On sonobuoy placement for submarine tracking
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ABSTRACT

This paper addresses the problem of detecting and tracking an unknown number of submarines in a body of
water using a known number of moving sonobuoys. Indeed, we suppose there are N submarines collectively
maneuvering as a weakly interacting stochastic dynamical system, where N is a random number, and we
need to detect and track these submarines using M moving sonobuoys. These sonobuoys can only detect the
superposition of all submarines through corrupted and delayed sonobuoy samples of the noise emitted from the
collection of submarines. The signals from the sonobuoys are transmitted to a central base to analyze, where
it is required to estimated how many submarines there are as well as their locations, headings, and velocities.
The delays induced by the propagation of the submarine noise through the water mean that novel historical
filtering methods need to be developed. We summarize these developments within and give initial results on a
simplified example.
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1. INTRODUCTION

Although passive maneuverable sonobuoys are a very effective countermeasure against today’s stealthy sub-
marines, they have critical drawbacks in use. Measurements from the sonobuoys’ hydrophone arrays are very
sporadic due to sonobuoy deployment patterns and limited battery life. Moreover, the data sampled by the
sonobuoys are distorted by the propagation loss and corrupted by ambient noise factors like temperature, cur-
rent and pressure variations. Finally, both localizing relative direction from the sonobuoys and processing of
the three dimensional measurements are inherently complicated. Our solution to resolving these problems is to
employ mathematical models and methods. In particular, the position-dependent propagational delay of the
sonobuoy sound pressure forces us to develop a novel historical filtering approach.

1.1. Water body
We model the ocean as the negative half space
R ={¢=(z,y,2) €R® : 2 <0}, (1)

so points in the ocean are constrained to have a negative vertical component. Moreover, for exhibition purposes,
we assume that the ocean is completely homogeneous and that sound pressure hitting the surface of the ocean
will reflect back in a lossless manner.
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1.2. Submarine signal

We consider an interacting multiple target tracking problem of a random number N of submarines, where each
submarine is constrained to remain under the ocean surface. For simplicity, we take each submarine to be a
sphere with radius € > 0. This means that the center of mass of the submarine is constrained to be in R? _,

where
R, = {¢=(z,y,2) € R® : 2 < e} (2)

We also force the submarines to stay above a deepest value zpi, < —2¢ to reflect the reality that submarines
can not go arbitrarily deep due to pressure constraints.

The three dimensional position, orientation, and forward speed of the i** submarine is modeled by a diffusion
process designed to keep the position of all submarines in R® _ with their depth above zmin, their velocities v
within physical constraints vmin < v < vpmax for some 0 < vpin < Umax, their angles of attack within physical
constraints ¢nmin < ¢ < Pmax for some -3 S ¢min < 0 < ¢nax < 5, and their orientations adjusted to avoid

i
collisions. In particular, suppose X} = | y! |, v}, 6}, and ¢! € [Pmin, Pmax] represent the three dimensional
zf
position, forward speed, horizontal bearing, and angle of attack of the i** submarine. Then, we define the
interaction terms for the it” submarine with respect to the other submarines to be

P+ i —ur) + (-2 (et —af)? + (i —up)? + (- Z?)Q}

N i yn) cos(B? xt — ) sin(6?
Ai _ Z [(m (y; —vt') (6%) (z #')sin(6;) (3)

n=1,n#i

and

(zf —2f)? + (i —yi)? + (e — 20 (2i—2f)? + (i —yf)? + (2 — 2')?

I} =

N i n i i n)2 i )2 gin(hi
5 l (2 — =) cos(g}) V@] —a})? + (i — g sin(é) ] @

n=1n#i
In particular, A and T} are used to control the bearing and angle of attack, respectively, of the submarines in
such a way as to try to avoid collisions with other submarines. We also use control of the angle of attack to

ensure that the submarine does not leave the water or go too deep. The total control on the angle of attack is
then given by

3

. .
=i\3 [ _Pmax—¢; \* ~i
~ (72)* (¢>maxf¢mm) 7wz0 c c :
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and the dynamics of the i*" submarine are given by

dz! = vl cos(?) cos(¢i)dt + o, dW"

dy} = visin(0?) cos(¢i)dt + o, dW}"

[ dX; } | dzi = visin(@i)dt + o.\/(— — 20) (2] — Zmin) WS
dVi | T | dfi = cpAldt + gpdW) ’

dg} = ~idt + 04\ (Gmax — 61) (D} — Gmin) AW, |

dvi = cy(vaya — vi)dt + 0y v/ (Vmax — V) (V; — Umin)dW ]

where {Wz’i,Wy’i,T/I/'Z7i,We’i,W‘W,T/V”’i}z1 are all independent Brownian motions, the ¢’s and ¢’s are all
positive constants, and vqyg = ”"“Jr% We are really interested in the counting measure that keeps track
of the state of all submarines but does not differentiate which one is which, so we define E as the collection of
finite counting measures over R® and S; € E by

N
St = Z6Xz7\/'ti: (7)
j=1
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where 6, puts a point mass at the location z € R®. Now, since the sound pressure in the system depends upon
the current and past states of the signal S;, we define the pathspace version of this process Sy € CE[0, 00) by

. Sr <t
s ={ & 751 ®)

1.3. Noise emission

Each submarine is assumed to fit in a three dimensional e-ball B(X/,e) centered at the location X} of its
centre of mass. It then emits noise pressure distributed over B(X},¢) according to some infinitely continuously
differentiable R-valued function © of R?, i.e. © € C>(R?). We assume that © is even with respect to z, i.e.
O(z,y,2) = O(z,y, —z), and satisfies

0 >0, @13(075)0 =0, and O(2)d= =1, (9)
B(0,¢)
T
where B(0,¢)¢ is the complement of B(0,e) and 2= | y |. For example, © could be
z
_ 1 = 1
@(E) - { Co eXp{ 527‘E|2} |‘—‘| < 6. , where co = ) (]_0)
0 otherwise fB(me) exp {_rmf} d=

is chosen so that [, ©(Z)d= = fB(O o) ©(E)d= = 1. Then, the noise emitted by the ith submarine at time ¢ is
assumed to be (2 — X}).

To approximate the noise generated by all N submarines, we let 7' > 0 be chosen so that all noise generated
prior time —7 has left the area of interest by time ¢t = 0 and define the noise generation function

N
[6,5) =Y OE-X))= | OE-7%(2))dS;(x) in (-T,00) x R, (11)

i=1 R®
where 7% denotes the 3 dimensional projection onto the positional component, i.e. 7TX(|: i)/( }) = X. This

function f(¢,Z) represents the superposition of noise emitted from all submarines at time ¢ and at the location

—
—

1.4. Noise propagation

By our assumption that the ocean is homogeneous and with perfectly reflecting surface boundary, the sound
pressure u(t,z) from the N submarines follows the wave equation

d?u(t; 1
T2 Ity 2) + fm,,2) in (<T,00) < B (12)
¢
d
u(—T;m,y,z) = 07%”(_T;m7y72) =0in ]R:i
d
Eu(t;m,y,O) = 0in (=T,00) x R?,

where ¢ is a known speed constant. The ocean is considered to be infinitely deep to avoid further reflections,
which is a usable approximation in the middle of the oceans. We let the unique solution to this equation be
denoted u(t,Z;Sp,4) to highlight the dependence of the noise on the historical states of submarines through
the forcing term f(¢;z,y, z).
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1.5. Sonobuoy locations

”, A M e . i 2
The sonobuoy positions {ng} are maneuverable within the constraints that ‘%‘ < K, and ‘ddtzt

: < K,.

i=1 — a
For simplicity in this exhibition, we take the sonobuoy paths to be known, i.e. deterministic. Future work will
consider the case where the sonobuoys can be controlled based upon the observations that arrive from previous
sonobuoy measurements.

1.6. Sonobuoy observations

At each measurement instant 0 < t; < t2 < ..., there are M measurements, one from each of M sonobuoys.
The measurement Y}/ (n;, ) received in the command center from the it" sonobuoy at the position nz, and at the
time ty is a function of the sound pressure distributed over the sonobuoy and then corrupted by noise:

g

Yk n . ) . .

YVe=|.  Yi(n) = e 9" (E —ng )ulte, Z; S, )AE + Vi, 0<i < M, (13)
YkM(U)

where {V;} is a RM -valued independent YA(0,1) sequence. Here, the {¢%(-)}, are some given generalized
functions that represent the density of the hydrophone array as well as its sensitivity to sound pressure, and
{nt, M C RR® are the sonobuoy locations at time t;. For simplicity, the ¢’ can be taken to be

L
$'(2) = 00,81 (14)
1=0
for some small 8 > 0, in which case
Yi(n) =Y ulte,ni, = (0,0,80)7; S0, + Vi, 0<i<M. (1)
=0

This would represent the situation where we are sensing the sound pressure at L equally spaced pinpoint
locations directly below each sonobuoy.

1.7. Objectives

The objective is to calculate the best mean-square estimate of the submarine paths given the sonobuoy obser-
vations

E[S[O,tk]|0—{1/17"'7yk}] ) (16)

efficiently and accurately on a computer.

2. METHOD
2.1. Notation

For any topological space X, we let B(X), C (X), C (X) denote respectively the bounded, measurable; continu-
ous; and bounded, continuous functions f : X — R. Next, recalling that E is our space of counting measures, we
let Cg[0,00) denote the E -valued continuous functions of (time) [0, 00). Moreover, we let 7; be the projection
function from Cg[0,00) to E at time ¢, meaning that m(S) = S; for S € Cg[0,0). Finally, we let C*(R") be
the k£ times continuously differentiable R-valued functions with compact support on R™. To keep track of all
of the information generated by the submarine signal and sonobuoy observations, we define 7Y = o{S;, Y} :
s <tandt; <t} and F¥ = FPY. Moreover, to keep track of the information given by the observations alone,
we define 7Y = o{Y1,...,Y;} for k=1,2,...
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2.2. Mathematical equation for the historical signal

To handle the reflections at the surface, we let X;, V, € B _ be the mirror image of X, V;' over the plane z = 0,
set Sy = Ejvzl Oxivi + Ejvzl b~ i, and take (D(£),£) C C(E) x C (E) to be the weak generator for the
Markov process {Sg, t > 0}, so that

M () = o(St) — o(So) — / Lo(S,)ds, (17)

is a continuous {7}, -martingale for each ¢ € D(L). Now, since we must work with the pathspace version
of this process, it is convenient to define a pathspace variant of our operator that will be the weak generator for
t = Sp,q € Cgl0,00). With this in mind, we let I™ = {r/™}" | be such that /™ C I™*1 T = USe_ I"™ is dense
in [0,00),and 0 = 73" < 7" < --- <1y < 7. Then, we define D(Ly,) to be the linear span

sp {(pl(ﬂ'-rlm) com(Tem) s € D(L), m = 1,2, } (18)
for s € [0,00) and take Ly 4 to be the operators on B(Cg[0,00)) defined on D(Ljg ) by
Lio,s101 () pm (Trm) = @1 (Trn) X o0 X @1 (Trm ) X L{9j,m) (75) (19)

for 7" < s < 7", where @ ;m(2) = @;j() - @m(z). This operator is necessarily time-inhomogeneous even
when the original operator is homogeneous. Since these domains are only measurable functions, we can not
immediately use the fact that these functions separate points on Dg[0,00) to conclude that they separate
probability measures. However, we can show that if two probability measures u', u? agree on D(Lyp,s)) they
agree on the cylinder sets and hence on B(Dg[0, c0)). With this pathspace operator, we can define the historical

martingale problem

t
ME(®) = 8(5) — 8(50) — | Loy @(So.)ds, (20)
0
a continuous {]—'ts } >o-martingale for each ® € D(Ljp,5)). In particular, one can readily verify that
m T AL
M (pr(mrp) - pm () = Z/ ©0(Sro) -+ 9j=1(Sr;_1 JAM (9jm)- (21)
j=1 T AL

Equation (20) uniquely characterizes the distribution of the submarine paths and will be useful in characterizing
the optimal estimate of the submarine locations given the observations.
2.3. Explicit solution for the wave equation

To process the sonobuoy observations, it is convenient to derive an explicit solution for the sound pressure  in
terms of the historical submarine paths. The solution to the wave equation (12) at time ¢ and point (z,y, z) is

1 g(t_'_T_|\/E(m7yaz)_(5707C)|’€797<)

wlti2,y,2) = - / dedgdc, (22)
4T JB(Ve(e,y,2)it+T) IVe(z,y,z) — (£,6,0)]
where
. _ | flbzy,z) 2<0
sty ={ o) oSl 2

In terms of the submarines, the solution is

N ) —i
5 [066,0 = Xi | iwyoy o) + OUED D = Ko | Vo) (600))

ultizy,2) = / = dgded(
( ) B(v/e(w,y,2)it+T) dr|\/e(z,y,z) — (£,6,0)]
N . _ —
/ ; |:6(E - thf|\/5(z7y7z)—5|) + 6(‘:‘ - Xt7|\/E(z7y7z)fE|) ( )
= = - d= 24
B(ve(,y,2)it+T) dr|\/e(x,y, z) — E|

= u(t;r,y,2; S0,4)-
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This explicit representation will ease the computer evaluation of the conditional distribution for the historical
signal given the observations.

2.4. Computation via Bayes’ rule

In order to calculate the distribution of the signal given the observations it is easier to first calculate this
distribution with an artificial (reference) probability measure and then to convert back using Bayes rule. With
this in mind, we define

hy,
h? , . .
he=| F | where hi = / BL(E 1}, Jult, B Sjo.u) ), (25)
. R
hi!
and i
. _ 1 _ _ 1 -
Ay = H ¢j, where ¢; = exp {—thE 2V — §th ¥ ’%} = exp [—thz %Y + 5h}’z h;| . (26)
j=1

In the case that ¢*(Z) = ZlL:O 8(0,0,—p1), we would have that

L

i =Y ulte,ni, — (0,0,80)7; Sjo,e,), for i =1,2,..., M. (27)
=0

In either the general or specific case, we set
k
Zy=A7 =T (28)
Jj=1

Now, {Ax} is a {f,fy}k>1—martingale and we can use Girsanov’s theorem (and extension) to define a new
probability measure on ]—'OTSOY o
P(I) = P(L4;) Yl e FJY (29)

for all t > 0. Therefore, letting £, E denote expectation with respect to P, P respectively, using the fact that

Slo,¢ 18 ffY—measurable and recalling Bayes’ rule, we have that

E[W(‘?[O,tk])zuflz/]
EZ|FY ]

E[p(Spo,0)|Fi 1 = (30)

for ¢ € B(Dg[0,00)). Since the denominator and numerator of (30) are both calculated from E[g(S(o,¢,]) Zr| Fy |
with ¢ = 1 and g = ¢ respectively, we only need a method of computation for

10,59 = E[@(Sjo.4) Ze|Fy ] for t € [tr, tegr) (31)
over a rich enough class of functions ¢ : Cg[0,00) — R, such as D(Ljgg))-

2.5. Weighted particle method

By the method of the previous subsection, we only need to find an approximation for
10,09 = E[0(Sjo.n) Zr| Fy ] for t € [tr, trtr)- (32)

However, Sjg 4 is independent of ]—',z/ with respect to P. Therefore, we can construct independent particles
t— S[’(’}t] with the same law as t — Sjg ;) and define the weight of the m*" particle by

k

. _ 1 _

Zir = [J exp [h}jmz 7Y — ihj?m Y2 hjm| (33)
j=1
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where

= /Rg 0% (2 = np, ultn, B S 4 )dZ, for i = 1,2,.., M, m =1,...,n (34)
in the general case or
L
bom = D ulti, i, — (0,0,807; 8,0, for i =1,2,., M, m=1,..,n (35)
=0

in the case that ¢!(Z) = ZZL:() 8(0,0,—p1)- Then, using the law of large numbers, one has that

1 & oo -
- PIREE ) Zi "= Elp(Si00,)) Zk|Fy ] for ¢ € D(Lyg,)) (36)

m=1
and

1 mn 0
EZ [Ot] Zi = 10, () (37)

2.6. Resampled particle method

The method of the previous subsection works in theory but suffers in practice due to the fact that the particle
n
locations {S[’(’)"‘ tk]} are not affected by the observations, but rather only by the particle weights Z;*. As a
? m=1

result, the particles do not represent the submarine signal well and the approximation tends to break down in
practice. To counteract this problem, our group has previously developed the Selectively Resampling Particle
filter. This method does pairwise resampling of the particles, starting with the two with the highest and lowest
weights. It replaces these two particles with two particles both having the path of the highest weighted particle
with high probability or the path of the lowest weighted particle with small probability, and both with weights
equal to the average of the two previous weights. This is done in a manner so as not to introduce bias into the
system. The process is repeated until the weights of all particles are within a given bound.

3. RESULTS

Software implementing the above solution has been constructed and shows promise in initial trials with a single
submarine. However, it is not yet completed to work with multiple submarines.

3.1. Example problem

The problem has been implemented with concrete values for the many parameters involved. The radius of
the submarines € is taken to be 0.01, and the area of interest is the ocean in [0,1] x [0,1] X [2min = —1, —€].
Submarines that leave this area of interest are considered, as a simplification, to have absolutely no interaction
with the remaining simulation. The submarine constraints vmin, Umax, ®min, and @max take the values 0.001,
0.005, — 7, and 7. Constants of the submarine dynamics ¢, and ¢, take values 0.000001 and 0.01, while ¢y and
cg are unnecessary with only one submarine. The constants for the noise terms in the submarine dynamics are
0, =0y =0, =0.001, 09 =0.08, 04 =0.05, and o, = 0.2.

For calculation of the generated noise, a value of ¢ = 0.01 implies that the value for cg must equal approxi-
mately 4.75958 x 105. The speed constant ¢ of transmission through the water is taken to be 1, and this means
that a value of T = 4 is enough to ensure that both the direct and reflected sounds made in the area of interest
at time —7 will have all left by time 0.

As a simplification, the sonobuoys are assumed to move along a known path, taken to be a circle of radius 0.3
centered within the area of interest. Four sonobuoys initially take positions at the east, north, west, and south
points of this circle and each move counterclockwise about the circle with a speed of one half degree of rotation
per unit time. No sonobuoys are added or removed in this stage of the research. Each sonobuoy has L = 5
hydrophones which each descend a distance 5 = 0.01 below the previous, with the first at the surface. In the
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noise function Vj, for the sonobuoy observations, the noise for each of the sonobuoys is taken to be independent
and identically distributed, so that the matrix X, is a diagonal matrix with entries o, = 0.15.

While filtering, samples of the signal need only contain a short history of sample submarine states since any
noise generated from earlier submarine positions will have left the area of interest. A Selectively Resampling
Particle filter, previously called a hybrid weighted interacting particle filter, with n = 3000 particles is sufficient
to provide excellent tracking results in an efficient computation.

An example simulation is shown in figure 1 and figure 2. In these figures, the ocean truth is at the left, the
observations at the sonobuoys are displayed in the middle, and the state of the filter is displayed at the right.
The submarine location is shown as a circle trailing the past path of the submarine. Each sonobuoy is shown
as a square. Note that the sonobuoys have moved counterclockwise from time 15 to time 100. The four lines
in the observation display indicate the sound pressure Y,f, i = 1,2,3,4 experienced at each of the sonobuoys.
Positions of particles in the (z,y) plane are shown as white dots in the filter display, and the true location of
the submarine is shown as a red circle in order to facilitate visual inspection of filter success. It can be seen

that by time 100, the filter has substantially localized the (z,y) position of the submarine.

Figure 1. Example simulation at time 15.

Figure 2. Example simulation at time 100.

3.2. Performance

Whiile the filter does not always hold a close localization of the target submarine, it does track near to the target
after an initial detection phase. Also, the target is almost always detected successfully, meaning that eventual
localization does occur. Holding a close localization at all times is not to be expected, since the observations are
composed of noise pressures in the water that are detected from past positions of the submarine. If the submarine
takes an unlikely maneuver, the filter will provide a greater likelihood to states to which the submarine would
have been more likely to move until such time as the observations provide correcting information.

Time constraints did not allow the production of graphical analyses of the filter performance before publi-
cation.

4. CONCLUSIONS

A promising method has been developed to track submarines using the data from maneuvering sonobuoys.
Initial tests with this filter using the parameters given above demonstrate a consistent ability to localize and
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track one submarine with random initial state. Further work is ongoing to measure the results, to provide
tracking of multiple submarines, and to determine optimal control of the sonobuoys.
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