0
o o o]

NIV R

University of Alberta

Approximating Bandwidth
by Mixing Layouts of Interval Graphs

by

D. Kratsch
and
L. Stewart

Technical Report TR 98-06
June 1998

DEPARTMENT OF COMPUTING SCIENCE
University of Alberta
Edmonton, Alberta, Canada



Approximating Bandwidth
by Mixing Layouts of Interval Graphs *

D. Kratsch | L. Stewart *

Abstract

In this paper, we examine the bandwidth problem in circular-arc graphs,
chordal graphs with a bounded number of leaves in the clique tree, and k-
polygon graphs (fixed k). All of these graph classes admit efficient approx-
imation algorithms which are based on exact or approximate bandwidth
layouts of related interval graphs. Specifically, we obtain a bandwidth ap-
proximation algorithm for circular-arc graphs that has performance ratio
2 and executes in O(nlog® n) time, or performance ratio 4 while taking
O(n) time. For chordal graphs with not more than k leaves in the clique
tree, we obtain a performance ratio of 2k in O(n) time, and our algorithm
for k-polygon graphs has performance ratio 2k* and runs in time O(ns).

1 Introduction

A layout of a graph ¢ = (V| E) is an assignment of distinct integers from
{1,...,n} to the elements of V. Equivalently, a layout L may be thought of
as an ordering L(1), L(2),..., L(n) of V, where |V| = n. We shall use <z to
denote the ordering of the elements in a layout L. The width of a layout L,
b(G, L), is the maximum over all edges {u, v} of G of |L(u) — L(v)|. That is, it
is the length of the longest edge in the layout. The bandwidth of G, bw(G), is
the minimum width over all layouts. A bandwidth layout for graph G is a layout
satisfying (G, L) = bw(G).

The problem of finding the bandwidth of a graph has applications in sparse
matrix computations. An overview of the bandwidth problem is given in [5]. The
minimum bandwidth decision problem (Given a graph G = (V| E') and integer
k, is bw(G) < k7?) is known to be NP-complete [25], even for trees having
maximum degree 3 [15], caterpillars with hairs of length at most 3 [24] and
cobipartite graphs [21]. The problem is polynomially solvable for caterpillars
with hairs of length 1 and 2 [1], cographs [18], and interval graphs [19, 23, 28].
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Since the problem remains NP-complete for such simple classes of graphs,
and since we know of no algorithm for approximating the bandwidth of general
graphs, or even trees, to within a constant factor, it is worthwhile to investigate
approximation algorithms for this problem on restricted classes of graphs. Some
results in this direction have been presented in [21].

To date there was not much known about the approximation hardness of the
bandwidth minimization problem for graphs in general. Recently an approxi-
mation algorithm with performance ratio O(log9/2 n) has been given in [12].
Furthermore it has been shown in [2] that there is no polynomial time approx-
imation algorithm with performance ratio better than 3/2 for the bandwidth
minimization problem.

In this paper, we examine the bandwidth problem in circular-arc graphs,
chordal graphs with a bounded number of leaves in the clique tree, and k-
polygon graphs (fixed k). All of these graph classes admit efficient approxima-
tion algorithms which are based on exact or approximate bandwidth layouts of
related interval graphs.

Specifically, we obtain a bandwidth approximation algorithm for circular-
arc graphs that has performance ratio 2 and executes in O(nlog2 n) time, or
performance ratio 4 while taking O(n) time. For chordal graphs with not more
than k leaves in the clique tree, we obtain a performance ratio of 2k in O(n)
time, and our algorithm for k-polygon graphs has performance ratio 2k? and
runs in time O(n?).

Finally our approximation algorithm with performance ratio 2 for circular-
arc graphs is best possible, since there is no polynomial time bandwidth ap-
proximation algorithm for unit circular-arc graphs with performance ratio 2 — €
for any € > 0 unless P=NP [29].

2 Preliminaries

For G = (V, E), we will denote |V| as n and |E| as m. We sometimes refer to the
vertex set of G as V(G) and the edge set as F(G). We let N(v) denote the set
of vertices adjacent to v. The degree of a vertex v, degree(v), is the number of
vertices adjacent to v. A(G) denotes the maximum degree of a vertex in graph
(i. The subgraph of G = (V| F) induced by V' C V' will be referred to as G[V'].

The following well-known lower bound on the bandwidth of a graph is at-
tributed to [6] in [B].

Lemma 1 [The degree bound] [6] For any graph G, bw(G) > A(G)/2.

The distance in graph G = (V| E)) between two vertices u,v € V, dg(u,v),
is the length of a shortest path between u and v in (G. For any graph G =
(V, E), the dth power of GG, G¢, is the graph with vertex set V and edge set

{H{u, v}lda(u,v) < d}.

Lemma 2 [The distance bound] [21] (also attributed in part to [6] in [5]) Let G
and H be graphs with the same verter set V, such that E(G) C E(H) C E(G%)



or E(H) C E(G) C E(H®) for an integer d > 1, and let L be an optimal layout
for H, i.e., b(H,L) = bw(H). Then L approzimates the bandwidth of G by a
factor ofd i.e., b(G,L) < d-bw(G).

Many references, including [17], contain comprehensive overviews of the
many known structural and algorithmic properties of interval graphs.

Definition 1 A graph G = (V, E) is an interval graph if there is a one-to-one
correspondence between V' and a set of intervals of the real line such that, for
all u,v € V, {u,v} € E if and only if the intervals corresponding to uw and v
have a nonempty intersection.

A set of intervals whose intersection graph is G is termed an interval model
for G. Many algorithms exist which, given a graph G = (V| E), determine
whether or not G is an interval graph and, if so, construct an interval model
for it, in O(n + m) time (see, for example, [4, 7]). We assume that an interval
model is given by a left endpoint and a right endpoint for each interval, namely,
left(v) and right(v) for all v € V. Furthermore, we assume that we are also
given a sorted list of the endpoints, and that the endpoints are distinct. We
will sometimes blur the distinction between an interval and its corresponding
vertex, when no confusion can arise.

Polynomial time algorithms for computing the exact bandwidth of an inter-
val graph have been given in [19, 23, 28]. For an interval graph with n vertices,
Kleitman and Vohra’s algorithm solves the decision problem (bw(G) < k7) in
O(nk) time and can be used to produce a bandwidth layout in O(n?logn) time,
and Sprague has shown how to implement Kleitman and Vohra’s algorithm to
answer the decision problem in O(nlogn) time and thus produce a bandwidth
layout in O(nlog® n) time.

The following two lemmas demonstrate that, for interval graph G, a layout
L with (G, L) <2 - bw(G) can be obtained in time O(n), assuming the sorted
interval endpoints are given.

Lemma 3 Given an interval graph G, the layout L consisting of vertices ordered
by right endpoints of corresponding intervals has b(G, L) < 2 - bw(G).

Proof. Let L be the layout of vertices ordered by right interval endpoints.
We first observe that, for all u,v € V such that {u,v} € E and u <, v, all
vertices between u and v in L are adjacent to v. Now consider a longest edge
in L, i.e., an edge {u, v} such that |L(u) — L(v)| = b(G, L). Assume, without
loss of generality, that u <z v. From the previous observation, it must be that
degree(v) > L(v) — L(u) = b(G, L). Now the degree bound (Lemma 1) implies
bw(G) > b(G, L)/2. |

Lemma 4 Given an interval graph G, the layout L consisting of vertices ordered
by left endpoints of corresponding intervals has b(G, L) < 2 - bw(G).

Proof. Consider a set of intervals representing ¢, and the layout L, ordered
by left endpoints. Now, flipping the intervals of the model horizontally results



in another interval representation for (G, and the ordering of vertices by right

endpoints of these intervals is the reversal of L. Thus, this lemma follows from

the previous one. a
We will use the following lemma in subsequent sections of the paper.

Lemma 5 Let I be a set of intervals on the real line corresponding to interval
graph G = (V, E). Let p1 be a point on the line such that at least one interval
endpoint is to the left of p1 and only left endpoints are to the left of py. Let
pa be a point on the line such that at least one interval endpoint ts to the right
of ps and only right endpoints are to the right of py. Let Cy be the set of all
wntervals that contain p1, and Cs be the set of all intervals that contain ps. If
L s a layout for G in which vertices are ordered by increasing left endpoints
of corresponding intervals or by increasing right endpoints, or if L is a layout
produced by Kleitman and Vohra’s bandwidth algorithm [19], then

(i)Yo e Cy: {v,L(1)} € E, and

(ii) Vv € Cy: {v,L(n)} € E.

Proof. Part (i) for the left endpoint ordering follows from the fact that L(1) €
C4 and (1 is a clique. In the other two layouts, L(1) is the interval with smallest
right endpoint. This interval is either in C7 or is contained in all intervals of
Cy. Thus, (i) holds for the three layouts.

Part (ii) follows immediately for the right endpoint layout, since L(n) € Cs.
In the left endpoint order, L(n) is either in C or contained in all intervals of
C'y, implying (ii).

Finally, we prove (ii) for Kleitman-Vohra layouts. Please refer to the algo-
rithm of [19]. Consider the moment when the vertex of Cy with largest left
endpoint, ¢, is labelled. If only vertices of C; remain to be labelled, then the
last vertex will be an element of C; and we are done. Otherwise, there is an
interval ¢ with smaller right endpoint that remains to be labelled. This implies
that ¢ € S}ID was chosen in Step 8, and i ¢ S}ID. Since i ¢ S}ID, we have ¢+ jo < n.
Thus, M (c) < n, and there is some vertex already labelled that is adjacent to ¢
but not to i; otherwise, we contradict the current choice of ¢. Thus, the interval
¢ 1s properly contained in ¢ and therefore, i is properly contained in all intervals
corresponding to vertices of C's. This completes the proof. a

3 Circular-arc graphs

Circular-arc graphs are the intersection graphs of arcs on a circle. Thus, a graph
G = (V, E) is a circular-arc graph if and only if it has a (not necessarily unique)
circular-arc model or representation, consisting of a set of arcs on a circle, such
that, for all u,v € V, {u,v} € E if and only if the arcs corresponding to u and
v have a nonempty intersection. In such a model, we assume, without loss of
generality, that the arc endpoints are distinct, and we label the endpoints from
1 to 2n in clockwise order around the circle, starting at an arbitrary endpoint.
Thus, each vertex v € V corresponds to an arc given by its counterclockwise
endpoint, ccw(v), and its clockwise endpoint, cw(v). We refer to any segment



of the circle by its two endpoints and the direction of traversal, i.e., [p1, pa]ew
refers to the closed arc covered by a clockwise traversal beginning at p; and
ending at ps. The arc [p1, p2]eew 18 the set of all points in a counterclockwise
traversal from py to po, and parentheses will indicate that the arc 1s open at one
or both ends. Note that, for any two points (not necessarily arc endpoints) on
the circle, p; and ps, the arcs [p1, pa]ew and [p1, paleew cover the entire circle,
and their intersection is {p1, p2}.

Eschen and Spinrad [11] have given an O(n?) algorithm which determines
whether or not an n-vertex graph is a circular-arc graph. If so, the algorithm
produces a circular-arc model for the graph. Our algorithms assume that the
input circular-arc graph is given as a set of arcs on a circle. We are not aware
of any previous results on the bandwidth of circular-arc graphs.

Henceforth, we will refer to a set of 2n scanpoints on the circle, none of
which i1s an arc endpoint, such that exactly one of these points is between each
consecutive pair of arc endpoints. We shall label these points from 1 to 2n in
clockwise order, beginning at any one.

Our bandwidth approximation algorithm works as follows, for a circular-arc
graph . Roughly speaking, we cut the circular-arc representation in half, to
form two equal-sized interval graphs, compute exact or approximate bandwidth
layouts for the two interval graphs, and then mix the two layouts to form an
approximate bandwidth layout for G

Let G = (V, E) be a circular-arc graph with corresponding circular-arc rep-
resentation. The first step is to find a scanpoint p on the circle such that
|CLUCsUA| = |CLUC5U B| where C is the set of arcs that contain scanpoint
1, C5 is the set of arcs that contain scanpoint p, A is the set of arcs entirely
contained in (1,p)ew, and B is the set of arcs entirely contained in (1,p)cew.
Note that C; UCUAUB = V. We will use scanpoints 1 and p to cut the circle
and create two equal-sized interval graphs.

Procedure FINDp
Let C + C « all arcs that contain scanpoint 1; A« (; B+ V\
a <— |01|; b+—n {ClI |01U02UA|; b= |01U02UB| }
p+1
repeat untila = b or p = 2n
{ Invariant: ¢ < b}
{ Variant: 2n — p}
pep+l
if the endpoint between p — 1 and p is a ccw endpoint (say of arc ¢) then
Cz — Cz U {Z}
if i ¢ C; then
B+ B\ {i}
a—a+1
if between p — 1 and p is a cw endpoint (of arc ) then
Cz — Cz \ {Z}
if i ¢ C; then
A+ Au{i}



b+—b—-1
{ Now (5 is the set of arcs that contain point p}
{|ChUCyUA|=|ChuCyUB|}

Claim 1 Procedure FINDp will terminate with a = b.

Proof. We leave it to the reader to verify the stated invariant and variant. If
the loop terminates with p = 2n then all arc endpoints will have been examined.
For all arcs except those of (7, a will have been incremented by 1 and b will have
been decremented by 1. Let a; and a; be the initial and final values, respectively,
of variable a, and b; and b; the initial and final values, respectively, of variable &.
Upon termination of the loop with p = 2n, ay = a;+n—|Ci| = |Ci|+n—|Ci| = n
and by = b; — (n — |C1]) = n — n+ |Cy] = |C1]. But then by < ay (assuming
Cy # V), contradicting our invariant. i

We may assume that A and B will be nonempty; otherwise G can be par-
titioned into two cliques, one of which must have size at least n/2, implying
(by Lemma 1) bw(G) > n/2 — 1. Thus, any layout in which the first and last
vertices are not adjacent is a 2-approximation.

A set of arcs on a circle and the corresponding graph are shown in Figure 1,
along with possible choices of scanpoints 1 and p. In this example, C; = {a, b, ¢},
Cy={a,b,g,h}, A={d e, f},and B = {7, j k}.

)

Figure 1: A set of arcs on a circle and the corresponding circular-arc graph

We now describe how to construct two interval subgraphs of G' by cutting
the circle at scanpoints 1 and p. We wish to cut the circle and the arcs of Cy
and Cy at scanpoints 1 and p, producing two line segments, each with a set
of intervals that correspond to an interval graph. However, if any arc, say v,
contains both scanpoints 1 and p then it covers one entire part of the circle (i.e.
[1,plew or [1,plecw) and appears as two disconnected pieces in the other part.
Thus, this second part of the circle may not correspond to an interval subgraph,



as vertex v is represented by two disconnected intervals. We eliminate this
problem by shrinking v’s arc on the circle so that it no longer contains p and
thus v is removed from Cs. The altered set of arcs might not represent all of the
edges of G; specifically, some edges between v and elements of A (or B) may
be missing. Let E' denote edges of G that are not represented by the changed
arcs. Note that the sets C7 UC3U A and C7 U C5U B remain unchanged. These
alterations, applied to the circular-arc model of Figure 1, yield the set of arcs
shown in Figure 2. After the alterations, Cs is changed to {g,h}, C1, A, and B
remain unchanged, and E' = {{a, [}, {b,i}}.

\J

Figure 2: Altering the circular-arc model

Now, we can cut the circle and the arcs of C; and (5 at scanpoints 1 and
p, producing two line segments, [1, plew and [1, pleew. The arcs of the circular-
arc model become intervals on the two lines. Let I4 (respectively Ig) be the
resulting set of intervals on the line segment [1, pley (respectively [1, plecw). We
may assume that the intervals of Cy U Cy are altered slightly in 74 and in Ip
without changing intersections, so that interval endpoints are distinct.

Let G4 = (Va, Ea) and Gp = (Vp, Ep) be the intersection graphs of I4 and
Ip, respectively. Now, G4 and G'p are both interval graphs and (not necessarily
induced) subgraphs of (G. Furthermore, |[V4| = |Vg|, and E4 U Eg UE' = F.
Figure 3 illustrates this process for the example of Figures 1 and 2.

Our method for obtaining an approximate bandwidth layout for a circular-
arc graph is to first compute exact or approximate bandwidth layouts, L4 and
Lp, for G4 and G, respectively, and then mix the two layouts.

Different methods of computing L4 and Lp yield different approximation
bounds and time complexities for our algorithm.

Regardless of how we obtain L4 and Lpg, the mixing is done as follows.

Let k = |01U02UA| = |01U02UB|.
Given

La=La(1),La(2),...,La(k)
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Figure 3: Cutting the circular-arc model to form two interval graphs

and

Lp =Lp(l),Lp(2),...,Lp(k)
we begin by producing

Lar = La(1), Lp(1), La(2), L(2), ..., La(k), L (k).

For convenience, we will refer to elements of L4 as having the colour red
and elements of Lg as having the colour blue. Notice that Ly; will contain two
copies of each vertex of C; Uy — one red and one blue. For each v € C U (s,
we shall distinguish between the two copies of v in Ljys as follows: the red copy
will be referred to as v,.4 and the blue as vy,.. Each vertex of A U B occurs
only once in Ljyy.

From Ljs, we produce L by deleting the leftmost copy of each vertex of C
and the rightmost copy of each vertex of C'5. Recall that we constructed €y and
C'5 so that no vertex appears in both. Thus, L is a layout for G. We now prove
a bound on the width of L in terms of the widths of L4 and Lp.

Let G = (V, E) be a circular-arc graph, and let 14, Ig, G4, and Gp be
constructed as previously described, from a circular-arc model for G. Let Ly
and Lp be layouts for G4 and (g, respectively, satisfying:
eVoeCy: {v,La()},{v,Lp(1)} € E, and
eVveCy: {v,La(k)},{v,Lpk)} € E.

Let Ly and L be obtained from L4 and Lp as previously described.

Lemma 6 b(G,L) <2 -max[b(Ga, La),b6(Gp, LB)].



Proof. An edge violating the claim must have length greater than the longest
edge in Lpr. We will consider an arbitrary edge of G, {u,v} € E. We first
observe that if 4 and v have the same colour, say red, then |L(u) — L(v)| <
|Lar(w)— Lar(v)| = 2-|La(u)— La(v)]. Such edges, therefore, cannot contradict
the claim. We shall refer to such edges as red edges or blue edges, depending
upon the colour of the endpoints. Similarly, any edge for which we can find a
longer red or blue edge in Ljs cannot contradict the claim.

Consider the edge {u,v} € F, where u <p v. We must show that |L(u) —
L(v)| S 2- max[b(GA, LA), b(GB, LB)]

Case 1. The intervals corresponding to u and v intersect in I4 or Ig or both.
Hence {u,v} € E\ E’. Suppose, without loss of generality, that the intervals
intersect in I4. If w and v are both red then our earlier observation applies, and
we are done.

Next, suppose that u is red and v is blue. When L was formed from Ly,
vpeq Must have been deleted. If v,.q 1s to the right of vyye in Ly, then there is
a longer red edge {u,v} in Lps, and this completes the proof. Suppose v,eq is
to the left of vpjue in L. This implies that v € (', since the leftmost copy was
deleted from Ljs to form L. But then vy 18 adjacent to the first blue vertex in
Lyr, implying that |L(v) — L(u)| < |Lar (Veiue) — Las(2)| < 2+ |Lp(v) — Lp(1)].

Now, consider the case where u i1s blue and v is red. The red copy of u has
been deleted. If u,.q is to the left of upye 1n Las, then there is a longer red
edge in L. Otherwise, we have u € (5. But then ugy, 18 adjacent to the last
vertex of Lys, giving a longer blue edge.

Finally, we consider the case where u and v are both blue. If the corre-
sponding intervals intersect in /g then we are done by the previous argument.
Otherwise, one of v and v is in (] and the other isin Cs. If u € C7 and v € ()
then the red edge {uyeq, vreq} is longer in Ly than {uw,v} in L. If u € Cy and
v € C1 then wupyy, 1s adjacent to the last vertex of Lys, giving a blue edge in Ly
longer than {u, v} in L.

Case 2. The intervals corresponding to w and v intersect neither in I4 nor in
Ig.

Hence {u,v} € E’. Then it must be that exactly one of the vertices corresponds
to an arc which, in the original circular-arc representation, covers all of one side
of the circle and extends into the other side covering both scanpoints 1 and
p. Assume, without loss of generality, that the arc covers [1, ple and appears
as two disconnected arcs in [1,plecw. In constructing Ig, the part of the arc
that covered p and extended into [1, plecw Was removed. This must be the area
where the arcs corresponding to u and v intersected in the original circular-arc
representation. This implies that the other arc is in B, and therefore occurs as
a blue vertex only in Las and in L.

Suppose that u i1s the arc that was altered. Then v € C; and v € B. Thus,
it 1s the rightmost copy of u that remains in L. The red copy of u in Ly is
adjacent to all other red vertices, including Ly (2k — 1). Thus, if v in L is red,
then there is a red edge in Lys that is longer than the {u,v} edge in L. If u in
L is blue, then wu,eq has a longer edge in Ly to Lar(2k — 1).



Now consider the case where v was altered. Then v € C; and u € B. The
rightmost copy of v from Ly remains in L, and the red copy of v is adjacent
to all other red vertices in Ly, including Las(1). If v in L is red, then the red
edge {v, Lar(1)} is longer than the edge {u,v} in L. If v is blue in L, then v
is adjacent to Lys(2) by Lemma 5 and the construction of Lys; thus, there is a
longer blue edge. ad

Theorem 1 The bandwidth of a circular-arc graph can be approzimated to
within a factor of four in O(n) time, and to within a factor of two in O(n log? n)
time.

Proof. We have three approximation algorithms for approximating the band-

width of a circular-arc graph, namely, the algorithm previously described in

which:

(i) La and Lp are layouts of vertices ordered by left endpoints of intervals,

(ii) L4 and Lp are layouts of vertices ordered by right endpoints of intervals,

or

(iii) La and Lp are layouts computed by Kleitman and Vohra’s algorithm.
Algorithms ( ) and (ii) have time complexity O(n), provided the sorted arc

endpoints are given, and they output a layout L that satisfies:

b(G,L) < 2 -max[b(Ga, La), b(Gp, Lp)]
< 2 -max[2-bw(Ga), 2 bw(Gp)]
= 4 -max[bw(Ga), bw(Gp)]
< 4-bw(G)

Algorithm (iii) requires O(n log” n) time but produces a layout L satisfying:

b(G, L) 2 -max[b(Ga, La),b(Gp, Lp)]
2 - max[bw(Ga),bw(Gg)]

2 bw(G)

IN A IA

These performance ratios follow from Lemmas 5 and 6, and the fact that
any subgraph of graph G has bandwidth not larger than bw(G). i

4 Chordal graphs with clique trees having a bounded
number of leaves

A graph G is a chordal graph if every cycle of length greater than three has a

chord. Chordal graphs are exactly the intersection graphs of subtrees in a tree

[16]. More precisely, for each chordal graph G = (V, E), there exists a tree T
such that

10



e the vertices of T' correspond to the maximal cliques of G, and

e the vertices of T corresponding to cliques of (G containing any fixed vertex
v € V form a subtree T, of T.

Note the consequence that two vertices of G are adjacent if and only if their
corresponding subtrees have nonempty intersection. For a given chordal graph
G = (V, E), such a tree, called a clique tree for G, will have no more than n
nodes and can be constructed in O(n + m) time [3, 14].

We use the idea of mixing layouts of interval graphs, as in the previous
section. While a circular-arc graph roughly consists of two interval graphs ar-
ranged in a circle, a chordal graph may be thought of as several interval graphs
arranged in a tree-like structure. We restrict our attention to chordal graphs
having a bounded number of leaves in their clique trees. A chordal graph with
k leaves in its clique tree may be viewed as a collection of k interval graphs. For
a chordal graph G = (V, E') with at most k leaves in the corresponding clique
tree, we compute a layout L such that b(G, L) < 2k - bw(G).

The method is as follows, assuming a clique tree 7" has been computed for a

given chordal graph G = (V| ).
1. Root T" at an arbitrary vertex, r.

2. Let k be the number of leaves of T (excluding r). For each root-to-leaf path
P; in T, the collection of subtrees, restricted to P;, form a set of intervals.
Let I; be this set of intervals in which the left endpoint of each interval
is taken to be the one closer to r. Let G; = (V;, E;) be the corresponding
interval graph.

3. for i+ 1tokdo
L; < layout for GG; consisting of V; ordered by increasing left endpoints

of intervals (with ties broken arbitrarily, but the same way in all
the L;’s)

4. Mix the L;’s to form Ljs, as follows:
Layr + Li(1)La(1) La(1) ... L (1) L1(2) L2(2) .. . Ly (2) . ...

5. For each vertex v € V' that appears in more than one of the G;’s: delete
all but the rightmost copy of v from L. The result is a layout L for G.

The following lemmas apply in the context of the previously described method.
Lemma 7 FEach G is an interval graph.

Proof. This follows from the construction of the (;’s and properties of the
clique tree. a

Lemma 8 i UFEU.. . UL, = F.

Proof. If{u,v} € E then u and v occur together in some clique corresponding to
a vertex of T'. Thus the edge {u, v} will occur in every G; whose corresponding
path P; contains that vertex of 7. a

11



Lemma 9 V{u,v} € E, either
V1<i<k:ueV; implies (veV; and {u,v} € E;), or
Vi<i<k:veV; implies (u € V; and {u,v} € E;).

Proof. Let {u,v} € F. Then T, and T, intersect. Let ¢,, be the vertex of
T, closest to r, at which T}, and T, intersect. ¢y, 1s the closest to r vertex for
at least one of T,, and T} ; otherwise, we contradict our choice of ¢y, since the
path from ¢y, to v in 7' is unique and since 7T, and T, are both connected.

Suppose ¢y, is the vertex of T, closest to » in 7. Then, for any V; that
contains u, the corresponding path P; must contain ¢,,, and the conclusion
follows.

Similarly, if ¢, is the vertex of T, closest to r then, for every V; containing
v, the corresponding path P; contains cy,. m|

Lemma 10 FEach G; is an induced subgraph of G.
Proof. This follows by an argument similar to the previous proof. a
Lemma 11 (G, L) < 2k - bw(G).

Proof. Let {u,v} € FE and consider the length of {u, v} in L, i.e., |L(u) — L(v)|.
Assume, without loss of generality, that u <p v. If the copies of u and v
remaining in L are from the same interval subgraph G;, then

|L(u) = L(v)| |Lar(u) — Lot (v)]
k- |Li(u) = Li(v)|
2k - bw(Gy)

2% - bw(G).

IN N IN A

Suppose the occurrences of v and v in L are from different interval sub-
graphs, G, and G, respectively. Since {u,v} € F, we know by Lemma 9 that:
e v ey and {u,v} € Gy, or
e uc @, and {u,v} € G,.

If v € G, then the occurrence of u in G, is to the left (in Lps) of the
occurrence of v in G,,. Thus

|L(u) — L(v)] < |La(uof Gy) — Lar(v of Gy)
< ke JLo(a) - Lo(o)]
< 2k bw(Gy)
< 2k bw(G).

Otherwise, u ¢ G, and v € G,,, implying that the vertex of T, closest to r is
closer to r than the vertex of T, closest to r. That is, in I, left(v) < left(u)
and hence v <r,, u.

Let fuy be the last vertex of T (i.e. farthest from the root) that is in both
G, and Gy. The set of left endpoints from r to f,, are identical in both I, and
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I,. Suppose there are ¢ of them. Then, in Ly, both occurrences of v appear in
the first & - ¢ positions, and the occurrence of u from G, is to the right. This
contradicts that the occurrences of v and v under consideration satisfy u <y, v.

O

Theorem 2 Let G = (V, E) be a chordal graph having a clique tree with at
most k leaves. Then a layout L for G satisfying b(G, L) < 2k - bw(G) can be
computed in O(nk) time.

Proof. The proof follows from the previous discussion. a

Since the bandwidth problem remains NP-complete for trees, a subset of
chordal graphs, it is worthwhile mentioning how our algorithm handles trees.
Each of the P;’s will be a chordless path, and ordering by left or right interval
endpoints will give the exact bandwidth. Thus, our algorithm produces a layout
L satisfying b(G, L) < k - bw(G) where G is a tree with not more than k leaves.
This is the same bound that is produced by the breadth-first search heuristic of
Cuthill and McKee [8] (described in [5]).

5 k-polygon graphs for fixed &

We make use of the results of the previous section as follows. We transform any
k-polygon graph G into a chordal graph H having a clique tree with at most
k leaves, by taking a minimal triangulation of the input graph. We show that
there exists such a triangulation which is a subgraph of G*. Combining these
observations with Lemma 2, and the approximation algorithm of the previous
section, we obtain an O(n?®) approximation algorithm for the bandwidth of k-
polygon graphs which has performance ratio 2k2.

A graph G = (V,E) is a k-polygon graph if it is the intersection graph
of chords inside a convex k-polygon, where each chord has its endpoints on
two different sides of the polygon. A polygon representation, or diagram, for
G = (V, E), is a k-sided polygon together with a set of chords such that, for all
u,v € V, {u,v} € E if and only if the chords corresponding to u and v cross.

Circle graphs are the intersection graphs of chords inside a circle. Thus,
circle graphs are the union of all k-polygon graphs, over all & > 2. We consider
the degenerate case of permutation graphs to be 2-polygon graphs. A circle
model, or circle diagram, for circle graph G = (V| F) is a set of chords in a
circle such that two vertices are adjacent in GG if and only if their corresponding
chords cross. There is an O(n?) algorithm [27] which determines whether or not
a given graph is a circle graph and, if so, produces a circle representation for
it. Given a graph G = (V, E), it can be determined in O(|V|*) time whether
or not (G is a k-polygon graph and, if so, a polygon representation can be
constructed [10]. However, the general problem, given a circle graph, determine
the minimum & such that G is a k-polygon graph, remains NP-complete [10].

Our algorithm assumes that a k-polygon representation for the input graph
is provided.
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All of the notation in this section is either identical to that of [21] and [22],
or inspired by those two papers.

Definition 2 ([26]) A triangulation of a graph G is a chordal graph H with
the same vertex set as G, such that G s a subgraph of H. A triangulation H of
a graph G s called @ minimal triangulation of G, if no proper subgraph of H s
a triangulation of G.

Definition 3 ([9]) Let G = (V, E) be a graph and a,b two nonadjacent vertices
of G. The set S CV 1s an a, b-separator if the removal of S separates a and b
i distinet connected components. If no proper subset of S is an a,b-separator
then S 1s @ minimal a, b-separator. A minimal separator s a set of vertices S
that i1s a mintmal a, b-separator.

Lemma 12 ([9]) Let S be a minimal a,b-separator of the graph G = (V, E)
and let Cy and Cy be the connected components of G[V '\ S| containing a and
b respectively. Then every verter of S has at least one neighbour in C, and at
least one neighbour in Ch.

We denote by &p(H) the set of all minimal separators of a graph H. The
following characterization of minimal triangulations is given in [21].

Theorem 3 ([21]) A triangulation H of a graph G is a minimal triangulation
of G if and only if the following three conditions are satisfied.

1. If a and b are nonadjacent vertices of H, then every minimal a, b-separator
of H 1is also a minumal a, b-separator of G.

2. If S is a minimal separator of H and C' a connected component of H[V\ 5],
then the vertex set of C' induces a connected component in G[V \ S].

3. H = Gayp(r), where Gey(m) 15 the graph obtained from G by adding edges
between every pair of vertices contained in the same set S, for any S €

Sp(H).

In [22], an algorithm is presented which, given a circle graph G, finds a
minimum triangulation (i.e., one with the minimum number of edges) for G.
The algorithm is based on the following results.

Assume that an n-vertex circle graph 1s given as a set of chords in a circle.
Between each two consecutive endpoints of chords, add a point called a scan-
point. Let Z be the set of 2n scanpoints. A scanline is a chord of the circle
connecting two scanpoints.

Definition 4 ([22]) Let ¢1 and co be two chords of the circle representation.
A scanline s is between ¢y and cs if every path from an endpoint of ¢1 to an
endpoint of co along the circle passes through a scanpoint of s.

For any scanline s, we denote by S(s) the set of all vertices v of G for which
the corresponding chord intersects s.
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Theorem 4 ([20]) Let a and b be nonadjacent vertices of the circle graph G =
(V, E). For every minimal a, b-separator S of G, there exists a scanline s between

the chords of a and b such that S = S(s).

Note that the above results imply that, for every minimal a, b-separator S
of a k-polygon graph G, there is a scanline s with S = S(s), such that the
endpoints of s are on two different sides of the polygon.

Let G = (V, E) be a k-polygon graph. Consider a k-polygon model consisting
of chords C' inside polygon Pg. Let Z be the set of scanpoints, and let P(Z) be
the convex polygon whose vertices are the points of Z. In [22] Kloks et al. give
the following representation theorem for all minimal triangulations of a circle
graph in terms of planar triangulations of the polygon P (7).

Theorem 5 ([22]) Let G = (V, E) be a circle graph given as a set of chords
m a circle, and let 7 be the corresponding set of scanpoints. Then for every
minimal triangulation H of G there is a planar triangulation T of the polygon
P(Z) such that H = H(T), where H(T) is the graph with vertex set V, and
vertices u and v are adjacent in H(T) if there exists a triangle in T that is
intersected by the chords corresponding to u and v.

Combining this theorem and our previous observation, we have the following.

Theorem 6 Let G = (V, E) be a k-polygon graph given as a set of chords in
a k-polygon, and let Z be the corresponding set of scanpoints. Then for every
minimal triangulation H of G there is a planar triangulation T of the polygon
P(Z) such that:

e cvery diagonal in 1" has endpoints on two different sides of the k-polygon, and
o H = H(T), where H(T) is the graph with vertex set V, and vertices u and v
are adjacent in H(T) if there exists a triangle @ in T that is intersected by the
chords corresponding to u and v.

Consequently, a minimum triangulation H of a k-polygon graph G can be
computed by finding a minimum weight triangulation of P(Z), in which we
consider only chords with endpoints on different sides of the polygon. The
O(n®) dynamic programming algorithm for this computation for circle graphs
[22] can be adapted to the domain of k-polygon graphs; the adapted algorithm
retains its O(n?) complexity.

This algorithm also produces a planar triangulation 7" of P(Z) such that
H = H(T) for the minimum triangulation H. Now we construct a tree model
of the chordal graph H as follows. We take the dual of the planar triangulation
T (except the exterior face), i.e. two vertices of the tree are adjacent iff the
corresponding triangles share a diagonal, and assign to each vertex the set of
all chords intersecting the corresponding triangle of 7". This tree has at most &
leaves since any leaf corresponds to a triangle containing a corner of P¢;. Finally
we remove all non-maximal cliques by contracting suitables edges of the tree and
obtain a clique tree of H with at most &k leaves.
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Corollary 1 There is an O(n®) algorithm to compute for a given k-polygon
graph G a clique tree of a minimum triangulation such that this clique tree has
at most k leaves.

Thus, our approximation algorithm from the previous section applies to this
triangulation H of a k-polygon graph G.

Remark 1 One can show analogously that there is an O(n?®) algorithm that
computes for a given minimal triangulation H of a k-polygon graph a clique tree
with at most k leaves.

The following definitions and results parallel those of [21].

Definition 5 A minimal separator S s d-good if, for every nonadjacent pair
zandyin S, dg(z,y) < d.

Definition 6 A triangulation H of G is d-good if, for every edge {a,b} in H,
dg(a,b) < d.

The following theorem 1s a consequence of the characterization of minimal
triangulations given in Theorem 3.

Theorem 7 If every minimal separator of a graph G is d-good then every min-
wmal triangulation H of G s d-good.

Lemma 13 Let G be a graph without chordless cycle of length greater than
2k 4+ 1. Then every mintmal separator of G is k-good.

Proof.  Assume there is some minimal separator S containing nonadjacent
vertices # and y such that dg(x,y) > k. Now, by Lemma 12, we can find an
z,y-path in C;, and one in Cy. If we choose shortest such paths, then their
union is a chordless cycle of length at least 2(k 4 1), a contradiction. a

Lemma 14 Let G be a k-polygon graph. Then G has no chordless cycle of
length greater than 2k.

Proof. Tt is proved in [13] that chordless cycles have unique representations as
chords in a circle. Suppose G has a chordless cycle of length at laest 2k + 1 and
consider the unique representation as chords in a circle. The number of chord
endpoints must be at least 2(2k 4+ 1) = 4k + 2. Each side of the k-polygon can
contain at most four chord endpoints; otherwise, the two endpoints of a chord
would have to be on the same side. Thus there must be at least [4’“4—"'2] =k+1
sides. ad

Corollary 2 FEvery minimal separator of a k-polygon graph is k-good and every
menimal triangulation of a k-polygon graph G is k-good.
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A triangulation H of the graph G is d-good if and only if H is a subgraph
of the graph G¢. Consequently, by Lemma 2, any layout L of a d-good trian-
gulation H of G with b(H, L) < ¢-bw(H) fulfills 6(G, L) < d - ¢ - bw(G), where

¢,d > 1 are constants.

Theorem 8 Let GG be a k-polygon graph, H a munimal triangulation of G, and
L an approzimate bandwidth layout for H with b(H, L) < 2k-bw(H), as obtained
in the previous section. Then bw(G) < k- bw(H) < 2k* -b(H, L).

Theorem 9 Let G be a k-polygon graph given as a k-polygon representation.
Then a layout L satisfying b(G,L) < 2k* - bw(G) can be computed in O(n?)
time.

6 Conclusion

We have presented polynomial time bandwidth approximation algorithms for
circular-arc graphs, chordal graphs whose clique trees have a fixed number of
leaves, and k-polygon graphs for fixed k, based on the idea of mixing exact or
approximate bandwidth layouts for interval graphs.

Many questions remain unanswered in the area of bandwidth minimization;
a few of them are:

e Are there bandwidth approximation algorithms with lower time complex-
ities or lower approximation ratios for these graph classes?

e What is the complexity of bandwidth approximation, in general?

e Can the exact bandwidth be computed in polynomial time for permutation
graphs or for circular-arc graphs?

e Can the idea of mixing layouts be used to advantage in other domains?
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