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Czech Republic5

bFaculty of Sciences, University of South Bohemia, Branǐsovská 1760, 370 05 České Budějovice, Czech Republic6
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Abstract

Tree-killing bark beetles are major disturbance agents affecting coniferous forest ecosystems. The

role of environmental conditions on driving beetle outbreaks is becoming increasingly important as

global climatic change alters environmental factors, such as drought stress, that, in turn, govern tree

resistance. Furthermore, dynamics between beetles and trees are highly nonlinear, due to complex

aggregation behaviors exhibited by beetles attacking trees. Models have a role to play in helping

unravel the effects of variable tree resistance and beetle aggregation on bark beetle outbreaks.

In this article we develop a new mathematical model for bark beetle outbreaks using an analogy

with epidemiological models. Because the model operates on several distinct time scales, singular

perturbation methods are used to simplify the model. The result is a dynamical system that tracks

populations of uninfested and infested trees. A limiting case of the model is a discontinuous function

of state variables, leading to solutions in the Filippov sense. The model assumes an extensive seed-

bank so that tree recruitment is possible even if trees go extinct. Two scenarios are considered for

immigration of new beetles. The first is a single tree stand with beetles immigrating from outside

while the second considers two forest stands with beetle dispersal between them. For the seed-bank

driven recruitment rate, when beetle immigration is low, the forest stand recovers to a beetle-free

state. At high beetle immigration rates beetle populations approach an endemic equilibrium state.

At intermediate immigration rates, the model predicts bistability as the forest can be in either of

the two equilibrium states: a healthy forest, or a forest with an endemic beetle population. The

model bistability leads to hysteresis. Interactions between two stands show how a less resistant

stand of trees may provide an initial toe-hold for the invasion, which later leads to a regional beetle

outbreak in the resistant stand.
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1. Introduction11

Tree-killing bark beetles (Coleoptera: Curculionidae, Scolytinae) are important disturbance12

agents affecting coniferous forest ecosystems, and population outbreaks have resulted in extensive,13

landscape scale tree mortality events globally (Schelhaas et al., 2003; Meddens et al., 2012). In14

their native habitats, bark beetle-caused tree mortality, and its interactions with other disturbances15

including fire, play key roles in forest succession, species composition, and nutrient cycling (Hicke16

et al., 2013; Hansen, 2014). Recently, however, changing climate is altering bark beetle outbreak17

dynamics indirectly, through effects to host trees (Chapman et al., 2012; Gaylord et al., 2013; Hart18

et al., 2014), and directly, by influencing beetle phenology, voltinism and the probability of survival19

(Bentz et al., 2010; Safranyik et al., 2010; Bentz et al., 2014; Weed et al., 2015). With continued20

changes in climate, trajectories of future forest succession will be altered in ways that could have21

significant negative impacts on other native species as well as on biodiversity in general (Bentz22

et al., 2010; Fettig et al., 2013).23

The biology of tree killing bark beetles is complex and variable. Most species interact in mu-24

tualistic relationships with fungi, bacteria, mites and other organisms that provide protection and25

nutrition, and help in detoxifying host plant chemical defenses (Boone et al., 2013; Hofstetter et al.,26

2015; Therrien et al., 2015). Native host tree species exhibit formidable constitutive and induced27

defenses that protect them from bark beetle attacks when beetle population levels are low (Raffa28

et al., 2008). These defenses, however, can be overcome as beetle numbers increase (Boone et al.,29

2011). As a result, many tree-killing bark beetle species have evolved chemically-mediated aggrega-30

tive behaviors that depend on host tree chemicals, and allow them to attack en masse and at higher31

densities than would be possible in the absence of coordination (Raffa et al., 2008). In contrast,32

some other bark beetle species lack the feedback mechanisms that facilitate mass attacks and in-33

stead colonize host trees that have reduced defenses due to a variety of stressors such as drought,34

fire or wind injury, and pathogens. The interplay between the threshold dependent colonization35

success and beetle density, combined with the unique aggregative strategies exhibited by many bark36

beetle species, leads to complex beetle outbreak dynamics.37

The spatial and temporal dynamics of bark beetle population outbreaks will vary across the38

range of a given species, and also with the level of aggressiveness among species. Population39

outbreaks of those species without the feedback mechanisms that drive aggregative attacks are40

rare, and these species exhibit little inter-annual variability in abundance. There are exceptions,41
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however, including a large drought-driven outbreak of Ips species in the southwestern United States42

between 2002 and 2004 (Santos and Whitham, 2010). When drought conditions subsided, so did the43

population outbreak. In contrast, species that exhibit feedback mechanisms facilitating aggregation44

of large numbers of beetles in order to successfully colonize healthy trees (i.e., aggressive species),45

including Dendroctonus ponderosae and D. frontalis, exhibit considerable temporal variability in46

abundance. Populations can exist at low levels for many years with often rapid eruptions to47

outbreak levels as a result of population independent processes such as weather or delays, and48

nonlinearities in density-dependent processes (Berryman, 1982; Martinson et al., 2013). Although49

the triggers for outbreaks of these aggressive species are varied and not well understood, tree50

resistance and weather can play large roles. The most resistant trees often also have the greatest food51

resource for developing beetles but require mass attacks to overwhelm the defenses. Compromised52

defenses through stressors that include drought (Anderegg et al., 2015) and pathogens (Goheen53

and Hansen, 1993) can result in a tree being overwhelmed by fewer beetles. This can lead to54

build up of population in the less resistant trees and eventually becoming large enough to attack55

more vigorous trees with greater food resources. Indeed, large scale outbreaks of aggressive species56

require large expanses of relatively vigorous host trees (Fettig et al., 2014). In contrast, species57

that are incapable of attacking vigorous trees are often found in areas where trees grow on marginal58

sites and stressed trees are commonly available. For both aggressive and less aggressive beetle59

species, weather that is favorable for survival and seasonality of beetles and their associates is also60

required for outbreak initiation (Bentz et al., 2014; Addison et al., 2015; Weed et al., 2015). The61

complex interaction of tree resistance and weather can result in considerable intra-range variation62

in population dynamics of a given species as environmental conditions that influence host tree63

resistance and beetle population dynamics vary temporally and spatially. Low host tree resistance64

can influence the initiation of outbreaks of aggressive bark beetle species and can sustain outbreaks65

of less aggressive species.66

To better understand the influence of aggressive attacks on trees, we use a susceptible/infective67

(S/I) model to explore the long-term dynamic interactions between forests ecosystems and bark68

beetle population dynamics. We assume that tree recruitment is not limited by seeds. We focus69

our analysis on the effect of tree resistance on the forest state. In particular, we show that, when70

resistance is low, the forest can be either beetle-free, or can have an endemic beetle population71

depending on forest history, while, for high resistance, the forest will be beetle-free.72

1.1. Review of Existing Models73

Several models of bark beetle population dynamics already exist. Here we review and compare74

the essential features of these models in order to put our current study into context. Given the75
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importance of temperature in not only triggering but also sustaining bark beetle outbreaks, several76

models have been developed that incorporate temperature alone (Gilbert et al., 2004; Regniere77

and Bentz, 2007; Friedenberg et al., 2007) and the combined effects of temperature and host trees78

(Powell and Bentz, 2009, 2014) on bark beetle population success. For the purpose of this article,79

however, we restrict ourselves to consideration of simple, strategic models without the effects of80

climate that are amenable to mathematical analysis of general system properties. To facilitate81

comparison, we consider similarities and differences in three structural aspects: the representation82

of forest structure and dynamics, the relationship between beetle density and tree death, and the83

relationship between tree death and new beetle production.84

Because we are interested in the role of host resistance in long-term outbreak dynamics, sen-85

sible choices about the representation of natural forest structure and regeneration are essential.86

Depending on the perspective and scenario under analysis, previous modeling efforts have focused87

on different aspects of forest structure. Berryman et al. (1984) and Økland and Bjørnstad (2006),88

for example, modeled a live forest class, and a transient, newly killed tree class that they assumed89

was not resistant to beetles. Heavilin and Powell (2008) also allowed for two forest classes that90

differed in their resistance, although, in this study, the less resistant class was allowed at least some91

level of resistance. More recently, Duncan et al. (2015) developed yet another two-class model. In92

this case, however, susceptible and resistant classes were mechanistically linked to forest age struc-93

ture. In reality, of course, stands can be composed of many different types of trees with varying94

resistance levels. Lewis et al. (2010) accounted for this by allowing any possible distribution of vigor95

within a stand. Unfortunately, total generality comes at the expense of complicated and analyti-96

cally intractable models. In the current study, we return to a simpler representation of internally97

homogeneous forest classes or cohorts consistent with the treatment by Heavilin and Powell (2008)98

and Duncan et al. (2015).99

The crucial mechanism of outbreak initiation is that beetle density exceeds a threshold so that100

beetles can successfully attack the dominant cohort of trees. One possibility is that resistance of the101

dominant cohort changes over time. For example, Berryman et al. (1984) assumed that resistance102

decreases as live stem density increases. In this model, remaining trees regain resistance to attack103

when an outbreak thinned a stand. Although thinned stands may be less susceptible to attack at104

low population levels, even thinned stands can be heavily attacked during outbreaks (Fettig et al.,105

2014). However, in reality, old trees are more susceptible to most tree-killing bark beetles than are106

young trees, regardless of stand density. An alternative method of varying resistance over time is107

to explicitly model the transition from highly resistant young trees to more susceptible old trees,108

as was done in Heavilin and Powell (2008).109

Although tree resistance changes dynamically through time due to processes like aging and110
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crowding, certain forest stands are inherently more or less resistant as a result of environmental111

factors, e.g., water stress (Anderegg et al., 2015). This spatial aspect of tree resistance has been112

less well studied from a modeling perspective. Nevertheless, the role of environmental conditions in113

driving beetle outbreaks will likely become increasingly important as global climatic change alters114

environmental factors, for example by enlarging regions of drought stress. In this study, rather than115

focusing on aging and crowding as drivers of outbreak cycles, we instead focus on how spatial and116

environmental drivers influence host tree resistance and subsequent bark beetle outbreak dynamics.117

A final aspect of forest structure and dynamics is regeneration. One approach to modeling forest118

regeneration (Berryman et al., 1984; Økland and Bjørnstad, 2006) is a standard density-dependent119

growth model, where growth rate is proportional to the abundance of adult trees, and adult density120

increases to a carrying capacity. However, pines in particular, are characteristically shade intolerant,121

and many species such as lodgepole pine, Pinus contorta, are characterized by their maintenance of122

large seed banks of serotinous cones that do not germinate until after a stand replacing disturbance123

(Johnson and Fryer, 1989). We therefore suggest that a model without recruitment limitation of124

the tree population may be a better representation of forest dynamics in many of the systems125

susceptible to aggressive bark beetle outbreaks.126

In practice, beetle population density is rarely monitored directly. Instead, the number or127

proportion of infested trees is used as a proxy for population density (sensu Meddens et al., 2012).128

To build a simple model that can be compared to data, we follow Heavilin and Powell (2008) and129

assume that the number of beetles emerging from each successfully attacked tree is independent130

of the number of beetles that attacked the tree. This assumption is met if the number of beetles131

required for successful attack is greater than or equal to the number of beetles that can completely132

exploit tree resources. Other models (Berryman et al., 1984; Powell et al., 1996; Økland and133

Bjørnstad, 2006; Lewis et al., 2010) have explicitly included intraspecific competition, thereby134

allowing a more complex relationship between attacking and emerging beetles. Again, however,135

this detail comes at the expense of model transparency and tractability, thus we prefer the simpler136

formulation in Heavilin and Powell (2008) and leave more complicated relationships between beetle137

density and tree infestation for a future study.138

When stands are healthy, with a majority of trees that are resistant to beetle attack, it is difficult139

for low numbers of beetles to overcome tree resistance and colonize stands. Aggressive beetle140

species, however, are capable of killing trees in resistant stands following a trigger, as described141

above, and population grows to the outbreak phase (Raffa et al., 2008). Our goal in this paper is to142

develop a qualitative understanding of how a population outbreak may be facilitated by a three step143

process. First, there is successful colonization of highly stressed or compromised trees, that have144

little resistance to bark beetles. Second, there is a build up of beetle densities as beetles exploit145
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these weakened trees and subsequent spread to surrounding healthy trees. Third, these elevated146

populations of beetles moving into surrounding healthy trees exceed a threshold and these trees147

therefore succumb, continuing to feed the expanding epidemic.148

Our approach starts by building a detailed mechanistic model for beetle behavior and reproduc-149

tion and tree dynamics in a single stand. This model is based on simple ideas from epidemiology,150

extended to include nonlinear resistance thresholds and aggregation (Section 2). To analyze this151

model, we exploit the very different time scales for beetle behavior and reproduction relative to152

tree growth. This allows us to use singular perturbation arguments to show how beetle population153

dynamics exhibit properties such as bistability and hysteresis. Analytical insight of the properties154

comes from a limiting case that relies on ideas from discontinuous dynamical systems. The three-155

step colonization process is then understood using a model that describes dynamics in two adjacent156

stands, one with higher resistance to beetles, and one with lower resistance (Section 3). Using this157

model, we give analytical conditions that can give rise to a regional outbreak in the resistant stand.158

2. One-stand Models159

We begin by considering a single stand of trees with uniform resistance. We assume that the160

trees within this stand can be either bark beetle free, and thus “susceptible”, (S), to infestation, or161

else already colonized by beetles, and thus productively “infected”, (I). In what follows we replace162

“infected” by “infested” which is a more appropriate term in this context. The movement of a163

tree from the susceptible class to the infested class is then assumed to depend on a sequence of164

beetle-related events. First, the tree must be found by free-flying beetles, (B), that settle upon its165

surface, and begin to bore through the bark. Next, these attacking beetles, (A), must effectively166

survive host tree defenses (e.g., resin) and gain access to the cambium layer. Notably, when the167

number of beetles per tree is low, individual beetles almost never surmount host defenses, and thus168

trees only rarely become infested; however as the number of beetles per tree increases, so too does169

the probability that host tree defenses will be overwhelmed. It is only after beetles have successfully170

colonized a tree that we consider the tree to be in the infested class. This leads to the following set171

of four coupled differential equations172

dS

dt
= G(S, I) − σS − β(A/S)S

dI

dt
= β(A/S)S − σI − dI

dB

dt
= eI −mB − λBS + µ

dA

dt
= λBS − rA − β(A/S)A

(1)173

where G is a function describing the rate of recruitment of new, susceptible trees within the stand,174

β is a function describing the rate at which susceptible trees transition into the infested class, λ is175
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Table 1: State Variables
Symbol Units Dimension Definition
S trees per hectare length−2 density of susceptible (beetle free) trees
I trees per hectare length−2 density of infested (beetle infested) trees
B beetles per hectare length−2 density of free-flying beetles
A beetles per hectare length−2 density of attacking beetles
R beetles per tree dimensionless density of attacking beetles per tree

the per beetle per tree rate at which beetles encounter healthy trees, e is the rate at which beetles176

emerge from an infested tree, σ is the natural mortality rate of healthy trees, d is additional tree177

mortality that results from beetle infestation, m is the mortality and/or emigration rate of free-178

flying beetles, r is the mortality rate of attacking beetles and µ describes immigration of beetles179

from outside the stand. If a tree becomes infested (which occurs at rate β), the number of attacking180

beetles per tree (A/S) times the density of trees (S) is removed from the beetle pool. This yields181

the last term in the last equation.182

To simplify model analysis, we introduce a change of variables by noting that model (1) can be183

conveniently expressed using the density of attacking beetles per susceptible tree, R = A/S, rather184

than the absolute density of attacking beetles, A. When this is done, the resulting set of ODEs185

becomes186

dS

dt
= G(S, I) − σS − β(R)S

dI

dt
= β(R)S − σI − dI

dB

dt
= eI −mB − λBS + µ

dR

dt
= λB −R

(

G(S,I)
S

+ r − σ
)

.

(2)187

The state variables are summarized in Table 1.188

2.1. Tree recruitment, G(S, I)189

To model tree recruitment within a conifer stand, we consider the recruitment function G(S, I) =190

g(K−S−I), where K is the tree carrying capacity of the forest stand and g is a constant describing191

the rate at which new, susceptible trees become available to beetles. While it might be argued that192

such a recruitment model is pathological at S = 0 (as trees have a positive growth rate), it should be193

noted that forests can, over a period of years, exhibit recruitment in the absence of seed-producing194

adults as a result of extensive seed-banks. This is true for conifer forests, since most tree species195

are characterized by large, long-lived seed banks. As a result, tree recruitment is rarely, if ever,196

limited by the availability of seed producing adults, although space (e.g., competition for light) is197

still restrictive.198
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2.2. Infestation rate, β(R)199

In keeping with threshold-based mortality models, we assume that the rate at which susceptible200

trees transition into the infested class, β(R), exhibits a nonlinear dependence on the number of201

attacking beetles per susceptible tree (R). This nonlinearity is one of the defining features of bark202

beetle dynamics, and arises from the fact that most host trees have natural defenses (e.g., resin) that203

protect against beetle infestation at low beetle densities, but become rapidly overwhelmed at high204

beetle densities. Accordingly, when beetles are scarce, tree infestation rates are depressed relative205

to what would be expected on the basis of mass action assumptions. To capture this depression206

mechanistically we assume a threshold number of attacking beetles per tree (typically dependent207

on tree resistance), θ, above which infestation succeeds and below which, infestation fails.208

We model infestation rate by the Hill function209

β(R) = β0
Rn

Γn +Rn
=

β0

1 + ΓnR−n
(3)210

where Γ roughly approximates tree resistance, or the threshold number of beetles required for211

successful infestation and n is related to the level of beetle aggregation. In particular, low values of212

n represent high levels of aggregation, while high values of n indicate overdispersion (see Appendix213

C). To see this, consider the limit n → ∞, wherein β(R) defined by (3) becomes a step function.214

In this limit, an infinitely small increase in beetle density at R = Γ leads to a sudden transition215

from a per tree infestation rate of zero to a per tree infestation rate that is maximal for the system.216

The abruptness of this transition implies that the addition of an exceedingly small number of new217

beetles causes every tree to cross the critical infestation threshold simultaneously, which will only218

happen if beetles are uniform in their distribution over available trees (i.e., in the overdispersion219

limit).220

2.3. Model parameters221

Model parameters used in this article are summarized in Table 2. For tree population dynamics,222

we interpret g as reflecting the rate at which new susceptible adult trees become available to223

beetles per existing tree at carrying capacity. This parameter is estimated to be approximately224

0.05-0.5 years−1 for pine trees (Clark et al., 2001). Therefore we set g = 10−4 − 10−3 day−1.225

Similarly, because tree species targeted by tree-killing bark beetles can have lifespans between226

50 and 500 or more years, depending on the geographic region and beetle species, we set σ =227

5× 10−6 − 5× 10−5 day−1. We assume that beetle infested trees, on the other hand, will produce228

beetles for approximately 1 year. Thus we set the rate of tree death due to beetle infestation at229

d = 3 × 10−3 day−1. The length of time before the susceptible tree transfers to the infested class230

is estimated to range between two weeks and one year and hence β0 ranges from approximately231
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0.003 − 0.07 day−1. The threshold for succumbing to attack for healthy trees is approximately232

10-100 beetles per m2 of bark area (Lewis et al., 2010). If a tree were between 10 and 20 m tall and233

had an average diameter between 0.1 and 0.5 m, then its surface area would range between π and234

10πm2. This would mean that the threshold for succumbing to beetle attack would range between235

10π and 1000π, i.e., 30-3000 beetles per tree. We assume that tree carrying capacity K is between236

100 and 10,000 trees/ha for unmanaged forests (Baker, 2009).237



1
0

Table 2: Parameter estimates for equation (2) used in this article.

Symbol Definition Units Dimension Approximate values
g rate of recruitment of new susceptible trees per day time−1 10−4 − 10−3

σ death rate of healthy trees per day time−1 (0.5− 5)× 10−5

d tree death rate due to infestation per day time−1 3× 10−3

e per tree rate of beetle emergence beetles per tree per day time−1 10− 100
m death rate of free-flying beetles per day time−1 0.05
r death rate of attacking beetles per day time−1 0.1
β0 maximum rate of infestation of new trees per day time−1 0.003− 0.07
λ rate at which beetles find trees to attack hectares per tree per day length2time−1 0.001
K tree carrying capacity trees per hectare length−2 100− 10, 000
µ immigration beetles per hectare per day length−2time−1 0− 4000
Γ beetles per tree necessary for infestation beetles per tree dimensionless 30− 3000
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Table 3: Non-dimensionalization scheme

Symbol Approximate Value Symbol Approximate Value

S̃ = λS/m state variable µ̃ = λµ/(em) (0.0002− 0.002)µ

Ĩ = λI/m state variable g̃ = g/d 0.03− 0.3

R̃ = rR/e state variable β̃0 = β0/d 1− 23

B̃ = λB/e state variable ǫ1 = σ/d 0.002− 0.016
t̃ = dt 0.003t ǫ2 = d/m 0.06

K̃ = λK/m 15− 30 ǫ3 = d/r 0.03

Γ̃ = rΓ/e 0.57− 15

2.4. Non-dimensionalization238

We can reduce the number of free parameters through non-dimensionalization. Using the non-239

dimensionalization schemes outlined in Table 3 gives240

dS̃

dt̃
= G̃(S̃, Ĩ)− ǫ1S̃ −

β̃0S̃R̃
n

R̃n + Γ̃n

dĨ

dt̃
=

β̃0S̃R̃
n

R̃n + Γ̃n
− ǫ1Ĩ − Ĩ

ǫ2
dB̃

dt̃
= Ĩ − B̃ − B̃S̃ + µ̃

ǫ3
dR̃

dt̃
= B̃ −

ǫ3R̃G̃(S̃, Ĩ)

S̃
− R̃+ ǫ1ǫ3R̃

(4)241

where G̃(S̃, Ĩ) is the non-dimensionalized recruitment function G̃(S̃, Ĩ) = g̃(K̃ − S̃ − Ĩ). Table 3242

gives values for dimensionless parameters that correspond to those from Table 2.243

2.5. Pseudo-steady state approximation244

In general, the dynamics associated with beetle processes, including beetle mortality and tree245

death due to infestation, are significantly faster than natural tree dynamics. As a result, for realistic246

parameter values (see, for example, Table 3), it will always be true that 0 < ǫ1, ǫ2, ǫ3 ≪ 1. This247

allows us to make a pseudo-steady state approximation on (4). Specifically, taking the limit as248

ǫ1, ǫ2, ǫ3 → 0 we find (in what follows we drop tildes for notational simplicity)249

B =
I + µ

1 + S

R = B
(5)250

and251

dS

dt
= G(S, I)− β(S, I)S

dI

dt
= β(S, I)S − I

(6)252

where253

β(S, I) = β0
(I + µ)n

(I + µ)n + Γn(1 + S)n
. (7)254
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2.6. Scenario one: uniform beetle distribution255

We begin our analysis by studying the behavior of the model in the limit that beetles distribute256

uniformly over available trees (i.e., all trees are equally susceptible and there is no aggregating257

pheromone). To do this, we take n → ∞ in (7), in which case, the infestation rate, β(S, I),258

becomes a step function. Specifically,259

β(S, I) =















0 if
I + µ

1 + S
< Γ

β0 if
I + µ

1 + S
> Γ.

(8)260

From (8) we see that the minimum number of infested trees necessary for beetle spread, Imin, can261

be expressed in terms of the number of susceptible trees, S, according to the expression262

Imin(S) = Γ(1 + S)− µ. (9)263

This threshold is shown by the solid line in Figure 1C, E. It reflects the fact that, if beetles distribute264

uniformly over available trees, then when there are more susceptible trees, proportionately more265

beetles are needed to overcome the threshold requirement for infestation. Importantly, when the266

total number of infested trees falls below the critical threshold for infestation, I < Imin, model (6)267

becomes268

dS

dt
= G(S, I)

dI

dt
= −I.

(10)269

The equilibrium solution of (10) is (S, I) = (K, 0). Provided tree resistance is not so small that270

it can be overcome by beetle immigration from outside, µ/(1 +K) < Γ, this equilibrium solution271

satisfies I < Imin(S) (Figure 1C, E), it is also the solution to the full system (6), suggesting that272

long-term dynamics are complete forest recovery and local extinction of beetle population. We273

remark that when there is no immigration (µ = 0), this is the only possible case. When tree274

resistance is not sufficient to protect against immigrating beetles, Γ < µ/(1 +K), the equilibrium275

solution of (10) does not fall in the region I < Imin(S) (Figure 1A). This is because the solid line276

from panels C and E shifts to the right of point (K, 0) (and it is thus outside of panel A).277

In the part of the phase space where I > Imin(S), model (6) becomes278

dS

dt
= G(S, I)− β0S

dI

dt
= β0S − I.

(11)279

For G(S, I) = g(K − S − I), (11) has a single endemic equilibrium at280

(S∗, I∗) =

(

gK

g + β0 + β0g
,

gKβ0

g + β0 + β0g

)

. (12)281
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Provided tree resistance is not too high and satisfies282

Γ < Γ∗ =
gKβ0 + µ(g + β0 + gβ0)

β0 + g + gβ0 + gK
, (13)283

this equilibrium is in the part of the phase space where I > Imin(S), and it is locally asymptotically284

stable there (see Appendix A).285

For stressed stands that are subject to a relatively large and constant influx of beetles, i.e.,286

Γ < µ/(1 + K), the endemic equilibrium (S∗, I∗) (Figure 1A) is the only locally asymptotically287

stable equilibrium. However, when tree resistance is intermediate and satisfies µ/(1+K) < Γ < Γ∗
288

(we remark that for all parameter values µ/(1 + K) < Γ∗ ) there are two locally asymptotically289

stable equilibria: the beetle free equilibrium (K, 0) and the endemic equilibrium (S∗, I∗) (Figure290

1C). Consequently, whether the forest survives or not will depend on its history. Specifically, a291

fully grown forest with tree densities nearing the forest carrying capacity will be able to resist292

beetle invasion, whereas a more sparsely populated forest with tree densities well below carrying293

capacity will not. Notice that this is somewhat counterintuitive, since dense forests provide ample294

trees for beetles to attack. This, however, is the problem. For uniformly distributing beetles,295

large numbers of trees dilute the beetle population such that no tree has sufficient beetle loads to296

become infested. In less dense stands, the dilution effect is not so strong, and there are enough297

beetles per tree to mount successful attacks. In this system, a large perturbation to the beetle298

free equilibrium, for example a significant but temporary influx of beetles, can move the system299

across the line I = Imin(S) (solid line in Figure 1C) that divides the two stable states. Ultimately,300

this means that a one-time influx of beetles can potentially cause the forest to evolve toward the301

beetle endemic state. For smaller beetle influxes, however, the system will not cross the separatrix,302

thus once the influx has ceased, the system will return to its initial, beetle-free state. When the303

tree resistance Γ exceeds Γ∗ the beetle free equilibrium (K, 0) is the only asymptotically stable304

equilibrium and the beetle-free stand will be immune to beetle invasions (Figure 1E). These results305

are summarized in Table 4. Importantly, intermediate stand resistance that results in bistability306

leads to a hysteresis loop (Figure 2). When model parameters change slowly, which of the two locally307

stable equilibria the system finds itself in may depend upon the path taken. For example, Figure308

2 considers dependence of the equilibrium infestation on the stand resistance. Let us assume that309

the stand resistance is high. Then the only equilibrium is the beetle-free forest. As the resistance310

decreases, the situation will continue to be the same until the lower critical threshold µ/(1 +K) is311

reached. If the resistance keeps decreasing, there is a sudden jump in the number of infested trees312

because for low resistance the endemic equilibrium is the only possible state of the forest. Now,313

let us assume that the resistance starts to increase. The forest will stay in the endemic state until314

resistance reaches the upper threshold given by Γ∗. For yet higher resistance the beetle-free forest315
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Table 4: Locally stable equilibria for uniformly dispersing beetles and unlimited tree recruitment

Name Equilibrium Resistance Figure

endemic
(

gK
g+β0+β0g

, gKβ0

g+β0+β0g

)

Γ < µ
1+K

1A

beetle-free/endemic (K, 0),
(

gK
g+β0+β0g

, gKβ0

g+β0+β0g

)

µ
1+K

< Γ < Γ∗† 1C

beetle-free (K, 0) Γ∗ < Γ 1E
†Γ∗ is given by (13)

is the only equilibrium.316

Because model (6) with uniform beetle distribution modeled by (8) is a differential equation317

with a discontinuous right-hand side, solutions are defined in the Filippov sense (Filippov, 1988;318

Colombo and Křivan, 1993). To ensure existence of solutions, we must analyze what happens along319

the switching line (9). Appendix B shows that there are two possibilities only. Either trajectories320

cross the switching line transversally, or trajectories move away from the switching line in both321

directions (such points are shown e.g., in Figure 1C). In this latter case trajectories of the model322

are not uniquely defined. Thus, the so called sliding regime does not occur and there are no323

additional equilibria along the switching line.324

2.7. Scenario two: aggregated beetle distribution325

To model a nonuniform distribution of beetles over available trees, we take n finite and not326

too large in (7). Most notably, the basis of attraction for the endemic state at intermediate tree327

resistance shifts to the right (compare Figure 1C with Figure 1D). The suggestion is that beetles328

can attack and kill trees in forest stands with higher tree densities when they exhibit aggregative329

behavior. This, of course, makes intuitive sense. Aggregation counteracts beetle dilution across330

higher density stands. As a result, the beetle per tree threshold required for infestation is more331

likely to be met by aggregating beetles, even in stands with large numbers of trees.332

3. Two-stand Model333

The goal in this section is to derive and analyze a model that gives qualitative understanding of334

how a regional beetle outbreak may be facilitated by a three step process: (i) infestation of highly335

stressed or compromised trees, who have little resistance to the beetles; (ii) build up of beetle336

density in these trees and subsequent spread to surrounding healthy trees; (iii) increase in beetle337

levels in surrounding healthy trees exceeding a threshold and these trees succumbing to become338

part of the spreading epidemic.339

We consider two forest stands coupled by beetle dispersal. Because we are interested in the role340

of beetle spillover between stands, we consider forest stands that only differ in terms of resistance,341
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Γ, and beetle influx from other, more distant sources. Thus model (2) can be extended as follows342

dS1

dt
= G1(S1, I1)− σS1 − β1(R1)S1

dI1
dt

= β1(R1)S1 − σI1 − dI1

dB1

dt
= eI1 −mB1 − λB1S1 + δ(B2 −B1) + µ1

dR1

dt
= λB1 −R1

(

G(S1,I1)
S1

+ r − σ
)

dS2

dt
= G2(S2, I2)− σS2 − β2(R2)S2

dI2
dt

= β2(R2)S2 − σI2 − dI2

dB2

dt
= eI2 −mB2 − λB2S2 + δ(B1 −B2) + µ2

dR2

dt
= λB2 −R2

(

G(S2,I2)
S2

+ r − σ
)

(14)343

where βi(Ri) = β0
Rn

i

Γn
i
+Rn

i

, Gi(Si, Ii) = gi(Ki − Si − Ii) and we have assumed that all beetles344

dispersing from the first stand arrive at the second and vice versa (i.e., they are neither going345

to nor coming from additional stands) with dispersal rate δ > 0. In addition, there can be stand346

specific immigration from outside of the two stands (µi). Notice that we have not assumed any seed347

rain between the stands, thus we are considering stands that are geographically distant enough that348

seed transfer is negligible, however not so distant as to prevent beetles migrating from one stand349

to the other. Using a direct extension of the non-dimensionalization scheme in Table 3, equation350

(14) can be rewritten351

dS̃1

dt̃
= G̃1(S̃1, Ĩ1)− ǫ1S̃1 −

β̃0S̃1R̃
n
1

R̃n
1 +Γ̃n

1

dĨ1

dt̃
=

β̃0S̃1R̃
n
1

R̃n
1 +Γ̃n

1

− ǫ1Ĩ1 − Ĩ1

ǫ2
dB̃1

dt̃
= Ĩ1 − B̃1 − B̃1S̃1 + δ̃(B̃2 − B̃1) + µ̃1

ǫ3
dR̃1

dt̃
= B̃1 − ǫ3R̃1

G̃1(S̃1,Ĩ1)

S̃1
− R̃1 + ǫ1ǫ3R̃1

dS̃2

dt̃
= G̃2(S̃2, Ĩ2)− ǫ1S̃2 −

β̃0S̃2R̃
n
2

R̃n
2 +Γ̃n

2

dĨ2

dt̃
=

β̃0S̃2R̃
n
2

R̃n
2 +Γ̃n

2

− ǫ1Ĩ2 − Ĩ2

ǫ2
dB̃2

dt̃
= Ĩ2 − B̃2 − B̃2S̃2 + δ̃(B̃1 − B̃2) + µ̃2

ǫ3
dR̃2

dt̃
= B̃2 − ǫ3R̃2

G̃2(S̃2,Ĩ2)

S̃2
− R̃2 + ǫ1ǫ3R̃2

(15)352

where δ̃ = δ/m.353

Again, taking the limit as ǫ1, ǫ2, ǫ3 → 0 we find the following model under the pseudo-steady354

state approximation355
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B1 =
I2δ + I1(1 + S2 + δ) + (1 + S2 + δ)µ1 + δµ2

1 + S2 + (2 + S2)δ + S1(1 + S2 + δ)

R1 = B1

B2 =
I1δ + I2(1 + S1 + δ) + (1 + S1 + δ)µ2 + δµ1

1 + S2 + (2 + S2)δ + S1(1 + S2 + δ)

R2 = B2

dS1

dt
= G1(S1, I1)− β1(S1, I1, S2, I2)S1

dI1
dt

= β1(S1, I1, S2, I2)S1 − I1

dS2

dt
= G2(S2, I2)− β2(S2, I2, S1, I1)S2

dI2
dt

= β2(S2, I2, S1, I1)S2 − I2

(16)356

where357

β1(S1, I1, S2, I2) =
β0

1 + Γn
1

(

I2δ+I1(1+S2+δ)+(1+S2+δ)µ1+δµ2

1+S2+(2+S2)δ+S1(1+S2+δ)

)−n

β2(S1, I1, S2, I2) =
β0

1 + Γn
2

(

I1δ+I2(1+S1+δ)+(1+S1+δ)µ2+δµ1

1+S2+(2+S2)δ+S1(1+S2+δ)

)−n

(17)358

and tildes have been dropped for notational simplicity.359

We analyze the two-stand model by again studying model behavior in the limit that beetles360

distribute uniformly over available trees (n → ∞ in (17)). As before, this leads to step function361

infestation rates, βi(Si, Ii, Sj , Ij), with362

β1(S1, I1, S2, I2) =























0 if
I2δ + I1(1 + S2 + δ) + (1 + S2 + δ)µ1 + δµ2

1 + S2 + (2 + S2)δ + S1(1 + S2 + δ)
< Γ1

β0 if
I2δ + I1(1 + S2 + δ) + (1 + S2 + δ)µ1 + δµ2

1 + S2 + (2 + S2)δ + S1(1 + S2 + δ)
> Γ1

(18)363

and similarly for β2. From (18), the minimum number of infested trees necessary for beetle spread364

in stand 1, Imin,1, is calculated from equation365

I2δ + I1(1 + S2 + δ) + (1 + S2 + δ)µ1 + δµ2

1 + S2 + (2 + S2)δ + S1(1 + S2 + δ)
= Γ1366

which yields367

Imin,1(S1, S2, I2) =
(1 + S1)(1 + S2)Γ1 + (2 + S1 + S2)Γ1δ − (1 + S2)µ1 − δ(I2 + µ1 + µ2)

1 + S2 + δ
.368

Similar calculations for stand 2 give the critical threshold369

Imin,2(S1, S2, I1) =
(1 + S1)(1 + S2)Γ2 + (2 + S1 + S2)Γ2δ − (1 + S1)µ2 − δ(I1 + µ1 + µ2)

1 + S1 + δ
.370

We observe that, due to dispersal, the minimum threshold for infestation to spread in one stand371

depends on the state of the other stand, i.e., Imin,1 depends on S2 and I2 and, similarly, Imin,2372

depends on S1 and I1.373
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To interpret stand dynamics we consider three possibilities: (a) beetle establishment does not374

occur in either stand (I1 < Imin,1, I2 < Imin,2), (b) beetle establishment occurs only in one stand375

and not in the other (here we assume that establishment occurs in stand 1, i.e., I1 > Imin,1,376

I2 < Imin,2), and (c) beetle establishment occurs in both stands (I1 > Imin,1, I2 > Imin,2).377

In the first case, when the beetle population does not reach threshold densities in either stand378

(I1 < Imin,1, I2 < Imin,2), model (16) reduces to379

dS1

dt
= G1(S1, I1)

dI1
dt

= −I1

dS2

dt
= G2(S2, I2)

dI2
dt

= −I2.

(19)380

The only stable equilibrium of (19) is the beetle-free equilibrium (S∗
1 , I

∗
1 , S

∗
2 , I

∗
2 ) = (K1, 0,K2, 0).381

This will be a solution to the full system (16) (i.e., belongs to the part of the beetle-free–infested382

tree phase space where Imin,i(K1,K2, 0) > 0 = I∗i , i = 1, 2) provided tree resistance in both stands383

is high enough such that Γ1 > Γ1a and Γ2 > Γ2a (for definition of these and other thresholds384

below see the footnote of Table 5). We note that, without any immigration from outside (i.e., when385

µi = 0, i = 1, 2), the beetle-free state will always exist (as we assume that tree resistance is positive,386

i.e., Γi > 0, i = 1, 2). Sufficient outside immigration to either stand may cause the beetle-free state387

to disappear in one or both of the stands.388

When only the first stand crosses the threshold for infestation (I1 > Imin,1, I2 < Imin,2), (16)389

can be written as390

dS1

dt
= G1(S1, I1)− β0S1

dI1
dt

= β0S1 − I1

dS2

dt
= G2(S2, I2)

dI2
dt

= −I2.

(20)391

Notice that (20) is just a combination of (10) and (11), thus the equilibria of (20), as well as392

their stability, can be determined directly from the one-stand model. Stand 1 will converge to the393

endemic equilibrium given by (12) and stand 2 to a beetle-free forest394

(S∗
1 , I

∗
1 , S

∗
2 , I

∗
2 ) =

(

g1K1

β0 + g1(1 + β0)
,

β0g1K1

β0 + g1(1 + β0)
,K2, 0

)

. (21)395

The above stand-one endemic/stand-two beetle-free equilibrium will be a solution to the full396

system (16) (i.e., belongs to the part of the beetle-free–infested tree phase space where I∗1 >397

Imin,1(S
∗
1 , S

∗
2 , I

∗
2 ) and I∗2 = 0 < Imin,2(S

∗
1 , S

∗
2 , I

∗
1 )) provided Γ1 < Γb1 and Γ2 > Γb2. In other398
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words, (21) is an equilibrium provided tree resistance in stand 1 is low while tree resistance in399

stand 2 is high.400

Finally, in the case that both stands cross the threshold for establishment (I1 > Imin,1, I2 >401

Imin,2), model (16) becomes402

dS1

dt
= G1(S1, I1)− β0S1

dI1
dt

= β0S1 − I1

dS2

dt
= G2(S2, I2)− β0S2

dI2
dt

= β0S2 − I2.

(22)403

Again, the equilibria for (22) as well as their stability can be determined directly from results for404

the one-stand model. The endemic equilibrium in both stands405

(S∗
1 , I

∗
1 , S

∗
2 , I

∗
2 ) =

(

g1K1

β0 + g1(1 + β0)
,

β0g1K1

β0 + g1(1 + β0)
,

g2K2

β0 + g2(1 + β0)
,

β0g2K2

β0 + g2(1 + β0)

)

. (23)406

will be a solution to the full system (16) (i.e., belongs to the part of the healthy–infested tree phase407

space where I∗1 > Imin,1(S
∗
1 , S

∗
2 , I

∗
2 ) and I∗2 > Imin,2(S

∗
1 , S

∗
2 , I

∗
1 )) provided Γ1 < Γc1 and Γ2 < Γc2.408

In other words, (23) is an equilibrium provided tree resistance in both stands is low. Table 5409

summarizes these results.410

The effect of beetle dispersal between patches is shown in Figure 3. Here we focus on the411

following scenario: stand 1 has a lower resistance when compared to stand 2, and there is external412

immigration of beetles from outside of the system to stand 1 only. Thus, stand 2 can become413

infested only as a result of beetle dispersal from stand 1, i.e., stand 1 serves as a springboard to414

infest patch 2. Parameters are such that when immigration to stand 1 is low both stands are in415

a beetle-free state because resistance is sufficiently high in stand 1 to prevent invasion of beetles.416

Thus, when immigration is low, we observe a stable equilibrium (K1, 0,K2, 0) (Figure 3A,B). As417

immigration to stand 1 increases, stand 1 shifts to the endemic equilibrium while stand 2 stays418

beetle-free (Figure 3C,D). For yet higher immigration rates to stand 1 both stands shift to the419

endemic equilibrium (Figure 3E,F).420
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Table 5: Two-stand Results for Uniformly Dispersing Beetles

Name Equilibrium Tree resistance
beetle-free in both stands (K1, 0,K2, 0) Γ1 > Γ⋆

a1, Γ2 > Γ⋆
a2

stand 1 endemic, stand 2 beetle-free
(

g1K1

β0+g1(1+β0)
, β0g1K1

β0+g1(1+β0)
,K2, 0

)

Γ1 < Γ†
b1, Γ2 > Γ†

b2

stand 1 beetle-free, stand 2 endemic
(

K1, 0,
g2K2

β0+g2(1+β0)
, β0g2K2

β0+g2(1+β0)

)

Γ1 > Γb1, Γ2 < Γb2

two-stand endemic
(

g1K1

β0+g1(1+β0)
, β0g1K1

β0+g1(1+β0)
, g2K2

β0+g2(1+β0)
, β0g2K2

β0+g2(1+β0)

)

Γ1 < Γ‡
c1, Γ2 < Γ‡

c2

⋆Γa1 = (1+K2)µ1+δ(µ1+µ2)
1+K2+(2+K2)δ+K1(1+K2+δ) , Γa2 = (1+K1)µ2+δ(µ1+µ2)

1+K2+(2+K2)δ+K1(1+K2+δ)421

†Γb1 = g1K1β0(1+K2+δ)+(g1+β0+g1β0)((1+K2+δ)µ1+δµ2)
(1+K2)(β0+g1(1+K1+β0))+(g1(2+K1+K2)+(1+g1)(2+K2)β0)δ

, Γb2 = g1K1β0δ+(g1+β0+g1β0)δµ1+(β0+β0δ+g1(1+K1+β0+δ+β0δ))µ2

(1+K2)(β0+g1(1+K1+β0))+(g1(2+K1+K2)+(1+g1)(2+K2)β0)δ
422

‡Γc1 =

(

1+δ+
g2K2

g2+β0+g2β0

)(

g1K1β0
g1+β0+g1β0

+
g2K2β0δ+(g2+β0+g2β0)δµ2

β0+β0δ+g2(1+K2+β0+δ+β0δ)
+ µ1

)

1+2δ+
g2K2(1+δ)

g2+β0+g2β0
+

g1K1(β0+β0δ+g2(1+K2+β0+δ+β0δ))

(g1+ β0+g1β0)(g2+β0+g2β0))

, Γc2 =

(

1+δ+
g1K1

g1+β0+g1β0

)(

g2K2β0
g2+β0+g2β0

+
g1K1β0δ+(g1+β0+g1β0)δµ1

β0+β0δ+g1(1+K1+β0+δ+β0δ)
+ µ2

)

1+2δ+
g2K2(1+δ)

g2+β0+g2β0
+

g1K1(β0+β0δ+g2(1+K2+β0+δ+β0δ))

(g1+ β0+g1β0)(g2+β0+g2β0))

423
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4. Discussion424

4.1. Summary425

This paper focuses on the formulation and analysis of a general model for bark beetle outbreaks426

in continuous time. By capitalizing on the fact that there are multiple time scales involved in427

the system, we are able to derive a simplified dynamical system that describes the bark beetle428

population dynamics over long time scales. Further simplifications, using ideas from piecewise429

dynamics and Filippov dynamical systems (Filippov, 1988; Colombo and Křivan, 1993) allow us to430

mathematically deduce several key properties of the dynamical model. These include431

• Bistability of the forest dynamics arising from a threshold effect with respect to beetle num-432

bers. Here the beetle numbers must exceed a critical value determined by tree resistance to433

infest healthy trees. Although such threshold effects have been included in previous beetle434

models, ours is a mechanistically derived threshold, based on tree resistance. Most clearly435

this is seen in the case of the uniform beetle distribution where the threshold for the invasion436

splits the forest phase space into two parts, each with its own population dynamics (see the437

two regions separated by the solid line in Figure 1C). In one region the beetle-free forest is a438

locally stable equilibrium. In the other part of the phase space an endemic equilibrium is a439

locally stable equilibrium. The position of these equilibria with respect to the threshold value440

depends on parameters. However, for parameters that allow coexistence of the beetle-free441

forest equilibrium and the endemic equilibrium, we get bistability. Depending on the history,442

the forest can respond to a beetle immigration event either by returning to the beetle-free443

state, or to move to the endemic state. Bistability carries over also to the case where dispers-444

ing beetles show aggregative distribution, modeled by a more gradual Hill function (cf. Figure445

1C and D).446

• Hysteresis. The model bistability naturally leads to hysteresis effects. These are most easily447

understood in terms of changes in the stand resistance as illustrated in Figure 2. The lower448

threshold value for resistance in the hysteresis loop is µ/(1+K) and the higher value is Γ∗ (see449

eq (13)). These quantities can be directly interpreted in terms of the biological parameters450

describing the interaction between trees and beetles (Table 2).451

• Interactions between multiple patches. Here multiple patches that are spatially linked can452

interact to produce new outcomes. For example, a less healthy patch of trees may provide453

a beachhead for the infestation process. Once established, the beetles can then build up454

in numbers before progressing to neighboring healthy patches of trees, patches that would455

otherwise be unassailable, and causing them to succumb. These kinds of complex outcomes456

are illustrated in Figure 3.457
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• Our model with unlimited tree recruitment rate would be inappropriate for forests that expe-458

rience complete loss of adult trees over periods longer than the viability of the seed-bank. For459

this reason we also analyzed the model with the logistic growth (results not showed here). On460

the contrary to the unlimited recruitment where the forest cannot completely die, the logistic461

tree recruitment rate has also an extinction equilibrium. In particular, when a forest stand462

shows a low regeneration rate, as given by the ratio between the rate at which trees become463

available to beetles relative to the rate at which beetles remove the trees, the stand can go464

extinct.465

4.2. Model Limitations466

In model (1) we have made several simplifying assumptions that, though reasonable in many467

outbreak contexts, will not hold under all scenarios. First, we have taken the rate at which beetles468

encounter trees, λ, as constant, implying that contact rates between beetles and trees follow a simple469

mass action law. In reality, however, encounter rates likely exhibit some dependence on both beetle470

and tree density as well as beetle characteristics, including species-specific search strategies and471

aggregation behaviors (Mitchell and Preisler, 1991; Safranyik et al., 2010; Powell and Bentz, 2014).472

Second, we have assumed that the total number of beetles emerging from a tree is independent of473

the total number of beetles that infested the tree in the first place. More accurately, the rate of474

emergence should be lower when the number of attacking beetles is far from the carrying capacity475

of the tree (Light et al., 1983; Anderbrant et al., 1985). Third, we have assumed that the rate476

at which beetles are killed by host tree defenses, r, is independent of the number of attacking477

beetles per tree. Realistically, however, the death rate of beetles on trees nearing the threshold for478

infestation is probably lower than it is on trees with one or a few beetles (Raffa and Berryman, 1983).479

Furthermore, the threshold, itself, is assumed to be a fixed number, describing the exact number480

of beetles per tree needed to mount a successful attack. In reality, natural variation between trees481

would round off this sharp threshold to something more gradual. Fourth, the negative binomial482

model for beetle attacks necessarily oversimplifies the aggregation process. We are aware that483

other researchers have developed spatially explicit model with a focus on determining specific484

attack locations (see, for example, Logan et al., 1998). However, we keep our model spatially485

implicit by using the negative binomial probability mass function to provide a phenomenological486

description. This approach has been used before as a baseline probability mass function for the487

attack density in mountain pine beetle (Chubaty et al., 2009). For generality, we have chosen to488

model the dynamics in continuous time, although it may be that discrete-time models provide a489

more accurate description of dynamics, particularly in scenarios where generations are strongly490

non-overlapping (e.g., species or regions where beetles are univoltine). Additionally, factors such491
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as environmental stochasticity and interactions with tree signaling chemicals will play a role in the492

outbreak dynamics.493

4.3. Model Extensions494

Our modeling approach assumed that each stand comprised a cohort of identical trees. Thus495

any variation between trees was relegated to the variation found between different stands situated496

at different locales. In fact, stands are typically composed of several groups of trees, each group497

with different resistance to infestation and different rate of beetle production. It would be possible498

to extend the model to include such cases. This would allow us to evaluate the effect of stand499

structure on beetle outbreak. Some initial attempts in this direction can be found in Lewis et al.500

(2010), Powell and Bentz (2014) and Duncan et al. (2015). Indeed, it is well known that factors501

influencing bark beetle infestation are related to stand age and stage. When the characteristics of502

each group within a stand are determined by age or stage, it is necessary to include stage structure503

in the underlying dynamical model for the tree population (Koch et al, personal communication).504

Our analysis that focused on the simplified system where beetles distribute uniformly, leads to505

general insight that also may apply to the more complex system with clumped beetle populations.506

For clumped beetle populations the piece-wise linear analysis applied here is not possible and507

numerical simulations will be necessary to falsify our predictions.508

4.4. Concluding Remarks509

In summary, our paper has focused on model development and analysis for the dynamics of bark510

beetle infestation of trees, where tree resistance and beetle aggregation have key roles to play in511

the infestation outcomes. By carefully formulating a detailed model, and then using perturbation512

theory to distinguish between the different time scales involved in the infestation process, we are513

able to derive a remarkably simple system of nonlinear ordinary differential equations for outbreak514

dynamics. These are further simplified in the limit associated with uniform dispersal of beetles,515

which gives rise to a Filippov-type dynamical system. Resulting bistable dynamics lead to hys-516

teresis, and the multiple patch dynamics lead to the possibility of less resistant tree populations517

providing a toe-hold for beetles, from which they build up and eventually outbreak, causing the518

healthier patch to succumb. By estimating model parameters, based on beetle and tree biology, we519

are able to show that such behaviors fall within the range of reasonable parameter values.520
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Bentz, B. J., Régnière, J., Fettig, C. J., Hansen, E. M., Hayes, J. L., Hicke, J. A., Kelsey, R. G.,547

Negrón, J. F., Seybold, S. J., 2010. Climate change and bark beetles of the western United States548

and Canada: direct and indirect effects. BioScience 60, 602–613.549

Berryman, A., Stenseth, N., Wollkind, D., 1984. Metastability of forest ecosystems infested by bark550

beetles. Researches on Population Ecology 26, 13–29.551

Berryman, A. A., 1982. Biological-control, thresholds, and pest outbreaks. Environmental Ento-552

mology 11, 544–549.553

Boone, C. K., Aukema, B. H., Bohlmann, J., Carroll, A. L., Raffa, K. F., 2011. Efficacy of tree554

defense physiology varies with bark beetle population density: a basis for positive feedback in555

eruptive species. Canadian journal of forest research-Revue canadienne de recherche forestiere556

41, 1174–1188.557

Boone, C. K., Keefover-Ring, K., Mapes, A. C., Adams, A. S., Bohlmann, J., Raffa, K. F., 2013.558

Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds.559

Journal of Chemical Ecology 39, 1003–1006.560

Chapman, T. B., Veblen, T. T., Schoennagel, T., 2012. Spatiotemporal patterns of mountain pine561

beetle activity in the southern Rocky Mountains. Ecology 93, 2175–2185.562

Chubaty, A. M., Roitberg, B. D., Li, C., 2009. A dynamic host selection model for mountain pine563

beetle, Dendroctonus ponderosae Hopkins. Ecological Modelling 220, 1241–1250.564



25

Clark, J. S., Lewis, M., Horvath, L., 2001. Invasion by extremes: population spread with variation565

in dispersal and reproduction. The American Naturalist 157, 537–554.566
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Figure 1: These plots show trajectories of model (6) for uniform beetle distribution (β is given by (8)) (left panels)
and aggregated beetle distribution (β is given by (7) with n = 10) (right panels). Panels A and B assume low tree
resistance (Γ = 30), panels C and D assume intermediate resistance (Γ = 300), and panels E and F assume high
resistance (Γ = 450). The solid line in panels C and E is the threshold Imin for infestation given by (9) above
which beetle spread in the forest. The dotted line is the isocline for susceptible trees and the dashed line is the
isocline for infested trees. The black dot denotes a locally stable equilibrium, while the gray dot denotes an unstable
equilibrium. Other untransformed parameters are: g = 0.001, d = 0.003, m = 0.05, β0 = 0.01, µ = 2000, K = 100.
For simulations these parameters were non-dimensionalized following scheme in Table 3.
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Figure 2: Dependence of the equilibrium infestation I∗ on the transformed stand resistance. This figure documents
hysteresis in the forest dynamics. Untransformed parameters: g = 0.001, d = 0.003, m = 0.05, β0 = 0.01, µ = 2000,
K = 1000. For simulations these parameters were non-dimensionalized following scheme in Table 3
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Figure 3: The springboard effect of stand 1 on the beetle outbreak in stand 2. These plots assume that beetles
disperse between two forest stands and there is an allochthonous beetle inflow to stand 1 (but not to stand 2). Stand
1 has a lower resistance (Γ1 = 30) when compared to stand 2 (Γ2 = 200). When immigration of beetles to stand 1
from outside of the system is relatively small (panels A, B; µ1 = 100, µ2 = 0), both stands stay at the beetle-free
state. For intermediate immigration rates to stand 1 (panels C, D; µ1 = 1000, µ2 = 0), stand 1 shifts to the endemic
equilibrium (12) while stand 2 stays at the beetle-free state. For high immigration rates to stand 1 (panels E, F;
µ1 = 4000, µ2 = 0), both stands shift to the endemic equilibrium. Besides the above differences, both stands are
assumed to be identical. The curve is a trajectory of model (16) when beetles distribute uniformly over available
trees. The black dot denotes a locally stable equilibrium, while the gray dot denotes an unstable equilibrium.
Untransformed parameters used for simulations: β0 = 0.01 λ1 = λ2 = 0.001, g1 = g2 = 0.001, r1 = r2 = 0.1,
m1 = m2 = 0.05, d1 = d2 = 0.003, K1 = K2 = 100, δ = 10, e = 10. For simulations these parameters were
non-dimensionalized following scheme in Table 3.
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Appendix A. Local stability analysis649

Model (11) defines a linear system with matrix650

A =





−g − β0 −g

β0 −1



 . (A.1)651

Because the trace of A is given by Tr(A) = −1 − g − β0, while the determinant of A is given by652

Det(A) = g+β0+gβ0, both eigenvalues of A have negative real parts for positive parameter values.653

Accordingly, the endemic equilibrium (12) will be asymptotically stable.654

Appendix B. Behavior of trajectories of model (6) and (8) along the discontinuity line655

We study behavior of trajectories along the switching line I = Γ(1+S)−µ. The gradient vector656

to this line is n = {−Γ, 1}. Let f1 denote the right hand side of (10) and f2 denote the right hand657

side of (11), respectivelly. Then658

〈n, f2〉 = 〈n, f1〉+ Sβ0(1 + Γ),659

where 〈., .〉 denotes the scalar product. It follows that if 〈n, f1〉 > 0 then 〈n, f2〉 > 0, or, similarly, if660

〈n, f2〉 < 0 then 〈n, f1〉 < 0. These are the conditions that exclude the possibility where 〈n, f1〉 > 0661

and 〈n, f2〉 < 0. In other words, trajectories of model (6) are never pushed both from above and662

from below to the switching line. This also shows that no “sliding regime” sensu Filippov (1988)663

(see also Colombo and Křivan, 1993) occurs. Additionally, no locally stable equilibria can exist at664

the switching line.665

Appendix C. Relation between beetle aggregation and steepness of the Hill function666

We assume that a critical number of beetles, θ, are needed to overcome tree defenses. Therefore667

the probability that any given tree is overcome by the beetles can be determined by evaluating668

the probability that the random variable X , that describes the number of beetles per tree, is669

greater than θ. When X > θ, tree infestation occurs at rate β0, and no trees become infested670

when X ≤ θ. Defining, F (x,R) = Pr{X ≤ x | X̄ = R} as the lower tail of the cumulative671

distribution function F with the mean of the random variable X equal to X̄, we observe that672

Pr{X > θ | X̄ = R} = 1−F (θ,R). Our assumption that trees are infested at rate β0 when X > θ,673

and that no trees become infested when X ≤ θ gives the rate of infestation of new trees, β(R), in674

terms of F (θ,R) as675

β(R) = β0(1− F (θ,R)). (C.1)676

Beetle random dispersal is often described by a Poisson distribution Pois(R). We do not in-677

clude the specifics of active aggregation with respect to pheromones in the analysis. An approach678
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pioneered for insects by Waters (1959) and popularized by May (1978), subsumes the spatial and679

behavioral complexities that lead to patterns of aggregation into the single phenomenological as-680

sumption that the net distribution of attacks upon hosts is of negative binomial form. Although681

this was initially developed for parasitoids rather than bark beetles, the underlying modeling philos-682

ophy is the same. In this case the Negative Binomial distribution has mean X̄ = R and dispersion683

parameter k, and is denoted by NB(R, k). Unfortunately, because F (θ,R) is a complex cumula-684

tive distribution function, it creates difficulties in terms of model analysis. We therefore replace685

F (θ,R) in (C.1) with a Hill function capable of caricaturing the cumulative distribution function686

(Figure Appendix C.1). We do not claim that the Hill function is a perfect approximation for the687

cumulative distribution function for the negative binomial, only that it is an appropriate caricature688

for the degree of precision needed for the modeling at hand. Parameter Γ in the Hill function (3)689

approximates the threshold number of beetles required for successful infestation, θ, while n plays690

a role similar to the dispersion parameter, k. In particular, low values of n represent high levels691

of aggregation, while high values of n indicate overdispersion (see Figure Appendix C.1). If, for692

example, we assume that successful colonization of moderate size trees requires θ = 1000 beetles693

per tree, then by comparing the Hill function in equation (3) to the expression that it approximates694

in equation (C.1) and assuming either the Negative Binomial or Poisson distribution for F (θ,R),695

we can find the value of n and Γ that best approximates the beetle distribution. The right panel of696

Figure 1 shows the case when n = 10. Note that the qualitative behavior is similar to that of the697

uniform beetle scenario although the quantitative details differ.698
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Figure Appendix C.1: Comparison of the rate of infestation of new trees (C.1) (dots) and its approximation by the
Hill model (3) (line). Model (C.1) assumes a Negative Binomial distribution with θ = 1000 and dispersion parameter
k = 7 in panel A and k = 50 in panel B. Model (3) assumes Γ = 1000 and n = 4 in panel A and n = 10 in panel B.
In both panels β0 = 0.01.


