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Abstract

This thesis proposes a method to estimate robot localization error without

having a ground-truth measurement of robot position. Robot localization

refers to estimating a robot position and orientation (pose) within a known

map, where the error is the difference between the robot’s ground-truth pose

and the algorithms estimated pose. Ground-truth measurement systems (eg.

motion capture) while accurate are expensive and tend to be difficult to set

up in new environments. A new landmark-based method which uses visual

markers placed throughout the environment is proposed as an alternative to

ground-truth systems.

The method requires visiting a visual marker twice, collecting the localiza-

tion pose and robot-to-marker pose on both visits. After enough samples are

collected the localization error is calculated using generative latent optimiza-

tion (GLO). Experiments are run using the proposed method to estimate the

localization error for several different open source algorithms. The method

is accurate within an order of magnitude of ground-truth established using a

motion capture system, inexpensive and easy to setup.

ii



Acknowledgements

First, I would like to thank my supervisor Professor Hong Zhang for his expert

guidance throughout my degree. Also, I would like to thank Dr. Ron Kube

for all his advice and feedback.

Finally, thank you to my wife Kaitlyn, whose support and encouragement

has made it possible for me to complete this, I can’t thank her enough.

iii



Contents

1 Introduction 1
1.1 Robot Localization Performance Evaluation . . . . . . . . . . 3
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Robot Localization and SLAM 6
2.1 Markov Localization . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Localization and SLAM Systems used for Experiments . . . . 10

2.3.1 AMCL . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 RTAB-Map . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Google Cartographer . . . . . . . . . . . . . . . . . . . 13
2.3.4 GMapping . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Evaluating Robot Localization Performance 17
3.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Trajectory Error . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Ground-Truth Localization Error Estimation Methods . . . . . 20
3.2.1 GPS and IMU Sensor Fusion . . . . . . . . . . . . . . . 20
3.2.2 Motion Capture . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.4 External Markers . . . . . . . . . . . . . . . . . . . . . 25

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Robot Localization Performance Evaluation Using Visual Marker
Pose Estimation 28
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Estimating 2D Position Error Using GLO . . . . . . . . . . . 28

4.2.1 Generative Latent Optimization (GLO) . . . . . . . . . 31
4.2.2 Application of GLO to Localization Error Estimation . 32

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Experiments 35
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Localization/SLAM algorithms . . . . . . . . . . . . . 35
5.2.2 Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.3 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.4 Navigation Areas . . . . . . . . . . . . . . . . . . . . . 37
5.2.5 Navigation Strategies . . . . . . . . . . . . . . . . . . . 41
5.2.6 Visual Marker Pose Sampling . . . . . . . . . . . . . . 42

iv



5.2.7 Ground-truth . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.8 Implementation Details . . . . . . . . . . . . . . . . . . 44

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Conclusion 51

References 53

v



List of Tables

5.1 Position error estimation results using Turtlebot. . . . . . . . 46
5.2 Position error estimation results using Jackal. . . . . . . . . . 47
5.3 Outdoor qualitative results . . . . . . . . . . . . . . . . . . . . 49

vi



List of Figures

1.1 Position-based versus feature-based maps . . . . . . . . . . . . 2
1.2 A overview of the problem . . . . . . . . . . . . . . . . . . . . 4

2.1 Bayes filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Typical SLAM system structure . . . . . . . . . . . . . . . . . 10
2.3 Visualization of AMCL particle filter . . . . . . . . . . . . . . 11
2.4 RTAB-Map overview . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Example of RTAB-Map point cloud . . . . . . . . . . . . . . . 13
2.6 Google Cartographer overview . . . . . . . . . . . . . . . . . . 14

3.1 KITTI dataset recording platform . . . . . . . . . . . . . . . . 21
3.2 Motion capture camera and markers . . . . . . . . . . . . . . 23

4.1 Transform diagram for robot that visits a visual marker twice 29

5.1 Robots used for experiments. . . . . . . . . . . . . . . . . . . 36
5.2 Sensors used for experiments. . . . . . . . . . . . . . . . . . . 38
5.3 Room1 experiment setup. . . . . . . . . . . . . . . . . . . . . 39
5.4 Room2 experiment setup. . . . . . . . . . . . . . . . . . . . . 40
5.5 Outdoor experiment setup. . . . . . . . . . . . . . . . . . . . . 41
5.6 Robot navigation methods . . . . . . . . . . . . . . . . . . . . 42
5.7 Robot’s view of visual marker. The marker pose is tracked using

ar track alvar ROS package. . . . . . . . . . . . . . . . . . . . 43
5.8 The position error in pose estimate using the AR tag estimates

as distance from the marker increases . . . . . . . . . . . . . . 44
5.9 Translational error versus time plot with and without outliers. 48
5.10 Shows where the proposed method breakdowns if translation

errors do not follow a Rayleigh distribution. . . . . . . . . . . 48

vii



Chapter 1

Introduction

The mobile robotics industry is expanding rapidly with applications in ware-

house automation, self-driving-cars, service robots, agriculture and more. As a

result, researchers and companies require convenient methods for quantifying

robot navigation performance.

Robot navigation involves determining the robot pose within its environ-

ment (localization and mapping) and moving to goal locations (path planning)

[30]. Robot pose refers to the position and orientation of the robot. Poses are

often represented as a 4 × 4 rigid-body transformation matrix.

Mapping involves building a representation of the robot’s environment.

Two common map types used for localization are position-based and feature-

based [42]. With position-based maps each index in the map represents a

location for example, an occupancy grid. For feature-based maps each index

contains a feature representation plus the coordinates of the feature. Fig. 1.1

shows an example of the two different map types.

Localization is the problem of estimating the robot’s pose within a known

map. The combination of localization and mapping is called Simultaneous

Localization and Mapping (SLAM). Path planning relies on pose estimates

from localization or SLAM so the robot can determine where it is relative to

a goal.

Path planning is the problem of finding trajectories to goals that avoid

obstacles [38]. To build maps, localize and safely navigate planned trajectories

robots need to measure their internal state and perceive the external features
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in the world using sensors [38].

Figure 1.1: Example of two different types of maps. On the left, there is
a occupancy grid map (position-based) created using Gmapping, and on the
right is point cloud map (feature-based) built using RGB-D Orbslam2.

Sensors are used by robots to estimate their pose, perceive obstacles, and

understand their environment. All sensor data has noise and usually does

not provide complete state information therefore, most robots use a suite of

sensors whose data is combined to produce more accurate state estimates.

Some common sensors used by mobile robots include wheel odometry, in-

ertial measurement units (IMU), laser sensors and computer vision. Wheeled

robots have wheel odometers to measure the rotational position and velocity of

the robot’s wheels. IMUs use accelerometers, magnetometers and gyroscopes

to measure the acceleration, orientation and velocity. Laser based sensors in-

clude Laser Rangefinders and LiDAR (light detection and ranging), and can

measure the distance to objects. Computer vision sensors include monocu-

lar RGB cameras, stereo vision which use multi-camera systems to measure

scene depth and also RGB-D cameras which use infrared to measure depth.

Computer vision is used for many tasks including scene understanding, place

recognition and visual odometry. All the sensors discussed can be used in some

way to help estimate the robot pose. When evaluating how well a navigation

system works the quality of pose estimation is often used.

This thesis will focus on evaluating robot navigation performance using

localization error. The localization error measures how well the robot can
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determine its current position. Being able to measure localization error is

useful for comparing different algorithms and tuning parameters. Ground-

truth methods for measuring a robot’s navigation performance directly, such

as a motion capture system, are expensive and inconvenient to set up and

calibrate. Because ground-truth methods are expensive and difficult to set up

many researchers rely on datasets, which are useful for providing a consistent

benchmark but may not test all required situations. Having a simple way

of measuring robot localization performance would make it easy to test a

localization system in a variety of environments.

This thesis presents a method for evaluating robot localization performance

using position measurements of randomly placed visual markers.

1.1 Robot Localization Performance Evalua-

tion

To evaluate localization performance you typically need ground-truth, exam-

ples of ground-truth methods include, motion capture and GPS. Trajectory

error is one of the most useful metrics for evaluating localization performance

as its a single number that provides a concise measure of performance. The

proposed method in this thesis estimates the mean Absolute Trajectory Error

(ATE). Mean ATE is also referred to as mean position error or mean trans-

lational error. Other metrics for evaluating localization and SLAM include

robustness, computational complexity and map quality.

1.2 Contribution

The proposed method does not require ground-truth measurements and only

uses the robot’s estimated poses as well as the robot-to-marker poses (see X in

Fig. 1.2) of visual markers placed in the robot’s navigation space. The robot

moves around its navigation space collecting samples then uses the samples

to calculate constraints for an optimization technique used to estimate the

mean position error. Several different localization and SLAM algorithms are

compared, with three sensors and two robots in multiple environments. The

3



results show the proposed method can estimate the mean translation error

within an order of magnitude of the ground-truth error obtained using a motion

capture system.

Figure 1.2: A robot navigating around its workspace performing localization
while sampling visual marker poses. Given the ground-truth pose P′ (for ex-
ample from a motion capture system) the localization error could be calculated
directly. The proposed method does not use ground-truth measurements and
instead uses robot-to-marker poses, X, of markers placed at unknown locations
for evaluating localization performance.

1.3 Organization

Chapter 2 gives an overview of Markov Localization as well as Simultane-

ous localization and mapping (SLAM) and then summarizes the four different

algorithms that the proposed method was tested on. Chapter 3 gives of sum-

mary of the metrics used for evaluating localization and SLAM systems, then

provides an overview of several different ground-truth methods for evaluating

localization performance. Chapter 4 describes the proposed method for esti-
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mating the mean position error of a localization system, and then Chapter 5

discusses the experiments and results.

5



Chapter 2

Robot Localization and SLAM

In this section, an overview of robot localization is provided including Markov

Localization and SLAM. The goal is to give the reader some background knowl-

edge for Section 2.3 where the localization and SLAM methods used for ex-

periments are described.

In robotics, localization refers to estimating the robot’s position and ori-

entation given a map using the robot’s sensor data. Some sensors can directly

provide global localization such as GPS and motion capture; however, in most

cases data from multiple sensors must be blended [42]. Systems that combine

localization and mapping are called Simultaneous Localization and Mapping

(SLAM).

2.1 Markov Localization

Markov Localization encompasses techniques that use the Bayes filter for robot

localization. The textbook Probabilistic Robotics [42] provides a thorough

study of Markov Localization. The Bayes filter allows blending prediction

of robot movement with measurements from sensors, given that both sources

of information have noise. The Bayes filter state is updated in two steps the

motion update and the measurement update which incorporates the data from

sensor measurements, a high-level depiction of the algorithm is shown in Fig.

2.1 [24]. The final state should fall between the predicted state and measured

state.

With Markov Localization the state is represented as a probability density
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Figure 2.1: The Bayes filter Algorithm is the basis for filtering based methods
like the Kalman filter and particle filter.

function over the space of robot locations. During the motion update, the

next state estimate is predicted using the motion model of the robot, for

example, using the velocity measured from wheel encoders. Then during the

measurement update the measurement model is used to update the state based

on the likelihood that a given measurement could have been observed. Two

common methods are Kalman Filters and Monte Carlo Localization (MCL).

Kalman filters represent the state of the robot using a Gaussian with some

mean and covariance. The mean is the estimated value for the robot posi-

tion and the covariance is the estimate uncertainty. Because robot control

and measurement are non-linear the Extended Kalman Filter (EKF) and Un-

scented Kalman Filter (UKF) are used for robot localization. In the UKF and

EKF, the non-linear motion and measurement model are approximated using

different linearization methods.

The MCL algorithm is a particle filter method where the robot state is

represented by the set of particles. Particle filters are popular as they are easy
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to implement and non-parametric so they can represent multimodal probability

distributions [42]. Each particle is a separate sample of the robot state, for

example, x,y, heading. Further, each particle has a weighting that is a measure

of how likely a particle represents the actual state of the system. The algorithm

works by running the Bayes filter algorithm on each particle. The algorithm

has the following steps [24]:

1. Sample particles: from previous distribution and calculate their weight.

2. Motion step: update particles position using robot motion model with

noise.

3. Measurement step: given new measurements re-weight particles based

on the likelihood that a measurement matches the particle state.

4. Re-sample: replace unlikely particles (low weight) with more likely par-

ticles.

5. Compute Mean: compute weighted mean to get estimated state.

Global localization is achieved by spreading the particles evenly throughout

the map to start as shown in Fig. 2.3 (b). However, the default MCL algorithm

cannot handle if global localization fails (converges on the wrong position) or

the kidnapped robot problem because when AMCL is running only the most

likely particles survive; so if it converges to the wrong solution there is no

recovery. To solve this problem and add robustness to the algorithm random

particles are added with some probability.

2.2 SLAM

In scenarios where a map is not available then SLAM can be used. SLAM

builds a map and at the same time localizes the robot in the map. Cadena et

al. provide a review of the SLAM literature including the state of art and future

research directions [6]. Two general categories of SLAM are smoothing based

and filtering based methods. Smoothing methods typically utilize maximum
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a posteriori (MAP) estimation, where the problem is represented as a pose

graph. Filtering SLAM methods use a probabilistic formulation estimating

the robot pose and map using different variants of the Bayes filter algorithm.

SLAM filtering methods estimate a probability distribution over the robot

state and a map. Like with Markov Localization they use a variant of the Bayes

filter algorithm where there are motion and measurement updates, using the

motion and measurement models respectively. Because maps can have many

features the state space becomes much larger when moving from localization

to SLAM with filtering techniques; as a result, many methods marginalize the

map state to make the problem easier to solve.

The EKF-SLAM algorithm is one example of a filtering method. The

EKF-SLAM map is assumed to be made up of landmarks and the robot and

landmarks state estimates are updated using the Extended Kalman Filter.

Some drawbacks of the EKF-SLAM algorithm are that the number of land-

marks usually needs to be limited due to computational complexity and it is

sensitive to incorrect loop closures [10].

Another filtering approach to the SLAM problem is the Rao-Blackwellized

Particle Filter (RBPF). The advantage of RBPFs over EKF-SLAM is that par-

ticle filters can represent multimodal state estimation and non-linear motion

and measurement models. The motivation for using the Rao-Blackwellized

filter is that particle filters are inefficient in high-dimensional spaces. With

RBPFs the particle filter only needs to estimate the robot trajectory and for

each particle the map is computed analytically given the particles estimated

robot trajectory and the past sensor observations. The FastSLAM and GMap-

ping methods are two examples of RBPFs. FastSLAM assumes a landmark

map representation, whereas GMapping uses occupancy grids.

Graph-based SLAM systems generally have two parts: the frontend and

the backend as shown in Fig. 2.2 [6]. The frontend’s task is to extract features

from sensor data and perform data association to construct the graph [6]. For

example, the visual SLAM (VSLAM) system ORBSLAM [34] has a frontend

which extracts and tracks ORB features from camera images. The graph nodes

are landmarks and robot poses while the edges are sensor measurements and
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loop closures [19]. The backend then performs graph optimization to find

the best node configuration to satisfy the edge constraints. The constraint

optimization problem is solved using non-linear least squares minimization.

Local regions of the map will typically be associated with some landmark

representation such as keyframes (ORB-SLAM2) or submaps (Cartographer)

to be combined into a globally consistent map and rearranged after global

optimization.

Figure 2.2: The typical structure of a SLAM system (figure from [6]).

2.3 Localization and SLAM Systems used for

Experiments

Several different SLAM and localization algorithms were evaluated using the

proposed method in this thesis. This section summarizes the different systems

to give some insight as to why one method performs better than another.

The algorithms used for experiments are AMCL [42], RTAB-map [29], Google

Cartographer [23] and GMapping [18].

2.3.1 AMCL

Adaptive Monte Carlo Localization (AMCL) is an implementation of MCL

that changes the number of particles using KLD-sampling [13]. Being able

to change the number of particles depending on uncertainty in the current

state estimate makes it more efficient than other methods and also has better
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localization performance than the standard MCL algorithm. A visualization

of the AMCL particles filter in different states is shown in Fig. 2.3. The ROS

version1 uses laser scan and odometry data.

The default Likelihood Field measurement model [42] is used when running

AMCL for this thesis, where each beam end-point of the scan in projected into

the global euclidean coordinate space and its nearest neighbor is found in the

map. Next, the probability of the laser scan matching the particle state is cal-

culated incorporating measurement, failure and random noise. Since AMCL is

a particle filtering method it uses the sampling odometry measurement model

[42] where the robot motion is decomposed into a rotation, then translation

and another rotation. Then the change in pose is simply guessed by sampling

from the posterior distribution with noise.

Figure 2.3: Visualization of AMCL particle filter in different states. (a) shows
the particle filter after initialization with the particles spread around the es-
timated starting pose of the robot. (b) shows the particle filter after running
Global Localization, where all the particles have been spread evenly through-
out the map. (c) shows the particle filter that has converged to a low variance
estimation of the robot state.

2.3.2 RTAB-Map

RTAB-Map is a graph-based SLAM system with appearance-based loop-closure

and requires an RGB-D or stereo camera and odometry [29]. The system can

also incorporate 2D laser scan or 3D point cloud data. See Fig. 2.4 for a

high-level overview of the RTAB-Map system [29].

1http://wiki.ros.org/amcl
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Figure 2.4: High-level overview of RTAB-Map system (figure from [29]).

If the robot does not have an odometry sensor or the odometry is not very

accurate, the authors of RTAB-Map also included in their library visual and

laser odometry modules. The visual odometry module utilizes feature match-

ing and Perspective-n-Point RANSAC followed by local bundle adjustment

to estimate the motion of the robot. Besides their original visual odometry

module, they include seven other approaches including ORB-SLAM2 [34] for

easy comparison. The lidar odometry module uses the iterative-closest-point

(ICP) algorithm for scan matching and motion estimation.

The RTAB-Map graph map is made up of nodes and links where the links

are constraints for graph optimization. The links can be created either by loop

closure, proximity detection or neighbors. Loop closure is implemented using

the Bag of Words approach. Proximity detection is used to localize nodes

nearby using a laser scan and is useful in situations where visual loop closure

is not reliable. The neighbor links are added by RTAB-Map’s Short-term

Memory module (STM) when new odometry messages are received.

When a new node is added by the STM then a local occupancy grid is

also created and associated with that node. The occupancy grids can be

created using laser scans or point clouds and can be either 2D or 3D. The local

occupancy grids are combined into a global occupancy grid using the global

map poses from their associated nodes. An example of a merged RTAB-Map

global occupancy grid point cloud is shown in Fig. 2.5. When loop closure

detection occurs then graph optimization is run and the occupancy grid is

reassembled using updated poses. RTAB-Map gives the option of using TORO
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[17], g2o [28] or GTSAM [11] for global optimization as each has different

strengths and weaknesses.

Figure 2.5: Example of RTAB-Map’s global map point cloud.

2.3.3 Google Cartographer

Cartographer is a real-time laser-based graph SLAM method [23]. Cartogra-

pher can function with just laser data but can also incorporate odometry and

Inertial Measurement Unit (IMU) data. An overview of the full Cartographer

system is shown in Fig. 2.6 [22]. A cartographer map is built up of submaps

which are small chunks of the world.

Submaps are represented by grids that give the probability of being ob-

structed. Each submap contains a set number of consecutive scans for the

area it represents. Scans are matched to submaps using a local optimization

where the transformation from the scan frame to submap frame is found. This

local optimization is a non-linear least squares optimization using the ceres-

solver [1]. Once a submap has enough scans it is considered finished and used

for checking for loop closure detection.
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Loop closure detections are found by matching scans against the scans in

nearby submaps. The global scan matching process happens in the background

using a brand and bound algorithm [8] to achieve real-time performance. If

there is a good match then it is used as a constraint in the global optimization.

The global optimization rearranges the submaps so they form a consis-

tent global map. The graph optimization uses nodes (pose trajectory) and

submaps. The constraints are relative poses between nodes and submaps as

well as between scans and submaps. Again the ceres-solver is used for opti-

mization.

Figure 2.6: High-level overview of Google Cartographer system (figure from
[22]).

2.3.4 GMapping

GMapping is an improvement on the Rao-Blackwellized particle filter (RBPF)

[9] method where each particle contains an estimate of the map and robot

trajectory. GMapping builds occupancy grid maps like the one shown on the
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left side of Fig. 1.1. The two improvements GMapping introduced are better

particle generation by improving the proposal distribution and better particle

re-sampling [18].

GMapping improves the particle proposal distribution by using laser range

data. The standard particle filtering sampling method uses the odometry

motion model; however, this approach may not be optimal if the odometry

data is not very accurate. Grisetti et al. combine the odometry model with

the most likely pose from scan-matching to generate particles with better

estimates of the current state. The improvement leads to better maps and

pose estimation, as a result, fewer particles are required.

The particle re-sampling method is improved in GMapping so that re-

sampling only occurs when needed. In GMapping they estimate how well the

current particle set estimates the target posterior based on how spread out

the particle importance weights are. Where the assumption is that all particle

weights would be the same if they were drawn from the target distribution. If

the particles become too dispersed then they re-sample. By only re-sampling

when needed they reduce the chance of removing good particles from the

particle set.

2.4 Summary

Localization is the task of estimating the robot’s position within a known

map. Traditional approaches to localization use the Bayes filter algorithm.

When a map is not available then SLAM approaches are used, where the

algorithm builds a map while localizing the robot within the map. Modern

SLAM systems typically consist of a frontend, which provides data association

between sensor readings and constructs a pose graph, and a backend that runs

global optimization to adjust the graph using measurement constraints.

In this thesis, several different localization and SLAM systems are evalu-

ated using the proposed localization error estimation method. AMCL is a pure

localization method that uses particles filters and known occupancy grid maps.

RTAB-Map is a graph-based SLAM system that builds dense 3D point cloud
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maps, uses appearance-based loop closure detection and requires an RGB-D

or stereo camera. Cartographer is a graph-based SLAM system, which uses

laser data and builds occupancy grid maps. Finally, GMapping is an RBPF

SLAM method that is also laser-based and builds occupancy grid maps.
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Chapter 3

Evaluating Robot Localization
Performance

To evaluate a robot localization system the trajectory error evaluation metric

is used. Calculating the pose error requires a ground-truth measurement.

The ground-truth pose is commonly obtained using accurate sensor systems

like GPS+IMU and motion capture or using external markers that can be

accurately localized. Datasets are the most popular way to evaluate a robot

SLAM or localization method.

There are many SLAM datasets that exist and are used for evaluating dif-

ferent SLAM and localization systems [5], [15], [32], [39], [41]. These datasets

typically provide a ground-truth robot pose, which is used for calculating the

position error and rotational error of the system being evaluated. The method

proposed in this thesis only estimates position error; however, since rotation

error leads to position error then rotation error can be indirectly measured

with only position error [41]. Datasets are extremely useful for providing a

repeatable benchmark for comparing methods, however, they only provide a

subset of possible scenarios to test.

The first part of this chapter goes over different evaluation metrics used for

evaluating localization systems including the one used for Chapter 5 experi-

ments. The second part reviews the commonly used ground-truth measure-

ment systems and some of the datasets that use them.
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3.1 Evaluation Metrics

Evaluation metrics are used when comparing localization methods or tuning

them to get better results. A variety of metrics exist including map quality,

computational efficiency, robustness and trajectory error.

3.1.1 Trajectory Error

Trajectory error is the most popular metric used for comparing localization

systems as it does not depend on the type of map or sensor used [27], which

allows researchers to compare one algorithm against another. It also provides

a concise numerical result that can be used for feedback when tuning a system.

There are two ways of calculating trajectory error: Absolute Trajectory Error

(ATE) and Relative Pose Error (RPE) [41]. Sturm et al. note that when using

ATE and RPE for evaluation of SLAM systems the relative ordering tends to

be consistent between the two metrics [41].

RPE is the difference in ground-truth motion and estimated motion over a

fixed time period ∆ and measures the local accuracy of localization [41]. Given

the estimated trajectory P1, ...,Pn ∈ SE(3) and the ground-truth trajectory

P′1, ...,P
′
n ∈ SE(3) the RPE for time i can be calculated as follows:

RPEi = (P′i
−1
P′i+∆)−1(Pi

−1Pi+∆) (3.1)

Using the above equation the RMSE, mean or median of the translational

and rotational components can be calculated over the entire trajectory. Typ-

ically researchers report the RMSE or mean. To measure the global error of

a trajectory it is recommended to calculate the mean (or RMSE) RPE for all

possible ∆ and take the average, which provides a good evaluation of a SLAM

system.

ATE requires aligning the estimated robot trajectory with the ground-truth

trajectory to calculate pose error and evaluates the global consistency of a

trajectory [41]. Given the rigid-body transformation S mapping the estimated

trajectory (P) into the ground-truth trajectory’s (P′) coordinate frame, the
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ATE can be calculated for time i:

ATEi = P′i
−1
SPi (3.2)

The method presented in this thesis estimates the mean translational error,

which is the mean ATE, as a result when calculating the ground-truth mean

ATE is used:

Mean(ATE1:n) =
1

n

n∑
i=1

||trans(ATEi)|| (3.3)

3.1.2 Others

Besides trajectory error, it is also important to consider robustness. In [40]

they present a protocol for evaluating a complete navigation system over a

long period of time. Their tests involve a standard environment where they

provide a specification for the size and layout for the testing areas the robot will

navigate in. In standardized environments, they then have a set of challenges

that not only test trajectory position error, but also robustness using the

number of failures, time to failure, distance to failure and average speed. A

key part of the challenges is that the navigation must happen over a long

period and the environment will be modified throughout (eg. objects are

moved or added, dynamic obstacles, etc.). The position error is measured

using an external marker based method that they developed [25]. They also

use a reference robot (Adept Pioneer 3DX) and reference navigation system

that are a baseline across all navigation areas. They use their evaluation test-

bed to compare two different robot systems at two different institutions using

the reference robot at both locations to provide a baseline.

Another consideration when comparing systems is their computational

complexity Bodin et al. designed a Visual SLAM benchmark which includes

metrics for measuring computation speed, power consumption and memory

usage [3]. At the time of publishing they supported eight different SLAM

algorithms. They aimed to make it dataset agnostic and easy to test new
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algorithms with it. For their experiments, they run the algorithms on three

different machines of varying computational speed: Odroid, NVIDIA Jetson

TK1, and a desktop with an i7 intel CPU and NVIDIA GTX 1080 GPU.

Metrics that measure computational complexity are useful for hyperparame-

ter tuning of SLAM systems to optimize the speed/accuracy tradeoff which is

important on memory constrained devices.

With SLAM systems you can also evaluate based on the map as the map

quality directly affects localization performance. For example, you can com-

pare a SLAM map with the building floor plan, or compare the relative distance

between landmarks [27]. Filatov et al. present three quantitative evaluation

metrics for 2D SLAM maps: the proportion of occupied and free cells, corner

count and the number of enclosed areas [12]. The proportion of occupied cells

shows how blurry a map is or if you have duplicate walls and is a measure of

map quality. Filatov et al. assert a map with fewer corners will have fewer

artifacts and is usually more consistent than a map with more. Finally, en-

closed areas likely represent places where walls have overlapped due to drift

and failed loop closure [12].

3.2 Ground-Truth Localization Error Estima-

tion Methods

Most methods for evaluating trajectory error need ground-truth measure-

ments. This section goes over some of the different ground-truth methods,

including GPS and IMU sensor fusion, motion capture, simulation and exter-

nal markers. This section also summarizes the different datasets that have

ground-truth measurements provided.

3.2.1 GPS and IMU Sensor Fusion

Outdoors Ground-truth is usually obtained from fusing data from precise sen-

sors like Global Positioning System (GPS), inertial measurement unit (IMU),

and Light Detection and Ranging (LiDAR). This section summarizes three

datasets [15], [32], [39] that include GPS and other sensor data for ground-
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truth.

Figure 3.1: The recording platform used for collecting the KITTI dataset
(figure from [14]).

The KITTI dataset [14], [15] was collected on autonomous vehicle in an ur-

ban area and includes data for benchmarking a variety of autonomous driving

tasks including visual odometry and SLAM. Their goal was to provide a large

scale and challenging dataset in an uncontrolled environment. The sensor suite

includes GPS and IMU localization which is used to measure ground-truth 6

degree of freedom (DOF) position. Fig. 3.1 shows the car and sensors used

for collecting the KITTI dataset [14]. For the visual odometry and SLAM

evaluation set they selected approximately 40 KM of driving with high-quality

ground-truth localization. They made sure to include loops in the evaluation

set so that SLAM loop closure detection can be tested. The KITTI bench-

mark suite [15] uses the RPE evaluation metric. They use their dataset to

evaluate several comparable visual odometry systems without loop closure de-

tection; however, since being published, this dataset has become one of the

most popular datasets for comparing SLAM algorithms.

The Oxford RobotCar Dataset [32] contains over 1000 Km of driving data

on an autonomous car. The dataset was collected on one route over one year.
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The goal was to provide a large-scale dataset with a variety of conditions

(weather, illumination, etc.) on one route so that research could be done on

long-term autonomy. To aid long-term autonomy research they provide tags

for each traversal that describe the conditions for that traversal, for example,

clouds or night. The dataset provides GPS, INS (Inertial Navigation System),

LiDAR, images and stereo visual odometry. Because the quality of the GPS

data varies throughout the dataset they do not recommend using it directly as

the ground-truth robot pose. Also, the pose provided by the visual odometry

system drifts over time so is not suitable to be used directly as ground-truth

either.

The New College Vision and Laser Data Set [39] was collected on a two-

wheeled mobile robot driving around a University campus. The dataset was

collected to be used for robot navigation and mapping research. The data

includes odometry, two 2D laser scanners, stereo images, panoramic camera

and GPS. Further, the dataset contains three sections, one for each area the

robot was navigated in.

Fusing IMU and GPS produces reliable 3D data on a moving vehicle and

works outdoors [15]. However, using multiple sensors increases the complexity

of data synchronization and sensor calibration [15], as well as increases the

cost of the system.

3.2.2 Motion Capture

Indoors GPS is not an option so motion capture systems are used. Motion

capture systems measure precise 6 DOF pose using multiple cameras and re-

flective markers. Fig. 3.2 shows an example motion capture camera and the

reflective markers used for tracking placed on a robot. The accuracy of mo-

tion capture makes it useful for evaluating robot navigation. Some motion

capture systems can be used outdoors using specialized hardware, software

and/or active markers. This section reviews two different datasets that use

motion capture ground-truth [5], [41], as well as an example of motion capture

used for robot localization performance evaluation [37] and finally a method

that is similar to motion capture using external sensors.
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Figure 3.2: Optitrack Flex 13 motion capture camera and reflective markers
used on robot.

Sturm et al. created the TUM dataset for benchmarking visual SLAM

systems and they used a motion capture system to get the ground-truth [41].

The dataset contains sequences of RGB and depth images collected in office

and industrial environments using an RGB-D camera. Some of the sequences

are collected using a handheld camera and others were collected from a mobile

robot. For their motion capture system they use eight MotionAnalysis Raptor-

E cameras. For extrinsic calibration they placed motion capture reflective

markers on the camera and the four corners of a checkerboard marker and

they found that the motion capture system has an absolute error of less than

10 mm and 0.5◦.

Another SLAM dataset which uses motion capture for ground-truth is Eu-

Roc [5]. The dataset was collected on a Micro Aerial Vehicle and contains

hardware synchronized stereo images and IMU data. The dataset is used for

comparing different visual-inertial SLAM systems and was used as part of the

evaluation for the European Robotics Challenge (EuRoc). Two environments

are included in the dataset. The first is a large unstructured machine hall

and the ground-truth is provided by a Leica total station. The machine hall

also has variable illumination which makes it more challenging. The second

environment is 8 m × 8.4 m × 4 m room with artificial objects added and the

ground-truth is obtained from a Vicon motion capture setup. The ground-
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truth measurements from the motion capture and Leica are aligned with the

sensor coordinate frame to calculate the ground-truth error.

Röwekämper et al. also use a motion capture system to obtain the ground-

truth for measuring the position accuracy of a localization system [37]. They

evaluated Monte-Carlo localization running on a Kuka omniRob platform run-

ning in an industrial environment. The robot navigates to set reference posi-

tions while being evaluated and the error is evaluated relative to the reference

positions. For evaluation metrics Röwekämper et al. use position error and

yaw error. Further, they provide both the positioning error and localization

error. The positioning error measures how well the robot can get back to a

fixed waypoint and is dependent on the robot controller and hardware.

Ceriani et al. present two methods for indoor ground-truth data collection

GTvision and GTlaser [7] that use external sensors to locate the robot similar

to a motion capture system. GTvision uses a network of cameras to track the

robot’s 6 DOF ground-truth position by estimating the pose of AR markers

attached to the robot. To get the extrinsic calibration for the camera network

they use two checkerboards rigidly mounted to a metal frame to get the relative

pose between two cameras, they do this for all camera pairs chaining the

transformation back to the world reference frame camera. The robot pose

is found using the identified markers on the robot to solve the Perspective-

N-Point problem. GTlaser uses a network of 180◦ FOV laser scanners to

track the robot’s 3 DOF ground-truth position by identifying a custom hull

attached to the robot. The extrinsics for the laser network are found by

aligning the output of the scans using objects with known shapes placed in

the environment. To find the robot pose using the laser network the Iterative

Closest Point algorithm is used. They tested their two ground-truth systems

in two different environments and use manual measurements to validate them.

The GTlaser method has a mean translation and angular error of 20 mm and

0.15◦, respectively. The GTvision method is less accurate but more flexible

with mean translation error of 112 mm and mean angular error of −0.8◦. Both

methods require a large amount of setup and calibration.

Motion capture systems provide a very accurate pose estimate that does
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not drift over time [37], [41]; however, for each new test environment a motion

capture system must be taken down, setup and re-calibrated. Also, the number

of cameras available restricts the area covered by the motion capture system.

3.2.3 Simulation

In simulation calculating trajectory error is trivial as the robot’s exact ground-

truth pose can be queried. However, simulators usually provide very clean

data that does not contain outliers or realistic noise, which means evaluation

results from simulation generally do not transfer to the real world. Still though,

because simulators make evaluation easy and can provide detailed sensor data

they are useful. For example, Handa et al. published a dataset for SLAM

research using simulated data [21].

The ICL-NUIM dataset is a simulated dataset for testing SLAM and visual

odometry algorithms [21]. They use an open source tool POVray1 to simulate

two different scenes and provide exact ground-truth pose for camera trajec-

tories in those scenes. The key feature of this simulated dataset is that they

also provide ground-truth surface models, which are hard to obtain in real life.

The surface models can be used for comparing maps or evaluating 3D surface

reconstruction. For the sequences they provide clean noiseless RGB-D. In their

evaluation they compare different algorithms using the clean data versus data

they apply a noise model to.

3.2.4 External Markers

Another way to evaluate pose error is to use external markers that can be

localized accurately. For example, [43] uses retroreflective markers and [25]

uses visual markers.

Tong et al. created a ground-truth method that does not require external

sensors and calibration [43]. They place retroreflective markers in the envi-

ronment and locate them using a SICK LMS291 laser mounted on a pan-tilt

unit to get a 360◦ by 180◦ scan. For a maximum sensing range of 40 meters

1http://www.povray.org/

25



they use 1.2 m × 1.2 m markers. The landmarks are identified using k-means

clustering on the scan data. Their system requires three visible retroreflec-

tive markers to localize the robot using batch SLAM. The SLAM algorithm

aligns point clouds while also estimating the position of the visible landmarks

to estimate the robot position. They evaluated their method using a motion

capture system in a lab environment and report a relative root mean square

translation error of 2.1 cm and 0.51◦ angular error. They also show that their

method works in a larger scale 40 m diameter environment.

Kikkeri et al. [25] demonstrated a method to measure the localization error

for a navigation system. The inexpensive landmark-based system uses an RGB

camera to locate printed patterns placed on the ceiling at waypoints through-

out the environment. For visual markers, they use custom pattern combining

checkboard and circle patterns, which allows them to detect the marker even

if partially occluded. To initialize their system, waypoints are collected for

each marker as well as the camera-to-marker pose. During their evaluation

phase, they have the robot drive to poses collected during initialization and

then compare the current camera-to-marker pose with the one saved during

initialization, this difference in pose is the metric used to evaluate the accuracy

of the localization. They evaluate their method on Adept Pioneer 3DX robot

and report an average position error of 15 mm and average angular error of

−0.4◦ in a 1.5 m × 1.5 m area. They also demonstrate their method scales

well to large environments using a 15 marker sequence in an approximately 57

m by 52 m building and provide qualitative results.

Using external markers makes evaluating in new environments easy and

can be used both indoors and outdoors. The method presented in this thesis

uses external markers (AR tags) for estimating localization position error.

3.3 Summary

Trajectory error is the most popular metric for evaluating localization perfor-

mance used in research, as it is easy to compare completely different algorithms

using it. Other metrics like robustness, efficiency and map quality become
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more important when deploying a system outside of research. The method

presented in this thesis estimates the mean ATE of a localization system.

Ground-truth robot pose is required to calculate trajectory error. High

accuracy GPS and IMU systems are a great way to get ground-truth robot

pose outdoors. But even outdoors GPS is not always available. Indoors motion

capture can be used but it requires significant setup and calibration when you

want to move to new environments. Systems that use external markers are

an accurate way to localize and the markers are generally flexible for use

both outdoors and indoors. The next chapter describes the proposed method

for estimating localization performance without a ground-truth measurement

system.
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Chapter 4

Robot Localization Performance
Evaluation Using Visual Marker
Pose Estimation

4.1 Introduction

This section presents a low-cost and convenient method for calculating robot

localization error. The approach does not require the ground-truth robot po-

sition and only needs a camera and visual markers placed around the environ-

ment to calculate the localization error. The type of marker is not important,

as long as its pose can be accurately estimated relative to the robot. For the

experiments we use AR tags as a marker. The error can be computed by inde-

pendently sampling the same marker twice to create optimization constraints

and then using Generative Latent Optimization (GLO) [4] to estimate the er-

ror. The markers can be placed anywhere in the environment as long as the

robot’s camera can see them.

4.2 Estimating 2D Position Error Using GLO

The proposed method estimates the absolute error for a 2D localization system

using measurements of robot poses with respect to visual markers at unknown

locations in the robot’s environment. Since the robot-to-marker pose estima-

tion is local at a close range to the marker, the error is considered relatively

small and negligible. When the robot visits a visual marker it records its pose
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Figure 4.1: How to estimate robot localization error. A robot performing
localization visits a visual marker twice. P1 and P2 are the estimated poses
in the map coordinate frame, from the localization system being evaluated.
P′1 and P′2, are the unknown ground truth robot poses. X1 and X2 are the
marker to robot pose estimates, in the marker’s coordinate frame. The goal
is to estimate the position error statistics of ε1 and ε2, which are assumed to
be independent and identically distributed random variables, from P1, P2, X1

and X2. Note that vp and vx can be computed but they are expressed in two
different coordinate frames.

within the robot map according to the localization algorithm. At the same

time, the robot also computes its pose relative to the marker. After several

visits to the same marker, the method uses GLO [4] to estimate the error of

the localization algorithm with respect to the map reference frame. GLO is

used as it can estimate a variable that cannot be measured directly but is a

function of some other observable values. Therefore, the method can quantify

the performance of a localization algorithm from local relative measurements

only without the need for a global measurement system such as motion capture
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Algorithm 1: The first step of the proposed method for estimating 2D
localization error. First vx and vp pairs (see Fig. 4.1) are collected into
a dataset D, each pair from visiting a visual marker more than once by a
robot performing localization.

Step 1: Collect samples

Input : N = number of samples to collect
Output: D ={ (vix,vip) i = 1, ..., N}
i = 0
while i < N do

check if visual marker in range
if repeat visit then

compute vix with Xi
1 and Xi

2

compute vip with Pi
1 and Pi

2

i++
end

end

or global ground truth positions.

The intuition for the method is illustrated in Fig. 4.1, where vp and vx

can be calculated after two visits to the same visual marker. Pi and P′i are

the global pose estimated by the localization algorithm and the ground truth

pose, respectively, and P′i is unknown. εi is the translational localization error

whose statistics are to be determined. Note that the magnitude of εi is the

mean ATE. The position of the visual marker in the map coordinate frame

is also unknown, and as a result εi cannot be calculated directly. Assume

the error in robot-to-marker pose estimation is negligible and therefore the

error in the measured length of vx is negligible. At the same time, vp can

be calculated. Most importantly, the discrepancy between the lengths of vp

and vx is directly related to the length of εi. Exploiting this relationship, we

use GLO to estimate the statistics of the x and y components of εi, assumed

to be i.i.d., from N samples of (vx and vp) that best explain the discrepancy

between vx and vp. The remainder of this section will first explain how GLO

works and then show how to use it to estimate the statistics of mean ATE.
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Algorithm 2: Steps 2 and 3 of the proposed method for estimating 2D
localization error. Step 2: D is used as constraints in an optimization
method called GLO (generative latent optimization), to estimate the the
variance σ of a zero-mean random variable, which is a function of the local-
ization error. Step 3: the statistics of the localization error, i.e., its mean
and variance, are derived from σ assuming the error follows a Rayleigh
distribution. In Step 2, m is a hyperparameter.

Step 2: Parameter estimation

Input : D ={ (vix,vip) i = 1, ..., N} }
Output: σest
cmin =∞
for σ in range(σmin,σmax) do

z = {zi...zm} where zi ∼ N (0, Id)
zσ = σ ∗ z

c =
N∑
i=1

[
min

[
(‖vip + ε‖2

2 − ‖vix‖2
2) for ε in zσ

]]
if c < cmin then

cmin = c
σest = σ

end

end

Step 3: Localization error calculation

Input : σ
Output: µl, σl (mean and standard deviation of the translational

localization error)
σ̂ = σ√

2

µl = σ̂
√

π
2

σl = σ̂
√

4−π
2

4.2.1 Generative Latent Optimization (GLO)

GLO [4] is an algorithm, popularized in GAN (generative adversarial networks)

[16] research, to learn the parameters of a function g, called generator, by

minimizing reconstruction loss. For the proposed method GLO is used with a

g that has a single unknown parameter whereas in image generation research,

which GLO and GAN come from, the generator is a neural network with many

parameters. GLO is defined by Eq(4.1):
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min
σ∈Θ

1

N

N∑
i=1

[
min
zi∈Z

`(gσ(zi), xi)

]
(4.1)

Consider a set of samples of unknown distribution, x1, ..., xN , where xi ∈ X .

Second, a set of random vectors z1, ...,zN where zi ∈ Z are generated then

GLO attempts to learn the parameters σ of a generator gσ : Z → X by solving

Eq(4.1), where ` : X ×X is a loss function measuring the reconstruction error

from gσ(zi) to xi.

For this application, the unknown (latent) parameter is the standard devi-

ation of x and y components of εi, which cannot be estimated directly from the

marker pose measurements and the localization estimates. However, a func-

tion gσ of the unknown parameter can be constructed, and used to compute

the samples xi in Eq(4.1) from the marker and robot pose measurements. As

a result, GLO is applied to estimate the unknown parameter, as will be shown

in detail in the next section.

4.2.2 Application of GLO to Localization Error Estima-
tion

Now consider the situation where a robot visits a marker twice, as shown in

Fig. 4.1. During both visits the robot localizes itself with respect to the map

and computes the marker pose relative to the robot. Assuming that the two

marker pose estimates, X1 and X2, have negligible errors.

Using Fig. 4.1 there is the following relationship between vx, vp and the

two unknown localization errors ε1 ,ε2:

−ε1 + vp + ε2 = vx (4.2)

vp and vx are the translation vectors between two visits to the visual

marker observed by the localization algorithm and by visual marker pose esti-

mation, respectively. However, vx is not available in the map reference frame,

so the above equation is not of practical use. Re-arranging Eq(4.2):
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vx = vp + ε or |vx|2 = |vp + ε|2 (4.3)

where ε = ε2 − ε1. Note that the magnitude |vx|2 is invariant with respect to

the reference frame and can now be used. Eq(4.3), can be rewritten in terms

of individual coordinates as

∑
vx

2 =
∑

(vp + ε)2 (4.4)

where the summation is over individual coordinates whose indexes are not

shown for clarity. In 2D, Eq(4.4) sums over x and y directions, i.e ε has two

components. Based on the symmetry of the problem it is assumed these two

components follow the same distribution, i.e., they are i.i.d.. Further, since

ε = ε2 − ε1 then E(ε) = 0 and the standard deviation of each component of

ε, σ, is
√

2 that of the standard deviation of each component of εi, σ̂. That

is, σ and σ̂ are related by

σ̂ =
σ√
2

(4.5)

σ is estimated using Eq(4.3) and GLO. Then Eq(4.5) is used to determine σ̂.

Now within the GLO framework, consider xi =
∑
v2
x and εi = σ ∗ zi and

define the generator function as

gσ(ε) =
∑

(vp + σ ∗ z)2 (4.6)

and the loss function defined as

`σ =

(∑
(vp + σ ∗ z)2 −

∑
v2
x

)2

(4.7)

next solve for σ using GLO and calculate σ̂ using Eq(4.5).

Given the assumption that each component of εi have zero mean and equal

variance, N (0, σ̂2), the magnitude of εi (i.e., mean ATE) will follow a chi
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distribution. Further, the localization error only has two degrees of freedom

so it is a special case of the chi distribution, the Rayleigh distribution.1

Using the parameter σ̂ calculated with Eq(4.5) the mean and standard

deviation of ATE are calculated using the following properties of a Rayleigh

distribution:

µl = σ̂

√
π

2

σl = σ̂

√
4− π

2

(4.8)

To summarize the proposed method for estimating 2D localization error:

1. Run the robot to visit visual markers and collect N measurements of vp

and vx.

2. Solve Eq(4.1) by randomly choosing σ and identifying the σ that mini-

mizes the loss function Eq(4.7).

3. Assuming the 2D localization error follows a Rayleigh distribution, use

the estimated parameter to calculate the mean localization error and

standard deviation using Eq(4.8).

4.3 Summary

The discussed method uses GLO to determine the 2D mean position error for a

localization system using randomly generated samples of the error. First, the

robot collects samples of robots localization poses and robot-to-marker poses

of visual markers, given multiple visits, and uses them to calculate a constraint

on the localization error. Then an optimization method is used to estimate

the statistics of the sampling constraint. Lastly, the 2D mean translational

error is calculated assuming it follows a Rayleigh distribution.

1https://en.wikipedia.org/wiki/Rayleigh distribution
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Chapter 5

Experiments

5.1 Introduction

The proposed method was validated with two different robots using several

different localization and SLAM algorithms. The experiments were run indoors

and outdoors and used three different localization sensors. Using different

robots, sensors, algorithms and navigation areas shows that the method is easy

to use. Further, the quantitative results show that the method is accurate for

evaluating localization performance indoors. This section first describes the

experimental setup, and then presents the results for the proposed method.

5.2 Setup

5.2.1 Localization/SLAM algorithms

Four different open source localization and SLAM systems were used for ex-

periments: AMCL [42], GMapping [18], Google Cartographer [23] and RTAB-

Map [29]. The experiments demonstrate that the method can be used to

differentiate the performance between several different algorithms. For all

the algorithms, experiments were run using existing ROS implementations or

wrappers.

The only pure localization method tested was AMCL which is a particle fil-

tering method. GMapping, Cartographer and RTAB-Map are SLAM methods.

GMapping is a Rao-Blackwellized particle filtering SLAM algorithm whereas

RTAB-Map and Cartographer are graph SLAM methods. For RTAB-Map and
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Figure 5.1: Two robots were used for experiments: Clearpath Jackal (right)
and Turtlebot2 (left).

Cartographer maps were built first then used to run the algorithms in local-

ization mode. All these methods use laser scan data and odometry, however,

RTAB-Map also requires an RGB-D or a stereo camera.

5.2.2 Robots

Two different robots the Clearpath Jackal and the Turtlebot2 were used for

experiments. The Turtlebot2 is a two-wheel differential drive robot whereas

the Jackal is a four-wheeled skid-steer drive robot. Skid-steer drive robots

have more wheel slippage than differential drive robots. Methods to reduce

odometry error by accounting for wheel slippage have been developed [2], [26],

[33], [44], however, the Jackal robot does not compensate for wheel slippage

in its low-level controller. Therefore, it is expected that the odometry error

will be larger for the Jackal compared to the Turtlebot and that the Jackal

will generally have larger localization error when using the same localization

algorithm and sensor combination.
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5.2.3 Sensors

The localization performance should depend on the quality of the sensor and

should be observed using the presented performance evaluation method. An

Astra Orbbec RGB-D Camera (Astra), a Hokuyo UTM-30LX-EW (Hokuyo-

UTM) and a Hokuyo URG-04LX (Hokuyo-URG) were used for experiments.

Fig. 5.2 shows an image of the three sensors. When mounting the sensors on

the robot, the extrinsics were obtained through manual calibration.

The Astra has a recommended depth operating range of 0.6 - 8.0 m and the

error and variance of its depth estimates increases quadratically in with range

[20]. Also, the narrow horizontal FOV of the Astra at 60◦, which is similar

to other RGB-D cameras, decreases its mapping and localization performance

compared to a laser scanner with a wide FOV [45].

The Hokuyo-URG and Hokuyo-UTM both have a measuring accuracy of

30 mm; however, the Hokuyo-UTM has a larger range at 30 m versus 5.6 m of

the Hokuyo-URG. Also, the Hokuyo-UTM has a 270◦ scan angle with a 0.25◦

angular resolution versus a 240◦ scan angle with a 0.35◦ angular resolution

for the Hokuyo-URG. Finally, the Hokuyo-URG sensor has more noise in its

depth values compared to the Hokuyo-UTM [35]. Rogers et al. tested several

different sensors including the Hokuyo-UTM and Hokuyo-URG using a SLAM

method based on GTSAM [11] and found that the Hokuyo-UTM sensor had

the lowest localization error [36].

The Hokuyo-URG and Hokuyo-UTM are expected to perform better than

the RGB-D camera at localization because they have less measurement noise

and larger FOV. Further, the Hokuyo-UTM should have the lowest error, since

it has the widest angular range, the lowest measurement noise, and has been

shown to perform better than the Hokuyo-URG for SLAM [36].

5.2.4 Navigation Areas

The proposed performance evaluation method was tested in three different

areas, with different sizes and complexities. In all the areas AR tags are

placed on walls, furniture and boxes to be used as visual markers. By testing in
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Figure 5.2: Three localization sensors were used: Hokuyo UTM-30LX-EW
(UTM), Hokuyo URG-04LX (URG) and Astra Orbbec RGB-D camera (Astra)
(in order left to right).

multiple areas the method is shown to be applicable in different environmental

conditions.

The first area, labeled as Room1 (see Fig. 5.3), is an approximately 4 m

× 4 m space with smooth cement floors. Room1 is surrounded by barriers on

all sides so that the robot cannot exit the space when performing a random

walk. Room1 is small and simple where a random walk navigation strategy

can be used for sampling.

The second area, labeled as Room2 (see Fig. 5.4) is approximately 5 m ×

5 m in size (area covered by motion capture system) with tiled floors. Room2

is larger than Room1 and the motion capture area is not as self-contained as

in Room1. In Room2 boxes are placed throughout the space to make the area

more difficult to perceive and navigate.

The third area, is labeled Outdoor as shown in Fig. 5.4. The outdoor

space is an approximately 12 m × 12 m flat cement walkway between two

buildings. AR tags are placed on some of the walls and planters in the area,

and also boxes and tripods were used to set AR tags on. Without a way to

obtain the ground-truth robot position the outdoors data can only be used for

qualitative comparison among different sensors and localization algorithms.
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Figure 5.3: Room1 navigation space with visual markers randomly placed on
the perimeter. Room1 is approximately 4 by 4 meters with smooth cement
floors. Robot to marker poses are sampled and used for evaluating localization
performance.
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Figure 5.4: Room2 is approximately 5 by 5 meters with tiled floors. AR
markers are randomly placed throughout the navigation area. Further boxes
are used to make the environment more complex.
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Figure 5.5: Outdoor experiment with Jackal robot. Constrained Jackal navi-
gation to a roughly 12× 12 meter flat area in between two buildings. Outdoor
results have no ground-truth but are used for qualitative evaluation.

Testing outdoors shows the method is easy to set up and use both indoors and

outdoors.

5.2.5 Navigation Strategies

Two navigation strategies were used when collecting data. The first strategy

is a simple random walk behavior which was used in Room1. The second

navigation strategy was random waypoint navigation. A visualization of the

poses collected using both strategies is shown in Fig. 5.6.

The random walk behavior has two parts, first the robot turns a random

amount and then drives until it reaches an obstacle. Obstacles are detected

using a laser scanner and the robot stops when it is less than a threshold

distance away from any obstacle. As mentioned AR tags are placed around

the outside of the space so that when the robot approaches an obstacle it can

collect robot-to-marker pose samples.

The second behavior is navigation to random waypoints from a set collected

before the experiment. The behavior is used in Room2 and Outdoor as these

areas are not self-contained like Room1 and more complex. As a result, using

waypoint navigation the robot can cover the entire space more efficiently and

collect visual marker samples faster. The waypoint navigation is implemented
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Figure 5.6: For the experiments two different navigation strategies were used.
In Room1 (Fig. 5.3) the robot does a random walk because it is self-contained
and the motion capture can cover the entire area. In Room2 (Fig. 5.4) and
outdoors (Fig. 5.5) random waypoint navigation was used, as the environments
were more complex and open making it harder to use a random walk. See the
left image (a) for a visual example of samples collected using the random walk
and the right image (b) for samples collected using waypoint navigation. The
blue squares with a X are robot pose samples and the other colored squares
are marker pose samples.

with the ROS package move base1 using AMCL2 localization and with a map

built using GMapping.3 Before an experiment is run waypoints are collected

nearby and facing the visual markers.

5.2.6 Visual Marker Pose Sampling

When a visual marker is in the camera’s field of view and within range its pose

is sampled, with respect to the AR tag as well as using the motion capture

where it is available. The visual markers are placed around the space at roughly

the height of the camera. The tool used for computing robot-to-marker poses

is ar track alvar.4 With ar track alvar only the RGB image from the Astra

camera was used for estimating AR Tag pose. During evaluation only the

poses of markers less than 0.8 meters from the robot are used to obtain a

relative pose of sufficient accuracy for the evaluation method. The range limit

1http://wiki.ros.org/move base
2http://wiki.ros.org/amcl
3http://wiki.ros.org/GMapping
4http://wiki.ros.org/ar track alvar
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is used because the error in ar track alvar as determined experimentally (see

Fig 5.8). Fig. 5.7 shows an example of the AR tags used.

Figure 5.7: Robot’s view of visual marker. The marker pose is tracked using
ar track alvar ROS package.

The error in marker position estimation should be ideally an order of mag-

nitude smaller than the error in the localization system for Eq(4.2) to hold

true practically. Using a motion capture system the error in ar track alvar

position is measured. See Fig. 5.8, which shows the ar track alvar tracking

error versus distance from the marker for the samples collected. The average

tracking error in the robot’s sampling range (< 0.8 m) is 1.4 mm ± 1.5 mm;

therefore, the proposed method will not be appropriate for estimating mean

translational error below 1.4 cm with the visual markers used for experiments.

5.2.7 Ground-truth

An Optitrack Flex135 motion capture system with eight cameras was used to

sample the robot’s ground-truth trajectory. Optitrack claims the Flex 13 cam-

era has a motion tracking tolerance of 0.5 mm. The motion capture trajectory

and localization trajectory are aligned; subsequently, the ground-truth mean

translational error can be calculated for evaluating the proposed method.

5https://optitrack.com/products/flex-13/
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Figure 5.8: The position error in pose estimate using the AR tag esti-
mates as distance from the marker increases. The plot shows how accurately
ar track alvar can track X1 and X2 (see Fig. 4.1) within the range: 0.6 meters
to 1.1 meters. Only marker poses less than 0.8 meters from the robot are sam-
pled during experiments. The plot shows that this error increases linearly with
the distance to marker within this range. The ground truth robot and marker
pose were measured using an Optitrack Flex 13 motion capture system.

5.2.8 Implementation Details

Algorithm 1 and 2 shows pseudocode for the three steps of the proposed

method. While step 1 shows an online data collection method, the (vp,vx)

pairs are actually generated offline. Before step 2, 500,000 (vp,vx) pairs are

randomly selected from the set of all pairs to reduce computation time. Next,

step 2 is run 50 times on a small batch, each time calculating σ and the mean

of those runs is used to calculate σ̂ in step 3. In step 2 m is a hyperparameter,

Bojanowski et al. set m to N , whereas for a similar method Implicit Maximum

Likelihood Estimation (IMLE) [31], they recommend setting m ≥ N . Batches

of size 500 and m = 2000 were used, after some manual tuning. Also, before

running step 2, outlier (vp,vx) pairs are removed using the difference in length

between vp and vx. The outliers are removed using the 1.5 Interquartile Range

(IQR) heuristic, where IQR is the difference between the third quartile (Q3)

and the first quartile (Q1), and data that is greater than Q3 + 1.5 * IQR or

less than Q1 - 1.5 * IQR is considered an outlier.

44



5.3 Results

Table 5.1 and 5.2 show the results for AMCL, GMapping, Cartographer and

RTAB-Map. In Room1 only AMCL with the Turtlebot were used. In Room2

all the methods and the Jackal robot used. However, GMapping was not used

with the Jackal due to data corruption yet to be corrected at the time of

writing. Also, for Cartographer only the UTM and URG sensors are used as

Cartographer was not tuned to work reliably on simulated laser scan data from

RGB-D.

The results show that the proposed method can estimate within an order

of magnitude of the ground-truth error. This is the most significant result

as it verifies the feasibility of the proposed method. Further, for most cases

the Hokuyo-UTM sensor has the best performance and the RGB-D sensor has

the worst performance, as expected. The only exceptional case is the Jackal

AMCL data for Room2. Also, there is a noticeable difference between the

Turtlebot results (Table. 5.1) and Jackal (Table. 5.2) results as expected due

to the Jackal’s larger odometry drift.

If the mean translational error does not follow a Rayleigh distribution then

the proposed method fails. In the result tables, there are three outliers marked

by an asterisk: Room2 Jackal Cartographer with the Hokuyo-URG and both

rows involving the Hokuyo sensors for Room2 Turtlebot RTAB-Map. These

outliers rows have a much larger absolute error than the other rows, showing

that although this method still produces useful results, it fails to estimate

the error with the same accuracy. To understand the underlying cause of

these cases, in Fig. 5.10 (d-f) the histograms for the three outlier rows are

shown. Fig. 5.10 also plots a Rayleigh distribution estimated probability

density function (PDF) and a Kernel Density Estimate (KDE) PDF fitted to

the data.

If the translational error follows a Rayleigh distribution then the PDF

found using the non-parametric estimation method (KDE) should roughly

match the PDF fitted using the Rayleigh distribution. For Fig. 5.10 (d-f)

it is clear that the Rayleigh and KDE PDFs do not match, and this is most
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Table 5.1: Turtlebot: Position error estimation in mm using the proposed
method. Compared with motion capture to create ground-truth. With dif-
ferent algorithm and sensor combinations there should be different localiza-
tion performance. The sensors used are: RGB-D (Astra Orbbec), Hokuyo-
URG (Hokuyo URG-04LX), and Hokuyo-UTM (Hokuyo UTM-30LX-EW) on
a Turtlebot. The Ground-truth column shows the mean and standard devia-
tion calculated using position errors measured with the motion capture system.
The Ours column shows the estimated mean (µl) and standard deviation (σl)
of the localization error calculated using the proposed method. The final col-
umn shows the absolute value of the difference between the Ground-truth and
Ours in mm.

Turtlebot: Comparison of Absolute Position Error in mm

Room 1

Localization
Method

Sensor
Ground-

truth
(mm)

Ours
(µl ± σl)

(mm)

Abs. error
(mm)

AMCL
Hokuyo-UTM 43 ± 19 43 ± 23 0
Hokuyo-URG 45 ± 22 42 ± 22 3

RGB-D 81 ± 38 79 ± 41 2
Room 2

Localization
Method

Sensor
Ground-

truth
(mm)

Ours
(µl ± σl)

(mm)

Abs. error
(mm)

AMCL
Hokuyo-UTM 33 ± 16 33 ± 17 0
Hokuyo-URG 39 ± 21 39 ± 20 0

RGB-D 53 ± 25 48 ± 25 5

GMapping
Hokuyo-UTM 17 ± 13 24 ± 13 7
Hokuyo-URG 29 ± 16 35 ± 18 6

RGB-D 163 ± 74 165 ± 86 2

Cartographer
Hokuyo-UTM 11 ± 6 15 ± 8 4
Hokuyo-URG 34 ± 20 35 ± 18 0

RTAB-Map
Hokuyo-UTM 14 ± 49 23 ± 12 9
Hokuyo-URG 41 ± 200 22 ± 12 19*

RGB-D 272 ± 298 170 ± 89 102*

* Outlier results where error does not follow Rayleigh distribution. See
Section 5.3 for further discussion.

likely the reason for the poor estimates shown in the table. Specifically, for the

outlier examples mentioned a translational error versus time plot like Fig. 5.9

(b) is typical, which shows an example of data with many outliers. When there
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Table 5.2: Jackal: Position error estimation in mm using the proposed method.
Compared with motion capture to create ground-truth. With different algo-
rithm and sensor combinations there should be different localization perfor-
mance. The sensors used are: RGB-D (Astra Orbbec), Hokuyo-URG (Hokuyo
URG-04LX), and Hokuyo-UTM (Hokuyo UTM-30LX-EW) on a Jackal robot.
The Ground-truth column shows the mean and standard deviation calculated
using position errors measured with the motion capture system. The Ours
column shows the estimated mean (µl) and standard deviation (σl) of the
localization error calculated using the proposed method. The final column
shows the absolute value of the difference between the Ground-truth and Ours
in mm.

Jackal: Comparison of Absolute Position Error in mm

Room 2

Localization
Method

Sensor
Ground-

truth
(mm)

Ours
(µl ± σl)

(mm)

Abs. error
(mm)

AMCL
Hokuyo-UTM 90 ± 39 100 ± 52 10
Hokuyo-URG 96 ± 43 98 ± 51 2

RGB-D 80 ± 34 81 ± 42 1

Cartographer
Hokuyo-UTM 53± 38 62 ± 32 9
Hokuyo-URG 137 ± 87 103 ± 54 33*

RTAB-Map
Hokuyo-UTM 35 ± 68 32 ± 17 3
Hokuyo-URG 43 ± 29 47 ± 25 4

RGB-D 206 ± 100 208 ± 109 2

* Outlier results where error does not follow Rayleigh distribution. See
Section 5.3 for further discussion.

are many outliers this causes the error to become multimodal and breaks the

Rayleigh distribution assumption. Ideally, an additional step could be added

to the method where the Rayleigh distribution assumption can be checked,

however, this is difficult to verify without being able to directly sample the

error (eg. via ground-truth methods) and is a limitation of the proposed

method.

Table 5.3 shows the results from running the Jackal robot outdoors. In this

case, only AMCL was used on the data; both Cartographer and RTAB-Map

experienced serious map drift over time and losing track of the correct position,

to yield useful experimental data. GMapping is not used on the outdoor Jackal
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Figure 5.9: Graphical comparison of well-behaved error data (top) versus data
with outliers (bottom). These plots show the ground-truth translational error
versus time. For the proposed method to work it is assumed that the data
is unimodal, if the data has a lot of outliers (bottom) then this assumption
breaks.

Figure 5.10: Normalized histograms of ground-truth translational error for
a selection of Room2 experiments. The red lines are Rayleigh probability
density functions (PDF) fitted to the ground-truth error. The green lines are
PDFs found using non-parametric Kernel Density Estimation (KDE) with a
Gaussian Kernel.
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data for the same reason that it was not used on the indoor Jackal data.

Table 5.3: The estimated localization error for AMCL in millimeters, where
the data was collected on a Jackal robot. The outdoor estimates should be con-
sistent with the indoor results. The sensors used are: RGB-D (Astra Orbbec),
Hokuyo-URG (Hokuyo URG-04LX), and Hokuyo-UTM (Hokuyo UTM-30LX-
EW).

Outdoor - Jackal

RGB-D Ours

AMCL
Hokuyo-UTM 70 ± 37
Hokuyo-URG 97 ± 51

RGB-D 189 ± 99

The outdoor AMCL results are as expected showing the most error for

the RGB-D sensor and the least error for the Hokuyo-UTM. Also, there is a

bigger than normal difference between the Hokuyo-UTM and Hokuyo-URG,

which is expected given that the max range for the URG of 5.6 m, versus

that of the Hokuyo-UTM at 30 m. In a larger environment this is a big

advantage. Qualitatively the difference between the indoor and outdoor results

for the RGB-D sensor are convincing as the localization error is over two

times larger than the indoors. This large difference is expected as the Astra

Orbbec’s depth measurement performs poorly outside with sunlight. However,

the Hokuyo-URG and Hokuyo-UTM results are less intuitive, as there is lower

error outdoors than indoors for these sensors. This result is likely because

outdoors in a large space the Jackal has to turn less nearby markers and can

approach the waypoints in straight lines. Because of the Jackal skid-steer drive

wheel slippage turning less often means smaller mean translational error.

5.4 Summary

This section demonstrated that the proposed method is easy to use and set

up by testing in multiple environments and with multiple robot and sensor

combinations. Also, because it only requires visual markers place around the

navigation space, such as AR tags, it is inexpensive. Finally, the results show

that the proposed method can estimate the mean translational error within
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an order of magnitude of the error measured by a motion-capture system.
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Chapter 6

Conclusion

This thesis presents a method for evaluating robot localization performance

that is accurate, inexpensive and easy to setup. Chapter 2 gave a brief re-

view of Markov Localization and SLAM then summarizes the four localization

methods used for experiments. AMCL is a particle filter algorithm that uses

laser scan data and requires an existing occupancy grid map. GMapping is an

RBPF SLAM algorithm that builds occupancy grid maps with a laser scan-

ner. RTAB-map and Cartographer are both graph-based SLAM systems, but

Cartographer requires laser scan data, whereas RTAB-map requires 3D vision

but can also use laser scan data as additional input.

Chapter 3 reviewed existing ground-truth methods and robot localization

evaluation metrics. Trajectory error is a commonly used metric as it provides a

concise measure of performance. There are two types of trajectory error RPE

which is a measure of local error between poses and ATE which measure the

global error in the map frame. Metrics measuring robustness, computational

complexity and map quality are also sometimes used to evaluate localization

and SLAM systems. Ground-truth methods for estimating localization perfor-

mance include motion-capture, GPS and IMU sensor fusion, simulation and

external marker systems.

Chapter 4 described the proposed method for estimating mean transla-

tional error for a localization system. Experiments show that the method is

easy to use and set up by testing in multiple environments with multiple robot

and sensor combinations. The experiments were run with Clearpath Jackal and
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Turtlebot2 robots using either the Astra Orbbec RGB-D, Hokuyo-UTM laser

rangefinder or Hokuyo-URG laser rangefinder for a localization sensor. Also,

the method is inexpensive as it only requires visual markers (eg. AR tags)

placed around the navigation space. The error estimation algorithm has three

steps, first robot and marker pose pairs are collected from multiple visits to

the same marker. Second, the samples are used to calculate constraints on

the localization error and used in an optimization method for estimating the

unknown parameter. Finally, the localization error is calculated assuming it

follows a Rayleigh distribution.

Chapter 5 provides experimental results on the proposed method’s accu-

racy. The results show that the method can estimate the mean translational

error within an order of magnitude of the error measured by a motion-capture

system.

Ground-truth systems are expensive and hard to setup. While datasets

paired with ground-truth data make it easy to compare algorithms, the dataset

might not contain all the conditions and environments necessary to fully test

a localization system. The method presented in this thesis provides a cheaper

alternative to ground-truth systems that is easy to set up and use in new

environments.

A limitation of the proposed method is that it relies on the mean ATE to

follow a Rayleigh distribution, therefore future work will include developing

an outlier rejection technique that ensures the mean ATE will always follow a

Rayleigh distribution.

The outdoor experiments presented are very preliminary, and future work

will also include running additional experiments outdoors. These experiments

will include testing multiple SLAM algorithms and using a ground-truth sys-

tem to quantitatively evaluate the method outdoors.

Finally, while artificial visual markers are generally easy to use they still

require some setup and camera calibration. An extension of the proposed

method would be to use visual landmarks inherent in the scene. Therefore fu-

ture work will include testing a method that does not need artificial landmarks

but relies on natural visual landmarks.
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[27] R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti, C. Stach-
niss, and A. Kleiner, “On measuring the accuracy of slam algorithms,”
Autonomous Robots, vol. 27, no. 4, p. 387, 2009, issn: 1573-7527. doi:
10.1007/s10514-009-9155-6. [Online]. Available: https://doi.org/
10.1007/s10514-009-9155-6. 18, 20
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