NATIONAL LIBRARY BIBLIOTHEQUE NATIONALE

OTTAWA

OTTAWA

CANADA

4948 DAV1ID TSAN LEEMm G~

Nm OF AUTI[OR.I.CQ...I.....'.'.l...........’.ll..C..C..l..ll

TITLE OF THESIS.. ./.q. . .Gfl.?f\./{??ﬁ f’.’.?ﬁ?j}.e.)\./.. . .0../:: ceccscanss

ComPAETEL CoNVIER FUNCTIoWS

;cwb RELATED  PRSBLEMS

e 0seosPsONOROEISIIES ® 000000800000 COOPPBLIOOIEPOIEOEOTDR

UNIVERSITY.......QF.../.q.é'..B.)‘.’................................

DEGREEFP[\‘EYEAR GRAN'IEDZ?

Pezl:mission is hereby granted to THE NATLONAL
LIBRARY OF CANADA to microfilm this thesis and to
lend or sell copies of the film.

The author réserves other publication rights,
and neither the thesis nor extensive extracts from

it may be printed or otherwise reproduced without

the author's written permission.

PERMANENT ADDRESS:

SR - \/«:CVMQQ

-
9 690 00000 00800800000

DATED.......... f.’...19 é/

NL-91



A GENERALIZATION OF COMPLETELY CONVEX FUNCTIONS

AND RELATED PROBLEMS

by

@DAVID JOHN LEEMING

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ALBERTA

EDMONTON, ALBERTA

Fall, 1969



Date

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have

read, and recommend ro the Faculty of Graduate

Studies for acceptance,

a thesis entitled

"A GENERALIZATION OF COMPLETELY CONVEX FUNCTIONS

AND RELATED PROBLEMS",

submitted by

David John Leeming in partial fulfilment of the

requirements for the degree of Doctor of Philosophy.

October 29, 1969

N N

Supervisor

ooy s
Eyrywill

® 5 0 2 8 0 00 59000 GG S s 00

D. Wodder

External Examiner




(1)

ABSTRACT
Following Schoenberg let EE = (eij) (i=1,...,k;
j=0,1,...,n-1), eij =0 or 1, ZEij = n be the incidence

matrix of an interpolation problgm of finding a polynomial
P(x) of degree < n-1 with prescribed values at k given
real nodes. Xy < eee <X where eij = 1 or 0. according as
p(j)(xi) is prescribed or not. The interpolation problem
(equivalently Eﬁ) is said to be real poised (order poised)
if it has a unique solution for every choice of real distinct
nodes KyseoosXy o

In Chapter I we introduce the (p,L) series for

a given positive integer p 2 2 as a generalization of

Lidstone series by iterating the poised matrix

2 11...10
Ep 10 ...00 - We show that 1if Al is the smallest

positive zero of the generalized sine function of order p
((2.8), p. 18) and if £(z) 1is an entire function of
exponential type < Al then f(z) has a (p,L) series
representation for all =z . This leads naturally to the
study of Wp-convex and minimal Wp-convex functions which
generalize the results of Widder on completely convex
functions. Indéed, we show that £f(x) can be represented
by an absolutely convergent (p,L) series if and only if
it can be expressed as the difference of two minimal
Wp—convex functions. )

Chapter II deals with a three-point expansion

*
called (p,L ) series obtained by iterating the poised



(i1)
(1 0...00

01 ...1 0) , p even. Some results
10...00

matrix Ep =
analogous to those of Chapter I are obtained and the class
of W*-convex functions is defined. However, in this case,
the complete analogy to the results of Widder is lacking.
In Chapter III, we OGtain thé explicit form of
the polynomial of (0,n-1,n) interpolation for n given
real nodes. Finally, we give some results on mean square
convergence of the polynomials of (0,n-1,n) interpolation
th

on n roots of unity when £ is a given analytic

function in |z| < 1 and continuous on |z| 1.
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A HISTORICAL SURVEY

1. Introduction. A problem of fundamental interest in

classical analysis is to study the representation of an
analytic function as the sum of a sequence of given functions
{Pn(z)} . The school of J. M. Whittaker [34] corsiders the
problem from a very general point of view, leading to the
theory of "basic" series. Boas and Buck [7] point out the
limitations of the theory of basic series in their monograph
and discuss the expansion of analytic functions in series of
polynomials defined by some generating relation. 1In general,
interpolatory conditions can be translated into some suitable
generating relation and, conversely, a generating relation
can be interpreted in terms of some interpolatory conditions.

If we denote the set of interpolatory conditions by
(a_)

Ln(f) =f B (an) (n =1,2,...) for some prescribed numbers

a, and nonnegative integers o then the interpolatory

polynomials (or functions) are defined in such a way that

L (P) =2¢ , where § is the Kronecker delta. Then,
m n m,n m,n

for any entire function, we may write a formal expansion
. [+
(1) £(z) = nZO L (£) P_(z)

and consider the following three problems of interpolation,

as formulated by Evgrafov ([13]}, p. 251):



1. The problem of finding the clagss of functions for which
the formal interpolation series (1) converges to f(z) .

2. The problem of finding a larger class of functions for
which it is possible to construct uniquely the function
f(z) from the given Ln(f) . This, of course, includes
the problem of defining methods to produce this
construction.

3. The problem of finding the general form of functions for

which Ln(f) has prescribed values (e.g., all. Ln(f)

are equal to zero).

Such interpolation series can provide a means of
penetration into various properties of entire functions as
was brought out in a long survey article by Evgrafov. There,
he has solved a problem first posed in 1937 on Abel-Gontcharoff

interpolation where Ln(f) = f(n)(kn) with An = nl/p . The

methods devised by Evgrafov for solution of this problem have
much wider significance than merely the question of

interpolation.

A. 0. Gel'fond and A. I. MarkuSevi€ brought out the
intimate connection between the problem of convergence of
interpolation series, the problem of whether or not a giveﬂ
system of functions is complete and whether or not it forms
a basis in some space of analytic functions. For an
extensive bibliography of the Russian contributions in this

area, see Evgrafov [13].



2. Poised Problems of Polynomial Interpolation. Following

Schoenberg [24], we shall use an incidence matrix EE = (eij)

(1 =1,2,...,k; § =0,1,...,0-1) , eij =0 or 1 and

eij = n to describe the interpolation problem of finding
i,3]

a polynomial of degree < n-1 with prescribed values and

derivatives at k given points. Also, eij = 1 (or 0)

according as there is (or is not) a prescribed derivative of

order j at the ith node. Thus Lidstone interpolation is

described by the matrix (i g) and Abel-Gontcharoff interpo-

100 :
lation by 010 and so on. We use the convention that
0.01
k
no row is composed entirely of zeros. If m = Z € and
P 42p 1p
M = E m p=20,1,...,n-1 , M = n , then Ek is
P j=0 j ’ LR ] ] n-1 n

said to have Polya property if Mp 2 p+l , for all p ,

and is said to have strong Polya property if MP > p+l ,
for all p . An interpolation problem is said to be poised
(or real poised, or n-poised) if the problem is uniquely

solvable for given members yij) for all choices of real and

distinct nodes X4 < x, < L. < Xp o Thus, Lagrange, Hermite,

Lidstone interpolation with its generalizations by Poritsky
[21], and Abel-Gontcharoff interpolation (see e.g. [34]) are
all similar in a sense, since they are all poised problems

of interpolation.



Polya showed that a necessary and sufficient
condition for a two-point interpolation problem to be

poised is that Mp 2p+tl, p=20,1,...,n~-1 . For the

k-point interpolstion problem (k > 2), simple necessary and
sufficient conditions are unknown. Sufficient conditions
have recently been given by Atkinson and Sharma [1], and
Sharma and Prasad [27], but Lorentz and Zeller (in a paper to
be published) use a simple example to show that these

conditions are not necessary.

3. Non-poised Problems of Polynomial Interpolation.

J. Suranyi and P. Turan were the first to undertake a study
of non-poised interpolation problems in their paper on
(0,2) interpolation. This notation is used to indicate
that the values of the function and its second derivatives
are prescribed at some n given points. They showed that

if the n nodes are the zeros of (l-xz) P;_l(x) , where

Pn_l(x) is the Legendre polynomial of degree n-1 , then,

for n even, the polynomials of (0,2) interpolation exist
and are unique; however, this is not so for n odd.

However, it does not appear to be a simple problem,
to find the explicit forms for the interpolatory polynomials
even if we know that the interpolation problem is uniquely
solvable (or poised) for any given real nodes. Thus, it

follows from the result of Atkinson and Sharma [1], that



(0,2,3) dinterpolation is poised, but the formulae for these

polynomials with n given nodes are unknown.

4. Intergolation by Entire Functions. If there are infinitely
méhy prescribed interpolatory conditions, we may considef the
probleﬁ from the point of view of an infinite system of linear
equations in infinitely many unknowns. Guichard (see Davis
[12], p. 96) showed that it is possible to find an entire
function f satisfying infinitely many interpolation

conditions on £ of the form

(an) lim

f (zn) = a (n =1,2,...) , provided . 2 =% . Polya

[19] showed that no entire function may exist satisfying
infinitely many interpolatory conditions, if the sequence of
interpolation points is bounded. However, Vermes [30] has
determined some sufficient conditions for the existence of an
entire function satisfying infinitely many interpolatory
conditions on two nodes. On the other hand, if the interpo-
lation conditions are periodic with period p (see Polya [191),
then the interpolation problem has a unique solution, provided
the first p prescribed conditions yield a poised interpola-
tion problem.

Much of the present work was motivated by the results
of Polya [19] and Schoenberg [24] on Hermite-Birkhoff interpo-
lation along with some of its recent extensiomns ([11, I[271).

Sharma and Prasad [27] have shown that if two interpolation

k

problems defined by incidence matrices Fg and Gr are



poised, then the "sum" of these matrices EE (n = p+r) also
defines a poised interpolation problem. Thus it is possible
to consider an infinite interpolation problem with periodic
interpolatory conditions from another point of view. Here we
begin with a matrix EE defining a poised interpolation
problem and consider the infinite periodic interpolation
problem produced by successi#ely iterating the matrix EE .
It is clear that in this way the interpolatory conditions
will be periodic of period n . Also, Schoenberg [25] has

considered the infinite interpolation problem defined by

(10101 e o @

E=110000 ...) with nodes -1, 0 and 1 , which is

10101...
an analogue of Lidstone's two-point expansion, but no longer
has periodic interpolatory conditions. The expansion

formula obtained in this case is
' ) 2 ) (2
£(x) = £(0)Ay(x) + ] £(20) ()8 (x) + £(20) _1yB (-x) ,
n=0 n n=0 n

where Ao(x) R Bn(x) (n = 0,1,...) are entire functions

of exponential type % . There are several open questions
concerning such an expansion. For example, does the

expansion converge to the function for all entire functions
f(x) of exponential type < m ? The example f£f(x) = sin 7x
shows that the bound cannot be larger than 7 . A three-

point interpolation problem analogous to that of

Schoenberg [25] can be obtained by considering the matrix

« [t1..1011..10...
E ={10..0000..00 ...
10..0010..00 ...

p columns p columns



5. Absolutely and Completely Monotonic Functions.
S. Bernstein [2] introduced the term absolutelx,monotonic

to describe functions which are nonnegative on some interval
a < x <b and have nonnegative derivatives of all orders on
that interval. For example, e* s absolutely monotonic on
any interval. He showed that functions absolutely monotonic
for -o < x < 0 are necessarily analytic and have the

o0

representation f(x) = IO eXt da(t) < » , (a(t)t , == < x < 0).

Widder [36] obtained this representation independently without

knowledge of Bernstein's result. Bernstein also proved the

following:

Theorem (Bernstein, [2]). A necessary and sufficient

condition that it should be possible to expand the function

£(x) in a series of powers of (x-a) convergent for

a<x<b is that f£(x) should be the difference of two

<

functions absolutely monotonic im a = x < Db .

Since the Taylor series expansion of a function
can be considered as a one-point interpolation problem, the
above theorem provides the motivation for the study of the
relationship between an infinite interpolation problem and
a particular class of functions with derivatives of all orders
on an interval. Later, Widder [38] showed the connection
between Lidstone interpolation and the class of completely

convex functions of §6.



A function f£(x) 1s said to be completely monotonic
for a < x <b 1f £(-x) 1is absolutely monotonic for
-b < x < —a . Functions completely monotonic for 0 < x < @
have the representation £(z) = fm e_Xtda(t) < o
(a(t)+, 0 < x < ®) . Additional gesults on absolutely and
completely monotonic functions, along with the results mentioned

here, are given in [39] (Chapter 1IV).

6. Regularly Monotonic Functions, Completely Convex Functions

and their Gemeralizations. Bernstein [3] also considered
the class of regularly monotonic functions; i.e., functions
each of whose derivatives are of constant sign in an interval.
He classified these functions in terms of "typical" numbers

A A indicating the number of successive derivatives

1’ 2’ LI
maintaining the same constant sign. In this way, the
derivatives are put into '"blocks" such that f(n)(x) and

¢4n+1) 1y pelong to different blocks if and only if

f(n)(x)f(n+2)(x) < 0 . Bernstein found the relationship
between the lengths of the blocks and the analytic nature of
the function. This relationship is aptly described in the
words of Boas and Polya ([8], p. 406): '"Roughly stated,

the analytic nature of f(x) 1is simpler if the blocks are

shorter."

A particular class of regularly monotonic functions

with the property that A = 1 (n = 1,2,...) 1is called

cyclically monotonic and was studied in some detalil by



Bernstein [4]. He proved that 1f f(x) is cyclically

monotoni. on [0,b] then it must necessarily be entire of

. Also, he proved the

o'l

exponential type not exceeding

following:

Theorem (Bermstein, [4]). A function £(x) is entire of

R —————————

exponential type at most b 4if and only if it can be

T
>p 28 the

represented on any interval of length less than

difference of two cyclically monotonic functions, but not so

represented on some interval of greater length.

Widder introduced the term completely convex to

describe functions satisfying the inequalities

-1)%£(2%) (x) » 0, (k = 0,1,...) on an interval
a < x <b . Unlike the absolutely monotonic, completely
monotonic, or cyclically monotonic functions for which every
derivative has a prescribed sign, there are no conditions
on any derivative of odd order of a completely convex
function. It is easily seen that if a function £(x) 1is
cyclically monotonic on an interval, then either f(x) or
-f(x) 1is completely convex on that interval. However, the
function sin mx which is completely convex on [0,1] 1is
not cyclically monotonic on [o,1].

widder [38] showed that a function which is
completely convex in an interval (a,b) 1is necessarily
entire of finite exponential type. He also showed [38]

that each term in the Lidstone series expansion of a
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completely convex function is nonnegative.

Following Widder, we say that a function f(x) is

minimal completely convex in (a,b) if £(x) 1is completely
convex there and if f(x) - € sin mx 1is not completely convex

in that interval for any € > 0 . Then we have the following:

Theorem (Widder, [38]). A necessary and sufficient condition

that f(x) can be represented by an absolutely convergent

minimal completely convex functions on 0 < x <1 .

The first paper of Widder [37] on completely convex
functions (in 1940) generated considerable mathematical
activity, producing generalizations in several directions,
all of which were published in 1941 and 1942.

Boas and Polya [8] gave some general results on
functions with certain prescribed derivatives which do not
change sign on the interval [-1,1] . Since they are so
closely related to the work contained herein, we state the
main results here. The first theorem contains both
Bernstein's results on regularly monotonic functions and

Widder's results on completely convex functions.

Theorem 1 (Boas and Polya, [8]). Let {nk}+ and {qk}

Let f(x) be real

be sequences of positive integers.

valued and of class Cw[-l,ll . For k=1,2,... , Jlet
(n,) (n,+2q,)

£ (x) and f (x) not change sign in [-1,1] ,
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(nk) (nk+2qk)
and let f (x)f (x) s 0. [Then if
(1) n, -0y = 0(1) and (ii) q = 0(1) , £(x) coincides

with an entire function of growth not exceeding order ome and

finite type.

The second theorem gives a direct generalization
of Widder's result on completely convex functions, which is

obtained by setting n, = 2 and q = 1 (k=1,2,...) .

Theorem 2 (Boas and Polya, [8]). Let {nk}+ be a sequence

——————————

of even integers. Let f(x) be real valued and of class

% K, (M)
c [-1,1] , and let (-1)°f (x) 20, (k=1,2,...) .

Then if n = 0(1l) , £(x) coincides with an entire

k = k-1

function of growth not exceeding order one and finite type.

Further generalizations of these results have been
given by Wiener an& Polya, Szego, Hille and Schaeffer [20].
In order to give a brief survey of these results, we let
Nn denote the number of changes of sign of f(n)(x) in an
interval I . Wiener and Polya showed that if f(x) is a
2n-periodic function and if Nn < 2m for any n , then f£
is a trigonometric polynomial of order not exceeding m .

. 2n
Szego proved that if f(x) 1s periodic and Nn < Tog o

(n + ©») then f(x) 1is entire, and if Nn = 0(1l) then
f(x) is of exponential type. Schaeffer generalized the
result of Wiener and Polya by showing that if Nn <M

(n = 1,2,...) for some fixed M then f(x) 1s analytic

*
in I . Hille proved that if Nn = 0(1) on the interval
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*
[-1,1] then f(x) is a polynomial, where Nn denotes

the number of changes of sign of

2 n
d d
(1-x°) __E - 2% E;] f(x) .
dx

7. Summary. In each of the three chapters of this thesis

we are concerned first with determining a set of polynomials
satisfying certain interpolatory éonditions, which we call
the fundamental polynomials of the particular interpolation
problem in question. In Chapter I, the infinite interpolation
problem is defined by successively iterating the incidence

2 _[111 10

matrix Ep =110 0 00 with nodes O and 1 . In

Chapter II, the infinite interpolation problem is defined by

O
oOrH O
or o
or o
coo

iterating the incidence matrix Ez =

(p a positive even integer) with nodes -1, 0 and 1 . 1In
Chapter III we define the fundamental polynomials of
(0, n-1, n) interpolation. By obtaining the explicit form
of these polynomials, we show existence for every choice of
n real nodes. However, as a simple example shows, for some
choices of complex nodes the (0, n-1, n) interpolation
polynomials do not exist.

6nce these fundamental polynomials are known we
consider first the problem of expansion of an entire (or
analytic) function in terms of such polynomials. To do this,
we introduce the term (p,L) series in Chapter I, and

*
(p,L ) series in Chapter II. In Chapter III, we give some
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results on uniform and least squares convergence for functions
analytic in the unit disk with certain prescribed conditions
on the boundary. The convergence theorems turn out to be
gsimilar to known convergence theorems ([26] and [28]) for
Lagrange interpolation polynomials, as one would expect.

The second problem considered in Chapters I and II
was mqtivated by Widder's work on Lidstone series and
completely convex functions [38]. From this elegant result,
we are led to consider the problem of defining a suitable
class of functions corresponding to a given interpolation
problem. Such considerations lead to the definition of
Wp—convex functions and the generalization of Widder's

result in Chapter 1I.

In an attempt to obtain results analogous to those

*
of Chapter I, we define the class of Wp—convex functions

in Chapter II. Some sufficient conditions are given for the
representation of a function by a (p,L*) series. However,
as is pointed out in Chapter II, we are unable to obtain
necessary conditions for representation of a function by an
absolutely convergent (p,L*) series. Somé results are
also given in Chapter II for the special case p = 2 ,
relating a set of interpolation polynomials of the (2,L*)
series to the Euler Polynomials.

Finally, in order to‘bring out the correspondence

between certain classes of functions and the interpolation
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problems which generate them, we give the following table:

Incidence matrix Class of Functions References

Bernstein [2]

(1) absolutely monotonic Widder [39]
1 0) Bernstein [4]
01 cyclically monotonic Schoenberg [23]
10
10 completely convex Widder [38]
11...1 0)

columns | W _-convex Chapter I
10...00 P P P

p columns

0 (p even)

0 00

T ——
= O
= O
= O
(=)
———

*
Wp-convex Chapter II
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CHAPTER I

A GENERALIZATION OF THE CLASS OF

COMPLETELY CONVEX FUNCTIONS

1. Introduction.

In 1932, Whittaker [35] proved that an entire
function £f(z) of exponential type < T has a convergent
Lidstone series expansion which is uniformly convergent in
any finite region of the complex plane. Widder [38]
showed that a necessary and sufficient condition for a
function to have an absolutely convergent Lidstone series
expansion is that it is the difference of two minimal
completely convex functions. Later, in an attempt to
synthesize the results of Bernstein on completely monotonic
functions and the results of Widder on completely convex
functions, several‘deep stﬁdies were made in different
directions. We mention, in particﬁlar, the results of Boas
and Polya [8] who showed, roughly speaking, that if {nk}+

and {qk} are two sequences of nonnegative integers, and

(ny) (n, +2q,)
if f (x)f (x) £ 0 on an interval I, then ¢

must necessarily cbiﬁcide on this interval with an entire
function of order one and finite type. In spite of the
great generality of this result, a corresponding extension
of Widder's interesting result was not attempted. Perhaps

this could be attributed to the fact that the methods of

Boas and Polya, as also of other authors who worked on this

kind of problem, were very different from those of Widder.
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Our object here is to introduce an extension of
Lidstone series (called (p,L) series) and to obtain an
analogue of Whittaker's result and then to obtain a necessary
and sufficient condition that a function has an absolutely
convergent - (p,L) series expansion. In order to do so we
give some preliminaries in 82 and introduce the class of
Wp—convex functions and give a statement of the principal
theorems. For p = 2 , the Wp-convex functions become the

class of completely convex functions of Widder.

In §3, we give a proof of Theorem I and in 84 we
obtain some p:operties of the fundamental polynomials of the
(p,L) series.(see'Definition 1). §5 deals with a boundary
value problem which is useful in obtaining some estimates on
the fundamental polynomials in §6. 1In §7, we use the results
of §6 to obtain estimates for functions which are Wp-convex
and complete the proof of Theorem II. In 88 we obtain some
additional results on Wp-convex functions and prove Theorem
III. The results of §8 and §9 together with the properties of
minimal Wp-convex functions (see Definition 3), introduced
in 810, enable us to give necessary and sufficient conditions
for representation of a function by an absolutely convergent

(p,L) series (Theorem IV) in §11.

2. Preliminaries and Statements of Main Results.

We define the sine functions of order p by

(2.1) M. (t) = ] (3=0,1,...,p=1) .
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-t _
Thus Ml,O(t) = e R M2,1(t) = gin t ,

M3 0(t) = %e + Te cos = - Then it is easy to see that

’ 3
Mp,j-r(t) R (0<r<j)
M) (e) =
P _Mp,p+j-r(t) . (j<rs<p)
and
-(j/2) p-1 m*%
(2.2) M .(t) = w 77 |2 oMt ’ - e21T:I./p
PsJ P mn=0

We shall require the addition formula (see [16]; p. 47)

p-1

(y) = L oMo M ()

(x+y) = g M k(x)MP,j_k gt

(2.3) ¥
Ps] k=0 P°

We denote the generalized hyperbolic functions of order p

by
7 2 0,1 1
(2-4) Np,j(t) = nzo (Pn+j)! (j" ] ,--v-,P" )
- ai/2 -(1/2)
and observe that Np,j(t) w Mp’j(tw )

Further, we denote the zeros (# 0) of Mp j(t) by
H

(2.5) Aij) < Aéj) < ... (§=0,1,...,p-1)

and set A, = X(p-l) : A* = A (k = 1,2 ) when there
k= "k ? k = "k O
is no chance of misunderstanding.

Mikusinski [16] has proved that the zeros of

Mp j(t) are simple and if 0 < j < k < p , the zeros of
H
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M (t) and MMP k(t) do not coincide. Further, if
. s=satlns. Qurtuel

P, 8BS €2 2ot

0 < 2 < 2U) are tuo conmsecutive zeros of M- (t) , then
a' < Mgl AIe tuo consecutive zeros of M, ,

there exists exactly one zero of Mp k(t) between Aéj) and
' ’

Aéii . We shall refer to this property as the interlacing
property of the real zeros (¥ 0) of the functions Mp,j(t)
( = 0,1,...,p-1).

We note that the moduli of the zeros of Np,j(t)

are given by (2.5).

Lemma 2.1 (Mikusinski [16]). Given an integer p 2 2 , the

following properties hold:

. 1 1
(2.6) [X.L';'il_]p NP [2_(1.5L+.‘LL_1JP
(2.7) A3 AP (ge0,1,. 0, p-25ke1, 2,000
where Aéj) is defined by (2.5). Furthermore,

VL PR L BN S S

(2.8) prm M

p=2

k (p-1) _ -0 k=
(2.9) DM O ) >0 (§=0,1,...,p=23k=1,2,...).

Proof. 1Inequalities (2.6) are due to Mikusinski. For
k=1, (2.7) follows from (2.6). By the interlacing
property of the real zeros of the functions Mp j(t)

. b

(3 = 0,1,...,p-1) mentioned after formula (2.5), we have
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(2.7) for all positive integers k . From the easily verified
Py 1

2((2p-1)! )] [g29+12 }P+1 Al g,

inequality Aip) < [ (p-1) 1 P

follows that the sequence (2.8) 1s strictly increasing and

lim A(p-l) = o Now

(
Srm A : Mo (x) 20 (05 xs A and

that

all the real zeros (# 0) of Mp j(x) (j = 0,1,...,p-2) are
’

simple and have the interlacing property with the zeros of

Mp p_l(x) . Therefore using (2.7) we have (2.9).-
b}

We now formulate

Theorem I. Given an integer p 2 2 , the following

representation holds for every entire function f£f(z) of
exponential type T < Al
H (pn+v)
(2.10) £(z) = ) {f(P“)(l)c (2) + Z £ (PR (034 (2}
pn+v
n=0 v=0
= (p_l) h ®
where A, = A; is defined by (2.5) and {C__(2z)}
- - pn n=
[+
and {Apn+j(z)}n=0 , (jJ =0,1,...,p-2)
are polynomials defined by the generating functions:
) I e c " po1 ") (z,tP)
(2.11 t c z) = 2 = z,t
n=0 pn p P~ l(t) p -1
© (zt)
-1
2.12 £PPHI 4 =N t) - N t p’p
(2.12) nzo pnag () = N, g (2e) = N (¢) i
= ¢d v (z,tP) (j = 0,1,...,p-2)

3
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The series on the right in (2.10) converges to f(z) for all

z and the convergence is uniform on all bounded subsets of

the plane.

Definition 1. We shall say that the series (2.10) is the

p-Lidstone series (or (p,L) series) of f and that

{c_ ()} nd {A 2)}” =0,1,...,p-2) are the
pn( ) n=0 a Pn+j( ) n=0 (j H 9 ’p ) —
fundamental polynomials of the (p,L) series.

Remark. The function M (zll) is of exponential type

p,p-1
Al and all the derivatives occurring in its (p,L) series

vanish so that its (p,L) series is identically zero. Thus
Theorem I yields a best possible result in the sense that

A cannot be replaced by a larger number.

1

Definition 2. A real valued function f defined on [a,b],

is said t

be Wp—convex if

(1) £ e C [a,b]

(1) -D¥P ) 20 (a<x<b; k=0,1,...) ,
(111) DReP¥* 4y 2 0, (§=1,2,...,p-2; k=0,1,...) .

We now formulate

Theorem II. If £ 1is Wp-convex on 0 < x <1 then f

coincides on [0,1] with a real entire function of

exponential type not exceeding Al (defined by (2.5)) and

the (p,L) series representation holds if the function is

of exponential type < Al .
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We now give the following useful variation of

Theorem II:

Theorem III. If f£f(x) is Wp-convex in a < x £ b where

b-a > 1 then f(x) 1is an entire function of exponential

type less than A, and (2.10) holds for any =z in the
complex plane.

When p 1is an even integer, the first part of
Theorem II is a special case of results of Boas and Polya
(see [8]; Theorem 1, p. 407) except that we give a precise
upper bound on the type of the entire function. When »p
is an odd integer however (say p = 2m+l), then our
results do not follow as a special case of the results
of Boas and Polya, because for n, = (2m+1)k there
exists no sequence {qk} which will satisfy the hypothesis
of Theorem 1 of Boas and Polya (p. 10). Furthermore, the
conditions (iii) of Definition 2 are imposed at the end-
point of the interval in question, whereas a result of Boas
and Polya ([8], p. 423) imposes conditions on the function
on subintervals about the midpoint of the interval. Our

method of proof is close to that of Widder ([37], [38]).

Theorem II gives a sufficient condition for a
function to have a (p,L) series representation but it is
not necessary as seen from the example of the function

Np p_1(x) which is not Wp—convex and yet has the (p,L)
’

0
series representation Np,p-l(x) = Np’p_l(l)ngocpn(x) .
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Also, Mp’p_l(xkl) is Wp—convex on [0,1] , yet it has no
(p,L) series representation. In order to obtain a
necessary and sufficient condition, we follow Widder and

introduce the class of minimal Wp-convex functions.

Definition 3. A real valued function £(x) defined on
0 £ x<1 is minimal W -convex on [0,1] 4if it is
1) is

not

A o

W -conve 0,1 an f f - €M A
p-convex on [0, ] if '(x) p,p-1(%

rh

Wb-convex on [0,1] or any positive € .

This leads us to formulate

Theorem IV. A necessary and sufficient condition that

f(x) be represented by an absolutely convergent (p,L)

series is that it is the difference of two minimal

Wp-convex functions on 0 < x s 1 .

3. Proof of Theorem I.

 in (2.10) we get the

formal (p,L) series representation of e?t , 8o that

Setting £f(z) = e?

2t _ P3? 4 P t P
(3.1) e = jZOt Wj(z,t ) + e Wp_l(z,t ) .

Replacing t successively in this relation by wt, wzt,

oo ey wp-lt, with w = e2wi/p and observing that

v)

Wj(z,tp) remains unchanged, we get the following system
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of equations in Wj :

m p-2 R m
(3.2) ew 2t = z (wmt) ‘yj + ew twp-l (m=0,1,...,p-1) .

In order to obtain Wj , we multiply the (m+l)th

equation in (3.2) by w-mj (m = 0,1,...,p~-1) and add. Now,

keeping in mind the easily verified identities

(3.3) PrL epm [0 VS (med )
m=0 P, V Hj (mOd p)
P-l m

(3.4) R i P I (4=0,1,...,p-1) ,
n=0 P]

we obtain (2.11) and (2.12) .

The polya representation of an entire function

n

© a 2z
£(z) = ) -;3-.- of finite type is given by
n=0 '
1 zt
(3.5) £(2) = 357 [,e" F(t)dt
where F(z) = ] nil is the Borel Transform of f£(z)

n=0 z
and I 1is a contour surrounding the conjugate indicator
diagram D(f) of f , i.e. the convex hull of the set
of singularities of F(t) . From (2.11) and (2.12) we
have that the right hand side of (3.1) is regular in all
circles |t]| = o where p < Al . Therefore, the series

given by WO’ Wl, oo ey wp-l converge uniformly in any

compact subset of the disk |t] < Al .



- 24 -

Now if f is of exponential type T , it is well
known (see e.g. [71, p. 8) that D(f) 1lies inside the disk
|t| < T . Therefore I can be taken to be any circle

|t| = p where T < P < Al . The proof of Theorem I is completed

by applying the kermel expansion method (see (71, p. 10)

with eZt as kernel.

4. Properties of Fundamental Polynomials of (p,L) Series.

Consider the linear operator L defined on
cP[0,1] by

p-2

I 90, <x>]

(4.1) L(f) = £(x) - [f(l)CO(X) +
0

i

where Co(x) and Aj(x) (j = 0,1,...,p-2) are the poly-
nomials occurring in (2.10). Since L(P) = 0 for any
polynomial P(x) of degree < p-1 , we have by Peano's

theorem [12]

(4.2) L(£) = f; K, (%,t) £(®) (r)at
where
(4.3) (p-1)! K (x,6) = L [(x-)27"]

0 , t > x
with (x-t)i-l =

(x—t)p-l , t < x .
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Setting f(x) = l,x,xz,...,xp-l successively in (4.1), we

easily have

j!Aj(x) = xJ - xp"l (j=0,1,...,p-2)

(4.4)
Co(x) = xp-l

From (4.1) and (4.3) we have

(x—t:)p'l - (1-1:)"'1xp'1 (0st<x<1)
(4.5) (p-1)! K. (x,t) =
1 -1 p-1
- (1-t)P™ 4P (0sx<ts<l)

Also Kl(x,t) = Kl(l-t,l-x) . Now Kl(x,t) is seen to be

the Green's function for the differential system

y P (x) = $(x)
(4.6)
y(1) =0 ; y(0) = y'(0) = ... = yP"2)(0) = 0 .

where ¢(x) 1is any function continuous on 0 < x <1 , so

that

1
(4.7) y(x) = [ K (x,t)¢(t)de
0

is the unique solution of the system (4.6). Since Apn+j(x)

satisfies (4.6) with ¢(x) = Ap(n—l)+j(x) we have
1
(4.8) AL (x) = fo Ry G E)A g4y (EDAE
1
= f K_(x,t)A, (t)dt (j=0,1,...,p-2;
o ™ 3
n=1,2,...)
where we set
1
(4.9) K (x,£) = [ K (x,u) K _,(u,t)du (n=2,3,...)

0
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Similarly

1
(4.10) Cop(x) = fOKn(x,t)Co(t)dt (n=1,2,...)

Thus we have
Lemma 4.1. If f£(x) belongs to Cpn[0,1] then

n-1 (pk)
(4.11) £(x) = [ g£'P (1c, (x) +

k=0
pP=2 n-1
+ jZO kZO f(pk+j)(0)Apk+j(x) + R_(x,£)
where
1 (pn)
(4.12) Rn(x,f) = foKn(x,t)f PRJ eyde

with Kn(x,t) given by (4.5) and (4.9).

Proof. For n =1, (4.11) is given by (4.1) and (4.2).

The proof is completed by induction on n .

Lemma 4.2. The following inequalities hold for 0 < x < 1

(4.13) (-1)nKn(x,t) > 0 (0st<l; n=1,2,...) ,

(-l)nCpn(x) >0 (n=0,1,2,...) ,

(4.14)
v n
(-1) Apn+j(x) 20 (j=0,1,...,p-2)
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Proof. For n =1, and x st (4.13) is clear from (4.5).

For x > t , consider the expression

(x—t:)p-1 - (l-t)p-lxp-l = (l-t)p-lF(t) , where

x-t p-i p-1

F(t) = (I:? - X s, X being fixed. Then
(p-1) (x-£) P2 (x-1)

F'(t) = < 0, 8o that F(t) is monotone

(1-t)P
decreasing for 0 < t < x £ 1 and hence assumes its maximum
at t =0 . Since F(0) =0, F(t) s0, (0 st < x);
and hence Kl(x,t) <0, (0sts<s=x<1). For n>1,
(4.13) 1s proved from (4.9) . Also, (4.14) is immediute
from (4.8), (4.10) and (4.13).

We supplement (4.14) with

Lemma 4.3. The fundamental polynomials Cpn(x) , Apn+j(x)

(j = 0,1,...,p~-2) have no zeros in the interval 0 < x < 1.

Proof. We shall prove the Lemma for the polynomials

Apn(x) . The proof for the other fundamental polynomials

is identical. From (4.14) we have (-1)nApn(X) 2 0

(n = 0,1,2,...) . Also, Apn(O) = A' (0) = ...

pn
-9 .
A;ﬁ )(0) =0, (n=1,2,...) . Since AO = 1 - xP )
the Lemma is true for n = 0 . Suppose it is true for

n = k-1 . Apn(x) (n =1,2,...) has a simple zero at

1 and a zero of order p-1 at x = 0 . Assume that

X

X (0 < X < 1) 1s a zero of Apk(x) . Then X must

be a zero of even order (at least two). Therefore, under
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our assumption, Apk(x) has (at least) p+2 =zeros in
0 < x <1 . Applying Rolle's Theorem p times,

A(p)(x) = A (x) has (at least) two zeros in the
pk p(k-1)

interval O < x < 1 , contradicting the inductive

assumption.

5. A Boundary Value Problem.

Consider the boundary value problem

(5.1) -
y(0) = y'(0) = ... =y (0) = y1) =0

and the adjoint problem

(-1)Pz(P) 4 AP, = o

(5.2)
2(1) = 2'(1) = ... = 272 (1) = z(0) = 0 .
Then the real eigenvalues Al < AZ < ... are the zeros of
Mp p_l(x) (defined in (2.5)). The eigenfunctions of (5.1)
b

00
are {Mp,p_l(xkk)}kgl and those of (5.2) are

oo
M A, —X\ .
t p,p-l( kK * k)}k=1

There is considerable literature on the problem
of expansion of a function in terms of the eigenfunctions
of the above boundary value problem, which is classified

as non-regular and separable [17].
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Lemma 5.1. The following biorthogonal pfogertx holds:

0 s J # k
1l
5.3 M A M A,-xA,)dx =
(5:3) [ My oy (A Mp o Gymxhddx =y ()
: s 1 =k
P
where Al < Az < ... are the real zeros of Mp,p-l(z) .

Proof. If 3§ # k , formula (5.3) is easy to verify. To

verify it for j = k we set y = Mp’p_l(xkk) ,

z = Mp’p_l(kk—xkk) . Then from (5.1) and (5.2) we have

' P (p)
(5.4) -Z(Ak)p [ yz dx = [ Iy Pl + (-1)P2'P/y)ax
0 0

1
(-1)3 { [(_1)pz(p-j)y(1) + y(p—j)z(j)]dx
0

(i 1,2,...,p-1) so that

1
-Z(P-l)(kk)p IO yz dx

1 p-1
SRS TE TSR LS o5 PIMIC DISPS SR DA DY PP
0 j=0
p 1 p-1
= Z(Ak) IO jzl Mp’j_l(lk-xlk) Mp,p-j-l(xxk)dx

Using the addition formula (2.3) for J = p-2 we obtain

(5.3). This completes the proof of (5.3) for j = k .
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Remark 1. Formula (5.3) may be generalized as follows.

I1f léj) (3 =0,1,...,p~1; k = 1,2,...) denote the real

zeros (# 0) of Mp,j(X) , then

0 , 8 # k
1
(1) ( (1) oy (D 4o o
M (xA Y M A -xA dx = ' (3)
fo PsJ k pPspP-1|"4 2 _Mp,'l(}‘k ) ’ -
p

Remark 2. By Lemma 5.1, a formal expansion of a function

f(x) can be written down

00

(5.5) f(x) = kzl aMy g (XA

1 M p_Z(Ak)
where a, = fo f(x)Mp’p_l(Ak-xkk)dx - m

o

Howevef, regarding the convergence problem, we
know from a result of Ward [33] that the right side of (5.5)

converges uniformly to £(x) for 0 s x < X for any

X < 1 if f£(x) 1is of the form f(x) = xp-lw(xp) where

W(xp) is a convergent power series in x? . Since

-1

Co(x) = xP is of this form, and since it is easily

verified that

p-1 - - L
(5.6) Io x Mp’p_l(Ak x\, ) dx e
we have the convergent expansion
© M (xA.)
-1 k
(5.7) C.(x) = -p ) =E2P (0 < x < x)
0 k=1 AkMp,p-Z(Ak) o
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Obviously, since C,(1) = 1 and since Mp,p-l(Ak) = 0

(k = 1,2,...), the right hand side of (5.7) cannot converge
to Co(x) at x =1 . Now Cpn(x) satisfies the
differential system (4.6) with ¢(x) = Cp(n-l)(x) . Thus,

we have

M

o (xA,)
(5.8) Cpn(®) = -1 ] Rapol ko

k=1 Mp’p_z(xk)<kk)
Since Cpn(l) =0 (n=1,2,...) , by a theorem of Ward
([33], Theorem 4) the right side of (5.8) converges
uniformly to Cpn(x) in 0 € x 51

6. Estimates on the Fundamental Polynomials.

It is our object to show here that for large n
the first term in the formal expansion of the fundamental
polynomials {Cpn(x)} and {Apn+j(x)} (J = 0,1,...,p-2)
in terms of the eigenfunctions M (xA,) serves as a

psp-1 k
good approximation to these polynomials for 0 < x s 1 .
However, the formal eigenfunction expansion of these
polynomials may not necessarily converge to the polynomial
on 0 < x <1 (see Ward [33]).

In the remaining sections of Chapter I, we use
B to denote suitable constants (not necessarily the same),
which are independent of n and x , (0 < x < 1), unless

otherwise stated.
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Lemma 6.1. For 0 s x <13 n-= 0,1,... we have
pM (x2,)

(6.1) '( l)n+1 pn(x) - Rap-t pn+1| Bpn+1

Mo () (G) (A))

(M) M (x\,)

(6.2) \(-1)nApn+j(x) - 2] = D’D;i+j+%—‘ < 2 pn+l

Mp’p_z(kl)(li) A1+A2

2

(3 = 0,1,...,p=2) .

Proof. From (5.8) we have

‘( l)n+l (x) - pMDQD-l(x}\l) l
pn M (A.) (A )pn+1
p.P-2""1 1
) ® (2, pot+l Mo Gy)
= ()\z)pn+1 ‘kzz Ak M 2(1 ) ‘
B o A pn+l
< o (_g < B
(Az)pn+1 k=2 Ak (Az)pn+l

by (2.5) and since it is easily shown from (2.2) that

M (xlk)
(A ) < Bo (0 sx<1; k=2,3,...) . This

p p~-2 -

proves inequality (6.1).

Consider the circles T :|t]| = L. ¢ and
o 2 o

%(A +A ) = r where A and A

1 1 , are defined by

-3
t
[}
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Define

I -pn-1 P
(6.3) Aonty,k(®) = 75T frkt ¥, (x,tP)de

(0sxs<13; ka=0,1), where Wj(x,tp) (1 = 0,1,...,p-2)
is defined by (2.12). Thus we have Apn+j,0(x) = Apn+j(x)
and since N p_l(t) is uniformly bounded away from zero

s ]

when t € Fl s We have

(6.4) lApn+j,l(x) -
N (t) N (xt)
.—1_ "'Pn-j"l - - D.D-l
T frlt [Np’j(x,t) IO ]dt
(1+|x|)r
27 1

1 e dé B

s> S —— (0sxs<1)
2T ‘9 (rl)pn+j+1|Np,p-1(r1eie)I (rl)pn+j

It is easlily verified that the residue of

1
-pn-1 p vy
t~ P Wj(x,t ) at t=w “A (v=0,l,...,p-1) is

+1
UM ) M (xA,)
G e s e Sy
Mp,p_z(kl)(kl)

Therefore, we have
(6.6) Apn+j,1(x) - Apn+j(x) = pRn’j(x)

Using (6.5) and (6.6) we have

P

(x)
pn+j+l
Mo () ()

pM (A;)) M (xA.)
n D,j 1 ,D"l 1 =
(6.7) (-1) Apn+j(x) - l - IApn+j,1
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Then (6.2) follows from (6.7) and (6.4).

Remark. It should be noted that if the same techniques that
are used to prove inequality (6.2) are applied to the

polynomials Cpn(x) , then the inequality

pM (xA) B

)pn+1

p,p-1
Mp p_z(kl)(l

-1t (x) - 1
pn po+l
1) (rl

’

is obtained. However, using (5.8), the better estimate (6.1)

is obtained.

Lemma 6.2. There exist constants B such that for

0 <x<13; n=1,2,...

(6.8) 0 < (-1)%__(x) s —=2
pn pn
(ll)
n B - _
(6.9) 0 < (-1) Apn+j(x) < o )pn (3=0,1,...,p=2).
1
Proof. From (6.1l) we have
M (xX
0 < (-l)nCpn(X) < _——EEE:I + ? p.p-l : l;n+1 < B -
(12) Mp,p_z(ll)(ll) (Xl)

Since A, < Xz , and M (xll) is uniformly bounded for

1 pspP-1
0 <x<1. Weget (6.9) similarly from (6.2).
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Lemma 6.3 For any fixed X, such that 0 < x, < 1l there

exist constants B such that

B

n ———eve— =

(6.10) (-1) Cpn(xo) > (Al)pn (n=1,2,...)

n B _
(6.11) (-1) Apn+j(xo) > ?;I;;; (j=0,l,...,p-2;n—1,2,...) .
Proof. We shall prove (6.10) . From (6.1) we have

-n" _x) M (r;) (2,)P?
(6.12) lim 280 (;*‘;‘f L1 .2,

n-+o psp-1""0"1 1

from which (6.10) follows easily. The proof of (6.11) follows

in an analogous way.

Lemmal6.4 For 0 <x<l,n=1,2,... ue have

1
(6.13) 0 < (-1 K_(x,t)dt ¢ ——
B o " TPt

where Kn(x,t) is defined by (4.9) and (4.5)

Proof. Since Ao(x) + Co(x) = 1 we have

1
0 < (-1)“[0 K_(x,t)dt = (-1)n[Apn(x) +C ()] and (6.13)

follows at once from Lemma 6.2.
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7. Estimates for Wp-convex Functions. Proof of Theorem II.

Lemma 7.1 (Hadamard). If g(x) belongs to C(p)(I) where

I is a closed interval of length o and if
(7.1) g su, 5 1@ sm , xe1

then throughout the interval I

i/
- p-J
o™, + S ] (1s3sp-1)

2
(7.2) g P @] < (E'SL

For a proof of this Lemma see [10], p. 13. We shall now

prove

Lemma 7.2. If £ is Wp-convex on 0 s x <1 ¢then for

sufficiently large k we have

(7.3) (-1 ke (PR (1) < B(x1>Pk
(7.4) 1% P 0) < BOPE (4=0,1,...,p-2)

where A, = X{p-l) is defined by (2.5).

Proof. From the definition of Wp-convex functions and

Lemma 4.2 every term on the right hand side in (4.11) is

nonnegative so that
(pk)
0 < f (l)Cpk(x) < f£(x)

0 < f(pk+j)(0)APk+j(x) < f(x) (3=0,1,...,p-2)

If we choose x = % and apply Lemma 6.3 to the above

inequalities we have (7.3) and (7.4).
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Lemma 7.3. 1f (1) £@ ) =20 (3 =1,2,...,p-2) , and
0. -£®)(x) 20 (0 <xs1) then

(11) £(x) = s
(7.5) £(x) 2 f(xo)xp-l (0sxsx))
(7.6) £(x) 2 f(xo)(l-xp‘l) (x_sxs1).

Proof. Setting n =1 din (4.11) and replacing the node 1

by x (0 < x = 1) yields

X
+ f(xo)Co(xo

p;2 x
) P + R(f,x,xo)

(7.7) £(x) = f(j)(O)Aj

j=0

where Co(x) and Aj(x) (§ = 0,1,...,p-2) are defined by

(4.4) and, by Peano's theorem [12]
x

‘ o
.R(f,x,xo) = fo Ki(x,xo,t)f(p)(t)dt with

x P

19! = (g_tyP°Y1 _yP-1 X
(p l).Kl(x,xo,t) (x t)+ (xo t) " (OSxSxo,OStho).

o
Using (ii) of the hypothesis, it 1is easily seen that all the
terms on the right side of (7.7) are nonnegative, and we

have (7.5).

To obtain (7.6) we define

(7.8) L*(f) = f(x) - [f(xo)Do(x) + f(l)Dl(x) +
p-2
+ 7 £90E (x)] = R (£,%x,% )
j o
3=1 -
where for x < x £ 1 , we have
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' 1-xp—1 xp-l_xz-l
D.(x) = =——= 203 D,(x) = - 2 0
0 1_xp-l 1 l_xp 1
) o
(7.9) ¢ j 1-xd 3
JIE, (x) = x"-1 + ) (1-xP77) 2 0
J 1-xg

*
It is easily verified that L (P) = 0 for all
polynomials P(x) of degree = n-1 . Again, using Peano's

theorem [12] we have

1
(7.10) R¥(£,2,x ) = | K (x,x 6)E P (p)ae
(o] 0 o

* * -
with (p-1)!K (x,x ,t) =L [(x-—t)p l] <0 for x < x<1,
o] X + o
*
0<t<1, (seep. 41 %) and with L  defined by (7.8).
Using (ii) of the hypothesis it can be easily seen that

* .
R (f,x,xo) >0 . So from (7.8) and (7.9) we have

(7.11) f(x) = f(xo)Do(x) + f(l)Dl(x) +
p=2 %
£ 3 D), 0 + R (E,x,x)
. 3 o
=1
where every term on the right side of (7.11) is nonnegative.
Therefore, inequality (7.6) is established and this proves

the lemma.

Lemma 7.4. If (1) £97¢0) 20 (3 =1,2,...,p-2) , and

(11) £(x) =2 0 , -f(p)(x) >0 (0 < xs1) , then for

0 < a<b < (_)p- e have

(7.12) £(x) < > f f(x)dx (a<x<b)



- 39 -

Proof. Let £(x ) = max f(x) . Then from (7.5) and (7.6)
‘ ° asxs<hb
we have
b %o o1 b 1
fa f(x)dx 2 f(xo) fa X dx + fxo(;-xp Ydx

P__P
J s repfee) |

1
P -1
since x - 2%— is increasing for 0 < x < (%)p 1 .

P

2 P__P 2x
= f(x )[‘b_lﬁ_ + b -a  _ (x —l
o P - p o P

8. Proof of Theorem II..

Using the properties Mp’p_l(xkl) and using

integration by parts we obtain

1 P2 - (J)
[ ogeou, o og-xpax = RO T £SOy,

) -
0 Ay 4=0 (Al)j+1 P, 1

1_p1 (p) ' -
- (Al) fo EPT oM ) (A -xA ) dx

where Al is defined by (2.5). Since f(x) 1is Wp-convex
£(1) 20, £370) 2 0 and, by Lemma 2.1, M) () <0
’

(j =0,...,p-2) , we have

1 1 \P
(8.1) fof(x)Mp’p_l(Al-xkl)dx 2 -(XI) fof (x)Mp’p_l(Al-xkl)dx .

From the definition of Wp-convex functions, it is obvious

that -f(p)(x) is also Wp-convex so that on successively

using the inequality (8.1l) we have
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k(1 \ "5t k)
(-1) (TI) Jo e w000 ax

1
< fo f(x)Mp’p_l(Al-xll)dx = Ap
1.
1\P-1
If 0 < a < b < (3) then a fortiori

k(L |\ P*® (k)
(-1) (“1) e, oy say

Elementary geometric considerations show that

min M (A,-xA,) =D > 0, so that
asxs<b P 171 1

b A (1, )PE
(-l)kf f(pk)(x)dx < Dl .
a
Hence, by Lemma 7.4, we have
k
pA_(A)P
(8.2) (-1)%e (PR gy < 217
(bP-aP)p

From Lemma 7.1 we see that for j = 0,1,...,p~-1

(asxs<b)

f(pk+j)(x) = 0((A1)pk) uniformly in [a,b] , as k + o ,

Thus, we have f(n)(x) = O((Xl)n) uniformly in [a,b] ,

as n + o« which shows that f(x) 1s entire and of

exponential type < Al s Which completes the proof of the

first part of Theorem II. The second part of Theorem II

follows from Theorem I.

An interesting consequence of Theorem II is the

following:
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o
Coxollary 8.1. If f£f(x) = Z anxn where the coefficients

n=0
are real and such that (-D'a ., >0 (v =10,1,...,p-2;
n=20,1,...) and

i
(8.3) e I® >0,

then in any interval O s x < 6 , however small, there is

some n such that one of the derivatives of order

ﬁn, pn+l, ..., pn+p-2 changes sign.

Proof. Suppose no such n exists. Then f 1is Wp4convex

on 0 s x <8 , hence entire, which contradicts (8.3),

Remark. If, in Theorem II, we consider the case p = 3,

then for f£f(x) = e ¢% (c > 0) we have (—l)kf(Bk)(x) 20 ;

(-l)kf(3k+1)(a) <0, (k 0,1,...) , 8o that condition

(iii) cannot be waived in the definition of Wp-convex

functions.

*
** The inequality for K (x,xo,t) on page 38 follows
from Theorem II of Birkhoff (Trans. A.M.S. 7 (1906)

107-136).
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9. The (p,L) Series and Wp-Convex Functions. Proof of

Theorem III.

We shall use the following theorem in 8§10 to obtain
necessary and sufficient conditions for representation of a

function by a (p,L) series.

Theorem 9.1. If the series

(9.1) coCO(x) + avo(x) + ... + (x) + cpC (x) + ...

p2p2

converges for a single value X (0 < x < 1) then it
converges uniformly in 0 < x £ 1 to a function £(x) .

Furthermore, the series

0 n p-2 M (A,)
(9.2) z _(iLC - Z _E:.j_.!-_a .
n=0 PP PR y20 gl PeHd

converges and we have

(9.3) £PK)(x) = ¢oiCo () + 8 Ag(x) + ...

+ apk+p_2AP_2(x) + c( +1)kC (x) + ...

Proof. With suitable modifications, the proof follows
Widder's method for the case p = 2 , (see [38];

Theorem 5.2, p. 392).

Now we give some results for Wp—convex functions.
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Lemma 9.1. If f£(x) 4is Wp-convex in 0 < x <1 then there
is a constant M guch that

0 s (-0F: PP (x) < |2

(9.4)

pk
0 < (-1) f(pk)(x) < B ———) (k + =)

If f(x) 1is Wp-convex on a £ x <b , then
F(x) = f(at+bx-ax) 1is Wp-convex on 0 < x <1 . Thus by
Theorem II
7 (PR 0y - o(Alpk)
(9.5) ’
r(PR) (1) - o(xlpk] (k + =)

Hence we have

F(PE) 0y = £(PK) (a) (b-a)P¥ = o(xlpk)

(9.6)
p(PR) 1y = £(PK) () (p-a)PF - o(xlpk) (k + ®)

First, set a =0, b =x <1 ; then set

a=x>0, b=1 to obtain

0 < (-1)%e (P (gyxPK < Bxlpk

(9.7)
0 s (-0F PV 1y @-0P* < By pk

which gives (9.4).
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Proof of Theorem III.
Using (9.6) we have
A, \PK
If (Pk) (x) I < B("l_'

ox (asx<b) ,

where Al is defined by (2.5). Since b-a > 1 , we choose

¢ such that b-c > 1 . Thus we have
r, \PE
If(pk)(x)l <B F%Z (asx<c) .

Setting F%Z = q and applying Lemma 7.1 yields

1€ PR+I) (1) | <BgP®  (asxsc; 3=1,2,...,p-1)
so that

£ (x) = 0(g™ (0 + ®)
uniformly in a < x < ¢ . Therefore f(x) 1is entire of
exponential type q < Al . This completes the proof of

Theorem III.

10, Minimal Wp—Convex Functions.

In order to obtain necessary and sufficient
conditions for a (p,L) series representation we introduce
the class of minimal Wp-convex functions (see Definition 3).

Examples of minimal Wp-convex functions are

f(x) = 0 and g(x) = M (x) . For the function g(x)

p,p-1

choose any € > 0 and X (0 < X < 1) . Then

(pn) -
(x) - eM 1 (A1 ] =

n
-1) " [M
E My o1 P,pP- X=X

- - pn
Mo (X)) - e PP (kA <0,

for sufficiently large n .
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Theorem 10.1. If the geries

P it § _qym
(0-1) nEO( - “p pn(X) jZO (ll)j nzo( b apn+jApn+j

(x)

cpn 2 0 ; apn+j 2 O (j = 0,1,-oo,p-2; n = 0,1,000)

converges to f(x) , then £(x) is & minimal Wp-convex

function on 0 < x <1

Proof. We know from Theorem 9.1 that if (10.1) converges
for a single value of x , it converges uniformly in
0 < x <1 . Differentiating (10.1) pk times using (4.8)
and (4.10) we have
(pk) 4 n
= -1
(-1)%¢ (x) ngo( ) e (n+k) Cpn (X)

n
p(h+k)+jApn+j(x) z 0

for 0 < x <1, and from Lemma 2.1

M (r.))
(-1)ke (PR¥I) gy o _ad 17 20  (4=0,1

a Y p—Z)
3 pn+] >
(Xl)
Thus, £(x) 1is wp—convex on 0 s x <1 ., By Lemma 6.2 we

have (-1) f(pk)(x) < B(A )pk k where

© p-2 M (A))
Tk = z c - Z _Li.j_l— a + )\zpn
n=k| P* y=0 pd P

From Theorem 9.1, the power series (9.2) converges

absolutely; therefore, Tk+ 0 as k - o , For a given
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€ > 0 and X, (0 < X < 1) there exists an integer k ,

sufficiently large, such that BTk - eMp’p_l(xokl) < 0.
In other words (-l)k[f(x) - eM (x\ )](pk) <0 at
psp-1 1

X = x . Hence, f(x) 4is minimal Wp-convex on 0 < x <1

Lemma 10.1. If (1) eIy 20 (4 =1,2,...,p-2) ,

(11) £(x) 2 0 , £ (x) >0 for 0 sx <1 andd

(111) f(xo) > E%%Ei%%(kl)p_l for some x_ (0 < xd < 1)

(10.2) f(x) 2 eMp p_l(x}\l) (0<x<1)

Proof. From (7.5) and (iii) of the hypothesis we have

(10.3) £(x) 2 £(xg)xP7h 2 BRI )P (0sxsx))

From (10.3) it is clear that inequality (10.2)

holds for 0 s x < xo if we show that

(xa )Pt
(10.4) —T;:ITT— 2 Mp,p—l(xxl) (OSxSxo)
Since
P )Pt Gt
M (xA,) = ——= - 1 + —1 - ...
P,p-1"""1 (p-1): (2p-1)! (3p-1)!
inequality (10.4) is equivalent to
3p-1
1 (x2;)

s - 2p-1 . - _
(10.5) 0 2 (xAl) tp(x) 3 tp(x) (Zp-1)7 Gp-1)° + ...
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Using (2.6) we have for 0 s x = X,

(xr )P 1 (2p-1)! (AP
(3p-1)!

1

(10.6)  Zp-)T ~ Gp-D! ° (2p-D)! =0

2[(2p-1): 2

gsince 1 - Tgp-l)!(p-l)! >0, (p=2,3,...) . Then by

pairing the terms of the series tp(x) and using the known
estimate (2.6) we see that tp(x) >0 (0 = x < xo) 80

that inequality (10.2) holds omn that interval. 1If x, = 1,
there is nothing else to show. Therefore, suppose

0 <x <1 . From (7.6) and (iii) of the hypothesis we

have
oot e (3p-1) AP H -2
(10.7) f(x) 2 f(xo)(l—x ) > (p-1) "
e (3p-1) (A PP (2-x)
> p-1) (x°5x$1) .
To prove the lemma it is enough to show that
(3p-1) (AP (A-%)
(10.8) (5:1)! 2 Mp’p_l(xxl)
Equivalently we shall prove that
(10.9) ool i )P lx e u (A =%xA ) (0=x<1)
) (p-1): "1 p,p-1"1 "1 T )

Since both sides of (10.9) vanish at x = 0 it

ig sufficient to show that

Lég;ll(xl)p-l > max [-A M

(p-1)! 0enel ,p—Z(Al-XAl)] = “Alnp,p-z(xl)
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Now
3p-1 p-1 _
22p-1) PP ] o1 = AP Gatp-2) 1 (A )P
| TG-DF T @M NCTE R (pnt2p-2)' _ ~ 1|°

where we use the bounds for (Al)p given in (2.6). This

completes the proof of Lemma 10.1.

11. Representation of Functions by (p,L) Series.

We now give a sufficient condition for representation

of a function by a (p,L) series.

Theorem 11.1. If £f(x) is minimal Wp-convex on 0 < x<1

then it can be expanded in a convergent (p,L) series.

Proof. Let

n p-2
- (pk) (pk+3)
(11.1) s_(x) = kzo[f (l)Cpk(x) + jZO f (O)Apk+j(x)]

Since f(x) 1is Wp-convex, we have from Lemma 4.1 that
Sn(x) s f(x) (0 < x <1; n=20,1,...) where Sn(x) is a
nondecreasing function of n for each x . Thus

Sn(x) + g(x) (say) as n * ® ., We shall show that

g(x) = £(x) . For, if g(x) # £(x) , thén for some X

lim
in ([0,1] , f(xo) = g Sn(xo) =6 >0 and

1
(11.12)  £(x)) - 5_(x) = foKn(xo,t)f(pn)(t)dt > 8

(n=1,2,...)

0
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Since f(x) 4is minimal Wp-convex
f(x) - eM xA is not W -convex for an € >0 . But
(x) p,p—l( 1) p y u

we have

[(-l)n[f(x) = p_1(xxl>1‘1’“+3)] = 0P () 2 0
? x=0

(3 = 0,1,...,p-2; n=0,1,2,...) . Therefore, choosing

(p-1)18 h
o1 where B 1s the constant of Lemma 6.4,
B(3p-1)(A,)
1

e <

there exists an integer n, and an X, (0 < X, < 1) such

n (pno) pn

that (-1) °f (x,)) - e(hy) °

M (xokl) < 0 . Thus,

psp-1

using Lemma 10.1 we have

pno+p-l
e(3p-1)(2,)

(o] [o]
(-1) °f (x) < -1)7 (0<x<1)

Hence by Lemma 6.4

(pn_) eB(3p-1) (A )P}

1 PR,
(11.3) fo Kno(xo,t)f (t)dt s oD < 8

contradicting (11.2). Thus our assumption that

g(x) # £(x) 1is false, which proves the theorem.

Now we are able to prove Theorem IV (81) which
provides us with necessary and sufficient conditions for
representation of a function by an absolutely convergent

(p,L) series.

Proof of Theorem IV.
(Sufficiency) Let f(x) = g(x) - h(x) where g(x)
and h(x) are minimal Wp-convex on [0,1] . Thus, by

Theorem 11.1
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® . -2
) (pn) P (pn+j)
g (x) nzo g (1, (x) + L g (O)Apn+j(x)] ,
hxy = [8®™ 1y (x) + pfz R PP (0ya L (x)
n=0| pn j=0 po+]

Since each series contains only positive terms, their
difference is an absolutely convergent (p,L) series whose

sum 1s f£(x) .

(Necessity) Assume that
© p-2
(11.4) £(x) = nZO ¢ nCpn (¥) * j£o apn+jAPn+j(x)J

where the series converges absolutely in the sense that

-] 0
each of the series nzo cpnCpn(x) H nzo apn+jApn+j<x)

(3 = 0,1,...,p-2) converges absolutely. Set

© p-2
n
g0 = ] Dle,le,, 00 ¢ j£O|apn+j|APn+j(x)J :

-

h(x) = ] -D"|{]e

n
n=0 L

- D% Je (x) +

Pnl

(-1)"a

pn+j | pn+] }Apn+j (X)]

+ piz{la
j=0
Both of these series converge since (11.4)
converges absolutely and every term of these two series
is nonnegative. Thus, by Theorem 10.1, g(x) and h(x)
are minimal Wp—convex, and f(x) = g(x) - h(x) . This

completes the proof of Theorem IV.
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12. Conclusion.

Boas [6] has pointed out that Widder's condition
(see [38], p. 398) for a real function to be represented by
an absolutely convergent Lidstone series, while necessary
and sufficient, is not always easy to apply. Here we
state, without proof, a generalization of a result of Boas
(see [6]; Theorem 1B). This tesult gives a necessary
condition for representation of a function by an absolutely

convergent (p,L) series in terms of the growth of the

function in the complex plane.

Theorem 12.1. If the (p,L) sgeries of £(z) converges

absolutely to f£(z) then

l2la,
£(z) = o(e ) (lz]| » =)
where A, = Aip-l) is defined by (2.5).

The proof depends on two lemmas which are based

on the method of Boas and will be given elsewhere.
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CHAPTER II

AN ANALOGUE OF COMPLETELY CONVEX FUNCTIONS

1. Introduction.

In this chapter we consider the infinite interpo-
lation problem with periodic interpolation conditjions
defined by iterating the incidence matrix

00 00
1 1 LI 1 0
00 00

O

3

with nodes -1, 0 and 1 , where p 1s even. Successive
jteration of the matrix (1.1) yields the formal expansion
of an entire function £(z) in (p,L*) series, and we
consider the problem of convergence of the series to £(z) .

Our object in this chapter is to introduce a
class of three-point expansions (called (p,L*) series) and
to obtain some theorems analogous to the results of
Chapter I. For p = 2 , this expansion reduces to the
Lidstone series about the points -1 and 1 .

In §2 we state Theorem 1.1 and define the
fundamental polynomials of the (p,L*) series. The proof
of Theorem 1.1 is given in §3. 1In 84, we give a relation-
ship between a set of fundamental polynomials of the
(2,L*) series and the Euler polynomials. In 85 we obtain

ome properties of the zeros of the fundamental polynomials on

0]

[-1,1] . We obtain in §6 some estimates for the fundamental

*
polynomials of the (p,L ) series in the interval
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*
-1 £ x <1 . Finally, in 87 we define Wp—convex functions

and give a sufficient condition for representation of a

*
function by a convergent (p,L ) series.

*
2. The (p,L ) Series.

Let Mp j(t) be the sine function of order p
?

*
(§2, Chapter I) and let Al be the smallest positive zero

*
of Mp,O(t) . Consider the polynomials Qpn(z) , Qpn(z)

and (z) (jJ = 1,2,...,p-2) defined by the following

qpn+j

generating functions

N 0(zt)

S .en - = P
(2.1) n£0 t Qpn(z) Np,O(t) = 0,(z,t7)
Ld N (zt) _
(2.2) £PP* (z) = —RaR-l =2 (z,tP)
nZO pn Np,p-l(t) 2
(2.3) zo tpn+jqpn+j(z) - tj¢j+2(z,tp)
n=
N (t) N (zt)
N (zt) - —Rad p,p=1 , 4 odd
P,] Np,p—l(t)
. (zt) - Np,j(t) Np,O(Zt) . j even

We now formulate
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Theorem 1.1. Given any even integer p = 2 , ¢the following

representation holds for every entire function of exponential

type T < XI
@) @ = ]P0, + PV W ¢+

n=0

p~-2
(pn+j)
+ j£1 £ (0)a, 4y (2)

N f

*
[Qpn(Z) - Qpn(Z)] ;

where qpn(z) =

qpn(-Z) =

{Q;n(z)} and {qpn+j(z)}:=0 (3 = 1,2,...,p-2) are given

o

*
[Qpn(z) + Qpn(z)] and the polynomials {Qpn(z)} ,

by (2.1), (2.2) and (2.3). The series on the right in (2.4)

converges to f(z) for all =z and the convergence is

uniform in all bounded subsets of the plane.

This theorem leads to the following

Definition 1. Let p 2 2 be an even integer. We shall say

*
that the series (2.4) is the (p,L ) series of f and that

{qpn+j(z)}:=0 (j = 0,1,...,p-2) are the fundamental

*
polynomials of the (p,L ) series.

We observe on comparing (2.2) and (2.3) with

(2.11) and (2.12) of Chapter I that

(2.5) qpn+j(z) = Apn+j(z) (j=l,3,---,P'-3)

pn Cpon ¢2)

O

~
N

~
i

(2.6)
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3. Proof of Theorem 1.1.

Setting f(z) = eZt in (2.4), we get the formal

(p,L*) series representation of e?t s, 80 that

p-2

(3.1) e?t = ¢ (z,tp)cosh t + & (z,tp)sinh t + Z tjé (x,tp) .
1 2 =1 j+2
Replacing t successively in this relation by wt , wzt ,

cens WPt with o = 27i/P , p even, and observing that

¢j(z,tp) (§ = 0,1,...,p-2) remains unchanged, we get the
following system of equations in °j :
w®zt m m P32 m j
(3.2) e = ¢.cosh w t + ¢,s8inh w t + Z (w t) ¢
1 2 351 j+2
(m’o,l,oou,p—l) .
Using (3.3) and (3.4), Chapter I, we obtain (2.1) and (2.2)

from (3.2). To solve for ¢j+2(z,tp) (3 =1,2,...,p~2) ,

_mj

we multiply the (m+1)th equation of (3.2) by w and

add. Using (3.3) and (3.4), Chapter I, we obtain the

easily verified identities, for p even

p=1 pN (t) , j even
(3.5) ) w P 8 0sh w5t = Ps3

s=0 0 s J odd

p-1 _ ’ 0 s J even
(3.6) ) w(p j)ssinh wt =

8=0 pN (t) , J odd

Py

Therefore, we have (2.3) for j = 1,2,...,p-2.

The right hand side of (3.1) is regular except

for the simple poles at the zeros of the functions Np 0(t)

and N_ (t) . Thus from Lemma 2.1, Chapter I, the

rsp"l
generating furnctions (2.1), (2.2) and (2.3) converge
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*
uniformly in (at least) any compact subset of lt] < A

and the expansion

zt - S pn s pn . *
e (cosh t)nZO t Qpn(z) + (sinh t)nz0 t Qpn(z) +

JE ] e

j=1 n=0

.
is valid for |t]< A; - The proof is completed by kernel

expansion method (see [7], p. 10) with e?t as kernel.
Remarks
(1) Theorem 1.1 yields a "best possible' result.

*
Consider the function Mp’o(xll) where Mp,O(X) is

v *
defined by (2.1), Chapter I, and Al is defined by (2.5),

%
Chapter I. Mp 0(xkl) is a real entire function of exponen-
]

* *

tial type Al whose (p,L ) series expansion (2.4) 1is
*

idedtically zero. Thus, the upper bound Al on the

‘exponential type in Theorem 1.1 cannot be replaced by any

larger number.

(2) It is easy to see from the behaviour of the

real zeros of Mp j(t) (j = 0,1,...,p-1)(see Lemma 2.1,
1

Chapter I) that, roughly speaking, for "large" p , the

class of entire functions of exponential type having a

*
valid (p,L ) series is also '"large".
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4, The Polynomials Q4n(z) and the Euler Polynomials.

We consider here the expansion of functions about
the three points -1, 0 and 1 defined formally by (2.4),
in the particular case where p = 4 . It is our object in
this section to show that there exists a relationship
between the polynomials Q4n(z) defined by setting p = 4

in (2.1) and the Euler polynomials En(z) which are

given by
n
o2t o t E_(2)
(4.1 e
e +1 n=0

Theorem 4.1. For =n = 0,1,2,... we have

2n
o =s)” 4n kp [zfl 2+l
(4.2) Q. (2) = ZT kzo 25) (1) Byl %7 )E4n—2k ) ’

where the polynomials Q4n(z) are defined by (2.1). Also

T (4] oyt (@
0 4k "4k

(4.2a) E4n(2) + E, (2+1) = 2k=

Proof of Theorem 4.1.

From (4.1) we have

- e = -
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Replacing 2z by 1-z in (4.3) and adding we have

2 cosh (z-%)t D
(4.4) - = Z [E (z) + E_(1- z)]—— .
cosh > n=0

Replacing t by 2t and 2z-1 by =z in (4.4),

and observing that En(l-z) = (-l)nEn(z) yields

(4.5) cosh zt - T (z+1 g2t22n
' cosh t 2n (2n!)
n=0
Replacing t by it we have
(4.6) cos zt _ § (z+1 jrl) (2t) Zn
. cos t nzo Eon (2n)! ’

Finally, replacing t by (l%i)t and (léi)t

respectively in (4.6), and multiplying, we have

cos( 5 )zt cos(lé—)zt
(4.7) cos(lzi)t cos(%i)t
© 4n 2n
i nZO(zn)!(—4)nn£0 gﬁ'(_l)kEZk(l+z)E4n—2k(ii£,
Setting p = 4 in (2.1) it is easily seen that
1+1 1-1
® 4n cos(—E—)zt cds( 2 )zt
(4.8) nZO Q,,(2) cos(l%l)t cos(lél)t
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The proof of (4.2) is completed by comparing the coefficient
of t4n in (4.7) and (4.8). To prove (4.2a) we use (2.1)
and the known identity 22" = En(z) + En(z+1) which is

easily verified from (4.1).

5. The Properties of Zeros of the Fundamental Polynomials

of (p,L*) Series.

Suppose we want to define a class of functions
which belong to Cw[—l,ll and have the additional property
that each term of the right hand side of the formal
expansion (2.4) is nonnegative. Recall that from the
(p,L) series expansions of Chapter I, we defined the
classes of Wp-Convex functions.

In an attempt to obtain analogous classes of
functions for the three-point case considered in this
chapter, we require the following. Let L be the linear
operator defined on cP[-1,1] by

P

-2
(5.1) L(E) = £(x) - |EC-agx) + £WagC-n) + | £ (0)q, (x)
3=1 .

where qj(x) (4 = 0,1,...,p-2) are defined by (2.1),
(2.2), and (2.3).
| Since L(P) = 0 for any polynomial P(x) of

degree < p-1 , we have by Peano's theorem [12]
1 (»)
(5.2) L(£) = [ H (x,t)E P’ (t)dt
-1
(5.3) (p-1)!H (x,t) = L [(x-0)27%]

Setting f(x) = l,x,...,xp_l successively in (5.1), we



easily have

2q0(2) = 1-2"71 5 (@29)qy,(2) = 2Pd-1

(5.4)

sz-l_zp-l

(23-1)1qy,_y(2) = (3=1,2,...,%), p even

Now Hl(x,t) is the Green's function for the differential
system

£(P)(x) = ¢(x)
(5.5) '

£(-1) = £(1) =0 ; £370) =0 (4=1,...,p-2)
where ¢(x) 4is any function continuous in -1 < x < 1
That is to say, the unique solution of the system (5.5) for

a given ¢(x) 1is

1
(5.6) £(x) = fl H, (x,t)¢(t)de
Define
1 . .
(5.7) 'Hn(x,t) = !1 Hl(x,u)Hn_l(u,t)du (n=2,3,...) ,

then we have

Lemma 5.1. The following inequalities hold:

(5.8) (-l)an(x,t) 20 (-1sx<1; -1<t<l; n=1,2,...)

(5.9) (-l)nqpn(x) >0 . (-1<x<1; n=0,1,...)
n+j _ n

(5.10) (-1) qpn+j(-X) = (-1) qpn+j(x) 2 0

(0=<x<1; j=1,2,...,p-2; n=0,1,...)
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Proof. (5.8) is easily verified for n =1 from (5.1) and
(5.3). Then for n = 2,3,..., (5.8) follows from (5.7). Since
the polynomials qpn+j(x) (§ = 0,1,...,p-2; n = 1,2,...)
satisfy the differential system (5.5) with ¢(x) = qp(n-l)+j(x)

we have, using (5.7)

1
(5.11) Uyt () = Il H,(x,t)q, (t)dt  (§=0,1,...,p-2)

Then (5.9) and (5.10) follow from (5.4), (5.8) and (5.11).

This proves the lemma.

Lemma 5.2. If £(x) belongs to CP"[-1,1] , then
(5.12)  £(x) =-nfl PP C1yg ) + £ (1)q (%) +
' k=0 tpn fpn

p-2
3=1

pn+j
where
1 (pn)
(5.13) R (x,£) = [ H (x,£)£ P% (t)de

and Hn(x,t) is given by (5.3) and (5.7).

Proof. From (5.1) and (5.2) we get (5.12) for n = 1

The proof is completed by induction on n .
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6. Estimates on the Fundamental Polynomials of the (p,L )

Series.

We shall use methods similar to those of Chapter I,
§6, to obtain estimates for the fundamental polynomials of the
(p,L*) series in the interval [-1,1] . We let B denote
suitable constants (not necessarily the same) which are

independent of n and x (-1 < x < 1) wunless otherwise

stated.
Lemmg 6.1. For -1 <x<13; n=20,1,... , and p even,
we have
*
4 pM (xA.)
0 1 B
(6.1) '(-1)“Q (x) - B l %
pn M), AD PR ypetd
pM_ . (xAy)
(6.2) ,( SRR CY 21B=% lEm+1‘ T
P My om2 () () (A,)P
6.3) (-1, 0 - o] Mp’p;ii:i%l’ — et
Mp’p_z(l )(Al) (rl)
(j=1,3,...,p-3)
aH ek
X
(6.4) ’( 1)+l py () - i1 . p.0 +ji—1| _B =
pn pn pn
Mp,p—l(kl)(kl) (rl)
(j=2’43"':p"2) ’
1 . * 1 *
where r, = E(X + X ) r, = Z(A + Az) and Ak and

A, are given by (2.5), Chapter 1I.
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Proof. (6.2) and (6.3) follow from (2.5), (2.6), (5.10) and

*
(6.1), (6.2), Chapter I, by observing that Qpn(—x) = -Q:n(x) .

(6.1) and (6.4) are proved by the same techniques used to

prove Lemma 6.1, Chapter I.

Lemma 6.2, There exist constants B such that for

-1 < X < 1 Y n= 0,1,... ’ and p even

n B
(6.5) 0 s (-1) Qpn(x) < (A:)PD
n+1l B - -
(6.6) 0 < (-1) qpn+j(x) s ()\I)pn (j 234"",P 2)
* B
- = -
(6.8) qun+j(x) < O )pn (j 193s-°°sp 3)
1
n B
(6.9) 0 s (-1) qpn(x) < ?;f;;;

*
where A and Al are defined by (2.5), Chapter I.

1 —

Proof. (6.7) and (6.8) follow from (2.15), (2.16), and

(6.8), (6.9), Chapter I. From (6.1) we have

*
pM (xA,)
B p,0 1 B
0 < (_1)nQ (x) S ——0 + 1 <
pn " pn+l * * pn+l *. pn
(rl) Mp’p_l(ll)(ll) . (Al)

*
since Mp 0(x}\l) is uniformly bounded in [-1,1]. (6.6)
’
is proved similarly from (6.4). (6.9) follows from

‘ *
(6.5), (6.7) and the observation that Xl < Al
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Lemma 6.3. For any fixed x_ , (0 < X, < 1) there exist

constants B such that for p even

n B
(6.10) (-1) Qpn(xo) > ?;f;;;
n *% B
(6.11) (=1) Qpn(xo) > ?;:;;;
(6.12) -1)%_ . (x) > —B— (3=1,3,...,p=3)
pn+j "o (Al)pn
n+l B
(6.13) (-1) qpn+j(xo) > :;f;;;‘ (3=2,4,...,p-2)
Also we have
(6.14) (-1)%q__(x ) > —>—0 (-1<x_<1) .
pn o (A:)pn o

Proof. We shall prove (6.10). From (6.1) we have

n

n : x % P
1im (71 7Q,, (%)) MQLp-Z(Al)(Al)

*
Mp’o(xoll)

=
n-r-co

> o
= %

from which (6.10) easily follows. (6.11l) to (6.14) are

proved in an analogous way.

Lemma 6.4, For -1 < xs1, n=1,2,... , an p even
n 1 B
- (6.15) 0 < (-1)"[ B (x,t)dt § ——
n pn
-1 (Al)

where Hh(x,t) is defined by (5.3) and (5.7).
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Proof. Since Qo(x) = 1 we have

L _
n n
0 < (-1) {lnn(x,t)dt = (-1)7q,, (x)

* *
7. (p,L ) Series and Wp-Convex Functions.

Theorem 7.1. If the series

(7.1) (x) + a;Q;(x) *agq(x) + ...+

29Q
+ ap_qu_z(x) + apr(x) + ... R P even

converges for & gingle value x $# 0 (-1 < X, < 1) then it

converges uniformly in -1 < x < 1 to a function f£(x)

Furthermore, the series

(7.2) E’ COE p§3 %2111 tpn +
" s pn| pn 4 xyd
n=0] (A;) j=1 (A;)
(j odd)
*
{—l}n [a _ pEZ Mp,1(kl)ann+1J1
+ (.)\I)Pn pn _']=2 (l:)j
(j even)
converges and we have
k
(7.3) g (P )(x) = akao(x) + a:kQ;(x) + apk+lq1(x) + ...
+,apk+p_2qp_2(x) + ap(k+l)Qp(x) + ...

-1 < x £1

rh
[}
2}
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Proof. If (7.1) converges for x = X ¥ 0 then

lim
Q (xo)-O ;

lim % _*
Q (xo) =0 3 n+© “pn'pn

a
n+® “pn - pn

lim
oo apn+jqpn+j(xo) 0 (3 = 1,2,...,p-2) .
* Pn) *
= . = pn
So, by Lemma 6.3, we have apn O(Al : apn O(Al )
pn
-~ o[2,P% (4 = 1,2,...,p-3) ; - o(x1
(j = 2,4,..-,p—2).

With suitable modifications, the proof follows

Widder's method (see [38]; Theorem 5.2, p. 392).

*
Definition_7.1. A real function is said to be Wp-convex,

p even, on the interval a s x < b 4if

(1) £ e ¢’[a,b]
(11) 1)k (PR 5y 5> o (asxsb; k=0,1,...)

(111) (-1)k+1f(Pk+23)(2§2) 20 (3=1,2,...,2-1; k=0,1,...)

(1v) f(Pk+23'1)(3§3) -0 (1=1,2,...,2-1; k=0,1,...) .

* *
For p even, the function M (xA;) 1is W_~-convex on
p,0 1 P

*
-1 £ x 1, where Xl is the smallest positive zero of

*
Mp 0(x) . We now give some results on Wp-convex functions.
»
*
Lemma 7.1. If f(x) 1is Wp-convex in -1 s x £ 1, then

* Pk)

¢(PE) (1) . 0(*1

(7.4)
pk
£ (PK) (1) . O(AI ) (k + »)
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Proof. From Definition 7.1 and (5.12) every term in the
*
(p,L ) series of £f(x) 4is nonnegative and we have
0 < f(pk)(-l)qpk(x) < £(x)
(7.5)

0 < f(?k)(l)qpk(-x) < £(x)

Take x = 0 and apply (6.14). Then we have (7.4).

*
Lemma 7.2. If f£(x) is Wp-convex in -1 < x <1, then

there is a constant B such that

{ pk
2
0 < (-1)kf(pk)(x) < B

= *

q

(7.6) <

N
>
- %

0 s (-1)%e (PR 4y < B , (k + «)

[
1
=

*
Proof. If f(x) 1is Wp-convex in a £ x <b, then

- *
F(x) = ¢ (hié)x + (552)) is Wp-convex in -1 s x s 1 . By

Lemma 7.1 we have

pk
POPR) (1) = (B52) e (PR () o(x;Pk)

(7.7)
pk
PP (1) = (B2) 7 (PR ) o o(AIPk) (k> ).

First set a = -1, b =2x <1 ; then set
a=x>-1, b=1 to obtain (7.6). From (7.5) it is
clear that B 1is independent of x , (-1 < x < 1) in (7.6),

and the lemma is proved.



Now we have

*
Theorem 7.2. If f£(x) is Wp-convex in a < x < b with

b-a > 2 , then f(x) is entire of exponential type less
* *
than Al and the (p,L ) series representation holds for

all 2z in the complex plane.

Proof. Using the modifications provided by the previous two
lemmas, the proof follows Widder's method (see [38]; Theorem
6.3, p. 395).

Theorem 7.2 gives a sufficient condition for
representation of a function by a convérgent (p,L*) series.

* %
The function Np o(x) is not Wp-convex but has the (p,L )
] 4

o0
series representation Np’o(x) = NP’O(I)nZQ Qpn(x) . This

example shows that Theorem 7.2 does not provide necessary
conditions for representation by a (p,L*) series.

A class of minimal W:-convex functions can be
defined in order to obtain necessary and sufficient
conditions for representation by a (p,L*) series, but

for want of complete results, we do not discuss them here.



CHAPTER III

LACUNARY INTERPOLATION (O,n-1,n) CASE

1. Introduction.

If E 1is a set of n real distinct points, we
shall be concerned with the problem of finding the explicit
form of the unique polynomial P(x) of degree < 3n-1 ,
when the values of P(x) , P(n_l)(x) and P(n)(x) are
assigned on E . We shall call this the problem of
(O,n-1,n) interpolation on E . The existence and unique-
ness of these polynomials is a special case of a general
result of Atkinson and Sharma [1l] (see also [14] and [27]).

In §2 we deal with notations and the statement
of the main theorems, and we show by an example that
(O,n-1,n) interpolation is not always possible when E
contains complex points. In this connection we may observe
that as a special case of a theorem of Ferguson [14], it
follows that the problem of (0,n-1,n) interpolation is
not always uniquely solvable when E 1is allowed to contain
points from the complex plane. However, for the roots of
unity, the problem has a unique solution. For relevant
literature on this type of problem we refer to the wofk of
Suranyi and Turan [29], O. Kig [15], and Sharma [26].

In 83 we give the proofs of Theorems 1 and 2.

84 deals with estimates on the fundamental polynomials

defined by (2.21), (2.22) and (2.23) when E consists of



the nth roots of unity which lead to the solution of a
convergence problem. Also, in 84 we state and prove
Theorem 4 which shows that the Dini-Lipschitz condition of
Theorem 3 cannot be relaxed., In 85 we prove Theorem 5, a
result on least squares convergence. Theorems 4 and 5 are
analogous to known results ([28] and [32]) for Lagrange
interpolation, pointing out the similarity of behaviour

of (0,n-1,n) interpolation polynomials and Lagrange

interpolation polynomials for large values of n .

2. Preliminaries and Statements of Theorems.

If E 1is a set of n real points

(2.1) Xy < Xy < e < x

. n o)
set w(x) = jI=Il(x-xj) and let £k(x) = (x'xk)w'(xk) ’

(k = 1,2,...,n) denote the fundamental polynomials of

Lagrange interpolation. Then set

1

(2.2) Q(x) = T;_%T / w2 (t) (x-t) " 2ae
0

X w"(xk)

1. 2 n-2
(2.3) @ (x) = ==5T jo g (e) |1 - = T, )cc X )](x-t) dt

(2.4) T, (x) = 7;—577 f z (t) (t-x, ) (x-t)"

Q(x) - L_(Q;x)
-,xn;Q]

(2.5) W(x) =
10

where



n n
21 Q(x, )8, (x) and [x,,...,x ;] = kZlf(xk)/w'(xk)

Ln(Q;x) = L

denotes the divided difference of f on the nodes (2.1). The

definition (2.5) is justified because of the following.

Lemma 2.1. For n real nodes (2.1), we have

[%y,..00x 5Q] > 0 .

Proof. Here we shall use the following inequality which is

a particular case of a result of Curry and Schoenberg ([11],

Theorem 1, p. 74).

(2.6) [xl,...,xn;(x-t):-zl > 0 (x,stsx )
where
(x-t)v , t < x
(x-t) =
+ 0 ’ t 2 x .
Since
x1 xn
2 n-2 2 n-2
Q(x) = fo wo(t) (x-t) " %dt + fxlw (£) (x-t) " “dt.

A(x) + §(x)

and since [xl,...,xn;A(x)] = 0 because A(x) 1is a

polynomial of degree < n-2 , we have
[xl,o-o,xn;Q] = [x1"°"xn;3]

X
n

- fxlwz(t)[xl,...,xn;(x-t):-zldt
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which proves the lemma on using (2.6).

n n n
If {ak}l ’ {Bk}l R {Yk}l are three given sets
of real or complex numbers, then the polynomials Hn(x) of

degree < 3n-1 , having the properties

(2.7) M () = oy, B ) =, 1) () =y, (kel,.im)

have the form
n n n
(2.8) I (x) = % o Ry (%) + gsksk(x) + gykl‘k(x)
where Rk(x) , sk(x) . Tk(x) are the fundamental polynomials

of this interpolation problem and are determined by the

following properties:

(n-1) (n)
(2.9) Rk(xj) =-ij » Ry (xj) = R, (xj) = 0
(n) (n-1)
(2.10) Sk(xj) = Sy (xj) =0 , Sy (xj) = ij
(n-1) - (n) -
(2.11) Tk(xj) = Tk (xj) =0, Tk (xj) ij

where ij 18 the Kronecker delta. We now formulate
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Theorem 1. For given real nodes (2.1), the fundamental

polynomials of interpolation satisfying (2.9), (2.10) and
(2.11) respectively have the following explicit

representations:

W(x)

(2.12) Rk(x) = £k(x) + w'(xk)

(2.13) Sk(x) = Qk(x) - Ln(ﬂn;x) - [xl,...,xn;Qé W(x)

(2.14) T (x) = 1, (x) = L (7,.5%) - [xl""’xn;Tﬁ W(x)

where W(x) , Qk(x) and Tk(x) are given by (2.3), (2.4)

and (2.5).

When the nodes (2.1) are taken to be complex
numbers ZyseeesZy then in general [zl,...,zn;Q] may
vanish as is easily verified on taking n = 3 , z, = -1,

24 = 1 . Indeed we see by easy computation that

[zl,-l,l;Q(z)] =

1 n
| (1—t)3{t4zg + (t4—2t')zi + (t2-1)2 zi + tz(t+l)2}dt =
0

328 - 2524 + 18522 + 23

2
1 1 1
- which has no real zeros, as can be easily verified.

However, when {zk}; are the nth roots of

unity, with

(2.15) z) = e2kmi/n (k=0,1,...,n-1)

ye have,



z™-1) %k zn"1 1 n,.n 2 n~2
(2.16) lk(z) = ————);— ;5 Q(z) = ?;:ETTIO(l-z t7) (1-t) dt

z-zk

so that using (2.2) to (2.5) we get

(2.17) [2,,...,23Q] = Q(1) > 0
(2.18) L (Q;2) = =*"1q(1)

-« ,0-1]0(z) _
(2.19) W(z) z [Q(l) 1}

where Q(z) 1s given by (2.16). Further, we get

n-1 1

z - 2 n-1 n-2
(2200 @) = oy [ o1 - B (zt-2,)] (1-£)"2at
(2.21) T, (2) = —Ezli— fl(zt—z )zz(zt)(l-t)n—zdt
* k (n-2)! 0 k' "k
We now formulate
Theorem 2. If z, = eZHki/n , (k = l,...,n). then the

fundamental polynomials of (0,n-1,n) interpolation are
given by Rk(z) , Sk(z) , Tk(z) (k = 1,...,n) where

Z

(2.22) R, (2) = &, (z) + EEW(z)
n Q (1) :
- A (k1) W(z)
(2.23) 5, (2z) = jzlzj(z)[nk(z) - 3 ] - =3

n
(2.24) T, (2) jzlzj(z)[Tk(z)-TA(k,j)(l)] +

+

1
(1-%)H§%1 [ t@-t™) (1-6)" 2ae
"o
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where A(k,j) 1is a positive integer < n such that
A(k,j) = n+k-3 (mod n) .

Theorem 3. If f£(z) is analytic in |z| < 1 and continuous

for |z| =1, let w(s) e the modulus of continuity of

f(eie) 0 €06 < 2mr, and let éig w(8) log % = 0 . Let

Hn(x) be the polynomial of degree < 3n-1 which interpolates
£(z) in the 2t roots of unity {zk}? , and

H(n-l)(zk) = Bkn , H;n)(zk) = Yenp ° where

n!

(2.25) Bkn = 0

n'
s Y = ol .
) kn nzlog n)

n3log n

Then Hn(z) converges to f£(z) uniformly in |z| s 1

3. Proof of Theorem 1.

We shall only show how to obtain (2.12). The
proof for (2.13) and (2.14) is similar and is omitted. Set
Rk(x) = rk(x) + akQ(x) where ék is a cogstant and rk(x)
is a polynomial of degree < n-2 . Then Rk(x) already
satisfies the conditions Ré“'l)(xj) = ngn)(xj) =0,
j=1,...,n which are the last two conditions in (2.9).

In order to have Rk(xj) = ij (3 = 1,...,n) , the

polynomial rk(x) must satisfy the conditions

-8,Q(x,) , 4k

(3.1) rk(xj) =

n
o

1l - akQ(xk) ’ J
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Since rk(x) is a polynomial of degree < n-2 , we then have

W(x)(x1-xk)

n
—ak jZl Q(xj) (x-xj)(x-xk)w'(xj)

(3.2) rk(x)

w(x
-a, {L_(Q;x) - ;é;i[xl""’xn;ql}

Condition (3.1) for j = k yields, using Lemma 2.1,

%— = w'(xk)[xl,..,,xn;Q] which combined with (3.2) gives

k
(2.12). This completes the proof of Theorem 1. Theorem 2
is now easy to prove on puiting 2y for Xy which is

permissible because cf (2.17). Also, observe that when

ezj'”'/n (j = 1,2,...,n) then

zj =
(t'.n-l)zk
(3.3) Ek(zjt) = T?;;:;;T;

a+k-g ()
We also use the identity (which is an immediate consequence

of Hermite interpolation formula)

2 n-1. _ =
1 R,j(t)[l - zj (t zj)] 1 ’

[l e =]

(3.4)
3

to verify that [zl,...,zn;Qk] = %T , (k=1,...,n)

Furthermore,

n
[zl""’zn;Tk] - Z w'(z

[

y(1-t) " 24t

i
I'-S
1
"
[[Eas}e]

2
1 fo(tzj-zk)lk(tzj



so that on using (3.3) we easily obtain

z 1
k[T (1) (1-t) P %

[z eos g2 3T ] =
1277 a2 kT 1200 9yt o

The formulae (2.22), (2.23) aﬁd (2.24) are now easy to
deduce from (2.12), (2.13) and (2.14) respectively on using

(2.17), (2.18) and (2.19). We omit the details.

4. Estimates on the Fundamental Polynomials of Theorem 2.

Proofs of Theorems 3 and 4.

We shall now obtain some estimates for the

fundamental polynomials of Theorem 2. We have

Lemma 4.1. For |z]| < 1, we have the following estimates

for polynomials Rk(z) , Sk(z) , Tk(z) of Theorem 2, for

n=2,3,...

n
(4.1) ) IRk(z)I <16 + log n
k=1
n 31
(4.2) I ls ()] =0 “—?—5—“)
k=1 e
o nzlog n
(4.3) Z ,Tk(z)l =0 n!
k=1
Proof. Since for |z| <1,

1
s 4f (1-)" %ae = —éT
0

1 2 2
[ (1-2"¢") (1-t)" %4t
0

and
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1 n 2 n-2 1 n
fo<1-c ) (1-t) dc’ 2 fou-c) at = ==

we have from (2.19) and (2.17), and n = 2,3,...
(4.4) [W(z)] s 4[222) + 1 < 13

so that (2.22) yields

13

(4.5) IR (2)] s |2, (2)]| + ==

On using the known inequality (see [15]),

n
(4.6) Z Ilk(z)l €3+ logn , |z| <1 .
k=1

we get (4.1) from (4.5).
In order to prove (4.2), we observe that
llk(zt)l <1 for |z] £1 (0 st < 1) so that from

(2.20) we have for |z| <1,

1 1 n-2 2n
|9k(z)| < TP fo[1+(n-1)(lzt|+|zkb](l—t) dt < T;:ITT

so that

Q (1)
X 4
(4.7) |9 (2) - ALK o AR ke,

3

Then from (2.23) on using (4.4), (4.6) and (4.7) we have

4n(3 + log n) 13
ISk(z)l s (n-1)! + n!

which at once gives (4.2).

The proof of (4.3) now follows similarly from

(2.21), (2.24), (4.4) and (4.6).



Lemma 4.2. (Ki¥ [15]1). If £(z) is arnalytic in |z| <1

continuous in |z| < 1, and if F_(z) 41is the Jackson mea

then

l£e®®) - r_(e*%)] s 6u(2]

where w{§) 1is the modulus of continuity of £(z) . TIThe
explicit form of Jackson mean Fn(z) of degree 2n-2 is
given by

4
3 2-2n 1-2n tn-zn
Fn(z) - 5 z f f(t)t F?:;—

(2n°+1)2mni |t]=1

dt

Proof of Theorem 3. Let N = [n/2] . Then FN(z) is a

polynomial of degree < n-2 and so Fép)(z) vanishes

identically for p 2 n-1 . Therefore

f(z) - Hn(z) f(z) - FN(z) + FN(z) - Hn(z)

n
£(z) - F_(2) + ') {F (2z,) - £(z, )IR _(2)
n Wl TN K kK’ k

n
B, S, (z) - [} y,T,(z)
k°k oy 'kk

]
o~

k=1
Using Lemma 4.1, and (2.25) we have

. 1 1
|£(z) - Hn(z)l < Gw(N) + Gw(N)(16 + log n) + o(l) o(l)
since w(d)log % >+ 0 as 6 > 0 . This completes the
proof of Theorem 3.

Remark. To avoid any misunderstanding, we set

Hn(z) = Hn(f,z)




Theorem 3 gave sufficient conditions on the function

f(z) for the convergence of the (0,n~-1,n) interpolating

polynomial Hn(f,z) to converge uniformly to £(z) in

|z| € 1 . The Dini-Lipschitz condition imposed on £(z) in

Theorem 3 1is necessary as the following theorem shows.

Theorem 4. There exists a function £(z) analytic in

|z] < 1 and continuous in the closed disk |z| s 1 such

that the sequence {Hn(f,z)} of (0,n-1,n) interpolating

n=l

polynomials for the equidistant interpolating nodes

(4.8) 0, = e(2k-1)mi/n (k=1,2,...,n)

with the 2n additional conditions

(n-1) (n) |
Hn (w - Hn (wk) = 0 (k=1,2,...,n)

K’

1im

diverges at =z = 1 . Indeed we have B Hn(f,l) = ® ,

* n

Proof. Set W (z) = I (z-wj) where wj is defined by
i=1

(4.8). Then from (2.1), (2.2) and (2.5), with X, = W

we easily have

1 n.n 2 -2
[ (1+2"t™) (1-t)""“ae
n-1 0 -1

1 2 ,
[ (1-t®) (1-t)" “ae
0

(4.10) Wi (z) = 2

Setting 2z = 1 in (4.10) it easily follows that

(4.11) 0 < wWi(l) s 13 (n=2,3,...)

Then from (2.12) and (4.9) we have



n
(4.12) (£,2) = [ £ (2) + ———i—l—
n k=1 w* (wk)

Now consider the polynomials

2
2 2

1 z z
(4.13) Pzn(x) = = + —7 + sy SRR 1 - — -
zn+2 z2n
- 2 = ew e -T (n-l’z’-oc) .

Fejér (see [28], p. 92) has shown that
10 sin p.4
|P2n(e )| £ 20 where ) = f dx .
Thus, all polynomials P2n(z) (n=1,2,...) are
bounded on |z| = 1 , hence for lz] s 1, by 2» . We
have

(w)2(2)+——(—)—

1 w* (w )

e~

(4.14) Hn(PZn’z) =

]

* n
_F _(=z)
La(Pap»2) w b Pan ()

where Ln(PZn’z) is the Lagrange interpolation polynomial

of degree n-1 for P, (z) with nodes w, = e (2k-1)7i/n
2

n
P n(wk) = - ,°1 » Ve have

e~
=

(k=1,2,...,n) . Since
1

(4.15) (P, 52) = L (B, ,2) + (20w (2)
so that from (4.11) we get
(4.16) ( )W (1) =20 (n=1,2,...)

Now, from a result of Fejér (see [28], p. 92) we have
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(4.17) Ln(PZn,l) > 2fog n

so from (4.15), (4.16) and (4.17) we have nn(PZn’l) > 28og n .

The remainder of the proof of Theorem 4 follows by
an argument identical to that given by Fejér (see [28],

p. 92) for the Lagrange interpolation polynomials.

5. Least Squares Convergence.

2
Let z, = e kwi/n « We shall prove the following.

Theorem 5. Let f£(z) be analytic in |z| < 1 and

continuous im |z| <1 . Let N_(z) be the polynomial of

degree 3n-1 coinciding with £(z) 4in the n*® roots of

unity and with the 2n additional conditioms
-1 n
1P DGy = 1™ @) =0 ke=1,2,..0,0)

Then the sequence Hn(z) converges to f(z) on |z| =1

in the mean of second order. Consequently

(5.1) lim Hn(z) = f(z2)

n->w©
uniformly in |z| < r < 1 .
Proof. Let

(5.2) 1= | l|f(z) - 1_(2)|%|az]

Z =

e~

f(zk)Rk(z) and Rk(z) is as defined

where Hn(z) = L

k
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z|=1

Zr|2™-1
in (2.22); lk(z) == ;:;; Further, let
An(z) = f(z) - tn_z(z) and En = max IAn(z)| where

tn_z(z) is the polynomial of degree n-2 of best

Tchebycheff approximation to £f(z) on C . It is our object

to show that

1im

(5.3) e I =0

Now, let C denote the circle |z| = 1 .

2
I = fclf(z) -t _,(2) + ¢t ,(2) - I (2)]|°|dz]
< chlf(z) - e, (2)|?[dz| + 2fc|tn_2(z) - 1_(2)]?|az]

= I1' + I
n n

Now

-
S -
n

i2 2
2ICIAn(z)I ldz| < 4mE”

I = zjclkgl[tn_z(zk) - £(z)] B (2) 2| az|
D n . L
< zkzl j§1|An(zk)An(zj)|’fCR'k(z) Rj(z)ldzl
<227 T
n' g=1 4=1 30K

where



+

=
|

3

Z
= ,f %, (2) Zj(z)ldzl n—kf L,(2) W(z)|dz|
c c

+

z z, 2
wH e T el |+ |2 i |2 aal

(1) (2) (3) (4)
Ak P A AT Y A

Since C denotes the circle |z| =1, we have, using (2.16)

2Tz, Z
——— — - 2 — -
fCR.k(z)Zj(z)ldzl = T‘;i[l taT ot B IPT L (g T)" 1
27é
= ——Hki- (ij = Kronecke; delta) .
, 2mé 1 2 _
Thus A{%) . —Ki . Let - a [ a-t") -0 24t . Then
: i,k n Dq 0

from (2.17) W(z) = An + ann + anzn where for n=2,3,...

1 -2
D [f (1-t)""%d¢ - 1} < 4
7o

(4
(5.4) J B_ = -2D fl £?(1-6)"" 23 B | s 6
: n n’, -t d n
1 2n n-2
\ €, =D [ t(-£)"%ar < 3
0
Then
Z
zj(z) W(z) = ;i[z-(n-l) +'E&z"(n'2) + ...+ (Eﬁ)n_1]W(z)
= %[An + terms in zk (k # 0)]

Thus, using (5.4) we have



4
A3 | R) T w(e) |az)
nca 3

ik
2 8m
s —% An ) (n=1,2,...)
n n
(3) 8T
By an identical computation we have Aj K < = - Again
? n
using (5.4) we have
z,.2
A(4) - f '_k_l W(Z)W(z)|dz| < H— 16 + 36 + 9) - 1221 .
1,k ¢ o2 ; 1221
n a R
Therefore
2§ § .2_“_(51‘.1 8t ., 81 , 1227
k=l j=] n a n

n n 276
- 2(E )2 ) —k1 léﬁﬂ' - 230n(En)2 .
B k=l §=1 n

- T " 2 2 2

So, In In + In < 4ﬂ(En) + 280ﬂ(En) 284w(En) . From
[32] (Theorem 5, p. 36) En + 0 as n + o ., Therefore (5.3)
holds. By the Cauchy integral formula

2
[£(t) - N_(¢t)]
2 1 n
(5.5) [£(2) - I (2)]1" = 375 fC —= dt

(5.1) easily follows from (5.5). This proves the theorem.
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