E  is a saddle point 

equilibrium, E  is a stable equilibrium, Ei is an unstable equilibrium, and Eh is a 

saddle point equilibrium.

19
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Figure 3.7: A =  E ,  B  =  E i{0, x 2|), C  =  
Eh(0 ,x 2h), and D  -  E .  Numbers 1 
through 5 indicate regions between the 
isoclines.

- -c

I
5
iQ|
sko,
N

Figure 3.9: B  =  F (, C =  E h. Numbers 
1,2 , and 3 indicate regions between iso­
clines.

Case 1: The Flow Diagram

Figure 3.8: The flow diagram in the re­
gions 1,2 ,3,4, and 5. Small arrows show 
the direction in which the solutions will 
cross the isoclines.

Caaal Thc flcm D ag rvn O iO }

~c

Figure 3.10: The flow in the regions 1,2, 
and 3.
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When a <  0 and 7  is large enough, there may be two boundary equilibria 

( E i ( 0, x2J  and Eh{0 ,^ 2h)) and no internal equilibria (see Figure 3.9). In this case, 

the isoclines define three regions (labeled 1,2,and 3 in Figure 3.9). We use the Gen­

eralizations 1 and 2 to describe the flow across these regions (see Figure 3.10 for 

illustration):

Region 1: x'i > 0 and x 2 <  0 => ̂£2. < 0 and the flow is down and to the right,

Region 2: x’i <  0 and x 2 >  0 =>• ̂  > 0 and the flow is up and to the left,

Region 3: x'i <  0 and x 2 <  0 ̂  < 0 and the flow is down and to the left.

We use the following theorem to prove the stability of the boundary equilibria.

Theorem 5. The boundary equilibrium Ei is an unstable equilibrium. The boundary 

equilibrium Eh is a saddle point equilibrium.

Proof. Since the flow in regions 1 through 3 is as described above, Ei  is a saddle point 

equilibrium, and Eh is a stable equilibrium. □

The most desirable case in terms of treatment of cancer is when 7  is large enough 

to produce the flow towards the xi-axis (cancer extinction). Here, we have two 

equilibria at £ )(0 ,x 2() and at £/i(0, x2h) (see Figure 3.11). We use the Generalizations 

1 and 2 again to describe the flow through regions 1, 2, and 3 (see Figure 3.11):

Region 1: x\  > 0  and x'2 <  0 =>■ ^  <  0 and the flow is down and to the right,

Region 2: x’i >  0 and x 2 >  0 =t> ^  > 0 and the flow is up and to the right,

Region 3: x‘i < 0 and x‘2 < 0 =t> ^  < 0 and the flow is down and to the left.

The flow in these regions is illustrated in Figure 3.12. The following theorem

describes the stability of the equilibria.
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C jm  1: No Intomal Equtonum

Figure 3.11: B  =  Ei, C  — Eh- Num­
bers 1,2, and 3 indicate regions between 
isoclines.

Cts* l : No Eqmbbnum

|
J*

Figure 3.13: No equilibrium. Numbers 
1 and 2 indicate regions between iso­
clines. The dashed line represents x.2  

axis. All points on isocline P3 have
£i <  0 .

C a M l: Th* Row Diagram

Figure 3.12: The flow in the regions 1,2, 
and 3.

Casa 1: No Gquikbnum

Figure 3.14: The flow in the region 1 
is down and to the right. The flow in 
region 2 is down and to the left.
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Theorem  6. The boundary equilibrium Ei is unstable. The boundary equilibrium Eh 

is a saddle point.

Proof. Since the flow in regions 1 through 3 is as described above, Ei  is unstable 

equilibrium, and Eh is a stable equilibrium. □

Finally, it is possible to increase 7  so that no equilibria exist. This is illustrated 

in Figure 3.13.

In  this case, the flow in regions 1 and 2 (see Figure 3.14) can be determined from 

the generalizations 1 and 2 :

Region 1: ah >  0 and x 2 <  0 =>■ ^  <  0 and the flow is down and to the right,

Region 2: x \ <  0 and x 2 < 0 ^  > 0 and the flow is down and to the left.

Since the flow in both regions is down, the solution of any system originating in 

the interior w ill result in complete extinction of x 2.

3.2.4 Existence o f Periodic Solutions

In this section, we check the possibility of a periodic solution in Case 1 (System 

(3 .1)). We use the Dulac criteria [19] to establish a condition on 7  such that no 

periodic solutions exist. For any xj >  A'x, ah <  0, and for any x 2 >  Ah, x 2 <  0. 

Consider the region : 5 <  xi  <  K u 5 <  x 2 <  A'2, where 8 >  0 is very small. Since 

outside of this region both ah <  0 and x 2 <  0 , all solutions originating outside of ft 

will enter and stay in ft. Let function B ( x i , x 2) =  (aqa^ ) -1 € C ‘ (ft). Then

(3.13) - ^ - ( B x ,) +  ^ - ( B x 2) =  +  — L 1 .
dxi  d x 2 x 2[ \ i  X\ I \ 2 x \ x 22
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This expression is not identically zero. We want to show that expression (3.13) 

changes its sign outside of tl .  Let expression (3.13) equal 0:

0 =
Q i  _  ^2 7

x 2K  i XiAh X1X22

- 1
( a 2I \ \ x 22 +  a xK 2x xx 2 -  Ah A'27 ).

This is true for a 2l< ix 22 +  ol\ K \ X \ X 2 — K \ K 27  =  0, or, equivalently, along the curve

x x =  = ^ - x 2 +  E n -1 o\l\2 at\X2

Here along $
dx 1 

dx 2

-a2Ah Ah 7
a.Ah

< 0.

When Si =  0, x 2 =  Since the derivative is negative, both branches of $

are decreasing from their x 2 intercepts. We, therefore, ignore the branch of $  that is 

below si axis. The lim it of s t as s 2 tends to 0 along <5:

lim si 
Z2-+0

_ u™ + « * )  =
^ *a-+o \  a , /v 2 « is 2y

We now see that $  is a strictly decreasing curve that lies entirely in the first quadrant 

for 0 <  x2 <  We want to establish the conditions such that $  does not enter

region L2. In particular, we want to establish the conditions such that when x 2 =  K 2, 

along $  si >  Ah. Let s 2 =  A'2, then

Ah <
—oc2I \ \  K i ' i  

—  A 2 +
CVi A'; «1 A',

—a 2 7
1 < -----   +  ~ 7 T -07 « i n 2

7  ^  ( a i "h a ?)  A 2
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Therefore, for 7  >  { o t \ + a 2) K 2 curve $  never enters region ft and 110 periodic solutions 

in ft may exist. Since all solutions enter region ft and no solutions leave that region, 

no periodic solutions exist for 7  >  (q i +  a 2) I \ 2-

3.3 Case 2

In this section system (2.3) takes on the form:

xi  =  x i(a i - 7i -  2f f - )  - /? i * i® 2,

X 2 =  X 2 ( d 2 -  72 -  ~  ^ 2X \ X 2 .

In  order for this system to have practical meaning, Qj >  71 and q 2 >  72 . O ther­

wise, the radiation dosage is too high and both populations tend towards extinction:

x i , x 2 <  0. In the case where a 2 <  7 2 , x 2 <  0, and no further analysis is required as

the concentration of cancer cells is decreasing.

3.3.1 Existence o f Equilibria o f System  (3.14)

First, observe that x \(0 ,x 2) =  x 2(x j,0 ) =  0. Therefore, we will have boundary 

equilibria at

(0,0), ( A ' , ( l - £ ) . 0 ) ,  (0,A-2( l - £ ) ) .

The isoclines for this system are (see Figures 3.15 and 3.16):

P . 1. — °l ~Tfl _  _2J _ t
(3.15) 4 ‘ ' 2 fi' 1

r 6 : * 2 = a- ^ i < 2 ~ ^ x x.
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Case 2: Isoclines and 1%Case 2: Isoclines r. and r, ~ *

N , ,■ 0 3

3

Figure 3.15: Graphs of the isoclines in Figure 3.16: Graphs of the isoclines in 
Case 2 (a >  0) without radiation. Case 2 (a <  0) without radiation.

The internal equilibrium is then:

( c * i - 7 i ) a 2 / G  -  ( a 2x  ----------------------------------------------------
a

.  <*1 - 7 1  <*1 / ° 2 ( o i  -  7 i )  -  -  72 )

=   A

Note that in the case of this internal equilibrium E * =

(3.17)

a > *  1 a *
a q  -  71 =  7-7 -37 +  F i x 2 

<̂ 1
^*2 .  \ Q *

0 1 2 -1 2  =  77-^2 + P 2®1 • /\  2

This equilibrium is possible for parameter values below.

1 . a >  0 =► t ^-(<*2 -  72 ) <  Qi -  71 <  7 ^ k (°2  ~  72)- 

2 - a <  0 =* 7 ^ k (a 2 -  72) <  a , -  7, <  ^ f - ( a 2 -  72).

Alternatively, there will be no internal equilibrium if the above parameter values are 

not satisfied.
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3.3.2 Stability Analysis of System  (3.14)

To determine the stability of internal equilibria we will use Lyapunov theory. Let

(3.18) V^xi, x2) =  x \  — x \  — x \  In —1 +  x 2 — x*2 — x 2 In
Xy X2

Then V ^ x ^ X j) =  0 and V (x ! ,x 2) >  0 for ( x i ,x 2) ^  (x ^ X j) . Therefore V/ (x 1,x 2) 

positive definite. Computing V  we get

(3.19) V  =  +  x 2( ^ ^ ) .
Xj x 2

Then, we substitute (3.14) into (3.19):

V  =  (q i -  7 i -  — x\  ~  P i x 2) (x i  - x \ )  +  . . .  
ft 1

Ct 2
■ ■ ■ +  (c*2 ~  72 -  -p-£2  -  )S2x 1)(x 2 -  Xa).

A 2

Use conditions (3.17) to get

U =  [ i -  +  A 3'2 J (-T i -  * 0  +  • • •

+  ( -  ~  & 3 i  +  +  p 2 x \  ) (x 2 -  x 2) =

=  ( -  * 1 ) ~  ~  x '*>) (* *  ~  2’i)  +  • • •

— *" ~ x^  ~  ^ Xx _  ^  I (X2 “  * 2) =

=  - ^ ( x ,  -  x ; )2 -  ( f t  +  f t ) ( x ,  -  x l) (x 2 -  X'2) -  f (X2 -  x^)2. 
A 1 A2
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Therefore, V  =  0 at (x^x?;). We want to determine the values of the parameters that 

guarantee V  <  0 for all xi and x2. Since the above equation is a quadratic opening 

down, we want to select the parameters such that

(A + A)2 ~ < 0.

If  a  >  0, then 0 i0 2 <  and

(A + A)2 -  < (/?. + A f  -  4AA = (A -  A )2.
A i A 2

Therefore, it is possible for (0 i +  0 2)2 - 4 ^ ^  to be negative. However if a <  0, then 

>  % %  and

(01 +  /S2)2 -  4 1 ;  >  ( f t  +  & ) 2 -  40102 =  (01 -  02)2 >  0.
j \  i 2

Therefore, when parameters are such that a <  0 it is not possible for ( 0 i+ 0 2)2—4 7̂ ^ -  

to be negative.

The internal equilibrium in Case 2 is a globally stable equilibrium if a >  0 and 

the parameters are such that

(3.20) ( 0 i + 0 2)2 < 4 - p ^ - .
Aj  A 2

Condition (3 .20 ) is the precise condition for global stability of the interior equilibrium. 

When the condition is not met, the equilibrium is not stable. In fact, it is a saddle 

point since this system reduces to a two-species Lotka-Voltera predator-prey system 

[10].

The local stability of boundary equilibria may be determined by linearizing the
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system (3.14) about the equilibria. First we compute the variational m atrix.

(3.21)
<*i — 7 i ~  2a i  — (3 i X ?  ~ P \ X \

-P2X2  a 2 -  72 -  2a2f^  -  /32xi

For ( i i , X 2) =  (0 ,0) the m atrix (3.21) is

ai  -  71 0
M  =

0 0 2 - 7 2

Since 01 >  71 and o2 >  72 , this matrix has two positive eigenvalues and (0 ,0 ) 

globally unstable [13, 19].

For (x i ,x 2) =  ( ^ i ( l  — matrix (3.21) is

Then the determinant and the trace of M  are:

d e tM  =  — —(01 — 7 i )2 +  (a i — 7 i )(72 -  <*2),
(3.22)

t r M  =  ( — +  1^ (71 -  0 1 ) +  (o 2 -  72).

The equilibrium is a saddle point if

(3.23)
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The equilibrium is stable if

(3.24)
d e t M  >  0 ai -  71 >  ~ ~ r ( a 2 - 7 2 ) ,

P2 A  1
1 \  ° i

t r M  <  0 => a i — 71 > (a 2 — 72)
+  P 2^1

Finally, the equilibrium is unstable if

« i

(3.25)
de t M  >  0 => a i -  71 >  -r~ — (Q2 -7 2 ) ,

p 2 A  1

t r M  <  0 => cri — 71 <  (a 2 — 72)
+  02 ^  1

For (x ! ,x 2) =  (0, ft'2( l  -  £ ) )  matrix (3.21) is

M  =
« i -  7i “  ^ * ( ° 2  -  72) 0

- ^ ■ ( Q2 -  72 ) 72 ~ « 2

Then the determinant and the trace of M  are:

d e t M  =
(3.26)

t r M  =

^— —(02 -  72? +  («2 ~  72K71 -  Qi)> 
<*2

/  0 \ A 2
q 2

+  1 (72  ~  a 2) +  K  -  7 i ) .

The equilibrium is a saddle point if

(3.27)
0 f\

d e t M  <  0 a i — 71 > -------- (a 2 — 72).
(*2

The equilibrium is stable if

(3.28)

0  K
de t M  >  0 0 < a i — 71 < ——-(02 — 72),

a 2

t r M  <  0 ai — 71 < ' M s
, 02

+ 1 (o 2 -  72).
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Finally, the equilibrium is unstable if

d e t M  > 0 =^0 < a i  — 7 i <  ^1 2(a2 -  72),

( 3 '2 9 ) -  ( B K 2 \
t r M  <  0 => a i -  71 >  ( ^  2 +  1 j  ( a 2 -  72).

3.4 Case 3

In Case 3, the control in system (2.3) is proportional to the ratio ^  as follows

x 2 --- a 2x 2{ l  02*1*2 -  7 ^ .

The following sections describe the stability of the system (3.30).

3.4.1 Existence of Equilibria o f System (3.30)

We will have equilibria at (aq,a:2) =  ( ^ 1, 0 ) or at the intersection of the isoclines T6 

and r 7 given below:

(3  31 ) * i  =  0 r 6 : x 2 =  g- -

x 2 =  0 r 7 : x 2 =  h \  -  ^ x ,  -  7 ^ .

Let (a;!*, a;2*) represent the point of intersection of the isoclines (i.e. interior equilib­

rium ). Then, i 1(x i* ,x 2*) =  0 and i 2(a:i*,a:2*) =  0. If  we substitute (aq*,a^") into 

the system (3.30), we get the following conditions:

/J,x2- =  Q |(1  -  jr)

(3 3 2 > 7  ' '  x 2‘
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Ca m  3 Uodir**

"  0 .4

Figure 3.17: Intersection of the iso­
clines in Case 3 for a >  0. Three iso­
clines of r 7 show the effect of increas­
ing 7 : 71 <  72 <  73- Only one internal 
equilibrium is possible.

C*m>3 : tfodinM

£ OA

Figure 3.18: Intersection of the iso­
clines in Case 3 for a <  0. Three iso­
clines of r 7 show the effect of increasing 
7 : 71 <  72 <  73. Two internal equilib­
ria are possible (see the curve labeled

73 ).

The system of isoclines (3.31) has the solution given by

(3.33) ax \  +  bxx -  7 A', / \ 2^i =  0,

where a is as before and 6 =  /\'ta 2(A'2/3i — a \ ) .  Conditions (2.2) imply 6 >  0, while a 

may be positive, zero, or negative depending on the inherent dynamics of cancer and 

healthy cells as was observed in Cases 1 and 2. Therefore,

. - b ± ^  +  ( i a h \ I < 2f t )7
(3.34) x,  = --------------------   .

For a >  0, equation (3.34) will have solutions for all 7 . The values of 7  that will
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7

Figure 3.19: Case 3: Internal equilibria 
when a <  0. Letter A represents equi-
i . ,  .  , «  -b+y/b2+(4aKiK20i)'t
librium at xi =  ----- *------^ ------------- .
Letter B represents the internal equi-

. , * — 'v/62+(4aA'i/C2/3j )-y
librium at xi = ------*------^ ------------- .

Figure 3.20: Case 3: Internal equi­
libria when a >  0. Only one inter­
nal equilibrium is possible in this case. 
Letter A represents the equilibrium at

„ _  - 6 + ^ / 6 2+ (4 a A 'i K 20 i >7
Xi = 2 a

give a solution in the domain 0 <  x i <  A'i are

K \ a  +  b
7 <  7 = A 2^1

In this instance, there can only be one solution (see Figure 3.17).

For a <  0, in order to have any solutions, b2 -f ( A a K i I ^ P i ) ' )  >  0

7 <  7 =
- b 2

AaK\ K 2P 1

To find the values of 7  that give solutions in the domain 0 <  Xi <  A'i we need to 

solve
- b  db y/b2 +  (4aA'i A'2/3|)7

2 a
<  A'i.

Recall that a <  0. Suppose —b ±  y/b2 +  { A a I \ \ I \ 2^ \ ) l  >  2aA'i and 6 +  2 a A 1 >  0 => 

a >  K2pi(Ki /32 — 0 2 )- Then we can only have one solution for 7  <  7  where 7  is as
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above. Otherwise, if  b + 2 a l < i  <  0 =4> a >  -< * 2), we w ill have two solutions

when

7  <  7  <  7 ,

and we will have one solution 21 =  — b -f 1/ 62 +  (4a /\i/iT2/?i)7  when

7  <  7  <  7 .

Figure 3.18 illustrates the possible internal equilibria in this case.

3.4.2 Stability Analysis of System (3.30)

Let M  represent the variational matrix of system (3.30). Then

M  =

(3.35)

dx\  dx\  
dxi d%2

2 dr*2 
9x\ dX2

- P \ X i

^2^2 a 2 — 2a 2$ - — /32£ i — JL
xi

To discuss the stability of (i"i,a;2) =  (A 'i,0 ), consider m atrix (3.35) evaluated at 

that point:

- a n  — (3 \ A'i
M  =

0 q 2 — /32 A 1 — ^  j

The eigenvalues are the solutions of the following expression:

0 =  d e t(A / - M )  =

(3.36)
=  A2 +  A c*l +  f  1̂2 A 1 -  0(2 +  -J7- +  Q 1 ( P2 A 1 — o2 +  —

We know that /32Ah — a 2 <  0 by conditions (2.2). Therefore, /?2 A'i — a 2 +  may be:

3d
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1: positive when 7 >  I \ i a 2 — /32A'i2,

2 : zero when 7  =  h \ a 2 — /?27vi2,

3: negative when 7  <  I \ \ c t 2 — fi2I \ \ 2.

The stability of the boundary equilibrium would then be a locally stable node, a 

locally stable focus, or a saddle point respectively.

Let ( x i * , x 2*) represent an equilibrium in the interior. We use the conditions 

(3.32) to simplify m atrix (3.35).

(3.37) A T =

The eigenvalues are the solutions of the following expression:

L(*l*)3 -  /32Z2‘ _ 22£2_
I < 2

0 =  det(A7 -  A T) =

x2 > S (  X1* , x 2m\  , a i a 2x x' x 2* t 0 i j x 2* a a , .
(3.38) - A  + A ( ^ a i — +  QJ— j +  A,iA .2 + — — - 0, f i lXlX2 _

=  A2 +  A ( o , ^ -  +  [A  A'.A 'j7  +  a (x ,- )2] .

Here, a i ^ -  +  a 2^ -  >  0. I f  a >  0, then

x2

A'i K 2x 1
: [ A / v 1/t'27 +  a ( x r ) 2] > 0 ,

and the eigenvalues are both negative. Therefore, the internal equilibrium is a stable 

node (Figure 3.20). If  a <  0, then the expression A-l^-2'r ,-. [A  A 1 K 2^  +  u (x i* )2] may

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



be positive, zero, or negative. When we substitute equation (3.34) into (3.38) we get:

X\ X2

K i

+ x 2

X\

0 i I \ i K 27  +  a
- 6  ±  yjb2 +  { 4 a K i K 2l3i)7

2 a

X2
=  A +  A I — b <T2-rr- ) +  • • •

l U

+
x 2* \ / b 2 +  (4aAri K 2P i ) l

2 a K \  K 2X\'
y /b2 +  (4aA'l /C2/31h  ±  b

Recall that b =  K \ a 2( K 2 P 1 — c*i) > 0 .  Since a <  0,

x 2my/b2 +  (4a A'i K 2f3iYy 

2a K 1 I<2x r  
x 2' y j b 2 +  (4aA'i Af2/3i)7 

2 a h \  K 2x.\~

y / b 2 +  ( A a K i K 2P i ) j  — b 

y / b 2 +  (4a K 1 K 2/3 ])7  +  b

> 0, 

< 0 .

Therefore, the real part of the eigenvalues are both negative (respectively one neg­

ative and one positive). The internal equilibrium (a:j*, ^ 2*) is locally stable when 

x T  =  ~b+Vb — A 1R201 l l . Respectively, the internal equilibrium ( x T , x 2*) at a:!* =  

~b~Vb +(^aAi{^/3,)7 ^ gjyjdig point equilibrium (Figure 3.19).

3.5 Case 4

Periodic control takes into account the practical aspects of administration of radiation 

to treat cancer. The original system here is modified to include a periodic control 

term:

Xi  =  < * i £ i ( l  ~  — ) ~  Pl Xi X2,
(3.39)

x 2 =  a 2x 2( 1 -  — ) -  0 2x i x 2 -  rj2( t , x u x2), 
h  2

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



f  7  n k T  <  i <  (nk  +  1)T
where r)2{ t , x \ , x 2) =  s as described in the introduc­

ed {nk  -f- 1 ) T  ^  t <  (n +  1 )kT ,

tion.

Here, 7  may be chosen from the considerations of Case 1. Since 772(2, £ 1, 2:2)

is not equivalent to zero, there are no ( x i , x 2) values such that x i  =  0 and x‘2 =  0

concurrently for all t. Therefore, there are no trivial periodic solutions. The existence 

of a periodic solution is now guaranteed by a theorem of Massera (J. Massera) that 

requires:

•  the existence of solutions in the future

•  the existence of at least one bounded solution in the future.

Both of these conditions are satisfied since x'i <  0 whenever x\  exceeds and x 2 <  0 

whenever x 2 exceeds I \ 2. We demonstrate such periodic solutions in Chapter 5.
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Chapter 4

Perturbation Analysis

In  this section we will allow the positive stable equilibrium solutions to be perturbed 

by unspecified external agents. These agents represent accidental direct or indirect 

damage of healthy tissue. Such damage may be termed as side-efTects. We consider the 

perturbations of Case 1 and Case 3. It  is sensible to consider the perturbation only of 

the situations with positive internal stable equilibrium. The analysis of the perturbed 

system is presented below while the numerical results are provided in Chapter 5.

Consider the following equations:

f i i  -  a txi  +  +  /3iX lx 2 +  eg =  0
(4-la> I . L

(4.1b)

x 2 -  a 2x 2 +  -jrf- +  ^ 2 X ix2 +  7  =  0 

xt  — +  f l \X ix 2 +  e g ^  =  0

x 2 -  a 2x 2 +  £ £ 2- +  fl2x i x 2 +  7 ^  =  0 

The parameter e may be viewed here as the percentage of healthy cells that are
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affected by radiation. Let the solution to (4.1) be

where I I is the solution to systems (3.1) and (3.30) such that either a stable
Mt)  )

equilibrium exists. Let the initial conditions satisfy

(4-3) 1 Il)(0)=(w!!)’and’fora,in>0’(J)(0)s(°
Then from system (4.1) we calculate the resulting differential equations for different 

powers of e. The result is similar in both cases:

< 4 ,a) for £. | J  ]  =  „<■> ( J  | +  *■> ,

(2) \  f j l ) \
+ z?(2).X l \ a(21 I X1

<4-4b) for c’  • iW  =  A W  I z m ,
2 /  ( 2  }

In Case 1

A ( i) =  A [2) = \ Q l ~  2 k - M 1) ~  / W O  ^ V>i(0

- ^ 2^ 2 (0  °2  -  -  ^2<^l(0 >

fid ) =  ' 9
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and in Case 3

A(D _ A(2) _ j ai “ 2 K^v i { t )  -  P m ( t )  - P m V )

7 ( 5 t ) P  ”  ^ 2 ^ ( 0  Q'2 -  2 ^ 2 (t) -  P2Vl ( 0  -  T ^ t ) ,

. 0 22m '
^ ( 1) _  | y v>i(0

- 9 ^  +  9 $ R  +  h * lM ) +  ^p ( 2 )      I  y  (<p i ( 0 ) 2 T y V i ( 0  n P l a , l * 2  1 t f ,
I ^ (O M 0 )2 _  £^£^_ o (1) (X) +
V 7  ( ' f i l ( t ))3 7 (v > i (0 )2 + P 2  1 X 2 +  K ,

In Case 3, j*- is expanded as follows:

x 2 _  ^ 2 ( 0  +  cx[l) +  c2x ^  +  . . .

x i ipi ( t )  +  ea:^ +  c2x ^  +  •. •

4"  ̂ 4" <-^X2  ̂ 4" • • •
( 1) ( 2 )

‘M O O  4- c ( 4- C-Jr-T 4 - . . . )v i(0 v>i 0 )

V?2( 0  4 - 4 - e2a42) +  . . .  1

¥>i( 0 -to J 2)
1 +  e( ^ ( 0  +  c5 h )  +  • • •)

Since x ^ O )  =  ^ ^ (O ) =  0, for n >  0, use the Taylor expansion of y4— about 0 to 

get:

f i =  ( f M  +  cI l L  +  ^ A L  +  ^ ,  | x
*1 W i  ( t )  v>i( 0  v i ( 0

r C) _(2) T(l) r {2)

Notice that both (4.4a) and (4.4b) are nonhomogeneous, linear equations with initial
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conditions (4.3). Thus, the solution to (4.4) is 

[ x (l) \  r l
(4.5a) I | I =  $ i ( t )  j  4>j l (s )B^l \s )d s ,  where 4>'j =  A ^ 4> i,

( XW \  t t
(4.5b) I | 2 1 =  <I>2(f) J  $ 2 l (s )B ^ (s )d s ,  where 4>2 =  A ^4>2.

Therefore, the solution to (4.1) is

* A  =  / W < ) \  + J i> i(l) / " $ r ' (s ) B o )W <( A  +  . . .

(4.6) \ xv  y P i i 1) /  \  Jo J

... +  e2 ( $ 2{t) j f  ^ l ( s ) B ^ ( s ) d s Sj  +  0 ( e 3).

Since e is taken to be small, the stability of this solution will be the same as the 

stability of the solutions to (3.1) and (3.30). No change in stability, in practical 

terms, means that if the in itial conditions and parameter values of the unperturbed 

system are favourable to achieving a cure or a treatment, then the cure or a treatment 

will be the result for the perturbed system. In other words, very small side-effects 

will not affect the outcome of the treatment.
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Chapter 5

Numerical Solutions

In  this chapter, we demonstrate numerical solutions of system (2.3) or, more specifi­

cally, the systems (3.1),(3.14),(3.30), and (3.39) that represent Cases 1 through 4 re­

spectively. We use a M A T L A B  O D E solver (ode23s) to solve and graph the solutions 

to each system with randomly chosen initial values. The discussion and interpretation 

of the results will follow in Chapter 6 .

The stability analysis shows different outcomes for different parameters a,-, 

and K i  where i =  1,2; as well as for different values of the control parameter 7 . In 

particular, we demonstrate how the stability of the solutions when the parameters 

are such that a <  0 is different from the stability when the parameters are such that 

a >  0 (where a =  a i « 2 — @1 0 2 K i  A'2).

5.1 Parameter Selection

To carry out numerical analysis of all four cases we need to choose parameter values 

such that they reflect the available data as well as satisfy all of the conditions out­

lined in Chapter 3. Unfortunately, cancer allows for a wide range of parameters in
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terms of the proliferation rate and carrying capacity. Another difficulty in param­

eter selection is the fact that there is no readily available data for the competition 

coefficient. Finally, some parameters may continuously change throughout treatment 

by radiotherapy and as cancer progresses. The last two issues are left for future re­

search. In  our initial setup, we assume that the parameter values remain constant 

with time (i.e. the parameter values are independent of time or cancer and healthy 

tissue concentrations).

Since the carrying capacity (A',-, i  — 1,2) for both neoplastic and non-neoplastic 

tissues is different for different organs, and varies greatly for different ages of the 

host, we use the non-dimensional number 1 to represent the carrying capacity of 

each population. The capacity concentration of healthy and cancer tissues are both 

equal to one not as a suggestion that there should be an equal amount of each of 

the type of cells. In fact, such suggestion is generally incorrect. We use 1 to allow 

us to represent the instantaneous concentrations of both populations (x! and X2) as 

a fraction of their carrying capacity. Therefore, the initial conditions should satisfy 

^ \ ° i x 2 ° <  1- However, we do provide numerical examples where this inequality is not 

satisfied to illustrate the mathematical notions of locally or globally “stable” , locally 

or globally “unstable”, and “saddle point” . The data for the fraction (or the percent) 

of the population remaining at different dosages of radiation does exist in the medical 

literature. One example of this data is given by G.G. Steel in [22].

The range of the proliferation constants, 01 and 0 2 , may be chosen by considering 

current data that commonly uses the terms “doubling time” , “cell cycle time” , and 

“growth fraction” to reflect the speed of cancer and healthy tissue growth [2 , 22]. 

Doubling time represents the amount of time required for a culture or a population 

to double. The term “double” may be applied to both the physical size (diameter of 

a tumor or its volume), and the number of cells present.

For tumors, available data mentions doubling times as fast as a few hours to as
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slow as a few weeks or months. Doubling time represents exponential growth of the 

entire population such as a tumor. Since most tumors have a very high degree of 

differentiation within, doubling time can be best thought of as the average rate of 

growth. The growth fraction takes into account the fact that not all cells continue to 

divide and assist tissue proliferation. The assumption that a normally dividing cell 

produces two daughter cells is not always valid. For instance, some offspring may 

mutate (a very common occurrence, particularly in cancer) and not divide. Instead, 

we allow for there to be a fraction of daughter cells that do not contribute to the future 

growth. Thus, the growth fraction is equal to G F  =  /n^ ~ ^ , where /  is the fraction of 

cells that are non-dividing [2]. We use the data obtained by Steel [22] and mentioned 

by Begg in [2] on doubling time and growth fraction to provide numerical examples 

of the proliferation coefficient. The derivation of the proliferation coefficient is as 

follows. Let G F  be the growth fraction for a particular tumor. Then, the population 

P ( t )  at time t is

P (t )  =  P {0 )e * ^ T  

=  P(  0)eGF'"2.

Therefore,

P {t)  =  G F ln 2 P ( t ) .

Thus, we can use the available data for the growth fraction to represent the parameter 

a:

a  =  G F ln 2 .

The mean G F  is approximately 0.32 in leukaemias and 0.49 in cancers [2, 22]. There­

fore, we calculate the corresponding mean values for Q2 to be 0.22 and 0.34 respec­

tively. In this work, we select a 2 to be in the range between 0.2 and 0.4.

For healthy tissue, proliferation is often limited to cell regeneration to compen-
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sate for cell loss due to apoptosis. Therefore, in adults, cell proliferation may be a 

very small value as no tissue is assumed to have a net cell gain. However, cell re­

generation in healthy tissue after damage caused by cancer and radiation should not 

be negligible. For the purposes of obtaining numerical examples, we select the range 

for Qi to be between 10-3  and 10“2. These values correspond to a growth fraction of 

approximately 1.4 x 10-3  and 1.4 x 10"2.

The estimate of the competition coefficient is a task that is much more compli­

cated. To the best knowledge of the author, no comparison of the tumor size-healthy 

tissue size at different stages of cancer is readily available. Therefore, we make the 

case in' the concluding paragraphs of this work for future investigation into obtaining 

such data. In the mean time, we use a general estimate for both parameters. We 

select both /3\ and /?2 such that competition conditions (2.2) are satisfied. Therefore,

* / } , > %  and g>A',=>ft<g.

Thus, we use the range of 0 <  /32 <  0.22 and 0.01 <  fli <  10. We select and 

manipulate values of (3i and f32 in such a way as to provide examples for the theory 

developed in Chapters 2 and 3.

Next, we need to select a reasonable range for the rate of change of cell concen­

tration due to radiation (parameter 7 ). Results obtained by Steel [22], also listed in 

Oxford Oncology [21], relate radiation dosage to cell survival. These results suggest 

that at a low dose radiation rate of approximately 0 .2G y/m in  more than 10% (in  

some instances as high as 90%) of cancer tissue survives. As the amount of radia­

tion is increased to what is considered a high dose radiation rate of approximately 

14G y/m in, less than 0.1% of the radiated cancer cells survive. Therefore, in the nu­

merical examples provided below, we use the values for 7  in the range between 0.001 

and 0.3 in all four cases. Since the effect of radiation on healthy tissue is much smaller
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a >  0 a , =  8 x 10^ «2 =  0.4 Pi =  0.01 P 2 =  0.15 K \  =  1 AT =  1
a <  0 a t =  8 x 1 0 '3 a  2 =  0.3 ;c

o II 0 P2 =  0.15 AT =  1 AT =  1

Table 5.1: Case 1: Parameter Values

than the effect on cancer tissue concentration, in Case 2 we estimate that -yi <  ^ 72 .

Finally, the perturbation value e is selected to represent the fraction of healthy 

tissue accidentally affected by radiation. Since the estimate of the threshold value of 

£ is a very complicated matter, we select e <  0 .1% or less than 0.001 of healthy tissue 

concentration. We leave the derivation of the estimate of c for future research.

5.2 Numerical Analysis of Case 1

In this section, we present graphical illustration of all the possible situations in Case

1. The stability analysis of Case 1 shows the emergence of two types of cancer-healthy 

tissue dynamics. These are:

1. Oci CX’i  — Pi @2 A  i A 2 =  (i >  0,

2 . aqai2 —/T/TA^i A 2 =  n <  0 .

We summarize the different parameter values used in this section in Table 5.1. We 

first note that these parameter values satisfy inequalities (2.2) and (3.3):

{8x io - 3 ^  1 (  j y _  ^  1

% > k \  =* 015

Sjyjc; <  J f t  I  ^  >  1

a >  0 =* 8 x 10"3 • 0.4 -  0.01 • 0.15 • 1 • 1 =  0.0017 >  0

a <  0 8 x 10"3 • 0.3 -  0.1 • 0.15 • 1 • 1 =  -0 .0126  <  0

In addition, we use inequalities (3.5) and (3.8) to select 7 .  According to (3.5), 7  <  

will guarantee boundary and internal equilibria. So, we need to select 7  to be
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Equilibria Types a >  0 a <  0
No equilibria 7  =  0.15 7  =  0.08
Two boundary equilibria 7  =  0.09 7  =  0.045
Two boundary and two internal equilibria 7  =  0.07 None
One internal equilibrium 7  =  0.05 II 0 0 (—

*

Table 5.2: 7  Values.

less than 0.1 when a >  0 and less than 0.075 when a <  0. Also, from inequality (3.8):

8 x 10“3 • 0.3 /  8 x 10-3
a < 0 = > 0 < 7 < ----- — —   I 1 —

a >  0
' 8 x

0 .1 -1  V ° -3

n c  ^  <r 8-*-‘ ° I 3- M  (1  _  8X 10- 3 \  
u ^  1 ^  0.011 y /  0.01 J

J£±a4 (1 _  sxiszi) <  7  <  M 2 ± ( 0  4 -  0 15 • l )2
0 .0 11  \ L 0.01 J ^  V  4 0.0017

Therefore, for parameters in Table 5.1 when a <  0, we require the 7  to be in the 

range of 0 <  7  <  0 .0220S to have one positive internal equilibrium and be in the 

range 0 <  7  <  0.075 to have two positive boundary equilibria. These conditions are 

satisfied concurrently. When parameters are selected such that a >  0 (see Table 5.1), 

the restrictions on 7  are as follows. In order to have two positive internal equilibria 7  

should satisfy 0.064 <  7  <  0.0735. In order to have one positive internal equilibrium, 

7  should be 0 <  7  <  0.064. Finally, in order to have boundary equilibria and 110 

positive internal equilibria, 7  should satisfy 0.0735 <  7  <  0.1. Once again, all of 

these inequalities are satisfied concurrently. To demonstrate each of these situations, 

we select 7  as shown in Table 5.2. We use the values in Table 5.1 and in Table 5.2 to 

numerically analyze Case 1.
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Figure 5.1: Solutions to system in Case 
1, a >  0, 7  =  0.05, and randomly 
selected initial values. Point A repre­
sents a stable boundary equilibrium E/,, 
point B represents the unstable bound­
ary equilibrium E;, and point C is the 
internal saddle point equilibrium E * \ .

5.2.1 Case 1: a > 0

Figure 5.'2: Solutions to system in Case 
1, a >  0, 7  =  0.05, randomly selected 
initial values, and t  =  0.001. Point 
A represents a stable boundary equi­
librium Eh, and point B is the internal 
saddle point equilibrium E ' \ .

Figure 5.1 (respectively Figure 5.2) illustrates the stability of the system (respectively 

the perturbed system with t  =  0.001) where 7  =  0.05 is such that there is only one 

positive internal equilibrium E T , and there are two boundary equilibria (E/, and E/). 

The numerical solutions confirm the analysis in Chapter 3 that:

1. the internal equilibrium E T  is a saddle point,

2 . the boundary equilibrium Ej is an unstable equilibrium,

3. the boundary equilibrium E/, is a stable equilibrium.

The stability of this situation under a small perturbation does not change.

Figure 5.3 (respectively Figure 5.4) illustrates the stability of the system (respec­

tively the perturbed system with e =  0.00001) where 7  =  0.07 is such that there are
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Figure 5.3: Solutions to system in Case 
1, a >  0, 7  =  0.07, and randomly 
selected initial values. Point A repre­
sents a stable internal equilibrium E m2, 
point B represents an internal saddle 
point equilibrium E '  1, point C repre­
sents a boundary saddle point equilib­
rium Eh, and point D represents the 
unstable boundary equilibrium E\.

Figure 5.4: Solutions to system in Case 
1, a >  0, 7  =  0.07, randomly selected 
initial values, and c =  0.00001. Point 
A represents a stable internal equilib­
rium E * 2, point B represents an inter­
nal saddle point equilibrium E *  1, point 
C represents a boundary saddle point 
equilibrium Eh, and point D represents 
the unstable boundary equilibrium E\.

two positive internal equilibria ( E *  1 and E ' 2), and there are two boundary equilibria 

(Eh(0,X2h)  and 72/(0, £ 2/)). The numerical solutions confirm the analysis in Chapter 

3 that:

1 . the internal equilibrium E *  1 is a saddle point,

2 . the internal equilibrium E * 2 is a stable equilibrium,

3. the boundary equilibrium Et is an unstable equilibrium,

4. the boundary equilibrium Eh is a saddle point equilibrium.

The stability of this situation under a small perturbation docs not change.

Figure 5.5 (respectively Figure 5.6) illustrates the stability of the system (respec­

tively the perturbed system with c =  0.001) where 7  =  0.09 is such that there is 110
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Figure 5.5: Solutions to system in Case 
1, a >  0, 7  =  0.09, and randomly se­
lected initial values. Point A represents 
a saddle point boundary equilibrium  
Eh, and point B represents a boundary 
unstable equilibrium Ei. The solutions 
tend towards the .iq axis and cancer cell 
concentration of zero.

Figure 5.6: Solutions to system in Case 
1, a >  0, 7  =  0.09; randomly selected 
initial values, and e — 0.00001. Point 
A represents a saddle point boundary 
equilibrium Eh, and point B represents 
a boundary unstable equilibrium Ei. 
The solutions tend towards the aq axis 
and cancer cell concentration of zero.

positive internal equilibrium and there are two boundary equilibria (Eh  and E i) .  The  

numerical solutions confirm the analysis in Chapter 3 that:

1 . the boundary equilibrium Ei is an unstable equilibrium,

2 . the boundary equilibrium Eh is a saddle point equilibrium.

The stability of this situation under a small perturbation does not change.

5.2.2 Case 1: a < 0

Figure 5.7 (respectively Figure 5.8) illustrates the stability of the system (respectively 

the perturbed system with c =  0 .001 ) where 7  =  0.01 is such that there is only one 

positive internal equilibrium E * \ ,  and there arc two boundary equilibria (Eh  and £ /). 

The numerical solutions confirm the analysis in Chapter 3 that:
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Figure 5.7: Solutions to system in Case 
1, a <  0 , 7  =  0 .01 , and randomly se­
lected in itial values. Point A is a sta­
ble boundary equilibrium Eh, point B 
is the internal saddle point equilibrium 
E"  i, and point C is the unstable bound­
ary equilibrium Ei.

Figure 5.8: Solutions to system in Case 
1 under perturbation, a <  0 , 7  =  0 .01 , 
randomly selected initial values, and 
e =  0.001. Point A represents a stable 
boundary equilibrium Eh, and point B 
is the internal saddle point equilibrium
E \ .

1 . the internal equilibrium E*{\s  a saddle point,

2. the boundary equilibrium E[ is an unstable equilibrium,

3. the boundary equilibrium Eh is a stable equilibrium.

The stabilities of the equilibria are not affected by small perturbations.

Figure 5.9 (respectively Figure 5.10) illustrates the stability of the system (re­

spectively the perturbed system with e =  0.001) where 7  =  0.045 is such that there is 

no positive internal equilibrium and there are two boundary equilibria (Eh  and Ei). 

The numerical solutions confirm the analysis in Chapter 3 that:

1 . the boundary equilibrium Ei is a saddle point equilibrium,

2 . the boundary equilibrium Eh is a stable equilibrium.

The stability of either case under a small perturbation does not change.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Cm *  t  Stfutorw to tl>* C on*j*lton SpMm  W ifi (VturtMAOn

C i w l  SoM»rt»«a«Oi

S a<

Figure 5.9: Solutions to system in Case 
1 under perturbation, a <  0, 7  =  0.045, 
and randomly selected initial values. 
Point A is a stable boundary equilib­
rium Eh, point B is the boundary sad­
dle point equilibrium Et.

Figure 5.10: Solutions to system in 
Case 1 under perturbation, a <  0, 
7  =  0.045, randomly selected initial 
values, and e =  0.001. Point A rep­
resents a stable boundary equilibrium  
Eh and point B is the boundary saddle 
point equilibrium Et.

5.3 Numerical Analysis of Case 2

In this section, vve present graphical illustration of all the possible situations in Case

2. We expect the internal equilibrium (if  such an equilibrium exists) to be globally

stable if the inequality (3.20) is satisfied. The existence of the internal equilibrium is 

guaranteed when the following inequalities are satisfied:

1. a >  0 =f> ^ ( < * 2  -  72) <  cti ~  7 i <  ~  72)-

2 . a <  0 =* 7̂ 7(02  ~  72) <  o-i -  71 <  ^ ( < > 2  -  72).

In both cases, since A'2 >  and A'j <  not all positive 71 and 72 will satisfy the 

above inequalities. Consider the parameter values in Table 5.3.

These four possible results of the solutions to the system in Case 2 are depicted 

in Figures 5.11, 5.12, 5.13, and 5.14. We first verify if the parameter values satisfy 

all the different stability conditions.
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« i a  2 0 i 0 2 AT AT 7i 72

Stable Boundary 
Equilibrium (0, f 2)

8 x 10~3 0.4 0.01 0.15 1 1 0.006 0.05

One Globally Stable 
Internal Equilibrium

8 x 10"3 0.4 0.01 0.15 1 1 10"3 0.15

One Saddle Point 
Internal Equilibrium

8 x 10"3 0.3 0.1 0.15 1 1 10"3 0.2

Stable Boundary 
Equilibrium (i"i,0)

8 x 10"3 0.4 0.01 0.15 1 1 2 x 10"4 0.27

Table 5.3: Case 2: Parameter Values

Cas«2: Solutions loth* Competition System Case 2: Solutions to Competition System

a

Figure 5.11: Solutions to the system 
in Case 2 for several randomly selected

Figure 5.12: Solutions to the system 
in Case 2 for several randomly selected

initial values and c*i =  8 x 10~3, c*2 =  initial values and on =  8 x 10 3, a 2 =
0.4, 0 i =  0 .01 , 0 2 =  0.15, AT =  AT =  

=  0.006, and 72 =  0.05. Point 
A is the stable boundary equilibrium  
(0 , AT(1 — ^ -), point B represents the 
unstable equilibrium (0 ,0 ), and point C 
represents the saddle point equilibrium

(A'i(l £).»)

0.4, f t  =  0.01, f t  =  0.15, A', =  I<2 =
1, 71 =  2 x 10~4, and 72 =  0.27. Point 
A represents the saddle point bound­
ary equilibrium (0, A'2( l  — ^ ) ,  point B 
represents the stable boundary equilib­
rium ( A"i(l — ^ 0 ,0 ) ,  and point C rep­
resents the unstable equilibrium (0 , 0 ).
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Case 2: Solutions to Competition System

Figure 5.13: Solutions to the system 
in Case 2 for several randomly selected 
initial values and « | =  8 x 10-3 , a-i =
0.4, Pi =  0.01, p 2 =  0.15, I \ \  =  K 2 =
1, 7 i =  10-3 , and 72 =  0.15. Point 
A represents the saddle point bound­
ary equilibrium (0 , K i{  1 — ^ -), point B 
is the stable boundary equilibrium E *, 
and point C is the saddle point bound­
ary equilibrium (A 'i( l — ^ -) ,0 ). Point 
(0 , 0 ) is an unstable equilibrium.

Casa 2: Solutions to the Competition Systam

Figure 5.14: Solutions to the system 
in Case 2 for several randomly selected 
initial values and cq =  8 x 10-3 , Q2 =  
0.3, Pi =  0.1, p 2 =  0.15, A", =  I<2 =  1, 
71 =  10-3 , and 72 =  0.2. Point A repre­
sents the stable boundary equilibrium  
(0, A'2( l  — ^ ) ,  point B is the unstable 
equilibrium (0 ,0 ), point C is the sad­
dle point internal equilibrium A*, and 
point D is the stable boundary equilib­
rium (A 'i( l — ^ ) ,0 ) .  Point (0 ,0 ) is an 
unstable equilibrium.
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a >  0

ro1OX0
0IIs a 2 =  0.4 /?i =  0.01 &  =  0.15 AT =  1 AT =  1

a < 0 =  8 x 10~3 a 2 =  0.3 5° II p &  =  0.2 AT =  1 AT =  1

Table 5.4: Case 1: Parameter Values

Figure 5.11 depicts the solutions to the system in Case 2 when parameters are 

selected such that only the boundary equilibrium (0 ,x 2) =  (0, AT(1 — ^ ) )  is stable 

and no internal equilibrium exists.

Figure 5.12 depicts the solutions to the system in Case 2 when parameters are 

selected such that only the boundary equilibrium (^ i,0 )  =  (A 'i( l  — ^ ) ,0 )  is stable 

and no internal equilibrium exists.

Figures 5.13 and 5.14 show two possible situations with an internal equilibrium. 

Figure 5.13 shows a globally stable equilibrium when parameters are such that a  >  0. 

Figure 5.14 shows a saddle point equilibrium when parameters are such that a <  0.

5.4 Numerical Analysis of Case 3

This section is devoted to providing the numerical examples to illustrate all the differ­

ent solutions to the system in Case 3. Much like Cases 1 and 2, the stability analysis 

of Case 3 shows the emergence of two types of cancer-healthy tissue dynamics. These 

are:

1 . a i « 2 — /?i/32A i / \ 2 =  a >  0 ,

2. oilq.2 — /A/TAh A 2 =  a <  0.

We summarize the different parameter values used in this section in Table 5.4.

Figure 5.15 shows the stability of the internal equilibrium when a >  0 and 7  =  

0.08. As we can see from the figure, the equilibrium in the interior is stable, while the
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Casa 3: Solutions to Compaction System

Casa 3. Solutions to Companion Sysfam

I  0.4

Figure 5.15: Solutions to system in 
Case 3, a >  0, 7  =  0.08, and ran­
domly selected initial values. Point A 
represents a stable internal equilibrium 
E ‘ , and point B is the boundary saddle 
point equilibrium.

Figure 5.16: Solutions to system in 
Case 3, a >  0, 7  =  0.08, randomly 
selected initial values, and the pertur­
bation parameter e =  0.0001. Point A 
represents a stable internal equilibrium 
E m, and point B is the boundary saddle 
point equilibrium.

boundary equilibrium is unstable. When system is perturbed, perturbation parameter 

is e =  0.0001, the stability does not change as we can see from Figure 5.16.

Figure 5.17 shows the stability of the internal equilibrium when a <  0 and 7  =  

0.08. The internal equilibrium is stable (a stable focus to be exact), and the boundary 

equilibrium is a saddle point. Under small perturbations, the system, perturbation 

parameter is e =  0.0001, the stability does not change as we can see from Figure 5 .IS.

In Figure 5.19, we see the stability of the system when a <  0 and 7  =  0.105. 

There are two internal equilibria-one is a stable focus and the other is a saddle point 

equilibrium. The boundary equilibrium is a stable equilibrium as well. Under small 

perturbations, the system, perturbation parameter is c =  0 .0 0 0 1 , the stability does 

not change as we can see from Figure 5.20.

In Figure 5.19, we see the stability of the system when a <  0 and 7  =  0.105. 

There are two internal equilibria-one is a stable focus and the other is a saddle point

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Case 3: Solutions to the Competition System
Case 3; Solutions to the Competition System

Figure 5.17: Solutions to system in 
Case 3, a <  0, 7  =  0.08, and ran­
domly selected initial values. Point A 
represents a stable internal equilibrium  
E *, and point B is the boundary saddle 
point equilibrium.

Figure 5.18: Solutions to system in
Case 3, a <  0, 7  =  0.08, randomly 
selected initial values, and a perturba­
tion parameter c =  0.0001. Point A 
represents a stable internal equilibrium  
F *, and point B is the boundary saddle 
point equilibrium.

equilibrium. The boundary equilibrium is a stable equilibrium as well. Under small 

perturbations, the system, perturbation parameter is e =  0 .00 0 1 , the stability does 

not change as we can see from Figure 5.20.

Figure 5.21 (respectively Figure 5.22) shows the stability of the system (respec­

tively the perturbed system with e =  0.0001) when a <  0 and 7  =  0.11. There are 

no internal equilibria since 7  no longer satisfies conditions that are derived in section 

3.4. In this case, there is only one stable boundary equilibrium. The stability of this 

equilibrium is not affected by small perturbations.

5.5 Numerical Analysis of Case 4

In  this periodic administration of radiation section, we are interested in whether or not 

a stable, positive lim it cycle exists. We use values and analysis of Case 1 for parameter
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Casa 3: Solutions to Competition System

C

Figure 5.19: Solutions to system in 
Case 3, a <  0, 7  =  0.105, and ran­
domly selected initial values. Point A 
represents a stable internal equilibrium, 
and point B is the internal saddle point 
equilibrium, and point C is the stable 
boundary equilibrium.

Case 3: Solutions to the Competition System

0 02 04 o s  o s  t
11 f i t a x  C avantrttcn)

Figure 5.20: Solutions to system in 
Case 3, a <  0, 7  =  0.105, randomly 
selected initial values, and a perturba­
tion parameter e =  0.0001. Point A 
represents a stable internal equilibrium, 
and point B is the internal saddle point 
equilibrium, and point C is the stable 
boundary equilibrium.

Case 3: Solutions to the Competition System

Figure 5.21: Solutions to system in 
Case 3, a <  0, 7  =  0.11, and randomly 
selected initial values. Point A repre­
sents a stable boundary equilibrium.

Case 3: Solutions to the Competition Systei

Figure 5.22: Solutions to system in
Case 3, a <  0, 7  =  0.11, randomly se­
lected initial values, and a perturbation  
parameter e =  0.0001. Point A repre­
sents a stable boundary equilibrium.
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selection. When radiation is absent, the solutions to the system tend towards a 

stable, boundary equilibrium (0 , / \ 2) and cancer win (or the death of the healthy 

tissue). Radiation is turned on and off to periodically drive the system towards xj 

axis and to provide the organism time to recuperate. Considering the analysis in Case 

1, when parameters are selected so that a >  0 and 7  is such that the solutions to 

the competition system tend towards x i axis (complete cancer extinction), periodic 

solutions may form as radiation is turned on and off. However, when a <  0, even 

for large values of 7 , the flow is often towards a stable equilibrium on the x 2 axis 

(Figure 5.9). Therefore, the dynamics of the competition system when a <  0 are not 

favorable to a successful treatment w ith a periodic solution. Figure 5.23 shows the 

existence of a positive periodic solution when a >  0 and 7  =  0.07. The length of one 

radiation exposure is equal to the length of one rest period between exposures. In 

this solution, we do not discuss the units of time or particular treatment plans. The 

length of treatment or rest my be in hours, days or other time frames. When radiation 

is administered with different length of exposure and at different frequencies, the 

numerical analysis shows periodic, successful and unsuccessful treatment outcomes. 

These outcomes are shown in Figures 5.24, 5.25, and 5.26 respectively when a >  0. 

Figures 5.27 and 5.28 show the possibility of a successful and unsuccessful result of 

treatment when a <  0. We leave the discussion of controllability and the success of 

other periodic solutions for future research.
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Periodic Solutions

Figure 5.23: Periodic solutions to the 
system in Case 4, a >  0, 7  =  0.07, and 
randomly selected initial values. The  
length of radiation exposure is equal to 
the length of the rest time between ex­
posures.

Case 4: Solutions to the Competition System

Initial Values

Periodic Solutions

Figure 5.24: Periodic solutions to the 
system in Case 4, a >  0, 7  =  0.09, 
and randomly selected initial values. 
The length of radiation exposure is four 
times longer than the length of the rest 
time between exposures.
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Figure 5.25: Solutions to the system in 
Case 4, a >  0, 7  =  0.1, and randomly 
selected initial values. The length of ra­
diation exposure is equal to the length 
of the rest time between exposures. 
The dark region represents oscillating 
solutions that eventually tend towards 
x i  axis. This represents a complete 
cure.

Co m 4 Soiutan* to V« Comp*bl3n

Figure 5.26: Solutions to the system in 
Case 4 , a > 0 , 7  =  0.1, and randomly 
selected initial values. The length of 
radiation exposure is |  of the length of 
the rest time between exposures. Solu­
tions tend towards £2 axis. This repre­
sents an unsuccessful treatment plan.
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Figure 5.27: Periodic solutions to the 
system in Case 4, a <  0 , 7  =  0.1, and 
randomly selected initial values. The  
length of radiation exposure is twice 
the length of the rest time between ex­
posures. The solutions tend towards x 1 
axis an a complete cure.

Figure 5.28: Periodic solutions to the 
system in Case 4, a <  0, 7  =  0.08, and 
randomly selected initial values. The 
length of radiation exposure is twice 
the length of the rest time between ex­
posures. Some solutions tend towards 
£1 axis and a complete cure, while oth­
ers tend to £2 axis and a cancer win.
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Chapter 6

Conclusion

6.1 Discussion

To relate the model and its stability analysis to the treatment of cancer by radiother­

apy, vve need to interpret equilibria and the flow of the system in biological terms. 

First of all, any positive, internal stable equilibrium or any positive, stable periodic 

solution means that the treatment was successful in terminating the overall cancer 

growth. However, this state can be maintained only with continuous application of 

radiation. We observe such internal equilibria in Case 1, Case 2, and Case 3; while 

Case number 4 achieves a positive, periodic solution. A t certain large radiation doses, 

we observe the solutions flow towards the x i  axis (and the cancer concentration of 

zero). These solutions are preferred as this results in the complete cure without the 

continuous radiation administration. However, such treatments may not be plausible 

or safe.

Case number 1, continuous and constant administration of radiation, is a suc­

cessful treatment plan for cancer at early stages of detection. Even at low radiation 

dosage, it is possible to drive the cancer concentration to zero. However, intermediate
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and advanced stages of cancer may not be treatable. Through mathematical analysis, 

two types of cancer have emerged. The first type is “aggressive” (fast-spreading and 

difficult to treat), while the second type is “passive” . Mathematically, these two types 

are classified according to the sign of parameter a (a =  a i a 2 — P 1P2 K 1 K 2 ) as;

a <  0: “Aggressive” cancer. 

a >  0: “Passive” cancer.

Through the analysis, Case 1 treatment strategy of “aggressive” cancers is successful 

only at early detection stages or at very large radiation doses. I 11 both instances, 

cancer concentration is driven to zero. However, the very large radiation dose may 

pose other risks to the entire organism; and so the risks associated with this treatment 

plan may outweigh the benefits.

“Passive” cancers may be treated with medium doses of radiation. M athem ati­

cally, this outcome is equivalent to the positive, stable internal equilibrium we observe 

in Case 1 when a >  0. Early detection or increase in radiation dosage may also result 

in the complete cure as with the “aggressive” cancers. However, by the very nature 

of “passive” cancers, radiation amounts to achieve this result may be lower and so 

the risk factors may not be as high.

Case number two assumes that the radiation dosage is set to be directly propor­

tional to the instantaneous cancer concentration. Radiation is administered continu­

ously throughout the course of treatment. This is the only case out of the four where 

we include the direct effects of the radiation on healthy cells. Again, the dynamics of 

the solution (and the medical implications) of the system were affected by the sign of 

parameter a. The analysis of“aggressive” cancers (i.e. when a <  0) shows the emer­

gence of a saddle point equilibrium at medium radiation doses. In this case, cancer 

may be completely cured when detected early. However, when a  >  0 and the cancer 

is “passive” , we show that when there is an internal equilibrium, it is a global internal
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equilibrium. Therefore, this treatment plan is successful in controlling cancers at any 

stage of advancement. Finally, for both types of cancer ( “aggressive” and “passive” ), 

large radiation doses lead to the complete removal of cancer cells from the organism. 

As it was argued in Case 1, this treatment may not be practical since large amounts 

of radiation pose other health risks.

Case 3 allows for the radiation dose to be proportional to the current ratio of 

cancer cell concentration to healthy cell concentration. As healthy cell concentration 

is decreasing, the rate of radiation delivery will increase. We observe the emergence 

of both a stable and the unstable internal equilibria at various levels of radiation. 

When cancer is “passive” , the internal equilibrium is stable and we have a successful 

treatment strategy. When the parameters are selected to represent an “aggressive” 

cancer, there may be two internal equilibria-one is stable and the other one is not. 

W hat is interesting about Case 3 is that even the most advanced cancers may be 

driven to an internal and positive stable equilibrium (i.e. a successful treatment).

Case number 4 achieves an internal, positive periodic solutions for carefully se­

lected parameters to represent the effect of radiation, and wait and rest times. It  

is also possible to apply the radiation periodically such that cancer concentration is 

driven to zero. This method for applying radiation seems to be more practical than 

the other two in terms of delivering of radiation as well as providing the opportunity 

for the organism to recover from the effects of the radiation.

6.2 Research Direction

The analysis and the proposed treatment plans create some exciting possibilities for 

treating cancer with radiation. However, many aspects of this work need to be further 

explored.

First of all, we see different results in various courses of treatment. Some treat-
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ments are very successful when treating the advanced stages of cancer (Cases 2 and 

3 ). Others (Cases 1 and 4) are usually more successful whenever cancer concentration 

is low. Therefore, by combining some of these methods, an interesting problem to 

consider in the future is the complete curability of cancer through control.

In addition, the effects of the radiation on healthy tissue needs to be modelled 

with greater precision. This may be accomplished by considering the parameters a , (3, 

and K  to be functions of treatment time and radiation. The practicality of radiation  

treatment (cost-benefit analysis) requires a more precise estimate of the perturbation 

parameter e.

Further analysis of controllability of the system, particularly in Case 4, is required 

to set optimal treatment times and radiation amounts. Finally, more data needs to 

be collected to verify this model. Continuous data of healthy tissue and cancer tissue 

concentration at different stages of the disease with and without treatment is required 

to verify the model and to estimate the value of parameter (3.
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