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ABSTRACT

A»finite element formulation based on the principle of
Virtual Work, for the analysis of material behavior flowing
in an axisymmetric silo is presented. The formulation
incorporates the Coloumb's friction mechanism through an
iterative solution scheme. 1In the absence of a rate
dependent constitutive law for stored material, an elastic
perfectly plastic material is proposed as a first approach
to the solution of such problems.

A finite element program, FEPILS, based on program
FEPAﬁCSS (Elwi and Murray, 1980) is used as a tool to
analyze a finite element model of flowing material in
axisymmetric silos.

A series of problems are analyzed using program
FEPILS. The results of these analyses are compared with the
classiéal theories. The stress and the displacement/velo-
city fields are presented; :A parametric study is carried
out to investigate the effect of the angle of internal
friction, the angle of wall friction, the hopper slope, the
height to diameter ratio and the Poisson's ratio, on the

pressure, the stress and the displacement/velocity fields.
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CHAPTER 1 - INTRODUCTION

1.1 Silo and History

Storing and handling of bulk materials are essential
aspects of grain, chemical and mining operations. For the
last twenty years, these industries have explored the use of
silos of increasing height, diameter and storage capacity.

A silo is a deep bin, used to store and to feed bulk
material, when required, at some specified rate. A thorough
understanding of the flow characteristics of the contained
material, the flow pattern, which develops as a result of
discharge of material, and the laterél pressure exerted on
the silo wall during flow of contained material are
essential for designing an economical and reliable silo
structure, having a long operational life.

The lateral pressure exerted by stored materials on
silo walls has been under study for thé past hundred
years. Before 1860, designers assumed that a granular
material behaves as a quasi-liquid and exerts pressures
similar to hydrostatic pressures. This assumption
overestimated the horizontal static pressure and bottom
pressure, and did not account for the friction betweén the
stored solid material and the silo wall. Issac Roberts in
the early 1880's, conducted experiments on a bin model and
concluded that the vertical and lateral pressures of a grain
silo did not increase after the material depth reached twice

the smaller cross sectional dimension. The friction between



stored solid material and the wall transferred the weight to
the wall through the height.

In 1885, H.A. Janssen deyeloped a method to calculate
granular material pressures on the silo wall and bottom.
Airy (1898) proposed an alternative method of computing
pressure. Toltz (1897), Bovey (1904), and Ketchum (1909)
conducted tests and found that the static pressures compared
favourably with Janssen's predictions while the dynamic
pressure during withdrawal of granular material showed an
increase up to 10%. That initial period of growth in silo
research was characterised by experimental precision and
great clarity of formulatioﬁ.

The observation of early investigators that bin
pressures were not constant but varied between the initial
condition of charging and the condition of flow, was
confirmed experimentally by Shumsky (1941), Bernstein
(1947), Reimbert (1956), Bergéu (1959), Kovtun and Platonov
(1959), Kim (1959), Pieper and Wenzel (1964), Turitéin
(1963), and Balnchard and Walker (1966). Shumsky, Pieper
and Wenzel, and Walker reported that further refining the
testing techniques showed that not only flow pressures
exceeded the initial pressures, but certain.undefined
conditions led to high peak loads which occurred not at the
pase of the silo but at some higher location in the
structure.

These results indicate that an active pressure develops

during charging of the solid material into a bin, whereas a



passive pressure develops during flow of the material from
the bin [Kottler (1899), Ohde (1950), Jenike (1954),
Nanninga (1956), Pieper, Mittelman and Wanzel (1964),
Pieper, Schnelle and Wenzel (1965), Walker (1966)].

Nanninga reported that at the plane of transition from an
active pressure field in the .upper part of the bin to a
passive pressure field in the lower part,‘an overpressure at
the wall is required to maintain equilibrium of the flowing
mass.

Since 1965, excellent experimental and theoretical work
have been reported. One of the most important silo
developments in the last two decades is the increased
understanding of flow characteristics of the stored solid
materiél. Johanson (1964) used the method of
characteristics to determine the stress in con&erging flow
channels. Walker (1966) and Walters (1973) developed
methods for calculation of flow pressures. Jenike et al.
(1968) defined the concepts of mass flow and funnel flow in
silos, and derived differential equations for mass flow.
Jenike et al. (1973) developed analytical methods for
dealing with both mass and funnel flow, based on an energy
approach. Claque and Wright (1973) and Bransby et al.
(1973) experimentally measured the pressures developed
during mass flow. Johanson (1965) and Williams (1974)
devloped formulas for computing discharge rates from a mass
flow conical hopper. In 1977 the American Concrete

Institute developed its first code of practice entitled



"Recommended Practice for Design and Construction of
Concrete Bins, Silos, and Bunkers for Storing Granular
Materials (ACI 313-77)".

Presently, investigators are developing and modifying
"existing theories for more precise prediction of flow and
pressure. Several finite element models have been developed
to predict the behavior of flowiﬁg mass in silos, and the
pressure exerted on the silo wall. Bishara and Chandrangsu
(1978) developed a finite element model capable of- handling
a nonlinear viscoelastic material. Jofriet and Dickinson
(1984) developed a finite element model for a flat bottom
silo. Eibl and Haussler (1984) have formulated a finite
element model for a mass flow silo using an elastic visco-

plastic constitutive law.

1.2 Scope and Objective of Thesis

The objectives of this thesis can be summerized as:

1. To review classical theories used by different
design codes for caiculating wall pressures imposed
by the contained solid, the finite element models
developed by different research groups, and full
scale silos test results.

2. To develop a finite element model and program
(FEPILS) for mass flow axisymmetric silos, using an
elastic perfectly plastic material model and
accounting for wall friction.

3. To run sample problems and investigate the pressure



and stress distribution using program FEPILS.

4. To compare these pressures and stresses with the
classical theories and methods of analysis.

5. To investigate the influence on pressure
distribution, when the angle of internal friction of
material, angle of wall friction, hopper geometry,
height of silos, and Poisson's ratio of the

contained granular solid materials vary.

1.3 Organization of Thesis

Chapter 2 is divided into three parts. Part one
contains a review of classical theories with emphasis on
Janssen's, Reimbert's and Jenike's theories. Part two of
this chapter-discusses the finite element method of analysis
developed by different research groups. The last part of
this chapter reviews the field measurements of full scale
silos.

In Chapter 3 a finite element model for incremental
analysis of axisymmetric silos is presented. Friction
forces and the associated boundary conditions are
formulated. Numerical technique for solution of friction
problem is described,

Chapter 4 discusses the type of material and failure
surface used to represent the behavior of granular solid
material.

A finite element program for investigation of loading

on axisymmetric silos (FEPILS) is described in Appendix A.



The solution technique incorporated in the program, which
includes the numerical method adopted for loads and friction
forces are discussed. The incremental implementation of the
plastic model is also discussed in this chapter.

In Chapter 5 sample problems are analyzed to
investigate the capability of program FEPILS. The results
of the analyses are compared with classical theories. A set
of problems is run varying the angle of internal friction,
angle of wall friction, hopper geometry, height of silos and
Poisson's ratio of contained material to investigate their
effect on pressure distribution.

Chatper 6 contains summary and conclusions.



CHAPTER 2 - THEORY AND ANALYSIS

2.1 Static Pressure Theories

2.1.1 Introduction

The magnitude and distribution of pressures that are
exerted by the contained material on silos are major
concerns to -design eﬁgineers. The pressures that are
exerted by the contained material during filling are
considerably different from those during discharge.
Pressures that occur prior to withdrawal of materials are
called static pressures or initial pressures, and those that
occur whenever the material is being withdrawn through the
discharge outlet are called flow pressures or dynamic
pressures. Despite the developmenfs of the last two decades
in understanding the flow properties and the pressures
exerted by ensiled material in silos, many codes arouﬁd the
world still use Janssen's and Reimbert's static theories.
Since Janssen (1895) and Reimbert (1956) many'researchers
have worked to refiﬁe and improve these theories. The
Janssen's theory and Reimbert's theory are discussed in
detail because they are the basis of all current design

codes.

2.1.2 Janssen's Theory
Janssen based .his theory on the following assumptions.
1. Vertical pressures are uniform over any horizontal

cross section of a bin. These pressures vary only



in the vertical direction.

2. Horizontal pressures are uniform over the perimeter
of a cross section and vary only in the vertical
direction.

3. The ratio of horizontal pressures to vertical
pressures, K, is constant throughout the height of
material.

4. The shear stress at the wall is a linear function of
the horizontal pressure.

The free body diagram for a material slice at depth Z

is shown in Figure 2.l1. Vertical equilibrium of the body
forces and stress resultants of the free body yields the

following differential equation.

9., - (2.1)

Introducing a normalizing stress parameter, S = q/Ry, Eq.

2.1 is writen as

- '
as _ 1 -p'R8 (2.2)

for which a solution exists in the form

1 - p'KS = o 'K(Z/R) (2.3)

subject to the requirement that S = 0 when Z = 0.

Consequently the average vertical static pressure g at depth



v=p' q
MITEEEEEEERE]

'
dz p=Kq ‘YdZA p=Kqg
X

EEEENEEEREN!
q+dq

y

Fig. 2.1 The Free Body Diagram for Janssen's Material Slice
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7 below the material surface is given by

- o H'KZ/R (2.4)

The ratio of vertical to horizontal pressure, K, is
independent of magnitude of pressure, sO that the lateral

unit pressure p is given by

- e H'KZ/RY (2.5)

Janssen's theory is applicable to axisymmetric and two
dimensional (plain strain) problems, because symmetry
requires that no shear stress occurs on a plane orthogonal
to the radial direction. However this theory -can be applied
to unconventional cross sections, with some loss in accuracy
(Fintel, 1974).

It is apparent from Eg. (2.5) that as depth Z
increases, the lateral static pressure, p, on the silo wall

asymptotically approaches:

p = YR/p' (2.6)

which is the maximum lateral pressure, corresponding to a
vertical pressure in which the wall friction force exactly
balances the additional weight of the material at an

infinite depth.



2.1.3 Reimbert's Theory

Reimbert's theory is based on experimental work
conducted on a full scale silo in 1954 (Reimbert 1955).
Many silo design codes recommend this theory as an alternate
to Janssen's theory for computation of static pressures.
Fig. 2.2 reveals graphically the various asymptotes used by
Reimbert for his derivation.

Reimbert defines the total vertical load at any depth Z
as Op, if there is no wall friction acting on the material

in the silo.

QT=QO+YAZ (2.7)

YAh
where Q5 = 5 is the weight of the conical surcharge.

This is shown in Fig. 2.2 as Curve I. He further defines Q,
as that component of vertical wall force transferred to the
silo wall by friction. This force increases from zero at
the free surface of the material to an asymptote parallel to
Curve I, because at great depths, the weight of the material
is exactly balanced by wall friction. This is shown by
Curve II, which is tangent to Z-axis at Z=0. 1Its asymptote
is at an angle yA from Z éxis and has an origin at =(QOpax ~

0 where Op.x is the maximum vertical force. The

o)
difference between the values of Curve I and Curve II yield
Curve III which is the variation of lateral wall force with

depth. Curve II can be represented by an expression of

hyperbolic form as

11



Fig.

2,

2

max |

Reimbert's Distribution of Material Weight
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_ eyAzZ
Ow = ez + £ . ' (2.8)

Satisfying necessary boundary conditions, the coefficients e

and £ can be determined and Eqg. 2.8 takes the following form

0 -0 h
where B = maxYA ° . p$K - §l (2.10)

Differentiating Eq. 2.9

2
do,, = YALZ + 2B§] dz (2.11)
(2 + B)

This expression can be equated to the lateral static

pressure at .depth Z, which yields

- 2
v _ YA[Z® + 2BZ]dZ
pPu'dz = 1¥[(z - B)z] (2.12)
Hence
p =L [1- el (2.13)
W (z/B + 1)

Both Janssen's and Reimbert's formulas for pressure have
similar asymptotes as Z approaches «. Whereas Janssen's
solution assumes an exponential form, Reimbert's solutions

takes a hyperbolic form. In addition Reimbert's theoty



accounts for the surcharge of the material which is commonly
found at the top of ensiled materials under. static

conditions.

2.1.4 Discussion

Lateral pressures on silo walls under static or filling
conditions can be predicted reasonably well from Janssen's
and Reimbert's methods. However experimental evidence shows
that pressures during flow of granular solid materials can
be greater than the static pressures. Recent Codes of
Practice recognize these overpressures and recommend that
pressures on silo walls be calculated by Janssen's or
Reimbert's method and then multiplied by an "overpressure
factor" to obtain design pressures.

Some investigators have examined Janssen's work
critically, and attempted to refine his theory under relaxed
asgumptions. Jenike, Johanson and Carson (1973) pointed out
thét Janssen's formula is a lower bound on the average
pressures, and not necessarily the actual pressure on silo
walls. Bagster (1971) suggested that the common
interpretation of Janssen's K factor as being
(1-sin¢)/(1l+sin¢) is erroneous and that it should vary
between that and (1—sin2¢/(1+sin2¢). Dabrowski (1965) and
Walker (1966) stated a similar conclusion. Walker (1966)
reported that the principal stresses at the bin centre are
not equal to the principal stresses in the wall vicinity.

He also stated that the compaction of loaded materials below

14



‘charging materials causes subsidance and frequent full
mobilization of wall friction. Lavin (1970) noted that the
vertical pressure is not uniform over the horizontal cross-
section, and analyzed the vertical equilibrium of a
differential ring element (as opposed to Janssen's disc
shaped element). His solution shows agreement with the
limiting pressure predicted by Janssen's equation. The
modified-Janssen solution given by Walker (1966) deals with
this assumed cross-sectional nonuniformity by describing the
variation of K over the cross-section. Walker's solution
can be thought of as a smoothed approximation of Lavin's
exact analysis.

A numerical comparison of different methods of pressure
calculation is presented in Figure 2.3, for a particular

silo geometry, and material properties.

2.2 Flow Pressure Theories

2.2.1 Introduction

Recent studies by Walker (1966), Walters (1973), Jenike
et al. (1968-1973) and many other investigators have clearly
shown that pressure occurring during emptying of silos,
under certain circumstances, substantiaiiy exceed the static
pressures calculated by Janssen's or Reimbert's methods.
Theimer (1969) and Sadler (1976, 1980) described a number of
bin failures caused by overpressurés associated with flow
conditions among other factors. Flow theories that accoﬁnt

for these overpressures have been developed by Walker,
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Walters and Jenike and Johanson.

2.2.2 Flow Pattern

A knowledge of the flow characteristics of granular
solids and the flow pattern which may develop in a silo is
essential for understanding the magnitude and distribution
of pressures on a bin wall. Two basic flow patterns have

been identified by Jenike et al. (1968).

Funnel Flow

This type of flow occurs in bins with a flat bottom or
with a shallow or rough hopper offering great resistance to
the flowing material. 1In these cases flow may occur through
a channel formed within stagnant material. The channel is
usually conical in shape, having lower diameter equal to the
effective dimension of thé outlet and increases in diameter
as it extends upwards. In tall bins or silos, the channel
boundaries may expand to intersect the vertical wall at a
point defining an effective transition to mass flow (Fig.
2.4). Bins exhibiting funnel flow are common in industry
and are least costly. This type of flow is disadvantageous
when handling materials susceptible to deterioration . 1In
addition, the formation of ratholes and stable arches may

occur.
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Mass Flow

Mass flow occurs in bins with sufficiently steep and
smooth hoppers, adequate outlet size and where the entire
volume of solids is flowing with no stagnant or dead
zones. In mass flow bins the flow channel boundary
coincides with the wall and hopper surfaces, as shown in
Figure 2.5. 1In general mass flow has the following
characteristics:

l. Uniform flow.

2. The bulk density of the solid is constant, and

independent of the head of stored solid.

3. Pressure across any horizontal cross section is

relatively uniform.

4, Tﬁere are no dead regiéns within the bin, hence

there is a minimum of consolidation at rest.

Jenike (1964, revised 1976) provides a meaningful
criteria for predicting gravity flow or no-flow of solids in
a bin. He states that gravity flow will occur in a channel
if the yi€ld strength which the solid develops as a result
of the action of consolidating pressure is not sufficient to
support an obstruction to flow.

As an element of solids flows downwards, it compacts
under a major consolidating stress, o; acting within the
bin, and develops unconfined yield strength, fé. For an
obstruction to fail, ﬁhe stresses in an obstruction must
reach the yield strength at the critieal location. The

major stress that acts on the abutment of an arch has been
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shown to be directly proportional to Span B of an arch. The

flow criteria is expressed by

o, > fé (2.14)

Jenike (1960) has shown that the stress, oy acting at the

abutments of an arch, can be expresséd by

1.1 (2.15)

bulk density
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a function of hopper slope measured from the
vertical.

The unconfined yield strength, £., is determined by a shear
test under appropriate consolidating stress. In all of
Jenike's theories discussed subsequently a flow situation is

assumed to exist.

2.2.3 Jenike's Theories

Jenike and Shield (1959) assumed that a bulk solid can
be represented by a rigid-plastic coulomb solid. Such a
solid is characterized by an effective yield locus (EYL)
that defines the limiting shear strength under any normal
stress (Fig. 2.6). Plotting shear stress, 7, and normal
stress, o, the yield locus for a'coulomb solid intersects

the t axis at a value of t defined as the cohesion, ¢, and.
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has a slope equal to the angle of internal friction, ¢.
Jenike and Johanson (1968) in their analysis of pressure
fields assumed that in the plastic region the solid is
isotropic, frictional, cohesive and compressible. During
incipient failure the bulk solid expands and during steady
flow it can either ekpand or contract. The state of stress
at any point is independent of time and is unaffected by
velocity changes. As an element of solid flows through a
channel, shown in Fig. 2.7, the major consolidating stress
o, and the minor consolidating stress o, on the element
change and continuous shear deformation occurs.

When the material stops flowing, it is assumed that
these stresses remain. The material gains strength at a
stationary condition under these stresses and resists the
flow of solids when the bin outlet is reopened. For any
stress condition represented by a Mohr circle tangent to the
locus, the bulk solids are at yield, and the major and minor
consolidating stresses at this condition are defined by
intersection of the circle with the o axis (Fig. 2.6).

Jenike (1954), Walker (1966) and Handly and Perry
(1968) have demonstrated experimentally and Smoltczyk (1953)
and Jenike (1961)vhave shown analytically that pressurés
within a solid contained in a hopper have a tendency to
decrease towards zero at the vertex of a hopper. A radial
(meridional) pressure field is said to occur, when the
pressure decreases linearly, and the pressures along a given

ray are proportional to the distance from the vertex. It is
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apparent that a radial field cannot extend all the way ~
upward to a free surface, and is topped off by a compatible
pressure field decreasing upwards towards the free
surface. At the interface, these two pressure fields do not
match and a disturbed radial stress field develops, which
consists of a wave of overpressure and underpressure
superimposed on radial pressure; the wave decays rapidly
towards the vertex of the hopper.

When an empty bin with a closed outlet is charged, the
material contracts and slips along the wall. In the
cylindrical part solids contract vertically only, and a
plastic-active pressure field develops. In the hopper the
material contracts both vertically and horizontally as slip
occurs along the wall. As a result an elastic-active
pressure develops because it does not reach the limiting or
plastic state. Major principal stresses are assumed to act
in vertical or close to vertical direction as shown in Fig.
2.8a. Pressure, p, which acts on the wall of bin increases
from the top somewhat according to Janssen's formula, goes
through a sharp change at the transition to hopper, and
decreases towards zero at the vertex.

In a mass flow bin, when the outlet is opened the
solids must contract horizontally and expand vertically in
order to flow in the hopper. This causes the major stress
to act in a direction close to the horizontal, forming what
is defined as a plastic-passive pressure field, as shown in

Fig. 2.8b.
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Nanninga (1956) was the first to observe that at the
transition from active to passive pressure fields, |
equilibrium of the mass requires an overpressure to occur.
Jenike and Johanson (1968) and Walters (1973) postulated
that a large transient "switch" pressure develops when the
flow is initiated in a bin. During initial loading an
active stress field is generated. When discharge begins,
the support of the solid at the outlet is removed. The
unsupported solid above the outlet expands downward. This
reduces the vertical pressure within the solid in that
region and causes a switch to a passive pressure field; the
major principal stress now arches across the outlet. As the
flow continues, the region of flow expands into the hopper,
and the switch travels upwards, to a point where the hopper
intersects the vertical section of the bin in a mass flow
bin.

The stress conditions when the switch is at a height,
72, is shown in Fig. 2.8b. Below the switch, the pressures
are in a passive (dynamic) state and smaller flow pressures
develop. Above the switch the solids are still in an active
state énd initial pressures prevail. The material at the
transition between two pressure fields is no longer
supported by the flowing solids below, and the equilibrium
of forces results in an additional pressure at the region of
the switch.

Jenike's three major contributions to mass flow theory

lie in the areas of determining the plastic stress field in
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the hopper during flow, the determination of the magnitude
of the major transition pressure at the juncture of the
hopper and wall and finally his strain energy theory which
describes the intermittant switch loads which might occur
during flow on silo walls. Jenike claims that this theory
accounts for the overpressures known to occur during flow of

‘ensiled material.

In the following the basic assumptions for all three

theories are discussed and results are summarized.

Stress Field in the Mass Flow Hopper: Jenike and Johanson

(1968) presented an analytical method for calculating
initial, flow, and switch pressures in a bin hopper with no
vertical surcharge. He considered the equilibrium of an
element of solid material in converging channel as shown in
Fig. 2.9 and derived pressure fields for béth plain strain
and axisymmetric channels. The assumptions made are:

1. The solid material is nonlinear elastic during
initial conditions and plastic during flow
conditions.

2. Under both initial and flow conditions, a solid is
assumed to slip at the walls. Hence the kinematic
angle of wall friction, ¢', is fully developed.

3. A radial stress field is assumed which increases
linearly with coordinate ray, r, from vertex of

channel and is defined as



Fig.
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o = Yrsi(é) _ (2.16)

(8) ' (2.17)

g = yrS

for. flow pressure fields

The ratio k, related to Janssen's K factor, defined

as

1 + v(im + a)
+ a + vim - a) (2.18)

in which o, is the pressure in radial direction and
cg is the pressure normal to oy- The coefficient
m=0, for plane strain and m=1, for axisymmetric
case, a and v are the coefficients of
compressibility of solid and Poisson's ratio

respectively.

In flow pressure‘fields the principal stresses o,

and o, are assumed to satisfy an effective yield

locus (Jenike and Shield, 1959) defined as

o .
2 _ 1 -sin d (2.19)

gy =71 ¥ sin &

where 6 is an effective angle of internal friction.



On the basis of the above assumptions the differential
equations have been derived for initial and flow pressure
fields. The wall pressures in mass flow hoppers are assumed
to have a triangular distribution as shown in Figs. 2.10a
and 2.10b, when there is no surcharge. The location of the
switch is uniquely defined for a given hopper configuration
and solids material properties.

The peak initial pressure, Py is derived as

- YD 1
p]. 1+ mil 2(tan 8' + tan ¢') (2.20)

in which i; is the relative position of peak initial
pressure, and is a function of k, 6' and ¢'.

The peak flow pressure is obtained from

. YD 1
P2 * T+ mi, 2(tan 8' + tan ") (2.21)

in which i, is the relative position of peak flow pressure,
and is a function of 6' and ¢'. The magnitude of
concentrated load at the location of switch is obtained by
calculating the force equivalent to the shaded area shown in
Fig. 2.10c. This force‘is required to maintain equilibrium

of the mass of solid and acts normal to the wall,
2
P = yD'FG (2.22)

in which F = 1/4 sin 6'(tan 6' + tan ¢') and G is a function
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of m, iy, ij and i, the relative position of the switch.

Overpressure at Transition in Mass Flow Bins: Jenike and

Johanson (1969) derived an expression for the concentrated
force at the transition from the vertical part to the hopper
of a bin. This force, P, occurs during the flow of a
material from a bin with the vertical surcharge on hopper
[See Fig. 2.11]1. The vertical surcharge exerts a vertical
load, O, on the solids in the hopper at the transition.

This can be expressed by Janssen's equation as

C . g = YR [ - ¢7H'KZ/R (2.23)

' The total vertical force across a conical channel during
" flow has been computed for a radial pressure field by Jenike

(1961) as
0. = q.yD L (2.24)

where q, 1is coefficient for vertical force in a mass flow
hopper and is a function of 6, 8', ¢' and coefficient m.

n=1 for initial loading and, n=2 for flow loading. The
normal force P and frictional force V are assumed to balance
the difference between O, and Q,. For a cylindrical channel

P and V are given per unit length of the circumference as
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0. = Op

= C
P =D (sin 6' + cos ®' tan ¢') ' (2.25)

P tan ¢ (2.26)

<
1|

Jenike et al. (1973) suggested that this force, P, can be
distributed over 0.3D slant distance of hopper wall below

transition.

Jenike's Strain Energy Theory

Jenike et al. (1973 Part 2) measured wall pressures on
model bins handling sand and coke. They observed widely
varying pressure fluctuations in the cylindrical portion
during flow, attributed to the very.slight imperfection in
the shape or finish of the bin cross section. They found
‘that the flow pressures were similar to thé Janssen's
.pressure field, in a diverging channel of 0.5 degree, while
introduction of ledges or by using a 0.5 degree converging
channel, local pressures often exceeded Janssen's pressure
distribution by a factor of two to three. Patches of thin
boundary layers form and dissolve intermittently at the
walls of cylinder due to imperfection in the shape of bin.
The formation of a layer causes a switéh from Janssen's to a
passive stress field, and the dissolution of the layer
causes a switch back to Janssen's.

An envelope enclosing the e#pected peak pressures at
various vertical locations defines an upper bound solution

to pressure. Jenike et al. (1973 Part 2) indicated that



34
initial wall pressures on the cylinder in a mass flow bin
can be well represented by Janssen's theory. During flow,
however, it gives a lower bound to the maximum wall
pressure. Bins with surface imperfections can be designed
on the basis of an upper bound pressure. The upper bound on
the wall pressure was developed by Jenike et al. through
minimizing the recoverable strain energy. The assumptions
made are

1. The switch is assumed to occur at some level Z,
above this level, Janssen's field is assumed to
prevail while below this level a passive stress
field prevails.

2. The vertical pressure is cbnstant over any Cross
section.

3. Kinetic energy terms are small compared to strain
energy terms and are neglected. Further, the vessel
is assumed rigid and both the modulus of elasticity,
E, and Poisson's ratio, v, are assumed constant.

Jenike et al. postulated that energy is dissipated at

maximum rate dur;ng flow of solids; hence, the recoverable
part of energy within the flowing mass tends toQards a
minimum. For a slice of solia of height, dZ, the

recoverable strain energy, neglecting shear strain is

aw = -adz[/ cv'dev + [ o de + [ ode ] (2.27)

€ € €
\Y n p

The recoverable part of the differential strains are



dsv=——v—v n €, etc. (2.28)

where oy, o,, and o, are vertical, horizontal and hoop
pressures and €, €, and €, are corresponding strains.

A passive stress field is assumed in terms of a stress
parameter, S, and two lateral coefficients K and K3, as

follows.

o, = RYS (2.29a)
o= KRYS (2.29Db)
Gc = K3Rys . (2.29c)

where R is the hydraulic radius and y is the specific weight
of solid material. For an axisymmetric case o, = o, and
hence K3 = K.

Setting the first variation of the strain energy
expression to zero, the governing differential equation is
extracted. The general solution to this differential

equation has the following form
s = ae* + Be™F + N (2.30)

in which
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w'(z-2 )
= o (2.31a)

(2 - 2v)™2g

N = 2v (2.31b)

u'(2 - 2V)(1—m)

where Z_, is the location of the switch. The essential and
natural boundary conditions can be used to solve for
constants A and B. Knowing constants A, B and N, the stress
parameter can be found at any location, Z, below the assumed

instantaneous switch, Z The pressure on cylindrical’

Oo

portion of wall can be calculated from Eq. 2.29b.

Funnel Flow Bins

The initial pressure in a funnel flow bin can be
represented by Janssen's pressure field all the way down to
the outlet. When the outlet is opened flow starts through a
channel formed within a stagnant mass of solids. The flow
channel is conical QXpanding upward from the outlet. If the
bin is sufficiently tall the flow channel intersects the
cylindrical wall. Above this level, referred to as the
‘effective transition, mass flow occurs.

At the ievel of the effective transition a switch
occurs from the cylindrical pressure field, which may be a
Janssen's field or a Jenike's upper bound strain energy
field to a converging pressure field within. A peak
pressure develops at the level of the switch. Jenike et al.

(1973 Part 4) have suggested methods for calculating these
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pressures and the location of the switch.

2.3 Finite Element Analysis

The developed codes of practice for determination of
design loads on bins are mainly based on operating
experience, pressure measurements in full size silos and
pressure theories (Janssen's and Reimbert'sf representing
best fit test data. These theories have not been able to
describe the complex behavior of flowing solids in a
qualitative or a gquantitative manner.

During recent years, with increasing size of silos, the
uncertainty has increased by the occurence of considerable
damage to these structures.

The finite element method provides a rational technique
for evaluating the pressures on the silo walls and stresses
within the ensiled material. Many research groups are using
the technique to reach a reliable and rigorous understanding
of the silo problems. 1In the following the work of the

three main groups is discussed.

2.3.1 The Ohio State University Group

Bishara et al. (1976) presented constitutive laws for
some ensiled farm products and a finite element analysis of
silage-silo interaction in a top unloading axisymmetric silo
structure. It is assumed that silage is an isotropic
piecewise-linear viscoelastic material éontained in an

elastic cylinder. The silage mass is divided into laminas,
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representing the sequence of loading. The friction forces
along the material-wall interface has been modeled as a
force boundary and assumed to remain unchanged during each
time interval. They are calculated from radial stress, at
the end of previous interval, in the silage element next to
the wall. The analysis of a 24' x 70' top unloading silos,
with 20 silage laminas filling at d.S days interval, showed
a highest pressure to occur at 4' above the floor. There is
considerable difference between Janssen's and the finite
element pressure curves. To avoid the commulative error
resulting from the piecewise linear approach Karoon and
Bishara (1978) developed a nonlinear finite element method
using the Newton-Raphson iteration technique, based on the
Lagrangian description of motion. To demonstrate the
applications of developed finite element model, the same
silo was analyzed. The result showed the highest pressure
just after filling at 7.5 feet above the silo floor. The
lateral pressure obtained is higher than that predicted by
piecewise linear viscoelastic finite element formulation.
The magnitude of the maximum lateral pressure decreases by
almost 60% when the coefficient of friction, u', increases
from p' = 0.0 to p' = 0.4. Bishara et al. (1983)
generalized the constitutive law for granular materials and
adopted the finite element program developed by Karoon and
Bishara (1978), with special provision to allow for slip-
stick phenomenon at the silo wéll and material interface. A

24' x 70' silo filled with dry sand was used to demonstrate
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the performance of finite element program. For depth of
ensiled material not exceeding the diameter, the lateral
pressures obtained from the developed method lie between
Janssen's and Reimbert's solutions. Below that depth the
pressures exceed Janssen's values by 20 to 25 percent and
Reimbert's by about 10 to 15 percent. The average vertical
pressure lies between Janssen's and Reimber's predicted
value. However, the analysis shows that the vertical
pressure distribution is parabolic over the silo cross
section, with a maximum at the centre and a minimum at the
silo wall. This nonuniform distribution reflects the effect
of wall friction. Reimbert's and Janssen's methods do not
-take into account the nonuniformity of vertical pressure in
their calculation.

El-Azazy (1982) modified the program developed by
Beshara et al. (1978) to account for pressufe during bottom
unloading of farm silo by Flail unloaders. The program was
further modified to simulate dome formation above the cavity
created by the unloader, and the collapse of this dome. A
modified Druker-Prager failure criteria was used for ensiled
material. The results show that the lateral pressure at the
level of dome formation, during unloading is double that
during static conditions, and there is a drastic decrease in

its value to near zero immediately above this level.

2,3.2 University of Guelph Group

Jofriet et al. (1977) analyzed the static pressure
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exerted by a granular material on a cylindrical structure.
Friction along the wall/material interface was incorporated
in the model. The solution obtained was comparable to
Janssen's theory, except near the bottom of cylinder.
Jofriet et al. (1980) carried out a number of finite element
analyses of whole-plant corn silos to investigate the effect
of silo geometry and wall friction on lateral wall pressure
and the proportion of vertical load carried by the wall.
They assumed a linear elastic isotropic material and a rigid
cylindrical boundary. The analysis has been carried out in
a number of steps to simulate the filling procedure. For
each solution step additional layer is added. The
coordinates, the density and the elastic moduli are updated
after every step.

The results of these analyses indicate that the lateral
pressure increases with the decreaée in aspect ratio of the
silo. This trend is also predicted with Janssen's
formula. It also shows an increase in lateral pressure with
a decrease in the coefficient of wall friction. This is of
course a result of increased vertical pressure and decreased
total vertical load transmitted to the wall.

Jofriet and Dickinson (1984) developed a finite element
model based on isotropic linear elastic material behavior,
for a bottom-unloading farm silo. 1In this study the effects
of base constraints, formation of arch and cavity size,
coefficient of wall friction and lateral pressure ratio‘on

the lateral wall pressure were investigated. The cavity
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shape is axisymmetric and the material behavior is uniform ~
with respect to depth in lower region. The stress
distribution after formation of arch or cavity is
independent of the past history of the material, and the
unloading process is sufficiently slow, hence the dynamic
effects can be neglected. Rigid constraints are used at the
wall in the radial direction, and the vertical shear force
in the wall is equal to the product of coefficient of
friction and corresponding radial reaction, acting
vertically upward.

The analysis of a 6 m diameter and 20 m height silo
indicated that arching of the material at the cavity causes
higher radial pressures on the lower region of the silo
walls, than those experienced without the cavity. The
"material starts flowing only when the local stress state
exceeds the strength of the material. It is also observed
that above a height equal to the diameter, the effect of
arching is negligible. The overpressure becomes more
concentrated with increase in the size of cavity and the
peak pressure at the base increases exponentially with
linearly increésing cavity size. The lateral wall pressure
decreases with increasing co-efficient of wall friction,
which is also indicated by Janssen's solution. The pressure
ratio, K, has a negligible effect on the overpressures at

the base.



2.3.3 University of Karlsruhe Group

Eibl et al. (1984) presented a nonlinear finite element

analysis simulating discharge through a mass-flow silo,

assuming that a granular solid during discharge exhibits a

solid-like and fluid-like behavior and using an incremental

viscoplastic constitutive law. Large deformations, and mass

properties are formulated in the context of an Eulerian

frame of reference. The following basic assumptions lead

them to

1.

the formulation of finite element model.
Cauchy stress o* is divided into a rate independent

part c; and a rate dependent part 63 i.e.
o* = ¢g* + o* (2.32)
S v

The rate independent part is defined by the elastic-

plastic law proposed by Lade (1977) as

Ac = H Ae (2.33)
] ep
Strain tensor Asep has been divided into an elastic

component Ae a plastic contractive component Asé

el
and a plastic expansive component Aep, such that
Ae = Ae + Ae + Ae (2.34)
ep e - c p

An isotropic hypoelastic law with stress dependent

Young's modulus E, and constant Poisson's ratio, v,
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are used to define the elastic component

Ae = EAg (2.35)
e s

The plastic contractive component due to volumetric
compression is determined by ah associated flow
rule. The plastic expansive component due to
increase in deviatoric stresses, is obtained from a

nonassociative flow rule.

df
_ co
e = AA, 33 (2.36a)
S
d
Ae = AN 29— (2.36b)
o} P bcs

where Akp and AN, are monotonically increasing

positive scalars determined from plastic work

functions.

The yield surface, £ may expand infinitely in the

co’

principal stress space, while the expansive yield

surface, £ has been limited by a surface, n. The

ex’

elastic-plastic strain increment is thus given by

df
Ae = EAg. + AN =52 4+ oan_ 29 (2.37)
ep S c 605 p %a¢

S

The rate dependent part of Cauchy stress is defined

by a relation of a form analogous to the
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incompressible Newtonian fluid, in terms of a

material parameter called viscosity number.

8. The boundary conditions imposed on the problem are,
a) Velocity normal to bin wall is zero, v, = 0

b) Velocity tangential to the normal is such that,

Vi 0 if oy < tan o'. opny otherwise

- [ ]
o, = tan ¢'.o,.

c) At the outlet 6, = O = 0

On the basis of above assumptions and the principle of
virtual velocities the problem has been formulated in
Eulerian frame of reference. Analysis of two plain strain
silos, with different geometric configurations have been
carried out under static conditions, The wall pressures
obtained were found to be less, but close to the
experimental results given by Motzkus (1974). The authors
did not compare their results with Janssen's and Reimbert's
theory.

Flow pressures were analyzed for 6.5' x 39' plane
strain silo, with a hopper inclined at 60 degree.to

horizontal. The results of the analysis are summarized as

1. The flow velocity in the cylindrical portion is
found to be approximately constant, i.e. the solids
move like a rigid body. In the hopper area, flow

velocity is maximum at the silo centre and decreases
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to a minimum at the silo wall.

Under static conditions, the direction of the major
principal stresses are close to the vertical in both
the cylindrical and hopper parts. When discharge
begins, the direction of the major principal stress
is reoriented from the vertical to the horizontal in
the hopper area, while in the cylindrical area it
does not change. Subsequently the magnitude of
stress decreases above the outlet, and increases
near the transition area between hopper and
cylinder. The stress level within the cylinder area
is unchanged. This stress redistribution during
flow has been explained by Jenike et al. (1968),
Walker (1966) and Walters (1973) as a transition
from an active state of stress to a passive state of

stress.

The lateral wall pressure in thé cylindrical area

~increases uniformly with material depth followed by

a strong increase near the transition.

The normal wall pressure in the hopper area

increases uniformly during the initial phase of
discharging. When the flow is established the
pressures near the outlet decreases and a peak

pressure develops near the transition.



5. During charging the material near transition is in
1imit state, while the rest is in plastic hardening
range. Elastic behavior occurs during the initial
phase of discharging, which is transmitted to the
plastic hardening range in the hopper area, and then

to limit states as the flow propagates.

2.4 Field Measurements

2.4.1 Simmonds and Smith (1983)

Simmonds and Smith (1983) presented an experimental
study conducted on an operating reinforced concrete coal
silo, owned by Fording Coal Limited in British Columbia.

The objective was to quantify material overpressure within a
-full scale silo. -

The cylindrical portion of the silo has 70 feet inside
diameter, 12 inch wall thickness and rises 155.7 feet above
transition. The silo has two pyramidal outlet hoppers, all
of steel plate construction, as shown in Fig. 2.12. Strain
gauges have been mounted on hoop reinforcement at various
locations. Actual bar strain measurements were recorded as
either static or continuous.

The study showed that during flow large instantaneous
overpressures coincided with quasi-static overpressures of
similar magnitude. At strain gauge locations 5 and 6, there
were virtually no affect during discharge, also at location

4, no overpressures were observed. Therefore, the
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distribution of lateral pressure was close to static, from
free surface of material down to a level between strain
gaugue locations 3 and 4.

If it is assumed that p' does not vary greatly, Kdy at
location 3 can be approximated by Kg, X overpressure factor
(o.p.f.). For the type of coal under study, K, was close
to 0.48, and with a maximum o.p.f. of 2.0, the largest
measured value for Kdy was then close to 1.0. This is
supported by Blight and Midgely (1980). Jenike's strain
energy method, also, gives a value for K close to unity,
when the switch location is assumed to occur at a depth
greater than one diameter from free surface. It was also
indicated with respect to this study that the dynamic
pressures were found to be satisfactorily bounded by the
strain energy predictions. Further it was observed from
continuous strain record that the rate of withdrawal may
influence the distribution of lateral pressures, while
Pieper (1969) in a model study showed that in a silo with
symmetric outlét, filling and emptying speeds have no

influence.

2.4.2 Technical University of Denmark (1980)

Nielsen and Kristiansen (1980) performed a full-scale
test on a silo, 7 m in diameter and 46 m high, using barley
as ensiled material. 36 pressure cells on the walls and 5
on the bottom were mounted in the silo, as shown in Fig.

2.13. Three tests with central discharge and five with
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(b) Eccentric outlet

21.0m
I7.5m
4.0 m
10.5 m
(c) Sections 1,2,3,5,6 &7
70m 4cells

—

(a) Section with (d) Section 4, 12 ceils
centre outlet

Fig. 2.13 Section of Test Silo, Technical University
of Denmark
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eccentric discharge were carried out. The test showed that
the static pressure during filling and rest deviated
considerably from Janssen's field. In some cases the mean
values were 20% below Janssen's formula, while in others,
they were up to 100% above this. During eccentric
discharge, the distribution of mean values for the maximum
discharge pressure was largely plane-symmetric. Except at
the bottom most locations, where a considerable increase in
pressure occurred at all locations. The mean values for the
maximum pressures were lowest, about 1.8 times that obtained
from Janssen's formula for eb = n/2 and 3n/2. At one point
between locations 3 and 4, the pressure observed was about
2.8 times Janssen's formula for &, = 0, and 3.2 times the
Janssen's value for eb = . The maximum pressure on
different locations did not occur at the same time. For
central discharge the mean value of the maximum discharge
pressures were axisymmetric. The maximum pressure was of
approximately the same order of magnitude except that it was
scattered between locations 1 and 3. Considerable deviation
from the axisymmetric were ascertained in an individual test
which may induce some moment in silo walls.

Significant cracks were observed at location where the
largest pressures were measured as well as where the maximum

deviation from an axisymmetric distribution was observed.



CHAPTER 3 - THE FINITE ELEMENT FRICTION MODEL

3.1 Introduction

The -behavior of a granular material flowing through a
silo is dominated by a number of variables falling into
three different categories,

i) geometric variables such as diameters, heights,
and angles of hopper inclination, etc., |
ii) material properties,
iii) boundary conditions, such as wall friction.
The first two categories can be normally incorporated in any
finite element technique. Material nonlinearities may,
however, necessitate an incremental approach.

The third category projects the problem into the class
.of contact problems with Coloumb friction in which normal
tractions are not known in advance (Campos, et al. 1982).
The presence of friction forces gives rise to
nonconservative forces which introduce diSsiéétive terms in
the variational formulation. With a certaiﬁ loss of
generality and at a risk of nonuniqueness the incremental
virtual work principle may be used to describe such fields.

In the following different appréaches to describe the
boundary friction problem are presented. The particular
approach chosen is fully developed and the finite element

technique used in the rest of the study is described.
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3.2 Incremental Virtual Work Formulation

Consider a mechanical system in equilibrium under a set
of applied fo;ces, T° and F° and prescribed kinematic
constraints g°. The principle of virtual work states that
the sum of all virtual work/rate of virtual work, 6W, done
by the external and internal forces existing in the system
in going through an infinitesimal arbitrary virtual
displacements/velocities satisfying prescribed kinematic
constraints is zero i.e. 8W = 0. The principle of virtual
work is invariant under co-ordinate transformations and it
holds good independently of the stress-strain relations of
the materiai.

The incremental variational formulation presented here
is based on small displacement/velocity field. Let the
material body shown in Fig. 3.1 be divided into "k" number
of elements. Let Vi be the volume of element and let Sgy -
qu and Sgg bé those portions of elgment surfaces on which
prescribed tractions, displacements/§elocities and friction
forces respectively are applied.

The superscript ()° indicates initial quantities at the
beginning of a load step, and the prefix A() denotes
incremental quantities. Préscribed quantities are denoted
by (T) and the nodal quantities are denoted by (_).

When certain external forces are prescribed as acting
on a deformable body, a statically admissible stress
distribution is defined as one satisfying the differential

equation of equilibrium in the interior of the body and the



boundary conditions.

The differential equation of equilibrium in incremental
form can be writen as

0 0 _
+ F, + AF, =0 (3.1a)

c.. . + Ac.. .
13.,] 13.] 1 1
The symbols o and F denote the stress tensor and the body
force per unit volume vector respectively.

The stress increment tensor Aoc;; can be expressed in

]
terms of the constitutive tensor Cijkl and the strain

increment tensor Aekl as

Adij = Cijkl Aekl (3.1b)

The strain increment tensor is related to the

displacement/velocity field tensor, g, as

+ AQ. i) - 0. (3.1¢c)

1l 1
degy =5 (af 5 +af, ) + 3 (Bay i, 13

i,j j,i

The mechanical boundary conditions on S;, are defined (Pian,

1976) as
T, = 6.. n, (3.2a)
AT. = Ao, . n, (3.2b)

in which T and n are the surface tractions and the unit



vector normal to the surface respectively. The
displacement/velocity boundary conditions on qu are written

as (Pian, 1976)

(3.3)

Since the initial and prescribed quantities do not Vary, the

first variation of Egs. 3.lc and 3.3 are

1
SAe .. = (6Aqi,j + 6qu,i) (on Vv, ) (3.4a)

8aq, = 0 (on Sgy) (3.4b)

Let the body in the initial equilibrium configuration be
given an infinitesimal virtual displacement/velocity 8Aq;
subject to.the conditions of Eq. 3.4b. The virtual work,
Wy, of the internal forces and the virtual work, &Wg:/ of

the external forces are expressed as

- 0 0
5W . i &f (cij + Acij) 6Asijdv + f |cT + AcT||6AqT|dS}
k Stk
(3.5a)
= 0 ol 70 T
Sy = i {f (Fi + AFi) SAg AV + / (Ti + ATi) 6Aqids}
Vk Sck
(3.5b)

The symbols op and gy denote, respectively, the tangential

friction forces and the tangential displacements/velocities.
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The principle of virtual work can be written as
SW_ - &6w_ =0 (3.6)
Substituting éW; and SWg from Egs. 3.5 and rearranging

0
i AcijéAaijdV +S£ |cT + A6T||6AqT| ds
k

- =0 = - 70 =
/ (Fi + AFi) 84q, dv Ji (Ti + ATi)éAqi +V
k

[ o..848e,.dV = 0
Sck K

(3.7)

The first term and the third to fifth terms on the left hand
side of Eq. 3.7 give rise to the usual finite element
matrices (Elwi and Murray, 1980 and Bathe, 1982) in fhe
following manner. Let the displacement/velocity field be

described in terms of nodal quantitites by
{aq} = [N] {Ag} .. (3.8)

where [N] is a matrix of shape functions and Ag 1is the set
of nodal displacement/velocity increments.
Using Eqg. 3.4a the strain increment field may be

written as

{ae} = [B] {ag} - (3.9)
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where [B] is the usual differential operators matrix. Using
Egqs. 3.1b, 3.8 and 3.9, the first and third to fifth terms

of Eq. 3.7 may be written as

<8A q>-i [Kk]{Aqk} (3.10a)
<6ag> = ({FO} + {aF }) (3.10b)
" k k
<5AQ> I ({'fﬁ} + {ATK}) (3.10c)
k
sag> = {9} (3.10d)
.k
where,
{x .} =] (817 [c] [B] av (3.11a)
v _
k
(F0} + {aF} = J mT(F) av + [ mITaF av  (3.11b)
v v
k k
(10} + (a7} = J IN)T {T0) as + [ [N]T{AT)} ds (3.11c)
Sck Sck

{0} = [ 1B17{a%) av

representing the element stiffness matrix, the element body
force vector, the surface tractions vector and the
equilibrating loads vector.

The second term in Eqg. 3.7 represents the virtual work
associated with friction forces. It may be represented in

several ways.
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a) a boundary layer of thin solid element with specific
material properties
b) a boundary integral in which Crp is a linear function

of o,, where o is the normal pressure.

n

c) an iterative process in which friction forces are
derived as a linear function of boundary reactions.

In all three representations Coloumb type friction is
assumed. The first approach requires a specific
formulation, not available in the present program FEPARCS5
(Elwi and Murray, 1980) which forms the base of program
FEPILS (FEPILS is an acronym for Finite Element Program for
Investigation of Loading on Silos). The second approach
results in an unsymmetric stiffness matrix. The third
approach requires iterations, but is straight forward and
can be readily implemented. This is the approach chosen for

the current study.

3.3 The Friction Force Formulation

The friction forces develop along the contact surface
between the material and the wall as the solid material
moves in the silo. The contact surface has been defined as
the friction boundary surface, Sgr. If the forces normal to
the friction boundary, Ry, are known, the tangential

friction forces, F can be obtained using Coloumb's

Tl
friction law. The normal forces can be determined by
providing essential boundary conditions in terms of linear

springs on the friction surface. These springs have very



high stiffness as compared to the stiffness of the material.
Let the spring element be defined at point B on the
friction surface, as shown in Fig. 3.2a. The spring may
have any orientation in the r-z plane, where r and z denote
the horizontal and vertical coordinates respectively.
Let the virtual work/rate of virtual work associated

with the spring element be written as
SW_ = <SWn F (3.12)

where 8W, is the virtual displacement/velocity normal to the
boundary surface and Fg is the force in the spring for a one

radian section written as

FS = Wn kBE r/L : (3.13)
where kgg is the spring stiffness, L is the length and r is
the radius at the point at which boundary element is
attached. If the spring is inclined es to the horizontal,
then the displacement/velocity component normal to the
friction surface is given by (See Fig. 3.2b)

cos ©

W = <u v>

n sin © (3.14)
s

Substituting the right hand side of Egs. 3.13 and 3.14 in

Eq. 3.12, the resulting equation can be written as
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Element k

Fig. 3.1 Forces on Element k

(a) Boundary (b) Velocity (c) Friction
element components forces

Fig. 3.2 Boundary Element and Friction Forces



_ u
SW, = <8u 8v> [KBE] {V} (3.15)

where [KBE] is the stiffness matrix of the boundary element

and is written as

cos

[KBE] = cos GS sin 98 sin2 es kBE}r (3.16)

29 cos 6  sin 6
S S S.

This stiffness matrix is added to the stiffness coefficients
of the node at which the spring element is attached.
The reactions or normal force components are calculated

by multiplying [ by the actual displacement/velocity

e
obtained at any stage of solution. The reactions are added
to the equilibrating loads to satisfy conditions (3.4b) of
variational formulation.

The friction force can be defined as the normal force
multiplied by a coefficient of friction (tan ¢), acting at

right angle to the normal force and in a direction opposite

to the movement of material body, expressed as

¥

= - * *
Frr tan ¢ IRy o (3.17)
T
where Wop is the tangential component of
displacement/velocity written as
-sin 64
WT = <u v> ' (3.18)
cos es

and the normal force, Ry, is defined as
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R =k__ xW ' (3.19)

in which kpg is the stiffness of the spring element. The

horizontal and vertical component of friction force are

K<F F > = F_ <= sin 6 <cos 0 > (3.20)
X Yy T s S

3.3.1 Solution Technique

In the strategy adopted to include friction forces, it
is assumed that the normal and hence the friction forces on
the friction surface is not known in advance. An iterative
scﬁeme can be developed to incorporate the friction forces
in a'géneral finite element program for the analysis of a
problem without friction.

The algorithm for the analysis of such problems which
have friction along the contact surface between material and
silo wall is briefly described in the following. First, a
finite element approximation of the problem without friction
forces is obtained. The object is to get an approximate
normal force and hence friction force, which may be employed
later for a problem with the friction forces prescribed on
friction boundary surface. Having calculated the nodal
displacements/velocities at nodes on which the spring
element is attached, the nodal normal and friction forces
are obtained using Egs. 3.14, 3.17 to 3.19.

The horizontal and vertical components of friction
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forces are obtained from Eq. 3.20. These friction forces
are multiplied by an under-relaxation factor to obtain the
incremental value of friction force components, which are
added to the corresponding nodal values in load vector.

The problem is then resolved using the new load vector
which includes a first approximation of incremental
components of friction forces. This leads to new iterates
of nodal displacements/velocities field, and hence new
friction forces.

This process 1is repeatedvcontinuously, until successive
solution for friction forces do not differ by a preassigned
tolerance. The final result thus obtained for normal forces
after convergence of friction forces is employed to obtain
the flow pressure of material on silo walls. The flow chart

of this solution technique is illustrated in Fig. 3.3.



Solve the problem without friction for an
increment of displ/velocity using finite element
technique

Resolve the problem having an approximated
incremental friction forces for increment of

displ/velocity

Obtain tangential and normal displs/velocities
at nodes to which spring element is attached.

Y

Calculate the normal forces and tangential
friction forces, at nodes on friction surface

Y

Obtain horizontal and vertical component of
friction forces and multiply by under-
relaxation factor to get incremental value of

friction forces.

Test for the convergence of friction forces

fo

Add incremental values of friction forces to
the corresponding nodal values in' load vector

Calculate the pressures exerted by the ensiled
material on silo wall, using the normal forces

Fig.

3.3 Flowchart for Solution Scheme of Friction Force
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CHAPTER 4 - MATERIAL MODEL

1.1 Introduction

Ensiled materials are often granular with or without a
certain degree of cohesion. Except at certain locations,
such as the outlet and free surfaces, the behavior falls in
a triaxial compressive field. In such a field these
materials appear to behave in a viscoplastic manner (Eibl
and Haussler, 1984). The behavior is marked by several
strong traits,

i) an increase in density with increased hydrostatic
stresses
ii) an increase in shear strength with increased
hydrostatic stresses, and
iii) a markeé dilatancy observed when the shear
strength is achieved and plastic flow commences.

The scope of this study is directed primarily at coal
type materials. Due to the current lack of information on
rate dependent behavior of coal, and scarce data on density
dependency, the study encompasses only elastic perfectly
plastic behavior in a small displacement/velocity
infinitesimal strain field. in order to model the plastic
behavior taking into consideration the shear strength traits
and the dilatancy effects a Drucker Prager type yield
criterion (Drucker and Prager 1952) is proposed.

This failure surface can be degenerated from the five

parameter curved meridian failure surface developed by
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Willam and Warnke (1975), which allows better triaxial
representation and may be employed in later studies. -

This approach has been extensively used in the field of
geotechnical engineering in modelling the properties of
cohesive and granular materials. In the following the
incremental stress-strain relation in matrix notation is

presented.

4.2 Elastic Perfectly Plastic Model

A material body is deformed when subjected to applied
forces. If upon removal of the forces the body recovers its
.original shape and size, then the material body is called
elastic. For such a material the current state of stress
~depends only on the current state of deformation, i.e.
stress is a function of strain. Thus the behavior of this
type of material is both reversible and path independent in
the sense that the stresses are uniquely determined from the
current state of strain;ér vice versa. The deformation of
material beyond the elastic limit is characterized as
plasticity.

An idealized uniaxial stress-strain curve for elastic
perfectly plastic materials is illustrated in Fig. 4.1. The
material initially behaves linearly elastic along the path
OA, i.e. the path is reversible. This is followed by a
yield at point A. Once the material has reached the yield

stress, © (i.e. passed point A) the path is no longer

yl
reversible. Upon unloading in this range the material once



66
more exhibits linear elastic behavior and follows a path
parallel to OA. A permanent set of strain, eP, called
plastic strain is left in the material body after complete
unloading. Therefore only elastic strain, €, can be
recovered from total strain, €. The stress in the material
remains constant with increase in the plastic strain, beyond
the yield point.

The concept of the yield point in the uniaxial case may
be replaced by a yield criterion for a small (macroscopic)
element of material subject to any action characterized by a
tensor of applied stresses Tiqe

The yield criterion and the general behavior of an
elastic perfectly plastic material under a stress tensor,
Sy, can be defined as follows.

1. In a nine dimensional stress space, there exists a

yield surface (function of stress) defined by a

yield function as

£=7f (0,.) =0 (4.1)
f is a scalar function and f = 0 corresponds to the
irreversible deformations. The material is elastic
if

£f <0 (4.2a)

and



Ao.,. < 0 (4.2b)

£=20 (4.3a)

and

gf = 2E  aq.. =0 (4.3b)

It must be noted that f > 0, is not possible. The
material is elastic until it reaches the yield limit
(i.e. £ = 0). The plastic deformation takes place
wiﬁhout limit. For plastic flow to continue (i.e.
for increase in plastic strain) the state ofrstress
must remain on the yield surface. This is known as
the criterion of loading and defined by Eq. 4.3b.
Now there remains a permanent set of plastic strain,
eP , when the stress intensity drops below the yield
value or when the stresses are removed. This is
known as the criteria of unloading defined b& Eqg.
4.2b.

The concept of loading and unloading has been
illustrated in Fig. 4.2 where f is intefpreted
geometrically as a surface and o

and Aci as

1] j

stress and stress increment vector in stress
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Fig. 4.1 1Idealized Stress-Strain Curve

A

Ao

Perfect
plastic

f (O'ii)=0

unloading

1

Elastic
f(O‘,j)<0

Fig. 4.2 Yield Surface and Criteria of Loading
and Unloading



space. This surface is fixed for elastic perfect
plastic materials.

Let the body, initially in a plastic state with
stress vector Tigr be given an infinitesimal
increment of stress, Acij (additional loading). For
perfect plastic materials the stress point cannot go
outside the yield surface. Plastic flow occurs when
the stress point is on the yield surface and the

additional loading, Ao must lie in a plane

jl
tangent to the yield surface. The additional
loading Acij produces only elastic strain, if it is

directed inward from the surface £ (unloading).

The total strain increment, Aeij, in the plastic
zone of behavior can be decomposed into an elastic
component, Aeij, and a plastic component, Asgj, such

that

Ae .. = Ae?. + AeP. . (4.4)
1] 1] 1]

The elastic or ‘recoverable strain increment can be

related to the incremental changes of stress, Acij’

by the generalized Hook's Law as

Ao.. = C re®

i ijk1 8fx1 (4.5)

3. There may not be a connection between f and the
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plastic strain increment. Let there be a plastic-

potential function

g = gloy;) (4.6)

such that

peP. = 29 g (4.7)
1) acij

where dA is a positive scalar function, which is
nonzero only when plastic deformation occurs. The
equation g(cij) = constant, defines a plastic
potential surface in nine dimensional stress
space. The plastic-flow vector As?j is directed
alongvthe normal to the surface of plastic
potential. |

If it is assumed that the plastic potential

function coincides with the yield function, i.e. £ =

g’ then, . i
Aegj = azf an (4.8)

This is called the associated flow rule. Obviously,
the plastic strain increment is thus normal to the
yield surface (Fig. 4.2). Eqg. 4.7 with £ # g is

called nonassociated flow rule.



Substituting Eq. 4.8 into Eg. 4.4 and rearranging, the

elastic strain component is written as

To obtain the stress-strain relation Eg. 4.9 is substituted

for the elastic strain increment in Eq. 4.5 to obtain

(4.10)

- a da of )

boyy = Cijyxy (Beyy 50, 1

Subject to the condition

a) « = 1 if £(o;.) = 0 and df = 0 i.e. is on the

J
yield surface and moving tangent to the yield

61]

surface

.} =0 d df < 0 i.e. . i
J) an l.e. o;5 on yield

surface and unloading

b) «a = 0 if f(ci

c) a = 0 if f(cij) < 0 i.e. 0;: is inside the yield

i3

surface.

The factor d\A is obtained by combining the stress-strain
relation (Eq. 4.10) with the consistency condition (Eq.

4,3b) as follows

of df
35, . Ae - adA —)
1]

ik (Aegy b0, (4-11)

C

rearranging and substituting, a = 1, gives
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df
55 ; Cijk1 2%k1
oo ijkl ackl
A general relation for stress increment is obtained by
substituting d\A from Eq. 4.12 into Eq. 4.10 as
D f of -
30, 5 €ijk1 3o, Cijk1
Acij = [Cijkl -« PE o Y ] Aey (4.13)
aciJ ijkl ackl
This is written in the matrix form as
0
. c1® (35 &5 e®
{ac} = [[C]° - «a Y —5F ] {ae} (4.14)
<> [c1° {75}
0o _ dao

in which [C]® is the elastic constitutive matrix, Ao is

the increment of stress in vector form, 3f/dc 1is the

gradient of the yield surface and Ae 1is the increment of

strain in vector form.

4.3 Failure Surface

A failure surface is described by an envelope in the
stress space which defines the failure strength for any
ratio of stresses.

When the stress path intersects this surface plastic
flow occurs. For perfectly plastic behavior the surface
does not change its configuration during plasfic flow, hence

the stress path describes a trajectory on the initial
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surface, while the plastic strain increases continuously.
A two parameter failure surface proposed by Drucker and
?rager (1952) is used in this work. This failure surface is
degenerated from a five parameter surface presented by

Willam and Warnke (1975).

4.3.1 Willam-Warnke Surface

The Willam-Warnke failure surface is basically a cone
with curved meridians and non-circular base section, see
Fig..4.3a. The surface is conveniently represented by
hydrostatic and deviatoric sections as shown in Figs. 4.3b
and 4.3c.

The characteristics of this surface can be summerized
in the following. -

Let the mean (average) normal stress be defined as

o= cii/3 (4.15)

and let the mean (average) shear stress be defined as

m /SijSij/S (4.16)

where Sij is the deviatoric stress-:tensor defined as

i3 cij dkkaij/3 ' (4.17)

[

Normalizing o, and T, by uniaxial compressive strength f.,



(a) General view

Tm

%m

(b) Hydrostatic section

(c) Deviatoric section

Fig. 4.3 Willam-Warnke Failure Surface
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as

o =o¢ /f ' (4.18a)
m m cu
Ty = Tm/fcu (4.18Db)
The deviatoric plane (o, = constant) of failure surface

is represented by three symmetric elliptical segments
forming a closed convex and continuous curve. Hence, the
surface meets the condition of symmetry, smoothness and
convexity. The elliptic trace of the failure surface is

described as
T =r(6_, o) (4.19)
where 6, is the angle of similarity and is expressed in

terms of principal stresses as (Willam and Warnke, 1975)

g, + o, - 20
. 1 2 3
cos 6 = (4.20)
m = 2 _ 2 _ 271/2
+ (02 63) + (03 cl) ]

For ¢, > ¢, » o,, then 0 < eﬁ < 60°, as may be seen from
Fig. 4.3c. The function r(em, Eﬁ) in Eq. 4.19 is defined as

(Willam and Warnke, 1975)

2 2 2 2 2 2 1/2
_ 2ry(r, -1 “)cosb +r,(2r;-r,)[ 4(r,“~r;“)cos 8 +5r, “~drr,] /
liem’%& - 2 2 2 2
4(r2 - ;%) cos o +(r, - 2r))

(4.21)
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The variables r, and r; are respectively the maximum
(6, = 60°) and minimum (8 = 0) radii of the deviatoric
trace of the surface (see Fig. 4.3c). These variables are
assumed to be parabolic functions of the hydrostatic stress

and are expressed as (Willam and Warnke, 1975)

(4.22a)

r.=b + b,o_ + b,o (4.22Db)

The value of the co-efficients ay to by are chosen such that
the variables r; and rp pass through a set of control
points, as illustrated in Fig. 4.3b.

This surface was basically developed for concrete
subjected to triaxial loading in the tension and compression
regime. The values of these co-efficients for concrete

materials are evaluated by Willam and Warnke (1975).

4.3.2 Drucker-Prager Surface

Drucker-Prager surface is a right-circular cone with
its axes equally inclined to the co-ordinate axes in a
principal stress space, as shown in Fig. 4.4. This is

expressed mathematically as

f£(1,, /3,) =al, +7/J3, -k =0 (4.23)
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(a) Hydrostatic Section
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m

(b) Deviatoric Section
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where a and k are positive material constants. 1I; and J,

are the first stress invariant and the second deviatoric
stress invariant respectively and are expressed in terms of

mean normal stress, o, , and mean shear stress, T,, as

I, = 3o (4.24a)
3 =23 | (4.24b)
2~ 2 :

Substituting Egs. 4.24 into Eg. 4.23 and normalizing by

uniaxial compressive strength gives

k = 0 " (4.25)

For granular-cohesive type material the material

constants are given by

« = tan ¢ (4.26)
Vé + 12 tan2 ¢
kK = 3¢ (4.26Db)

VB + 12 tan2¢

where ¢ is the angle of internal friction of material and c

is the cohesion.

The major disadvantage in this type of surface is that
plastic volume expansion takes place at yield according to
an associated flow rule which may not fit the observed

values (William and Warnke, 1975). This property is known
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as dilatancy.

4.3.3 Degeneration of Willam Warnke Surface to Drucker
Prager Surface

The Willam-Warnke degenerates to Drucker-Prager surface
of circular cone if the meridian parameters are reduced to

those of identical straight lines as follows

ag = bg (4.27a)
a; = by (4.27b)
.a2 = by =0 | (4.27¢c)
and 'rl =ry =r : (4.274d)

in which case the deviatoric cross section is a circle.
Using Egs. 4.8b, 4.19, 4.22 and 4.27 and noting that T

= r/¥5 the following expression for the meridian is obtained

T
mo_ _r = a. + fm_ (4.28)
cu V5 £ cu

Comparing to the Drucker Prager failure surface, Eq. 4.23

a_ =7Y2/5 k (4.29a)

and, a; = - Y18/5 «a (4.29b)
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CHAPTER 5 - ANALYSIS AND COMPARISON

5.1 Introduction

A finite element formulation for the incremental
analysis of a flowing solid material in axisymmetric silos
is presented in Chapter 3. Chapter 4 describes the proposed
elastic-plastic constitutive model. Program FEPILS in which
the finite element model and material model proposed in
Chapter 3 and 4 respectively, have been implemented as
described in Appendix A. In this chapter as series of
problems are analyzed using program FEPILS. Finite element
model of test problems and the material properties are
described. A parametric study of the material behavior is
carried out. The variables investigated in this study are
‘angle of internal friction of material, angle of wall
friction, hopper slope with vertical, height to diameter
ratio and Poisson's ratio. The effect of these variables on
lateral wall pressure and material stresses have been
examined. The results of the analyses are presented and
compared with classical theories and results of finite

element analysis described in Section 2.3.

5.2 Model Description
5.2.1 Description of Test Structures

A number of finite element problems are analyzed using
axisymmetric silos, having a diameter éf 8.0 metres, with

varying height, hopper geometry, and material parameters.
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The finite element idealization of three silo structures
having different hopper geometry is shown in Fig. 5.1.
These structures are the basis of all finite element
analyses carried out in this study. Eight node
isoparametric elements are used to construct each mesh of
the solid element. These elements give greater flexibility
in modelling the geometry of the struéture and at the same
time keeps the problem size reasonable. Typical spring
boundary elements have been provided over the entire height
of the silo to model the wall reactions and subsequently
friction forces. The horizontal displacements/velocities
along the axis of symmetry are suppressed.

A total of five sets of problems have been analyzed

vafying the parameters as follows.

Hopper Slope with Vertical: The height of the cylindrical

portion of the silo is kept constant and the hopper slope
with vertical is varied. The silos used for this analysis
are illustrated in Figs. 5.la to.5.lc. The height of the’
silos is 16.0 m and the hopper slopes with vertical are
20.56 deg., 24.78 deg. and 29.98 deg., respectively. The
outlet of the silo is 2.0 m in diameter. The total height
of the hopper decreases with increasing hopper inclination.
Altogether, the problem has 177 nodes, 25 spring boundary

elements and 48 solid elements.

Height to Diameter Ratio: Keeping the hopper geometry
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constant, the height of the cylindrical portion of the silo
is increased. The ratios of cylindrical height to diameter
used in this study are 2.0, 2.5 and 3.0. Fig. 5.la shows
the finite element model for the test problem with a height
to diameter (H/D) ratio of 2.0. The same problem is
analyzed by adding two and four rows of elements for H/D
ratios of 2.5 and 3.0, respecfively. Consequently four and
eight spring boundary elements are added at the interface
between solid material and silo wall. Therefore, 205 nodes,
56 solid elements and 29 spring boundary elements for an H/D
ratio of 2.5, and 233 nodes, 64 solid elements and 33 spring
boundary elements for an H/D ratio of 3.0 form the finite
element models of silos.

The rest of the three sets of problems have been
analyzed by varying the angle of internal friction of the
material, angle of wall friction and Poisson's ratio. The
silo used for all these analyses is the one illustrated in

Fig. 5.1a.

5.2.2 Material Properties

The bulk density of granular materials depend on
particulate properties such as size, shape, the manner of
assembly of these particles and specific gravity of
constitutive solids. Examination of classical theories
reveal that horizontal pressure on the silo wall is a direct
function of unit weight. Most granular materials have

sizeable variation in unit weights. As described in Section
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4.1, the scope of this study is directed at a coal type of
material. Jenike and Johanson (1979) indicate that
compressibility effects and moisture content can cause large
variations in the unit weight of coal (from 3.34 to 10.06
kN/m3). The average unit weight of a two inch minus well
graded coal is 9.5 kN/m3. This value has been chosen for
aetermining the gravity load in this study.

Jenike and Johanson (1979) reported that for coal
material passing a number 8 mesh and having a moisture
content of 6%, the angle of internal friction ranges from
38° to 40°. This study uses an angle of internal friction
of material of 35°, 40° and 45°. They also stated that an
angle of wall friction on concrete varies from 26° to 31°.
Ravenet (1980) found the angle of wall friqtion on a rusted
steel sheet as 40°, on a corrugated steel sheet as 24°, on a
polished steel sheet as 17° and on a stainless steel sheet
as 8°. Problems with angle of wall friction bf 25°, 20° and
15° have been investigated. There is no significant
information on investigation of Poisson's ratio and modulus
of elasticity of coal. From geotechnical engineering
literature the average value of Poisson's ratio and modulus
of elasticity for coarse sand is found to be 0.3 and 1.5 x°
10° kPa. The values of Poisson's ratio used to investigate
their effect on material behavior are 0.25, 0.3 and 0.35,

coupled with a modulus of elasticity of 1.5 x 10°.
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5.2.3 Description of the Analysis

The analysis of the finite element models described in
Section A.2 is performed in two stages. In the problem
preparation stage input data is read and generated, element
shape functions and derivatives are calculated, column
heights and addressing array of the stiffness matrix are
formed, stresses, strains and material properties are
initialized at all integration points, and all basit load
vectors are formed. |

The gravity loads are applied to the structure assuming
no friction force. The increment of displacements/veloci-
ties thus obtained are used to calculate friction forces.
An underrelaxation factor for friction forces, Ry, between
0.05 and 0.12, is used to calcﬁlate the inc¢rements of
friction forces. Theée incremental values of friction
forces are added to the gravity load vector, and the problem
is resolved. The process is repeated until successive
solutions for friction forces do not differ by a preassigned
tolerance for léad Ap. The tolerance for
displacements/velocities, Ar, and loads (and friction
forces), Ap, used are 0.001 and 0.005 respectively. The
number of subincreﬁents (NI) vary from 10 to 15. The
maximum number of iterations allowed per load step and for
complete convergence of friction force is 30. An under-
relaxation factor for displacements/velocities, Ry: used
vary‘between 0.8 and 1.0, An initial/elastic stiffness

matrix is used throughout the analysis. The nodal reaction
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or normal forces obtained at the contact surface between the
material and the silo wall after convergence of friction
forces is used to determine the material pressure normal to

the wall.

5.3 Discussion of Results

Output of the analysis from program FEPILS consists of
nodal displacements/velocities, nodal friction forces and
normal forces or reactions at the contact surface between
the silo wall and the material, and stresses at gaussian
points. Lateral wall pressures are obtained from reactions
at the silo wall. Comparison of these pressures have been
made with the results obtained by classical theories,
discussed in Chapter é. Stress fields within the solid
material are.presented, and compared with Jenike's
predictions. The diplacement/velocity field is presented
and the effects of the coefficient of friction are
discussed. A parametric study is carried out to identify
the peftinent variables and to examine any visible trend in

their relation to the lateral wall pressure.

5.3.1 Coméarison of Pressures with Classical Theories

The lateral pressure exerted by the material on the
silo wall, from finite element analysis is presented in Fig.
5.2 compared with Janssen's, Reimbert's and Jenike's
pressure theories. The finite element curve is a digital

approximation with linear interpolation of pressures between
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adjacent nodes. The lateral pressure obtained from the
finite element analysis lies between Janssen's and
Reimbert's solution, if the depth of the material from the
free surface does not exceed the silo diameter. Down to
this depth the analysis is on the average about 20 percent
above Janssen's and 24 percent below Reimbert's solution.
Below that depth down to the transition, the pressure
exceeds Janssen's values by about 20 to 40 percent and
Reimbert's by about 2 to 15 percent. The analysis result is
about 20 to 80 percent below Jenike's upper bound
solution. A sharp increase in pressure is observed at the
transition from the cylindrical part of the silo to the
hopper. This is defined by Jenike as the peak pressure for
switch from peak or .active pressure field to radial or
passive pressure field at transition. The finite element
solution of this peak pressure is about 20 percent above
Jenike's. This peak pressure vanished at a depth less than
that suggested by Jenike et al. (1973, Part 3) which is 0.3D
slant distance of hopper wall below transition. Both
initial and flow pressures in the hopper, obtained from
Jenike's theory are less than the finite element
prediction. The analysis result is on the average about 65
percent above his initial pressure theory and about 200 to
300 percent above radial or flow pressure theory in the
hopper. Jeﬁike assumes linear decrease in pressure from
transition to zero at vertex of hopper, whereas finite

element solution predicts another peak value at outlet.
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Eibl et al. (1984) have suppressed normal and tangential
pressures at the outlet, therefore this peak does not appear
in their solution. However, their solution gives identical
pressure distributions in the cylindrical part of the silo

and hopper.

5.3.2 Stress Field

The résulting principal stress field of the finite
element analysis, when the silo is fully charged, and the
outlet is closed, is presented in Fig. 5.3. The major
principal stress acts in a vertical or close to a vertical
direction. Figs. 5.4 to 5.8 show the principal stresses for
various hopper geometry and cylindrical height to diameter
ratio, when the outlet is opened and material flows. The
direction of principal stresses in the cylindrical part of
silos do not change significantly, but they are reoriented
in the hopper section of silos. Subsequently the magnitude
of stresses decreases above the outlet and increases near
the transition from the cylinder to the hopper of the silo,
whereas no change in stress level is observed in the rest of
the cylindrical portion of silos. Jenike et al. (1968) ,
Walker (1966), and Waiters (1973) have described this stress
redistribution as the transition from an active state of
stress to passive state of stress in the hopper, while
active stress field is retained above transition in the
cylinder of the silo. Jenike et al. (1968) assumes an

arched or radial stress field in the hopper below
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transition, while the finite element result shows that this
radial stress field may extend only from 2 to 2.5 times the
diameter of the outlet above the outlet level. Above this
height the radial stress field does not exist.

Program FEPILS outputs yielding information at gaussian
pionts. Fig. 5.9 shows the yielded zones of material for
different hopper geometry. The yielded zone propagates
downwards from the free surface along the silo wall to the
transition with an increase in angle of wall friction and
decrease in angle of internal friction of the material. A
decrease in Poisson's ratio does not change this effect.

These have been illustrated in Figs. 5.10 to 5.12.

5.3.3 Displacement/Velocity Field

The deformed mesh is illustrated in Fig. 5.13 to 5.15
for angles of wall frictions of 15°9, 20° and 25°,
respectively. The broken line shows the original mesh
whereas the solid-iine indicates a deformed mesh. It is
obvious that the Coulomb friction mechanism has considerable
influence on the displacement/velocity field of the flowing
mass of the solid. The resistance to the flow increases
with increése in angle of wall friction. This is an effect
of high shear stress near the wall and especially in the
region above the outlet. However, the flow velocity is
approximately constant in the cylindrical area of silo
indicating that the material moves as a rigid body. Whereas

in the hopper area the flow velocity near the centre line is
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considerably larger than those near the wall of the hopper.

5.3.4 Influence of Various Variables on Lateral Wall
Pressure

The finite element results for lateral wall pressures
are presented in Figs. 5.l6lto 5.20. The variables examined
are the angle of internal friction, the angle of wall
friction, the hopper slope, the cylindrical height to
diameter ratio and Poisson's ratio. One variable is varied,
while the others are kept constant. For example, to
investigate the effect of varying the angle of internal
friction ¢, the angle of wall friction ¢', the density, v,
the hopper slope with vertical, 6', the height to diameter
ratio, modulus of elasticity and Poisson's ratio are kept
constant.

Analysis of Fig. 5.16 reveals that variation of angle
of internal friction does not have any significant effect on
lateral wall pressure. This variable does not appear in any
classical theory formulation for lateral wall pressure.

The effect of the angle of wall friction on the
pressures at the wall is illustrated in Fig. 5.17. The
diagram indicates an increase in wall pressure with decrease
in angle of wall friction. This trend is also indicatd by
Janssen's and Reimbert's formulas. The difference between
the pressure is greater at the transition and in the hopper
area. This is obviously a direct result of the amount of

load transmitted to the wall through friction. The
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percentage of load carried by the silo wall increases with
increase in angle of wall friction. If it is assumed that
the ratio of horizontal pressure does not change, then the
horizontal pressure is proportional to the vertical pressure
at any point in the material, and hence the lateral wall
pressure is inversely proportional to the angle of wall
friction.

The influence of hopper slope on wall pressure is shown
in Fig. 5.18. There is a slight increase in pressure in the
cylindrical part of the silo. The peak pressure at
transition changes greatly with increase in hopper slope.
Also, the average pressure normal to the hopper wall and at
the outlet increases with increase in hopper slope.

Fig. 5.19-illustrates the case when the hopper geometry
is not changed and the vertical height of the cylinder is
increased. A tremendous increase in peak pressure at the
transition and normal to hopper wall is observed. The
horizontal pressure on the cylindrical wall increases in
similar fashion with depth of material. Jenike's formula
(1969) for peak pressure at transition also gives an
increase in pressure with depth of stored material,.while
his solution for radial stress field in the hopper does not
account for the depth of material in the silo above
transition. The finite element solution shows that pressure
normal to the hopper wall also increases with an increase in
depth of material above transition.

The last parametric variable investigated in this study
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is Poisson's ratio, v. Fig.

wall pressure.

with a decrease
the cylindrical
v = 0.3 and for

distribution is

110
5.20 shows its influence on
In the hopper portion the pressure increases
in Poisson's ratio. At transition and in
part of the silo the pressure increases for

Poisson's ratio of 0.35 and 0.25 identical

observed.
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CHAPTER 6 - SUMMARY AND RECOMMENDATIONS

An incremental finite element formulation has been
developed to analyze displacement/velocity, stress and
pressure fields in axisymmetric silos during discharging. A
variational approach based on the principle of virtual work
has been employed, where Coloumb friction terms are
incorporated. The flowing solid material in a silo appears
to behave in a viscoplastic manner (Eibl et al. 1984). Due
to nonavailability of rate-dependent material law for coal,
which is the primary direction of this study, an elastic-
plastic material behaviour is proposed for this initial
study.

An isoparametric finite element of the serindipity
family is used to model the solid material in. silos, and
spring boundary elements are used to model the silo walls.
The Gaussian integration technique and a Newton-Raphson
iterative scheme are adopted in the program. Among three
possible approaches proposed in Chapter 3 for contact
problems incorporating Coloumb friction, an iterative
approach has been chosen as a first step for the rigofous
solution of the problem. The proposed friction model and
constitutive law are incorporated in program FEPILS.

Two iterative levels are involved. The first iterative
level is at the material level and the second is at the
friction force level. The algorithm used for the material

model is limited to strong materials with a lower bound on

112



113

the angle of internal friction of 35°. Although a crude
initial stress option exists it must of necessity be limited
to small values in order not to affect the final outcome.
Thus improvement of that model is necessary. On the other
hand, iterating over the friction forces implies reversal of

the displacement increment and hence oscillations of both
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smooth out the oscillation of convergence, an under-
relaxation factor has been introduced over the friction
forces. This factor appears to be problem dependant, and
hence judgement should be exercised to choose an efficient
value.

The results of finite element analyses of axisymmetric
silos during discharging are presented. They are compared
with the solutions of classical theories. The lateral wall
pressure in the cylindrical portion of silos shows good
agreement with Janssen's solution. The peak pressure at
transition is found to be 20 percent above Jenike's
solution. A decreased tolerance in friction forces produces
a better result. A tremendous variation in the pressure
field in the hopper area is found as compared to Jenike's
prediction. This variation may, in part, be due to the
severe dilation characteristics of the Drucker-Prager yield
surface, and in part due to the use of an elastic perfectly
plastic algorithm. The results may be improved by using a
more realistic yield surface which depends on all three

invariants of the stress tensor and perhaps by implementing



a strain softening plastic algorithm.

A local pressure peak is found at the outlet. This may
be due to the rigid displacement boundary conditions imposed
on the model at the outlet. Eibel and Hausler (1984) used a
zero force boundary condition at that location. In practice
it is known that the outlet design is generally soft.
Howevef, it does have some stiffness. Therefore, future
studies should attempt to clarify the existence of a peak
relative to a given outlet stiffness.

The stress distribution shows good agreement with
Jenike's predictions under both initial and flow conditions,
an active field when the outlet is closed, and a passive
field in the hopper when material discharges from the
silo. Jenike proposed a radial stress field for hoppers but
the finite element solution shows that this field may exist
only up to a distance equal to 2 to 2.5 times the outlet
diameter above the outlet.

A parametric study is carried out to predict the
iﬁfluence of pertinent variables on lateral wall pressure.
It is found that variation of the angle oﬁ interﬁal friction
and Poisson's ratio have neglible effect on pressure
field. The lateral wall pressure increases with a decfease
in angle of wall friction. The peak pressure at transition
and pressure in hopper area increases with increase in
hopper slope with the vertical. An increase in ﬁeight to
diameter ratio causes an increase in peak pressure at

transition and pressure on the hopper wall. The pressure
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field in the cylindrical part have identical distributions
with respect to depth of stored material.

The present method is an initial approach to modelling
the material behavior in a mass flow silo. Further research
in this area is necessary. The alternative approaches
proposed in Section 3.2 may be investigated for better
performance. An experimental study and formulation of a
rate dependent constitutive law of material is necessary. A
failure surface similar to Willam-Warnke surface, for solid
materials subjected to triaxial compression may be developed
for better representation of material response. A model or
full scale test may be carried out to investigate the
lateral wall pressure in order to compare with the finite
element solution. A numerical study on the convergence
criteria to handle ill conditioning of the material model is
necessary. This condition occurs when the hydrostatic.
stress is small and deviatoric Stress is very large as

compared to the yield stress of the failure surface}' 
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APPENDIX A - PROGRAM STRUCTURE (FEPILS)

A.l Introduction

Program FEPILS is a finite element Fortran Code for
analysis of material behavior flowing through axisymmetric
silos. The program assumes small displacements/velocities,
neglible rotations and infinitesimal strains. It is
originally designed for elastic-perfectly plastic type of
materials, but it can also handle linear problems.

This Appendix deals with the general description of the

program, the solution techniques and the flow of operations.

A.é General Description

Program FEPILS is based on the finite element program
FEPARCSS5 (Elwi and Murray, 1980). The program handles
combinations of linear, quadratic and cubic isoparametric
elements.

The elastic-plastic constitutive relation presented in
Chapter 4 is implemented in program FEPILS as the materiél
model.

The program is basically designed for analysis of
problems under gravity loads only. However it can handle
other types of loads, such as hydrostatic pressures,
.concentrated nodal loads and normal and tangential surface
pressures. These loads can be combined using the users's
specified load factors. Dead loads can be a combination of

gravity loads, hydrostatic pressures, and concentrated nodal
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loads. A separate load vector for_live concentrated loads
is provided. Normal and tangential surface pressures are
handled in two separate load vectors.

The input to the program is composed of control
parameters, material properties, nodal geometry, spring
boundary conditions, solid element information, material to
silo wall contact surface information, concentrated nodal
loads, normal and tangential surface pressure nodal
intensity distributions and hydrostatic pressure nodal
intensity distribution.

The output is composed of nodal displacements/veloci-
ties in the global coordinates, friction forces, normal
forces or reactions, normal and tangential
displacements/velocities of nodes lying on friction
surfaces, and local coordinate stress components for solid
elements.

~tNumerical integration is used for the evaluation of the
différent element relations as well as the loads, whenever
necessary. A number of Gaussian integration rules can be
chosen by the user, ranging from one point rule for linear
four node elements to a three by seven two dimensional rule
for higher order elements.

The program can use a tangential stiffness approach or
the initial load method (see Elwi and Murray, 1980). A
skyline in-core equation solver package (see Elwi, 1977 and
Wilson and Bathe, 1975) is employed for equation solving.

An iterative method for friction forces is employed
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using Coloumb's friction law as described in Chapter 3.
Element shape functions and derivatives evaluated at
the integration points, stresses and strains at integration
points and material properties are stored on sequential

files.

A.3 Solution Techniques
A.3.1 Numerical Method for Load and Friction Forces

A finite element friction model formulation for the
analysis of material behavior flowing through an
axisymmetric silos is presented in Chapter 3. This is a
displacement/velocity model. Therefore, it satisfies
kinematic compatibility everywhere and it approximately
satisfies equilibrium only on a-global level. The
incremental variation formulation of Section 3.2 leads to

the following set of equations.
[k1{ar} = {AR} - {A0Q} - (A.1)

where [k] is the structure stiffness matrix, <A> is the
increment of nodal displacement velocities, <AR> is the
increment of prescribed loads and <AQ> is the unbalanced
load at the end of the previous load step. Eg. A.l together
with the condition 3.4b make up a nonsingular system of
equations which can be solved for the increment of
displacement velocity <Ar>.

<AR> is a predetermined magnitude of load vector. As



described in Section 3.3.1 the friction forces are not known
in advance. Therefore, the problem is initially solved
without incorporating friction effects. After completing
the first iteration of the problem, the increment of
displacements/velocities at nodes are known. Using nodal
displacements/velocities at the friction surface the
friction force at noaes can be determined. These forces are
multiplied by an under-relaxation factor and added to the
corresponding nodal values in load vector <AR>. The second
and successive iterations for friction is carried out using
newly formed load vectors until convergence, as described in
Section 3.3.1.

For nonlinear and elastic-plastic material response the
Egq. A.l is solved by incremental piecewise linearization.
The increment of displacements/velocities obtained upon
solving Eg. A.l, yields an increment of strain. The stress
increment is obtained using constitutive matrix [c] and
strain increment <Ae>. The difference between the applied
loads and equilibrating loads, equivalent to the stress
state which satisfies the constitutive law is called the
unbalanced load. The state of stress which satisfies both
kinametic compatibility and equilibrium can be arrived at by
eliminating the unbalanced load through an iterative scheme.

The iterative schemes employed in this study are the
tangential stiffness method (Argyris, et al., 1974),
sometimes known.as the Newton-Raphson method (Zienkievicz,

1971) and the initial load method (Argyris, et al., 1974),
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sometimes known as modified Newton-Raphson method
(zZienkeiwicz, 1971).

In the tangential stiffness method, the stiffness
matrix may be evaluated at the beginning of each load
increment based on the current material properties. The
initial load method retains the initial stiffness matrix
until the méterial converges. This method needs a larger
number of iterations to satisfy equilibrium. The main
disadvantage of the tangential stiffness method is that it
may lose its positive definite character or become ill
conditioned when strain softening behavior is exhibited. An
improved convergence may be obtained for both methods as
follows.

(a) introducing an over-relaxation factor to improve

convergence of the initial load method

(b) using an under-relaxation factor and numerical
damping to enlarge the convergence domain of the
tangential stiffness method (Almroth, Stren and
Brogan, 1979 and Fellipa, 1974 and 1976).

(c) re-evaluating the stiffness matrix after every few
iterations in an initial load method. i.e.
combination of the two iteration schemes.

All the above methods of improvement have been implemented
in program FEPILS.

The Eucleadian norm method has been adopted to test the
converéence of displacements/velocities, loads and friction

forces of the iterative schemes. They can be described as



follows

1|ar < 2 (A.2a)
r r
AQi
JT 0 < g (A.2b)
IIAF}II )

where A and AR are the user specified tolerances on the
displacements/velocities and loads (and friction forces)
respectively, Arl is the increment of displacement/velocity
vector obtained in ith iteration, r is the current
displacement vector, AQi is the unbalanced locad at the end

R is the tdtal load vector, AF1 is the

of the ith iteration, T

increment of friction force vector at the end of ith
iteration and Fp is the total sum of friction force
vector. The symbol || || denots the Eucleadian norm.
A.3.2 Increméntal Method for Plastic Model

This section deals with the numerical technique adopted
for incorporating the elastic-plastic constitutive model
presented in Chapter 4. The strain increment is obtained

from the displacement/velocity increment solution of Eg. A.l

as

{Ae} (B] {Ar} (A.3)
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The strain increment thus obtained may be relatively large
to cause drift of the solution, particularly when the
resulting stress point, which does not satisfy the
constitutive relation, falls outside the yield surface.
This problem has been overcome by splitting the strain

increment into an equal number of smaller subincrements as
<Aes> = <Ae>/NI (A.4)

where NI is the number of subincrements. In this manner,
the stress point is changed gradually allowing close
simulation of the behavior and hence convergence to the
right answer. Let the stress components <o>, at the end of
nth iteration be known. A set of elstic trial stresses are
obtained as

i,e

{c }n+l (A.5)

= (o} + [c1° (8e ) 4
in which <Asi>n+l denotes the ith strain subincrement at the
end of (n+l)th iteration, and the second term on the right
hand side of Eq. A.5 denotes elastic subincrement {Aci}i+1.
These stresses are then tested with respect to the yield
condition. 1If the trial stresses do not violate the yield
condition, the material behavior is elastic. 1If the yield
condition is violated, the element has reached a plastic
state. Let the stress state at the end of (i-1)th strain

subincrement be elastic
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i-1 _ _
n+1) =f;, <0 (A.6)

£({c™ 7}
Let the next strain subincrement with stress {cl}n+l lead
the stress path to point B, penetrating yield surface, such

that

= £ >0 (A.7)

i
f({d }n+1) 1

violates yield condition. This indicates a transition from
elastic to plastic states occurs during ith strain
subincrement and (n+l)th iteration. 1In this case the stress
increment is subdivided into an elastic portion, A, and a
plastic portion after the yield surface. The stress at the
point where stress path penetrates yield surface is given by
{ci}

_ ie
n+l {c}n+1 + x{Ao }n+1 (A.8)

e
n+1

which the plastic behavior is encountered, i.e. f({cl}

where x{Acl} is the portion of the stress increment at

n+1)

= 0. The simplest approximation of the scéling factor, x,
is obtained by a linear interpolation in f (Zienkiewicz et
al. 1969) i.e.

(A.9)

The nonlinearity of function £ may yield
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i,e '
f({c}n + x {40 }n+l) =f # 0 : (A.10)
A better estimate for x is given by Nayak and Zienkiewica
(1972) by

£

X = X; = = 2 e (A.11)
<df/dc> {Ac }n+1

once the elastic portion of the strain subincrement x{Ass}
and the plastic fortion of the strain subincrement

(1-x) {Aes} have been determined the final stresses at the
end of ith subincrement and (n+l)th iteration is

i

{a7} = {c}n + x[c]e{Aei}-— (1 - x)[c]p{Ae;} (A.12)

n+1l
in which the second and third terms denote elastic stress
subincrement {Acl}:+1 and plastic stress subincrement

{Acl}g+l respectively. Fig. A.l represents the flow chart

of this incremental solution technique.

A.4 Flow Chart for Program FEPILS

Program FEPILS is divided into two main execution
stages, namely the problem preparation stage and the
solution stage. The former is performed to check the data,
whereas the latter is performed for solution of the actual
problem. A dry run option in the problem preparation stage

allows a check on the data. The number of subincrement,
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iterative scheme, tolerance on convergence, relaxation
factor, load factors and the number of iterations before
reevaluation of the stiffness matrix are specified by the
user. Numerical problems such as an ill conditioned
stiffness matrix, oscillatory convergence and exceeding the
maximum number‘of iterates stops the program automatically
and prints the current state of stresses,
displacements/velocities, friction forces, and reactions for
the user's consideration.

Fig. A.2 and A.3 show the flow operations of the two

stages of program.
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Fig. A.1 Flowchart for Elastic-Plastic Constitutive Law
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Stop

Flowchart of Problem Preparation Stage

137



138

[ Restore structure and loading information

i | Read trianularized
l Form total load vecfg;}—.- stiffness matrix

Y

Form and triangularize structure
stiffness matrix

]

Solve for an increment of displacement/ i
= velocity and update total displ/velocity
vector ]

AA

Yes No

Reformulate /
stiffness lUpdate stress and material properties
matrix

A

No

Number of iter- |.
ations exceeds L?btain unbalanced load vector
maximum?

Yes No Test convergence of displacement/
Y velocity and load

1]

Calculate reaction, friction force
and update load vector

A

No
Y )
Test convergence of - Number of
friction forces o iteraticn
exceeds
71 maximum
No
OK Yes
Y !
intout of displ/velocity, fricti
Y Printou f displ/ ity iction

forces, reactions and stresses

Fig. A.3 Flowchart of Solution Stage





