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Abstract

Osteoporosis is currently the most common metabolic musculoskeletal disease which causes

brittle bones with a consequent increase in bone fragility and susceptibility to fracture.

This “silent epidemic” is mainly characterized by the loss of bone mass, micro-structural

deterioration, and cortical thinning, resulting in changes to the mechanical properties of

bone. The disease has significant morbidity and mortality affecting over 200 million people

throughout the world, especially the elderly and post-menopausal women. The prevalence

of osteoporosis and osteoporotic fractures rises up exponentially with the rapid growth of

the aged population, which significantly increases the associated health-care costs. Due to

the serious impact of osteoporosis and its related fractures on the quality of life, there is a

huge call for reliable diagnostic approaches to assess osteoporosis and the fracture risk.

Dual-energy X-ray absorptiometry (DXA) is today the gold standard to measure bone

mineral density (BMD) for osteoporosis assessment. The technique is based on photon ab-

sorptiometry to measure the attenuation of photon energy by different tissues using X-ray

source. DXA exposes patients to ionizing radiation and only measures bone mass thus is in-

capable of providing the bone mechanical properties, most notably elastic parameters, which

are important determinants of bone quality especially in the early stage of osteoporosis.

Ultrasound is an indispensable imaging modality to study soft tissues in diagnostic ra-

diology. The use of ultrasound to study hard tissues is not yet common. But over the

last two decades, the idea of using quantitative ultrasound to characterize bone properties

has been evolving. Ultrasound has the merits over the other medical imaging modalities

because it is portable, cost-effective, lack of ionizing radiation, and sensitive to the me-

chanical stiffness of cortical bones. Particularly, axial transmission ultrasonography (ATU)

has shown great potential to be a non-invasive diagnostic tool to evaluate cortical thinning

at multiple peripheral skeletal sites, e.g. radius and tibia. ATU excites ultrasonic guided

waves (UGW) propagating in bone. Guided wave techniques have been successfully used

in non-destructive testing (NDT) to study waveguide structures such as plates, cylinders,

and pipes. Quantitative guided wave ultrasonography (GWU) is attractive because of the
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sensitivity of guided waves to the geometric, architectural, and material properties of the

cortex. The cortex of long bones is a hard tissue layer bounded above and below by soft tis-

sue and marrow, resulting in high impedance contrast interfaces, and therefore is a natural

waveguide for ultrasonic energy to propagate.

The aim of this thesis is to develop a model-based inversion scheme for parametric

characterization of cortical bone tissues. The dispersion inversion problem is formulated in

the frequency-phase velocity domain. The developed algorithm extracts cortical thickness

and elastic velocities from the multi-frequency UGW signals and is applied to numerical

simulation data, ex-vivo bone phantom data, and in-vivo human data.

To image the dispersive energy of UGW, a sparsity-promoting Radon transform method

is implemented. This signal processing technique not only provides high-resolution disper-

sion map but also can be used for signal-to-noise ratio (SNR) enhancement, wave field

filtering, and guided mode extraction.

In order to simulate the velocity dispersion of UGW, semi-analytical finite element

(SAFE) method is used. The formulation works fine for both free and immersed solid

media. The dispersion curves of the UGW propagating in cortical bone coupled with soft

tissues can be accurately computed. This work is the first in the bone ultrasound research

community to consider a multi-layered long bone model with the cortex surrounded by soft

tissues.

To solve the nonlinear inverse problem, the grid search technique is chosen. It simul-

taneously reconstructs the cortical thickness and compression and shear wave speeds in

the bone from UGW data. The inversion scheme is validated based on the combination of

numerical and experimental benchmark tests and is subsequently applied to in-vivo bone

data.

In conclusion, this research demonstrates that using guided wave ultrasonography to

characterize osteoporotic cortical thinning is feasible. The cortical properties can be inverted

reliably from UGW signals to assess the bone health status and osteoporotic fracture risk

prediction. This study increases our fundamental understanding of ultrasound interaction

of bone tissue under the impact of the overlying soft tissue and the governing physical

principles involved.
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Chapter 1

Introduction

1.1 Motivation

Osteoporosis is a serious medical condition that changes bone tissue structure and composi-

tion, and impairs the mechanical strength of bone leading to the increased risk of fractures.

How do you know if you have osteoporosis or if you are at risk? Early detection and

monitoring of osteoporosis mainly rely on dual-energy X-ray absorptiometry, though in re-

cent years bone quantitative ultrasound has gained attention for its ability to detect bone

fragility. Although X-ray absorptiometry is successful in measuring bone mineral content,

it cannot determine bone micro-structures and elasticity, which are important factors of

bone strength.

Quantitative ultrasound has become widely applied to study bone properties over the

last two decades. Ultrasonic imaging is cost effective, portable, and ionizing radiation-free

therefore has an excellent safety record. Additionally, ultrasonography uses mechanical

waves that are more sensitive to the physical properties of bone (e.g., elasticity, absorption,

cortical thickness, micro-architecture, density) than absorptiometry. Axial transmission

ultrasound (ATU) has shown great potential to be a non-invasive tool to characterize cortical

bones at multiple peripheral skeletal sites, e.g. radius and tibia (Moilanen, 2008). The ATU

technique was first introduced to monitor bone fracture healing (Anast et al., 1958). The

ATU acquisition configuration requires the transmitters and receivers to be placed on the

same side of the investigated skeletal site and measures the ultrasound signals traveling over

a known distance along the bone axis. The cortical bone is a hard tissue layer surrounded by

soft tissues, resulting in high impedance contrast interfaces, and therefore is a strong natural

waveguide for ultrasound to propagate and build up guided wave energy. Ultrasonic guided

waves (UGW) have been successfully used in non-destructive testing and structural health

monitoring to characterize complex waveguide structures such as plates, cylinders, and pipes
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(Rose, 2014). Quantitative guided wave ultrasonography is particularly attractive because

of the sensitivity of UGW propagation characteristics to the geometric, architectural, and

material properties of the cortex.

In NDT and geophysics, inversion of surface or guided wave energy for material prop-

erties and geological structures is a widely-studied topic. However research on extracting

bone parameters such as thickness and elastic constants using inverse theory is still rare.

There are only a handful of published studies on this topic in the last couple of years. An

understanding of the context of this work leads to the realization that currently there are

knowledge gaps of UGW propagation in hard biological tissues like cortical bones. One

challenge in the analysis of guided waves traveling in long bones is the presence of overlying

soft tissues due to the lack of computational methods that are able to accurately describe

the dispersion phenomena of waves in a coupled soft tissues-cortical bone system. Because

guided waves are sensitive to cortical boundaries, the soft-tissue layer can affect mode gen-

eration and alter the dispersive characteristics of guided modes. The modeling of UGW

propagation in the multi-layered waveguide such as cortex coupled with soft tissues has

been a long-standing problem for ATU’s clinical application. In the published studies from

literature, the long bone is usually described as free plate model for modeling purposes to fit

the experimental data. Our knowledge about the impact of soft tissue on ultrasound bone

data is still limited. In order to anticipate successful application of quantitative ultrasound

in bone assessment, we must have a solid understanding of the governing physical principles

involved. The motivation of this doctoral work is to develop an acoustic characterization

method for long cortical bones with soft-tissue coupling effect taken into account. Through

the end, the research is expected to provide substantial knowledge, methodologies, and

evidence to advance the application of guided wave ultrasound in bone quality assessment.

1.2 Scope of the Thesis

The objectives of this thesis are to:

� develop sparsity-promoting signal processing algorithms to image ultrasonic energies

propagating in long cortical bones with high resolution thus providing a more accurate

interpretation of bone data,

� develop a forwarding modeling tool to simulate the ultrasonic dispersion in multi-

layered long bone models to study the dispersion, attenuation, and particle motions

of the guided modes,
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� develop model-based inversion or optimization techniques for a reliable estimation of

cortical thickness and elastic velocities from ultrasonic guided wave signals,

� validate the developed techniques using numerically simulated signals.

� apply the developed techniques to ex-vivo and in-vivo datasets.

1.3 Overview of the Thesis

This thesis contains 6 chapters organized as follows.

� In this Chapter 1, the motivation and the objectives of this research are described.

� Chapter 2 introduces the background of bone tissues, osteoporosis disease, and dif-

ferent medical imaging modalities used for osteoporosis diagnosis. A comprehensive

literature review on bone guided wave ultrasonography is also reported.

� Chapter 3 describes signal processing methods to extract dispersion characteristics

from guided wave data with numerical simulation, ex-vivo, and in-vivo examples.

� In Chapter 4, semi-analytical finite element method is implemented to calculate the

dispersion curves of ultrasonic waves propagating in long bone models. There is also

the sensitivity analysis of of ultrasonic guided waves to cortical properties.

� Chapter 5 presents the inversion studies on the simulation, ex-vivo, and in-vivo mea-

surements.

� Finally, in Chapter 6, the contributions and limitations of this work, and recommen-

dations for future research directions are discussed.
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Chapter 2

Background

2.1 Bone and Osteoporosis

Bones are rigid organs that making up the skeleton in humans. The adult human skeleton

consists of over 200 bones to provide the body’s structural framework, protect the various

organs of the body, and produce red and white blood cells and store minerals (Chiras, 2013).

Bone is a living tissue and is constantly remodeled throughout life. Bone is a composite

material consisting of an inorganic and an organic phase. By weight, approximately 60%

of the tissue is inorganic matter, 8-10% is water, and the remainder is organic matter.

By volume, these proportions are approximately 40%, 25%, and 35% respectively. The

inorganic phase is an impure form of hydroxyapatite, which is a naturally occurring calcium

phosphate. The organic phase is composed predominantly (98% by weight) of type I collagen

and a variety of noncollagenous proteins, and cells make up the remaining 2% of this phase

(Marcus et al., 2008). Bones are classified on the basis of their shape rather than according

to size. Five classes can be identified: long bones (e.g. femur, tibia, radius, humerus), short

bones (e.g. carpals, tarsals), flat bones (e.g. skull, ribs, sternum), irregular bones (e.g.

vertebrae, pelvis), and sesamoid bones (e.g. patella). Anatomically, two types of bone are

found in the body: the cortical and trabecular bone (Figure 2.1). Cortical bone is dense

and compact. It forms the outer layer of the bone. Trabecular or cancellous bone makes

up the inner layer of the bone and has a spongy, honeycomb-like structure (Chiras, 2013).

Osteoporosis is the most common metabolic bone disease in which the density and

quality of bone are reduced. The disease occurs when there is a deterioration of bone

tissues and causes mineral density loss of both trabecular and cortical components. The

latter is caused by the process of trabecularization, which increases cortical porosity and

subsequent decreases cortical thickness. As the bones become thinner and more porous, the

risk of fractures is significantly increased (Werner, 2005). Figure 2.2 displays the comparison
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of normal bone and bone weakened by osteoporosis. The bone quality loss occurs ”silently”,

painlessly, and progressively. Often there are no symptoms until the first fracture occurs.

Figure 2.1: Two types of bone tissue: cortical and trabecular/cancellous bone (Docstoc,
2012).

Figure 2.2: (a) Healthy bone versus (b) bone weakened by osteoporosis (modified from
PharmacyPedia, 2018).

Osteoporosis is a wide-spread systemic disorder of the skeleton which raises a significant

challenge to health care systems worldwide. Osteoporosis affects up to 15.8% of women

and 6.6% of men over the age of 50 years (Tenenhouse et al., 2000). The rate of bone loss

is greater in women than men with women experiencing accelerated bone loss following

menopause. The disease however can strike at any age. The most common fractures associ-

ated with osteoporosis occur at the hip, spine, and wrist (World Health Organisation, 1994).

Globally, the number of hip fractures has been estimated to be approximately 2.6 million

by the year 2025 and 4.5 million by the year 2050. Asia has been predicted to bear most
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of this burden. The projected incidence of hip fracture in this region will account for 37%

of all hip fractures by 2025 and 45% by 2050. The worldwide incidence of hip fracture is

projected to increase by 310% in men and 240% in women (Gullberg et al., 1997).

In Canada, as many as 2 million people suffer from osteoporosis. Osteoporotic fractures

are more common than heart attack, stroke, and breast cancer combined. 30,000 Canadians

have hip fractures every year (Leslie et al., 2010). Annually, the cost to the Canadian health

care systems of treating osteoporosis and the fractures it causes is at presence estimated

to be �1.9 billion. Long term, hospital and chronic care account for the majority of these

costs. These costs will likely rise due to the increasing proportion of senior citizens in the

population. The annual economic impact of hip fractures is projected to rise to �2.4 billion

annually by 2041 (Wiktorowicz et al., 2001). Osteoporotic hip fractures even consume more

hospital bed days than stroke, heart attack, and diabetes (Osteoporosis Canada, 2018).

The increasing prevalence of osteoporosis will lead to increased socioeconomic burdens of

the high cost of treatment. Early detection and prevention strategies are urgent needs to

minimize the effect of osteoporosis.

2.2 Diagnosis of Osteoporosis

Osteoporosis is typically diagnosed with a bone density test. The bone scan results show

how susceptible an individual’s bones are to fracture. Two main types of technologies are

currently available to assess bone quality: the ionizing radiation techniques including dual

energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography

(pQCT); and the non-ionizing techniques including magnetic resonance imaging (MRI) and

quantitative ultrasound (QUS).

DXA is presently the gold-standard and most common clinical method to measure min-

eral content of bone and provides reliable information to identify individuals most likely to

have osteoporosis (World Health Organisation, 1994). The technique is based on photon

absorptiometry to measure the attenuation of photon energy by different tissues and uses

X-ray as the source of photon energy. DXA is most often performed on femoral neck (the

top of the femur), lumbar spine (in the lower back), and hip. As one lies on a platform,

the mechanical arm containing an X-ray source, which passes over the body, is aligned

with the detector below the body (Figure 2.3). Bone mineral density (BMD) measured by

DXA, which is related to the amount of mineral in a specific bone site per scanned area or

volume (g/cm2 or g/cm3), is an indirect indicator of osteoporotic fracture risk. Generally,

the higher the mineral content, the denser the bone is and the less likely it is to fracture.
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Figure 2.3: DXA bone densitometry scan (Wikipedia, 2018).

pQCT uses X-ray source to perform computed tomography and provides a three-dimensional

(3D) measurement of bone density on the periphery of the skeleton such as the wrist

(World Health Organisation, 1994). Although this densitometer is more portable than

DXA, it is less accurate at predicting fracture risk. Moreover the procedure takes longer

scanning time and produces a higher radiation dose.

The shortcomings of the radiation-based techniques are the radiation exposure, the cost

of the equipment setup for routine use, and limited portability. Moreover, these techniques

only measure bone mass and are incapable of providing the bone mechanical properties,

most notably elastic parameters, which are important biomarkers of bone quality especially

in the early stage of osteoporosis.

MRI is also used to visualize trabecular bone and assess skeletal strength and integrity.

The scanner uses magnetic field to detect the radiofrequency signals from the excited hy-

drogen protons. However, MRI cannot delineate the bone well because the bone minerals

are lack of free protons and thus cannot generate signals while the adjacent tissues (soft

tissue and marrow) contain plentiful free protons and produce strong signals. In addition,

MRI scanners are costly to purchase, operate, and maintain.

Bone sonometry is a rapidly evolving technology for osteporosis diagnosis in recent years.

It uses high-frequency sound waves and, therefore, has the potential to reflect material,
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mechanical and structural properties. These properties are very important in bone and

osteoporosis assessment. Moreover, ultrasonic testing is non-invasive, cost effective, portable

for widespread use in osteoporosis screening programs, and lack of exposure to ionizing

radiation.

2.3 Bone Quantitative Ultrasound

Figure 2.4: Bone quantitative ultrasound: (a) transverse transmission, (b) backscatter, and
(c) axial transmission techniques.

The application of ultrasound in clinical diagnosis of osteoporosis was firstly proposed by

Langton in 1984 (Langton and Njeh, 2008). The approach uses transverse transmission

technique to characterize calcaneus trabecular bone (Figure 2.4a). In this technique, two

broadband ultrasonic transducers are used, one transmitter and one receiver, facing each

other on each side of the skeletal site to be tested. The broadband ultrasonic attenuation

(BUA) of the ultrasound beam through the cancellous bone is measured by a subtraction

of the ultrasonic spectra obtained with and without the cancellous bone in position. Lang-

ton’s work has shown the frequency dependence phenomenon of ultrasonic attenuation in

bone and this frequency dependence of osteoporotic bone differs from healthy bone. The

transmitted signals through heel bone could discriminate osteoporotic from normal bones.

The technique has now been successfully commercialized to quantitatively assess calcaneous

by measuring the ultrasound speed and attenuation of the transmitted signal, e.g. Sahara

bone sonometer of Hologic and QRT 250 Heel Scanner of Cyberlogic Inc. (Langton and

Njeh, 2008). However, there are a number of potential sources of error that affect BUA
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measurement in transverse transmission technique, including diffraction, interface losses,

and phase cancellation.

Instead of using the transmitted signal, ultrasonic backscatter technique (Figure 2.4b)

uses pulse-echo to probe the internal structure of cancellous bone with a single transducer

to both transmit and receive ultrasonic signals. This allows access to clinically interesting

sites such as hip and spine. The backscattering method may offer a useful tool for detecting

changes in trabecular bone caused by osteoporosis. The principle of this technique is to mea-

sure the power difference between two portions of an ultrasonic backscatter signal. Several

studies have demonstrated that the backscatter signal and parameters such as apparent

integrated backscatter (AIB) and frequency slope of apparent backscatter (FSAB) have

moderate correlations with the density and mechanical characteristics of cancellous bone

in vitro (Hoffmeister et al., 2012) and in vivo (Liu et al., 2016). An ultrasonic backscat-

ter bone diagnostic prototype has recently been developed by Fudan University, Shanghai,

China (Liu et al., 2016).

Cortical thickness and elasticity are important determinants of bone strength. Over

the last two decades, ultrasonic assessment of long cortical bones using pitch-catch or axial

transmission technique has drawn considerable attention. The ATU configuration was first

introduced by Anast et al., 1958 to monitor bone fracture healing. The axial acquisition

requires the transmitting and receiving transducers to be placed on the same side of the

investigated skeletal site and measure the ultrasound signals traveling over a known distance

along the long bone axis (Figures 2.4c and 2.5a). The acquisition configuration is equivalent

to the single-ended spread in seismic exploration. Ultrasound generated by the emitter

will travel through the cortex and be recorded by the receiver. The signals thus acquired

carry information about the mechanical characteristics of the cortical bone. At least two

companies have marketed ATU-based ultrasound devices to measure sound speed through

cortex, e.g. Sunlight Omnisense� 8000S by Sunlight and Oscare Sono� by Oscare Medical.

The ATU data is usually presented in a two-dimensional time-offset matrix where offset is

the transmitter-receiver distance (Figure 2.5b). The recorded response signals are mainly

made up of two types of signals: the strong fast-traveling bulk waves at small offsets (Le et

al., 2010) and the slowly-traveling energetic guided waves at far offsets (Moilanen, 2008).
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Figure 2.5: (a) Excitation and propagation of ultrasonic guided waves in long cortical
bones. (b) The multi-channel time-offset data acquired from an in-vivo axial transmission
measurement on a human tibia. The recorded signals show two major wave groups with
distinct phase speeds, which are typically observed in bone data. The first group is made
up of the fast-travelling and high-frequency bulk waves (A). The second group covers the
slow-travelling and low-frequency ultrasonic guided waves (B).

2.4 Literature Review on Bone Guided Wave Ultrasonogra-
phy

2.4.1 Signal Processing

Axial transmission ultrasound excites guided waves traveling in the cortical shells of long

bones. Cortex is a hard tissue layer bounded above and below by soft tissues and bone mar-

row, resulting in high-impedance contrast boundaries, and therefore is a natural dispersive

waveguide supporting the propagation of ultrasonic energy (Figure 2.5a). The ultrasonic

guided waves are dispersive, i.e. travel with frequency-dependent phase or group velocity,

and multi-modal by nature. Regardless of the application, analysis of guided wave signals
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fundamentally involves the use of the dispersion curves, which are plots of phase or group

velocity versus frequency (Figure 2.6). The velocities of the guided modes are different and

are sensitive to the cortical thickness and the elasticity of the propagating medium (Tran

et al., 2018a). Therefore phase and group velocity dispersion curves possess valuable infor-

mation about geometrical and elastic properties of the cortical waveguide. The dispersion

properties can be used to drive inversion formulation for cortex characteristics. Thus the

velocity curve calculation serves as a critical signal processing step and an important area

of scientific inquiry. It is also the most active and emerging research topic in the area of

cortical bone quantitative ultrasound for the past ten years. This section reviews the recent

advances of the methods to analyze UGW signals. The spectral techniques can be catego-

rized into two groups: single-channel and multi-channel analysis that produces group and

phase velocity dispersion map respectively.

Figure 2.6: (a) Identification of the group and phase velocities on a multichannel time-offset
data from a bone plate. (b) Theoretical phase velocity dispersion curves are superimposed
on the dispersion energies of a bone-plate data. (c) Theoretical group velocity dispersion
curves are superimposed on the dispersion energies of a bone-plate data. Several low-order
Lamb modes are labeled.
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2.4.1.1 Single-channel Analysis

To image group velocity distribution of UGW energy from long bones, short time Fourier

transform (STFT) was introduced back in 2006 to process a single time series (Protopappas

et al., 2006). The time-domain signal was Fourier transformed while segmented by a slid-

ing short time Hamming window resulting in a time-frequency (t-f) representation. Xu et

al. (2010) later applied a STFT-based method called multiridge-based analysis in which a

crazy-climber algorithm was used to detect and separate t-f energy ridges from a multi-

modal signal. The corresponding waveform representatives of individual guided modes

can be reconstructed from the identified t-f ridges. However, on the application end, the

drawback of this method was that manual interaction is required for mode identification.

Song et al. (2011) utilized the joint approximate diagonalization of eigen-matrices algorithm

(JADE) to separate the superimposed guided waves in long bones. The group velocities of

extracted modes were then computed by the adaptive Gaussian chirplet t-f and difference

value methods. Even though JADE has high time-frequency resolution and low computa-

tional cost, identifying the guided modes under noisy condition is still a challenging task

with this technique and pretreatment filter is prerequisite to denoise the signals. Dispersion

compensation technique has been developed to facilitate Lamb mode separation of multi-

mode single-channel recording (Xu et al., 2012). The approach, nevertheless, is unable to

separate UGW modes traveling at the same speed and requires a great deal of prior knowl-

edge about the UGW data, which is difficult to have access in clinical applications. Its

performance was limited to application on the steel-plate experimental signals only. In a

research paper by Zhang et al., 2013, joint spectrogram segmentation and ridge-extraction

(JSSRE) was used to improve the previous works in guided wave modal filtering. First,

the Gabor t-f transform calculated the spectrogram of the multi-modal signals. Then, a

multi-class image segmentation algorithm was involved to find the corresponding region of

each UGW mode in the spectrogram, including an improved watershed transform and a

region growing procedure. Finally, the ridges were extracted and the time-domain signals

representing individual modes were reconstructed from their corresponding ridges. Despite

only simulation datasets with different SNR were presented in this study, JSSRE showed

its efficacy to separate and reconstruct the multi-modal UGW signals and a great potential

for bone data evaluation. The most recent work by Xu et al., 2014 employed the wideband

dispersion reversal (WDR) to detect single-mode pulses. Compared with the dispersion

compensation method presented earlier in Xu et al., 2012, WDR has the advantages of
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multi-modal design and selective excitation but it still needs more experimental validation.

Same with Song et al., 2011 study, WDR technique makes use of some a priori knowledge

of the UGW dispersion characteristics to synthesize the corresponding dispersive reversal

excitations, which is its disadvantage. Mode conversion and overlap are tough problems

for guided wave analysis. Further research is necessary to evaluate the efficacy and abil-

ity in bone UGW data identification and interpretation of the aforementioned proposed

approaches especially when dealing with clinical data from human beings.

2.4.1.2 Multi-channel Analysis

Regarding the multi-channel analysis for phase velocity imaging, the set of recorded time-

space signals measured on bone specimens can be represented in the frequency-wavenumber

(f -k) domain using the traditional two-dimensional spatio-temporal Fourier transform (2D-

FFT) (Lefebvre et al., 2002). The number and distribution of inspected space positions,

the resolution thus the ability to discriminate two closely spaced guided modes clumping

together (Moilanen, 2008) are known limitations of the 2D-FFT. Moilanen et al., 2006 then

applied a group velocity filtering (GVF) to improve the 2D-FFT extraction of fundamental

flexural guided mode. The GVF technique relies on the use of a Hanning time window to

selectively envelope and isolate the late arrival contribution from the recorded signals. The

so-called “selective 2D-FFT” approach truly can not increase the 2D-FFT resolution and

lacks of the capability to discriminate signals that are overlapping in time domain. The

well-known singular value decomposition (SVD) has been adapted to apply in vitro on

human radius to extract the most energetic late arrival signals (Sasso et al., 2009; Minonzio

et al., 2010). The limited ability of SVD-based wave extraction algorithm is that it requires

the application of a signal alignment or synchronization procedure, which has been shown

to be mainly responsible for the inaccuracy. Motivated by the successful application of the

high-resolution Radon transform (HRRT) in exploration and global seismology (Sacchi and

Ulrych, 1995), Tran et al. applied the technique to image dispersive guide wave energy in

long cortical bones (Le et al., 2013; Tran et al., 2014a) and to filter and reconstruct the

UGW modes (Tran et al., 2014b). The linear Radon or time intercept-slowness (τ -p) trans-

form considers the UGW fields as a superposition of plane waves defined by ray parameters

or slowness, p, and time intercepts, τ . The transform was computed by summing the data

in t-x domain along straight lines with a range of slopes and intercepts and then mapping

them onto a τ -p plane. Wavefields traveling with different phase velocities and intercepting

the time axis at different zero-offset time intercepts are well separated in the τ -p panel.
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The transform algorithm was posed as an inverse problem in the frequency domain with a

Cauchy-norm sparseness constraint that serves to enhance the focusing power of the Radon

operator. From the f -p Radon solution, the f -c dispersion panel could be obtained by

the relationship p = 1/c. The publications (Le et al., 2013; Tran et al., 2014a; Tran et

al., 2014b) recommend the adoption of HRRT as a powerful tool to enhance the resolution

of phase velocity dispersion curves especially when the data acquisition aperture is limited

and uneven station sampling occurs in routine clinical tests. The improvement in Radon

resolution rendered more discriminating power to separate UGW modes and provided an

opportunity to isolate the wavefields/guided modes more precisely for further analysis. In-

spiring by the Canadian group’s works on sparsity-constraint Radon transform, Xu et al.

recently developed sparse-SVD (Xu et al., 2016) and dispersive Radon (Xu et al., 2018)

transforms to process ultrasonic wave signals guided by cortical bone. The computational

cost of these methods are not low because inversion of large-scale matrices is involved.

Okumura et al., 2017 applied adaptive beamforming and estimation of signal parameters

via rotational invariance technique (ESPRIT) technique on phase velocity computation for

UGW propagating along cortical long bones. Their algorithm also employed eigen-value

decomposition to separate the signal of interest from noise. Because the eigen-value decom-

position and matrix inversion procedures are computationally expensive, improvement of

the algorithmic efficiency would be useful for practical applications. Therefore, in a more re-

cent study (Okumura et al., 2018), the authors proposed rapid high-resolution wavenumber

extraction using adaptive array method. The proposed approach was more computationally

efficient because it used a diagonal loading technique instead of an iterative process. The

frequency-dependent wavenumbers of UGW signals from numerical simulation and bone-

mimicking plate experiments were estimated with less than 4% errors. Advancement in

multi-channel signal processing has widened the scope of dispersion analysis in quantitative

bone ultrasound.

2.4.2 Long Bone Modeling

In order to solve the bone inversion problem, i.e., to extract bone parameters from the

acquired ultrasound data, a numerical simulation tool must be developed to predict the dis-

persion curves given a bone model. Developing accurate forward modeling algorithms plays

a keystone to solve the model-based inverse problem to recover bone properties. This is an

emerging research direction in the bone ultrasonography community of the current decade.

In this section, a review of the state-of-the-art in guided wave propagation analysis in long
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bones is presented. Various methods are then discussed with respect to their capability

of simulating UGW propagation phenomena and how such simulators have been validated.

These numerical approaches can be classified into two families: full waveform simulation

and dispersion characteristic calculation.

2.4.2.1 Waveform Simulation

Back in 2002, the modeling of axially-transmitted ultrasonic waves traveling in cortical bone

was first introduced by Bossy et al., 2002 using a 2D simulation software called Wave2000

Pro (Cyberlogic Inc., New York, USA). This commercial package computed a numerical so-

lution to the 2D elastic wave propagation based on a finite difference method. The authors

focused their interest on the speed of sound (SOS) of the first arriving signal (FAS) and

its dependence on the bone plate thickness. The simulational setting was carried out with

spherical source and the bone plate immersed in water. Two years later, Bossy et al., 2004

self developed a 3D finite-difference code to investigate the ultrasonic axial transmission ve-

locity measurement on cortical bone cylinders. In this study, their focus was on the effects of

3D bone geometry such as curvature and cortical thickness, anisotropy, and microporosity

on SOS measurements. The results showed that SOSs measured on tubular cortical shells

were identical to the values measured on cortical plates of equal thickness and anisotropy

had major influence on SOS measures as a function of bone thickness. Protopappas et al.

(Protopappas et al., 2006; Protopappas et al., 2007) applied a 3D finite-element computa-

tional approach (ABAQUS/Explicit version 6.4) to model UGW propagation in intact and

healing long bones. The bone structures were modeled as uniform hollow circular cylinders

with their cross sections being determined by CT transverse scans. This work presented

the significant impact of bone irregularity and anisotropy to UGW dispersion. UGW were

shown to be sensitive to material and geometrical changes during fracture healing process.

To conclude, in the early days of bone quantitative ultrasound, the research heavily relied

on commercial softwares that were not idealized to solve wave propagation problems in long

cortical bones.

In 2010, Le et al. used seismological principles and geophysical techniques including

reflectivity-method waveform modeling and travel time calculation to study the ultrasonic

wave propagation in long bones at small source-receiver offsets. Their numerical and ex-

perimental tests demonstrated that the bone ultrasound response could be reasonably sim-

ulated and interpreted by a horizontally layered model. The layers were homogeneous and

isotropic. This was the first attempt to employ a multi-layer with cortical plate coupled
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with fluids to explain the ex-vivo axial-transmission echogram of a bovine tibia.

The complexity of multi-layer bone models was then upgraded with the anisotropy and

viscosity effects taken into account by Nguyen and Naili, 2011. This work dealt with a 2D

functionally-graded anisotropic solid material coupled with semi-infinite fluid media. The

numerical solution to this model was described by Cartesian coordinates using spectral fi-

nite element method (SFEM). The problem was formulated in the frequency-wavenumber

domain by applying a combined Laplace-Fourier transform. The inverse Laplace transform

technique reversed the solution back into time-space domain. The approach was validated

against the conventional FEM and dynamic finite element analysis performed by COMSOL

Multiphysics (COMSOL Inc., Stockholm, Sweden). The proposed SFEM was significantly

efficient due to the dimensional reduction. The same group of authors later added poroe-

lasticity into the materials by using Biot’s theory (Nguyen and Naili, 2012). A hybrid spec-

tral/finite element method (S/FEM) formulation was developed to find the time-domain

solution of UGW existing in a poroelastic plate immersed in two fluid halfspaces. Similar

to the previous work (Nguyen and Naili, 2011), the numerical tests showed perfect match

between the S/FEM technique and the conventional FEM and COMSOL software.

The 3D cylindrical velocity model, which was constructed by bilinear interpolation and

the piecewise cubic Hermite interpolating polynomial method, was investigated by Hata

et al., 2016 and Takano et al., 2017. The elastic finite-difference time-domain (FDTD)

technique was used to simulate the axial ultrasonic waves traveling in these heterogeneous

models. The effect of cortical heterogeneity was found in the simulation results to be sig-

nificant for the wave propagation and FAS velocity. The human bone heterogeneity and

anisotropy were emphasized to be important factors in long bone computational model-

ing. These numerical studies did not consider wave attenuation in the simulated materials.

Osteoporotic bones are often porotic therefore the attenuation influence will be worth ana-

lyzed in the future. Potsika et al., 2017 presented the finite difference, finite element, and

boundary element methods to interpret the ultrasonic signals acquired at different stages of

osteoporosis and fracture healing process. Ultrasonic velocity was found to be a potential

indicator for osteoporosis diagnosis at an early stage. The wave speed was theoretically

observed to decrease during the first healing stages and gradually to increase in later stages

approximating the values of intact bones. Potsika et al., 2017 also mentioned that the

dispersion of guided waves provided supplementary qualitative information for ultrasonic

evaluation of bones.
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2.4.2.2 Dispersion Curve Simulation

Chen et al., 2012 used an fluid-solid bilayered model to explain the dispersion mechanism of

ultrasound waves guided by soft tissues-cortex phantoms. The plate model served as a good

approximation of the bone waveguide to theoretically compute the wavenumber dispersion

curves of bilayer guided modes. For simplicity, the two layers of the model were considered

as two decoupled waveguides. The dispersion equation was solved analytically. By means of

this analytical tool, the coupling effect of the overlying soft tissue layer to UGW propagation

characteristic was researched. In a study to also inspect the influence of soft tissues to

the dispersive UGW traveling in the cortex, Tran et al., 2013 utilized the DISPERSE

software (version 2.0.16i, Imperial College London, London, UK) to simulate phase-velocity

dispersion curves. Different from Chen et al., 2012, the soft tissue-cortical bone structure

in this work was treated as a single waveguide. DISPERSE is a commercial package widely

used in ultrasonic nondestructive testing. However, it has challenges when dealing with

bone models that involve fluids and complex boundary conditions. More recently, Nguyen

et al., 2017 implemented the semi-analytical finite element (SAFE) method to compute

the velocity dispersion and attenuation in a tri-layered system consisting of a transversely-

isotropic cortical bone plate sandwiched between the soft tissues and bone marrow layers.

The computational accuracy of the proposed SAFE technique was validated against the

DISPERSE software and published literature. The algorithm was also applied to interpret

of an ex-vivo experimental dataset from a bone phantom.

The cylindrical model of guided waves propagation in long bones was first investigated

by Ta et al., 2006a. In the analytical model, the dispersion curves were derived by Bessel

function. What made this study distinct from the previous works was the geometry they

applied in this work: hollow cylindrical model and cylinder immersed in water. The valid-

ity of this simulation was verified by in-vivo experiment carried out in cylinder immersed

in water. These model were used to simulate bone and bone covered with marrow. The

results revealed a significant match between analytical solution and experimental data. In

a following study by this group (Ta et al., 2009), attenuation was considered and was sim-

ulated using a hollow cylinder model filled with a viscous liquid. The numerical model

was executed in DISPERSE. As a comparison to numerical solution, the experiment setting

was also supplemented with attenuation. The results also showed good agreement between

simulation and experiment. As for cylindrical model with multilayers considering coupling

effect, SAFE method has been found to be excellent tool in modeling bones. In a study
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published in 2017, Thakare et al. applied the SAFE numerical approach to simulate wave

propagation in bones and to predict the dispersive curves. Healthy bone and bone with

osteoporosis was studied. What should be mentioned here is that their simulational frame-

work allows the assessment of anisotropy, porosity and some other effects on the cortical

media. The comparison of experimental data and numerical simulation results revealed a

strong correlation. Based on the Thakare et al., 2017 study, this group improved their SAFE

modeling for cylindrical, irregular, multi-layer, and heterogeneous bone cross-section with

anisotropic and viscoelastic material properties (Pereira et al., 2017). The SAFE method

was compared with 3D finite difference method and showed good matching.

2.4.3 Bone Imaging and Inversion

The ultimate goal of quantitative ultrasonography is to extract the bone parameters such

as cortical thickness and elastic constants from UGW signals. This review section covers

advances in the inverse problem for long bone characterization, i.e. the current numerical

techniques to find approximate solutions of cortex imaging and their performance results.

2.4.3.1 Cortical Bone Imaging

Zheng et al., 2015 applied the wave scattering theory to image the internal geometry of long

bones from axial zero-offset reflection data. The wavefield imaging method was implemented

based on the Born inversion technique and the conjugate gradient iterative algorithm. The

in-vitro cortex interfaces along the axial direction were fairly accurate imaged. Later,

Tasinkevych et al., 2016 estimated the cortical bone thickness and acoustic wave velocity us-

ing a multivariable optimization approach by fitting the temporal spectrum of the simulated

reflected wave to the spectrum of the experimentally-measured reflected wave. They devel-

oped an echo-simulation model of soft tissue-cortical bone-cancellous bone. The least square

cost function was minimized by simulated annealing algorithm. The proposed method was

tested with a custom designed bone mimicking phantom and a calf femur. The relative errors

of thickness and velocity assessment were 0.4%-10.8% and 3.1%-4.5% respectively for differ-

ent samples. Bernard et al., 2017 performed a full-waveform inversion of two-dimensional

ultrasonic computed tomography data for long bone cross-sectional imaging using a quasi-

Newton technique called the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)

method. The technique was benchmarked with synthetic datasets of increasing complexity,

with or without noise, including a tibia-fibula bone pair model. However no real experi-

mental data has been involved yet. Recently, Renaud et al., 2018 were able to reconstruct
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the transverse and sagittal (longitudinal) ultrasound images of the tibial and radial top cor-

tical shell using ray-tracing technique and delay-and-sum algorithm. Their work considers

wave refraction and anisotropy in cortex thus allowing the measurements of the cortical

ultrasonic wave-speed and anisotropy. It’s the first in-vivo approach that provides the di-

rect estimates of the magnitude and type of the elastic anisotropy of cortical bone. The

estimated ultrasonic biomarkers agreed with the values measured with high-resolution pe-

ripheral X-ray computed tomography. Their study demonstrated the in-vivo feasibility of

accurate ultrasonic imaging of the cortex. However, in order to reconstruct the complete

bone cross-section image, there are still several outstanding physics-involved issues such as

ultrasonic attenuation and multiple reflections that need to be addressed.

2.4.3.2 Inversion of Ultrasonic Guided Waves

For the dispersion-based inversion of axially-transmitted ultrasonic records that is the focus

of this thesis, there are only a few studies published in the last four years. A paper by

Foiret et al., 2014 was the first work on the estimation of several cortical bone properties

from UGW measurements in bone-mimicking phantoms and human radius bone samples.

The report was a good attempt to apply the Matlab built-in gradient method to recover

bone thickness and elastic characteristics with a few percent error. Two years later, they

extended the study to in-vivo data measurements from the forearm of 14 healthy subjects

(Vallet et al., 2016). An exhaustive search in the frequency-wavenumber model space with

very narrow range of cortical thickness from 0.5 mm to 4 mm was presented. The cortical

thickness estimates were validated by comparison with the site-matched values derived from

high-resolution peripheral quantitative computer tomography (HR-pQCT). A significant

correlation has been found between the inverted and reference values (r2 = 0.7, p < 0.05,

RMSE = 0.21 mm). The same group of authors later proposed a genetic algorithm and

the application of the genetic algorithm-based inversion on in-vivo datasets (Bochud et

al., 2016; Bochud et al., 2017). In the aforementioned works, the inversion procedure was

formulated in frequency-wavenumber (f -k) domain and transversely-isotopic (TI) free plate

model was employed to fit the experimental dispersion curves. Their approaches still have

limitations such as inaccuracy in the estimation parameters due to relatively high number of

unknowns and lack of soft-tissue-layer consideration in the simulating model. The modeling

of UGW propagation in the multilayered waveguide such as cortex coupled with soft tissues

has been a long-standing problem for quantitative guided wave ultrasonography (QGWU).

Tran et al. (Tran et al., 2018b; Tran et al., 2018c; Tran et al., 2019 submitted) have recently
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developed a nonlinear grid-search optimization method applied in bone inversion. Their

semi-analytical finite-element (SAFE) model considers a soft tissue-cortex bilayer. The

dispersion-curve inversion has been solved in the multi-modal frequency-phase velocity (f -

cp) domain. The technique exhaustively examines a large databank of possible solutions

and pick the optimal one which minimizes the misfit function. The method is feasible for

the small scale inverse problem, i.e. small number of unknown parameters to reconstruct,

and the parameters lie within specific ranges of values like the bone data examples. The

method’s performance has been verified using numerically simulated and bone phantom

datasets with acceptable accuracy.
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Chapter 3

Signal Processing

3.1 Introduction

As multi-channel ultrasonic axial-transmission data are multi-modal by nature, wave field

filtering becomes important because the analysis is usually limited to a few lower-order

modes and requires their extraction. Multi-channel analysis of dispersive ultrasonic energy

also requires a reliable mapping of the data from the time-distance (t-x) domain to the

frequency-wavenumber (f -k) or frequency-phase velocity (f -c) domain. The mapping is

usually performed by the classical two-dimensional Fourier transform with a subsequent

substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the

guided modes lack the resolution in the transformed plane to discriminate wave modes. The

resolving power associated with the Fourier transform is closely linked to the aperture of

the recorded data. Motivated by the successful applications of the Radon transform (RT) in

geophysics and exploration and global seismology, in this Chapter 3, a high-resolution linear

Radon transform is implemented to provide sufficient wave field separation capability and

imaging resolution to analyze multi-modal UGW signals for bone tissue characterization.

Section 3.2 provides the methodology of linear Radon or τ -p transform. The method

considers guided wave fields as superpositions of plane waves defined by ray parameters or

slowness (p) and time intercepts (τ) and stacks the amplitudes along linear trajectories.

The transform is computed by summing the data in t-x domain along straight lines with

a range of slopes and intercepts, mapping t-x data to a τ -p or Radon panel. Wave fields

traveling with different phase velocities and intercepting the time axis at different zero-offset

time intercepts are well separated in the τ -p panel. The transform algorithm is posed as an

inverse problem in the frequency domain, which allows the implementation of regularization

strategy to enhance the focusing power. A Cauchy-norm sparseness constraint serves to

enhance the focusing power of the Radon operator. Sparsity-promoting Radon transform
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is a powerful tool to enhance the resolution of dispersion curves especially when the data

acquisition aperture is limited and uneven station sampling occurs in routine clinical tests.

The improvement in Radon resolution will render more discriminating power to separate

UGW modes and provide an opportunity to isolate the wave fields/guided modes more

precisely for further analysis.

In Section 3.3, an application of the Radon transform to enhance signal-to-noise ra-

tio and separate wave fields in ultrasonic records is presented. The method was verified

using simulated data and applied to an uneven-spatially-sampled bovine-bone-plate data

set. The results demonstrate the Radon panels show isolated amplitude clusters and the

Cauchy-norm constraint provides a more focused Radon image than the damped least-

squares regularization. Wave field separation can be achieved by selectively windowing the

τ -p signals and inverse transformation, which is illustrated by the successful extraction of

the A0 mode in bone plate. In addition, the method effectively attenuates noise, enhances

the coherency of the guided wave modes, and reconstructs the missing records. The pro-

posed transform presents a powerful signal-enhancement tool to process guided waves for

further analysis and inversion.

Section 3.4 discusses the application of the linear Radon transform to image the disper-

sive energies of the recorded ultrasound wave fields. Three solutions of Radon transform:

adjoint (ART), damped least-squares (LSRT), and high-resolution (HRRT) are described

and their robustness are compared using simulated and cervine bone data. The Radon so-

lution also depends on the data aperture but not as severely as the Fourier transform. With

Radon transform, the resolution of the dispersion panel could be improved up to around

300% over the Fourier transform. Among the Radon solutions, the HRRT delineated the

guided wave energy with much better imaging resolution (at least 110%) than the other

two forms. The Radon operator can also accommodate unevenly spaced records. The re-

sults suggest that the high-resolution Radon transform is a valuable imaging tool to extract

dispersive guided wave energies under limited aperture.

3.2 Linear Radon or τ − p Transform

Consider a series of ultrasonic time signals d(t, xn) at different offsets x0, x1, ..., xN−1 where

t denotes time and the x-coordinates are not necessarily evenly sampled. The discrete Radon

or τ -p transform is defined by the summation along a line t = τ + pkx with ray parameter
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Figure 3.1: Illustration of horizontal phase velocity and the τ -p transform. (a) A plane
wavefront W propagates obliquely into the material at an angle i with the horizontal surface.
The ray, which is normal to the plane wavefront, travels at the same incident angle i with
the normal to the surface. When the wavefront travels vΔt into the material where v is the
material velocity, the point of intersection, x1 where the wavefront meets the surface, travels
to x2 through a distance cΔt where c is the (horizontal) phase velocity. By trigonometry,
p = 1/c = Δt/Δx = sin i/v. (b) The schematic diagram for forward and inverse linear
τ -p transform. The records are summed along straight lines with different slopes p and
time intercepts τ . Stacking along p1 goes through strong peaks of the records and thus
yields a strong amplitude focus in the τ -p panel (dark gray ellipse) while stacking along p2
encounters amplitudes of opposite polarities and thus leads to less Radon energy. Stacking
along p3 leads to trivial Radon energy due to very small amplitudes of the signals (modified
from Gu and Sacchi, 2009).

pk and time intercept τ

m̃(τ, pk) =

N−1∑
n=0

d(t = τ + pkxn, xn), k = 0, ...,K − 1 (3.1)

where m̃(τ, pk) is a Radon or τ -p series obtained via the so called adjoint operator (Sacchi

and Ulrych, 1995). The adjoint is also called the conjugate transpose operator. The ray

parameter p, which is related to the material velocity and incident angle via Snell’s law

(Figure 3.1a), are sampled at p0, p1, ..., pK−1, and the intercept τ is the arrival time at

zero-offset. Equation 3.1 defines a low-resolution mapping of a linear arrival to a point in

the Radon panel (Figure 3.1b) (Sacchi and Ulrych, 1995).
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In order to enhance the resolution of modes in the τ -p domain and to have a viable

technique for signal reconstruction, the estimation of the Radon coefficients is posed as an

inverse problem. Thus the data in the time-offset space is represented via a synthesis of

Radon coefficients m(τ, p)

d(t, xn) =

K−1∑
k=0

m(τ = t− pkxn, pk), n = 0, ..., N − 1. (3.2)

Notice that because the Radon transform is not an orthonormal operator, m̃(τ, p) is not

equal to m(τ, p). In other words, Equation 3.1 (the adjoint operator) and Equation 3.2

(the forward modeling operator) are not the inverse of each other. Notice also that once

m(τ, p) is estimated, it can be used to reconstruct the signal d(t, x) using a subset of ray

parameters p. In other words, one can implement filtering techniques to retain desired modes

of propagation and use them to reconstruct the data represented by those modes. The task

of inverting Equation 3.1 is simplified in the frequency domain. Taking the temporal Fourier

transform of Equation 3.2 yields

D(f, xn) =

K−1∑
k=0

M(f, pk)e
−i2πfpkxn (3.3)

where the time-delay property of Fourier transform has been used. Writing the latter in

matrix notation and omitting f in the arguments, Equation 3.3 becomes

D = LM (3.4)

where the Radon operator L is

L =

⎡
⎢⎢⎢⎣

e−iωp0x0 · · · e−iωpK−1x0

...
. . .

...

e−iωp0xN−1 · · · e−iωpK−1xN−1

⎤
⎥⎥⎥⎦ (3.5)

with ω = 2πf .

A least-squares (LS) solution to Equation 3.4 can be obtained by minimizing the fol-

lowing cost function,

J = ‖LM−D‖2 + μR(M). (3.6)

with respect to the model M (Sacchi, 1997; Moldoveanu-Constantinescu, 2006). The first

term on the right denotes the data misfit, which quantifies the error between the recon-

structed and original data and thus measures how well the Radon operator predicts the

data; the second term is known as the regularization term R(M) which is included to guar-

antee the uniqueness and stability of the solution (Tikhonov and Goncharsky, 1987). The
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regularization parameter μ controls the degree of fitting the predicted observations to the

actual data. For example, if μ is small, emphasis is to seek a solution to minimize the pre-

diction error and the data is accurately reproduced including noise. However if μ is large,

the Radon energy will be focused but the data is under-fitted or poorly reconstructed.

Different regularization functions R(M) have been proposed to estimate the Radon co-

efficients M(f, p). For instance, one can select the quadratic norm or l2 norm i.e., ‖M‖2.
In this case the Radon solution is known as the damped least-squares (DLS) solution

(Menke, 2012)

M = (LHL+ μI)−1LHD (3.7)

where LH is the adjoint of the Radon operator L and I is the identity matrix. This

solution is not able to focus adequately the modes in the Radon panel and leads to τ -p

signals with significant amplitude smearing (Sacchi and Ulrych, 1995; Trad et al., 2002).

This problem is alleviated by using a regularization term that enforces sparsity in the τ -

p panel. This is possible by adopting a non-quadratic regularization strategy based on a

Cauchy criterion. The Cauchy norm is considered a suitable regularization term to obtain

sparse τ -p solutions and enhance their resolution of Radon panels (Sacchi and Ulrych, 1995;

Moldoveanu-Constantinescu, 2006). R(M) is taken to be the Cauchy criterion used to

regularize the solution, i.e.,

R(M) =

K−1∑
k=0

ln(1 +M2
k/σ

2) (3.8)

where σ2 is the scale factor of the Cauchy distribution. By minimizing the cost function

(6) with respect to the model M, the Radon solution is given by

M = (LHL+ μQ(M))−1LHD (3.9)

where Q(M) is a diagonal weighting matrix with elements given by

Qkk =
1

(1 +M2
k/σ

2)
. (3.10)

Equation 3.9 provides a high-resolution Radon solution and is a non-linear system of equa-

tions, which can be solved by the following iteratively re-weighted least-squares (IRLS)

scheme for each frequency (Sacchi and Ulrych, 1995; Sacchi, 1997).

1) Select the hyper-parameters μ and σ. σ is fixed at 0.8 and examine the fit of the

predicted data to the original data to select μ.

2) Start with the DLS solution as an initial solution, i.e.,

M0 = (LHL+ μI)−1LHD.
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3) Compute the initial weighting matrix

Q0,kk =
1

(1 +M2
0,k/σ

2)
.

4) The initial weighting matrix Q0 is now used to calculate a new solution

M1 = (LHL+ μQ0)
−1LHD.

5) The weighting matrix Q1 is computed using the solution M1. A new solution M2 is

then estimated by Q1.

6) After z iterations, the solution and the cost function are, respectively, given by

Mz = (LHL+ μQz−1)−1LHD

and

Jz = ‖LMz −D‖2 + μR(Mz).

7) The procedure is terminated when the tolerance is met:

|Jz − Jz−1|
(|Jz|+ |Jz−1|) /2 < tolerance

or the number of iteration is reached.

8) Compute the data misfit. Re-select a new trade-off parameter, μ if the result is not

satisfactory.

Appendix A summarizes the IRLS method and an implementation of the HRRT algo-

rithm.

Once M is determined for all frequencies, inverse Fourier transform is performed to

map M back to time domain m, creating a τ -p Radon panel. Equation 3.9 and 3.4 can

be considered as the Radon and inverse Radon transforms in the frequency domain. A

brief schematic algorithm is summarized in Figure 3.2. The iterative algorithm is used to

estimate the Radon solutions (panels) presented later in this chapter. In the τ -p domain,

windowing can be used to extract wave fields of desired slownesses while muting the others.

It should be noted that the dispersion (f -c) curves can be extracted by mapping the f -p

to f -c panels via c = 1/p and preferably, linear interpolation. As shown in Figure 3.2,

the filtered t-x signals are reconstructed by performing the operations in reverse order:

Fourier-transform the Radon panel to the f -p panel, map the f -p panel to the f -x panel

via Equation 3.4 using the Radon operator L, and inverse Fourier-transform the f -x panel

to the t-x domain.
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Figure 3.2: A flowchart of the τ -p method. FT denotes Fourier transform. The Radon
transform (RT) and its inverse are given by Equations 3.9 and 3.4 respectively. Once the
f -p panel is obtained, either the τ -p (Radon) panel or the f -c panel can be computed. The
former is obtained by inverse FT transform while the latter by replacing slowness by the
inverse of phase velocity 1/c.

3.3 Wavefield Separation

3.3.1 Introduction

Ultrasonic guided wave technologies are powerful nondestructive testing techniques to char-

acterize near-surface materials and evaluate integrity of materials or structures such as

plates, cylinders, and pipes (Rose, 2002). UGW testing has been successfully used in a

wide range of industrial applications such as structural health monitoring and material

characterization. These applications are, for example, damage assessment of layered com-

posites (Kim et al., 2007), identification of rail defects (Lee et al., 2009; Coccia et al., 2011),

characterization of Zircaloy tubes (Yeh and Yang, 2011), and highly absorptive materials

such as bitumen (Simonetti and Cawley, 2003), and detection of ice on aircraft wing (Gao

and Rose, 2009). Guided waves have also received considerable attention in geotechnical

and seismological studies. The GW techniques have been used to monitor the stability of

grouted rock bolt (Zou and Cui, 2011), image the subsurface permittivity structure using

ground penetrating radar (GPR) guided waves (Decker and Haney, 2010), and visualize

fault zone structure (Korneev et al., 2003). In recent years, GW application has been used

to study long bones (Ta et al., 2006a) and monitor bone fractures (Protopappas et al., 2006).

Ultrasonic Lamb waves are elastic waves propagating in a plate and require boundaries
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for their existence (Rose, 1999). The boundaries of the structure act as waveguide to retain

the energy, thus keeping the GW energy from spreading out. Therefore, guided waves can

travel over considerable distances and interact with a larger portion of the structure. The

GW modes travel with different velocities, which vary with frequency. The dispersive prop-

erties, which are characteristic for each mode, are described by the dispersion curves. The

dispersion curves are not only dependent on the material properties but also the thickness

of the structure under investigation.

Guided waves are often studied using multi-channel recordings. One of the most common

acquisition arrangements is to have the transmitter and receiver arrays located on the same

side of the testing structure. The source and receivers are ultrasonic transducers. Usually

the transmitter is stationary with many receivers laid out collinearly at multiple locations

on both sides or one side of the transmitter. This is equivalent to the split-spread or

end-on spread shooting profile in seismic reflection prospecting (Telford et al., 1990). In

bone study, the arrangement is also known as the axial transmission configuration (Le

et al., 2010). The data are usually acquired at a uniform spatial spacing interval with

limited aperture. The acquisition can be done using a single receiver measured at multiple

locations (Le et al., 2010) or a transducer array (Bossy et al., 2004; Nguyen et al., 2013).

The regular spatial sampling is usually required for the subsequent Fourier analysis of the

dispersive characteristics of the signals. The recorded signals form a time-offset matrix of

signal amplitudes where offset is the source-receiver distance. The data, which records the

motion of the structure underlying the receivers subject to the source excitation, exhibits

time history of many wave types or modes propagating at various phase velocities. These

modes have their own propagation characteristics, governed by the elastic and geometrical

properties of the structure. Some modes, especially the lower-order and fundamental modes,

are more important than the others in an application and require to be separated from

others to enhance their presence and signal-to-noise ratios for more accurate analysis and

inversion. However, the amplitudes of the wave modes in the time record overlap, making

their separation and identification a difficult and challenging task.

There are several multi-channel approaches to separate wave modes. The most common

method is the phase velocity or f -k filtering (Kanasewich, 1981). The t-x records are

mapped to the frequency-wavenumber f -k domain by means of the two-dimensional Fourier

transform where k is the wavenumber in the direction of guided wave propagation (Alleyne

and Cawley, 1991). The multi-mode wave fields propagating with different wave speeds

become more visible and separated in the transformed f -k plot, reveal their presence as
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strong coherent energy clusters, and the phase velocity, c, of the mode can be determined

via 2πf/k. The reject-pass bands, which show as fan windows, are designed to isolate the

desired events or modes while muting the rest of the f -k spectrum. The spectrum after

windowing is transformed back to t-x domain via inverse Fourier transform. Michaels et al.,

2011 applied the technique to remove incident wave and separate lower-order guided waves

to enhance damage visualization. However, Fourier-based transform techniques usually have

poor performance when the recording aperture is limited (Ta et al., 2006a; Ta et al., 2006b).

In addition, wave modes that have spectral overlap are difficult to separate. Moilanen et

al., 2006 applied a group velocity filtering (GVF) to extract the fundamental flexural guided

mode propagating in long cortical bones. The GVF method relies on a Hanning time window

to selectively isolate the late wave arrivals from the recorded signals. The approach truly

lacks the capability to discriminate signals overlapped in the time domain.

Another method is to decompose the t-x data matrix into eigen-images via the SVD

(Freire and Ulrych, 1988). This approach has similarities to the principal component

analysis and the Karhunen-Loéve transform (Andrews and Patterson, 1976; Jones and

Levy, 1987). The SVD presents the data matrix as a sum of weighted eigen-images where

the coefficients or weights are the singular values of the data matrix. The magnitude of

a singular value dictates the proportional contribution of the corresponding eigen-image

to the data reconstruction. When the neighboring time series have some degree of linear

dependence or correlation, the data can be reconstructed using the first few largest singular

values (or eigen-images). In practice, the desired signals are first aligned by time-shifting to

enhance the coherency. The time-shifted matrix is SVD-processed and filtered by choosing

a proper subset of the singular values. The selected eigen-images are used to reconstruct

the filtered time-shifted data. The time shift is then reversed to yield the filtered data

matrix. Freire and Ulrych used SVD to separate upgoing and downgoing waves in vertical

seismic profiling (Freire and Ulrych, 1988). The SVD technique was also applied to extract

low-frequency ultrasonic wave fields in cortical bone characterization (Sasso et al., 2009).

A drawback of this method is that it requires pre-processing step such as wave alignment,

which makes the algorithm more complex. Arrivals of interest usually come with a range

of phase velocities and it is uncertain how misalignment affects the accuracy of wave field

extraction.

Rather than decomposing the ultrasound data into harmonic components or eigen-

images, RT studies the plane wave composition of the signals in the plane of zero-offset

time intercept τ and ray parameter p (Chapman, 1978; Phinney and Chowdhury, 1981).
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The ray parameter is also known as the apparent slowness or horizontal slowness, which

is the reciprocal of the horizontal phase velocity c (Figure 3.1a). Here, for simplicity of

illustration, a Cartesian coordinate system with vertical and horizontal axes is used. The

method considers the ultrasound records as a superposition of various locally linear events.

The transform sums all the time records that fall along a line t = px + τ with slope p

and intercept τ , and maps the sum to a point in the τ -p or Radon panel (Figure 3.1b),

thus allowing wave field separation and identification. In seismic processing, the method is

also known as the τ -p transform or the slant stack (Tatham, 1984). The intensity of the

point depends upon the coherency of the linear event and hence, the sum. Wave fields can

be separated by their phase velocities and time intercepts. A τ -p window can be used to

reject the events outside the window. Late arrivals with the same phase velocities, such

as multiples, can be discriminated by the larger time intercepts. The τ -p transform has

been used to interpolate missing data and suppress noise for teleseismic data (Wilson and

Guitton, 2007), reject events of unwanted strikes and enhance linear events in magnetic

data (Pawlowski, 1997), separate seismic wave fields (Greenhalgh et al., 1990), and sup-

press multiples in seismic data (Foster and Mosher, 1992). Rouze et al., 2010 applied RT

to measure shear wave speeds of elastic phantoms and in-vivo human livers.

While the RT is widely used in seismology and geophysics to process seismological

and geophysical data, its application in ultrasonics is still uncommon. Motivated by the

successful experience of the method in processing seismic wave fields, the RT is now applied

to separate and enhance guided wave fields. An outline of the RT theory has already

been presented in the previous Section 3.2. In this section, the proposed τ -p algorithm’s

performance is validated using the simulated set of waveforms and will then be applied to

separate slowly- and fast-traveling simulated wave fields in a Plexiglass plate and extract

low-order guided modes propagating in a bone plate.

3.3.2 Method Validation using Numerical Simulation of Linear Events

In order to test the accuracy of wave field separation, two linear events were simulated

(Figure 3.3a). The events traveled a distance of 100 mm at 5 μs/mm (Event 1) and 2

μs/mm (Event 2) respectively. Their arrival times were calculated by t = px + τ where τ

denotes their respective delay times. The time intercepts for the two events were 100 μs and

200 μs. Their arrivals were indicated by two spikes of unit amplitude on the time axis. The

time series were then convolved with a source wavelet. The wavelet could be, for example,

a Berlage wavelet (Le, 1998) but a Ricker wavelet was chosen (Ricker, 1953) with center
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frequency of 20 kHz and unit amplitude. Fifty one records of 700 μs long were generated

with 2 mm spacing interval and 2 μs time interval. The simulated signals were bandpassed

with a high-cut at 40 kHz.

Figure 3.3: Wave field separation of the simulated waveforms. (a) The simulated t-x data
shows two linear events traveling at 5 μs/mm (Event 1) and 2 μs/mm (Event 2). (b) The
DLS τ -p panel. (c) The HR τ -p panel. (d) The separated Event 1. (e) The separated Event
2. (f) Comparison between the simulated (dashed) and reconstructed signals (solid) at 30
mm offset.
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The simulated waveforms with two linear events is shown in Figure 3.3a. The events

propagate at 5 μs/mm and 2 μs/mm representing slow- and fast-traveling waves respectively.

The events cross, interfere, and result in complex wave fields around 30 mm and 300 μs.

The corresponding DLS and HR Radon panels (Figures 3.3b and 3.3c) show two strong

amplitude clusters around 5 μs/mm−100 μs (Event 1) and 2 μs/mm−200 μs (Event 2).

The panels have a 0.1 μs/mm resolution. The clusters are much better localized in the HR

τ -p panel (Figure 3.3c) than the LS counterpart (Figure 3.3b). The DLS strategy smears

the energy along the p-direction by at least 200% relative to the Cauchy constraint. The

Cauchy regularization offers better p-filtering or p-windowing because the imaged Radon

energy is tightly confined. Therefore, the HR regularization is adopted as the preferred

strategy over the DLS in this study. To separate the two events, two mono-p windows: 70

- 130 μs at 5 μs/mm and 170 - 230 μs at 2 μs/mm were chosen to reconstruct Event 1

and Event 2 respectively. All Radon signals outside these ranges were muted. The time

windows correspond to the positions and lengths of the wavelets at zero-offset. The two

events are well separated as shown in Figures 3.3d and 3.3e. The reconstructed wavelets

at 30 mm offset, for example, compare well with the simulated wavelets (Figure 3.3f). The

mean-square-errors (MSE) of reconstruction with respect to the signal power are small, 8%

for Event 1 and 6% for Event 2, validating the accuracy of the wave field separation.

3.3.3 Application to Simulated Waveforms in a Plexiglass Plate

A Lamb problem with a plate in vacuum was considered. The plate was modeled as a

two-dimensional isotropic elastic medium. The dynamic equilibrium equation is

ρüi − σij,j = 0 (3.11)

where ρ is the mass density; ui and σij are components of the displacement vector and the

stress tensor respectively. The lower surface of the plate was assumed to be under traction-

free condition and the upper one was excited by a point force. The system was at rest for

t < 0.

By using the Voigt’s notation in which the stress and strain are represented in vector

form, i.e., σ = {σ11, σ22, σ12}T and ε = {ε11, ε22, 2ε12}T , the constitutive equation reads

σ = Cε+ ηε̇ (3.12)
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where C and η are, respectively, the elasticity and viscosity tensors defined by

C =

⎡
⎢⎢⎢⎣

c11 c11 − 2c44 0

c11 − 2c44 c11 0

0 0 c44

⎤
⎥⎥⎥⎦ (3.13)

and

η =

⎡
⎢⎢⎢⎣

η11 η11 − 2η44 0

η11 − 2η44 η11 0

0 0 η44

⎤
⎥⎥⎥⎦ . (3.14)

The velocities of compressional and shear waves in this isotropic solid medium are given by

cp =
√

c11/ρ and cs =
√

c44/ρ respectively. The numerical solution of this problem was

computed by a semi-analytical finite element method (Nguyen and Naili, 2011; Nguyen and

Naili, 2012).

Wave fields for a 4-mm plate were simulated with the compressional wave speed, shear

wave speed, and density of the plate being 2730 m/s, 1430 m/s, and 1180 kg/m3 respectively.

The properties are similar to those of Plexiglass. No absorption was assumed. The source

wavelet had a time history given by

F (t) = F0e
−4(fct−1)2 sin (2πfct) (3.15)

where F0 = 1 N.m−2 and the center frequency fc was 0.5 MHz. In order to resemble the

experimental setup with angle beam transducers (Figure 3.4), the source is modeled by a

force applied at 30◦ with respect to the normal i.e F = (−F sin θ, F cos θ)T where θ = 30◦.

Similarly, the simulated signals recorded at the receivers may be estimated as the projection

of the simulated horizontal and vertical wave field components on a 30◦ inclined direction.

A set of 64 ultrasound records was simulated with 0.0488 μs time increment, 1 mm spacing

interval, and a minimum offset of 30 mm. The signals beyond 0.95 MHz were insignificant

and removed by bandpass filter to avoid aliasing.

Figure 3.4: A schematic diagram shows the experimental setup for the bone-plate ultrasonic
measurement. The transmitter is held stationary while the receiver is translated axially to
acquire data. The offset is the source-receiver distance and denoted by x.
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Figure 3.5: The τ -p transform of the simulated Plexiglass plate signals. (a) The non-gained
wave fields in the t-x panel with true relative amplitudes. A points to the early-arriving
high-speed (HS) bulk waves and B to the late-arriving low-speed (LS) guided waves. (b)
The Radon signals.

The simulated signals for a 4-mm thick Plexiglass plate model is shown in Figure 3.5a.

The data displays two major groups of wave arrivals propagating at two distinct phase

velocities. The first group travels at higher speeds (HS) between 2.6 - 3.7 mm/μs and the

amplitudes decay with distance. The HS arrivals include mainly bulk waves including direct

arrivals and reflections.Le et al., 2010 The second group of arrivals, which comes later in

time, shows a dispersive wave train propagating at lower speeds (LS). The LS events exhibit

the presence of surface and guided waves, which propagate between 1.4 - 1.6 mm/μs. These

arrivals overlap and interfere with one another in the t-x domain but are clearly separated in

the corresponding Radon panel (Figure 3.5b). The panel was computed from 0 μs/mm to 1

μs/mm with a step of 0.002 μs/mm. Each p-record represents a single ray parameter for all

τ -values. The panel shows focused signal clusters with some strong Radon peaks between

0.3 - 0.8 μs/mm and at early time, perhaps up to 15 μs. The time intercept, measured

at zero-offset, likely indicates reverberation events after 15 μs. The reflection events are

hyperbolas in nature and thus mapped to ellipses between 0 and 0.5 μs/mm in the τ -p

panel.Tatham, 1984 The LS guided wave events are more linear and mapped to τ -p region

between 0.6 and 0.8 μs/mm. Figure 3.6 shows another perspective of the Radon peaks in

an elevation plot. The Radon ridges are very locally concentrated and render the possible
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phase velocities of traveling waves, demonstrating the use of the τ -p panel to extract wave

fields based on traveling velocities.

Figure 3.6: An elevation plot shows the Radon ridges. A and B point to signals described
in the previous Figure 3.5.

The τ -p panel was split at p = 0.5 μs/mm (c = 2000 m/s) and the two separated

Radon panels (one for p ≤ 0.5 μs/mm and the other for p > 0.5 μs/mm) were reconstructed

(Figure 3.7). The two t-x panels show two wave groups with distinct moveouts as shown

in the original signals (Figure 3.5a). Moveout is the difference in travel times with respect

to offset distance. The panels show the HS arrivals faster than 2000 m/s (Figure 3.7a) and

the LS events slower than 2000 m/s (Figure 3.7b). I would like to point out the overlap

of the HS and LS arrivals in the original data after 20 μs at small offsets, where the LS

wave fields dominate. Attempt to isolate the LS signals by simply muting the rest of the

t-x amplitudes fails to eliminate the hidden HS components. The results indicate the τ -p

method has successfully separated the wave fields and also uncovered the HS wave fields

embedded in the LS regime.
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Figure 3.7: The Radon signals are separated at p = 0.5 μs/mm (c = 2000 m/s) and
transformed back to the t-x domain using the filtered τ -p panels. (a) The reconstructed
wave fields for p ≤ 0.5 μs/mm and (b) for p > 0.5 μs/mm. The arrow points to the HS
events which are recovered by the reconstruction. These signals are covered by the LS
arrivals and thus are not visible in the original data.

Figure 3.8: Noise suppression by the τ -p method. (a) The simulated signals are contami-
nated by white Gaussian noise. The SNR is 1. (b) The reconstructed signals show much
better signal quality with strong coherent energy and the random noise is greatly attenu-
ated.
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To test the ability of the τ -p method to suppress noise, Gaussian noise was added to

the simulated signals with unitary signal-to-noise ratio being 1 (Figure 3.8a). The data

was τ -p transformed and inverted back to the t-x domain. The reconstructed wave fields

(Figure 3.8b) show the noise is significantly attenuated while the signals are enhanced, thus

increasing the SNR and improving the image quality. Slant-stacking the wave fields sums

all amplitudes along a ray parameter. Coherent energies, which are in phase, are reinforced

while incoherent arrivals such as noise, which are random and out of phases, are attenuated.

The major arrivals, reconstructed after slant-stacking, are more coherent than the original

data.

3.3.4 Application to Ex-vivo Experimental Data in Bone Plate

The experimental setup was an axial transmission configuration following Le et al., 2010

(Figure 3.4). A bovine femur sample, which had a relatively flat surface area, was cut along

the long axis to make a bone plate. The plate was cleaned, and the soft tissue and marrow

were completely removed. The bone plate had dimensions 220 mm by 45 mm with mean

thickness of 9 mm. Experiment was performed in air and at room temperature of 22◦C.

Two angle beam compressional wave transducers with 1 MHz center frequency (Panametrics

C548, Waltham, MA) were attached to two angle wedges (Panametrics ABWM-7T-30 deg,

Waltham, MA). One system acted as a stationary source and the other as a moving receiver.

The source was pulsed by a Panametrics 5800 P/R (Panametrics, Waltham, MA). The

recorded signal was digitized by and displayed on a 200 MHz digital storage oscilloscope

(LeCroy 422 WaveSurfer, Chestnut Ridge, NY). A custom-built holder was used to clamp

the bone plate in place, hold the transducers, and translate the receiving transducer along

the bone sample at an uniform sampling interval. Ultrasound gel was applied on all contacts

to ensure good coupling. Two steel bars, with two transducer-wedge systems attached to

one end, applied constant pressure to the systems by their weights to maintain uniform

coupling during the experiment. A set of 50 ultrasound records was measured with 1 mm

spacing interval and 35 mm closest offset. The recorded data set was further decimated for

a final sampling interval of 0.1 μs to form a t-x matrix d.
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Figure 3.9: The τ -p transform of the bone-plate data. (a) The data has gaps, indicating
1, 2, and 3 missing records at three different spatial locations, 45 mm, 55-56 mm, and
65-67 mm respectively. A points to the high-speed (HS) bulk waves and B to the late-
arriving low-speed (LS) guided waves. (b) The τ -p signals. The two rectangles enclose the
Radon signals used to reconstruct Figure 3.11b and 3.11c. (c) Comparison between the
measurement (dashed) and the reconstruction (solid) of the missing records.

The amplitudes of the ultrasound signals are modified by many factors as they propagate

through the medium. These factors are, namely, amplitude decay with distance, material

absorption, scattering, and energy partition at the interface. The net effect of these factors

upon the signal amplitudes can be approximated by a decay function. Time-gain compen-

sation (TGC) is a process attempting to reverse the attenuation effects and recover the

“true” signal amplitudes by multiplying the amplitudes of the data by the inverse of the

decay function. In this work, I chose to multiply the amplitudes of the data points by
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their corresponding travel times, i.e., I gained the signals linearly. However, TGC amplifies

the late-arriving signals for each time series but is not adequate to boost the overall signal

strength of the series when the offset is large, i.e., when the receiver is far away from the

transmitter. In this situation, I normalize each time series by its own maximum absolute

amplitude, which is known as self-normalization. The bone-plate data was linearly gained

and self-normalized (Figure 3.9a). After self-normalization, the relative amplitudes between

time series is lost but this is not particularly important because the normalization does not

destroy the coherency of the existing wave fields, which is important for the τ -p transform.

A trapezoidal bandpass filter with corner frequencies: 0.005, 0.05, 0.8, 0.95 MHz was

used. Even though the records were acquired at regular spacing along the long axis (or

x-axis), some data gaps consisting of 6 missing records were purposely created to illustrate

the ability of the τ -p method to handle irregular spatial sampling. This is very practical

in some acquisition situations where either bad records are obtained or data can not be

acquired at some locations due to surface conditions. There are three gap sizes: 1, 2, and

3 mm. Similar to the simulated Plexiglass plate signals, two main groups of arrivals, the

HS and LS waves, are also observed with different moveouts. The HS multiple reflections,

which come at the same time as the LS events, interfere with the LS wave fields and are

not visible. The Radon panel (Figure 3.9b) shows two strong signal clusters around 0.25

and 0.65 μs/mm, which correspond to the HS and LS waves in the data. The p-axis was

sampled every 0.002 μs/mm. Also shown are the reconstruction of the missing records

at three indicated offsets (Figure 3.9c). The reconstructed signals compare well with the

real data and follow their phases. The good match between the originally acquired signals

and the reconstructed missing records by the τ -p transform demonstrates the interpolation

ability of the method to reconstruct missing data.

To further analyze the bone-plate data, dispersive energy is extracted by using the f -p

Radon panel and replacing slowness by phase velocity, i.e., c = 1/p (Figure 3.10). The

c-values were interpolated to ensure that the c-axis of the f -c panel was regularly sampled.

The dispersion diagram shows three small amplitude clusters. Their associated dispersion

trajectories are segmented and not easily traceable. The low frequency cluster (labeled as 1)

is the fundamental A0 Lamb mode of a plate (Rose, 1999) while the other two strong higher-

order modes (labeled as 2 and 3) are associated with the HS arrivals. The f -c panel is very

noisy including much incoherent energy and the A0 dispersion curve lacks the continuity.
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Figure 3.10: The f -c panels or dispersion curves. (a) The dispersion curves of the bone
data as shown in Figure 3.9a; The three strongest amplitude clusters are labeled as 1, 2,
and 3. (b) The dispersion curves of the filtered HS wave fields. The energy of this panel is
made up of the Radon signals within the large rectangle in Figure 3.9b. (c) The dispersion
curves of the filtered LS A0 mode. The dispersion curve of this mode is more continuous
than its presence in the original dispersion curves. The energy of this mode comes from a
small bundle of Radon signals within the small rectangular window in Figure 3.9b.

A filtering operation on the τ -p panel was attempted to separate and enhance the

dispersive energies of the three dispersive modes. To enhance the higher-order modes,

a window 5 - 35 μs and 0.1 - 0.45 μs/mm (the large rectangular area in Figure 3.9b) was

applied to isolate the Radon signals while muting the rest of the panel. The windowed

Radon signals were then Fourier transformed in time from τ -p to f -p space. The filtering

process has greatly focused the dispersive energies of the two modes (Figure 3.10b). Their

dispersion curves are more traceable. I further used a small amount of Radon signals

bounded by 0 - 2 μs and 0.6 - 0.8 μs/mm (the small rectangular window in Figure 3.9b)

to reconstruct the dispersion of the A0 mode (Figure 3.10c). The f -c curve thus obtained
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shows superior continuity over the one shown in the original data, which is weak and very

segmented.

Figure 3.11: The reconstructed wave fields: (a) The HS wave fields corresponding to the
Radon signals within the large rectangular window of Figure 3.9b; (b) The LS A0 wave fields
reconstructed with the Radon signal within the small rectangular area in Figure 3.9b. The
missing records are also filled at locations: 45 mm, 55-56 mm, and 65-67 mm respectively.

The reconstructed wave fields corresponding to the three modes are shown in Figure

3.11. During the inversion process, the Radon operator L was re-sampled with the spatial

locations of the missing records and thus, the missing records were interpolated. The wave

fields are separated with proper velocity ranges. The HS wave fields, which are not identified

before due to overlapping with the LS waves, are recovered (Figure 3.11a). The wave

fields are more coherent after τ -p filtering and show a mixture of low and high frequency

components. As shown in the f -c panel, the two higher-order modes are in two different

frequency regimes: one low at 230 kHz and one high at 550 kHz, but travel with similar

phase velocity around 4000 m/s, which is also evidenced by the parallel arrivals of different

frequencies with similar moveouts (Figure 3.11a). The speed of the A0 mode increases at

low frequencies and reaches a plateau after 150 kHz (Figure 3.10c). The fact that the high-

frequency components travel faster than the low-frequency components is also supported by

the highly dispersive wave trains consisting of the early-arriving, fast-traveling, and high-

frequency waves, and the late-arriving, slowly-traveling, and low-frequency wavelets (Figure

3.11b).
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3.3.5 Discussions

I have described an iterative algorithm to compute the high-resolution τ -p or Radon trans-

form to process multi-channel ultrasound data. Conceptually, the t-x data are stacked along

a range of ray parameters, p, for each zero-offset time intercept to produce a τ -p map. Dur-

ing the stacking process, random noise is significantly attenuated due to their incoherency

and randomness but the coherent energy is reinforced, thus greatly enhancing the SNR. The

wave modes are separated based on their time intercepts and slownesses in the τ -p panel.

Since the linear Radon transform is used, the stacking is best to focus energy along a linear

trajectory. Guided waves are, at least locally, linear events while reflections are hyperbolic.

However, if the layer thickness is much less than the acquisition range, the reflections are

also approximately linear. Further, hyperbolic Radon transform can be used if necessary

(Gu and Sacchi, 2009).

The transform does not require the t-x data to be regularly sampled along the offset

axis. However, data gap can be interpolated. During the reconstruction process, the offset

axis can be re-sampled, the x-values of the missing records can be inserted, and Radon

operator L can be re-sampled to reconstruct missing records, thus filling the data gap.

Random t-x signals appear as scatter Radon signals in the Radon panel while coherent

signals show up as strong signal clusters. Ignoring the scatter signals in the Radon panel

while keeping the strong clusters will suppress incoherent energies, such as noise, in the

reconstructed t-x data. However, reconstruction of the coherent signals is dependent on

the size of the filter-window in the Radon panel. The window size is adjusted according to

the time intercept at zero-offset and slowness of the guided mode of interest for extraction.

If the τ -range is too large, many unwanted early- and late-arriving events are included. If

p-range is too big, the reconstructed events are highly dispersive as the results consist of

many events of different speeds. In practice, the main clusters of energies responsible for the

modes of interest can be identified. However, the choice of window size around the clusters

still remains to be subjective and requires some trial-and-error to achieve good results.

The value of the hyper-parameter, μ affects the accuracy of the reconstructed wave fields.

As mentioned in Section II, a very small μ-value leads to accurate waveform reconstruction

since the prediction error (Equation 3.6) is minimized, but the Radon-focusing is less ideal.

A 0.1 μ-value was used to separate the wave fields in Figures 3.3d-3.3e and a unit μ-value

was used to reconstruct the missing records in Figure 3.9c. Conversely, a large μ-value

images the Radon energies with much higher resolution as the regularization term is now
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emphasized, but as expected, the data misfit is large as well. The μ-value takes the value

of the number of p-values, which is 701 for the simulated data and 501 for the bone plate

data. A preferred method of choosing the μ-value is the usage of the L-curve (Engl and

Grever, 1994). I also found that 4 iterations were sufficient to produce good results.

Table 3.1: Sampling parameters for the three data sets used in Section 3.3 Wavefield Sepa-
ration

Data Δτ Δp Δx fmax rmax P

Set (μs) (μs/mm) (mm) (MHz) (mm) (μs/mm)

Two events 2 0.1 2 .04 100 10

Plexiglass plate 0.05 0.002 1 0.95 63 1

Bone plate 0.1 0.002 1 0.95 50 1

Since the method involves two transforms: Fourier and Radon, the temporal and spatial

sampling should follow the Nyquist criteria to avoid alias.Turner, 1990 Aliasing is associated

with insufficient sampling and results in data artifacts. The sampling intervals and other

parameters relevant to the three data sets are tabularized in Table 3.1 where Δτ , Δp, Δx,

fmax, rmax, and P are, respectively, the time step, the slowness resolution, the receiver

spacing, maximum frequency, offset range, and slowness range. Using the values provided,

these parameters can be verified to satisfy the following sampling requirements:

Δτ ≤ 1

2fmax
, (3.16)

Δp <
1

rmaxfmax
, (3.17)

and

Δx <
1

Pfmax
. (3.18)

In case the spatial sampling is not regular, Δx takes the largest spatial interval in the data.

In summary, a new application of the τ -p transform to study multi-channel ultrasound

data in the Radon domain has been investigated. The array processing methodology, which

is based on a high-resolution linear Radon transform algorithm, is not widely used in non-

destructive testing to the best of my knowledge and this study is considered novel in the

material characterization using ultrasound. The Radon domain renders a new τ -p panel to
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discriminate ultrasound energies of various traveling wave modes based on the time intercept

and slowness. The results have demonstrated, using simulated and ex-vivo data sets, that

the Cauchy-norm regularization offers enhanced resolution over the damped least-squares

and the high-resolution method is very successful to attenuate noise, enhance coherent linear

arrivals, and separate wave fields with different moveouts. The accuracy of the reconstructed

wave fields has also been verified. Using a windowed Radon panel, the method is able

to unfold the t-x wave fields which are previously overlapped and concealed by different

arrivals. In addition, the technique is considered a powerful alternative to the Fourier-

based techniques such as the conventional f -k filtering because it can handle irregularly

sampled data and is capable to reconstruct a regularly sampled grid. This will open up an

arena to apply the proposed method to a wide range of ultrasonic guided wave applications.

3.4 Dispersion Curve Imaging

3.4.1 Introduction

Ultrasonic guided waves have seen many successful industrial applications in nondestructive

evaluation and inspection. Guided wave testing technologies have been applied to mate-

rial inspection, flaw detection, material characterization, and structural health monitoring

(Rose, 2004). Surface wave methods (Temsamani et al., 2002; Cawley et al., 2003; Masserey

et al., 2006; Tsuji et al., 2012) have also received much popularity to characterize near sur-

face materials in shallow geological prospects, structural engineering, and environmental

studies. Surface or guided waves require a boundary or structure for their existence. Their

propagation is constrained to the near surface or within the structure. These waves are gen-

erated by the interaction of elastic waves (compressional, P - and shear, S-waves) with the

boundaries. For guided waves within a plate, waves are multiply reflected at the boundaries

with mode-conversions, i.e., P → S or S → P . The boundaries facilitate multiple reflections

and also guide the wave propagation; the waveguide also retains the guided wave energy and

keeps it from being spread out, thus allowing the guided waves to travel over long distances

within the plate (Lowe, 2002). The plate vibrates in different vibration modes, which are

known as guided modes.

Guided modes are dispersive and travel with velocities which vary with frequency. The

velocity of a guided mode depends on the material properties, thickness, and frequency.

Dispersion curve, which describes their relationship, is fundamental to the guided wave

analysis. The dispersion curve can be obtained by finding a solution to the homogeneous
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elastodynamic wave equation (Rose, 1999). The displacement vectors, N, are first assumed

general forms with unknown constants. This leads to a set of equations for the unknowns

in matrix form, M ·N = 0, where M is the coefficient matrix of elastic constants, densities,

thickness of the structure, wavenumber, and frequency. The dispersion or characteristic

equation of guided modes is obtained by setting the determinant of M equal to zero, i.e.,

|M(ω, k)| = 0 where ω is the angular frequency and k is the wavenumber. The characteristic

equation is nonlinear and numerical solutions are usually sought.

In recent years, quantitative ultrasound has been applied to characterize material prop-

erties of long bones in vitro (Camus et al., 2000; Lefebvre et al., 2002; Lee and Yoon, 2004;

Zheng et al., 2007; Ta et al., 2009; Le et al., 2010; Li et al., 2013; Tran et al., 2013). Axial

transmission technique is the most common method to study long bones. The measurement

places the transmitter and receiver on the same side of the bone sample. Usually two trans-

ducers is employed where one transducer is a stationary transmitter and the other trans-

ducer is moved away from the transmitter at a regular spacing interval to receive the signal.

An ultrasound acquisition system with one array probe (Minonzio et al., 2010; Nguyen et

al., 2013) and also two array probes (Nguyen et al., 2014) have also been used. The ac-

quisition configuration has been applied successfully by (Le et al., 2010) to analyze bulk

waves arriving at close source-receiver distances. Quantitative guided wave ultrasonography

(QGWU) is particularly attractive because of the sensibility of guided waves to geometrical,

architectural, and material properties of the cortex. The cortex of long bone is a hard tissue

layer bounded above and below by soft tissue and marrow, resulting in high impedance-

contrast interfaces and therefore is a natural waveguide for ultrasonic energy to propagate.

Albeit the studies using guided waves are limited, the results so far suggest the potential

use of QGWU to diagnose osteoporosis and cortical thinning. The use of ultrasound to

characterize bone tissues and evaluate bone strength has gained some success. A recent

publication provides some updates in experimental, numerical, and theoretical results on

the topics (Laugier and Haiat, 2011).

Multi-channel dispersive energy analysis requires a reliable mapping of the ultrasound

data from the two dimensional time-distance (t-x) space to the frequency-wavenumber (f -

k) space. The mapping is usually performed by the two-dimensional Fourier transform

(Alleyne and Cawley, 1991). The frequency-phase velocity (f -c) space can later be obtained

by substitution and interpolation via c = ω/k. The 2D-FFT based spectral analysis has

been used to study dispersive energies of guided waves propagating along the long bones;

however, the extracted dispersion curves lack the resolution in the transformed space (f -k

45



or f -c) to discriminate wave-modes. The resolving power associated with the 2D-FFT is

linked to the limited aperture of the recorded data. Due to limited aperture, the energy

information is spread or smeared and the smearing makes the identification of the dispersive

modes difficult. In clinical studies, the spatial aperture is limited by the accessibility of the

adequate skeleton length, regularity of the measuring surface, length of the ultrasound

probe, and the number of channels. Several techniques have been attempted with some

success to improve the resolution of the dispersion curves, such as using 2D-FFT combining

with autoregressive model (Ta et al., 2006b), group velocity filtering (Moilanen et al., 2006),

and singular value decomposition (Minonzio et al., 2010).

Radon transform owes its name to the Austrian mathematician Johann Radon (1917)

and is an integral transform along straight lines, which is known as slant stack in geophysics.

The inverse Radon transform is widely used in tomographic reconstruction problems where

images are reconstructed from straight line projections such as X-Ray computerized assisted

tomography (Herman, 1980; Louis, 1992). The use of RT to process ultrasound data is very

few. Most recently, RT was used to perform ultrasonic Doppler vector tomography to

reconstruct the blood flow distribution (Jansson et al., 1997) and to detect line-like bone

surface orientations in ultrasound images (Hacihaliloglu et al., 2011).

Mcmechan and Yedlin, 1981 generated the first phase velocity dispersion curves based

on RT of the seismic wave fields. The data was first slant-stacked (Radon transformed) to

the slowness-intercept (p-τ) domain, which is then followed by a Fourier transform into the

slowness-frequency (p-f) plane. However, the extracted energies were significantly smeared

and the dispersion trajectories had poor resolution. The low-resolution dispersion map

showed the neighboring modes cluster together, making the modal identification a difficult

task. Over a decade, various computational strategies (see for example Trad et al., 2002;

Sacchi, 1997) have been developed in the geophysics community to improve the Radon

solutions with enhanced resolution. Recently, Luo et al., 2008a; Luo et al., 2008b successfully

used the high-resolution Radon solution developed by Trad et al., 2002 to image dispersive

Rayleigh-wave energies in geophysical surface-wave data. Nguyen et al., 2014 applied an

adjoint Radon transform to study guided wave dispersion in brass and bone plates.

In this section, the linear Radon transform is applied to extract dispersive information

from ultrasound long bone data. Three solutions of linear Radon transform: standard or

adjoint Radon transform (ART), damped least-squares Radon transform (LSRT), and high-

resolution Radon transform (HRRT) are presented. The resolution of the RT solutions and

FT solution is compared using a dispersive wave-train data set. Finally I apply the Radon
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transform to image the dispersion curves from the recorded ultrasound wave fields from

a cervine long bone. To my knowledge, this is the first time RT is used to analyze the

ultrasound wave fields propagating in long bones (Le et al., 2013; Nguyen et al., 2014). I

demonstrate the advantages and robustness of RT in the following aspects: the RT does not

require regular channel spacing; it can handle missing records; it requires a smaller aperture

of the recorded data; the HRRT has much better resolving power over the conventional FT

and other RT solutions.

3.4.2 Simulation Experiment

Figure 3.12: Simulated dispersion. (a) The dispersion curves for three fc-values: 5 kHz,
120 kHz, and 200 kHz. (b) The corresponding trapezoidal wavelets.

A linear dispersive wave train is simulated with the following spectrum

S(f) = W (f)e
[−i2πf( x

c(f)
−t0)] (3.19)
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where W (f) is the spectrum of the source wavelet and t0 is a time constant. The phase

velocity, c(f), is described by

c(f) = cmin + (cmax − cmin)/
√
1 + (f/fc)4 (3.20)

where cmin is the minimum phase velocity, cmax, the maximum phase velocity, and fc, the

critical frequency. The spread, Δc = cmax − cmin, and the critical frequency, fc, determine

the amount of dispersion in the data. There is no dispersion when (f/fc)
4 << 1. The time

signal, s(t), is recovered from S(f) by the inverse FFT.

The wavelet, W (f), has a trapezoidal amplitude spectrum and a 90◦ phase shift. The

corner frequencies of the spectrum are 5 kHz, 10 kHz, 120 kHz, and 195 kHz respectively

where the signals within the 10-120 kHz band are not attenuated. The minimum and

maximum phase velocities are 1000 m/s and 2200 m/s respectively. The effect of fc upon

the dispersion and simulated time signals is illustrated in Figure 3.12. The 5-kHz-fc gives

rise to a sharp drop in phase velocity within 0-50 kHz and the corresponding time signal is

simple with one cycle. The 120-kHz-fc, which yields larger variation in phase velocity within

the same frequency band than the 200-kHz-fc, generates a more complicated dispersive wave

train. Since I want to investigate how well the RT images dispersive energies, I choose 120

kHz as the critical frequency.

Figure 3.13: Simulated dispersive signals and the corresponding (f -c) dispersion panels:
(a) noise-free signals; (b) 2D fast Fourier transform panel; (c) adjoint Radon panel; (d)
damped least-squares Radon panel; (e) high-resolution Radon panel. The true dispersion
is described by the white dashed curve.

64 time series (or records) of dispersive wave trains were simulated to validate the per-

formance of Radon transform to image the dispersion curve. The series are spaced 1 mm

apart and has 101 points, each with a 2-μs sampling interval. Every four records is plotted
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for a total of 16 records in Figure 3.13a. The records show dispersive signals of mixed

frequencies and the low-frequency components traveled faster than the high frequency com-

ponents, which is consistent with the simulated dispersive curve (the 120-kHz-fc curve in

Figure 3.12a. Different frequencies have different traveling speeds and thus different travel-

ing times. When the offset was small, the frequencies traveled close together. As the offset

increased, the difference in traveling times became larger, and the frequencies separated,

showing a fanning wave train with offset. The corresponding dispersion panels (Figures

3.13b-3.13e) show the dependence of phase velocity (PV) resolution on the transform tech-

niques used. Among the four, the Fourier panel (FP) (Figure 3.13b) has the worst PV

resolution as the dispersive energy spreads far away from the true dispersion curve (indi-

cated by the white dashed curve in Figure 3.13) for frequencies within 10-120 kHz. The

smearing is most severe for frequencies lower than 50 kHz. The main PV spectra have

long tails and do not seem to have local extrema. The adjoint Radon panel (ARP) (Figure

3.13c) has slightly better resolution than the FP. The LSRT (Figure 3.13d) improves the

focusing better than the ART. The HRRT (Figure 3.13e) focuses the dispersive energy even

better, offering sharper image of the dispersion and superior resolution than the other three

methods. The HRRT confines the energy to a narrower band, not far from the predicted

dispersion curve. The Radon panels have alternating dark and light blue areas, indicating

side-lobes with local extrema in the PV spectra.

Figure 3.14: Phase velocity spectra at 0.04 MHz and the corresponding full-width at half-
maximum measurements.
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The transform methods imaged the PV spectrum as broad spectra rather than narrow

lines. The amount of energy spreading across a range of phase velocity values is different

for each transform method. The spreading characteristic is denoted by the PV resolution of

the transform method and can be quantified by the full-width at half-maximum (FWHM)

of the PV spectrum. The FWHM is the full width of the PV spectrum measured at one-half

of the maximum height of the peak. Poor energy resolution or large FWHM value means

that the transform is not capable of localizing or focusing the energy. As an example,

Figure 3.14 shows the self-normalized PV energy spectra at 40 kHz. The FWHM-values

for the FT, ART, LSRT, and HRRT are 1940 m/s, 1360 m/s, 1080 m/s, and 515 m/s

respectively. Among all, the FT has the poorest resolution. The FWHMFT is 40% larger

than FWHMART, 80% larger than FWHMLSRT, and 280% larger than FWHMHRRT. This

indicates that the ART, LSRT, and HRRT offers 40%, 80%, and 280% better resolution

respectively than the FT. Among the Radon solutions, the HRRT yields 164% and 110%

better resolution than the ART and LSRT respectively.

Figure 3.15: Simulated dispersive signals with random noise and the corresponding (f -c)
dispersion panels: (a)noisy signals with 10 dB SNR; (b) 2D fast Fourier transform panel;
(c) adjoint Radon panel; (d) damped least-squares Radon panel; (e) high-resolution Radon
panel. The true dispersion is described by the white dashed curve.

I also applied the methods to image dispersive energies in the presence of random noise

(Figure 3.15). The noisy data was generated by adding white Gaussian noise to the noise-

free signals with signal-to-noise ratio of 10 dB. The dispersive signals were disrupted by the

presence of noise (Figure 3.15a). The tracks of the imaged dispersion are less continuous

(Figures 3.15b-3.15e) but visible. As in the noise-free case, the FT (Figure 3.15b) dispersed

the energy and had difficulty to confine it, thus rendering poor imaging resolution while
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the HRRT (Figure 3.15d) imaged the dispersion with enhanced resolution than the other

methods.

Figure 3.16: Imaging simulated dispersive energy with different data apertures by the
HRRT. (a) same data set as in Figure 3.13a, 126 mm aperture with 64 2-mm-spaced records;
(b) 126 mm aperture, the same data as in (a) with 6 missing records at 40, 70, 72, 100, 102,
and 104 mm respectively; (c) 124 mm aperture with the first 32 4-mm-spaced records; (d)
62 mm aperture with the first 32 2-mm-spaced records; (e) 60 mm aperture with the first
16 4-mm-spaced records; (f) 30 mm aperture with the first 16 2-mm-spaced records.

Similar to FT, the RT also depends on aperture. I explore here the performance of the

RT to image the data with limited aperture (Figure 3.16). Since the HRRT has the best

imaging resolution among the three other Radon methods, I used the HRRT hereafter. I

examined the PV dispersion within the frequency range 10-120 kHz where the frequency

components were not attenuated. The aperture is defined by the difference between maxi-

mum and minimum offsets. The original reference data has 64 2-mm-spaced records with

a 126-mm aperture and Figure 3.16a shows the reference RP. Next I purposely removed

six records from the original data to make the spatial sampling non-uniform but keeping

the aperture fixed at 126 mm. The RP (Figure 3.16b) closely resembles the original panel

(Figure 3.16a) without visual difference. I skipped every two records in the original data

to incur larger spacing (Δx = 4 mm) while keeping the aperture at 124 mm, close to the
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original aperture. The dispersion profile (Figure 3.16c) looks similar to the original profile

(Figure 3.16a) with a slight increase in PV spread. Next, I considered halving the aperture

to 62 mm by taking the first 32 records of the original data. At small aperture, the resultant

dispersion profile (Figure 3.16d) suffers energy spreading and the smearing increases with

the decrease of frequency. The same smearing effect was observed for Figure 3.16e where

I skipped every four records of the original data to keep 16 records with a 4-mm spacing

and a similar aperture of 60 mm to the previous case (Figure 3.16d). These two data sets

(Figures 3.16d-3.16e) have similar apertures (60 mm versus 62 mm) and their dispersion

profiles look similar even though they have different number of records (16 versus 32) and

spacing (2 mm versus 4 mm). Last, I lowered the aperture further down to 30 mm (half of

the previous two cases) by keeping the first 16 records of the original data. The dispersion

panel (Figure 3.16f) shows a lack of energy confinement and severe spreading far away from

the true solution. Also, the imaged dispersion track is segmented, discontinuous, and step-

wise, yielding an aliased image, which might erroneously implicate the existence of several

modes. Clearly, changes in aperture size cause more severe smearing effect than reducing

the number of records for a fixed aperture size.

3.4.3 Ex-vivo Experiment

The bone sample was a 23-cm long diaphysis of a cervine tibia acquired from a local butcher

shop. The overlying soft tissue and the marrow of the sample were removed and the sample

was then CT-scanned for cortex-thickness measurement. Based on the X-ray computed

tomographic (CT) image (Figure 3.17a), the top cortex had an average thickness of 4.0

mm (minimum 3.6 mm and maximum 4.5 mm) for the section where the transducers were

deployed. The surface of the sample was reasonably flat. The experiment setup shows

the bone sample was firmly held at both ends by the grabbers of a custom-built device

(Figure 3.17b). Two 1-MHz angle beam compressional wave transducers (Panametrics

C548, Waltham, MA) were attached to two angle wedges (Panametrics ABWM-7T-30 deg,

Waltham, MA). The transducer-wedge systems were positioned linearly on the same side

of the bone sample. One system acted as a transmitter and the other as a receiver. The

experiment was carried out at 21◦C room temperature. Ultrasound gel was applied on all

contacts as coupling agent. Constant pressure was applied to the wedges by the use of

two steel bars to ensure good contact between interfaces. The transmitter was pulsed by a

Panametrics 5800 P/R (Panametrics, Waltham, MA) and the recorded signals were digitized

and displayed by a 200-MHz digital storage oscilloscope (LeCroy 422 WaveSurfer, Chestnut
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Ridge, NY). The digitized waveforms were averaged 64 times to increase the signal-to-noise

ratio. The receiver was moved away from the transmitter by 1 mm with a minimum offset

of 39 mm and 90 records were acquired. The sampling interval, after decimation, was 0.1

μs. The total duration of each record was 150 μs. The recorded signals formed a 1500×90
time-distance (t-x) matrix of amplitudes.

Figure 3.17: The ex-vivo experimental setup. (a) A sagittal computed tomography image
of the cervine bone sample. Also shown is the schematic of the transducer layout on the
bone surface. The receiving transducer is moved away axially and collinearly from the
transmitter 1-mm increment. (b) The physical setup of the experiment. The setup shows
a device with grabbers at both ends to hold the bone sample firmly in place by screws.
The two steel bars are used to provide constant pressure to the transducer/wedge systems
against the bone surface.

The cervine tibia data shown in Figure 3.18a consists of 90 records with a 89-mm

aperture and 39-mm minimum offset. The processing steps involved bandpass filtering,

linear gain, and self-normalization. The corner frequencies of the bandpass window were

0.005 MHz, 0.03 MHz, 0.8 MHz, and 1.0 MHz while the last two processing steps made
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the small late-arriving and/or far-offset signals visible. The t-x panel shows mainly two

types of arrivals with distinct moveouts. The first type is usually the high-frequency and

high-velocity (HFHV) bulk waves (Le et al., 2010) and the second type is the low-frequency

and low-velocity (LFLV) arrivals, which are usually surface or Lamb-type guided waves (Ta

et al., 2009). At close offset, the HFHV bulk waves dominated. Between 40-55 mm, there

was a lack of LV guided wave energy buildup due to short offset. The LV signals started to

become more visible after 60 mm offset. At offset > 100 mm, the low-velocity arrivals took

over and became quite dominated. The HV bulk waves decayed very quickly with offset and

lost their strength after 80 mm. These observations are also evidenced in the corresponding

power spectral map (Figure 3.18b). Between 40-70 mm, the data was rich of high-frequency

(average 0.8 MHz) bulk waves. The data lost the high frequencies quickly due to amplitude

decay with distance and preferential filtering due to absorption. Between 70-100 mm, the

frequency content of the signals dropped to a midrange of approximate 0.35 MHz and the

signals were a mixture of HV and LV waves. After 100 mm, the 0.1-MHz signals took over

and the guided wave energies built up strongly, showing clear evidence of the presence of

late-arriving LFLV wave modes.

Figure 3.18: Cervine tibia bone sample: (a) self-normalized and linearly-gained t-x signals;
(b) the corresponding power spectral density map.
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Figure 3.19: Dispersion f -c panels: (a, c, e) conventional Fourier panels; (b, d, f) Radon
panels. From left to right, the number of ultrasonic records are 90, 64, and 32, corresponding
to 89 mm, 63 mm, and 31 mm apertures, respectively. The theoretical dispersion curves
are shown in white.

Using the real data, I examined the performance of the FT and HRRT to extract

dispersive energy when the aperture decreased from 89 mm to 31 mm. There are at least

six strong energy loci in both panels (Figures 3.19a-3.19f). To interpret the guided modes,

I simulated dispersion curves with the commercial software package DISPERSE version

2.0.16i (Imperial College, London) developed by Pavlakovic and Lowe (2001). The model

was a water-filled cylinder with a 4.4-mm thick cortex and a 6.35-mm inner radius. The

density, longitudinal wave velocity, and shear wave velocity of the cortex were 1930 kg/m3,

4000 m/s, and 2000 m/s respectively (Le et al., 2010) while the density and longitudinal

wave velocity of water were 1000 kg/m3 and 1500 m/s. Six guided modes were identified

with confidence: F (1, 1), F (1, 5), F (1, 8), F (1, 16), L(0, 6), and L(0, 7). With the exception

of the F (1, 1) mode, all modes are clearly seen in all panels. The F (1, 1) was quite weak

and its presence faded when only 32 records were used (Figures 3.19e-3.19f). When the

data aperture decreased from 89 mm to 31 mm, the resolution of the FPs (Figures 3.19a,

3.19c, and 3.19e) deteriorated with significant energy smearing. For example, at 0.8 MHz,

the FWHM of the F (1, 16) increases from 927 m/s at 89 mm aperture (Figure 3.19a) to

1935 m/s at 31 mm aperture (Figure 3.19e), which is a greater-than two-fold increase in

smearing or loss in resolution. At 31 mm aperture (32 records), the FT lost resolution as

the F (1, 8), L(0, 6), and L(0, 7) tended to cluster together (Figure 3.19e). In contrast, the
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RPs fared much better than the FPs. All the RPs show good confinement of the modal

energies. When the aperture decreased, energy smearing occurred but was not as severe

as was the FT case. Similarly the FWHM also shows a two-fold increase from 286 mm to

573 mm when the aperture decreased from 89 mm (Figure 3.19b) to 31 mm (Figure 3.19f).

Even though only 32 records were used (Figure 3.19f), the three concerned modes, F (1, 8),

L(0, 6), and L(0, 7) were well separated in the RPs.

3.4.4 Discussions

The above experiments were conducted to demonstrate the ability of the linear Radon (or

τ -p) transform to image the dispersive guided wave energies in long bones, which makes the

work novel. The transform was implemented using a least-squares strategy with Cauchy-

norm regularization that serves to improve the focusing power, i.e., to enhance resolution

in the transformed domain. The proposed HRRT has also been compared with the conven-

tional temporal-spatial Fourier transform to validate the superiority of the method. Multi-

channel dispersive energy analysis requires a reliable mapping of the ultrasound data from

the t-x domain to the f -k domain. The mapping is usually performed by the conventional

2D-FFT. However, the extracted dispersion curves lack the resolution in the transformed

plane to discriminate wave modes (Moilanen, 2008; Sasso et al., 2009).

The resolving power associated with the FT is linked to the spatial aperture of the

recorded data (Ta et al., 2006a; Moilanen, 2008). The acquisition aperture is finite, leading

to a windowing or truncation on the x-axis. Truncating the x-axis is equivalent to convolving

the x-space with a sinc function. Consider a boxcar function, f(x) of width a where f(x) = 1

for −a
2 ≤ x ≤ a

2 and 0 elsewhere. The width of the box, a, is the “aperture”. The Fourier

transform of a boxcar is a sinc function, F (k) = a sin(ka/2)
(ka/2) with the main spectrum bounded

by the zeros: −2π
a and 2π

a . The distance between the zeros, or zero-distance is 4π
a . As the

aperture (a) increases, the zero-distance decreases, and the width of the spectrum becomes

smaller or narrower, thus improving the resolution in the k-space. This simple illustration

shows the resolution-dependence of the 2D-FFT method on the spatial aperture of the

acquired data.

In clinical studies of human long bones where spatial acquisition range is restricted due

to the limited dimension of the ultrasound probe, the number of channels, irregularity of

the acquisition surface, and the accessibility to the skeletal site, the 2D-FFT method may

not provide sufficient resolution. The RT, which also depends on the spatial aperture of

the data, has a smaller aperture threshold. Given the same spatial aperture, I have shown
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the HRRT dispersion maps are far much better resolved than those of the conventional

2D-FFT. While the RT has a smaller aperture tolerance than the FT method, a small

31-mm aperture in the simulation case shows dispersion artifacts (Figure 3.16f), which is

absent in the real data case for the similar aperture. Nevertheless, the HRRT provides an

alternative new approach to image limited-aperture data and estimate spectral information.

The resolving power of the HRRT will be beneficial for the guided mode identification and

separation in in-vivo studies where the overlying soft tissue layer increases the number of

guided modes and mode density (Tran et al., 2013).

High-resolution spectral analysis via Burg maximum entropy method (Marple, 1987),

multiple signal classification (MUSIC) (Schmidt, 1986) or minimum variance method (MVM)

(Capon, 1969) can also be used to estimate high-resolution spectra by applying those meth-

ods to spatial data for each temporal frequency. The f -k energy computed by these methods

could be mapped to the f -p plane to obtain the desired energy distribution for the dispersive

signals. However, the aforementioned methods will only give a high-resolution image of the

modal energies in the f -p plane that cannot be used to come back to data (t-x) space . The

Radon transform approach, on the other hand, permits to design an operator that can be

used to return to the t-x domain. This is important because one can obtain high-resolution

images in the f -c space by plotting the absolute values of the complex M(f ,c) but can also

use M(f ,c) to recover D(t,x) via the Radon forward operator, L.

The acquired data contains linear (direct waves, head waves, and surface waves) and

hyperbolic (reflections) events. By using a linear Radon transform, I assumed all events

were linear. In the consideration of the short offset configuration and a thin cortex, the

close-offset portions of the reflection events (or the t-x curves) are approximately linear and

thus the assumption is valid. Further, hyperbolic Radon transform can be used if necessary

(Gu and Sacchi, 2009).

The HRRT maps the t-x signals to a high-resolution dispersion diagram without re-

quiring the spatial space to be evenly sampled. Solving the problem using inverse-problem

technique allows the HRRT to be used for accurate missing data reconstruction or inter-

polation in practice. To reconstruct the missing records, the offset axis is re-sampled, the

spatial coordinates of the missing records are inserted, and the Radon operator L is re-

sampled to interpolate missing records or fill the data gap. It is important to note that it is

quite simple to use the HRRT in cases where the data are irregularly sampled. This is also

true for the Fourier methods where one could replace the FFT by a non-uniform discrete

FT (Sacchi and Ulrych, 1996). However, a non-uniform discrete FT is a non-orthogonal
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transform and therefore, an inversion process similar to the one outlined for the HRRT is

required to have a transform that allows us to go from t-x to f -k and return back to t-x

domain. This problem was addressed by Sacchi and Ulrych, 1996.

The HRRT is also robust in enhancing signal coherency and canceling noise. Because

the amplitudes are summed along a linear moveout, random noise is significantly attenuated

due to its incoherency and randomness but the coherent energy is reinforced, thus greatly

enhancing the SNR. Generally, solving inverse problems takes a considerable computation

time due to iteration. For the data sets used in this study, four iterations were found to be

sufficient to yield reasonable results. For instance, it took less than one minute to provide

a dispersion diagram in this study using a quad-core Windows 7 64-bit computer with Intel

Core Q6600 2.40 GHz CPU and 4 Gb RAM. Increasing the number of iterations consumes

more computation time.

Figure 3.20: Example of an L-curve for the noise-free simulated data set (Figure 3.13a).
The regularization and misfit terms of the L-curve were given by Equation 3.6.

The hyper-parameter μ of the cost function, given by Equation 3.6, controls the degree of

fitting the predicted observations to the acquired data. A small μ-value leads to a solution

with minimized prediction error, but the focusing power of the transform is less ideal.

Conversely, if μ-value is large, the Radon energies will be imaged with higher resolution

as the regularization term is now emphasized, but the data misfit will be large as well. A
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preferred method of choosing the μ-value is the usage of the L-curve (Engl and Grever, 1994),

which is illustrated in Figure 3.20. The L-curve is a plot of the regularization term versus

the data misfit. The optimal value of μ corresponds to the “elbow” point of the L-curve,

where the curvature is maximal. For both the LSRT and HRRT, I used a μ-value of 1000

for the simulated data and 15000 for the bone data.

Aliasing is associated with insufficient sampling resulting in data artifacts. To avoid

aliasing, RT should obey the following sampling guidelines. The temporal and spatial

sampling are related by the Nyquist criteria (Turner, 1990) and provided by Equations 3.16

and 3.18. The slowness resolution, Δp, is given by Equation 3.17. The sampling intervals

and other parameters that are relevant to the simulation and bone data sets, are tabularized

in Table 3.2.

Table 3.2: Values of the relevant parameters pertaining to the data used in Section 3.4
Dispersion Curve Imaging

Data Δτ Δp Δx fmax rmax P

Set (μs) (μs/mm) (mm) (MHz) (mm) (μs/mm)

Simulation 2 0.004 2 0.195 126 0.8

Bone sample 0.1 0.002 1 1 89 1

The HRRT technique provides a powerful high-resolution tool to image the multi-channel

ultrasonic dispersive energy in long bones. Applications to numerical and ex-vivo experi-

mental data sets have demonstrated the feasibility and robustness of the method. Although

the guided modes are distinguishable in both FPs and RPs using the ex-vivo data in this

study, the HRRT shows a more powerful resolving power, constraining the dispersive ener-

gies of the guided modes within their well-delineated tracks. Therefore, the application of

HRRT will be beneficial for more complex cases where the modes come close together. The

HRRT handles smaller aperture and requires less records, which do not have to be evenly

spaced. In addition, the HRRT has the added-on advantage to enhance SNR by reducing

random noise. This method should be considered as a preferred method to carry out the

multi-channel dispersion analysis of ultrasonic guided wave data in long bones, where the

recording aperture is limited due to practical constraints. The success of this study opens

a bright roadmap to a wide range of RT applications in the field of processing ultrasonic

guided wave data in long bones.
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Chapter 4

Dispersion Simulation &
Sensitivity Analysis

4.1 Simulation of Dispersion Curve

A semi-analytical finite element (SAFE) scheme has been developed for accurately comput-

ing the velocity dispersion and attenuation in a trilayered system consisting of a transversely-

isotropic cortical bone plate sandwiched between the soft tissue and marrow layers. The

soft tissue and marrow are mimicked by two fluid layers of finite thickness. A Kelvin-Voigt

model accounts for the absorption of all three biological domains. The simulated dispersion

curves are validated by the results from the commercial software DISPERSE and published

literature. Finally, the algorithm is applied to a viscoelastic trilayered TI bone model to

interpret the guided modes of an ex-vivo experimental data set from a bone phantom.

4.1.1 Problem Formulation by Semi-Analytical Finite Element (SAFE)
Method

4.1.1.1 Geometry of the Model

A solid layer, extending infinitely along the x1 direction (Figure 4.1), represents the cortical

bone plate with a constant thickness h (domain Ωb = {(x1, x2);−h ≤ x2 ≤ 0}). The

anisotropic bone plate is sandwiched between the overlying soft tissue and the underlying

marrow layer. Their respective domains are denoted by Ωf
1 (Ωf

1 = {(x1, x2); 0 ≤ x2 ≤ h1})
and Ωf

2 (Ωf
2 = {(x1, x2);−(h+h2) ≤ x2 ≤ −h}), where h1 and h2 are the thicknesses of the

soft tissue and marrow layers respectively. The plane interfaces between the bone (Ωb) and

the fluids (Ωf
1 and Ωf

2) are denoted by Γbf
1 and Γbf

2 respectively.
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Figure 4.1: Geometry of the trilayered bone model.

4.1.1.2 Governing Equations and Boundary Conditions

Both soft tissue and marrow layers are modeled as acoustic fluid media with dissipation.

The dissipation mechanism is assumed to be small and due only to viscosity without mem-

ory effects (Sasso et al., 2007; Naili et al., 2010). The linearized wave equations of wave

propagation in both domains Ωf
1 and Ωf

2 are

ραp̈α −Kα∇2 (pα + γαṗα) = 0, ∀x ∈ Ωf
α, (α = 1, 2) (4.1)

where pα (α = 1, 2) denotes the acoustic pressure in Ωf
α; Kα and ρα are the bulk modulus

at rest and the mass density of the fluid, respectively; γα denotes the viscosity coefficient;

single dotted and double dotted symbols indicate the first and second order time derivatives

respectively. Thus the wave velocity in Ωf
α is cα =

√
Kα/ρα.

In Ωb, the displacement vector is denoted by u(x, t) = {u1, u2}T while the stress and

strain vectors are σ = {σ11, σ22, σ12}T and ε = {ε11, ε22, 2ε12}T respectively. Then the

dynamic equilibrium equation is

ρ ü− L
Tσ = 0 (4.2)

where ρ is the mass density and the operator L is defined by

L = L1∂1 + L2∂2, L1 =

⎡
⎢⎢⎢⎣

1 0

0 0

0 1

⎤
⎥⎥⎥⎦ , L2 =

⎡
⎢⎢⎢⎣

0 0

0 1

1 0

⎤
⎥⎥⎥⎦ (4.3)

with ∂1 and ∂2 being the spatial derivatives along the x1 and x2 directions respectively.

The constitutive law describing the Kelvin-Voigt viscoelastic behavior of the bone is

σ = C ε+ η ε̇, ε = L u, (4.4)

where C and η are the elasticity and viscosity tensors respectively (Nguyen and Naili, 2012).

I recall that the material properties of the trilayered system depend only on x2, i.e. ρ =

ρ (x2), C = C (x2) and η = η (x2).
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Regarding the boundary conditions, the normal velocity and stresses are continuous at

the fluid-solid interfaces, i.e.

∂2(pα + γα ṗα) = −ραü2,

{σ12, σ22}T = {0,−(pα + γαṗα)}T ,

⎫⎪⎬
⎪⎭ ∀x ∈ Γbf

α (α = 1, 2) (4.5)

where {σ12, σ22}T is the traction. The free boundary conditions for fluid layers are

pα = 0, ∀x ∈ Γf
α (α = 1, 2). (4.6)

4.1.1.3 Corresponding Equations in Frequency-Wavenumber Domain

I look for solutions of harmonic waves propagating along the axial direction x1 in the

following form

pα(x1, x2, t) = p̃α(x2)e
i(k1x1−ωt), (4.7)

u(x1, x2, t) = ũ(x2)e
i(k1x1−ωt), (4.8)

where i2 = −1, ω is the angular frequency, and k1 denotes wavenumber in x1 direction.

p̃α(x2) and ũ = (ũ1, ũ2)
T represent the amplitudes of pressure and displacement vector

in the fluid and solid respectively. By substituting Equation 4.7 into Equation 4.1, the

equations in the fluid layers become

(−ραω2 + k21K̄α

)
p̃α − K̄α∂

2
2 p̃α = 0, ∀x ∈ Ωf

α, (α = 1, 2) (4.9)

where K̄α = Kα(1− iωγα). Similarly, substituting Equation 4.8 into Equation 4.2 leads to

−ρω2ũ− L̃
T σ̃ = 0 (4.10)

where L̃ = ik1L1 + L2 ∂2.

The corresponding constitutive law is

σ̃ = ik1C̄L1ũ+ C̄L2 ∂2 ũ. (4.11)

where C̄ = C− iωη. The interface conditions are

∂2p̃ = ρ̄α ω2ũ2, {σ̃12, σ̃22}T = {0,−(1− iωγα)p̃α}T (4.12)

where ρ̄α = ρα/(1− iωγα). For each values of (ω, k1), Equation 4.10 can be rewritten as

(−ω2A1 + k21A2

)
ũ− ik1

(
A3 +AT

3

)
∂2ũ−A4∂

2
2 ũ = 0 (4.13)

where the matrices A1, A2, A3, and A4 are defined by

A1 = ρI, A2 = LT
1 C̄ L1, A3 = LT

2 C̄ L1, A4 = LT
2 C̄ L2. (4.14)
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4.1.1.4 The SAFE Formulation of the Characteristic Equation

A detailed SAFE derivation for the dispersion characteristic equation is presented in Ap-

pendix B. The characteristic equation of an infinite viscoelastic plate coupled with fluids

(B.18) can be written as

[
K1 + k21K2 + ik1K3

]
V = 0, (4.15)

where V = (P2,U,P1)
T , Pα (α = 1, 2), and U are the global pressure and displacement

fields or global wave structures. I rearrange (Equation 5.1) in order to have a linear eigen-

value problem in the following form

⎛
⎝
⎡
⎣ 0 K1

K1 iK3

⎤
⎦− k1

⎡
⎣K1 0

0 −K2

⎤
⎦
⎞
⎠
⎛
⎝ V

k1V

⎞
⎠ = 0. (4.16)

By solving (Equation 4.16) for each value of ω, I can determine the eigen-values k1 and

their associated eigen-vectors, V(ω,k1) of guided modes. The frequency-dependent phase

velocity (cp) and attenuation (att), in Np/m, of a guided mode are obtained from k1 using

the following relationships

cp =
ω

Re(k1)
, att = Im(k1) (4.17)

where Re() and Im() are the real and imaginary parts of a complex quantity.

Conventionally, the group velocity cg is determined by taking the derivatives of the ω-k

relationship, i.e cg = ∂ω(k1)/∂k1. However, as mentioned in Bernard et al., 2001, this

definition of group velocity is only valid in undamped waveguides. For damped waveguides,

it is more appropriate to evaluate the energy velocity Ve along the propagation direction.

The energy velocity is defined by the ratio between the time-average of Poynting vector and

the time-average of the energy density, i.e.

Ve =

∫
Ω 〈P · x1〉 dx2∫

Ω (〈Ep〉+ 〈Ek〉) dx2 (4.18)

where < . >= 1
T

∫ T
0 (.)dt is the time-averaging operator and T = 2π/ω is the period of the

considered harmonic wave. The time-averaged Poynting vector, strain and kinetic energy

densities, i.e., 〈P 〉, 〈Ep〉, and 〈Ek〉, are given by (see e.g Carcione, 2001)

〈P 〉 = −1

2
〈Re(σ) · Re(u̇)〉 , 〈Ep〉 = 1

2
〈Re(σ) · Re(ε)〉 , and 〈Ek〉 = 1

2
ρ 〈Re(u̇) · Re(u̇)〉 .

(4.19)
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4.1.2 Computation of Dispersion Curve

4.1.2.1 Bone Models

Three homogeneous TI layered bone models (Figure 4.2) were considered to validate the

simulated results and study the through-thickness wave structures. They are a free bone

plate (Model 1), a bone plate with overlying soft tissue (Model 2), and a bone plate sur-

rounded by soft tissue and marrow (Model 3).

Figure 4.2: 2D layered bone models used in dispersion calculation.

Table 4.1: Material parameters of bone models used in the dispersion curve calculation

Experiment Material h ρ VPL/VPT VS Compressional Shear

(mm) (kg/m3) (m/s) (m/s) viscosity viscosity

(dB/MHz/cm) (dB/MHz/cm)

Soft tissue 3 1043 1561 0 0.54 0

Bone Models Cortical bone 5 1930 4000/2000 1652 3.2/4.2 4

(1, 2, or 3) Marrow 10 930 1480 0 0.8 0

Fluid-Solid Water 0.5 1000 1480 0 0 0

Bilayer Aluminium 20 2700 5950 3120 0 0

Soft tissue mimic 2 1000 1600 0 0.54 0

Ex-vivo Cortical bone 6 1930 4250/3170 2041 3.2/4.2 4

Marrow mimic 2 1000 1500 0 0.8 0

The material properties relevant to the three bone models are summarized in Table

4.1, where h, ρ, VPL, VPT, and VS are the thickness, the mass density, the longitudinal

compressional wave speed, the transverse compressional wave speed, and the shear wave

speed respectively. The values of these properties and the viscosities are chosen from the

published results in the literature (Naili et al., 2010; Le et al., 2010; Culjat et al., 2010).

Also shown in Table 4.1 are a fluid-solid bilayer model (Yapura and Kinra, 1995) and a

bone model for an ex-vivo experiment.
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4.1.2.2 Verification of Computational Accuracy

In order to validate the accuracy of the proposed SAFE method and its implementation

to characterize the dispersion of guided waves, I compare the dispersion curves calculated

by the developed SAFE algorithm for two cases: (1) a bone plate in vacuum with the

commercial software DISPERSE (Pavlakovic and Lowe, 2001) and (2) a fluid-solid bilayer

with published data by Yapura and Kinra, 1995.

Figure 4.3: Comparison between the phase velocity dispersion of Lamb waves computed by
the SAFE method (blue) and DISPERSE (red) for four element sizes using the 5-mm thick
bone plate (Model 1 in Figure 2). The element sizes are (a) λ/8, (b) λ/4, (c) λ/2, and (d)
λ respectively, where λ is the shear wavelength of the bone plate.

The first structure examined is a 5-mm thick viscoelastic TI bone plate in vacuum

(Model 1 in Figure 4.2). The physical parameters of the plate can be found in Table 4.1.
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In this case, Lamb waves are generated up to 1 MHz (Figure 4.3) using four element sizes

varying from λ/8 to a full shear wavelength, λ, propagating in the bone plate to study

the effect of the element size upon the computational accuracy of the dispersion curves.

Superimposed are the solutions computed by DISPERSE. The results are in good agreement

for element size up to λ/4 (Figure 4.3b). Discrepancy between results is noticeable at

element size of λ/2 for higher order guided modes, especially at high frequency region

(Figure 4.3c). When the element size increases to one wavelength (Figure 4.3d), agreement

between results deteriorates further and the mismatch propagates down to lower order

guided modes, noticeably for frequencies over 0.5 MHz.

Figure 4.4: (a) Comparison between the SAFE’s phase velocity dispersion curves (red)
and Yapura-Kinra’s results (green) for a water-aluminum bilayer using element size of λ/8
where λ is a wavelength of acoustic wave in water. Subsequently, the SAFE’s phase velocity
dispersion curves (red) are used as reference to compare other SAFE’s estimation (blue)
using bigger element sizes: (b) λ/4, (c) λ/2, and (d) λ.
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The second structure to be investigated is an elastic water-aluminum bilayer (Table 4.1).

This example is chosen because it was analytically studied by Yapura and Kinra, 1995. Four

SAFE solutions are presented up to 1.2 MHz for four different element sizes, which, similar

to Figure 4.3, vary from λ/8 to a full shortest wavelength of the system. In this case, the

wavelength associated with ultrasonic propagation in water is used. Yapura and Kinra, 1995

only calculated the first 10 modes, which were used for comparison. With the element size

equal to λ/8, the SAFE method has faithfully reproduced the dispersion curves of Yapura

and Kinra (Figure 4.4a), confirming the accuracy and reliability of the simulation method.

Hereafter the SAFE dispersion curves calculated with λ/8 element size were used as the

reference to compare results with larger element size. When the element size increases to

λ/4 (Figure 4.4b), the SAFE algorithm misses some roots in the region: 0.7 MHz - 1.25

MHz / 10000 m/s - 15000 m/s. This becomes worse when the element size expands to

λ/2 (Figure 4.4c) and λ (Figure 4.4d), resulting in discontinuous or interrupted dispersion

branches. As well, the discrepancy between the reference and the calculated results is much

pronounced beyond 1 MHz and over 10000 m/s.

4.1.2.3 Elastic and Viscoelastic Bilayer and Trilayer Bone Models

I first consider a soft tissue-bone bilayer (Model 2 of Figure 4.2). The material attenuation

coefficients are assumed to be zero for the elastic case. Figures 4.5 shows the simulated

phase and energy velocity spectra for the elastic and viscoelastic bone plates with overlying

soft tissue. The attenuation values up to 0.7 dB/cm are superimposed. Four points at 0.95

MHz from the four guided modes in the frequency-phase velocity (f -c) plane are chosen to

study their wave structures. The corresponding particle displacements or wave structures

are shown in Figure 4.6. The displacement fields of the same kind are normalized by the

global maximum of the displacement magnitudes.

A soft tissue-bone-marrow trilayer (Model 3 of Figure 4.2), which is consisted of a bone

plate with overlying soft tissue and underlying marrow layers, is considered next. The

dispersion results are shown in Figure 4.7. Similarly, four displacement profiles across the

thickness are plotted for the four points at 0.95 MHz from the four guided modes in the f -c

plane (Figure 4.8).
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Figure 4.5: Velocity spectra for the soft tissue-bone bilayer (Model 2 of Figure 4.2): Phase
velocity dispersion curves for (a) elastic case and (b) viscoelastic case; Energy velocity
dispersion curves for (c) elastic case and (d) viscoelastic case; Superimposed are the corre-
sponding attenuation values. Four points marked in (a) and (b) at 0.95 MHz are used to
illustrate the wave structures in Figure 4.6. (a1, b1), (a2, b2), (a3, b3), and (a4, b4) are
from Mode 1, Mode 2, Mode 9, and Mode 14 respectively.

Figure 4.6: Displacement fields (vertical: dashed blue, horizontal: solid red) for the soft
tissue-cortical bone bilayer (Model 2 of Figure 4.2): (a1)-(a4) are for the elastic case and
(b1)-(b4) for the viscoelastic case for the four points at 0.95 MHz as marked in Figures 4.5a
and 4.5b. The vertical and horizontal displacement fields are normalized by their respective
global maximum of the displacement magnitudes.
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Figure 4.7: Velocity spectra for the soft tissue-bone-marrow trilayer (Model 3 of Figure
4.2): Phase velocity dispersion curves for (a) elastic and (b) viscoelastic case; Energy ve-
locity dispersion curves for (c) elastic case and (d) viscoelastic case. Superimposed are the
corresponding attenuation values. Four points marked in (a) and (b) at 0.95 MHz are used
to illustrate the wave structures in Figure 4.8. (a1, b1), (a2, b2), (a3, b3), and (a4, b4) are
from Mode 1, Mode 18, Mode 21, and Mode 25 respectively.

Figure 4.8: Displacement fields (vertical: dashed blue, horizontal: solid red) for the soft
tissue-bone-marrow trilayer (Model 3 of Figure 4.2): (a1)-(a4) are for the elastic case and
(b1)-(b4) for the viscoelastic case for the four points at 0.95 MHz as marked in Figures 4.7a
and 4.7b. The vertical and horizontal displacement fields are normalized by their respective
global maximum of the displacement magnitudes.
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4.1.2.4 Interpretation of Ex-vivo Data

The SAFE algorithm is applied to interpret the dispersion of a guided wave dataset acquired

on a bovine femur plate with a 2-mm thick Blue PhantomTM layer (CAE Healthcare, Sara-

sota FL) on the top and water at the bottom (Figure 4.9a). The dimensions of the bovine

bone plate are 180 mm × 55 mm with a mean thickness of 6 mm. The tissue-mimicking

material and water are used to mimic human soft tissue and marrow. The ultrasonic axial-

transmission measurement is performed using two 1-MHz angle beam compressional wave

transducers (Panametrics C548, Olympus NDT, Waltham, MA, USA) attached to two angle

wedges (Panametrics ABWM-7T-30). Two clips, designed by CAD modeling and produced

by 3D printer, hold the the transducer-wedge systems in place while the other ends are at-

tached to the two steel bars, which provide constant pressure to the contact surface during

the experiment. One probe acts as a stationary transmitter and the other as a receiver.

The transmitter is pulsed by a Panametrics 5800 P/R (Panametrics, Waltham, MA, USA).

The signals detected by the receiver are digitized by and displayed on a 200-MHz digital

storage oscilloscope (LeCroy 422 WaveSurfer, Chestnut Ridge, NY). Ultrasound gel is ap-

plied on all contact surfaces to ensure good coupling. The experiment is performed at room

temperature (21-22oC). Further details of the experimental setup are provided by Tran et

al., 2013. A total of 64 ultrasonic records are collected with the closest offset (transmitter-

receiver distance) of 30 mm and the receiver spacing of 1 mm. The ultrasound properties

of the trilayered model are provided in Table 4.1. The longitudinal compressional velocity

is obtained from the time-distance (t-x) data while the longitudinal shear velocity is mea-

sured axially using a pair of 1 MHz shear wave contact transducers (Panametrics V153,

Olympus NDT, Waltham, MA, USA). The transverse compressional velocity was measured

by a pair of 1 MHz compressional wave contact transducers (Panametrics V103, Olympus

NDT, Waltham, MA, USA) using transmission-through technique. The measured values

are within the range reported in the literature (Pithioux et al., 2002; Le et al., 2010). Small

attenuation values were used to account for the damping of soft tissue and marrow (Naili

et al., 2010).

The acquired time-distance (t-x) data set is transformed to the frequency-phase velocity

(f -c) domain using the high-resolution linear Radon transform (Tran et al., 2014a; Tran et

al., 2014b) and linear interpolation. Intensity peaks of the guided modes in the f -c plane

are searched for each frequency and the maximum intensity of the peaks is determined.

Those peaks with the intensity larger than 50% of the maximum are included. Figure 4.9b
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shows the SAFE-based dispersion curves with the superposition of the experimental loci.

The first eleven guided modes are identified to have close agreement with the experimental

data.

Figure 4.9: (a) The setup of the ex-vivo axial-transmission experiment. (b) The theoretical
f -c dispersion curves are calculated for the trilayered model consisting of soft tissue mimic,
bovine bone plate, and marrow (blue curves). Superimposed are the maximum intensity
loci from the experimental data (red dots).

4.1.3 Discussions

Velocity and attenuation are two important parameters characterizing dispersion of guided

waves propagating within multilayered structures. A solid knowledge of the aforemen-

tioned frequency-dependent characteristics is essential in our understanding of the ultra-

sonic guided wave propagation in long bones. In order to solve the inversion problem, i.e.,

to extract bone parameters from the ultrasonic guided wave data, a numerical simulation

tool must be developed to predict the dispersion curves given a bone model. This will

subsequently provide guidance to optimize data acquisition and model-based inversion of

guided wave energy for cortical bone parameters. The objective of this work is to develop

a forward modeling algorithm using SAFE scheme to estimate dispersion energy of ultra-

sound traveling within an elastic/viscoelastic trilayered bone model. The bone model is

novel with soft tissue and marrow layers on both sides. To the best of my knowledge, this

is the first attempt to simulate the dispersion and attenuation curves of ultrasonic guided

modes traveling along a TI bone plate of a trilayered system.

The SAFE solutions have been validated by DISPERSE for a bone plate model and by

Yapura-Kinra’s result for a bilayered model. The accuracy of SAFE approximation depends

on the element discretization along the cross-section of the waveguides. The mesh should be

sufficiently fine to accurately capture the waveguide structures at the maximum frequency

of interest. Rose suggests to use at least eight elements per wavelength and four-to-five
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nodes per element to obtain accurate solutions (Rose, 2014). In the simulation, I use 1/8

of the wavelength as the element size with three nodes for each element. The simulated

results are in very good agreement with the reference data from DISPERSE and Yapura

and Kinra, 1995. Elements with four and five nodes are also used but the same dispersion

curves and wave structures are obtained. The comparison also agrees when the element

size is doubled to λ/4. Discrepancy between the simulated data and the reference always

appears first for the high frequency region and higher order guided modes and propagate

downward (lower frequencies and smaller phase velocities) as the element size gets bigger.

It took approximately 20 seconds to calculate a dispersion profile for a trilayered model

(Figure 4.9b) with a Intel Core i7 4.00-GHz CPU and 64-Gb RAM Windows 10 64-bit

computer.

The presence of the soft tissue layer on top of the cortex increases the number of the

observed guided modes (Figure 4.3a versus Figure 4.5a). The phenomenon was observed in

the previous ex-vivo study by Tran et al., 2013. The addition of underlying marrow also

increases the number of guided modes (Figure 4.5a versus Figure 4.7a). While the possi-

ble dispersion curves, which account for the kinematic properties of the guided modes, are

predicted, not all guided modes are excited in the bone. Only some of them in particular fre-

quency neighborhoods will propagate (Rose, 2014; Tran et al., 2015). The non-propagating

waves correspond to the so called evanescent waves, whose energies are not propagating for

long distances. From the mathematical point of view, the wavenumbers of these waves are

complex or purely imaginary.

The inclusion of absorption in the model does not seem to modify significantly the

phase/energy velocity and displacement profiles of the guided modes within the f -c region

of interest (Figures 4.5b, 4.5d, 4.7b, and 4.7d). The damping has the least effect upon the

low frequency components, say under 0.5 MHz. Then attenuation increases with frequency

up to 0.7 dB/cm beyond 0.8 MHz especially for high order modes, which vanish in the

viscoelastic case.

The viscosity of the bone plate has little impact on the wave structures or displacement

profiles of the guided modes at low frequencies, where the wave structures between the

elastic and viscoelastic cases are similar. For the bilayer, I compare wave structures for

the four guided modes at 0.95 MHz (Figure 4.6). Basically there is no particle motion

along the horizontal (x1) direction in the soft tissue except for mode 9 and mode 14, which

oscillate in the soft tissue layer for the viscoelastic cases with mode 14 having a much

larger displacement magnitude. The horizontal displacement is discontinuous across the
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soft tissue-bone boundary as expected. Within the bone layer, I observe the following for

the horizontal particle motion. Mode 1 has a very mild displacement close to the interface.

Mode 2 starts at around -2 mm with a gentle increase in positive displacement amplitude and

then drops sharply to a large negative displacement around 5 mm below the interface. Mode

9 oscillates periodically with large magnitude. Mode 14 oscillates irregularly with large

troughs. The vertical displacements for the elastic and viscoelastic cases are continuous

across the interface and look similar. Mode 1 has a gentle positive displacement with a

maximum close to the interface within the soft tissue and bone layers. Mode 2 has no

motion in the soft tissue and a negative displacement component in the bone layer. Mode

9 oscillates periodically in both layers with a uniform amplitude. Mode 14 also oscillates

regularly in soft tissue but irregularly in the bone layer. For the trilayer (Figure 4.8), a

similar observation can be drawn. The horizontal displacements are discontinuous across

the interfaces. All modes lack the horizontal motion in both the soft tissue and marrow

layers for the elastic case while the horizontal motion, except for modes 1 and 21 in soft

tissue, are non-vanishing for the viscoelastic case and oscillate for higher order modes. The

horizontal motion within the elastic and viscoelastic bone plate has a small displacement for

mode 1 and oscillates with increasing strength for higher order modes. The vertical wave

structure, which is continuous across the interfaces, shows more complexity. Mode 1 has a

gentle positive vertical displacement with a maximum close to the bone-marrow interface

within the bone and marrow layers. The vertical displacement field oscillates in all layers

for higher order modes.

It has been found that DISPERSE has challenges to compute the dispersion curves for

a bilayered bone model with overlying soft tissue. The problem becomes intractable when

the third layer of underlying marrow is involved. Both the overlying and underlying tissues

have much lower velocities than the bone layer (∼ 1500 m/s versus ∼ 4000 m/s). The

outcome is unpredictable. The program either runs, does not run, or terminates itself. It

is difficult to place confidence on the computed results.

The developed simulation tool may be directly used for a functionally-graded bone plate,

where bone properties change along the x2 direction. A limitation of the SAFE method

is that it only considers bone plates with constant thickness and elastic parameters along

x1. This usually does not pose a big challenge as the bone section between the emitter and

receiver is only a few centimeter long and the thickness and velocities varies mildly.

Though mimicking long bones using a layered model has been justified (Le et al., 2010),

development of a simulation algorithm for cylindrical bone waveguides will be a good re-
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search direction in the future. The cylindrical model has much closer similarity to the long

bone geometry. Moreover, the merit of simulating dispersion curves for a cylindrical model

allows us to compute selectively any individual longitudinal guided modes.

My doctoral research focuses on a SAFE-based approach for calculating the dispersion

characteristics of ultrasonic guided waves propagating in viscoelastic TI bone waveguide

coupled with soft tissue and marrow modeled as viscous fluids. The validation with pub-

lished data and application on a plate-like bone models with surrounding soft tissue and

marrow illustrate the accuracy and potential of the developed simulation tool to predict the

dispersion of ultrasonic guided modes propagating in long bones in vivo with the presence

of soft tissue and marrow layers. The validated forward computational algorithm plays

a keystone to solve the model-based inverse problem to recover cortical bone properties,

which is very meaningful for the non-invasive ultrasonic diagnosis of bone health.

4.2 Sensitivity Analysis

The fundamental ultrasonic guided modes are consistently observed in long bones ex vivo

and in vivo. However, the responses of ultrasonic guided waves to the changes of cortical

thickness, cortical elastic parameters, and thickness of the overlying soft tissues are not

comprehensively understood. This section systematically presents a sensitivity analysis of

leaky Lamb modes to the geometry and material characteristics of layered bone model by

means of semi-analytical finite-element modeling. The stratified bone model is consisted of

a transversely isotropic cortex with an overlying soft tissue and underlying marrow. This

sensitivity study is important as it offers guidance to the parameter inversion process about

the optimal selection of guided modes and regions of sensitivity for better inversion results.

4.2.1 Introduction

Currently, there is a lack of comprehensive study of the dependence of UGW upon the

geometrical and mechanical properties of bone waveguide. Moilanen et al., 2004 measured

the phase speed variation of ultrasonic waves in two thick and thin PVC bone-mimicking

phantoms. Their work was limited to the cortical thickness sensitivity only. Most recently,

numerical simulation (Thakare et al., 2017) has been used to provide more insight into the

effect of dimensional degradation of cortical bone on cylindrical guided wave velocity. The

studies considered a very small range of cortex thickness (1-3 mm) and the quantitative

analysis was limited to two guided modes L(0,3) and F(1,6). It is expected that a more

vigorous sensitivity investigation of the bone’s geometrical and mechanical properties upon
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the modal characteristics of UGW will enhance our fundamental understanding of ultra-

sound interaction of bone tissue under the impact of the surrounding soft media. This

will subsequently improve the efficacy of guided wave technology for cortical bone quality

assessment.

This section presents a sensitivity analysis of the UGW to dimensional and mechanical

property changes of layered bone models by means of numerical simulation. While cylin-

drical models more closely resemble the human long bone geometry and provide a more

accurate simulated ultrasonic response, our lab’s work (Le et al., 2010) and others (Chen

et al., 2012; Minonzio et al., 2014) have also demonstrated that the stratified bone model

quite adequately interpret the long bone data at hand, especially in case when the radius

of the bone sample is large. In this sensitivity study, dispersion curves are simulated for

plate-like cortical bone structures using semi-analytical finite element (SAFE) method. I

then identify the impact of geometry and material parameters on the characteristic phase

velocities of the leaky Lamb waves, i.e., the sensitivity of the phase velocities of the leaky

Lamb modes to the variations of bone model parameters. The investigation provides oppor-

tunity to study the responses of the ultrasonic guided modes (UGM) to bone parameters,

to identify the sensitive regimes in the frequency-phase velocity domain, and to quantify

the amount of sensitivity of each mode.

4.2.2 Stratified Transversely-Isotropic Bone Models

I consider a homogeneous transversely-isotropic layered bone model (Figure 4.10), consisting

of a cortical bone plate coupled with overlying soft tissue and underlying bone marrow. More

details about the model parameters will be discussed later in Section 4.2.3.

Figure 4.10: A cross-sectional geometry of a trilayered bone model.
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4.2.3 Numerical Calculation of Phase-Velocity Dispersion Curves

As discussed in Section 4.1, a simulation framework to compute numerically the ultrasonic

dispersion in cortical bone with coupled soft tissue and marrow (Figure 4.10) has been de-

veloped using a SAFE method. Recently, the SAFE method is more widely used due to

its ability to handle arbitrary cross-sectional waveguides, being able to produce accurate

and computationally efficient solutions, and being less prone to missing roots when solving

the eigen-equations (Rose, 2014; Nguyen et al., 2017). Here, I would like to briefly rein-

troduce some key points of the SAFE approach. The mathematical problem is formulated

in the frequency-wavenumber (f -k) domain, which handles naturally the implementation

of frequency-dependent absorption and permits selection of a k-range to study wavefields

traveling at different phase velocities. The SAFE method discretizes the x2-axis while the

guided wave propagation along the x1-direction is described analytically.

A 1D finite element assembly process along the thickness direction (x2) gives rise to

the characteristic dispersion equation of an infinite viscoelastic plate-like bone structure

coupled with fluids

[
K1 + k21K2 + ik1K3

]
V = 0, (4.20)

where k1 is the axial wavenumber. V = (P2,U,P1)
T with Pα (α = 1, 2) and U being the

global pressure and displacement fields or global wave structures. The frequency-dependent

K-matrices include the masses and the rigidities of cortical bone, soft tissue, and marrow,

and the coupled terms between them. The mathematical expressions of these matrices have

already been described in Section 4.1. Equation 4.20 can be rearranged into a system of

linear eigen-value equations:

⎛
⎝
⎡
⎣ 0 K1

K1 iK3

⎤
⎦− k1

⎡
⎣K1 0

0 −K2

⎤
⎦
⎞
⎠
⎛
⎝ V

k1V

⎞
⎠ = 0. (4.21)

Given a frequency value, the eigen-solutions to the characteristic Equations 4.21 are the

wavenumbers for different guided modes. The complete set of dispersion curves can be

obtained by repeatedly solving the eigen-value equation over a desired frequency range.

The frequency-dependent phase velocity cp is given by

cp =
ω

Re(k1)
(4.22)

where ω is the angular frequency.

76



4.2.4 Sensitivity Analysis of Bone Model Parameters

Six material properties were investigated: soft tissue thickness (hST), cortical bone thickness

(hCB), shear wave velocity (VS), longitudinal compressional wave velocity (VPL), transverse

compressional wave velocity (VPT) of the cortex, and bone density (ρ). The influence of

each parameter to the dispersion characteristics was studied by varying one at a time while

holding the others constant at their respective reference values. The reference, minimum,

maximum, and step values relevant to the six model parameters are summarized in Table

4.2. Those values were chosen in accordance with the ones reported in the literature for

human tibia (Laugier and Haiat, 2011; Le et al., 2010; Capozza et al., 2010; Mesquita et

al., 2016). The material absorption was ignored because it did not significantly affect the

phase velocity dispersion of the guided modes in the frequency range of interest (Nguyen

et al., 2017). The acoustic wave velocity and mass density of the soft tissue and marrow

layers are assumed to be approximately 1500 m/s and 1000 kg/m3 respectively (Gurkan

and Akkus, 2008; Culjat et al., 2010). The bone marrow thickness was set at 7 mm, which

was based on the narrowest diameter of medullary cavity at human tibial diaphysis.

Table 4.2: Material parameters of bone models used in the sensitivity analysis

Parameter hST hCB VS VPL VPT ρ

(unit) (mm) (mm) (m/s) (m/s) (m/s) (kg/m3)

reference 1 5 2000 4000 3000 2000

minimum 1 2 1400 3000 2000 1400

maximum 5 7 2400 4000 3000 2400

step 1 1 200 200 200 200

The analysis of dispersion sensitivity of the UGM to geometry and material charac-

teristics of the model was assessed by comparing phase velocity spectra derived from the

different trilayer bone models over the low-frequency range (< 1 MHz) against the reference

bone model. This frequency range is typically most relevant to clinical application.

In the frequency range of interest from 0 to 1 MHz, the sensitivity analysis was performed

on the first eight leaky Lamb modes. The UGM numbering system (Rose, 2014) was used

to name the eight leaky Lamb modes in the bone plate. The eight modes were named mode

1, mode 2, mode 3, mode 4, mode 5, mode 6, mode 7, and mode 8 respectively from the

lowest to higher order.
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Figure 4.11: Sensitivity of leaky Lamb modes to soft tissue thickness (hST). The arrows
indicate the frequencies which have the biggest change.

Soft tissue thickness was found to have insignificant influence on mode 1 (Figure 4.11a).

Its presence only affects the dispersion characteristics of mode 2 at the very low frequency

(0.1 - 0.45 MHz) (Figure 4.11b), mode 3 up to 0.35 MHz (Figure 4.11c), modes 4, 5, and 6

up to 0.5 MHz (Figures 4.11d, 4.11e, and 4.11f), and modes 7 and 8 up to 0.8 MHz (Figures

4.11g and 4.11h). Increasing the soft tissue thickness by 400% (1 to 5 mm) results in a

reduction of phase velocity by approximately 1100 m/s (30%) in mode 2 at 0.07 MHz, 1900

m/s (49%) in mode 3 at 0.2 MHz, 1500 m/s (38%) in mode 4 at 0.2 MHz, 1600 m/s (43%)

in mode 5 at 0.3 MHz, 1800 m/s (45%) in mode 6 at 0.35 MHz, 1750 m/s (44%) in mode 7

at 0.4 MHz, and 1700 m/s (43%) in mode 8 at 0.5 MHz respectively. On the average, the

phase velocities of modes 2, 3, 4, 5, 6, 7, and 8 differ by at least 7.5% for 1 mm change in

hST.

Cortical thickness variability has an impact on the phase velocities of the leaky Lamb

waves (Figure 4.12). The effect is visible from 0.05 to 0.35 MHz for mode 1 (Figures 4.12a),

around 0.1 MHz for mode 2 (Figure 4.12b), from 0.2 to 0.4 MHz for modes 3 and 4 (Figures

4.12c and 4.12d), and from 0.3 to 0.7 MHz for modes 5, 6, 7, and 8 (Figures 4.12e, 4.12f,
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4.12g, and 4.12h) respectively. Increasing the bone thickness by 250% (2 to 7 mm) increases

the phase velocity over 400 m/s (48%) for mode 1 at 0.1 MHz but reduces approximately

by 1300 m/s (37%) for mode 2 at 0.08 MHz, 1400 m/s (38%) for mode 3 at 0.18 MHz, 1700

m/s (44%) for mode 4 at 0.27 MHz, 1500 m/s (39%) for mode 5 at 0.35 MHz, 1400 m/s

(36%) for mode 6 at 0.42 MHz, 1500 m/s (39%) for mode 7 at 0.5 MHz, and 1450 m/s

(38%) for mode 8 at 0.6 MHz. The phase velocities of the eight modes vary by more than

7% for each 1 mm change in hCB at their respective frequency of sensitivity.

Figure 4.12: Sensitivity of leaky Lamb modes to cortical bone thickness (hCB). The arrows
indicate the frequencies which have the biggest change.

Variation in shear wave velocity in cortical bone modifies the dispersion characteristics

of UGW slightly (Figure 4.13). When the model has a VS increase of 70% (1400 to 2400

m/s), the relative increases of phase velocity are about 27% (300 m/s) at 0.15 MHz for

mode 1, 19% (300 m/s) at 0.25 MHz for mode 2, 10% (200 m/s) at 0.3 MHz for mode 3,

10% (200 m/s) at 0.35 MHz for mode 4, 13% (250 m/s) at 0.45 MHz for mode 5, 17% (300

m/s) at 0.6 MHz for mode 6, 20% (400 m/s) at 0.6 MHz for mode 7, and 26% (450 m/s)

at 0.9 MHz for mode 8 respectively.
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Figure 4.13: Sensitivity of leaky Lamb modes to cortical shear wave velocity (VS). The
arrows indicate the frequencies which have the biggest change.

Longitudinal and transverse compressional wave speeds have comparatively modest im-

pact (Figures 4.14 and 4.15): change by less than 5% on modes 1 and 2 and 5-13% on the

other 6 modes in a small low-frequency range for every 200 m/s increase. When the longi-

tudinal compressional wave velocity VPL increases by 33% (3000 to 4000 m/s), the phase

velocity also increases by 7% (85 m/s) at 0.1 MHz for mode 1, 35% (1000 m/s) at 0.05 MHz

for mode 2, 35% (1000 m/s) at 0.1 MHz for mode 3, 34% (980 m/s) at 0.2 MHz for mode

4, 28% (900 m/s) at 0.275 MHz for mode 5, 31% (1000 m/s) at 0.3 MHz for mode 6, 32%

(980 m/s) at 0.4 MHz for mode 7, and 33% (1000 m/s) at 0.45 MHz for mode 8. Similar

phenomena have been observed for VPT: 8% (100 m/s) at 0.3 MHz for mode 1, 15% (200

m/s) at 0.4 MHz for mode 2, 66% (1500 m/s) at 0.16 MHz for mode 3, 54% (1300 m/s) at

0.225 MHz for mode 4, 42% (1100 m/s) at 0.3 MHz for mode 5, 62% (1500 m/s) at 0.37

MHz for mode 6, 36% (1000 m/s) at 0.42 MHz for mode 7, and 60% (1500 m/s) at 0.5 MHz

for mode 8.
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Figure 4.14: Sensitivity of leaky Lamb modes to the longitudinal compressional wave ve-
locity (VPL) of cortical bone. The arrows indicate the frequencies which have the biggest
change.

Figure 4.15: Sensitivity of leaky Lamb modes to the transverse compressional wave velocity
(VPT) of cortical bone. The arrows indicate the frequencies which have the biggest change.
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The cortical bone density has the least effect upon the dispersion of the guided modes of

interest (Figure 4.16). In comparison to the material thicknesses hST and hCB, the changes

in the velocities VS, VPL, VPT, and bone density ρ do not cause as much horizontal shift of

the phase velocity spectra of the UGM especially for mode 1 (Figures 4.11-4.16).

Figure 4.16: Sensitivity of the first eight leaky Lamb modes to bone mass density (ρ).

Figure 4.17: The relative sensitivity of the guided modes with respect to the reference model
to changes of soft tissue thickness (hST), cortical bone thickness (hCB), shear wave velocity
(VS), and compressional wave velocity (VP) of the cortex respectively.
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Figure 4.17 summarizes the phase-velocity sensitivity of the eight guided modes at their

respective most sensitive frequency. The modal sensitivity to each model parameter is

interpreted in terms of the percentage with respect to the reference phase speed, which is

measured at the parameter’s smallest value. The increase in soft tissue and cortical bone

thickness slows down the phase speed of UGM except mode 1, which remains approximately

constant. The impact of the overlying soft tissue on mode 1 is insignificant. Mode 1

propagates faster while other modes decrease speeds as the cortical thickness increases. The

UGW phase speed tends to increase with shear, longitudinal compressional, and transverse

compressional wave velocity of the cortex. The contribution of bone mass density to the

dispersion sensitivity of UGM propagating in long bones is insignificant.

4.2.5 Discussions

This work is mainly focused on simulating phase-velocity dispersion of UGM propagating

in bone models with overlying soft tissue, cortex, and underlying marrow and investigating

the sensitivity of UGM to the geometry and material properties of interest. Identifying

the region of sensitivity of each UGM is important to optimize the selective excitation,

acquisition, and model-based inversion of axially-transmitted ultrasound data in long bones.

Mode 1 has been observed to have low sensitivity to hST, VS, VPL, VPT, and ρ. The

low-frequency component of mode 1 (0 - 0.35 MHz) are highly sensitive to the cortical

thickness hCB (Figure 4.12a) up to 50% relative sensitivity (Figure 4.17a) and, therefore, is

more favorable to be utilized for inverting the bone thickness hCB. The low-frequency region

of the lowest-order mode is called the desired range in the field of nondestructive testing

and has been used extensively in material monitoring. The fundamental mode exists in

the entire frequency spectrum while the higher-order modes have certain frequency cutoffs,

below which they don’t exist (Firouzi et al., 2016). In practice, compressional wave speed

can be estimated by analyzing the first arrivals of the time signals. The cortical density ρ can

be negated from the inversion procedure as its contribution to the phase-speed dispersion

is relatively small in the frequency range of interest. This study is a good attempt to

investigate the interaction of ultrasound waves with cortex under the impact of surrounding

soft tissues and the result can be used as a basis for proper dispersion-curve inversion of

thickness and elasticity of cortical bone.

The thickness of the soft tissue layer on top of the cortex modifies the dispersion curves

of the observed guided modes except mode 1 (Figure 4.11). The phenomenon was observed

in the previous ex-vivo study by Tran et al., 2013 in the case of bone plate with and without
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the presence of overlying soft tissue. Therefore the consideration of soft tissue layer in the

inversion scheme is important and cannot be ignored.

Figure 4.18: The displacement fields (horizontal: solid red, vertical: dashed blue) of the six
chosen frequencies on Mode 2’s phase-velocity dispersion curve using the reference model.
The first five dispersion points at the most sensitive frequencies to (a) hST (0.07 MHz), (b)
hCB (0.08 MHz), (c) VS (0.25 MHz), (d) VPL and ρ (0.05 MHz), and (e) VPT (0.4 MHz). (f)
The wave structure of Mode 2 at 1 MHz, which is insensitive to the parameter variation.

In order to study the wave structures in the sensitive and insensitive regions of the dis-

persion curves, I chose six frequencies on the dispersion curve of Mode 2 using the reference

model. Mode 2 was used because its dispersion curve is responsive to the change of all six

model properties. The wave structure analysis was performed at six chosen frequencies: five

sensitive frequencies, which respond to the parameter variations (hST at 0.07 MHz, hCB at

0.08 MHz, VS at 0.25 MHz, VPL and ρ at 0.05 MHz, VPT at 0.4 MHz) and one frequency

(1 MHz), which is insensitive to the changes of the model parameters. The corresponding

particle displacements are graphed in Figure 4.18. The sensitive regimes are toward the

lower-frequency end of the dispersion spectra. When UGW propagate in long bones, the

high-frequency components decay very quickly because of preferential absorption while the

lower-frequency energies can penetrate deeper in the cortex and build up strong guided

wave energy. Comparing to the displacement field of the sensitive frequencies (Figures

4.18a-4.18e), the insensitive 1-MHz (Figure 4.18f) has an insignificant horizontal particle

motion in the cortex and the vertical motion is very localized to a thin portion at the top of

the cortical layer. The particle displacements of the sensitive frequencies have much larger

84



magnitudes. On the same modal phase-velocity curve, the frequencies that lack particle

motion appear to be less sensitive to the model modification.

In practice, only certain modes are excited within a finite frequency range. The UGM

excitability depends on which guided mode is excited and where on its dispersion curve it

is excited (Rose, 2014). The excitability function E of an UGM on the excitation surface is

related to the acoustic particle velocity v by Tran et al., 2015; Gao and Rose, 2010

E = |v| (4.23)

where v is related to the particle displacement u by v = ωu. The particle displacement

u can be obtained from the global displacement field U via u = U(x2=0). The simulated

excitability of the eight guided modes for the reference bone model was examined. Figure

4.19 shows the phase velocity spectrum of the eight reference modes superimposed by their

excitability responses. Each dispersion curve and each point on the same curve has different

excitability attribute. Mode 1’s excitability peak exists around 0.2 MHz, which is also the

most sensitive dispersion region to cortical thickness and velocities. However for higher

order modes, the most sensitive regions do not usually overlap with those of the most

excitable areas. The UGM excitation is not only affected by the excitability but also the

attenuation nature of the guided modes. Further discussion will be beyond the focus of the

current work and will be deferred later to a future communication.

Figure 4.19: The dispersion spectrum of the first eight leaky lamb modes for the reference
bone model, superimposed by their excitability. The color bar on the right indicates the
the strength of excitability.

Finite element method is a numerical technique which provides an approximation of the

solutions and the accuracy depends on the element size. Therefore, appropriate element

discretization is important to reduce calculation errors and allow the FEM solutions to
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converge to the exact solutions, i.e. a sufficient number of elements must be employed.

Usually, at least eight linear elements per wavelength are required to achieve accurate

simulation of UGM (Rose, 2014). A large number of elements with smaller element size can

be chosen; however more and unnecessary computational time will be consumed. In this

study, using eight elements per wavelength is sufficient to yield reasonable results (Nguyen

et al., 2017). It took less than one minute to calculate a dispersion profile for a bone model

with a Windows 10 Pro 64-bit computer with Intel Core i7 4.00-GHz CPU and 32-Gb RAM.

This study has been designed to identify regions of sensitivity of UGM for the subse-

quent dispersion-curve inversion to assess cortical thinning in the prediction of osteoporosis

and fracture risk. The analysis of guided-mode sensitiveness suggests that cortical thick-

ness is a determinant of guided wave dispersion. It is possible to detect the phase velocity

change with cortical properties. By means of frequency-phase velocity spectrum analysis,

detectability was quantified with variability of soft tissue thickness, bone geometry and ma-

terial properties. The material characteristics contribute differently to the dispersion map.

Through the process, choosing the modes which are sensitive to the material properties of

interest along with its sensitivity region is an important step to any successful inversion

strategy. A multi-modal inversion approach of UGM allows more information to be ex-

ploited. Mode 1 should have high weighting in the misfit function due to its independence

to soft tissue thickness especially when cortical thickness is the parameter of interest. In-

verting the UGM dispersion data for bone properties can provide reliable information about

the bone tissue status which has relevance for osteoporosis assessment. This study has also

demonstrated that SAFE modeling is a powerful tool to gain insight into the ultrasound

interaction with cortical bone in the presence of the surrounding tissues.
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Chapter 5

Dipsersion Curve Inversion

In this chapter, I propose a nonlinear grid-search inversion algorithm to estimate the thick-

ness and elastic velocities of long cortical bones, which are important determinants of bone

strength, from axially-transmitted ultrasonic data. The inversion scheme is formulated in

the dispersive frequency-phase velocity domain to recover bone properties. The method

uses ultrasonic guided waves to retrieve overlying soft tissue thickness, cortical thickness,

compressional, and shear-wave velocities of the cortex. The inversion strategy requires sys-

tematic examination of a large set of trial dispersion-curve solutions within a pre-defined

model space to match the data with minimum cost in a least-squares sense. The theoret-

ical dispersion curves required to solve the inverse problem, i.e. to extract bone parame-

ters from the acquired ultrasound data, are computed for bilayered bone models using a

semi-analytical finite-element method (Section 4.1). Developing accurate forward model-

ing algorithms plays a keystone to solve the model-based inverse problem to recover bone

properties. The feasibility of the proposed approach is demonstrated using the numerically

simulated data for a 1 mm soft tissue-5 mm bone bilayer and ex-vivo data from a bovine

femur plate with an overlying 2 mm-thick soft-tissue mimic. The results show that the

cortical thickness and wave speeds can be recovered with fair accuracy. The algorithm is

also capable of inverting UGW dispersion energy branches from human tibia to infer for the

thickness and velocities of the cortical bone with acceptable discrepancy. The bootstrap

method is employed to statistically evaluate the inversion uncertainty and stability.

5.1 Nonlinear Grid-Search Inversion

5.1.1 Dispersion Curve Extraction

The multi-modal grid-search inversion scheme is formulated in the f -c domain to recover

the bone properties. The phase-velocity dispersion curves of the UGW modes propagating
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in cortical bone are sensitive to the cortical thickness and velocities (Tran et al., 2018a).

The inversion strategy is to systematically examine a set of trial dispersion curves within a

pre-defined parameter space/dictionary to match the measured data, which minimizes the

objective function in a least-squares sense. First, the f -c dispersion energy is extracted

from the time-offset (t-x) multi-channel acquisition of UGW using high-resolution Radon

transform method (Chapter 3; Tran et al., 2014a; Tran et al., 2014b). Next, the maximum

intensity loci of the extracted dispersive energies are automatically traced to form the

dispersion curves of the ultrasonic data.

5.1.2 Forward Modeling

Figure 5.1: Cross section of a bilayered bone model.

The theoretical dispersion curves are solved for a bilayered isotropic and elastic bone plate

overlaid by a fluid layer of finite thickness (Figure 5.1). Each layer is characterized by its

thickness, density, and wave velocities. The semi-analytical finite-element method (Chapter

4; Nguyen et al., 2017; Tran et al., 2018a) has been employed to derive the dispersion

characteristic equations in the frequency domain, which can be expressed by a quadratic

eigen-value system as [
K1 + k2K2 + ikK3

]
V = 0 (5.1)

where k denotes the wavenumber in the x direction; i2 = −1; K1, K2 and K3 are global

mass- and rigidity-related matrices; the vector V consists of the global nodal pressures and

displacements, which represent the wave structure associated to each mode.

By solving Equation 5.1 for each value of the angular frequency ω, the eigen-values k and

the associated eigen-vectors, V(ω,k) of guided modes can be determined. The frequency-

dependent phase velocity cp of a guided mode is obtained from k using the following rela-

tionship

cp =
ω

Re(k)
(5.2)

where Re() is the real part of a complex quantity.
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The forward calculation can be computationally intensive if the model space (or number

of parameters) becomes large. Therefore, in order to minimize the computation cost of the

inversion procedure, a data bank of possible solutions has been built in advance. The

parameter ranges are as follows: 0 - 5 mm for soft tissue thickness hST , 1 - 10 mm for

cortical thickness hCB, 3000 - 4000 m/s for compressional-wave velocity (VP ), and 1500

- 2500 m/s for shear-wave velocity (VS) with the incremental steps of 0.5 mm, 0.5 mm,

100 m/s, and 100 m/s respectively. The acoustic velocity of the soft tissue is assumed

to be a constant 1500 m/s. Pre-computing the dispersion curves for a pre-defined model

space avoids repeatedly executing the forward modeling step, thus speeding up the inversion

process.

5.1.3 Grid-Search Algorithm

Figure 5.2a demonstrates the concept of grid search or parameter sweeping, which is basi-

cally a systematic search through each point in a pre-defined solution space to locate the

optimal or best-fit bone model (Sen and Stoffa, 1995). The enumerative technique seeks

the global rather than a local minimum in a multi-dimensional non-linear objective func-

tion (Figure 5.2b). The method is only practical when the number of inverted parameters

is small (usually < 7) and the parameters lie within specific ranges of values (Menke, 2012).

In this study, the objective or misfit function J is defined in a least squared sense as the

squared difference between the experimentally measured and theoretically calculated phase

velocities, ce and ct,

J =
I∑

i=1

J∑
j=1

(cei,j − cti,j)
2 (5.3)

where i is the number of existing guided modes and j is the number of dispersion points of

each mode.

The parameter optimization is applied to the guided modes’ dispersive energy loci to

invert for the parameters of interest (POI), which are thickness of overlying soft tissue

and cortical bone, compressional- and shear-wave velocities of the cortex. Figure 5.3 is a

flowchart summarizing the grid-search optimization with a data bank, which holds all pos-

sible combinations of solutions within defined ranges of parameter values and increments.

The method is conceptually simple and straightforward to implement. First, a pool of candi-

date dispersion curve solutions is generated from a pre-specified uniform grid of POI values.

Secondly, the experimental dispersion curves are extracted from the Radon-transformed ul-

trasonic signals. Then the misfit function between experimental and theoretical dispersion
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curves is evaluated in a multidimensional model space for the best-fit solution.

Figure 5.2: Illustration of the grid search optimization strategy using two parameters.
(a) Pre-determined model space. (b) The technique seeks the global rather than a local
minimum.
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Figure 5.3: Flowchart of the grid-search optimization method.

5.1.4 Uncertainty Estimation by Bootstrapping

The bootstrap method was first introduced by Efron, 1979 for nonparametric error rate

estimation problems. Bootstrapping can commonly be thought of as a cross validation

approach. The method is employed to test the estimator’s accuracy in small sample situ-

ations where conventional techniques are not valid (Ulrych and Sacchi, 2005). In clinical

QUS application, the size of the data set is not sufficiently large due to time constraints

in data acquisition to avoid patient motion or limited number of channels in an array. In

practice, large data sample is inapplicable and the ultrasound scan can not be repeated

many times, which keeps the patient in the clinics longer than necessary. Besides, there

are estimated parameters with unknown true values, which can not be experimentally mea-

sured for verification. In this case, bootstrap technique offers some uncertainty measures of

the parameters with respect to their unknown true values. Uncertainty estimate associated

with the parameter optimization is important to avoid misleading data inference.

With bootstrapping, subsets of the observed data are randomly re-assigned and re-

inverted for the bone properties. These re-sampling assignments are automatically input

into the inversion scheme and treated as repeated measurements. After n repetitions, the

mean and standard deviation (SD) of a POI estimate can be computed respectively by

POI =
1

n

n∑
i=1

POIi (5.4)

and

σ =

√√√√ 1

n− 1

n∑
i=1

(POIi − POI)2. (5.5)
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5.2 Method Validation

5.2.1 Time-Domain Synthetic Data

Synthetic data for a 5 mm-thick bone plate with 1 mm-thick overlying soft tissues was

used to validate the inversion algorithm. As described in Section 2.1.2, the cortex and

the soft tissue are modeled as homogeneous, isotropic, and elastic solid and acoustic fluid,

respectively. The compressional wave speed, shear wave speed, and mass density of the

cortex were 3200 m/s, 2400 m/s, and 1930 kg/m3 respectively. The properties are similar

to those of human cortical bone (Tran et al., 2018a). Ultrasound velocity and mass density

of the soft tissue were 1700 m/s and 1000 kg/m3, respectively. No absorption was assumed.

The lower surface of the plate was assumed to be under traction-free condition and the

upper surface of the fluid was excited by a point pressure force. The source wavelet was a

time history function given by Tran et al., 2014b

F (t) = F0e
−4(fct−1)2 sin (2πfct) (5.6)

where F0 = 1 N.m−2 and the center frequency fc was 1 MHz. A set of 64 ultrasound records

were simulated with 1 mm spacing interval and a minimum offset of 20 mm. The numerical

solution of this problem was computed by using an in-house code based on the time-domain

finite element method which has been shown to be efficient for the simulation of ultrasound

in bone plate coupled with fluids (Nguyen and Naili, 2011; Nguyen and Naili, 2012; Tran et

al., 2014b).

5.2.2 Inversion of Simulated Data

A numerically simulated dataset was used to validate the proposed grid-search technique.

Figure 5.4 plots the 64-channel synthetic time signals (Figure 5.4a) and its corresponding

dispersion map (Figure 5.4b). The time series were transformed into the dispersive f -c panel

using the high-resolution Radon algorithm as described in Section 2.1.1. The dispersion

curves were then obtained by locating the maximal-intensity at each frequency.

The combined grid search - bootstrap algorithm was applied to estimate the material

properties from the simulated temporal wavefield. Bootstrap statistics with a sample size

of 100 was utilized to evaluate the inversion uncertainty. The originally simulated data

were re-sampled 100 times to produce 100 sub-datasets. Each sub-dataset included 32

records drawn at random from the primary 64 records. In every bootstrapping iteration,

the optimal model solution was obtained by minimizing the misfit function between the

dispersion curves of the re-sampled data and data-bank candidates.
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Figure 5.4: (a) Simulated waveforms of UGW propagating in a soft tissue-cortical bone
bilayer and (b) the corresponding phase velocity dispersion panel. Superimposed white
dots are the maximum intensity loci.
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Table 5.1 summarizes the outcomes of grid-search inversion of the synthetic UGW signals

and comparison with the reference POI values. The input parameters (hST , hCB, VP, and

VS) were accurately recovered. The thickness of soft tissue was precisely retrieved for 1 mm.

The recovered cortical thickness ranges from 5 mm to 5.5 mm with a mean value of 5.025

mm and a standard deviation of 0.11 mm. Inverted compressional- and shear-wave speeds

are 3211 ± 40 m/s and 2411 ± 31 m/s respectively. The small SDs signify that the inverted

POI values are closely distributed around the mean quantities. This generally implies that

the UGW inversion outcomes are relatively stable. Figure 5.5a displays the good fitting

between the observed and predicted f -c spectra by the most popular recovered model, i.e.,

1 mm hST - 5 mm hCB - 3200 m/s VP - 2400 m/s VS. The first five fundamental guided

modes were matched between the simulated and optimal models. The modes were named

from 1 to 5 by the numbering nomenclature applied to leaky Lamb waves (Rose, 2014)

because the bone model used in this study was a soft tissues-cortical bone bilayer. The

misfit function graphs (Figures 5.5b and 5.5c) show its global minimum at 1 mm soft tissue

and 5 mm cortex. The CPU processing time for 100 repetitions was 25.5 hours with a

Windows 10 Pro 64-bit Intel Core i7 4.00-GHz CPU computer and 64-Gb RAM. Inversion

of simulated wavefields has demonstrated the ability of parameter sweeping to effectively

invert UGW energy traveling through the bone medium to retrieve cortical velocities and

thickness.

Table 5.1: Comparison of the inverted and reference material properties

Experiment POI hST (mm) hCB (mm) VP (m/s) VS (m/s)

Simulation Reference values 1 5 3200 2400

Inverted values 1 ± 0 5.03± 0.11 3211 ± 40 2411 ± 31

Ex-vivo Reference values 2 5.89 3886 N/A

Inverted values 2.19 ± 0.24 6.16 ± 0.24 3881 ± 124 1783 ± 53

In-vivo Reference values 3.25 5.25 4012 N/A

Inverted values 3.08 ± 0.36 5.17 ± 0.42 3989 ± 63 2016 ± 56
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Figure 5.5: Simulated inversion experiment using the t-x data shown in Figure 5.4a. (a)
Superposition of numerical simulation data (red) and the most popular inverted bone model
(black) in f -c domain. The misfit function value varies with (b) cortical bone thickness and
(c) soft tissue thickness. The global minimum is labeled with a red star.
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5.3 Ex-vivo Data Inversion

5.3.1 Ex-vivo Ultrasound Measurement

Figure 5.6: Ex-vivo experiment setup on bone phantom.

Following Nguyen et al., 2014, the ex-vivo experiment was performed on a bovine femur

plate with a 2 mm-thick tissue-mimicking material on top (Figure 5.6). A 220 mm × 45 mm

bovine femur sample was cut along the long axis to make a bone plate with a mean thickness

of 5.89 mm, measured by a digital caliper. The plate was cleaned; the soft tissue and marrow

were completely removed. The soft tissue mimic is 2 mm thick and made of synthetic biopsy

material (Blue PhantomTM, USA). A TomoScan Focus LTTM ultrasound scanner (Olympus

NDT Inc., Canada) with 2 phased array transducers was used as shown in Figure 5.6 with

one transducer being the transmitter and the other the receiver. The probes were placed

in a 3D-printed housing to ensure their stabilization and to maintain their relative distance

during data acquisition. Via an ethernet port, the system was connected to a Windows
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7-based computer with TomoViewTM software to control the acquisition process and data

export. The transmitter is a 16-element (2.25L16) probe pulsed at a central frequency of 1

MHz and the receiver is a 64-element (2.25L64) probe. Only five elements (out of the sixteen

elements) were used as a group to transmit ultrasound. For the receiver, five elements were

used as a group to generate a time series. Experiment was performed at room temperature

of 22◦C. A bench vise was used to clamp the bone plate in place. Ultrasound gel was

applied to all contacting surfaces to ensure good coupling. A set of 60 ultrasound channels

was recorded with 100 MHz sampling frequency, 0.75 mm spacing interval, and 21.75 mm

closest offset.

5.3.2 Inversion of Bone Phantom Data

The proposed enumerative inversion technique has been applied to the ex-vivo dataset

(Figure 5.7a) to estimate the cortical properties. Figure 5.7b shows the dispersion map

of the recorded radiofrequency data. Similar to the simulation data above, we ran the

bootstrap procedure to evaluate the performance of the inversion operator. The original ex-

vivo 60-record dataset were resampled by randomly selecting 30 time series at a time. This

resampling procedure was repeated 100 times to form the bootstrapping statistical analysis.

The 100 bootstrap samples’ estimates were used to calculate the mean and variance.

Using the iterative parameter optimization, the recovered values of hST , hCB, VP, and VS

were 2.190 ± 0.244 mm, 6.155 ± 0.243 mm, 3881 ± 124 m/s, and 1783 ± 53 m/s respectively.

Despite the discrepancy of this ex-vivo experiment is bigger compared to the synthetic data

case, the UGW inverted profile’s accuracy is still acceptable. The estimates perform stably

on a series of 100 test runs. A 2.19 mm-thick tissue layer on average is a good estimate to

its true 2 mm thickness. The cortical thickness was reasonably determined as compared to

the mean thickness 5.89 mm measured by a digital caliper. Cortical VP was approximately

determined by ray tracing to be 3886 m/s, which is close to the mean inverted value of 3881

m/s. The 6-mode matching between the experimentally measured dispersion spectrum and

the inverted one is shown in Figure 5.8a. Figures 5.8b and 5.8c demonstrate the objective

function in variation of cortical bone and soft tissue thickness. The misfit function is rough

over the scale of the grid spacing with coexisting local minima and maxima. This illustrates

the non-linearity of the bone inverse problem in hand. The J function reaches its global

minimum at 2 mm-thick soft tissue - 6 mm-thick cortical bilayer.
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Figure 5.7: (a) Dispersive time signals measured from the ex-vivo experiment and (b) its
dispersion map. Superimposed in white are the maximum intensity loci.
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Figure 5.8: Ex-vivo inversion experiment using the t-x data shown in Figure 5.7a. (a) The
measured dispersion spectrum (red) is fitted by the inverted bone model (shown in black).
The objective function varies with (b) cortical bone thickness and (c) soft tissue thickness.
The red star marks the global minimum of misfit.
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5.4 In-vivo Data Inversion

5.4.1 Human Data Acquisition

Figure 5.9: In-vivo axial transmission ultrasound scan on a human volunteer’s tibia.

The in-vivo experiment was performed on the tibia of a 40-year-old female volunteer using

axial transmission setup (Figure 5.9). Similar to the previous works (Le et al., 2010; Tran

et al., 2014a; Tran et al., 2014b), two 1-MHz compressional wave transducers (Panametrics

C548, Waltham, MA, USA) were attached to two angle wedges (Panametrics ABWM-7T-

30 deg). The transmitter was pulsed by a Panametrics 5800 P/R (Panametrics, Waltham,

MA). During data acquisition, the leg of the subject rested on a chair. The transmitter was

tightly held in contact with the skin surface by duct tape. One ruler, laid on the relatively

flat section of the tibia and held in place by 3MTM medical tape (3M, St. Paul, MN,

USA), was used to guide the receiver. Ultrasound gel (Aquasonic 100, Parker Laboratories,

Inc, USA) was applied to all contact surfaces to ensure good coupling. The experiment

was performed at room temperature of 22◦C. The detected signals were digitized by and

displayed on a 200-MHz digital storage oscilloscope (LeCroy 422 WaveSurfer, Chestnut
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Ridge, NY). A set of 40 ultrasound records was acquired with 2 mm spacing interval and 46

mm closest offset (Figure 5.10a). The aperture of the acquisition was 78 mm. Each record

was averaged 32 times during acquisition to eliminate random noise and increase signal-to-

noise ratio. The recorded signals were further decimated to 1050 points per channel for a

final sampling interval of 0.1 μs.

Figure 5.10: (a) The multi-channel dispersive data acquired from the in-vivo experiment
on the right tibia of a female volunteer and (b) its dispersion map. Superimposed in white
are the maximum intensity loci.
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5.4.2 Inversion of In-vivo Data

Figure 5.11: In-vivo inversion experiment using the t-x data shown in Figure 5.10a. (a)
The measured dispersion spectrum (red) is fitted by the inverted bone model (shown in
black). The objective function varies with (b) cortical bone thickness. The red star marks
the global minimum of misfit.

Figure 5.12: A radiograph of the volunteer’s tibia. The white-dashed rectangle outlines the
area used to estimate the tissue and bone thickness.
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The grid search-bootstrapping inversion scheme was then applied to the in-vivo tibial UGW

data described above (Figure 5.10a). Figure 5.10b is the dispersion map of the human

subject’s radiofrequency data. The original in-vivo 40-record dataset were resampled by

randomly selecting 20 time series at a time. Again, the resampling was repeated 100 times

to establish the bootstrapping statistics. The recovered values of soft tissue thickness hST ,

bone thickness hCB, VP, and VS were 3.08 ± 0.35 mm, 5.17 ± 0.42 mm, 3989 ± 63 m/s, and

2016 ± 56 m/s respectively. The inverted profile’s accuracy is considerably fair. The soft

tissue and cortical thicknesses were reasonably determined compared to the mean thick-

nesses of 3.25 mm and 5.25 mm respectively measured from the CT radiograph (Figure

5.12). Cortical VP was estimated by ray tracing method to be approximately 4012 m/s,

which is very close to the mean inverted value of 3989 m/s. 8 guided modes matched be-

tween the in-vivo dispersion and the inverted spectra as shown in Figure 5.11a. Figures

5.11b graphs the misfit function J with respect to cortical bone thickness. The objective

function reaches global minimum with 5 mm-thick cortex.

5.5 Correlation of Ultrasonic Velocity with Bone Mineral
Density

The ultrasonic data were collected at a Medical Imaging Consultant (MIC) clinic in Ed-

monton with ethics approval from the University of Alberta - Health Research Ethics Board

(No. Pro00047967). 100 consented subjects, who had bone densitometry examinations, were

recruited. The left mid-tibia was chosen as the measured site for this clinical trial. Each

subject was scanned 3 times using the TomoScan Focus LTTM phased array ultrasound sys-

tem (Figure 5.6) with different beam-steering configurations at a fixed transmitter-receiver

distance. Data from 20 subjects aged 50 to 80 years were used for a pilot study. The mid-

tibial ultrasound velocity could then be estimated from each dataset. The average speed

was estimated from the 3 ultrasound records for each subject. The cortical speed of sound

was found to increase (R2 = 0.337) with bone mineral density (Figure 5.13), i.e. they are

sensitive to osteoporosis-related changes in bone. This may be due to the trabecularization

of cortical bones, leading to cortical thinning and increasing intra-cortical porosity. The

preliminary result will be used as a basis for the analysis of the remaining subjects’ data

and to further examine the relationship between ultrasonic parameters and skeletal health

status.
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Figure 5.13: Correlation of ultrasonic velocity with the subjects’ bone mineral density
measured by DXA.

5.6 Discussions

This chapter presented the scheme of model-based grid-search inversion of UGW in long

bones, including the dispersion curve extraction, forward modeling as well as the inverse

formulation. The relationship between the measurement data and the model is nonlinear.

The inversion was based on a global optimization of a dispersion misfit function between

the modeled and measured UGW data. The phase velocity maps of the guided modes were

inverted for the geometrical and mechanical characteristics of cortex. The feasibility of

the proposed method to extract the cortical properties of interest was demonstrated by its

application on numerical simulation data from bilayered bone model, ex-vivo experimental

dataset from bone phantom, and also in-vivo data.

Creating a large solution database has reduced the computational expense significantly

when solving the inverse problem in hand. However, the grid-search scheme can still be com-

putationally expensive because it tries out all possible combinations of the model properties’

values. The methodical technique performs an exhaustive search in the solution space by

sequentially computing the corresponding values of the objective function. While about 10

minutes are needed on a 24 core computer (Intel Xeon CPU E5-2620 v2 @ 2.10 GHz) for ge-

netic algorithm to solve the bone inverse problem for a single dataset (Bochud et al., 2016),

the proposed grid search technique needs around 10 to 15 minutes for one run depending

on the data size on a Intel Core i7 4.00-GHz CPU - 64-Gb RAM desktop computer. Note
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that both methods do not use the same datasets for calculation and do not run on the same

computer therefore the comparison is relative. Although the current computational speed

is acceptable as an offline imaging method at this stage, the time efficiency of the inversion

algorithm needs to be improved for real-time bone quality diagnosis. This can be possibly

done by adjusting the grid spacing in model space, i.e. the parameter increment values used

for forward calculation. But it should be born in mind that sampling the parameter grid

too coarsely results in missed solutions or lower-resolution output whereas fine sampling

results in excessive computational cost. Another drawback of the grid search is that it can

be a tedious problem when dealing with more POIs or very large-sized data set.

It is worth mentioning that each mode has a different dispersive sensitivity to the model

parameters (Tran et al., 2018a). One mode’s propagation characteristics might be more

sensitive to the parameter variation than the others. In future works, an overall objective

function, denoted by the weighted sum of the misfit functions from all existing modes in

the data, might be investigated. Generally, larger weighting coefficients should be assigned

to the UGW modes that have higher sensitivities to the favorable properties. Another

possibility is that the guided modes can be inverted separately. The rationale behind this

choice is that the fundamental mode contains more dispersive energy, is independent to soft

tissue thickness, is sensitive to cortical thickness (Tran et al., 2018a), and is easier to be

separated from the higher-order modes by means of wavefield separation technique (Tran

et al., 2014a; Tran et al., 2014b).

Boot strapping technique is a valuable tool to provide statistical confidence to the in-

verted parameters when their true values are not known and the sample size is small. The

technique is particularly practical when dealing with QUS data where the number of time

series per acquisition can only goes up to 128 and repeated measurements at various po-

sitions in a clinical setting is generally impossible. In the lack of shear wave information

of the cortical plate in the ex-vivo study, VS was determined to be 1783±53 m/s, where

the small variance provides us valuable indication and guidance about the performance of

the grid-search method and the trustworthiness of the recovered VS value. Similarly, with

the boot strapping method, the proposed inversion strategy can be used to recover the

transverse compressional velocity of the cortical bone in future studies.
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Chapter 6

Conclusions and Future Directions

6.1 Summary and Contributions of this Thesis

Numerical and experimental studies were performed to investigate the validity and applica-

bility of UGW-based cortical bone characterization. The bone inverse problem in hand is

significant but also challenging due to complicated ultrasound interaction of cortical bone

under the impact of surrounding soft tissues. Multiple modes are excited when guided waves

propagate in thin structures like cortical bone which makes the propagation law become

complex. The main positive findings of this thesis are summarized as follows:

� High-resolution Radon transform offers a robust and powerful technique to analyze the

multi-channel axially-transmitting UGW signals from long cortical bones. HRRT sup-

plements the current signal-processing (Fourier- or SVD-based) techniques especially

when the data acquisition aperture is limited and uneven station sampling occurs in

clinical routine. The method’s efficacy has been proven in extracting guided modes,

reconstructing wave field, and importantly enhancing imaging resolution of dispersive

guided wave energies.

� SAFE simulation has been validated to be a sophisticated and accurate computational

tool to calculate dispersion characteristics of UGW propagating in layered bone struc-

tures and to gain insight into the ultrasound-bone interaction.

� UGW sensitivity to material properties has been well demonstrated by means of phase-

velocity spectrum analysis. This again supports the claim that it is possible to detect

cortical geometrical and mechanical changes with UGW dispersion curves.

� The model-based dispersion optimization approach, which was formulated in frequency-

phase velocity domain in a multi-variable and multi-modal manner, reliably recovered
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cortical tissue properties from UGW data. The approximate solutions could be non-

unique and unstable for experimental noisy signals but the error is acceptable.

� Cortical bone thickness and mechanics contribute to the mechanical competence and

fragility of the whole bone. Cortical bone property estimation provided meaningful

information about the bone health status relevant to osteoporosis. Therefore, simul-

taneous measurement of site-specific cortical thickness and mechanics properties may

improve the clinical estimation of fracture risk and facilitate effective management of

osteoporosis.

This research improves the current fundamental understanding of the UGW propagation

in long bones and fosters the application of ATU in non-invasive cortical thinning assessment

to diagnose osteoporosis. Even though a true gray-scale bone sonogram will be unfeasible,

guided wave ultrasonography can be expected to become more widely clinical use in the near

future to complement X-ray based medical imaging modalities for screening and diagnosis

of skeletal diseases.

6.2 Limitations of this Thesis

Despite the encouraging results, there were certain weaknesses in undertaking this research

work:

� The mechanics of the bone model to simulate dispersion characteristics of UGW was

assumed to be homogeneous, elastic, and transversely isotropic.

� The solution domain was limited in terms of resolution. The thickness and velocity

resolutions were 0.5 mm and 100 m/s respectively. This reduces the ability to detect

bone tissue changes below the imaging resolution.

� The current computational cost is not low enough for real-time imaging of cortical

bone in clinical practice.

� Being a pilot trial, the sample size was restricted. The small number of clinical

datasets limited the statistical reliability of the results.

6.3 Recommendations for Future Work

The following research areas should be considered in future studies to advance bone guided

wave ultrasound:
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� In terms of data acquisition, ultrasonic guided mode excitation, excitability, and selec-

tivity are good research topics. Selective modal excitation can be achieved by beam

steering, i.e. beam directivity and divergence. From our clinical experience, some

UGM are more strongly excited than the others. Development of experimental pro-

tocols enabling optimal excitation and transmission of UGW should be investigated

to enhance the modes’ excitability.

� The inversion accuracy and precision can possibly be improved by refining the pa-

rameter grids leading to higher resolution bone models. A multi-layer cylindrical

waveguide, which has closer similarity to human long bone geometry, should also be

looked into.

� More bone properties, e.g. attenuation and porosity, and a weighted objective function

should be considered in the inversion process to take into account the different sensitiv-

ity level of UGM. The computation cost needs to speed up for real-time assessment.

In order to do that, other high-performance dynamic programming languages such

as C++ or Julia are attractive to replace the current Matlab codes. Full-waveform

inversion is also a promising and appealing research direction.

� To achieve a more meaningful clinical validation, expansion of the study population

is necessary, not only in Canada but also abroad through international collaboration.

Comparative studies can be conducted to correlate the extracted ultrasonic indicators

with the current gold-standard DXA-BMD or other diagnostic modalities such as

pQCT and micro-computed tomography (μCT). The correlation of axial transmission

with other ultrasonic techniques like transverse transmission and backscattering is an

interested research question.

� Ultrasound velocity is probably the most difficult parameter to measure accurately

with high reproducibility especially in-vivo. Many factors are potential sources of

error including operator experience. The participant of multiple raters in the data

collection and analysis will make inter-rater reliability and cross validation possible.

� The ATU methodologies can be extended to the development of ultrasound-based

inspection techniques for many other applications such as bone fracture detection,

fracture healing monitoring, bone fatigue evaluation, brain imaging, and therapeutic

ultrasound, and neural activity tracking.
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Appendix A: High-Resolution
Radon Solution by Iteratively
Re-Weighted Least-Squares
Method

I would like to compute the Radon solution M via Equation 3.9, which is

M = (LHL+ μQ(M))−1LHD (A.1)

where Q is a diagonal matrix with elements

Qkk =
1

(1 + (Mk)2/σ2)
. (A.2)

Using the IRLS algorithm (Scales et al., 1988; Daubechies et al., 2010), the solution at

the jth iteration, Mj , can be estimated using the previous iteration of Q, that is, Qj−1,

Mj = (LHL+ μQj−1)−1LHD. (A.3)

The initial weighting matrix Q0 is calculated by

Q0,kk =
1

(1 + (M0,k)2/σ2)
(A.4)

where the damped least-squares solution provides the initial estimate of M0,

M0 = (LHL+ μI)−1LHD. (A.5)

For example,

M1 = (LHL+ μQ0)
−1LHD. (A.6)

The iteration stops at a preset number or the convergence is reached at a preset tolerance

limit.
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The HRRT algorithm is as follow:

1: procedure radon(d,x,p,μ,σ,n)
2: D(f, x) = fft(d(t, x))
3: for f = fmin, ..., fmax do
4: L = exp(−i2πfxTp)
5: M0(f, :) = (LHL+ μI)−1LHD(f, :)
6: for j = 1, ..., n do

7: Qj−1,kk =
1

(1 + (Mj−1(f, k))2/σ2)

8: Mj(f, :) = (LHL+ μQj−1)−1LHD(f, :)
9: end for(j)

10: end for(f)
11: Return MHR = Mn

12: end procedure
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Appendix B: The Semi-Analytical
Finite Element Formulation

B.1 Weak Formulation

In the fluid layers The weak formulation (Hughes, 2000) for the acoustic equation (Equa-

tion 4.9) in the soft tissue domain is given by

∫ h1

0
δp∗1(−ω2ρ1 + k21K̄1)p̃1dx2 +

∫ h1

0
∂2δp

∗
1K̄1∂2p̃1dx2 −

[
δp∗1K̄1∂2p̃1

]h1

0
= 0 (B.1)

where δp∗1 is a test function. By applying the boundary conditions and noting that ρ̄1K̄1 =

ρ1K1, the last term may be calculated by:

− [δp∗1K̄1∂2p̃1
]h1

0
= ρ1K1ω

2δp∗1(0)ũ2(0). (B.2)

Similarly, the weak formulation in the marrow domain for a test function δp∗2 is

∫ −h

−(h2+h)
δp∗2(−ω2ρ2 + k21K̄2)p̃2dx2 +

∫ −h

−(h2+h)
∂2δp

∗
2K̄2∂2p̃2dx2 −

[
δp∗2K̄2∂2p̃2

]−h
−(h2+h)

= 0

(B.3)

where

− [δp∗2K̄2∂2p̃2
]−h
−(h2+h)

= −ρ2K2ω
2δp∗2(−h)ũ2(−h). (B.4)

In the solid layer Upon integrating the Equation 4.13 by parts against a test function

δũ∗, the following is obtained

∫ 0

−h
δũ∗

(−ω2A1 + k21A2 − ik1A
T
3 ∂2

)
ũ dx2 +

∫ 0

−h
∂2δũ

∗t̃dx2

− [δũ∗t̃ ]0−h = 0. (B.5)

where the last term may be calculated by using the condition at interfaces:

− [δũ∗t̃ ]0−h = −(1− iωγ1)δu
∗
2(0)p̃1(0) + (1− iωγ2)δu

∗
2(−h)p̃2(−h) (B.6)
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B.2 Finite Element Formulation

We proceed by placing a finite element mesh in the domain [−(h2 + h), h1], which contains

nel elements Ωe: [−(h2 +h), h1] =
⋃

eΩe (e = 1...nel). For this problem, the Galerkin finite

element method (Hughes, 2000) using linear elements has been employed. In each element

e, the functions p̃α, δp̃α (α = 1, 2) and ũ, δũ are approximated by

p̃α(x2) = Nf
eP

e
α, δp̃α(x2) = Nf

e δP
e
α, (α = 1, 2) (B.7)

ũ(x2) = Nb
eU

e, δũ(x2) = Nb
eδU

e, (B.8)

where Nf
e and Nb

e are the shape functions of p̃α and of ũ, respectively; Pe
α, δP

e
α (α = 1, 2)

and Ue, δUe are the nodal solution vectors. Replacing (A.7), (A.8), (A.9) into (A.1), (A.3),

(A.5) and assembling the elementary matrices, a linear system of equations can be obtained

⎡
⎢⎢⎢⎣
Kf2 Kf2b 0

Kbf2 Kb Kbf1

0 Kf1b Kf1

⎤
⎥⎥⎥⎦

⎛
⎜⎜⎜⎝
P2

U

P1

⎞
⎟⎟⎟⎠ = 0 (B.9)

where U is the global nodal displacement vector,Pα is the global nodal pressure vector, and

Kfα = −ω2Kfα
1 + k21K

fα
2 +Kfα

4 , (α = 1, 2) (B.10)

Kb = −ω2Kb
1 + k21K

b
2 + ik1K

b
3 +Kb

4. (B.11)

The matrices K are defined by

Kfα
1 =

⋃
e

∫
Ωe

ρα(N
f
e )

TNb
e dx2, Kfα

2 =
⋃
e

∫
Ωe

K̄α(N
b
e)

TNb
e dx2, (B.12)

Kfα
4 =

⋃
e

∫
Ωe

Kα(B
f
e )

TBf
e dx2, (B.13)

Kb
1 =

⋃
e

∫
Ωe

(Nb
e)

TA1N
b
e dx2, Kb

2 =
⋃
e

∫
Ωe

(Nb
e)

TAe
2N

b
e dx2, (B.14)

Kb
3 =

⋃
e

∫
Ωe

2
{
(Bb

e)
TAe

3Ne

}
a
dx2, Kb

4 =
⋃
e

∫
Ωe

(Bb
e)

TAe
4B

b
e dx2, (B.15)

in which the notation {.}a is devoted for the anti-symmetric part of the {.} and Bb,f
e =

∂2N
b,f
e . The matrices Kf1b, Kbf1 , Kf2b, Kbf2 represent the coupled terms between the solid

and the fluids. These matrices have only one non-zero elements, which are respectively

(
Kf1b

)
mn

= ρ1K1,
(
Kf2b

)
mn

= −ρ2K2, (B.16)(
Kbf1

)
mn

= −(1− iωγ1),
(
Kbf2

)
mn

= (1− iωγ2), (B.17)

where m and n are the indices of the degrees of freedom, which are concerned by the

continuity conditions.

123



By noting that all matrices K described above do not depend on k1, the equation (B.9)

may be represented by

[
K1 + k21K2 + ik1K3

]
V = 0 (B.18)

where V = (P2,U,P1)
T and

K1 =

⎡
⎢⎢⎢⎣
−ω2Kf2

1 +Kf2
4 Kf2b

2 0

Kbf2 −ω2Kb
1 +Kb

4 Kbf1

0 Kf1b −ω2Kf1
1 +Kf1

4

⎤
⎥⎥⎥⎦ , (B.19)

K2 =

⎡
⎢⎢⎢⎣
Kf2

2 0 0

0 Kb
2 0

0 0 Kf1
1

⎤
⎥⎥⎥⎦ , K3 =

⎡
⎢⎢⎢⎣
0 0 0

0 Kb
3 0

0 0 0

⎤
⎥⎥⎥⎦ . (B.20)
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