'*I National Library
of Canada du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality ofthis microformis heavily dependenrt upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

NL-339 (r.88/04) c

AVIS

La qualite de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

S'l manque des pages, veuillez communiquer avec
l'université qui a conféré le grade.

La qualité d'impression de certain¢s pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées a l'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de celte microforme est

soumise a la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

Canada

The University of Alberta

Experiments in Database Buffer IManagement Strategies in a

Virtual Memory Environment

by

e
Co) .
\ J) Meei Fen Teo

A

A thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree

of Master of Science

Department of Computing Science

Edmonton, Alberta
Spring, 1989

Bibliothéque nationale
du Canada

Natiorial Library
of Canada

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada

K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means andin
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliotheque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa these
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéresseées.

|"auteur conserve la propriété du droit d'auteur
qui protége sa thése. Ni la thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-52990-3

Canadi

THE UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Meei Fen Teo
TITLE OF THESIS: Experiments in Database Buffer Management

Strategies in a Virtual Memory Environment

DEGREE: Master of Science
YEAR THIS DEGREE GRANTED: Spring 1989

Permission is hereby granted to THE UNIVERSITY OF ALBERTA LI-
BRARY to reproduce single copies of this thesis and to lend or sell such copies
for private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor
extensive extracts from it may be printed or otherwise reproduced without the

author’s written permission.

(Signed) c;,.wzmw«:é

Permanent address:
10, Chestnut Close
S’pore 2367
Republic of Singapore

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Fac-
ulty of Graduate Studies and Research for acceptance, a thesis entitled Ex-
periments in Database Buffer Management Strategies in a Virtual
Memory Environment submitted by Meei Fen Teo in partial fulfillment

of the requirements for the degree of Master of Science.

(Supervisor)

Date: /27 el 1969

..........................

Dedicated to my parents

iv

Abstract

In most database management systems, a cache buffer is used to reduce the
number of accesses to the disks. Due to the special properties of the DBMS
queries, some of the common page replacement policies are not very suitable
for the DBMS buffer manager. Special DBMS buffer replacement algorithms
have been proposed and their performance in a main memory system scem
promising. Most DBMSs are run on top of a virtual memory operating system,
but no study exists that investigates these algorithms in this environment.

In this thesis, the performance of two special DBMS buffer replace-
ment algorithms in a virtual memory system is investigated. The replacement
algorithms are the hot set model and the QLS model. The performance study
is simulation-based where a simulator is used to emulate the exccution of the
DBMS queries in a virtual memory system. The performance results of these
two special DBMS buffer managers indicate that they are quite similar when

the DBMS is run on top of a virtual memory system.

Acknowledgements

I wish to thank my supervisor, Dr. Tamer Ozsu, for providing a friendly en-
vironment for research and for his patience and guidance during the course of
this thesis.

I would also like to thank the members of my examining committee,
Dr. L. Y. Yuan, Prof. U. Maydell and Dr. J. Mowchenko, for their helpful
comments. Thanks are also dued to the members of the distributed database
group: Tse-Men Koon, Ken Barker, Dave Straube and You-Ping Niy, for their
unselfish opinions and comments.

I am very grateful to the members of my family for their devoted
support, both spiritually and financially. I also wish to acknowledge my friends
in Edmonton for making my stay here a pleasant one. I thank Brian Wong
and Keith Fenske for proof reading this thesis. Finally, I would like to thank

Joon Kiat Lee for inspiring the final push.

vi

Contents

Abstract v
Acknowledgements vi
1 Introduction 1
1.1 Background 1
1.2 Objectiveof Thesis oo v 6
1.3 Organizationof Thesis 7

2 Previous Studies 8
2.1 Imtroduction. i e 8
2.1.1 Effectsof a Prefix Table 8

2.1.2 Effects of Main Memory Partitioning 10

2.1.3 Effects of Page Replacement Algorithm 12

2.1.4 Effects of Buffer Partitioning 12

2.2 SUMMATY . .« « « o o v et b v e e e e e 13

3 Special Purpose DBMS Buffer Management Algorithms 14
3.1 Introduction. v« o o v ot e e 14
3.2 Hot Set Model 15
3.2.1 Hot Set Page Reference Classification 17

3.2.2 Hot Set Buffer Management Strategy 19

3.3 Query Locality Set Model 21
3.3.1 QLSM Page Reference Classification 22

vii

(%]

3.3.2 DBMIN Buffer Management Strategy
3.4 SUMMATY . . ¢ v v v v vt v v v e e e e e e s e
Study Environment
4.1 Introduction. v v i v v i i e
42 InputModel e
4.2.1 DatabaseModel
4.2.2 Indices. . . . v v vt e e e e e e e
423 QueryModel o
4.3 Computer Configuration
4.4 PerformanceStudies L e
4.5 Implementation e
46 SUMMATY . .« « v v v v v v et e e e et e e e s

Analysis of Results

5.1 Introduction. e
5.2 Simple Selection o oo
5.2.1 Simple Selection Without Indices
5.2.2 Simple Selection With Non-Clustered Indices
523 SUMMATY . . -« ¢« v v v e bt e e e e
53 MergeScanJoins oo o
5.3.1 SUMMATY . . .« o v v v e e e e e e
54 NestedLoopJoins
5.4.1 Clustered Outer and Inner Indices
54.2 SUMMATY . . « .« o v v v e e e e e e e
5.4.3 Non-Clustered Outer Indices and Clustered Inner Indices
54.4 SUmMMAary v v vt i v e e e e e
5.5 SUMIMATLY . . « v v v v v e vt e e e e e e e et e e e
Conclusions
6.1 Summaryof Thesis

viii

6.2 General Conclusions« vttt 91
6.3 Suggestions for Implementation of a DBMSin a Virtual Memory
System 93
6.4 Suggestions for Future Research 94
Bibliography - 96
Appendix 100
A Nomenclature 100
B Pseudo Code 102
B.l Maill . . o o o e e e e e e e e e e e e e e e e e e 102
B.2 Scheduler 103
B.3 Buffer Manager 104
B4 I/ODriver.ot 106
C Performance Data for Simple Selection 107
C.1 Simple Selection without Indices 107
C.2 Simple Selection with Non-Clustered Indices 109
D Performance Data for Merge Scan Joins 121
E Performace Data on Nested Loop Joins 134
E.l1 Nested Loop Join with Clustered Inner and Outer Indices . . . 134
E.2 Nested Loop Join with Non-Clustered Outer Index and Clus-

tered Inner Indexo 147

ix

List of Tables

4.1 Access Paths for a Nested Loop Join 32

4.2 Access Paths for a Merge ScanJoin 34
4.3 Types of Queries Studied 35

C.1 Throughput, I/Os and Response Time of Query Type 1 at 20,

30, 50, 100, 150, 200 Frames« .. 107
C.2 Faults of Query Type 1 at 20, 30, 50, 100 and 150 Frames . . . 108
C.3 Throughput, I/Os and Response Time of Query Type 1 at 200

Frames ¢ o i i i i e e e e e 108
C.4 Faults of Query Type 1 at 200 Frames 108
C.5 Throughput of Query Type 2 at 20 Frames 109
C.6 1/0Os of Query Type 2 at 20 Frames. 109
C.7 Response Time of Query Type 2 at 20 Frames. 109
C.8 Page Faults of Query Type 2 at 20 Frames. 110
C.9 Buffer Faults of Query Type 2 at 20 Frames 110
C.10 Double Faults of Query Type 2 at 20 Frames 110
C.11 Throughput of Query Type 2 at 30 Frames 111
C.121/0s of Query Type 2 at 30 Frames. 111
C.13 Response Time of Query Type 2 at 30 Frames. 111
C.14 Page Faults of Query Type 2 at 30 Frames. 111
C.15 Buffer Faults of Query Type 2 at 30 Frames 112
C.16 Double Faults of Query Type 2 at 30 Frames 112
C.17 Query Type2at 50 Frames 113

C.18 I/Os of Query Type2 at 50 Frames. 113

C.19 Response Time of Query Type 2 at 50 Frames. 113
C.20 Page Faults of Query Type 2 at 50 Frames. L. 113
C.21 Buffer Faults of Query Type 2 at 50 Frames 114
C.22 Double Faults of Query Type 2 at 50 Frames 114
C.23 Query Type 2 at 100 Frames 115
C.241/0s of Query Type 2 at 100 Frames 115
C.25 Response Time of Query Type 2 at 100 Frafnes 115
C.26 Page Faults of Query Type 2 at 100 Frames 115
C.27 Buffer Faults of Query Type 2 at 100 Frames 116
C.28 Double Faults of Query Type 2 at 100 Frames. 116
C.29 Query Type 2 at 150 Frames 117
C.301/0s of Query Type 2 at 150 Frames 117
C.31 Response Time of Query Type 2 at 150 Frames 117
C.32 Page Faults of Query Type 2 at 150 Frames 117
C.33 Buffer Faults of Query Type 2 at 150 Frames 118
C.34 Double Faults of Query Type 2 at 150 Frames 118
C.35 Query Type 2 at 200 Frames 119
C.36 I/Os of Query Type 2 at 200 Frames 119
C.37 Response Tinie of Query Type 2 at 200 Frames 119
C.38 Page Faults of Query Type 2 at 200 Frames 119
C.39 Buffer Faults of Query Type 2 at 200 Frames 120
C.40 Double Faults of Query Type 2 at 200 Frames 120
D.1 Throughput of Query Type 3 at 20 Frames 121
D.2 I/Os of Query Type 3at20Frames. 122
D.3 Response Time of Query Type 3 at 20 Frames. 122
D.4 Page Faults of Query Type 3 at 20 Frames. 122
D.5 Buffer Faults of Query Type 3 at 20 Frames 122
D.6 Double Faults of Query Type 3 at 20 Frames 123

xi

D.7 Throughput of Query Type 3 at 30 Frames 124

D.8 I/Os of Query Type 3at 30 Frames., 124
D.9 Response Time of Query Type 3 at 30 Frames. 124
D.10 Page Faults of Query Type 3 at 30 Frames. 125
D.11 Buffer Faults of Query Type 3 at 30 Frames 125
D.12 Dcuble Faults of Query Type 3 at 30 Frames 125
D.13 Throughput of Query Type 3 at 50 Frames 126
D.141/0s of Query Type 3 at 50 Frames. 126
D.15 Respons:: Time of Query Type 3 at 50 Frames. 126
D.16 Page Faults of Query Type 3 at 50 Frames. 127
D.17 Buffer Faults of Query Type 3 at 50 Frames 127
D.18 Double Faults of Query Type 3 at 50 Frames 127
D.19 Throughput of Query Type 3 at 100 Frames 128
D.201/0s of Query Type 3 at 100 Frames 128
D.21 Response Time of Query Type 3 at 100 Frames 128
D.22 Page Faults of Query Type 3 at 100 Frames 129
D.23 Buffer Faults of Query Type 3 at 100 Frames 129
D.24 Double Faults of Query Type 3 at 100 Frames. 129
D.25 Throughput of Query Type 3 at 150 Frames 130
D.26 1/0Os of Query Type 3 at 150 Frames 130
D.27 Response Time of Query Type 3 at 150 Frames 130
D.28 Page Faults of Query Type 3 at 150 Frames 131
D.29 Buffer Faults of Query Type 3 at 150 Frames 131
D.30 Double Faults of Query Type 3 at 150 Frames. 131
D.31 Throughput of Query Type 3 at 200 Frames 132
D.321/0s of Query Type 3 at 200 Frames 132
D.33 Response Tim:: of Query Type 3 at 200 Frames 132
D.34 Page Faults of Query Type 3 at 200 Frames 133
D.35 Buffer Faults of Query Type 3 at 200 Frames 133
D.36 Double Faults of Query Type 3 at 200 Frames. 133

xii

E.1 Throughput of Query Type 4 at 20 Frames 134

E.2 1/0Os of Query Type 4 at 20 Frames. 135
E.3 Response Time of Query Type 4 at 20 Frames. 135
E.4 Page Faults of Query Type 4 at 20 Frames. 135
E.5 Buffer Faults of Query Type 4 at 20 Frames 135
E.6 Double Faults of Query Type 4 at 20 Frames 136
E.7 Throughput of Query Type 4 at 30 Frames 137
E.8 1/Os of Query Type 4 at 30 Framies. 137
E.9 Response Time of Query Type 4 at 30 Frames. 137
E.10 Page Faults of Query Type 4 at 30 Frames. 138
E.11 Buffer Faults of Query Type 4 at 30 Frames 138
E.12 Double Faults of Query Type 4 at 30 Frames 138
E.13 Throughput of Query Type 4 at 50 Frames 139
E.14 I/0s of Query Type 4 at 50 Frames. 139
E.15 Response Time of Query Type 4 at 50 Frames. 139
E.16 Page Faults of Query Type 4 at 50 Frames. 140
E.17 Buffer Faults of Query Type 4 at 50 Frames 140
E.18 Double Faults of Query Type 4 at 50 Frames 140
E.19 Throughput of Query Type 4 at 100 Frames 141
E.20 I/Os of Query Type 4 at 100 Frames 141
E.21 Response Time of Query Type 4 at 100 Frames 141
E.22 Page Faults of Query Type 4 at 100 Frames 142
E.23 Buffer Faults of Query Type 4 at 100 Frames 142
E.24 Double Faults of Query Type 4 at 100 Frames. 142
E.25 Throughput of Query Type 4 at 150 Frames 143
E.26 1/Os of Query Type 4 at 150 Frames 143
E.27 Response Time of Query Type 4 at 150 Frames 143
E.28 Page Faults of Query Type 4 at 150 Frames 144
E.29 Buffer Faults of Query Type 4 at 150 Frames 144

E.30 Double Faults of Query Type 4 at 150 Frames 144

X1l

E.31 Throughput of Query Type 4 at 200 Frames 145

E.32 I/Os of Query Type 4 at 200 Frames 145
E.33 Response Time of Query Type 4 at 200 Frames 145
E.34 Page Faults of Query Type 4 at 200 Frames 146
E.35 Buffer Faults of Query Type 4 at 200 Frames 146
E.36 Double Faults of Query Type 4 at 200 Frames. 146
E.37 Throughput of Query Type 5 at 20 Frames 147
E.38 I/Os of Query Type 5 at 20 Frames. 147
E.39 Response Time of Query Type 5 at 20 Frames. 147
E.40 Page Faults of Query Type 5 at 20 Frames. 148
E.41 Buffer Faults of Query Type 5 at 20 Frames 148
E.42 Double Faults of Query Type 5 at 20 Frames 148
E.43 Throughput of Query Type 5 at 30 Frames 149
E.44 1/0s of Query Type 5 at 30 Frames. 149
E.45 Response Time of Query Type 5 at 30 Frames. 149
E.46 Page Faults of Query Type 5 at 30 Frames. 150
E.47 Buffer Faults of Query Type 5 at 30 Frames 150
E.48 Double Faults of Query Type 5 at 30 Frames 150
E.49 Throughput of Query Type 5 at 50 Frames 151
E.50 I/Os of Query Type 5 at 50 Frames. 151
E.51 Response Time of Query Type 5 at 50 Frames. 151
E.52 Page Faults of Query Type 5 at 50 Frames. 152
E.53 Buffer Faults of Query Type 5 at 50 Frames 152
E.54 Double Faults of Query Type 5 at 50 Frames 152
E.55 Throughput of Query Type 5 at 100 Frames 153
E.56 1/Os of Query Type 5 at 100 Frames 153
E.57 Response Time of Query Type 5 at 100 Frames 153
E.58 Page Faults of Query Type 5 at 100 Frames 154
E.59 Buffer Faults of Query Type 5 at 100 Frames 154
E.60 Double Faults of Query Type 5 at 100 Frames. 154

xiv

E.61 Throughput of Query Type 5 at 150 Frames 155

E.62 I/Os of Query Type 5 at 150 Frames 155
E.63 Response Time of Query Type 5 at 150 Frames 155
E.64 Page Faults of Query Type 5 at 150 Frames 156
E.65 Buffer Faults of Query Type 5 at 150 Frames 156
E.66 Double Faults of Query Type 5 at 150 Frames. 156
E.67 Throughput of Query Type 5 at 200 Frames 157
E.68 1/0s of Query Type 5 at 200 Frames 157
E.69 Response Time of Query Type 5 at 200 Frames 157
E.70 Page Faults of Query Type 5 at 200 Frames 158
E.71 Buffer Faults of Query Type 5 at 200 Frames 158
E.72 Double Faults of Query Type 5 at 200 Frames 158

XV

List of Figures

1.1
1.2

1.3

3.1
3.2

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6

5.7

5.8

Mapping of DBMS Buffers in a Virtual Memory System . . .
Relationship between DBMS Buffers and a Virtual Memory Sys-

17 0+ NN O

DBMS in a General Purpose Virtual Memory OS

Determination of Hot Points.

Organization of locality sets in QLSM

Study Environment. 000

A View of the Database used in the Study

Throughput for Simple Selection Queries Without Indices . .
I/0s for Simple Selection Queries Without Indices
Response Time for Simple Selection Queries Without Indices
Page Faults for Simple Selection Queries Without Indices . . .
Double Faults for Simple Selection Queries Without Indices .
(DBMS) Buffer Faults for Simple Selection Queries Without In-

Throughput (Hot Set model) for Simple Selection Queries With
Non-Clustered Indices
Throughput (DBMIN model) for Simple Selection Queries With
Non-Clustered Indices

xvi

48
49
50
51
51

52

5.9 1/0s (Hot Set model) for Simple Selection Queries With Non-

Clustered Indices . . . & & v v v v v v e e e e e e e e e e e 56
5.10 I/Os (DBMIN model) for Simple Selection Queries With Non-
Clustered Indices v v v v it e e e e e e e e e 57

5.11 Response Time (Hot Set model) for Simple Selection Queries

With Non-Clustered Indices 57
5.12 Response Time (DBMIN model) for Simple Selection Queries
With Non-Clustered Indices 58
5.13 Double Faults (Hot Set model) for Simple Selection Queries
With Non-Clustered Indices 59
5.14 Double Faults (DBMIN model) for Simple Selection Queries
With Non-Clustered Indices 59
5.15 Page Faults (Hot Set model) for Simple Selection Queries With
Non-Clustered Indices, 60
5.16 Page Faults (DBMIN model) for Simple Selection Queries With
Non-Clustered Indices 61
5.17 (DBMS) Buffer Faults (Hot Set model) for Simple Sclection
Queries With Non-Clustered Indices 62
5.18 (DBMS) Buffer Faults (DBMIN model) for Simple Selection
Queries With Non-Clustered Indices 62

5.19 Throughput (Hot Set model) for C-C Merge Scan Join Queries 63
5.20 Throughput (DBMIN model) for C-C Merge Scan Join Querics 64
5.21 (DBMS) Buffer Faults (Hot Set model) for C-C Merge Scan Join
QUETIES . . . v o e e e e e e e 65
5.22 (DBMS) Buffer Faults (DBMIN model) for C-C Merge Scan Join
QUETIES . v v v e o e e e e e e e e e e e 65
5.23 Double Faults (Hot Set model) for C-C Merge Scan Join Queries 66
5.24 Double Faults (DBMIN model) for C-C Merge Scan Join Querics 66
5.25 Page Faults (Hot Set model) for C-C Merge Scan Join Queries 67
5.26 Page Faults (DBMIN model) for C-C Merge Scan Join Queries 67

xvii

5.27 1/Os (Hot Set model) for C-C Merge Scan Join Queries
5.28 I/0s (DBMIN model) for C-C Merge Scan Join Queries
5.29 Response Time (Hot Set model) for C-C Merge Scan Join Queries
5.30 Response Time (DBMIN model) for C-C Merge Scan Join Queries
5.31 Throughput (Hot Set model) for C-C Nested Loop Join Queries
5.32 Throughput (DBMINl model) for C-C Nested Loop Join Queries
5.33 Response Time (Hot Set model) for C-C Nested Loop Join Queries
5.34 Response Time (DBMIN model) for C-C Nested Loop Join Queries
5.35 Page Faults (Hot Set model) for C-C Nested Loop Join Queries
5.36 Page Faults (DBMIN model) for C-C Nested Loop Join Queries
5.37 Double Faults (Hot Set model) for C-C Nested Loop Join Queries
5.38 Double Faults (DBMIN model) for C-C Nested Loop Join Queries
5.39 (DBMS) Buffer Faults (Hot Set model) for C-C Nested Loop
Join Queries e
5.40 (DBMS) Buffer Faults (DBMIN model) for C-C Nested Loop
JoinQueries e
5.41 I/Os (Hot Set model) for C-C Nested Loop Join Queries
5.42 1/Cs (DBMIN model) for C-C Nested Loop Join Queries
5.43 Throughput (Hot Set model) for NC-C Nested Loop Join Queries
5.44 Throughput (DBMIN model) for NC-C Nested Loop Join Queries
5.45 Response Time (Hot Set model) for NC-C Nested Loop Join
QUETIES . . . v v o e e e e e e e e e e
5.46 Response Time (DBMIN raodel) for NC-C Nested Loop Joia
Queries i e e e e e e e e e
5.47 (DBMS) Buffer Faults (Hot Set model) for NC-C Nested Loop
Join Queries o e e
5.48 (DBMS) Buffer Faults (DBMIN model) for NC-C Nested Loop

JoinQueries e e

68
69
69
70
72
73
73
74
75
76
76
77

80
81
81

85

5.49 Double Faults (Hot Set model) for NC-C Nested Loop Join Queries 85

xviil

5.50 Double Faults (DBMIN model) for NC-C Nested Loop Join
QUETIES . .« v v o v v e e e e e e 86
5.51 Page Faults (Hot Set model) for NC-C Nested Loop Join Queries 86
5.52 Page Faults (DBMIN model) for NC-C Nested Loop Join Querics 87
5.53 1/Os (Hot Set model) for NC-C Nested Loop Join Queries . . . 87
5.54 1/0s (DBMIN model) for NC-C Nested Loop Join Queries . . . 88

xix

Chapter 1

Introduction

1.1 Background

In most database management systems (DBMSs), a cache buffer is used to
reduce the number of accesses to the disks or secondary storage. Studies have
been conducted to compare the suitability of various operating system (OS) file
manager page replacement algorithms for use by the DBMS buffer manager. As
pointed out in [Gra78,Sto81,TM82,0zs88], these well-known algorithms such
as Least Recently Used (LRU) are not very suitable for DBMS buffer manage-
ment.

Figure 1.1 gives a high level logical view of the DBMS buffers with
respect to the virtual memory and main memory. Each box represents the
size of the various types of memory. As can be seen from the figure, the
DBMS buffers are mapped into a virtual memory partition of equal size. This
portion of the virtual memory may (completely or partially) not be in the
main memory. Bringing them into the main memory to make them accessible
is what causes the various types of faults. In general, the relationship between
the DBMS buffers and the virtual memory manager of the operating system
can be represented as in Figure 1.2. The database is organised on secondary
storage as a collection of equi-sized units called database pages. The virtual

memory and the main memory is also organised similarly. The units are called

[§%

Virtual Memory

Main Memory

DBMS Buffers

Figure 1.1: Mapping of DBMS Buffers in a Virtual Memory System

virtual memory pages for virtual memory and frames for nain memory. The
size of a frame, the size of a database page and the size of a virtual memory page
are equal. Two replacement algorithms are involved: one for the replacement
of DBMS buffers and the other for the replacement of frames. Note that these
two algorithms are totally independent of each other even though they might
employ the same policies.

Figure 1.3 shows two ways in which a DBMS can be implemented on
a general purpose virtual memory operating system cnvironment. In the first
method (Figure 1.3a), the DBMS is implemented on top of the virtual memory.
In the second method (Figure 1.3b), the main memory is partitioned into two
parts: main memory which maps the DBMS buffers directly and main memory
which are used by other tasks.

In the first method, where the database buffers are mapped into vir-
tual memory, the DBMS buffer manager does not have complete control over
its buffers. This is because the entire main memory and the fhapping of vir-
tual memory pages to frames is under the control of the OS virtual memory
manager. Consider a database page p; that is referenced by the DBMS which

is in a database buffer that is already mapped to a main memory frame, fi.

Virtual Memory 1
1
DBMS buffers
N
Main Memory
frames
/ M
Page faults
Page repl. alg

Buffer faults
Buffer repl. alg.

g

Paging Disk
DBMS Disk

Figure 1.2: Relationship between DBMS Buffers and a Virtual Memory System

During the DBMS access to this page, if the virtual inemory manager decides
to allocate f; to another process, the DBMS buffer manager is not in a position
to prevent this allocation. This results in extra disk accesses to bring the page
p; back into the main memory when the DBMS accesses it again.

This problem is not encountered in the sccond method where the
DBMS buffer manager and the virtual memory manager share the main mem-
ory. This is because the DBMS buffers are mapped into main memory and
it is the DBMS buffer manager that decides when to keep a page in a main
memory buffer and when to write a page back to the secondary storage.

There are two ways by which the DBMS and the virtual memory man-
ager can share the main memory: static or dynamic partitioning. In the static
partitioning method, the main memory is divided into a virtual memory parti-
tion and a DBMS partition. Frames do not migrate between the two partitions.
That is, once the size of the partitions has been determined, it remains fixed

regardless of the possible load differences between the two systems. This prob-

DBMS
: DBMS Virtual
‘» B! Memory
Virtual Memory \ /
Main Memory Main Memory

(a) (b)
Figure 1.3: DBMS in a General Purpose Virtual Memory OS

lem is overcome in the dynamic partitioning method. In this method, the size
of the two partitions changes dynamically, depending on the load of both sides.

A buffer fault occurs when the needed data is not in the DBMS buffers
requiring an access to the database disk. A page fault occurs when an access
to the paging disk device is required. For example, a page fault is induced
when the virtual memory page which maps a DBMS buffer is not in the main
memory. In this case, if the requested data page is in a DBMS buffer but the
virtual memory page which maps the DBMS buffer is not in the main memory,
the fault is termed a reference fault. If the requested data page is not in the
DBMS buffer and the virtual memory page which maps the DBMS buffer which
has been chosen for replacement is not in the main memory, a double fault is
said to have taken place. Note that in a reference fault, only one disk access
is required whereas in a double fault, two disk accesses are generated. Also, a
double fault can occur only if a buffer fault has already taken place.

When a fault is generated, a frame or buffer has to be chosen for

replacement. Some common replacement algorithms are:

o LRU, where the page that has not been referenced for the longest time

is chosen.

o Most recently Used (MRU), where the most recently used page is re-

placed. This is used in cyclic page references.

e First In First Out (FIFO), where the page that has been in the main

memory the longest (regardless of when it was referenced) is replaced.

¢ Random (R), where a page is randomly selected for replacement. This
policy is used when the paging behavior of a process obeys the random

reference model.

e Last In First Out (LIFO), is the converse of FIFO where the page that
has been in main memory for the shortest time is replaced. This policy
is used when the available space is not enough to hold all the pages that

- are repeated scanned.

o Clock, where the frames are scanned until a unused frame is found. A
reference bit is associated with each frame. As the frames are scanned in
a cyclic manner, each bit associated with the frame being scanned is reset
if the bit has been set. If it has not been set then, the frame is chosen

for replacement. Sometimes, this policy is also called Second Chance.

Usually, the cost of a disk access to a database disk is much higher
than the cost of an access to a paging disk device. The I/O cost is therefore
defined as the sum of the number of buffer faults and the number of page fauits,
where the latter is divided by the ratio of the cost of an access to the database

disk to the cost of an access to the paging device (7).

number of page faults

I1/0 cost = number of buffer faults +

r

The sum of the number of buffer faults and reference faults is termed the duffer
I/0. The number of page fauits caused by the DBMS program is called the
system I/0. The sum of the above two terms is defined as the total I/0. A

summary of the above definitions can be found in Appendix A.

1.2 Objective of Thesis

In the past several years, special algorithms have been proposed for DBMS
buffer management. These algorithms take advantage of the fact that in a
DBMS, a query’s reference behavior can be known in advance. In this thesis,
the performance of two such algorithms in a virtual memory environment are
studied. The two algorithms are the Hot Set model [SS86] and the query
locality set (QLS) model [CD86]. The Hot Set model predicts the memory
requirement of a query that will be executed in a LRU rnanagéd buffer pool.
The QLS model adapts the buffer replacement policy and buffer requirement
associated with each query to the access pattern that the query exhibits when
accessing a file.

The results of earlier performance studies of these two special buffer
replacement algorithms where DBMS buffers are mapped to main memory are
promising. Most DBMSs are run on top of a virtual 1ﬁ1exnory operating system,
but no study exists that investigates the algorithms in this environment. In
this thesis, we study the performance of the Hot Set and the QLS buffer re-
placement algorithms in a virtual memory operating system environment. We
have implemented the alternative as shown in Figure 1.3, with static partition-
ing of the main memory. The policy used by the page replacement algoritam
of the virtual memory manager is global LRU. In the global LRU method, all
the frames in the system are shared among all the processes. When a page
fault occurs, the least recently used frame is chosen for replacement.

This performance study is simulation-based where we use a simulator
to emulate the execution of queries of the DBMS in a computer system with
virtual memory. The simulator consists of a computer system model and a
page reference string generator. For each query, its page reference string is
generated before it is executed in the computer system model. A virtual time
unit is used to control event timing in the simulator. Each reference to a page

in main memory constitutes a virtual time unit.

The measurements considered are the mean number of page faults,
the mean number of buffer faults, the mean number of double faults, the mean
number of 1/Os, the mean response time and the throughput which is defined
as the number of queries processed per second in the total interval of the
simulation time. The mean number of the various types of faults will give us
an indication of the percentage each type contributes to the response time and
I/Os. Faults have also been used in many studies to determine performances.
The throughput is a good measure for the overall performance of the system.
The response time and faults will give the performance with respect to each

query but the throughput gives .th‘e performance of the whole system.

1.3 Organization of Thesis

In Chapter 2 and Chapter 3, a review of the studies which have been performed
on the DBMS buffer replacement algorithms is given. Chapter 2 reviews the
studies on the effects of implementing various types of conventional page re-
placement policies such as FIFO (First In First Out), Random, Clock and LRU
as the DBMS buffer replacement algorithm when the DBMS is running on top
of a virtual memory operating system. In Chapter 3, the Hot Set model and
the QLS model are discussed. Chapter 4 gives ¢ scription of the simulator
~ used in our study. Chapter 5 discusses the results obtained from the perfor-
mance studies of the two buffer replacement algorithms. Finally, Chapter 6

gives the conclusions and some suggestions for further research.

Chapter 2

Previous Studies

2.1 Introduction

This chapter reviews the work which involves studies on the effects of running
a DBMS on top of a virtual memory operating system. These studies are
mainly concerned with minimizing the number of I/O generated by the queries

being processed by the DBMS. The research work which has been done in

this area mainly concentrates on finding the best combination of conventional
replacement policies between the DBMS buffer replacement algorithm and the
main memory replacement algorithm. The effects of factors such as the DBMS
buffer size, the main memory size, the buffer replacement policy and memory

replacement policy are considered in this research.

2.1.1 Effects of a Prefix Table

The earliest work is done by Tuel [Tue76). He proposes a model to study
“the total I/O activity generated by the IMS version 2.4 [Mac73] in a virtual
memory system. In this version of IMS, a search in the DBMS buffers for a
requested data page generates faults if the buffer page being searched 1s not
in the main memory. In other words, no effort is taken to reduce the number

of faults caused by searching. Therefore, whenever a page is requested, all the

DBMS buffers have to be brought into the main memory, thus increasing the
number of 1/Os. Thus, as the size of the DBMS buffer pool (N) increases with
respect to the size of the main memory (M), the number of faults also increases,
leading to an increase in the total I/O activity. This has led Tuel to conclude
that the paging effect becomes significant and the performance deteriorates as
N becomes larger than M.

The effect of using a table which gives an indication of the presence
of a data page in the DBMS buffers is studied in [LWF77]. In this work,
three models are proposed. In the first one (which we call model A), the
buffer replacement policy used is Least Recently Used (LRU). The buffers are
searched from most recently used to least recently used and the virtual memory
m#nager uses the Random policy (R) for replacement of frames. In the second
model (which we call B), the LRU policy is used both in the buffer replacement
algorithm and in the memory replacement algorithm. In addition, the memory
LRU stack is not updated during a buffer search. This is done so that the
ordering of the frames in the LRU stack is more related to the actual sequence
of references shown by the queries. The third model (model C) is quite similar
to the model proposed by Tuel except for the addition of a prefix table in the
main memory to indicate which data pages are in the DBMS buffers. Since the
table is always in the main memory, faults will not be generated by a search
of the table. In this model, the LRU replacement policy is also used in both
the buffer replacement algorithm and the page replacement algorithm.

The results of the [LWF77] study show that
I/O COStmodel ¢ < I/O COStmodel B < I/O COStmodel A

given that N is greater than (M + 1). In this study, empirical results are also
obtained from the above models. It is found that in situations where the main
memory is shared dynamically between the buffers and the other active tasks
in the virtual memory system, it is advantageous to increase N. In addition, the

use of the LRU policy in both replacement algorithins is more advantageous

10

than using a combination of the LRU and R policies. The use of a prefix table
is shown to give a significant improvement in I/O cost. In all three models,
it is found that increasing N will reduce the I/O cost if r > 1. The final
conclusion is that Tuel’s results hold only if r = 1 and M is fixed at a value
(that is, memory is statically allocated to the DBMS buffer manager). In all
three models, if M is varied (that is, if the DBMS is competing with other

tasks in the system for frames), the I/O cost will be reduced.

2.1.2 Effects of Main Memory Partitioning

Brice and Sherman [SB?G,BST?] further expand the studies to include the ef-
fects of dynamic and static partitioning of the main memory manager and
the compatibility of the various buffer replacement algorithms with various
memory replacement algorithms. In [SB76], the main memory is shared dy-
namically between the DBMS buffers and the code running the DBMS, and
four factors are studied: the buffer management algorithm, the DBMS buffer
pool size, the main memory size and the memory replacement algorithm. The
replacement algorithms studied are First In First Out (FIFO), Random (R),
Second Chance (SCH) and LRU. The main memory size ranges from 72 frames
to 96 frames, and the buffer pool size ranges from 1 to 20 pages. It is found
that for all values, the LRU replacement algorithm (in both replacement of
buffers or frames) gives a better performance than SCH while the R buffer
replacement algorithm is found to give the best performance. It consistently
produces a lower double paging rate but a higher number of reference faults.
The higher paging rate is lowered when R is also used as the memory replace-
ment algorithm. This is due to the fact that the buffer size used in the study is
not large enough to contain the locality of the queries and thus the LRU policy
is not effective. As in other studies, it is found that the buffer I/O decreases as
N increases thus leading to the conclusion that if N is increased to be greater
than M, the resulting performance advantages will overcome the cffects of the

resulting double paging.

11

The above study is extended to a static partitioning of the main mem-
ory [BS77]. In this study, the main memory is statically partitioned into system
frames and buffer frames. When a page fault occurs, a frame is chosen from
the partition in which the fault occurs. That is, frames in one partition are not
considered for replacement by the replacement algorithm when a fault occurs
in the other partition. The buffer replacement algorithms tested are FIFO,
R, SCH and LRU. The memory replacement algorithms considered are R and
SCH. The buffer partition size and the DBMS buffer pool size considered are 1,
5, 10, 15 and 20 frames/pages. The main memory size ranges from 80 frames
to 96 frames. It is found that there is a peak in the buffer I/O when the
buffer ratio (N/M) increases to just above 1. This is due to an increase in
double faults or reference faults. Therefore, to reduce the double fault com-
ponent, N has to be significantly larger than M. This will lead to a decrease
in the buffer faults thus leading to a decrease in double faults. The total I/O
decreaées when M increases and/or when the system partition size becomes
larger. When the system partition size becomes larger, though the buffer I/0
increases, this increase is not as significant as the decrease in system I/O. It is
also found that the variation in the buffer I/O is mostly caused by the buffer
replacement algorithm rather than the memory replacement algorithm. For the
system partition, SCH is found to be a better memory replacement algorithm
and for the buffer partition, the combination of R buffer replacement algorithm
and R memory replacement algorithm is found to give the best performance.
R performs better because the page reference pattern of the database used is
characterized by a few highly referenced database pages, separated by strings
of references which are similar to [SB76]. Since the buffer pool size is not large
enough to contain the locality of the queries, the LRU replacement alzorithm

does not perform as well.

2.1.3 Effects of Page Replacement Algorithm

In a second experiment performed by Fernandez, Lang and Wood [FLW78], the
effects of the memory replacement algorithms on a DBMS runningin a virtual
memory system are studied. The buffer replacement algorithm is fixed as LRU;
the memory replacement algorithms tested are LRU, R and generalized LRU.
In this study, only one DBMS user is assumed. As in [BS77], a buffer I/O
peak is found when N is just greater than M for the case of an LRU memory
replacement algorithm. As in [LWF77], the R policy generally produtes better
performance than the LRU policy when the locality set of the database cannot
be contained in the memory. The paging rate of generalized LRU is found to
be smaller than that of the LRU policy. As in all other cases, the I/O cost

decreases with increasing buffer pool size. -

2.1.4 Effects of Buffer Partitioning

In a later study, besides studying the effects of static and dynamic partitioning
of the main memory, Effelsberg and Haerder [EH84] also perform some exper-
iments on local and global buffer allocation policies and local and global re-
placement algorithms. It is shown that the LRU replacement policy is superior
to Clock, FIFO and R. An allocation policy is one which determines whether
a frame in main memory is to be allocated to a process/transaction/query.
Though the local allocation schemes have buffer fault rates similar to the global
allocation schemes, they are not appropriate for an interactive DBMS applica-
tion because of long user response time, extra overhead in handling the buffer
frames for shared pages and an increase in complexity with an increase in the
number of active transactions. For the study on static and dynamic partition-
ing, it is shown that the dynamic scheme gives better performance than the
static scheme and the buffer fault rate for a three partition system (separated
into (DBMS) system, access paths and database) is slightly better than that of

a two partition system (separated into (DBMS) system and database inclusive

13

of access paths) or global LRU.

2.2 Summary

In this chapter, we review the previous research work in buffer management
in DBMS. All of these studies concentrate on optimizing the execution of a
DBMS on top of a virtual memory operating system. The compatibility of
using some common page replacement algorithms such as FIFO, LRU and R
for DBMS buffer replacement is also studied.

We can conclude that the use of a prefix table to indicate the contents
of the buffers is beneficial. Also, in general, when the DBMS is running on top
of a virtual memory system, the DBMS buffer pool size should be significantly
larger than the size of the real memory allocated to the DBMS buffer pool
so that the I/O cost can be reduced. The LRU poiicy should be preferred to
others for both the buffer replacement algorithm and the memory replacement
algorithm. This is beacuse although the results from the Brice and Sherman
studies have shown that R is a better policy, [LWF77] states that LRU can
be shown to be a better replacement algorithm if N is increased to above 20
pages in their studies. Also, the studies of [EH84] and [LWF77] have shown
that LRU is the superior replacement algorithm in the DBMS buffer manager.
In [EHS4], it is also found that the dynamic allocation of main memory gives

a better performance than that of a static allocation scheme.

Chapter 3

Special Purpose DBMS Buffer
Management Algorithms

3.1 Introduction

In this chapter, we discuss two buffer management schemes which have been
designed specifically for DBMS use. The main feature of these two schemes 1s
that they incorporate the knowledge of the page reference pattern of a query
to be executed into the buffer manager. Most memory managers in gencral
purpose operating systems assume that the page reference pattern of a pro-
cess is not known but assume that some form of locality of reference will be
exhibited by the process. For the general purpose processes, these assump-
tions are generally valid but for a database process, they are not. In many
of the cases, not only the page reference pattern but also the optimal buffer
space can be determined before each query is executed. This can be done by
inspecting the type of query and the databases the query has to access when
it is in execution. In order to incorporate this knowledge, the query optimizer
and the buffer manager are required to cooperate with one another. The op-
timizer, with the knowledge of the number of free buffers available, will be
able to choose the best path to execute a query with the limited number of

free buffers. According to the chosen best path, the page reference pattern

14

15

and the optimal buffer space can be determined. For a given page reference
pattern, the most suitable buffer replacement algorithm can be determined.
In the following, we shall discuss two methods which have been proposed to
estimate the buffer requirement and/or the buffer replacement algorithm for

any particular query.

3.2 Hot Set Model

This model is introduced by Sacco and Schkolnick [SS82], and is further refined
in [SS86] for a relational DBMS. The Hot Set model attempts to estimate the
run-time buffer space requirement of a query (when it is being executed) before
it starts execution. This buffer space requiremerit_does not change as the query
is being executed.

The purpose of the Hot Set model is to reduce internal and external
thrashing. Thrashing [Den68a] is a term used to describe a situation in which
the resources are not engaged to execute active processes, but are engaged in
servicing system operations which are produced as a result of processes com-
peting for resources. In the case of buffer management, it is caused by not
having enough buffers to satisfy the buffer needs of the active processes. Inter-
nal thrashing is local within a process. It happens when every new reference to
a page causes a fault. This happens because the number of available buffers is
not large enough to contain the locality set of tl-le process. External thrashing
occurs in a multi-user environment. For example, when a process steals buffers
from another one which has a looping behavior, the latter process will generate
a fault for every page reference.

The key idea behind the Hot Set model is the observation that for
each query running in a DBMS which has an LRU buffer replacement policy,
the number of faults generated by a query as a function of the available buffer
space is a curve consisting of a number of stable intervals, separated by a

small number of discontinuities, called unstable intervals (Figure 3.1). Inside

16

Page Faults(Pages)

hot point cold point
o« e
ke stable region. = f e stable region >

unstable region
Buffer Size(Pages)

Figure 3.1: Determination of Hot PPoints

a stable interval, the number of faults is a constant. The lower extreme of
a stable interval is called a hot poini and the upper extreme is called a cold
point. It is called the cold point to indicate that this buffer size should never
be chosen for the execution of this query. If it is chosen, the process will be
consuming more buffer resources than is necessary without any reduction in
faults. In fact, the buffer size at the cold point will produce as many faults
as that at the hot point although the hot point indicates a smaller buffer size.
Therefore, the hot point is the optimal buffer size of the query. Notice that the
hot point of a stable interval (except for the minimum hot point) is the upper
extreme of an unstable interval and the lower extreme of an unstable interval
is the cold point of a stable interval. In all cases, only the buffer sizes of the
hot points inside stable intervals of a curve should be chosen for the execution
of that query. Otherwise, buffer resources will be wasted without any fault
reduction.

In order ‘o identify the hot points and the stable and unstable intervals

17

for a given query, Sacco and Schkolnick classify the different types of page
reference patterns exhibited by queries when they are executed in a LRU buffer
replacement policy environment.

Besides giving a classification of the different types of page reference
patterns, they also propose a buffer management algorithm which is based on
the LRU replacement policy. We next give a description of the classification,

followed by the algorithm.

3.2.1 Hot Set Page Reference Classification

In the Hot Set model, the page reference patterns are classified into simple

reusal, loop reusal, unclustered reusal and indez reusal.

Simple Reusal

In simple reusal, once a page is referenced and has been replaced, it will never be
referenced by the same query again. Sequential scans exhibit such a reference
behavior. Therefore, the buffer size requirement for a query exhibiting such a

page reference pattern is exactly one. Thus, the hot point is one.

Loop Reusal

Queries which reference pages in a loop are classified into this category. For
example, a join between two relations Ry and R; which is being executed by a
nested loop method using sequential scans. In such a case, there are two hot
points : 1 and (1 + P,) where P, is the size of (number of pages) R;. These
hot points can be extended to n-way joins. Another example is the merge scan
join. In this case, looping occurs on runs of equal values of R, matching a run
of equal values in R;. The hot points in this case are 1 and estimated to be 1

+ rlen2, with
P,]
NDV,

rlen2 = |

18

or

rlen2 = [-;3]
1

where NDV, is the number of distinct values in the range of the join attribute
of R, and P, is the size of R;. The second estimate is used when NDV; is not

known.

Unclustered Reusal

Queries which use only an unclustered index over a relation are classified into
this category. In such a case, for each index-leaf level entry which satisfies the
predicate, the corresponding tuple is accessed. Since the index is unclustered,
each entry might point to a different page or to a page which has been refer-
enced. Therefore, an estimate of the number of the unique pages to be accessed
is required. In the Hot Set model, Yao's function [Yao77] is used for such an
estimate.

Yao's function:

1— Tk, E=p=izy e p < (n
Yao(m,p, k) = m(=l (ﬂ-—:+1))1 < (n-p)

m k> (n-p)

n = number of tuples = I,

m = number of blocks or pages containing n tuples = %

p = number of tuples in each page

k = number of tuples randomly selected from n tuples = K'P

Yao(m, p, k) = expected number of blocks or pages hit.

The hot points are 1 and (1 4+ Yao(P;, K2/p, I’ P)) where K'P is the
number of index entries satisfying the index predicate predicted by the query

optimizer, and K is the cardinality of R,.

19

Index Resual

Queries which use an index repeatedly are classified into this category. For
example, in the evaluation of a nested loop join, R, is processed by sequential
scan and R, by clustered index scan. In this category, two cases can be ob-
served. The first occurs when both the outer and inner relations are ordered
on the joining attribute(s) in the same manner. In this case, there is no reusal
of the pages making up the nonleaf levels of the index tree. At the leaf level,
there will be a looping behavior. Therefore, the hot points for this case are 1,

(1 + DL) and (DI; + rlz), where

PI(leaf level)
NDV,

rli =

and PI is the number of pages at leaf level i and DI, the depth of the index

on Rz.

The second case is when the outer relation is not ordered. In such a

case, the hot points are 1, (1 + DI;) and (1 + T + T(leaf level)) where

T(i) = Yao(NDV;, NDV,, PI(3))
leaf level—1

T= Y T3

=1
Summary

Though the classification given above is not exhaustive, it can be used to
characterize other access strategies. In special cascs where temporary results
have to be computed and stored, the query is decomposed into several sub-
evaluation plans which can be independently characterized by the Hot Set

model.

3.2.2 Hot Set Buffer Management Strategy

Besides proposing the Hot Set model, Sacco and Schkolnick have also proposed

a buffer management algorithm which implements the ideas of the Hot Set

20

model. In this section, we shall give a description of the buffer manager used
in the study [SS86]. This manager will be one of the two implemented in our
study.

The Hot Set buffer replacement algorithm uses a local LRU replace-
ment policy. Buffers are allocated to processes. Each buffer can have only one
owner. Two numbers are associated with each process in the system: the hot
set size determined by the Hot Set model before the process is executed (P.HS)
and the number of buffers currently allocated to the procsss (P.NALL). Also,
included in each process is a LRU stack (P.LRU.-Stack). This stack is used
by the buffer replacement algorithm to choose a buffer local to the faulting
process for replacement. If P.NALL is less than P.HS, the process is said to
be deficient. If a deficient process faults, the buffer manager tries to obtain a
free buffer from a LRU ordered list. This list, called a free list, contains all the
buffers in the system which are not allocated to any process. If the free list is
empty, then a buffer is chosen for replacement amnng the local buffers of this
deficient process. When a non-deficient process faults, a buffer is chosen from
its own local buffers for replacement.

Initially, all buffers are free and on the free list. When a new process
enters the system, P.HS is set to its hot set size, P.NALT is set to zero and the
P.LRU_Stack is set to null. When a data page is refcrenced, a global prefiz table
is searched. If the page is in a buffer belonging to the process, the local LRU
stack is updated. If the page is in a buffer which belongs to another process,
nothing is done. If the page is in a free buffer and the process is non-deficient,
a buffer will be chosen from the local LRU stack and inserted into the free list.
Then, the requested page/buffer is added to the local LRU stack. If the process
is defcient, no buffer is taken from the local LRU st;:lck. The free buffer is just
added to the local LRU stack. Whenever an addition or deletion of a buffer
to/from the local LRU stack takes place, P.NALL is also updated. When a

process terminates, its LRU stack is appended to the free list.

21

3.3 Query Locality Set Model

The Query Locality Set Model (QLSM), proposed by Chou and DeWitt [Chos85,
CDS86], not only tries to estimate the buffer space requirement of a database
query before it starts execution, it also tries to determine the appropriate type
of buffer replacement algorithm for that query. The estimates given by the
QLSM are more dynamic (in terms of a query’s buffer replacement policy and
optimal buffer size at any given time) than that of the Hot Set model for the
following reason. In QLSM, the different page reference patteras exhibited at
different stages of a query in execution are taken into account. Rather than
observing that a query being executed in a DBMS with a particular buffer
replacement algorithm generates a particular fault curve, QLSM makes the
observation that a query can exhibit different page reference behaviors when
accessing different relations/files. With each file being accessed by a query, a
locality set is associated. This locality set has its own buffer i‘eplacement policy
and its own buffer space requirement. When no further access to this file is
required by this query, the file is closed and the locality set is disassociated
from the query. Therefore, each query will have as many locality sets as the
number of files it currently has open. As the query is being executed, it opens
and closes files. Therefore, its buffer space requirement and buffer replacement
policy vary dynamically.

The page reference behavior to each file can be characterized by the
operation of the query accessing it. In a relational database system, these
operations are limited and their page reference behaviors are very regular and
predictable. QLSM makes use of the regularity and predictability of these
operations. In the following, we will give a brief discussion of the various
classifications of the page reference behaviors of these operations, followed by

the buffer management algorithm.

9
[V

3.3.1 QLSM Page Reference Classification

QLSM classifies the page reference patterns exhibited by relational DBMS

operations into sequential, random and hierarchical.

Sequential References

Sequential references can be classified into straight sequential (SS), clustered
sequential (CS) and looping sequential (LS). In a SS reference, only one buffer
is required because once a page is referenced., it will never be referenced again.
Operations which can be included in this classification are projections, selec-
tions without index and simple aggregations such as MIN, MAX, SUM and
AVG.

In a CS reference pattern, a group of records is referenced repeatedly,
such as the records belonging to the inner relation in a merge scan join. In
such a case, the locality set size or buffer space requircment is |

size of largest cluster

(1)

blocking factor
and the buffer replacement algorithm is FIFO or LRU. A selection with clus-
tered index also has a CS reference pattern.

LS occurs especially in nested loop joins where the inner relation is
scanned for every tuple in the outer relation which satisfies the predicate.
Therefore, the inner relation file should be kept in memory. Similar to CS,
the LRU policy should be used for buffer replacement. If the file is too large,
then the buffer space requirement is a few buffers and the Most Recently Used

(MRU) replacement policy is adopted.

Random References

In random references, the policy used in the buffer replacement is irrelevant
since the reference pattern consists of a series of independent accesses. Two
types of random references exist: independent random (IR) and clustered ran-

dom (CR). An IR reference pattern is exhibited when a non-clustered index is

23

used to access data pages, for example in a selection with non-clustered index.
CR is exhibited especially in joins where the outer relation has a clustered and
non-unique index and the inner relation has a non-clustered and non-unique
index. The locality set size for IR is a function of Yao's formula, whereas for

CR it is the number of records in the largest cluster.

Hierarchical References

The difference between hierarchical references and sequential references is that
in the former, an access to an index is required. There are four types of hierar-
chical references: straight hierarchical (SH), hierarchical with straight sequential
(H/SS), hierarchical with clustered sequential (H/CS) and looping hierarchical
(LH). In SH, only one buffer is required since the index is traversed only once.
In both H/SS and H/CS, after the index has been traversed, a sequential scan
on the leaves will follow. Therefore, both of them have requirements similar to
SS and CS.

In LH, as in LS, a relation is repeatedly scanned. The difference is
that in the LH, the relation is indexed on the join field and thus the index will
be repeatedly scanned too. Due to the large fan-out factor in most indices, the
root page might be the only one worth keeping, or use a LIFO (Last In First

Out) replacement policy with a few buffers.

Summary

QLSM is an exhaustive classification of the page reference patterns of the var-
ious operations available in a relational database system. The main difference
between QLSM and the Hot Set model lies in the fact that QLSM does not
tie a particular replacement algorithm to a query. In fact, the buffer space
requirement and the replacement policy of a query change as it is being exe-
cuted. Besides QLSM, Chou and DeWitt also proposed a buffer management
algorithm, called DBMIN, using QLSM. This algorithm is discussed in the next

section.

Process 1

[localityset 1 N

locality set 2 \ Buffer Pool
1

Process 2
locality set 1]‘T—
Process n '
locality set 1
locality set 2 — N

locality set m

Figure 3.2: Organization of locality sets in QLSM

3.3.2 DBMIN Buffer Management Strategy

Similar to the Hot Set buffer replacement algorithm, DBMIN is also a loc.al
replacement algorithm. But, unlike the Hot Set algorithm which considers
the buffers within a process as a unit, DBMIN separates the buffers in the
process into groups, called locality sets, where cach locality set contains the
set of buffers which are used to contain pages from a certain file. Each of these
groups has its own locality set size and its own replacement policy depending
on the pattern of accesses to the file by this process. The replacement policy of
a process changes dynamically, depending on which file it is currently accessing.
The total buffer requirement of a process also changes dynamically, depending
on how many files it has open currently. A process will have as many locality
sets as the number of files it accesses. Figure 3.2 gives a representation of the
organization of the locality sets of the processes.

Associated with each locality set j for a process i is rj; which is the
number of buffers allocated to this locality sct, and [;; to indicate the locality

set size determined by QLSM. When a file is opened, the locality set size and

25

the replacement policy are given to the buffer ménager. A load controller will
then check if ¥; 3; Iij < . If so, then the process may proceed, otherwise it
is suspended. When a process/query is suspended, its buffers are released and
the query is placed at the front of a waiting queue.

When a page is requested by a process and the page is in the buffer
pool, the following senario takes place. If the page is found in the locality
sets of the process, the statistics are updated.! If the page is not found in the
locality sets but it belongs to another process, nothing is done. If the page is
not in the locality sets and it does not belong to anyone, it is added to the
faulting locality set. If r;; > Ij;, the replacement policy of the faulting locality
set will choose a buffer to be added to the free list. If the page cannot be found
in the buffer, an I/O request has to be made to bring in this page. A buffer is
chosen for replacement if r; > ;.

When a file is closed, the buffers of the corresponding locality set are
returned to the buffer manager. The load controller will then select the first

waiting process which satisfies the condition ¥; ¥5; Ii; < N.

3.4 Summary

In this chapter, we review two strategies which have been proposed for the
DBMS buffer manager. Their theories and buffer replacement algorithms are
described.

Chou has done extensive performance studies on various buffer re-
placement algorithms (including the Hot Set model and the QLSM). He finds
that the DBMIN buffer manager constantly out-performs the others (in terms
of throughput). No other performance study has been done to confirm his
claims. Though the results from both buffer algorithms seem promising, no
study has been performed on running these algorithms in a virtual memory sys-

tem. Therefore, in this thesis, we shall attempt to confirm Chou’s claims and,

IThe type of statistics update depends on the replacement policy of the locality set.

26

at the same time, study the performance of the two buffer managers running

on top of a virtual memory system.

Chapter 4

Study Environment

4.1 Introduction

In this chapter, the simulator which is used to study the performance of the
various buffer management algorithms, as well as the experimental set-up for
this study are described. Simulators can be probabilistic or trace driven. Since
no probabilistic approach has been devised for the DBMS address reference
pattern, we use the trace driven approach in our simulator. The simulator is
basically an emulator with a preprocessor. The emulator consists of a page
address generator and a computer model while the preprocessor consists of a
query generator. The queries are generated according to a pre-determined mix.
Before a query begins execution, its page reference addresses are generated by
the page address generator. This query is then executed in the computer
system. Figure 4.1 gives a graphical view of the environment. We shall give a
description of the database model in the first section, followed by a description
of the computer configuration. The criteria of the performance studies will also

be discussed in this chapter.

V)
-]

Simulator
Input Model Computer Model

/ \ DBMS \
Database Queries Buffer Manager Virtual Memory

b \ /S T\ b
Relations, Single file, Hot Set DBMIN GLRU
Indices Multi-files

~ Selections

Figure 4.1: Study Environment
4.2 Input Model

The page reference addresses of each query are generated by tracing the exe-
cution path of the query as though it was executed in a DBMS. For example,
when a sequential scan on a relation is required, the access path is either a se-
quential scan of the database or a sequential scan on the leaves of the index of
the relation. The page number is recorded for every address reference to a file
made by the executing query. This trace will produce a copy of the addresses
of the database pages accessed during the execution of this query. After this

trace is obtained, the query is executed in the simulated computer system.

4.2.1 Database Model

The database which the queries access is made up of two relations with five
thousand tuples each. Each tuple has four columns: two columns with unique
values and two columns with duplicates. The first and third columns of the
relations are sorted. The unique columns contain numbers ranging from 0 to
4999, and that of the non-unique columns from 0 to 490. In the unsorted
columns, the numbers are placed in their positions through a uniform random
number generator. Integers, rather than character strings, are used so that the

selectivity of each query can be computed easily. Some columns are not sorted

Sorted Unsorted Sorted Unsorted

0 3709 0 30

1 45 0 100

2 36 : 340
231 0 50
: 1 60
1 40

490 100
4999 678 490 20

Figure 4.2: A View of the Database used in the Study

and some contain non-unique numbers so that we can build a combination of
clustered, non-clustered, unique and non-unique indices from the database. An
index on a relation is clustered if the relative physical location of the tuples
of the relation is similar to the relationship between the values of the indexed
field. Similarly, an unclustered index is one in which the relative physical
location of the tuples of the relation is not similar to the relationship between
the values of the indexed field. This database design is a modification of the

one in [BD8&4]. Figure 4.2 gives a view of the database.

4.2.2 Indices

The indices built on the above database are a special type of B-tree [Com79,
BE77,BM72), called B* —tree, as shown in Figure 4.3. Each B —tree contains
an index and a sequence set. The index is organized as a B-tree. Each node
in the index, unlike B-trees, contains only the key values. They only serve
as a guide to the leaf nodes. Therefore, the key values in the index do not
need to be unique. Similar key values can be found at different levels of the
tree, but within each level, the key values are unique. At the leaf level of the
B* —tree, the key values in the nodes are unique. The nodes at the leaf level,

called the sequence set, are linked so that common operations such as fetching

30

Index : B-tree

654 || - 3001
21 |- 897 e 3002
Sequence Set : \
—{ 0f{tids { 5] tids |- - -||—=|53]| tids |- {|—> - —» 13400 tids |

Figure 4.3: A BY —tree

the next record in sequence order or a sequential scan of the relation can be
easily performed. Only the leaf level nodes contain tuple identiﬁcation which
contains the position of the tuple in the databa;se, such as the block number
and the position within that block. When a key is deleted from a relation, the
corresponding value in the index need not be deleted since it only serves as
a guide. In searching for a key, the search does not stop when a similar key
value is found in the index, rather the nearest right pointer is followed and
the search proceeds all the way to the leaf. For example, in Figure 4.3, if we
are searching for tuples with key value 3, the left-most pointer of the node 654
at the root level is followed since 5 is less than 654. Then, at the next level,
the left most pointer of node 21 is chosen since 5 is less than 21. When the
sequence set is reached, the node containing the key value of 5 will be pointed
to by the node last accessed at the upper level in the search for key value 5.
In our system, each node, whether it is an index node or a sequence
node, is contained in a page. In each leaf page, there are sets of pairs. A pair
contains the key value and the tuple identifiers of the tuples with similar key
value. In each index page/node, there are n key values and (n+1) pointers.

The left-most pointer of each key points to the page which contains all the

31

keys which have values less than the key value (inclusive) but greater than
the previous key value and less than the next key value. Therefore, unlike the
above case, when searching for a key, we follow the nearest left pointer when
a similar key value is found in the non-leaf level. Each node/page contains
only a maximum of fifty key values. Thus, in our database, the indices of the
unique fields have a depth of three while that of the non-unique fields have a

depth of two. Figure 4.3 also shows this environment.

4.2.3 Query Model

In this section, we describe the queries that are used in the simulation. They
consist of simple selections and joins. These two operations are chosen since a
selection permits us to simulate accesses to a single file whereé,s a join enables
the simulation of multi-file accesses. Two methods are used to compute the
joins: the merge scan method and the nested loop method.

As noted before, each relation contains four different indices built on
the four attributes. They are: clustered and unique index for the first field,
non-clustered and unique index for the second field, clustered and non-unique
index for the third field and non-clustered and non-unique index for the fourth
field. Indices might not always be available in a real situation, therefore besides
using the indices as an access path to a relation, we also have queries which
require a sequential search of the whole database. Note that the database
contains data pages and index pages. Each data page contains fifty tuples and
each index page ro~‘ains at most fifty key values and additional pointers or
tuple identifiers. Therefore, with 10,000 tuples in the database, the number of
pages containing only database tuples is 200. The total number of pages in the

database is 976.

Simple Selections

In the simple selection queries, the access paths available are sequential scan,

clustered index scan and non-clustered index scan. In the sequential scan, the

Outer No Ind Clustered . Non-Clustered
Inner © index Index Index
No Index X X X

Clustered Ind. v v/ v/
Non-Clust. Ind. v . v v

Table 4.1: Access Paths for a Nested Loop Join

whole database, that is 10,000 tuples, are searched in sequence since tuples of
the two relations are placed in the database without any order. In addition,
in a real situation, the relations will not remain clustered after a number of
insertions and deletions of records.

According to the Hot Set model, the buffer requirement of a query
using the sequential scan access path is one. If an index is used (regardless of
whether it is clustered or not), then two buffers are required.

In the QLS model, the number of locality set in a query with a scquen-
tial scan access method is one with a simple replacement policy which replaces
the only page in the locality set on a DBMS buffer fault. If an index is used,
then the query has two locality sets, one for the index and the other for the
DBMS data page. The buffer requirement of both locality sets is one with the

simple replacement policy.

Nested Loop Joins

In Table 4.1, the access paths available in executing a nested loop join are
shown. In a nested loop join, for every tuple in the outer relation, the inner
relation is scanned completely for tuples which match the join predicate. Note
that when the inner relation does not have an index on the join field, the nested
loop method is never used to execute the join. This access path has been shown
to be very inefficient [MLS6].

As can be scen from Table 4.1, access paths exist only in cases where

the inner relation is indexed. When the outer relation is not indexed and the

33

inner relation is accessed by a clustered index, then the Hot Set model states
that the minimum buffer requirement is the height of the index tree, plus a
buffer to contain a DBMS data page and another one to contain a page for the
outer relation. If the index to the inner relation is not clustered, then Yao's
formula is used to estimate the number of pages which will be accessed in using
the index. The buffer requirement in this case is given by Yao’s formula plus
one buffer for the outer relation plus the height of the index tree. If the outer
relation has an index and if imore than one tuple from the outer relation satisfy
the predicate, one is added to the number calculated from the above formula
to contain the index page for future reusal.

In the QLS model, the same formula is used to calculate the buffer
requirement regardless of whether there is an index for the outer relation. The
only difference is that an additional locality set is required for the index of
the outer relation. This locality set has a buffer requirement of one with a
simple replacement policy. When there is no index on the outer rela.tion, only
three locality sets are required since the query is accessing the outer relation
without any index and accessing the inner relation with an index. The first
one has a buffer requirement of one with a simple replacement policy. This
locality set contains the data pages from the outer relation. The second and
the third locality sets are used to access the inner relation, one for the index
and the other for the data. Their specifications depend on the type of the join
attribute of the outer relation. If the outer join attribute is sorted and not
unique, then the replacement policy of both the second and third locality sets
is LRU, with the second one having a buffer requirement of the tree height and
the third one a buffer requiremeni «f the largest cluster divided by the blocking
size plus one. If the outer join attribute is sorted and unique and if the number
of tuples in the outer relation which satisfies the predicate is more than one,
then both locality sets have the same specifications as the above. On the other
hand, if only one tuple satisfies the predicate, then both locality sets have a

simple buffer replacement policy with one buffer. In the other cases, the buffer

34.

Outer Clustered Non-Clustered

Inner No Index Index Index

No Index v v v
Clustered Ind. v v v
Non-Clust. Ind, v N4 v

Table 4.2: Access Paths for a Merge Scan Join

requirement of the second locality set is two with a LIFO replacement policy
and the buffer requirement of the third is determined using Yao’s formula and

they are managed with a LRU replacement policy.

Merge Scan Joins

The merge scan join method is considered to be the most efficient access path
in most cases [BE77]. In this method, the relations involved are first scanned
via the available access paths during which the tuples which will participate in
the join are collected into corresponding temporary files. These files are then
sorted via a combination of merge sort and quicksort. Quicksort is used to sort
the tuples in a page and merge sort is used to combine the sorted pages. Then,
the sorted temporary files are scanned with respect to their join fields. Since
the files are sorted, there is no need to rescan those tuples which have been
scanned in the inner relation. All that is required is a pointer to the last tuple
scanned in the inner relation. This pointer can be moved forward or backward
depending on the current join values of the outer and inner relations. Table
4.2 shows the access paths available to execute a merge scan join.

The minimum buffer requirement of a. query using the merge scan join
using the Hot Set model is two, with an addition of one if the number of tuples
which satisfies the prior selection predicate is greater than one and at least one
index is available to access either the outer or inner relation. This is because
at any moment, a maximum of three files are opened: either the index file, the

data file and the temporary file or two temporary files.

35

Access Outer Inner
Query Type Paths Relation Relation
1 Simple NI NI
2 Selection NCI NI
3 Merge Cl CI
Scan Join
4 Nested NCI Cl
5 Loop Join CI CI

NI : no index
NCI : non-clustered index

CI : clustered index

Table 4.3: Types of Queries Studied

In the QLS model, the maximum number of locality sets is six each
of which uses a simple replacement policy, and a buffer to access the indices,
the data files and the temporary files. If the number of tuples in the outer
relation which satisfies the predicate is more than one, then the last locality
set has a buffer requirement of the size of the largest cluster divided by the
block size and has the LRU replacement policy so that the locality of the inner
temporary file can be captured.

As can be seen from the above, in some cases, similar formulae are
used to determine the buffer requirements of different types of queries. The
type of query is determined with respect to its access path. For example, in the
merge scan join method, at least three types of queries share the same formula.
In order to eliminate redundancy and reduce the number of runs we have to
make, we conduct performance studies only on those queries which have unique

specifications. Table 4.3 gives a list of the queries which are studied.

36

New process

;

Ready

/ Queue

Suspended Blocked
[S— Scheduler e
1/0 /

Disk

Driver

Figure 4.4: Model of the Computer System

4.3 Computer Configuration

In our computer system model, the basic hardware components are the central
processing unit (CPU), a disk used as database storage as well as the paging
device and main memory whose size is fixed at the start of each simulation run.
This is a two level memory system. The software components used to handle
the above resources are a scheduler, an I/O driver, a memory ‘manager and a
buffer manager. The interactions among the various components are shown in
Figure 4.4 [MOOS87].

In this model, a virtual time unit! is used to control event timing.
This virtual time unit is the amount of time taken to make a successful page
reference. A page reference is successful if the requested page is in the main
memory. Otherwise, a page fault is generaied. The amount of virtual time
needed to read a page from the disk is 30,000 virtual time units. It takes an

average of about 30 milliseconds for the file servers on the Sun 3/50 worksta-

1The term virtual is used here because the time unit does not represent a real time

measurement.

37

tions to read/write a 4K page from/to the Fujitsu Eagle or Super Eagle disks
which are used at the Department of Computing Science in the University of
Alberta. In most computer systems, a successful page reference takes about
50 nanoseconds to 1.0 microseconds [Smi81]. Thus, using a ratio of 30,000 in

our system is justified.

Scheduler

The scheduler uses a round-robin' scheduling policy that is preemptable. A
process in the system is in one of the following states at any given moment:
ready, blocked, suspended or running. A process is said to be running if it
currently has control of the CPU. A running process can be preempted (i)
if it already has held the CPU for the time quantum or (ii) if an interrupt
is generated by the I/O driver when a page has been read (written) from
(into) the main memory. If it is preempted because of (i), then the process is
suspended and queued into a suspended list. If the reason for preemption is
(ii), then the process is queued into a ready list. The interrupt is served and a
new process is selected to run.

When a running process makes a reference to a page that is not in the
main memory, a page fault occurs. An I/O operation is then scheduled to read
this page into the main memory. Meanwhile, the faulting process loses control
of the CPU and waits for this page to be read into the main memory. This
process is said to be blocked because it cannot do anything until the page has
been read in. Thus, it is queued into a blocked list. In all three scheduling
queues, the FIFO policy is used.

When the 1/O for a blocked process has been serviced, the blocked
process is removed from the blocked queue and inserted into the ready queue
to contest for the CPU.

A new process entering an “overloaded” system will be queued at the
end of the ready queue. When a process terminates, the memory that it oc-

cupies is returned to the memory manager. Then, the ready list and the sus-

38

pended list are checked in that order to get the next process which is ready to

run. Therefore, the ready processes have priority over the suspended processes.

1/0 Driver

We use a very simple I/O driver. It services the I/O requests on a first come
first serve basis. As stated before, each I/O request takes 30,000 virtual time

units, excluding the waiting time.

Memory Manager

As discussed in Chapter 1, DBMS can be implemented in a general purpose
virtual memory operating system cnvironment in two ways. In our computer

system model, we have implemented the alternative as shown in Figure 1.3a.

Virtual Memory Manager

In a virtual memory operating system?, the amount of memory space available
to a user is actually much more than the amount that actually exists. For
example, in the IBM RT [SHS7], a process can reference up to 2'© bytes of
virtual memory but the main memory size only needs to be a fraction of this.
This allows the execution of a process which need not be in main memory com-
pletely. In order to facilitate such a scheme, the frames in the main memory
are constantly written over with different pages from the secondary storage.
That is, frames have to be chosen to contain the pages which are being refer-
enced. It is the role of the virtual memory manager to minimize the page fault
overhead and memory requirements of the processes.

Four types of policy are involved in the implementation of a virtual
memory system: fetch, allocation, placement and replacement. The fetch strat-

egy determines when to fetch a page from the secondary store into the main

2The author assumes that the reader already has some background on virtual memory.
This is only a brief summary. Avid readers should refer to [PS85,Dei84,MOO87] for further

details.

39

memory. The virtual memory manager can either fetch a page when it is re-
quested (demand paging) or use a mechanism to predict which page a process
will request next (aenticipatory paging). The anticipatory strategy is optimal
if the prefetch mechanism is accurate, otherwise, a lot of overhead is involved
due to the fetching of wfong pages. In the demand paging strategy, a page
will not be read into the main memory unless it is requested. That is, pages
are brought into the main memory as they are requested. This produces the
minimal amount of overhead. The virtual memory system implemented in this
thesis utilizes the demand paging concept for fetching a page.

The allocation policy determines how many frames should be allocated
to a process. This number can be static or dynamic. In the former case,
each process is allocated a fixed number of frames, regardless of its memory
requirement or faulting frequency. Frames do not migrate from one process to
another. Before a system is started up, this number is determined. Therefore,
the maximum number of processes in the system is fixed. Furthermore, frames
not used by one process cannot be allocated to a different process which needs
more frames than those allocated to it. In dynamic allocation, the number of
frames allocated to each process varies with time and system load. Processes
will have different number of frames allocated to them at different stages,
depending on their memory requirements and the system load. This strategy
allows the maximum number of concurrent processes in the system, bounded
by the system load. Some memory managers use a hybrid of the above two
methods.

The placement strategy determines the place in the main memory
where the fetched data from the secondary store is put. In a paging system,
this problem does not exist because the virtual memory and the main memory
are divided into partitions of equal size. The only problem is in choosing a page
to be paged out. The placement problem is applicable to a virtual memory
system which uses only segmentation. In a segmented virtual memory system,

the main memory and virtual memory are partitioned into segments whose

40

size varies with time. The number of segments does not remain the same ei-
ther. Memory, whether virtual or real, is allocated in segments of varying size.
Mechanisms are required to determine which segment to allocate to a process
to give optimal performance.

When a page fault occurs and a page needs to be paged out, the
replacement policy will determine the candidate page. Selecting an appropriate
page to be replaced is crucial because if the replaced page is to be referenced in
the near future, a page fault will occur and another page has to be paged out to
bring in this page. This increases the page fault frequercy, thus increasing the
paging overhead. Page replacement policies can be classified into global and

| local. In a global page replacement policy, all the frames are shared among the

processes. Processes are allowed to write over frames which are currently being
used by another process. In a local page replacement policy, each process has
its own set of frames, and will only overwrite frames belonging to itself. Some
common demand paging replacement policies are: GLRU, FIFO, LRU, Clock,
MRU, LIFO and PFF (page fault frequency) [CO72]. Some of these policies
are briefly described in Chapter 1.

In a multi-programming system, there is a conflict of policies between
process and memory management. In order to maximize throughput, we want
to have as many active processes as possible to utilize the resources to the
fullest. But, to the memory manager, in order to minimize page fault overhead,
each process should be allocated as much main memory as possible. If we
do not control the number of active processes in the system, thrashing can
occur. But, if we have too few active processes in the system, throughput can
decrease. Working sets, introduced by Denning [Den68b,Den70,DenS0], can
help to determine the optimum point between policies for process and memory
management. The working set, W(t, A), of a process, at time t, consists of
the set of pages which the process referenced over the last A time units. The

Working Set Principle states that:

A process may ezecute only if its working set is resident n main,

41

memory. A page may not be removed from main memory if it is in

the working set of an ezecuting process.

This implies that if the working set of a process contains those pages currently
needed, frequent page faulting is eliminated. By limiting the number of active
processes to a group whose working sets fit in the main memory, memory
overcommitment is avoided and thrashing can be eliminated. The problem
here is in determining the optimal A for every process. If the working set
principle is followed closely, when a suspended or blocked process is ready to
run, its working set pages need to be loaded into the main memory before the
process actually starts running. This prefetching is advantageous when the
page reference pattern of the process is stable or the phase transition rate is
low [Mas77]. An example of the implementation of the Working Set Principle
is as follows. When a page is brought in by a process, a counter belonging to
this page is set to A. At every memory reference generated by this process, the
following takes place: (1) if the process references a page that is in its working
set, the counter belonging to this page is reset to A, and (2) for other pages
that are in the working set, the counters are decremented. If the counter of a
page reaches zero, the page is expelled from the working set. When a page is
expelled from a working set, it is queued into a free list which is managed by
a LRU policy. At a page fault, a frame is selected from this list (if it is not
empty) and the new data page is copied into this page.

In our study, we have implemented a global page replacement algo-
rithm, the GLRU. In the GLRU policy, all the frames in the main memory are
shared by all the active processes. That is, a wrocess can cause a page which
has been referenced by another process to be paged out. When a page fault
occurs, the least recently used page in the main memory is replaced. Another
way of looking at it is that the DBMS is regarded as a process. All the page
reference addresses generated by the DBMS queries in execution are considered
to belong to this process. The local LRU page replacement policy is used to

determine which page should be replaced when a page fault which belongs to

42

this process occurs. But, in actual fact, the page fault is caused by the current

running query in the DBMS.

Buffer Manager

The role of a buffer manager in an operating system is to manage the portion of
the main memory for the transfer of data between the secondary memory (for
example, paging disks, database disks) and the main memory used by the active
tasks. When a page, in main memory, which has been written in (dirtied) is to
be replaced, the contents of this page is copied to a chosen buffer from its frame.
Then, this frame is available and another page can be copied to it. Transfer of
data between the main memory and the secondary memory will take place in
the chosen buffer. This main memory space used by the buffer manager may
be statically or dynamically allocated. In some systems, for example UNIX®
[Bac86], this buffer pool is common to all executing programs/tasks. That is,
a global buffer replacement policy is used.

In our system, we assume that when a page is chosen for replaccmeut.by
the virtual memory manager, the same frame is used to transfer data between
the main memory and the secondary memory. We do not place a distinction
between a frame used for the transfer of data between the main memory and the
secondary memory and other frames. The virtual memory manager will have
total control of the complete main memory. The page replacement policy can
be a local or a global one. As stated before, the buffer manager in the DBMS
may be managing real memory or virtual memory. If it is managing virtual
memory, two buffer managers are involved: one belonging to the DBMS and the
other belonging to the virtual memory system. In the DBMS buffer manager,
the global or local schemes can be used also. In both of the buffer replacement
algorithms proposed by Sacco and Schkolnick, and Chou and DeWitt, a local
replacement policy is used. That is, each individual query has its own set of

buffers. A description of the two buffer replacement algorithms has been given

3UNIX is a trademark of AT&T Bell Laboratories.

43

in Chapter 3.

4.4 Performance Studies

In this section, we discuss the criteria used in our performance studies. The
model is a closed network event driven simulation. Each event record contains
a time which indicates when the event is to take place and the type of event
that is to take place. The types of events are 1/O, scheduling and memory
management. In each event class, there are different methods. For example,
in the scheduling class, there are methods to block, to suspend and to run a
process.

In this study, we perform runs based on the type and access path of
the queries. Each run is equivalent to simulating the execution of a thousand
queries, with measurements starting from the point where steady state has
been reached. The steady state point will be defined later. In each run, the
type and access path of the queries are fixed. The predicate(s) of each query
entering the system is(are) determined by the preprocessor. Then, the address
reference sequence of the query is generated before it is fed to the simulated
computer. A random number generator is used to determine the predicates of
the queries. The maximum number of concurrent queries is twenty-four and
the selectivity of each query has to be less than ten percent. The page reference
addresses of each query are stored in a file. On the UNIX operating system, a
process can open a maximum of thirty files. Therefore, in each simulation run,
we can open only thirty files. We open some files for input of data and output
of the measurements and we are left with twenty-four files to store the page
addresses of the queries. We have chosen a selectivity of ten per cent since this
is the selectivity factor in common database accesses.

In this closed network queue simulation, at time zero, twenty-four
queries are generated and they arrive concurrently at the simulated computer.

When a query terminates, a new query is immediately fed to the computer.

44

In this study, the measurements that we are concerned with are the

following:
o Mean number of page faults,

Mean number of (DBMS) buffer faults,

Mean number of double faults,

Mean number of [/Os,

e Mean response time,

Throughput which is defined as

number of processed queries

Throughput = '
roughnpu total simulation time

The above measurements are taken only after the system has reached
steady state. The steady state is reached when two conditions arc met: (i)
when the DBMS buffers have already been filled with database pages and (ii)
when the difference between two consecutive normalized cumulative product
of the buffer faults and the time it occurred is less than a threshold. In our
study, the threshold is fixed at 0.1. When the above two conditions are met,
measurements are taken starting from the next new query until the thousandth
query.

The factors that are varied are:

Type of query,

Main memory size,

Buffer pool size,

Buffer replacement algorithms.

45

4.5 Implementation

The simulator is written in the C language. It consists of about 6000 lines of
code for each buffer algorithm, including the memory manager. The pseudo

code used in the simulator is given in Appendix B.

4.6 Summary

In this chapter, we describe the the DBMS environment and the simulator used
in our study. The simulator can be divided into two parts: an input model and
a computer model. The input model consists of the relations and indices used
in our performance study. The computer model consists of a page address
generator and a simulated computer system with virtual memory. Queries
are fed into a closed network simulator until a thousand queries have been
processed.

In the next chapter, we will give an analysis of the results of our
performance studies on the two buffer replacement algorithms using the above

simulator.

Chapter 5

Analysis of Results

5.1 Introduction

In this chapter, the results of the performance study are presented and dis-
cussed. For each algorithm type, we present six graphs: throughput, mean
number of I/Os, mean response time, mecan number of page faults, mean num-
ber of (DBMS) buffer faults! and mean number of double faults. The through-
put is defined as the number of queries processed per second. The mean number
of I/Os represents the summation of the mean number of major page faults
and major buffer faults that took place in the duration of each simulation run.
The mean response time (seconds) is th(; a\?eragc amount of time neceded to
execute a query. The components of the page faults consist of double faults,
minor page faults and major page faults. A page fault is minor if the addressed
DBMS page? can be found in the main memory but is not in the process’ page
table; it might not belong to any process but is in the free list. A page fault, is
major if an [/O is required to bring in the DBMS page. If a process addresses
a page that is in I/O, a page fault is considered to have taken place. Similarly,

for the buffer faults, if a process addresses a page that is in I/O, a buffer fault

1Unless stated otherwise, the term buffer faults is equivalent to (DBMS) bufler faults in all
references.

2A DBMS page can be either a data page or an index page from the DBMS.

46

47

is said to have taken place. A major buffer fault takes place when it is required
to bring the page in from the disk. A double fault occurs when both a buffer
fault and a page fault occur on a page reference. When a fault occurs and no
buffer or frame can be allocated to the faulting process to bring in the data
page, the process is suspended.

The results are obtained from simulation runs of about 1000 queries
each. To give an accuracy of the results, 95% confidence intervals are computed

on the various measurements

(I’—-196\/— Y+196\/—)

where s? is the sample variance obtained from the simulation runs and = is
the total number of samples. Though samples obtained from simulation runs
are usually correlated because the value of one sample can affect the values of
other samples, we can assume that the samples are independent if the number
of samples is large which is true in our case. For each query type, we generate
3 runs, each with a different random seed number. In each run, about 1000
queries are sampled.

In the first section, the results on simple selections are presented, fol-
lowing that will be the discussions on merge scan joins in the second section

and finally the nested loop joins in the third section.

5.2 Simple Selection

In this section, we discuss the results obtained from the simple selection queries.
A simple selection query can be executed by three access paths: sequential
scan of the whole database, via clustered index or non-clustered index. In the
first section, we present the results on the sequential scan path. In the case
of indexed access, we have chosen to execute the queries with non-clustered
indices since the algorithms used to determine the optimal number of buffers
for each query (whether it is via clustered indices or non-clustered indices) are

similar in both the Hot Set model and the DBMIN model.

48

100
‘g 80 =
0
§ :
8 60 —— <= 150 Frames
@
E ————= 200 Frames
E -

40 +
-l
3
n' L
o
3
£ 204
e

e - -0 o= o -
0 M T v Y v R T T " T - T ¥ ¥
30 50 70 90 110 130 150 170 190
Buffer Size

Figure 5.1: Throughput for Simple Selection Querics Without Indices

5.2.1 Simple Selection Without Indices

To execute this type of query, a sequential scan of all the data pages in the
database is required for each query. Therefore, each query touches two hundred
pages, the size of the database, and references 10,000 tuples. Since the pages
are sharable and the sequence of data pages accessed by each query is similar
in the order of 0, 1, 2, ..., 199, only the buffer size and the main memory size
play the major role. There is not much difference in the results between the
two buffer replacement policies because the optimal buffer size is one and the
buffer replacement policy is LRU in both cases.

When the main memory size is 20, 30, 50, 100 and 150 frames, the
throughputs (Figure 5.1) are similar for the buffer sizes of 20, 30, 30, 70,
100, 150 and 200. This is because at these main memory sizes, the 200 page
database cannot be contained in the main memory. At buffer size less than 200,
each buffer fault will induce a major page fault, invoking a double fault. The
initial 1/Os are invoked with the double faults. At buffer size of 200, with main

memory size less than 200, most of the I/Os are induced by the page manager

49

10
e —0— -} g - o
8.
L
6 - —— <= 150 Frames
2] —— 200 Frames
g 4
4-
2 -
0 — * - r e T ———— '
30 50 70 30 110 130 150 170 190

Buffer Size

Figure 5.2: 1/Os for Simple Selection Queries Without Indices

because all the data pages cannot be contained in the main memory. Because
the pattern of the address reference is sequential, there are no fluctuations in
the I/O curves (Figure 5.2).

The throughput curve at 200 frames is not straight because of the
following. In our experiments, the start of measurement is determined by the
buffer size. For example, if the buffer size is fifty, then we start measuring after
the fiftieth I/0. This is to ensure that the buffers have reached steady state.
Thus, in runs with buffer size less than 200, I/Os still exist because not all the
data pages have been read into the buffers. This increases the total simulation
time thus causing a corresponding decrease in the throughput. The response
times of the querics are not affected because the I/Os are caused by processes
which have been started before the start of the simulation time. These early
processes would have paged in all the data pages and thus the latter processes
would not inflict any I/Os. Besides the amount of time taken to process a
successful address reference, the response time, as shown in Figure 5.3, is also

affected by the allocated time quantum of the Round-Robin scheduling policy.

7
6 = -} O 8o {
? -
2
& 97
e 4
2 - <= 150 Frames
g 49 ————— 200 Frames
b 3-
o
m -
e
8 2-
n
o 5
[~ 4
1-
0 M 7 v T i t \ M 1 v ﬁ' v] v T
30 50 70 90 110 130 150 170 190
Buffer Size

Figure 5.3: Response Time for Simple Selection Queries Without Indices

There is a dramatic difference (6 seconds) between the mean response time of
a query being executed in a main memory size of 200 frames and less than 200
frames because of the occurrence of double faults and major page faults in the
latter.

The page fauit curves (Figure 5.4) of all the two buffer algorithms at
different buffer sizes and main memory sizes are the same because page fault
is the summation of minor and major page faults. In a minor page fault, only
the process’ page table needs to be updated whereas in a major page fanlt,
an I/0 is also required to bring the addressed data page into main memory.
When a process addresses a data page that is in I/O, the process has a page
fault and is blocked until the I/O for this data page has been completed. The
page fault curves are similar because in both algorithms, cach query has the
saine buffer replacement policy, that is LRU, aud an optimal buffer size of one,
and the page reference patterns of the queries are similar.

Similarly, for the buffers, when a process addresses a data page that

is in a buffer which is locked for 1/O, the process has a buffer fault, a page

250
X
200 . —— e -
2 10 —— <= 150 Frames
§ ——e&—— 200 Frames
W L
o
2 100 o
a
50
0 v T v { v T M v v] v 1 T o ki
30 50 70 90 110 130 150 170 190
Buffer Size
Figure 5.4: Page Faults for Simple Selection Queries Without Indices
250
200 -2) 104 104 O g
o
%4
§ 150 = —— <= 150 Frames
@ ——&— 200 Frames
]
L0
3 100
[«
o
50
0 Pt T
30 50 70 90 110 130 150 170 190
Buffer Size

Figure 5.5: Double Faults for Simple Selection Queries Without Indices

250
200 =) T i —l
T\
) <
3150_ —f— <= 150 Frames
———— 200 Frames
5 «
@ 100 -
)
&
Q 504
0 —————————— T
30 50 70 - Q0 110 130 150 170 190

Butfer Size

Figure 5.6: (DBMS) Buffer Faults for Simple Sclection Queries Without Indices

fault and a double fault, and it is blocked for I/O too. There is a significant
difference between the double fault curves (Figure 5.5) of 20, 30, 50, 100 and
150 frames and that of 200 frames because at a main memory size of 200, all
the buffers are in the main memory, therefore no major page faults will take
place, thus a zero double fault curve results.

At a main memory size of 200 and a buffer size of 20, 30, 50, 70, 100
and 150, though all the buffers are in the main memory, buffer faults will still
occur because these buffer sizes are not large cnough to contain all 200 data
pages. On the other hand, the double fault curve at 200 frames is zero. This
is because all the buffers are in the main memory and thus there will not be
any major page faults. When the main memory size is less than 200 frames,
the buffer fault curves (Figure 5.6) are very similar to the double fanlt enrves.
This is because i) both the buffer sizes and main memory sizes are not large
enough to contain the whole database, ii) the replacement policies of both the
page manager and buffer manager 1s LRU, and iii) the page reference patterns

of all the queries are sequential and similar. Therefore, a buffer fanlt will canse

41 —e— 20 Frames
—o— 30 Frames
———0— 50 Frames
31 —o0— 100 Frames
———g~—= 150 Frames
—&— 200 Frames

(queries/second)

Throughput
) A

T
30 50 70 90 110 130 150 170 190
Buffer Slze

Figure 5.7: Throughput (Hot Set model) for Simple Selection Queries With

Non-Clustered Indices

a double fault too.

5.2.2 Simple Selection With Non-Clustered Indices

In these simulation runs, the data pages which contain the tuples and the
pages which contain the indices to the database will be accessed. Therefore,
the total number of pages that can be accessed is 976 which is the total number
of DBMS pages. Thus, the 200 buffers/frames are not large enough to contain
all the DBMS pages that can be accessed. This results in a higher number of
I/0s, higher number of page faults, higher number of buffer faults and higher
number of double faults, resulting in a much lower throughput and a higher
response time.

The throughputs (Figures 5.7, 5.8) of these runs do not only increase
with respect to the buffer size but also with respect to the main memory size.
This is because not all the buffers and frames are shared at any moment. In

the previous case, all the queries access all the data pages in the same order

54

5

]

8 20 Frames

g 30 Frames

§ 50 Frames

§ 100 Frames

= 150 Frames
200 Frames

Throughput

0+ M Y M T M T M T
30 50 70 90 110
Buffer Size

Figure 5.8: Throughput (DBMIN model) for Simple Selection Queries With

Ad v A2 T v T Al

1 1
130 150 170 190

Non-Clustered Indices

so the probability of finding a data page in a buffer/frame is very high. But,
in this case, the queries access the DBMS pages in a more random order and
the range of the number of pages that can be accessed is higher, thus, the
probability of finding a page in a buffer/frame is lower.

At a main memory size of 20, 30 and 50 frames, the throughputs are
close to one another because the main memory sizes are not large enough to
contain the local set of the queries. For the Hot Set model (see Figure 5.7),
there is a dip at buffer size of 50 and main memory size of 200. This is duc
to the following. The average optimal buffer requirement of cach process is 2.
Since there are always 24 concurrent processes in the system, the total optimal
buffer requirement is 48 which is very close to the actual buffer size. At buffer
size of 30, on cach buffer fault, a process will use a buffer in its local set for
replacement. The page address references passed to the memory manager will
be more local to the current running process. At buffer size of 50, at cach
buffer fault, a process replaces a buffer which belongs to another process most

of the time. This is because, at each buffer fault, a buffer will be taken from

4]}
(3]

the faulting process if the number of allocated buffers is greater than or equal
to the optimal buffer size. This chosen buffer is then inserted into a free list
which is managed by a LRU policy. The free list is seldom empty since the
actual buffer size is greater than the total optimal buffer requirement. The
buffer which is least recently used will be deleted from the list and given to
this faulting process. Since the free list is seldom empty, the faulting process
will be replacing a buffer which has been inserted by another process. This
causes more faults, thus increasing the double faults and the number of I/Os
(5.9, 5.10). As the buffer size increases, the probability of replacing a buffer
which does not belong to any process increases because the length of the free
list will increase too. The free buffers which are chosen for replacement mostly
belong to processes which have left the system. Thus, the throughput increases.
This phenomenon does not exist with the DBMIN buffer replacement algorithm
because in the DBMIN case, the replacement algorithm is more localized. On a
buffer fault, a buffer is chosen from the faulting locality set for replacement. A
process can have many locality sets but a fault causes replacement only within
its locality set. Therefore, faultings/replacements are under more control. For
example, a process with a sequential scan using a non-clustered index path will
have two locality sets; one for the index pages and the other for the database
pages. A fault caused by a reference to an index page will replace the buffer
containing an index page. A fault caused by a reference to a database page
will replace the buffer containing a database page.

For the Hot Set model, at a main memory size of 150 frames, the
throughput varies up and down at different buffer sizes. From a trace of the
runs, it is found that at the peak, on a page fault, the probability of choosing
a frame that similarly contains the DBMS page which has been chosen by the
buffer manager for replacement on a buffer fault is very high. That is, there is
a high probability that the buffer manager and the page manager choose the
buffer/frame that contains the same DBMS page for replacement. This would

imply that the page replacement policy is similar to that of a local replacement

120
< —— 20 Frames
1 < - -0~ ——@— 30 Frames
100 - —o0— 50 Frames
:’—‘_ﬂ'—ﬂ o= —® 1 |—o— 100 Frames
goy—"* 4 —& ~—@&— 150 Frames
d —g~— 200 Frames
o <
4

R

g ¥ T \d

077' v T v 4 T T v | v ¥
30 50 70 90 110 130 150 170 190
Buffer Slze

Figure 5.9: 1/Os (Hot Set model) for Simple Selection Queries With Non-

Clustered Indices

policy. And, thus less frame stealings among the processes occur.

The larger the main memory size, the lower the response time (Figures
5.11, 5.12). This is due to a decrease in the number of major page faults as the
probability of finding a DBMS page in main memory increases. The response
time is quite stable for a given main memory size and various buffer sizes. This
is because though the number of major buffer faults decreases as the buffer size
increases, the number of major page faults increases since more virtual pages
are mapped to a fixed number of frames.

At a main memory size of 20 and 30 frames and low buffer sizes, the
response times are lower than at larger bufter sizes. This is becanse there are
fewer ready/running processes to compete for resources since the lower num-
ber of buffers/frames limits the number of ready/running processes. When
a process has a buffer fault/page fault and no buffer/frame is available for
replacement, the process is suspended. With fewer processes competing for

resources, each running process is able to finish in lower amount of time. At

-3}

e

120 .
| ———g— 20 Frames
* ® - —— 30 Frames
100y —o~— 50 Frames
Yo O © 3
1 -—0— 100 Frames
go4 o ——°* > ¢ —8— 150 Frames
] == 200 Frames
[+,]
g "o A
.
~

v T v 14 AR LA §
30 50 70 90 110 130 150 170 190
Butfer Size

Figure 5.10: 1/Os (DBMIN model) for Simple Selection Queries With Non-

Clustered Indices

80
—— 20 Frames
1 . . _ —g— 30 Frames
—e—— 50 Frames

) Y~
2 60 o il o= 'f ——o— 100 Frames
§ { - ° ® —a— 150 Frames
2 1 —— 200 Frames
o
E 40 }\o/c o -0 <
=
] L
n
=
)
%20-\—_._’/’0_—-—_—‘
[
x

o+-———yr—r—v—r—71T 1 T T 1 ' 1

30 50 70 90 110 130 150 170 180

Buffer Size

Figure 5.11: Response Time (Hot Set model) for Simple Selection Queries With

Non-Clustered Indices

(443
7]

80

——— 20 Frames
] ———— 30 Frames
= 50 Frames

@
[J
¢
[]

-
60 - o o 1 {=—0— 100 Frames
e~ - & > ——@— 150 Frames
) ——— 200 Frames

9

Response Time (seconds)

_F
- . 4
o ¥ v L § M 4 v 1 4 v | 4 v T v) 4 M 1 L o
30 50 70 90 110 130 150 170 190
Buffer Size

Figure 5.12: Response Time (DBMIN model) for Simple Selection Queries
With Non-Clustered Indices

larger main memory sizes (50, 100, 150 and 200), the probability of capturing
the locality of the queries increases. Because the start of the measurement is
determined by the buffer size, at low buffer sizes and high main memory sizes,
fewer commonly used DBMS pages are in the main memory when the measure-
ment is initiated. Thus, the response times at the lower buffer sizes are higher
since I/Os are required to bring in the more commonly used DBMS pages. This
phenomenon is especially evident in the DBMIN model. Though we gave the
same explanation for the increment in the thronghput of the DBMIN model
at a main memory size of 200 in the previous query type, the response time
in that case is constant for all buffer sizes. The response time is decremental
in this case because the referenc patterns of the queries are random and the
range of DBMS pages touched by the queries are wider in this case.

Notice that for all the algorithins. the double fau’” curvas (Figures 5.13,
5.14) decrease significantly from the point where huffer size is equal to the main

memory size. This is because more DBMS pages are in the buffers with a buffer

120

1 —¢— 20 Frames
=== 30 Frames
—e— 50 Frames
——0~— 100 Frames
——%—= 150 Frames
200 Frames

60

Double Faults

-3
o

20

-

™ Y 2 B g

T T v 1
30 50 70 g0 110 130 150 170 190

BuHfer Size

Figure 5.13: Double Faults (Hot Set model) for Simple Selection Queries With

Non-Clustered Indices

1 —o— 20 Frames
-——8— 30 Frames
—0— 50 Frames
——0~— 100 Frames
—8®— 150 Frames
200 Frames

Double Faults
[*)]
o

A O
40
i O
0 T M 1 v T M i v T M k] M | v L M]
30 50 70 80 110 130 150 170 190
Butter Size

Figure 5.14: Double Faults (DBMIN model) for Simple Selection Queries With

Non-Clustered Indices

60

20 Frames
=@~ 30 Frames T —
40 -——&— 50 Frames

4 ——0~— 100 Frames
——g— 150 Frames

Page Faults
3
A

20 o
—f— 200 Frames
0 v T v T v T Y T v Y M T v T v T
30 50 70 90 110 130 150 170 190

Buffer Size
Figure 5.15: Page Faults (Hot Set model) for Simple Selection Querics With

Non-Clustered Indices

size greater than the main memory size. Therefore, the probability of having
to choose a buffer for replacement is lower. A double fault can only happen if
a buffer fault has occurred. Since the number of buffer fault decreases as the
buffer size increases (see Figures 5.17, 5.18), the number of double faults also
decreases.

The page fault curves (Figures 5.13, 5.16) of 150 and 200 frames are
decreasing because the components of the page faults consist of the double
faults, t% . major and minor page faults. Though the major page fanlt compo-
nent is increasing as the buffer size increases, the double fault compouent and
the minor page fault components are decreasing. The double fault component,
decreases due to the reason given above. The minor page fault component de-
creases because, as the buffer size increases, the page table size also increases.
This is because at a main memory size of 150 and 200, more data pages are in
the main memory. Besides the page fault required to initialize the page table,
less page faults occur because the probability of finding a DBMS page in the

main memory is higher at higher main memory sizes and thercfore it is less

61

120

100 o

80 +

60 1 20 Frames

] —f— 30 Frames
40 —e— 50 Frames
—o0— 100 Frames
—%— 150 Frames
20 1 —o— 200 Frames

Page Faulis

\) g

0 — v T — v r
30 50 70 80 110
Bufter Size

Figure 5.16: Page Faults (DBMIN model) for Simple Selection Queries With

T T
130 150 170 180

Non-Clustered Indices

likely to invoke the page replacement policy.

5.2.3 Summary

In these runs, the performance results produced by the queries in the DBMIN
model are more consistent and predictable than for the Hot Set model. This
is because in the DBMIN model, there is more control over the selection of
buffers for replacement. The DBMIN model is able to separate the replacement
of data pages from replacement of index pages and the Hot Set modc’ does not
differentiate between the two types of pages. In addition, the locality of the

queries is easy to capture in these runs.

5.3 Merge Scan Joins

In this section. we shall discuss the results on the runs obtained from the

queries executed with the merge scan join. We have only done the simulation

120
20 Frames
100 . ‘ P~ 30 Frames
' —— 50 Frames
2 ———— 100 Frames
‘E 80 - - {50 Frames
< 200 Frames
1 5
S 60
3
@ 4
N 40 -
= 40
]
e -
20 ~
0 v T M T g T v T v T v Y M | - T '
30 50 70 90 110 130 . 150 170 190

Buffer Size

Figure 5.17: (DBMS) Buffer Faults (Hot Sct model) for Simple Selection
Queries With Non-Clustered Indices

120

——e—— 20 Frames
- 30 Frames

100 4
—— 50 Frames
2) ——0— 100 Frames
E 80 - —@&— 150 Frames
4 200 Frames
£ 53
o
= 60
3
m -y
@ 40
= 40
m
e -
20 +
o v T T T T Y T T v T Y T g T Y R |
30 50 70 90 110 130 150 170 190

Buffer Size

Figure 5.18: (DBMS) Buffer Faults (DBMIN model) for Simple Selection

Queries With Non-Clustered Indices

63

4 - — p—— T —————————x
~ — —a— —
v
5 3
o
8 —)
@ 4
2 .
L
) 2 —o— 20 Frames
T
< —f— 30 Frames
5 4 —®— 50 Frames
.g' 0= 100 Frames
2 14 —#— 150 Frames
::- g 200 Frames
- 4
o - — —
0 v T v - v r v T v T v T — -
30 50 70 g0 110 130 150 170 190

Buffer Size

Figure 5.19: Throughput (Hot Set model) for C-C Merge Scan Join Queries

on paths that use clustered indices on both the outer and inner relations. This
is because the formula used to calculate the optimal buffer size in both local
buffer replacement alg >rithms are similar for both clustered and non-clustered
indices.

In the merge scan method, temporary pages are used. In our imple-
mentation, temporary paes are not shared and each process has its own set
of temporary pages. The number of temporary pages owned by each process
is dependent on the selectivity factor of the process. Once a temporary page

is assigned to a process, it can only be us~d by that process.

As in former simulation runs, the throughput (Figures 5.19, 5.20) in-
creases with increasing main memory size. In cases where the main memory
size is 100, 150 and 200, the throughput also increases with increasing buffer
size. At lower main memory size, the throughput decreases with increasing
buffer size. For example at main memory size of 30 frames in the Hot Set
model and main memory size of 50 in the DBMIN model. At lower main mem-

ory size, the locality of the queries cannot be captured. When the buffer size

4W
o — \
©
=3
Q0 3-
Q
g W G
E -
L
b
S 2 < —&— 20 Frames
A —o— 30 Frames
5 b —e&— 50 Frames
g. 00— 100 Frames
2 44 —%— 150 Frames
° —f— 200 Frames
e
- =5 =3
o v T v 1 v 1 v T v T M L{ v 1 v 1
30 50 70 90 110 130 150 170 180

Buffer Slize
Figure 5.20: Throughput (DBMIN model) for C-C Merge Scan Join Queries

is small, the number of processes that arc ready to run is limited and most
processes will be in the suspended queue. This is because at lower buffer sizes,
although there may be frames available to run a ready process, there might
not be buffers to allocate to a ready process. If no buffer can be allocated to
a ready process, the ready process is suspended. This also explains the slopes
of the buffer fault curves (Figures 5.21, 5.22), the double fault curves (Figures
5.23, 5.24), and the page fault curves (Figures 5.25, 5.26).

With fewer ready processes, the range of pages that is referenced at
any moment is also smaller. The probability of capturing the locality therefore
is higher. As the buffer size increases, the munber of processes that are ready
to run becomes higher. Therefore, the range of pages that can be referenced
becomes higher and the probability of capturing the locality decreases. This
causes more major page faults and thus the throughput decreases. At larger
main . xmory sizes, more commonly used DBMS pages are captured in the
main memory. As the buffer size increases, the throughput becomes more

stable and does not increase because 1/0s are required to fetch the temporary

500 + —e— 20 Frames
—g— 30 Frames
» —g— 50 Frames
=5' ———= 100 Frames
& —8~— 150 Frames
s —p— 200 Frames
5
o
n
=
7]
=)
—C>
’_
0 T L v T v ¥ T ‘?7 1 4 v 1
30 50 70 90 110 130 150 170 190

Buffer Size

Figure 5.21: (DBMS) Buffer Faults (Hot Set model) for C-C Merge Scan Join

Queries

500 ~—eo—— 20 Frames
—t— 30 Frames
» -—— 50 Frames
'é 400 ——0=-— 100 Frames
w —8— 150 Frames
5 ——o— 200 Frames
= 300
=]
(3]
€ 200 4
@
Q
100 - o y
—F
0 Y T v T v T M T M T r—?ﬁ T T .
30 50 70 90 110 130 150 170 190
Buffer Size

Figure 5.22: (DBMS) Buffer Faults (DBMIN model) for C-C Merge Scan Join

Queries

500 - ——g— 20 Frames
——— 30 Frames
-—— 50 Frames

400 T -—o0— 100 Frames
4 ~—@—— 150 Frames
——f—— 200 Frames

300 o

Double Faults

100 - ° Y
- ﬂ
o " M ‘l{ v T "\-l 1 M 1] v f;’ v T v L
30 50 70 90 110 130 150 170 190

Buffer Size

Figure 5.23: Double Faults (Hot Set model) for C-C Merge Scan Join Queries

500 - —&— 20 Frames
~~—tr— 30 Frames
—e— 50 Frames

400 —0— 100 Frames
| -8 150 Frames
—0— 200 Frames
300 -
200 -\

m:— > O
0~ v T v T v T -

-
30 50 70 90 110
Buffer Size

Double Faulits

M 1 M LT‘ v L v 1
130 15¢ 170 190

Figure 5.24: Double Faults (DBMIN model) for C-C Merge Scan Join Queries

67

500

L
L J

400

20 Frames
30 Frames
50 Frames
100 Frames
150 Frames
200 Frames

A

Page Faults
W
o
o
1

n

o

o
d

> L
0 -~ T T
30 50 70 90 110 130 150 170 180

Buffer Slze

Figure 5.25: Page Faults (Hot Set model) for C-C Merge Scan

Join Queries

20 Frames
30 Frames
50 Frames
100 Frames
150 Frames
200 Frames

— e

500 -
> ° . —_—
] —_——
400 - o 3 ———
—'—
| —o—

300 A

200

100 4

(o g
T 1 v T 7 1T 1

30 50 70 90 110 130 150 170 190
Buffer Slze

Page Faults
| '/

Figure 5.26: Page Faults (DBMIN model) for C-C Merge Scan Join Queries

68

400

[]
[
<
<@

—&— 20 Frames
1 —o~— 30 Frames
,/o-——-n————'} —0 9 }=——0— 50 Frames
300 - —o0— 100 Frames
—&— 150 Frames
1 —=—o— 200 Frames

i1/0s

200 S

100 -

L

o +—+——v—v—r——r—7Tv—TT"T —1 T

| |
30 50 70 90 110 130 150 170 190
Buffer Size

Figure 5.27: 1/Os (Hot Set model) for C-C Merge Scan Join Queries

pages which are unique to every process. Thus, the [/Os curves (Figures 5.27,
5.28) and the response time curves (Figures 5.29, 5.30) are similarly stable.
At a main memory size of 50 frames, the throughput curves of both the
Hot Set and DBMIN models are decreasing, but the DBMIN curve does not
have any fluctuation whereas there is in the Hot Set model. At a buffer size of 50
in the Hot Set curve, there is a significaut jump. From the trace of a simnlation
run with 50 buffers and 50 frames, we discovered that in this situation, in most
cases, the frames that are chosen for replacement coincide with the buffers that
are chosen for replacement. That is, with high frequency, when there is a buffer
fault, the replaced buffer matches the frame that is chosen for displacement
(if the same page reference causes a major page fault), with respect to “fei
contents. That is, the replaced be.ffer and replaced frame have the same DB
or temporary page number. Thus, the page replacement algorithin behaves
almost like one with a local LRU replacement policy. Therefore, the pages
chosen for replacement can be said to be more localized. Since the fluctnation

is only reflected in the page fault curve but not in the other fault curves, we can

69

400 ~ — — .
e e ——o—= 20 Frames
4 ~—g— 30 Frames
e o — { |—e— S50 Frames
300 - ~—0~— 100 Frames
—@— 150 Frames
] —@— 200 Frames
(/]
o -v B
100
ol'r'I'I"‘I'l'l'l'll
30 50 70 90 110 130 150 170 190
Buffer Size
Figure 5.28: I/Os (DBMIN model) for C-C Merge Scan Join Queries
300
~—o0— 20 Frames
>~— > " —&— 30 Frames
-] —— 50 Frames
-‘-Z - o o —o0— 100 Frames
S 200 ..,/Ei 1 |—=— 150 Frames
b —o— 200 Frames
[}
g L
-
a
c 100 A
o
o
N
Q
e
o e * e e
oOt+———7TF——T T T T T T T T
30 50 70 90 110 130 150 170 190
Buffer Size

Figure 5.29: Response Time (Hot Sct model) for C-C Merge Scan Join Queries

300
—o— 20 Frames
4 v > " —o~— 30 Frames
-] ——e— 50 Frames
-§ o a o =—0— 100 Frames
9 200 —8— 150 Frames
?_', —o~— 200 Frames
o
g «
- e
g P\\/k
c 100 4
]
-3
0
o
4

% o e masn————]

o +——r——{F—r——T7TT"717 v 7 T 7

30 50 70 90 110 130 150 170 1890
Buffer Size

Figure 5.30: Response Time (DBMIN model) for C-C Merge Scan Join Queries

say that the page manager has caused the behavior. Since the page replacement
policy is close to that of a local replacement policy, we do not have stealing of
frames from other processes, therefore we have a lower number of 1/0s.

Note that at a main memory size of 30 and a buffer size of 30, the
number of buffer faults and number of double faults in both local buffer re-
placement algorithms are higher than that at main memory size of 20 and buffer
size of 30. This is because with a higher main memory size, more processes
are ready to run but since the buffer pool size remains the same, more buffer
faults are generated due to more processes competing for a limited resource.
The number of page faults at a main memory size of 30 and a buffer size of
30 in the DBMIN model is lower than that at a main memory size of 20 and
a buffer size of 30 whereas in the Hot Set model, the number of page faults is
higher. This is due to the fact that in the DBMIN model, the buffer allocation
method is more local. When a buffer fault occurs, a replaced buffer can only
be chosen from the faulting locality set. If such a buffer cannot be found, the

buffer manager will try to get a buffer from another process. Since the buffer

Tl

size is only 30, the probability of getting an available buffer is low. Therefore,
the process is likely to be suspended. This is further demonstrated by the fact
that the number of buffer faults at this point in the DBMIN model is higher
than that of the Hot Set model at the same point. In the Hot Set model, a
faulting process replaces a buffer from its single locality set. Therefore, the
probability of suspension is lower. However, this increases the probability of

causing a page fault.

5.3.1 Summary

In these runs, the throughput increases as the main memory size increases in
both models. Also, the curves approach constant values at higher buffer sizes
(a buffer size greater than or equal to 100). The number of buffer faults and
number of pages faults in the DBMIN model are lower at a buffer size of 30 in
most main memory sizes as compared to those of the Hot Set model at similar
points. The throughputs at these points are also higher than that of the Hot
Set model. However, the response times of both models are quite similar at
these points. This phenomenon may be due to the fact that at lower buffer
sizes, the DBMIN buffer manager has more control over the execution sequence

of the processes.

5.4 Nested Loop Joins

In this section, we discuss the results obtained from the simulation runs which
exccute joins with the nested loop method. In a nested loop join, indices
are required to access both the outer and inner relations to obtain reasonable
performance. We have done two types of studies for the nested loop join: one
with clustered indices on both the outer and inner relations and the other with
non-clustered indices on the outer relation and clustered indices on the inner
relation.

Since temporary pages are not used in the nested loop method, the

2
g
[~
8 h ‘---ﬁ : !
2 O -0~
o
‘g —&—— 20 Frames
A 1 - g 30 Frames
=~ ——e— 50 Frames
s —r— 100 Frames
.E; —~—@— 150 Frames
=)) ~—g—= 200 Frames
£
- g ——

a e 9 —0 e {]
0 v T M T T Y B T Y Y v T v T
30 50 70 90 110 130 150 170 190
Buffer Size

Figure 5.31: Throughput (Hot Set model) for C-C Nested Loop Join Queries

range of pages that is touched is smaller than that in the merge scan method;
the throughputs of these simulation runs are therefore higher than those which

executed the joins with the merge scan method.

5.4.1 Clustered Outer and Inner Indices

‘The throughput curves (Figures® 5.31, 5.32) for both algorithms are very sim-
ilar to the throughput curves of the merge scan join, with respect to the al-
gorithms. This might be due to the fact that in both join methods, clustered
indices are used to access both relations. Since the merge scan join method
accesses temporary pages while the nested loop join method does not, the
throughputs of the latter are higher.

For both the Hot Set model and the DBMIN model, the throughput at
a main memory size of 100 frames slightly decreases as the buffer size exceeds

100. Frem traces on the outputs from both models, it is discovered that the

3The abbreviation C-C in the figures means that clustered indices are used in hoth outer

and inner relations.

——g—= 20 Frames
30 Frames
~—&— 50 Frames
—o— 100 Frames
—@— 150 Frames

{queries/second)
A
%

Throughput

200 Frames
pr=m=r==l)m O == (G g
0 v T M T M T M T Y T Y T Y | S T
3¢ 50 70 90 110 130 150 17¢ 190
Buffer Size

Figure 5.32: Throughput (DBMIN model) for C-C Nested Loop Join Queries

300

~—&— 20 Frames
—— 30 Frames

-] —o— 50 Frames

i * * L g . 2 —0~— 100 Frames

§2°°‘ —-#— 150 Frames

& /a/a- @ i 9 |-—o— 200 Frames

[+

g [

'—

o

g 100 A

g

'] S

)

(4 b\/

\‘ A -
T Tkl 1% m ol m'
0 t——T——T7T 7T T T T T TF

4
30 50 70 90 110 130 150 170 190
Buffer Size

Figure 3.33: Response Time (Hot Set model) for C-C Nested Loop Join Queries

300
—¢— 20 Frames
——@— 30 Frames
L
> —&— 50 Frames
g » ———g- - —o— 100 Frames
9 200 o —Fr— 150 Frames
e —a—0 o © 4 |—o— 200Frames
o
E J
-
o
[/.]
§ 100 -
a
(]
° /———_‘
" /
0 +—r—r—r—T—Vr1T—7"TTT v

M | L} M i
30 50 70 90 110 130 150 170 190

Butfer Size

Figure 5.34: Response Time (DBMIN model) for C-C Nested Loop Join

Queries

same thing happens at these two points as at a main memory size of 50 frames
and a buffer size of 50 in the Hot Sct model. That is, at these points, there
is a high probability that a buffer that is chosen for replacement by the buffer
manager will also be chosen by the page manager for replacement (if the bufter
is in the main memory) when there is a major page fault. This phenomenon is
also exhibited for the DBMIN model at a buffer size of 70 and a main memory
size of 50.

The fluctuation in the throughput at a buffer size of 50 and a main
memory size of 50 in the Hot Set model is reflected in the page fault curve
(Figures 5.35, 5.36), the double fault curve (Figures 5.37, 5.38), and the buffer
fault curve (Figures 3.39, 5.40). At these points, there is a high probability
that a running process will find a page it is referencing is being written out
to disk or being read into the mair: memory. That is, there is more sharing of
DBMS pages at these points in the Hot Set and DBMIN model in the nested

loop join runs than at similar points in the-merge scan join runs. This is

-]
O

500 1
o 20 Frames

= 30 Frames
- 50 Frames
—0— 100 Frames
== 150 Frames
g — - 200 Frames

400

(4]
[«]
o

Page Faults
n
o
o
(1

-
100 =
4
oF o ™ anay !
0 v ¥ M M | M T v 1 M) v 1 v {
30 s0 70 90 110 130 150 170 190

Buffer Size
Figure 5.35: Page Faults (Hot Set model) for C-C Nested Loop Join Queries

because in the merge scan runs, unsharable temporary pages are used. Also,
note that in some instances, the number of page faults and buffer faults are
higher at main memory sizes of 200 and 150 than at a main memory size of
100 in the Hot Set model. Since the double fault CLII‘VGS do not show such a
trend, it is the scarcity of frames that causes this behavior. At these points,
process suspension occurs frequently due to unavailability of a frame to bring
in a DBMS page. The suspension can either be due to a major buffer fault or
a major page fault.

At a buffer size of 70, the number of buffer faults and double faults
at a main memory size of 30 are higher than those at a main memory size
of 20 for the Hot Set model. This is not exhibited in the sequential scan or
the merge scan join simulation runs. Even though there is an instance of the
merge scan join where the number of buffer faults and double faults are higher
" at a main memory size of 30 than at 20, the reason behind it is different: the
number of double faults is close to the number of buffer faults at these points

(in fact, at most points, especially at a buffer size greater than or equal to a

500
400 A
2 = o .
S 300 4 v v
i T —~—— o a- <
o
o
& 200 A
100“»//*—_—*
'\g_ N
o 1% o O)
0 M) M L] v L S | v v 7 T
30 50 70 90 110 130 150 170 190
Butfer Size

76

20 Frames
30 Frames
50 Framas
100 Frames
150 Framas
200 Frames

Figure 5.36: Page Faults (DBMIN model) for C-C Nested Loop Join Queries

500
g 20 Frames
—— 30 Frames
400 ——— 50 Frames
—0— 100 Frames
o —8&— 150 Frames
E 300 4 —g- .00 Frames
w .
P 4
3
o 200 ~
(=]
100 N -
o —g— — b
)4 »-o -4 ¥~
[‘ wd - b 2 ¥ aamea
0 T v T v T v T Y T T T v T 7 L)
30 50 70 90 110 130 150 170 190
Buffer Size

Figure 5.37: Double Faults (Hot Set model) for C-C Nested Loop Join Queries

|
-7

500 o —— 20 Frames
| —0— 30 Frames
~—— 50 Frames
400 ~ -0~ 100 Frames
* | =% 150 Frames
§ —— 200 Frames
% 300
"
2 e
L
3 200
(=]
100 = - N
J = o \
P__ﬁ,""""_. e — ~—
L§ v L { v ‘T v § T L v 1] M ‘;r v T v T .
30 50 70 80 110 130 150 170 190
Buffer Size '

Figure 5.38: Double Faults (DBMIN model) for C-C Nested Loop Join Queries

500

—¢—— 20 Frames
-——@— 30 Frames
400 - ~—e—— 50 Frames

g o w0 100 Frames
3 -~—-@— 150 Frames
¥ 300 o —0— 200 Frames
3
2
3
m
. 200
7
=
o
2
100 A .
- — — b
-4 *
-y - L
0 T v T v T M { v L v T M 1 v T B 1
30 50 70 90 110 130 150 170 190
Buffer Slze

Figure 5.39: (DBMS) Buffer Faults (Hot Set model) for C-C Nested Loop Join

Queries

(DBMS) Buffer Faults

500 - ——— 20 Frames
g 30 Frames
—g—— 50 Frames
400 = 0~ 100 Frames
——g—— 180 Frames
—g—- 200 Frames
300
200 =
100 - - o
J —a— o ‘
o/ - &
w B * o Wl Y
o v v L v T v | v) v Rl v ¥ T 1
30 50 70 90 110 130 150 170 190

Bufter Size
Figure 5.40: (DBMS) Buffer Faults (DBMIN model) for C-C Nested Loop Join

Queries

100 in both algorithms) in the nested loop join runs. Similar to the case in
the Hot Set model at a buffer size of 50 and a main memory size of 50, at
these particular points, the probability of finding that a DBMS page that is
being referenced by the running process is in I/O is higher at a main memory
size of 30 frames. When a running process references a DBMS page that is
in I/0, we increment the double fauit, page fault and buffer fault counters for
the current running proéess if the event occurs in the buffer manager. If the
event occurs in the page manager, only the page fault counter is incremented.
This is further demonstrated by the fact that even though the number of buffer
fault and double fault at main memory size of 30 are higher than that at 20,
the number of I/Os (sce Figures 5.41, 5.42) is not.

In the DBMIN model, at a buffer size of 70, though the number of
buffer faults at a main memory size of 30 is higher than that at a main memory
size of 20, the number of double faults does not exhibit such a behavior. Also,

note that the number of page faults at a buffer size of 70 and a main memory

400
e 20 Frames
. o R - =@ 30 Frames
v e -——— 50 Frames
300 - , a— o 4 |7—° 100Frames
/ —a— 150 Frames
h —— 200 Frames
0
g 200 =
1
100 +
0 Tyt
30 50 70 90 110 130 150 170 190

Buffer Size
Figure 5.41: I/Os (Hot Set model) for C-C Nested Loop Join Queries

size of 30 is higher than that at the same point in the Hot Set modecl. Though
the number of buffer faults and page faults at this point in the DBMIN rn.odel
are higher, the number of I/Os in both algorithms at this point is similar.
Therefore, we can say that at a main memory size of 30 and a buffer size of
70, there is more process suspension in the DBMIN model than in the Hot Set

model due to the unavailability of buffers/frames for replacement.

5.4.2 Summary

In the DBMIN model, the number of page faults and double faults at lower
main memory sizes are always higher than the respective faults at higher main
memory sizes. This is not true in some cases in the Hot Set model. This
shows that suspension of processes rarely occurs in the page manager in the
runs of the DBMIN model. Also, the curves of the DBMIN model do not have
fluctuations which exist in the curves of the Hot Set model. Thus, the DBMIN
model has better control than the Hot Set model.

80

400
—o— 20 Frames
1 —@— 30 Frames
(v v -~ —e— 50 Frames
300 +) o —) —0— 100 Frames
—8— 150 Frames
1 —— 200 Frames
[}
© 200
100 -
i
— . —:__q
0 f v ' v ﬁ' r v 1 v l v ' ni ' v T
30 50 70 980 110 130 150 170 190
Buffer Size

Figure 5.42: 1/Os (DBMIN model) for C-C Nested Loop Join Queries

5.4.3 Non-Clustered Outer Indices and Clustered Inner
Indices

The shapes of the curves representing these simulation runs are quite similar
to those of the previous runs. Since the indices to the outer relation are non-
clustered, the locality of the reference pattern is harder to capture. In fact,
using Yao’s function, 32 different blocks/pages can be accessed in executing the
join of each query in our runs. Thus, the throughput of these runs (Figures*

5.43, 5.44) are lower than the previous ones.

The highest throughput achieved with the Hot Set model is about
1.23917 queries/second whereas with the DBMIN model, it is about 1.10131
queries/second. In general, the throughput of the Hot Set model seems to be
higher than that of the DBMIN model. This might be due to the differences in
the buffer size estimates. For the Hot Set model, the estimated optimal buffer

size is 33.8. In the DBMIN model, the estimated optimal buffer size is 38.4.

AThe abbreviation NC-C in the figures means that non-clustered indices are used in the

outer relation and clustered indices are used in the inner relation.

81

1.4
4 -t~ 20 Frames

1.24 ~~~—a— 30 Frames
s ~—&—— 50 Frames
§ —0o— 100 Frames
a 107 —o— 150 Frames
Ed] = 200 Frames
0
< 0.8
o
-1 L
g
- 0.6-,\-\./'_ o
< L
£
m0.4- ~ ~
3 o y
-] «
E \/r/v
- 0.2-

0.0 -—+——T1T—"r—T— T T T T T T T T T

30 50 70 90 110 130 150 170 1490
Buffer Size

Figure 5.43: Throughput (Hot Set model) for NC-C Nested Loop Join Queries

Figure 5.44: Throughput (DBMIN model) for NC-C Nested Loop Join Queries

1.2
- 20 Frames

J I
- —— 30 Frames
2 101 ——— 50 Frames -
§] ——0— 100 Frame:
2 08- —®— 150 Frames
0n
.“:’ | - 200 Frames
S
T 0.6 . y
» .
£ 044
o] = ~
3 p - E—
2)\w—/
= 024

= =.:

0-0 v | v LIS T 4 L v 1 1 M 1§ v H
30 50 70 90 110 130 150 170 180
Buffer Size

82

300
—— 20 Frames
L 4 . 4 - <> - 30 Frames
_] —— 50 Frames
n
3 R o o 4 |T"°— 100Frames
8 200 - —8— 150 Framss
§ - —fH— 200 Frames
0 \/‘———.
E
™
2
= 100 S
o
o- m
; o —o ‘
< q
'___r_"\.‘ '
P—u——n————c‘ —} 1
o'l'l'l'l'['l'T'l
30 50 70 90 110 130 150 170 1490

Butfer Size

Figure 5.45: Response Time (Hot Set model) for NC-C Nested Loop Join

Queries
300
—&— 20 Frames
- ° - - —@— 30 Frames
-] -—80— 50 Frames
2 y—— g o d |—o°— 100Frames
§ 200 - —®— 150 Frames
2 \ — —O— 200 Frames
o
g 4
=
[
c
g 1% 4’__—0\\
Q
[
0 —— 4
[+ o ”.\‘\F\‘*_*
/O-N — ‘
o+ 77—
30 S50 70 90 110 130 150 170 190
Buffer Size

Figure 5.46: Response Time (DBMIN model) for NC-C Nested Loop Join

Queries

83

Since the sizes of the buffer pool and main memory are not enough to contain
the locality of all 24 concurrent queries, most of the queries are faulting pages
from each other. This is especially significant in the DBMIN model, where if -
a buffer cannot be found in a locality set for replacement, the manager will
try to get it from another process though this faulting process might have
buffers for replacement in other locality sets. In the Hot Set model, all the
buffers allocated to the faulting process are available for replacement, thus the
probability of stealing a buffer from another process is lower. The probability
of stealing a buffer from another process is higher in the DBMIN model also
because the optimal buffer size of a query is higher than that of the Hot Set
model. A process will seldom replace a buffer from its own locality set.

At a lower buffer size, with fewer processes in the running/ready state,
the probability of capturing the locality in the main memory is higher, there-
fore at a smaller buffer size, the throughput is higher in most cases. This is
especially exhibited by the DBMIN model at a main memory size of 200 frames.
There are dips at some points in both models because more processes are al-
lowed to compete for resources. At these point, the stealing of buffers/frames
among the processes becomes significant as the locality of the queries cannot
be contained in the buffers/frames. As the buffer size increases, the through-
put increases because the stealing of bufters becomes less significant. This is
because as the buffer size increases, the probability of capturing the the locality
of the queries is higher though there are more processes running. Also, buffers
can be shared. The above phenomenon also explains the curves of the response
time, the double faults and the number of I/Os.

The increase at a main memory size of 50 and a buffer size of 50 in
the Hot Set model of the previous run is also exhilLited here but it is not as
cignificant. This is because the page reference pattern is more randomized in a
non-clustered index access path. The same explanation given in the previous
run at this point can also be given to the corresponding decrease in double

faults, page faults, number of I/Os and response time.

84

S00 -y
——&—— 20 Frames
—— 30 Frames
400 ~——— 50 Frames
2 D= 100 Frames
3 —®— 150 Frames
Y 300 4 ~—Q— 200 Frames
R
E]
@
- 200 -
n
=
o
o
~ 100 A
\c;
0 M T v T Y T B T M T Y T v 1 M T v
30 50 70 90 110 130 150 170 190
Buffer Size

Figure 5.47: (DBMS) Buffer Faults (Hot Set model) for NC-C Nested Loop

Join Queries

Notice that as in the previous runs, at some buffer sizes, the number
of buffer faults (Figures 5.47, 5.48) and the number of double faults (Figures
5.49, 5.50) are higher at 2 main memory size of 30 than at a main memory size
of 20. The same explanation can be given for this behavior. The trend with
the number of page faults (Figures 5.51, 5.52) and buffer faults in the Hot Set
model at a main memory size of 200 of the previous run can also be seen here

in the Hot Set model.

5.4.4 Summary

Though there arc dips/peaks in the DBMIN model at some points, if we com-
pare the curves of the Hot Set model and DBMIN model, the fluctuations in
the curves of the DBMIN model are less significant. Also, note that the re-
sponse time curves of the DBMIN model approach constant values with less
fluctuations than the Hot Set model, so do the buffer fault curves, double fault

curves, page fault curves and I/Os curves. These again show that the DBMIN

85

——= 20 Frames
—~—— 30 Frames
—o-— 50 Frames
=0~ 100 Frames
———&— 150 Frames
200 Frames

(DBMS) Buffer Faults

0 v 1 v T v § v 4

¥
30 50 70 90 110
Buffer Size

T— \ -1 v

T T
130 150 170 190

Figure 5.48: (DBMS) Buffer Faults (DBMIN model) for NC-C Nested Loop

Join Queries

500

20 Frames
30 Frames
50 Frames
100 Frames
150 Frames
200 Frames

Double Faults

100

O ¥ v ¥ v T v T v v 1 1 § ¥ R v 1
30 50 70 90 110 130 150 170 190
Buffer Slze

Figure 5.49: Double Faults (Hot Set model) for NC-C Nested Loop Join Queries

86

Double Fuults

20 Frames
30 Frames
50 Frames
100 Frames
1590 Frames
200 Frames

30

v v v — Y e
50 70 90 110 130 150
Butfer Size

1
170 190

Figure 5.50: Double Faults (DBMIN model) for NC-C Nested Loop Join

Queries

500 =y

Page Faults
n
[«
o
]

a

—— 20 Frames
—t— 30 Frames
——&—— 50 Frames
——o0~— 100 Frames
—®— 150 Frames
—0O— 200 Frames

100
o-—m———"—7———1r—7TT1T "7
30 50 70 90 110 130 150 170 190

Buffer Size

Figure 5.51: Page Faults (Hot Set model) for NC-C Nested Loop Join Queries

Page Faults

87

500 = ———t— 20 Frames
-0 30 Frames
1 —o— 50 Frames

400 =——0-= 100 Frames
—%— 150 Frames
—0— 200 Frames

300 + -

200 +

100 o

o M v T vy v 1 v T v } 1 4 v ¥
30 50 70 80 110 130 150 170 190
Butfer Size

Figure 5.52: Page Faults (DBMIN model) for NC-C Nested Loop Join Queries

I/0s

400

- - - o —— 20 Frames
1 —a— 30 Frames
—ag— o Yy |—e— 50Frames
300 A —0~— 100 Frames
——
-—&— 150 Frames
] —0— 200 Frames
200 -
100 . * o —p— Y
o
—— —{
o ‘ L] T I T r LA ‘[L l L 4 T' R l LS l'
30 50 70 90 110 130 150 170 190
Buffer Size

Figure 5.53: I/Os (Hot Set model) for NC-C Nested Loop Join Queries

88

e~ 20 Frames

== 30 Frames

1? @ @ o= —a 1 |—e— 50Frames
300 -b\ -0~ 100 Frames
© @ 150 Frames

) : —O— 200 Frames

v T v v \4 g

T L) 1 4 4
30 50 70 90 110 130 150 170 190
Butfer Size

Figure 5.54: I/0Os (DBMIN model) for NC-C Nested Loop Join Queries

model has better control over the sequence of execution of the processes.

5.5 Summary

In this chapter we present the results from the performance studies which have
been done in this thesis. Results are obtained from simple selection queries
which are executed without indices, simple selection queries which are executed
with non-clustered indices, join queries which are executed with the merge scan
join method with clustered indices on both the outer and inner relations, join
queries which are executed with the nested loop join method with clustered
indices on both the outer and inner relations, and non-clustered indices on the
outer relation and clustered indices on the inner relation.

It is found that the response time is closely related to the number of
I/0s. This is because the amount of time taken to process an I/O is 30,000
virtual time units.

If the main memory size is large enough to contain the locality of

the queries, then increasing the buffer size is beneficial. Otherwise, higher

89

throughput is obtained with a lower buffer size. With a lower buffer size, the
number of running/ready processes is limited by the buffer manager. With
fewer ready/running processes, there is less stealing of buffers/frames among
the processes. Thus, less faults are generated and the response times of the
queries are therefore reduced.

As the buffer size increases, the number of 1/Os caused by the buffer
replacement policy decreases and the number of 1/Os caused by the page re-
placement policy increases. This is because as the buffer size increases, more
DBMS pages are in the DBMS buffers but more virtual pages are mapped into
a fixed number of frames. Therefore, if the cost ratio of an I/O between the
DBMS disk and the paging disk is greater than 1, then the response times will
not be similar to the results reported here.

From the results studied, we can see that the curves of the DBMIN
algorithm have less fluctuations than those of the Hot Set algorithm. This is
due to the fact that faulting/replacement of buffers/frames are controlled more
strictly in the DBMIN model. This is because, in most cases, there is more
than one locality set in each process and"a faulting process can only replace
a buffer within the faulting locality set, whereas in the Hot Set model, each

process has only one locality set.

Chapter 6

Conclusions

6.1 Summary of Thesis

In this thesis, the performance of two special DBMS buffer managers, thc Hot
Set model and the DBMIN model, in a virtual memory system is studied.
A closed network trace driven simulator which emulates the execution of the
LBMS queries in a virtual memory system is used. The simulator consists of
a computer model and a page reference string generator. The page reference
string of each query is generated before the query is executed in the computer
model. A random number generator is used to determine the predicates of the
queries. Each query has a selectivity factor of less than ten per cent. The types A

of queries studied are
o simple selections with and without indices,

e joins executed via the merge scan method with clustered indices on both

outer and inner relations,

e joins executed via the nested loop method with clustered and non-clust-
ered indices on the outer relation and clustered indices on the inner re-

lation.

The virtual memory manager uses a GLRU page replacement policy

and the maximum number of concurrent queries is twenty-four. A virtual time

90

91

unit is used to control event timing. This virtual time unit is equivalent to
the amount of time taken to make a successful page reference. It takes about
30,000 virtual time units to read a pdge from the disk. The scheduler uses
a Round-Robin policy to schedule processes and the I/O driver implements a

First-Come-First-Serve policy.

6.2 General Conclusions

From most of the mean buffer fault curves, mean page fault curves and mean
double fault curves, we can conclude that as the buffer size increases, the
number of faults decreases. However, from the throughput curves, we cannot
conclude that the throughput increases proportional to the buffer size, nor can
we conclude that there is an inverse correlation between the buffer size and the
mean response time or the mean number of I/Os.

In our system, if a process references a page that is being brought into
the main memory by another process, the process is said to have caused a
fault. The type of fault that will be generated depends on whether the page is
being processed by the DBMS buffer manager or the virtual memory manager.
If the page is processed by the DBMS buffer manager then, a page fault, a
buffer fault and a double fault take place. If the fault occurs while the virtual
memory manager is processing the page reference then, a page fault occurs.
Therefore, if a page is not in the main memory and it is being referenced,
updates to the vé,rious fault counters will take place regardless of whether an
actual I/O will take place. Thus, these fault counters can give us an estimate
of how the system will perform if each process causes an 1/O on referencing
a page taht is not in main mernory (even if the page is being brought in by
another process). Accordingly, an analysis of the various fault curves supports
a prediction that the throughput will increase and the mean response time will
decrease with respect to an increase in buffer size at a fixed main memory size.

This predication is based on the observation that the number of buffer faults

92

decreases as the buffer size increases. This phenomenon exists in both the Hot
Set model and the DBMIN model.

We cannot be certain about whether the number of I/Os will decrease
since the number of major page faults increases as the buffer size incrcases at
a fixed main memory size. The number of I/Os decreases if the main memory
can contain the locality of the queries. If the cost ratio between an access to the
database disk and an access to the paging disk is greater than 1, then the merge
scan method should give better results than the results we have obtained. This
is because, in the merge scan method, the number of I/Os to the database disk
is minimized by the pre-selection of tuples which satisfy the predicates before
the join is actually performed. Once the tuples that will participate in the join
are selected, the DBMS pages are never reaccessed again to execute the query,
only the temporary pages that hold the pre-selected tuples and which reside in
virtual memory will be accessed. Therefore, if the cost ratio is greater than 1,
then we expect to see a better performance for this join method.

In this performance study, we did not implement a load controller
in the buffer manager. If there is one, the results might be different since
stealing of buffers among queries will be a rare event. Also, the number of
ready/running processes will be limited which has been shown to be desirable
in some cases in our study, such as, at low main memory and low (DBMS)
buffer sizes.

At the peaks/dips of some curves, it has been shown that the compat-
ibility between the page replacement policy and the buffer replacement policy
is important. It is desirable to have the buffer manager and the page manager
choose the same buffer/frame (with respect to DBMS page) for replacement.
This either implies that the behavior of the page replacement policy approaches
that of a local policy or the behavior of the page manager approaches that of
the buffer manager. |

In most cases, the performance of the Hot Set model and the DBMIN

model are quite similar; that is, the mean values of the various measurements

93

in the Hot Set model are within the confidence interval of the respective mean
values in the DBMIN model and vice versa. The DBMIN model does not
exhibit these fluctuations and the curves that describe its behavior are more
monotonic (increasing or decreasing) than the Hot Set model. Thisis due to the
DBMIN model’s exercise of control over its locality sets. Since the performance
of both models are quite similar, one would choose the less complex one to
implement. In this case, the Hot Set model is the less complex since each
query has only one locality set and only one type of replacement policy. In the
DBMIN model, the maximum number of locality sets in our simulation runs
is six and each process can have a maximum of three different replacement
policies. This implementation will not only increase the complexity but also
the size of the system. Unfortunately, we cannot confirm Chou’s [ChoS5] claims
that the DBMIN model is superior to the Hot Set model in the experimental

environment of this thesis.

6.3 Suggestions for Implementation of a DB-
MS in a Virtual Memory System

The types of faults that are generated when a DBMS is run on top of a virtual
memory system are the buffer faults generated by the DBMS buffer manager,
the page faults or the reference faults generated by the page manager and the
double faults. A double fault occurs when a buffer fault and a page fault are
generated on a page reference. The page fault component in a double fault
is generated when the virtual memory page which maps the replaced DBMS
buffer is not in the main memory. Since the virtual memory page will be
written over with a different DBMS page, there is no need to bring in the
virtual memory page from the paging device because the data in the virtual
memory page will not be accessed but will be replaced. Therefore, only a frame
to bring in the DBMS page from the DBMS disk is required. This will eliminate

the page fault component in a double fault and thus there will not be any double

94

faults. To implement such an approach, the page manager has to know whether
a page reference has already generated a buffer fault. Therefore, the DBMS
buffer manager and the page manager require some form of cooperation.
Another way to eliminate double faults is to map all the DBMS buffers
into main memory. Dynamic sharing of the main memory has been shown to
give a better performance than static sharing in previous studies. One way
of implementing a dynamic sharing system is to have a “moderator” to check
on the load of the DBMS and the load of the system handling the other tasks
running in the system. If the load of the DBMS is low and the load of the
system handling the other tasks is high then, some frames from the DBMS can

be transferred to the system handling the other tasks and vice versa.

6.4 Suggestions for Future Research

There are several extensions that could be made to the work presented here.

e The presence of a load controller in the buffer manager has been shown to
be desirable in some cases in the study performed. Thus, implementation
of a load controller in the buffer manager is desirable. In some DBMS, for
example in a airline ticket reservation system, most transactions are read
only and thus most of the database pages can be shared. Therefore, a
desirable load controller is one that considers the sharing of pages among

the transactions.

o Implementation of a virtual memory manager with different page replace-
ment policies, like local LRU, since the decisions of the page replacement
algorithm have been shown to affect the performance of the two models

studied in our environment.

* In most DBMS disk accesses, the cost of an access (with respect to time)
to the DBMS disk is higher than the cost of an access to the paging device,

therefore, experiments using different cost ratios should be performed.

95

¢ Experimenting with partitioned main memory where the database buffers
all map to main memory frames rather than virtual memory pages. This
approach will eliminate the overhead in the paging of the virtual pages
which map the DBMS buffers. That is, page faults will not be generated
in all page references belonging to the queries since all the DBMS buffers
are mapped into main memory frames. Thus, there will not be any double

faults.

In the earlier studies by Effelsberg and Haerder [EH84], and Brice and
Sherman [SB76,BS77], dynamically partitioning of main memory, that
is when the main memory is shared dynamically between the DBMS
buffers and other tasks, has been shown to improve the performance of
the system. Therefore, experiments with dynamic partitioning of main

memory should be performed with the two models studied.

Bibliography

[Bac86]

[BD84]

[BET7)

[BM72]

[BS77]

[CDs6]

[Cho85]

M. J. Bach. The Design of the UNIX Operating System. Prentice-
Hall Inc., Englewood Cliffs, New Jersey 07632, 1986.

H. Boral and D. J. DeWitt. A methodology for database system
performance evaluation. In ACM Proéeedings of the International
Conference on Management of Data, pages 176-185, ACM, June
1984.

M. W. Blasgen and K. P. Eswaran. Storage and access ir. relational

data bases. IBM Systems Journal, 16(4):363-377, 1977.

R. Bayer and E. McCreight. Organisation and maintainance of large

order indexes. Acta Informatica, 1(3):173-189, 1972.

R.S. Brice and S. W. Sherman. An extension of the performance of a

database manager in a virtual memory system using partially locked

virtual buffers. ACM Trans. on Databases, 2(2):196-207, June 1977.

H. Chou and D. J. DeWitt. An evaluation of buffer management
strategies for relational database systems. Algorithmica, 311-336,

1986.

H. Chou. Buffer Management of Database Systems. Technical Re-
port 597, Computer Science Department, University of Wisconsin,

Madison, U.S.A., May 1985.

96

[COT2]

[ComT9)

[Dei84]

[Den68a)

{Den68b)

[DenT70]

[Den80]

[EH84]

[FLW?78]

[Gra78]

[LWEF77)

97

W. W. Chu and H. Opderbeck. The page fault frequency replace-
ment algorithm. Proceedings of the AFIPS Fall Jeint Computer
Conference, 597-609, 1972,

D. Comer. The ubiquitous b-tree. ACM Computing Surveys,
11(2):121-137, June 1979.

H. M. Deitel. An Introduction to Operating Systems (2ad Edition).
Addison-Wesley Publishing Company, 1984.

P. J. Denning. Thrashing: its causes and prevention. Proceedings of

the AFIPS Fall Joint Computer Conference, 33:915-922, 1968.

P. J. Denning. The working set model for prograir behavior. 4CM
Communications, 11(5):323-333, May 1968.

P.J. Denning. Virtual memory. ACM Computing Surveys, 2(3):153~
189, September 1970. '

P. J. Denning. Working sets past and present. IEEE Trans. on
Software Engineering, SE-6(1):64-84, January 1980.

W. Effelsberg and T. Haerder. Principles of database buffer man-
agement. ACM Trans. on Databases, 9(4):560-595, December 1984,

I. B. Fernandez, T. Lang, and C. Wood. Effects of replacement algo-
rithms on a paged buffer database system. IBM Journal of Rescarch

and Development, 22(2):185-196, March 1978.

J.N. Gray. Notes on data base operating systems. In Goos and Hart-
manis, editors, Operating Systems - An Advanced Course, pages 393-

431, Springer-Verlag, 1978.

T. Lang, C. Wood, and 1. B. Fernandez. Database buffer paging in
virtual storage systems. ACM Trans. on Datebases, 2(4):330-351,
December 1977.

[Mac73]

[Mas77]

[MLS6]

[MOOS7]

[Ozs88]

[PS85)

[SB76]

[SHS7)

98

International Business Machines. Information Management Sys-
tem /360, Version 2-General Information Manual. Technical Re-
port GH 20-0765, IBM Corporation, White Plains, N. Y., U.S.A.,
1973.

T. Masuda. Effect of program localities on memory management
strategies. Proceeding of Sizth ACM Symposium on Operating Sys-
tems Principles, 117-124, November 1977.

L. F. Mackert and G. M. Lohman. R* optimizer validation and
performance evaluation for local queries. In ACM Proceedings of
the International Conference on Management of Data, pages 84-95,

May 1986.

M. Maekawa, A. E. Oldehoeft, and R. R. Oldehoeft. Operating
Systems Advanced Concepts. The Benjamin/Cummings Publishing
Company, 2727 Sand Hill Road, Menlo Park, CA 94025, U.S.A.,
1987.

M. T. Ozsu. Distributed Database Operating Systems. Technical
Report TR88, University of Alberta, Edmonton, Canada, February
1988.

J. L. Peterson and A. Silberschatz. Operating System Concepts.
Addison/Wesley Publishing Company, 1985.

S. W. Sherman and R. S. Brice. Performance of a database manager
in a virtual memory system. ACM Trans. on Databases, 1(4):317-

343, December 1976.

R. O. Simpson and P. D. Hester. The ibm rt pc romp processor
and memory management unit architecture. IBM Systems Journal,

26(4):346-360, 1987.

[Smi81]

[SS82]

[SSs6]

[Sto81]

[TMs2]

[TueT6]

[YaoT77]

99

A. J. Smith. Input/output optimization and disk architectures: a

survey. Performance and Evaluation, 1:104-117, 1981.

G. M. Sacco and M. Schkolnick. A mechanism for managing the
buffer pool in a relational database system using the hot set model.
In ACM Proceedings of the Eight International Conferences on Very
Large Databases, pages 257-262, September 1982,

G. M. Sacco and M. Schkolnick. Buffer management in relational
database systems. ACM Trans. on Databases, 11(4):473-498, De-
cember 1986.

M. Stonebraker. Operating system support for database manage-

ment. Commaunications of the ACM, 24(7):412-418, July 1981.

A. S. Tanenbaum and S. J. Mullender. Operating system require-
ments for distributed data base systems. In Schneider, editor, Dis-
tributed Datae Bases, pages 105-114, North-Holland, Amsterdam,
1982.

W. G. Tuel Jr. An analysis of buffer paging in virtual storage
systems. IBM Journal of Research and Development, 20:518-520,
September 1976.

S. B. Yao. Approximating block accesses in database organization.

Comm. of ACM, 20(4):260~261, April 1977.

Appendix A

Nomenclature

frame : a unit of the main memory. The main memory is divided into equal

sized partitions, called frames.

page : a unit of the virtual memory or secondary storage. Virtual mzmory is
divided into equal sized partitions, called (virtual memory) pages. Sim-
ilarly, the secondary storage is divided into (data) pages. The smallest

unit of transfer between the secondary storage and main memory is a
page.

N : size of the DBMS buffer pool (in pages).

M : size of the main memory (in frames/pages).

D : size of the DBMS database (in pages).

r : ratio of the cost of an access to the database disk to the cost of an access

to the paging device.

DBMS buffer : a buffer which is used solely by the DBMS. It is either

mapped into a page in virtual memory or a frame in main memory.
fault : a fault occurs when an access to secondary storage is required.

buffer fault : occurs when an access to the database disk is required. That

is, the requested data page is not in the DBMS buffer.

100

101

page fault : this fault is caused by an access to the paging disk device.

reference fault : this fault occurs only when the DBMS is running on top
of a virtual memory operating system. [t is a subset of the page fault.
A reference fault occurs when the requested data page is in the DBMS
buffer but the virtual memory page to which the DBMS buffer is mapped

is not in the main memory.

double fault : this faults also occurs only when the DBMS is running on
top of a virtual memory operating system. It is caused by both a buffer
fault and a page fault. It can only happen if a buffer fault has already
occurred. It happens when the requested data page is not in the DBMS
buffer and the virtual memory page, containing the DBMS buffer which

has been chosen for replacement, is not in the main memory either.
buffer I/0 : sum of buffer faults and reference faults.
system I/O : number of page faults caused by the DBMS program.
total I/O : buffer I/O + system I/O.
I/0 cost : number of buffer faults + number of page faults/r.

clustered index : a index on a relation which is sorted on the indexed field.
The relative physical location of the tuples of the relation is quite similar

to relationship between the values of the indexed field.

unclustered index : a index on a relation which is not sorted on the indexed
field. Therefore, the relative physical location of the tuples of the relation

is not similar to the relationship betwecen the values of the indexed field.

Appendix B

Pseudo Code

B.1 Main

Main :
Initialize;

While (event_list <> empty) Do
Begin

pop (even:);

Case event_class 0Of :

Scheduling : SCHEDULER;
I/0 : I/0 DRIVER;
Buffering : BUFFER MANAGER;
End Case;
End While ;

103

B.2 Scheduler

Scheduler :

Case event_method Of :
Ready, Block, Suspend : Insert into appropriate queue;
Select_Process_To_Run;

Stop : Update simulation statistics;
. Return buffers and frames;
Create a new process;
Select_Process_To_Run;
End Case;

Select_Process_To_Run :
Begin
If no process is running, select a process to run;
Selected process must have at least one frame
allocated or the length of the free list is at
least one;
If (process selected) Then
Push_Event (Buffering : Address Reference);
End; { Select_Process_To_Run }

104

B.3 Bufier Manager
Buffer Manager :

Case event_method Of :
Address
Reference : If (data page in buffers) Then

If (buffer in I/0) Then
Buffer fault;
Major page fault;
Double fault;
Pugh_Event (Scheduling : Block);

Else
Update buffer statistics;
Memory_Manager;

End If;

Else

Buffer fault;

Get a buffer from process;

If (no buifer available) Then
Get_From_0Others;

If (no buffer available) Then
Push_Event (Scheduling :

Suspend);

Else
Insert buffer into process’ buffer
table;
Update buffer hash table;
Memory_Manager;

End If;
End If;
Bufier
Unlock : For all processes blocked inder the given
data page,
Push_Event (Scheduling : Ready);
Unlock buffer with given data page;
End Case;

Get_From_Others :
Begin
Get a buffer from suspended processes;
If (no buffer available) Then
Get a buffer from blocked processes;
End; { Get_From_Others }

105

Memory_Manager :
Begin
If (virtual page not in process) Then
Page fault;
Insert into process’ page table;
Try_Allocate_Frame;
Else _
If (virtual page in process) Then
If (virtual page_sec_addr == data page) Then
Update frame statistics;
Timeout; '
Else
Page fault;
Try_Allocate_Frame;
End If;
End If;
End If;
End; { Memory_Manager }

Timeout :
Begin
If (allocated time to process < quantum time) Then
Push_Event (Buffering : Address Reference);
Else
Push_Event (Scheduling : Suspend);
End; { Timeout }

106

Try_Allocate_Frame :
Begin
If (data page in main memory) Then
Minor page fault;
Allocate frame to process;
Update frame statistics;
Timeout;
Else
Major page fault;
Get a free frame;
If (no frame available) Then
Release buffer;
Push_Event (Scheduling : Suspend);
Else
If (process already has a buffer fault) Then
Double fault;
Lock frame, buffer;
Push_Event (Scheduling : Block);
End If;
End If;
End; { Try_Allocate_Frame }

B.4 I/0 Driver

I/0 DRIVER :

Case event_method Of :
Read, Write : If (I_O_list <> empty) Then
Insert (I_O_list);
Else
Insert (I_O_list);
Insert_Event (I/0 : Wakeup);
End If;

Wake up : Delete (I_O0_list);
Push_Event (Buffer Manager :
Buffer Unlock);
Update frame statistics;
If (I_O_list <> empty) Then
Insert_Event (I/0 : Wakeup);
End Case;

Appendix C

Performance Data for Simple

Selection

In the following, the confidence intervals are given as a single real number.
They should be interpreted as the associated mean value + the confidence

interval value.

C.1 Simple Selection without Indices

Hot Set & DBMIN
Buffer Size || Throughput | I/Os | Response Time
30 3.76476 8.5758 6.19465
50 3.77378 8.55533 6.19465
70 3.78284 8.53484 6.19465
100 3.79651 8.50410 6.19465
150 3.81952 8.45287 6.19465
200 3.84281 8.40164 6.19465

Table C.1: Throughput, I/Os and Response Time of Query Type 1 at 20, 30,
50, 100, 150, 200 Frames

107

Table C.2: Faults of Query Type 1 at 20, 30, 50, 100 and 150 Frames

Table C.3:
Frames

Hot Set & DBMIN

Buffer Size || Page Faults | Buffer Faults | Double Faults
30 200.000 200.000 200.000
50 200.000 200.000 200.000
70 200.000 200.000 200.000
100 200.000 200.000 200.000
150 200.000 200.000 200.000
200 200.000 191.598 191.598

Hot Set & DBMIN

Buffer Size || Throughput I/0s Response Time
30 64.60692 0.174180 0.240021
50 67.3693 0.153688 0.240021
70 70.3785 0.133197 0.240021
100 75.4326 0.102459 0.240021
150 85.6884 0.0512295 0.240021
200 99.1746 0.000000 0.240021

108

Throughput, I/Os and Response Time of Query Type 1 at 200

Hot Set & DBMIN

Buffer Size || Page Faults { Buffer Faults | Double Faults
30 200.000 8.40164 0.000000
50 200.000 8.40164 0.000000
70 200.000 3.40164 0.000000
100 200.000 8.40164 0.000000
150 200.000 8.40164 0.000000
200 200.000 0.00000 0.000000

Table C.4: Faults of Query Type 1 at 200 Frames

109

C.2 Simple Selection with Non-Clustered In-

dices
Throughput
Buffer Size || Hot Set | DBMIN
30 0.331314 | 0.333538
50 0.326302 | 0.325305
70 0.322861 | 0.322861
100 0.322290 | 0.322290
150 0.322006 | 0.322006
200 0.321157 | 0.321157

Table C.5: Throughput of Query Type 2 at 20 Frames

Hot Set DBMIN
Buffer Confidence Confidence
Size I/0s Interval I/0s Interval
30 100.746 5.52464 100.052 4.68488
50 102.277 4.90415 102.564 4.33976
70 103.365 4.93012 103.366 4.92954
100 103.548 4.94055 103.543 4.94055
150 103.639 4.92097 103.639 4.92097
200 103.907 4.81423 103.907 4.81423

Table C.6: I/0s of Query Type 2 at 20 Frames

Hot Set DBMIN
Buffer || Response | Confidence | Response | Confidence
Size Time Interval Time Interval

30 67.1883 3.31074 66.9815 3.26017
50 67.9727 2.81251 68.0313 2.89136
70 68.0038 2.87759 68.0038 2.87759
100 67.8575 2.88586 67.8575 2.88586
150 67.7622 2.96883 67.7622 2.96883
200 67.6788 2.99830 67.6788 ©2.99880

Table C.7: Response Time of Query Type 2 at 20 Frames

Hot Set DBMIN
Buffer Page | Confidence | Page | Confidence
Size Fauits Interval Faults Interval
30 105.112 5.00169 105.326 4.68488
50 103.505 4.22140 103.396 4.15538
70 103.512 4.10947 103.512 4.10843
100 103.272 4.12313 103.272 4.12313
150 103.119 4.26277 103.119 4.26277
200 102.983 4.31112 102.983 4.31112
Table C.8: Page Faults of Query Type 2 at 20 Frames
Hot Set DBMIN
Buffer || Buffer | Confidence | Buffer | Confidence
Size Faults Interval Faults Interval
30 99.8976 4.92161 102.857 4.91797
50 88.1187 3.92608 98.4745 4.05135
70 78.1047 3.50701 88.4111 3.81798
100 62.9418 2.76735 72.1302 3.28062
150 40.3615 1.91175 47.2445 2.34984
200 20.8515 | 0.662974 | 24.7335 1.05845
Table C.9: Buffer Faults of Query Type 2 at 20 Frames
Hot Set DBMIN
Buffer || Double | Confidence | Double | Confidence
Size Faults Interval Faults Interval
30 96.8346 4.79522 99.2525 4.80151
50 88.1101 3.92750 98.4700 4.05184
70 78.1043 3.50631 88.4105 3.81775
100 62.9418 2.76735 72.1299 3.27997
150 40.3615 1.91175 47,2445 2.34984
200 20.8515 | 0.662974 24.7335 1.05845
Table C.10: Double Faults of Query Type 2 at 20 Frames

110

Table C.11: Throughput of Query Type 2 at 30 Frames

Throughput
Buffer Size || Hot Set | DBMIN
30 0.363206 | 0.361138
50 0.360929 | 0.361349
70 0.358960 | 0.358960
100 0.359080 | 0.359080
150 0.358415 | 0.358414
200 0.357358 | 0.357358

{ Hot Set DBMIN
Buffer | Confidence Confidence
Size I/0s Interval I/0s Interval
30 01.8828 4.37569 92.3863 3.90576
50 92.4640 4.41090 92.3649 4.57859
70 92.9700 4.43161 92.9700 4.43161
100 92.9390 4.43151 92.9390 4.43151
150 93.1132 4.46297 93.1135 4.46354
200 93.3786 4.26973 93.3786 4.26973

Table C.12: I/Os of Query Type 2 at 30 Frames

Hot Set DBMIN
Buffer || Response | Confidence | Response | Confidence
Size Time Interval Time Interval
30 61.3794 3.17560 61.7062 3.06135
50 61.3981 2.54658 61.3298 2.73011
70 61.2099 2.68539 61.2099 2.68539
100 61.2099 2.68539 61.2099 2.68539
150 61.1506 2.74113 61.1506 2.74113
200 60.9692 2.90880 60.9466 2.90880
Table C.13: Response Time of Query Type 2 at 30 Frames
Hot Set DBMIN
Buffer Page | Confidence | Page | Confidence
Size Faults Interval Faults Interval
30 105.663 4,81323 106.552 5.08641
50 99.0557 4.14269 99.0131 4.15121
70 98.6383 4.03741 98.6383 4.03741
100 98.6383 4.03741 08.6383 4.03741
150 98.5355 4.12388 98.5355 4.12388
200 98.2449 4.43527 98.2449 4.43527

Table C.14: Page Faults of Query Type 2 at 30 Frames

111

Hot Set DBMIN
Buffer | Buffer | Confidence | Buffer | Confidence
Size Faults Interval Faults Interval
30 102.208 4.74191 105.467 5.06564
50 86.2351 3.78371 95.6137 4,04364
70 76.7764 | 3.28033 85.9147 3.56732
100 63.5054 2.80648 72.5288 3.13291
150 41.1504 1.82957 48.5782 2.23976
200 21.7793 | 0.863711 | 25.8823 1.19948
Table C.15: Buffer Faults of Query Type 2 at 30 Frames
Hot Set DBMIN
Buffer || Double | Confidence | Double | Confidence
Size Faults Interval Faults Interval
30 94.5714 4.60488 95.6658 4.64482
50 86.1580 3.78371 94.2110 4.02194
70 76.7747 3.27916 85.9147 3.56732
100 63.5054 2.80648 72.5288 J.13291
150 41.1504 1.82957 48.5782 2.23976
200 21.7793 | 0.863711 | 25.8324 1.19947
Table C.16: Double Faults of Query Type 2 at 30 Frames

112

113

“Throughput
Buffer Size || Hot Set | DBMIN
30 0.415521 | 0.402138
50 0.406635 | 0.406629
70 0.403141 | 0.404322
100 0.403496 | 0.403494
150 0.402634 | 0.402632
200 0.401048 | 0.401048

Table C.17: Query Type 2 at 50 Frames

Hot Set DBMIN
Buffer Confidence Confidence
Size I/0s Interval I/Os Interval
30 80.3275 4.07995 82.9983 4.16228
50 82.1081 4.59616 82.0752 3.96357
70 82.7809 3.91549 82.5943 4.89741
100 82.7063 3.89444 82.7066 3.89390
150 82.8831 J3.88623 82.8834 3.88680
200 83.1994 3.66126 83.1994 3.66126

Table C.18: I/Os of Query Type 2 at 50 Frames

Hot Set DBMIN
Buffer || Response | Confidence | Response | Confidence
Size Time Interval Time Interval

30 53.7386 2.93396 55,4169 2.85313
50 54.8398 2.61752 54.5750 2.27428
70 54.3773 2.22606 54.3377 2.67266
100 54.3781 2.25599 54.3781 2.25599
150 54.2624 2.36469 54.2624 2.36469
200 54.1514 2.46005 54.1514 2.46005

Table C.19: Response Time of Query Type 2 at 50 Frames

Hot Set DBMIN
Buffer | Page | Confidence | Page | Confidence
Size Faults Interval Faults Interval

30 105.828 4.84106 106.902 5.09771
50 938.2751 4.22137 98.8:423 4.20984
70 97.83877 4.00199 97.9955 4.04134
100 97.8939 3.99835 07.8939 3.99835
150 97.6850 4.19585 97.6850 4.19585
200 97.5007 4.36636 097.5007 4.36636

Table C.20: Page Faults of Query Tvpe 2 at 50 Frames

114

Hot Set DBMIN
Buffer || Buffer | Confidence | Buffer | Confidence
Size Faults Interval Faults Interval
30 102.218 4.65038 105.586 5.07517
50 86.0361 3.86712 95.3527 4.04020
70 76.9796 3.50513 86.0463 3.74358
100 63.9521 2.77300 72.4586 3.01928
150 41.4856 1.87599 48.6397 2.20662
200 22,1069 | 0921637 | 26.1542 1.22532

Table C.21: Buffer Faults of Query Type 2 at 50 Frames

Hot Set DBMIN
Buffer {| Response | Confidence | Response | Confidence
Size Time Interval Time Interval
30 84.8261 4.30897 37.4853 4.34130
50 84.6879 3.85175 85.4710 3.63202
70 76.9603 3.50068 85.0582 3.70198
100 63.9515 2.77373 72.4579 3.02004
150 41.4856 1.87599 43.6390 2.20745
200 22.1069 0.921637 26.1542 1.22532

Table C.22: Double Faults of Query Type 2 at 50 Frames

115

Throughput
Buffer Size || Hot Set | DBMIN
30 0.602888 | 0.547863
50 0.610393 | 0.580793
70 0.577198 | 0.578967
100 0.583832 | 0.576913
150 0.576805 | 0.575184
200 0.572392 | 0.572082

Table C.23: Query Type 2 at 100 Frames

Hot Set DBMIN
Buffer Confidence Confidence
Size I/0s Interval [/Os Interval
30 55.3631 2.79493 60.9249 3.12289
50 54.6562 2.20637 57,4645 2.80485
70 57.8206 2.78539 57.6374 2.64792
100 57.1916 2.69517 ST.8557 2.92734
150 57.8499 2.58552 58.0242 2.82741
200 58.3008 2.71817 58.3323 2.71448

Table C.24: I/Os of Query Type 2 at 100 Frames

Hot Set DBMIN
Buffer || Response | Confidence | Response | Confidence
Size Time Interval Time Interval

30 36.9356 1.90112 40.6226 2.16124
50 36.0549 1.64231 38.1425 1.61238
70 37.9202 1.79849 37.8866 1.63826
100 37.5660 1.34134 37.8420 1.83584
150 38.0118 1.53722 38.0104 1.61590
200 37.8677 1.68939 37.8382 1.70754

Table C.25: Response Time of Query Type 2 at 100 Frames

Hot Set DBMIN
Buffer | Page | Confidence | DPage | Confidence
Size Faults Interval Faults Interval

30 106.108 5.18324 106.867 5.02937
50 98.2322 4,16184 99.1116 4.16099
70 96.9784 4.02082 97.9457 4.02765
100 94.7552 2.82756 | 96.1073 3.98174
150 94.2208 4.03590 94.2246 4.03746
200 93.8115 4.24952 | 93.3034 4.25147

Table C.26: Page Faults of Query Type 2 at 100 Frames

Hot Set DBMIN
Buffer || Buffer | Confidence | Buffer | Confidence
Size Faults Li.terval Faults Interval
30 102.159 5.07249 105.256 5.10525
50 85.5369 3.68918 94.9975 3.96770
70 76.4665 3.26352 85.7001 3.64410
100 62.5476 2.15178 71.2730 3.02214
150 40.9038 1.74279 47.7773 2.00821
200 21.7993 0.896202 | 25.4875 1.28676
Table C.27: Buffer Faults of Query Type 2 at 100 Frames
Hot Set DBMIN
Buffer || Double | Confidence | Double | Confidence
Size Faults Interval Faults Interval
30 61.1550 3.00358 66.3904 3.21702
50 60.0560 2.58521 62.6678 2.53942
70 62.5015 2.80396 62.3247 2.50422
100 61.3858 2.14280 61.9911 2.74985
150 40.8962 1.74279 47.7752 2.27141
200 21.7983 0.895625 25.4871 1.28724
Table C.28: Double Faults of Query Type 2 at 100 Frames

116

ﬁ’lfhroughput

Buffer Size || Hot Set | DBMIN
30 1.07271 | 0.691867

50 1.25247 | 1.04738

70 1.70336 | 1.26801

100 1.67983 | 1.43358

[T 150 1.41144 | 1.46249
200 1.37976 | 1.44780

Table C.29: Query Type 2 at 150 Frames

Hot Set DBMIN
Buffer Confidence Confidence
Size 1/0s Interval I/Os Interval
30 31.0861. | 0.846712 | 48.2883 3.15476
50 26.6187 | 0.490695 | 31.83G67 | 0.838366
70 19.5920 | 0.937170 | 26.3316 1.48688
100 19.8560 | 0.696577 | 23.2596 | 0.594199
150 23.6269 | 0.690120 | 22.8705 1.52383
200 24.1715 | 0.773831 | 23.1084 1.59272

Table C.30: 1/Os of Query Type 2 at 150 Frames

Hot Set DBMIN
Buffer || Response | Confidence | Response | Confidence
Size Time Interval Time Interval
30 20.5760 0.668300 32.1876 1.92995
50 17.2802 0.103070 20.9958 0.649324
70 12.6645 0.463866 17.1460 0.940520
100 12.6777 0.413855 15.0431 0.277619
150 15.0528 0.231818 14.9355 1.06201
200 15.3775 0.491006 14,9591 0.924832

Table C.31: Response Time of Query Type 2 at 150 Frames

Hot Set DBMIN
Buffer f Page | Confidence | Page | Confidence
Size Faults Interval Faults Interval
30 105.510 5.09011 106.783 5.35881
50 98.7251 4.21059 99.6526 4.28442
70 92.1419 3.79778 95.3514 4.11710
100 86.5402 4.38498 90.9567 3.51168
150 70.1270 8.69897 75.7868 1.96128
200 69.5548 1.41117 70.4092 3.20746

Table C.32: Page Faults of Query Type 2 at 150 Frames

Hot Set DBMIN

Buffer || Buffer | Confidence | Buffer | Confidence

Size Faults Interval Faults Interval
30 100.845 4.75365 | 104.913 5.26576
50 84.3816 3.30658 94.1418 4.00419
70 68.4742 2.38400 78.9419 3.45468
100 48,4459 1.78060 58.4724 1.76844
150 28.0600 | 0.533767 | 32.3628 2.03811
200 16.3696 0.112729 17.8550 1.02999

Table C.33: Buffer Faults of Query Type 2 at 150 Frames
Hot Set DBMIN

Buffer || Double | Confidence | Double } Confidence

Size Faults Interval Faults Interval
30 37.1001 1.39540 54,2681 3.18926
50 31.9878 | 0.515100 | 37.6399 1.38730
70 23.2139 1.05756 31.1227 1.70497
100 22.9893 | 0.867714 | 27.3212| 0.504788
150 26.8619 | 0.562557 | 26.7478 1.68714
200 16.3665 0.113879 17.8550 1.03343

Table C.34: Double Faults of Query Type 2 at 150 Frames

118

119

Throughput
Buffer Size || Hot Set | DBMIN
30 4.34843 | 1.29430
50 2.89061 | 2.43936
70 3.40683 | 3.25134
100 3.79271 | 3.75863
150 4.55675 | 4.28481
200 4.58636 | 4.47130

Table C.35: Query Type 2 at 200 Frames

Hot Set DBMIN
Buffer Confidence Confidence
Size 1/0s Interval 1/0s Interval
30 7.66735 1.52736 25.9149 2.90804
50 11.5324 | 0.134027 | 13.6687 | 0.321031
70 9.78714 [0.234531 10.2554 | 0.252077
100 8.79545 [0.334976 | 8.87386 | 0.302152
150 7.32580 | 0.421196 | 7.78036 | 0.129637
200 7.28243 [0.456722 | 7.47213 | 0.492865

Table C.36: I/Os of Query Type 2 at 200 Frames

Hot Set DBMIN
Buffer | Response | Confidence | Response | Confidence
Size Time Interval Time Interval
30 4.87867 0.977304 17.1212 1.66307
50 7.58347 0.992964 0.901678 0.266289
70 6.28634 0.112246 6.60473 0.267117
100 5.63781 0.0930908 | 5.6GG30 0.167378
150 4.74333 0.113154 4.94281 0.086306
200 4.71804 0.203270 4.84066 0.225999

Table C.37: Response Time of Query Type 2 at 200 Frames

Hot Set DBMIN
Buffer {| Page [Confidence | Page [Confidence
Size Faults Interval Faults Interval
30 99.8491 8.68791 105.344 4.61003
50 98.7859 4.24630 99.4496 4.32363
70 90.6340 3.30994 91.6510 3.88429
100 83.6344 2.83507 84.3438 3.42685
150 55.2036 1.26997 61.4397 1.59345
200 44,8339 1.34532 50.9462 11.8579

Table C.38: Page Faults of Query Type 2 at 200 Frames

Hot Set DBMIN
Buffer | Buffer | Confidence | Buffer | Confidence
Size Faults Interval Faults Interval
30 96.9676 20.3134 102.473 4.39687
50 83.9171 3.13165 91.6925 3.95066
70 67.0286 1.77005 71.9596 3.24243
100 46.6041 1.34582 51.0113 2.03211
150 16.8010 [0.349671 | 20.7132 | 0.647080
200 9.31960 | 0.467372 13.7311 7.36564
Table C.39: Buffer Faults of Query Type 2 at 200 Frames
Hot Set DBMIN
Buffer || Double | Confidence | Double | Confidence
Size Faults Interval Faults Interval
30 10.4867 2.49276 31.6038 2.50191
50 16.2026 | 0.424583 1R8.8434 [0.665399
70 12.8626 | 0.226275 13.6334 | 0.570641
100 11.2160 | 0.229560 11.2611 | 0.418333
150 8.81106 0.209464 9.17998 | 0.210927
200 S8.45398 | 0.421742 | 8.77142 | 0.649407
Table C.40: Double Faults of Query Type 2 at 200 Frames

120

Appendix D

Performance Data for Merge

Scan Joins

The following tables contain the data from the runs in which queries are ex-
ecuted with the merge scan join method, using clustered indices on both the
outer and inner relations.

The confidence intervals of the following data are given as a single
real number. They should be interpreted as the associated mean value # the

confidence interval value.

Throughput
Buffer Size | Hot Set DBMIN
30 0.100084 | 0.0998852
50 0.0992809 | 0.0976626
70 0.098177 | 0.0990093
100 0.0989979 | 0.0994185
150 0.0984262 | 0.0988742
200 0.098272 | 0.0975386

121

Table D.1: Throughput of Query Type 3 at 20 Frames

122

Throughput
Buffer Size | Hot Set DBMIN
30 0.100084 | 0.0998852
50 0.0992809 | 0.0976626
70 0.098177 | 0.0990093
100 0.0989979 | 0.0994185
150 0.0984262 | 0.0988742
200 0.098272 | 0.0975386

Table D.1: Throughput of Query Type 3 at 20 Frames

Hot Set DBMIN
Buffer Confidence Confidence
Size 1/0s Interval I/0s Interval
30 333.235 10.7864 J33.841 8.97405
50 335.814 6.48495 341.427 8.67142
70 339.539 3.23592 336.776 8.3124
100 336.909 11.4334 335.509 11.9815
150 338.69 4.18988 J37.383 12.8258
200 339.334 9.51374 341.954 11.6285

Table D.2: I/Os of Query Type 3 at 20 Frames

Hot Set DBMIN
Buffer || Response | Confidence | Response | Confidence
Size Time Interval Time Interval
30 219.171 5.81348 219.992 6.11206
50 221.124 5.76412 222.373 5.79542
70 221.724 5.04078 221.77 6.20359
100 221.6 6.21414 221.55 7.31628
150 221.272 5.81705 221.931 6.77488
200 221.382 4.5389 222.231 4.59192
Table D.3: Response Time of Query Type 3 at 20 Frames
Hot Set DBMIN
Buffer | Page [Confidence | Page [Confidence
Size Faults Interval Faults Interval
30 376.726 10.7244 324.236 9.29385
50 313.43 7.87 321.848 8.36142
70 307.301 6.66856 315.25 8.80517
100 307.134 8.19284 309.103 9.86438
150 306.62 7.83065 307.403 9.24824
200 306.809 5.61068 307.901 5.92158

Table D.4: Page Faults of Query Type 3 at 20 Frames

Hot Set DBMIN
Buffer || Buffer | Confidence | Buffer | Confidence
Size Faults Interval Faults Interval
30 204.365 5.83808 155.147 3.88911
50 100.815 2.83925 99.765 J3.22353
70 83.4269 2.0497 89.7872 2.9645
100 81.9743 2.30307 84.1612 J3.19838
150 80.8714 2.38498 31.965 3.0898
200 80.3368 1.9279 81.253 1.85699

Table D.5: Buffer Faults of Query Type 3 at 20 Frames

Hot Set DBMIN
Buffer | Double | Confidence | Double | Confidence
Size Faults Interval Faults Interval

30 137.541 3.13773 148.573 3.6492
50 98.9716 2.76739 99.542 3.20358
70 83.4266 2.05029 89.7452 2.96555
100 81.9743 2.30307 84,155 3.19769
150 80.8714 2.38498 21.965 3.0898
200 80.3368 1.9279 31.253 1.85699

Table D.6: Double Faults of Query Type 3 at 20 Frames

Table D.7: Throughput of Query Type 3 at 30 Frames

Throughput
Buffer Size || Hot Set | DBMIN
30 0.135958 | 0.117954
50 0.121949 | 0.115881
70 0.115071 | 0.11535
100 0.115739 | 0.115839
150 0.115743 | 0.114828
200 0.115297 | 0.115649

Hot Set DBMIN
Buffer Confidence Confidence
Size I/0s Interval I/0s Interval
30 245.176 1.01003 282.624 3.94673
50 273.346 2.11061 287.6G8 3.11282
70 289.689 2.70306 289.003 3.89442
100 288.041 4.46175 287.79 4.33616
150 288.066 6.39308 290.338 5.13618
200 289.141 4.18525 288.286 5.71928

Table D.8: 1/Os of Query Type 3 at 30 Frames

Hot Set DBMIN
Buffer |[Response | Confidence | Response | Confidence
Size Time Interval Time Interval
3¢ 160.033 2.56692 184.778 3.94727
50 178.291 3.23942 187.794 3.95221
70 189.132 3.30828 188.438 4.48485
100 187.955 4.88297 188.16 4,75481
150 188.064 5.16263 188.525 3.88475
200 187.832 3.09648 187.755 4.40818

Table D.9: Response Time of Query Type 3 at 30 Frames

124

Hot Set DBMIN
Buffer || Page | Confidence | Page | Confidence
Size Faults Interval Faults Interval
30 434.278 9.61584 278.733 6.26446
50 318.97 10.1023 266.065 5.57194
70 261.991 4.59273 260.224 5.60885
100 258.265 6.38301 258.98 6.23637
150 258.105 6.86742 259.108 5.35907
200 258.19 4.31678 258.414 5.9827

Table D.10: Page Faults of Query Type 3 at 30 Frames

Hot Set DBMIN
Buffer | Buffer | Confidence | Buffer | Confidence
Size Faults Interval Faults Interval

30 374.461 8.68247 | 513.934 44.437
50 155.931 7.53592 90.9211 2.40654
70 68.2155 1.94659 69.8282 2.02637
100 63.1598 1.97913 66.5383 2.25455
150 61.5825 2.72774 G4.1884 2.11916
200 61.0244 1.63965 62.1593 2.39419

Table D.11: Buffer Faults of Query Type 3 at 30 Frames

Hot Set DBMIN
Buffer || Double | Confidence | Double | Confidence
Size Faults Interval [Faults Interval

30 155.302 2.30277 188.493 3.24882
50 82.1045 1.78733 37.6612 2.13662
70 65.7275 1.83734 69.4904 1.97211
100 63.1595 1.97928 66.4339 2.23436
150 61.5825 2.72774 64,1336 2.12183
200 61.0244 1.63965 62.1593 2.39419

Table D.12: Double Faults of Query Type 3 at 30 Frames

~ Throughput

Buffer Size || Hot Set | DBMIN
30 0.323475 | 0.544359
50 0.508688 | 0.484935
70 0.26193 | 0.355929

100 0.24883 0.2986
150 0.249082 | 0.258504
200 0.250095 | 0.246405

Table D.13: Throughput of Query Type 3 at 50 Frames

Hot Set DBMIN
Buffer Confidence Confidence
Size I/0s Interval I/0s Interval

30 103.182 5.18305 61.2377 | 0.652854

50 65.5622 2.06335 68.7387 | 0.371618

70 127.361 4.91806 93.6831 2.36389

. 10G 134.018 3.83216 111.634 0.592633

150 133.884 3.86881 128.95 0.802547
200 133.377 4.87214 135.37 4,8237

Table D.14: 1/Os of Query Type 3 at 50 Frames

Hot Set DBMIN
Buffer || Response | Confidence | Response | Confidence
Size Time Interval Time Interval
30 61.547 3.65482 38.6447 1.09353
50 42.6267 1.78771 43.4977 1.16865
70 81.931 3.22875 60.393 2.29506
100 86.6659 3.35258 71.6322 2.3836
150 85.4634 2.77749 83.3695 2.4493
200 85.3203 2.01386 85.3714 2.25782

Table D.15: Response Time of Query Type 3 at 50 Frames

Hot Set DBMIN
Buffer || Page | Confidence | Page | Confidence
Size Faults Interval Faults Interval
30 257.792 15.6346 67.0656 2.0229
50 90.5253 4.41633 63.8169 1.74454
70 115.406 4.85794 85.0837 3.17563
100 120.695 4.81971 100.023 3.52668
150 119.142 3.9738 116.102 34795
200 119.03 2.95167 119.043 3.33972

Table D.16: Page Faults of Query Type 3 at 50 Frames

Hot Set DBMIN
Buffer | Buffer | Confidence | Buffer | Confidence
Size Faults Interval Faults Interval
30 234.79 15.8293 93.0874 36.5943
5L 67.1031 3.1987 44,2859 1.02131
70 36.9334 1.48833 38.0458 0.965037
100 34.265 0.857095 36.1192 1.03662
150 32.7096 | 0.762236 34,5411 1.08899
200 31.5996 | 0.795246 32.8333 0.915875

Table D.17: Buffer Faults of Query Type 3 at 50 Frames

Hot Set DBMIN
Buffer Double Confidence Double Confidence
Size Double Faults | Interval Double Faults Interval
30 57.3262 5.27961 46.0382 1.18723
50 34.6421 1.18239 10.0912 0.897018
70 35.7538 1.23687 37.0557 1.00478
100 34.2623 0.855082 35.807 1.02284
150 32.7096 0.762236 31.5202 1.08976
200 31.5996 0.795246 32.8333 0.915875

Table D.18: Double Faults of Query Type 3 at 50 Frames

-3

Table D.19: Throughput of Query Type 3 at 100 Frames

Throughput

Buffer Size {| Hot Set | DBMIN
30 0.705992 | 0.947042

50 1.13201 | 1.21062

70 1.34027 | 1.34447

100 1.33113 | 1.34309
150 1.32586 | 1.32195
200 1.32453 | 1.32005

Hot Set DBMIN
Buffer Confidence Confidence
Size I/0s Interval 1/0s Interval
30 47.2158 | 0.291555 | 35.2066 | 0.789261
50 29.474 1.24441 27.5379 | 0.449722
70 248772 | 0.564817 24.801 0.623253
100 25.0501 0.64684 2:4.826 0.605829
150 25.1531 | 0.763991 | 25.2247 0.67393
e 25.1774 | 0.738965 | 25.2596 | 0.627114

Table D.20: I/Os of Query Type 3 at 100 Frames

Hot Set DBMIN
Buffer || Response | Confidence | Response | Confidence
Size Time Interval Time Interval
30 30.7048 0.100866 22,4235 0.525184
50 19.2654 0.342199 13,1558 0.489813
70 16.4718 0.389796 16.4265 0.410696
100 16.5803 0.343888 16.3882 0.344244
150 16.5315 0.280668 16.5415 0.286968
200 16.5099 0.329203 16.5287 0.366902
Table D.21: Response Time of Query Type 3 at 100 Frames

128

Hot Set DBMIN
Buffer Page | Confidence | Page | Confidence
Size Faults Interval Faults Interval
30 276.794 1.54386 50.4293 1.02498
50 63.7237 1.41926 31.5765 | 0.652783
70 23.0451 0.3585 25.0339 1 0.515784
100 22.8174 | 0.352549 | 23.002G6 { 0.320924
150 22.5974 | 0.260341 | 22.5887 | 0.256225
200 22.5612 | 0.319528 | 22.5553] 0.328839
Table D.22: Page Faults of Query Type 3 at 100 Frames
Hot Set DBMIN
Buffer | Buffer | Confidence | Bulfer | Confidence
Size Faults Interval Faults Interval
30 256.013 1.70219 49.7401 1.103886
50 58.86 1.35844 30.8125 | 0.706817
70 21.2365 0.365859 | 24.0086 | 0.535764
100 20.2613 | 0.354335 | 21.3203 0.36572
150 18.9476 | 0.260682 19.3054 0.294015
200 17.9621 0.305162 18.246 0.341323
Table D.23: Buffer Faults of Query Type 3 at 100 Frames
Hot Set DBMIN
Buffer Double Confidence Donble Confidence
Size Double Faults Interval Double Faults Interval
30 19.2958 0.37753 27.9621 0.624191
50 19.8265 0.333425 22.015 0.532611
70 19.6917 0.374949 19.6453 0.433025
100 19.8942 0.354399 19.6832 0.344539
150 18.9452 0.261964 10.2877 0.292017
200 17.9618 0.304496 18.2436 0.3403

Table D.24: Double Faults of Query Type 3 at 100 Frames

Table D.25: Throughput of Query Type 3 at 150 Frames

Throughput
Buffer Size || Hot Set | DBMIN
30 0.725464 | 1.19454
50 1.22868 | 1.23468
70 1.41659 | 1.42409
100 1.42167 | 1.43111
150 1.41715 | 1.41785
200 1.41343 | 1.41343

Hot Set DBMIN
Buffer Confidence Confidence
Size I/0s Interval I/0s Interval
30 45.9822 1.73882 27.9078 | 0.410216
50 27.166 1.39662 27.0441 1.57185
70 23.5448 | 0.797135 | 23.4149] 0.604392
100 23.4635 0.874508 | 23.3095 0.88637
150 23.5409 0.93631 23.5271 0.884667
200 23.5991 0.844639 23.6002 | 0.874555

Table D.26: I/Os of Query Type 3 at 150 Frames

Hot Set DBMIN
Buffer || Response | Confidence | Response | Confidence
Size Time Interval Time Interval
30 29.5274 0.914098 18.2138 0.296431
50 17.8128 0.42427 17.3007 0.49735
70 15.5985 0.372884 15.5373 0.29911
100 15.4951 0.356924 15,3842 0.363514
150 15.3914 0.316059 15.4129 0.288101
200 15.3905 0.324987 15.3956 0.34402
Table D.27: Response Time of Query Type 3 at 150 Frames

130

Hot Set DBMIN
Buffer || Page | Confidence | Page | Confidence
Size Faults Interval Faults Interval
30 279.078 10.1995 .| 48.4013 | 0.867329
50 62.3743 | 0.870065 32.238 0.662998
70 23.0301 | 0.361489 | 25.0116 0.29363
100 22.5447 | 0.305597 | 22.8645{ 0.300652
150 22.1135 | 0.269719 | 22.1169 | 0.243043
200 22.0035 [0.307009 | 22.0073 | 0.303811

Table D.28: Page Faults of Query Type 3 at 150 Frames

Hot Set DBMIN
Buffer || Buffer | Confidence | Bufler | Confidence
Size Faults Interval Faults Interval
30 258.727 9.42676 47.5987 0.925808
50 57.6889 0.828686 31.3975 | 0.680435
70 21.0848 | 0.394994 | 23.9996 | 0.328861
100 19.9153 0.355452 21.3045 0.376777
150 18.4187 | 0.343097 18.83694 0.312608
200 17.6286 | 0.356089 17.83932 | 0.412481
Table D.29: Buffer Faults of Query Type 3 at 150 Frames
Hot Set DBMIN
Buffer || Double | Confidence | Double | Confidence
Size Faults Interval Fanlts Interval
30 17.987 0.380339 | 22.1107 1 0.302525
50 18.1113 | 0.442389 | 20.6783 { 0.568813
70 18.4262 | 0.374089 18.2751 0.340795
100 18.3381 0.374839 18,1761 0.398055
150 18.1156 { 0.330189 181807 | 0.310365
200 17.6234 0.354102 17.8536 0.415434

Table D.30: Double Faults of Query Type 3 at 150 Frames

131

Table D.31: Throughput of Query Type 3 at 200 Frames

Throughput
Buffer Size || Hot Set | DBMIN
30 0.758261 | 1.47031
50 1.29998 1.4135
70 1.48768 | 1.49663
100 1.4874 1.50822
150 1.48226 | 1.47366
200 1.47851 | 1.47395

Hot Set DBMIN
Buffer Confidence Confidence
Size I/0s Interval I/0s Interval
30 43.9614 0.310739 | 22.6841 0.756806
50 25.6496 | 0.639822 | 23.5857 | 0.403833
70 22.4116 | 0.474109 | 22.2827 1 0.666889
100 22.4275 0.85677 22,1207} 0.911165
150 22.5019 0.771564 | 22.6368 | 0.865945
200 22.5604 [0.808453 | 22.6313 | 0.843263

Table D.32: I/Os of Query Type 3 at 200 Frames

Hot Set DBMIN
Buffer [Response | Confidence | Response | Confidence
Size Time Interval Time Interval
30 28.1736 0.414405 1.1.9858 0.355967
50 17.0364 0.398769 15.5615 0.60792
70 14.8905 0.32081 14.7156 0.363028
100 14.7678 0.345652 14.5902 0.37065
150 14.6679 0.197698 11.7631 0.234997
200 14.6874 0.267322 14.7212 0.289922
Table D.33: Response Time of Query Type 3 at 200 Frames

132

Hot Set DBMIN
Buffer || Page [Confidence | Page [Confidence

Size Faults Interval Faults Interval
30 276.828 6.87779 46.8074 1.17794
50 62.2025 1.26043 33.5994 1.12995

70 23.0352 | 0.347387 | 25.5291 [0.381113
100 22.5433 | 0.291862 | 22.9404 [0.346776
150 22.0968 | 0.240412 | 22.1079 | 0.225842
200 21.9562 | 0.289472 | 21.9641 | 0.287718

Table D.34: Page Faults of Query Type 3 at 200 Frames

Hot Set DBMIN
Buffer || Buffer { Confidence | Buffer | Confidence
Size Faults Interval Faults Interval
30 257.296 6.73089 45,9286 1.18405
50 57.7264 1.05753 32.7148 1.12121
70 21.0902 § 0.408096 | 24.4939{ 0.401953
100 19.8265 0.35937 21.2901 0.417453
150 18.2403 | 0.286048 I1R.7596 | 0.346775
200 17.4027 | 0.302745 17.6716 [0.390479
Table D.35: Buffer Faults of Query Type 3 at 200 Frames
Hot Set DBMIN
Buffer || Double | Confidence | Double | Confidence
Size Faults Interval [aults Interval
30 16.8917 | 0.386613 17.5926 | 0.410916
50 17.2835 0.450439 13,3299 0.71516
70 17.4614 0.391962 17.149 0.383559
100 17.4274 0.3838796 17.1007 | 0.395081
150 17.1633 0.259191 173476 1 0.267754
200 16.9975 | 0.296143 17.0859 1 0.354104

Table D.36: Double Faults of Query Type 3 at 200 Frames

133

Appendix E

Performace Data on NNested

Loop Joins

In the following, the confidence intervals arc given as a single real number.
They should be interpreted as the associated mean value + the confidence

interval value.

E.1 Nested Loop Join with Clustered Inner

and Outer Indices

Throughput
Buffer Size || Hot Set DBMIN
30 0.0863645 | 0.0864047
50 0.086493% | 0.0863008
70 0.0863913 | 0.0861178
100 0.0861421 | 0.0860193
150 0.0858412 | 0.0857916
200 0.085G706 | 0.085G6706

134

Table E.1: Throughput of Query Type 4 at 20 Frames

135

Hot Set DBMIN
Buffer Confidence Confidence
Size 1/0s Interval [/Os Interval
30 384.273 20.0856 386.34 20.5931
50 385.873 19.2444 386.761 19.7776
70 386.325 19.141 3R7.645 21.0125
100 387.456 19.4759 388.055 20.4096
150 388.934 21.7931 389,144 21.5313
200 389.658 20.9218 389.658 20.9218
Table E.2: I/Os of Query Type 4 at 20 Frames
Hot Set DBMIN
Buffer || Response | Confidence | Respouse | Confidence
Size Time Interval Time Interval
30 255.092 12.308 206.824 12.3874
50 256.216 12.2774 256.911 12.2626
70 255.966 11.9383 256.191 12.325
100 256.292 11.5421 256.623 11.8068
150 255.787 10.3103 255.797 10.054
200 255.793 10.3244 255.793 10.3244

Table E.3:

Response Time of Query Type 4 at 20 Frames

Hot Set DBMIN
Buffer Page | Confidence | Page | Confidence

Size Faults Interval Faunlts Interval
30 484.494 22.725 506.371 23.9779
50 470.049 | 21.8997 | 194.486 22.898

70 468.013 | 21.5159 | 476.421 22,1318
100 468.059 20.3897 469.216 20.3426
150 466.8314 17.6954 466917 17.8164
200 466.802 17.734% 466,302 17.7348

Table E.4: Page Faults of Query Type 4 at 20 Frames

Hot Set DBMIN

Buffer | Buffer | Confidence | Bufler | Confidence
Size Faults Interval Faults Interval

30 427.825 20.9243 465 AT 22.2292

350 318.823 18.5515 369.123 18.2749

70 195.428 10.7355 238,154 13.3577

100 124.948 4.,98635 127.767 4.13611

150 108.308 3.512 109327 3.93258

200 107.367 3.56087 107.266 3.16458

Table E.5: Buffer Faults of Query Type 4 at 20 Frames

Hot Set DBMIN
Buffer || Double | Confidence | Double | Confidence
Size Faults Interval FFaults Interval
30 409.164 20.2556 425.616 20.5396
50 316.025 18.2458 341.876 17.0764
70 195.038 10.6751 228.837 12.8097
100 124.937 4.9863 126.757 4.19982
150 108.808 3.512 109.305 3.97594
200 107.367 3.56087 107.266 3.46458

Table E.6: Double Faults of Query Type 4 at 20 Frames

136

137

Throughput
Buffer Size || Hot Set | DBMIN
30 0.110543 | 0.103829
50 0.104215 | 0.103361
70 0.103G6Y | 0.102344
100 0.163179 | 0.102704
150 0.102531 | 0.102242
200 0.102511 | 0.102511

Table E.7: Throughput of Query Type 4 at 30 Frames

Hot Set DBMIN
Buffer Confidence Confidence
Size I/0s Interval 1/0s Interval

30 301.954 15.5319 321.506 17.1505
50 320.422 19.0288 322,993 17.8373
70 322.146 19.6876 326.246 18.7517
100 323.608 18.6473 325.068 18.0929
150 325.643 18.6071 326.613 19.4956
200 325.699 18.4858 325.699 18.4858

Table E.8: I/0s of Query T_\'pé 4 at 30 Frames

Hot Set DBMIN
Buffer || Response | Confidence | Response | Confidence
Size Time Interval Time Interval
30 198.88 10.376 213.019 11.375

50 212.627 12.0961 214,435 11.123
70 213.434 11.8207 216.583 10.9525
100 213.432 10.566 21.1.809 10.326
150 213.664 9.64073 211,046 9.97356
200 213.735 9.55385 213.735 9.55385

Table E.9: Response Time of Query Type 4 at 30 Frames

138

Hot Set DBMIN
Buffer Page | Confidence | Page | Confidence
Size Faults Interval Faults Interval
30 460.505 23.2606 496.241 24.1255
50 430.919 22.9532 485.189 23.6644
70 414.903 20.6275 454.968 22.9264

100 412.234 18.436 416.117 17.99
150 411.474 16.7651 411.998 16.9749
200 411.611 16.6182 411.611 16.6182

Table E.10: Page Faults of Query Type 4 at 30 Frames

Hot Set DBMIN
Buffer || Buffer | Confidence | Buffer | Confidence
Size Faults Interval Faults Interval

30 416.813 22,2378 440.637 20.0939
50 319.273 20.255 362.438 16.4084
70 204.031 15.3437 25:4.004 13.5765
100 124.138 5.73227 127.958 6.12477
150 106.516 4.95992 106.305 4.68906
200 105.142 4.88033 105.037 4.86267

Table E.11: Buffer Faults of Query Type 4 at 30 Frames

Hot Set DBAMIN
Buffer {I Double | Confidence | Double | Confidence
Size Faults Interval Faults Interval

30 356.304 17.6406 377737 19.3591
50 304.932 19.1479 308.829 15.2273
70 200.955 15.2337 225.007 12,5179
100 124.055 5.6859 121.838 5.85427
150 106.516 4.96043 106.244 4.70692
200 105.141 4.88082 105.037 4.86267

Table E.12: Double Faults of Guery Type 4 at 30 Frames

Table E.13: Throughput of Query Type 4 at 50 Frames

Throughput
Buffer Size | Hot Set | DBMIN
30 0.1851 | 0.1688T7
50 0.448435 | 0.174368
70 0.245885 | 0.2164538
100 0.203837] 0.177685
150 0.174702 { 0.171286
200 0.172974 | 0.177943

Hot Set DBMIN
Buffer Confidence Confidence
Size I/0s Interval 1/0s Interval
30 180.654 13.8986 197.791 12.2899
50 74.351 1.61325 191.37 8.59569
70 135.588 2.4854 15:1.335 9.95296
100 163.683 6.92676 137.769 7.77389
150 191.895 13.4352 194.904 10.5253
200 193.286 11.7867 187.612 10.0796

Table E.14: 1I/O0s of Query Type 4 at 50 Frames

Hot Set DBMIN
Buffer || Response | Confidence | Response | Confidence
Size Time Interval Time Interval
30 118.177 8.70667 127.06 9.38672
50 48.3306 1.60139 122.536 53741
70 86.9036 2.14122 098,969 5.12557
100 102.086 8.73013 118,728 3.77304
150 121.425 10.6373 121.861 9.68143
200 120.899 7.67652 118.536 7.11638

Table E.15:

Response Time of Query Type 4 at 50 Frames

139

Hot Set DBMIN
Buffer | Page | Confidence | Page | Confidence
Size Faults Interval Faults Interval
30 375.96 17.3041 385.656 19.5514
50 148.572 | 4.17268 340.67 15.8513
70 197.286 | 5.52787 | 248.921 | 10.7407
100 || 215.934 | 17.8717 | 239.293 | 6.33414
150 |t 242.035 | 18.4846 | 243.233 | 20.2057
200 239.73 12.945 236.112 | 14.3602

Table E.16: Page Faults of Query Type 4 at 50 Frames

Hot Set DBMIN
Buffer | Buffer | Confidence | Bnfler | Confidence
Size Faults Interval Faults Interval
30 366.386 16.7482 3417.92 17.102
50 128.795 4.8348 269.442 11.8025
70 110.439 2.92033 159.537 5.73385
100 69.6041 1.1351 TT.8173 1.0748
150 61.7469 2.3455 614.7501 6.6618
200 59.3089 0.724438 60.513 4.50661
Table E.17: Buffer Faults of Query Type 4 at 50 Frames
Hot Set DBMIN
Buffer || Double | Confidence | Donble | Confidence
Size Faults Interval [aults Interval
30 182.044 13.0165 224,795 17.0825
a0 68.7737 1.66634 176,207 8.53187
70 90.8786 3.8243 107.885 5.39147
100 67.472 1.50667 73.1675 1.02503
150 61.7336 2.34359 64.30006 6.1973
200 59.3026 | 0.722403 | 60.5099 4.50589

Table E.18: Double Faults of Query Type 4 at 50 Frames

140

Table E.19: Throughput of Query Type 4 at 1060 Frames

Throughput
Buffer Size || Hot Set | DBMIN
30 2.40546 | 1.55602
50 2.23413 | 2.09843
70 2.33642 | 2.65138
100 2.83762 | 2.90745
150 2.71449 | 2.70034
200 2.64287 | 2.68187

Hot Set DBMIN
Buffer Confidence Confidence
Size I/0s Interval 1/0s Interval
30 13.8837 0.69933 21.1576 1.21351
50 14.9333 | 0.612449 15.9039 | 0.764833
70 14.2748 0.46996 125874 | 0.604699
100 11.7569 | 0.477201 114308 | 0.597141
150 12.3716 | 0.833745 12.3729 0.825712
200 12.6193 | 0.0852994 | 12.4467 | 0.647465

Table E.20: I/0s of Query Typc 4 at 100 Frames

Hot Set DBMIN
Buffer || Response | Confidence | Response | Confidence
Size Time Interval Time Interval
30 9.14347 0.442637 13.9372 0.758034
50 9.7351 0.489234 10.3331 0.537573
70 9.64193 0.257967 2.39661 0.352166
100 7.76816 0.155756 1.56522 0.2420438
150 7.96717 0.376375 AT1T9 0.328396
200 8.23454 0.669828 8.03382 0.238047

Table E.21: Response Time of Query Type 4 at 100 Frames

141

Hot Set DBMIN
Buffer Page | Confidence | Page | Confidence
Size Faults Interval Faults Interval
30 358.021 10.5232 267.039 11.2753
50 181.228 8.59477 178.544 9.69612
70 56.0374 0.488833 81.9829 8.36847
100 18.7825 | 0.455341 25.6104 | 0.440246
150 17.0574 | 0.488459 17.3353 | 0.461684
200 17.2656 | 0.0660994 | 17.1997 | 0.377511
Table E.22: Page Faults of Query Type 4 at 100 Frames
Hot Set DBMIN
Buffer | Buffer | Confidence | Buller | Confidence
Size Faults Interval Faults Interval
30 353.181 10.5606 257.289 9.94424
50 175.148 8.22669 171.101 9.36364
70 51.1543 | 0.434968 | 76.5201 8.26952
100 14.2195 | 0.413403 | 20.7943 | 0.471808
150 10.5386 0.365944 10.6471 0.499624
200 9.65399 | 0.301931 9.5339 0.354056
Table E.23: Buffer Faults of Query Type 4 at 100 Frames
Hot Set DBMIN
Buffer || Double | Confidence | Double | Confidence
Size Faults Interval Faults Interval
30 14.4552 0.633343 23.7162 1.33863
50 15.2829 { 0.650337 16.7829 | 0.857361
70 15.1 0.402717 13.2283 | 0.516223
100 11,9888 | 0.336367 11.44 0.363089
150 10.4561 0.362964 10.3629 | 0.448762
200 9.63402 | 0.307071 | 9.49537 | 0.328974

Table E.24: Double Faults of Query Type 4 at 100 Frames

142

Table E.25: Throughput of Query Type 4 at 150 Frames

Throughput
Buffer Size || Hot Set | DBMIN
30 3.45117 | 2.98432
50 3.46585 | 2.89315
70 3.43447 | 3.2001
100 3.35318 | 3.38718
150 3.41221 | 3.44589
200 3.4109 | 3.40891

Hot Set DBMIN
Buffer Confidence Confidence
Size 1/0s Interval I/0s Interval
30 9.67008 | 0.465292 11.195 0.752626
50 9.6346 0.563059 11.5445 0.725789
70 9.72053 0.534754 10.4277 0.477349
100 9.95243 0.475368 | 9.85013 0.423846
150 9.77943 0.450279 | 9.68583 0.486659
200 9.78376 | 0.463871 9.789032 0.459967

Table E.26: 1/0s of Query Type 4 at 150 Frames

Hot Set DBMIN
Buffer |[Response | Confidence | Response | Confidence
Size Time Interval Time Interval
30 6.37697 0.233649 7.23144 0.532922
50 6.34209 0.303094 7.62059 0.491476
70 6.39231 0.277231 6.85689 0.305938
100 6.49469 0.184362 6.45204 0.158482
150 6.33818 0.233059 6.23152 0.263028
200 6.34492 0.266641 6.31920 0.253598

Table E.27: Response Time of Query Type 4 at 150 Frames

143

Hot Set DBMIN
Buffer | Page | Confidence | Page | Confidence
Size Faults Interval Faults Interval
30 363.098 12.7718 257.797 13.0584
50 194.559 10.7615 177.39 6.6798
70 98.6496 10.7079 85.9196 | 0.610454
100 24.2002 1.73448 26.3924 | 0.814281
150 15.6539 { 0.330352 | 15.7784 | 0.381361
200 15.5525 | 0.310787 | 15.64G6 | 0.338548
Table E.28: Page Faults of Query Type 4 at 150 Frames
Hot Set DBMIN
Buffer | Buffer | Confidence | Buffer | Confidence
Size Faults Interval Faults Interval
30 358.1 13.1665 249.381 13.3408
50 188.929 11.0565 170.24 6.84422
70 93.8517 10.6426 80.0701 | 0.820592
100 19.5753 1.76041 21.4466 { 0.713969
150 10.3359 | 0.359118 | 10.2842 | 0.411628
200 9.52753 | 0.340911 | 9.39672 | 0.368506

Table E.29: Buffer Faults of Query Type 4 at 150 Frames

Hot Set DBMIN

Buffer Double Confidence Double Confidence
Size Double Faults Interval Double Faults Interval
30 10.3009 0.37113 11.8689 0.71956
50 10.245 0.437953 12.4476 0.768481
70 10.3029 0.400656 11.0319 0.462491
100 10.3966 0.286742 10.2924 0.257411
150 9.97775 0.37903 9.66089 0.337443
200 9.4959 0.34434 9.25417 0.34032

Table E.30: Double Faults of Query Type 4 at 150 Frames

144

Table E.31: Throughput of Query Type 4 at 200 Frames

Throughput
Buffer Size || Hot Set | DBMIN
30 3.99141 | 3.97005
50 3.96522 | 3.92402
70 3.99882 | 3.94262
100 3.90995 | 3.9277
150 3.94142 | 3.98749
200 3.93382 | 3.92042

Hot Set DBMIN
Buffer Confidence Confidence

Size I/Os Interval 1/0s Interval

30 8.35827 | 0.333095 | 8.40369 | 0.351465
50 8.41765 | 0.424889 8.50092 1 0.321706
70 8.34513 | 0.384691 | 8.46831 | 0.478754
100 8.53711 0.441688 8.4906 0.252574
150 8.46279 | 0.302032 | 8.36532 | 0.308962
200 | 8.47991 0.31984 8.50073 | 0.341428

Table E.32: I/O0s of Query Type 4 at 200 Frames

Hot Set DBMIN
Buffer [| Response | Confidence | Response | Confidence
Size Time Interval Time Interval
30 5.46722 0.152166 5.52782 0.175877
50 5.51276 0.229916 5.62609 0.197278
70 5.44451 0.162398 5.56528 0.249288
100 5.5027 0.178446 5.50077 0.101853
150 5.4444 0.188209 5.41556 0.155541
200 5.46679 0.15246 54719 0.169087

Table E.33: Response Time of Query Type 4 at 200 Frames

145

Hot Set DBMIN
Buffer Page | Confidence | Page | Confidence
Size Faults Interval Faults Interval
30 358.722 12.1999 256.166 12.8307
50 198.244 10.5455 182.387 11.3287
70 98.2058 6.29702 88.2022 | 0.717615
100 27.8868 2.14139 27.204 0.824962
150 15.6839 | 0.321595 | 15.7903 | 0.360641
200 15.5677 | 0.301621 | 15.6415| 0.328178

Table E.34: Page Faults of Query Type 4 at 200 Frames

Hot Set DBMIN
Buffer || Buffer | Confidence | Buffer | Confidence

Size Faults Interval Faults Interval
30 353.439 12 712 247.602 12.3216
50 192.4 10.4,33 175.654 10.973

70 93.0716 6.36511 82.3558 | 0.734269
100 23.0393 2.10573 22.0838 | 0.712789
150 9.98233 0.362251 10.0469 | 0.349014
200 9.0965 0.317799 9.0537 0.37345

Table E.35: Buffer Faults of Query Type 4 at 200 Frames

Hot Set DBMIN
Buffer || Double | Confidence | Double | Confidence
Size Faults Interval Faults Interval
30 9.13559 | 0.303143 | 9.19126 0.34497
50 9.183619 | 0.404827 | 9.26278 | 0.315665
70 9.07235 0.322734 | 9.17922 0.400194
100 9.13284 0.278175 9.02619 0.185302
150 894713 | 0.324084 | 8.80335| 0.321034
200 8.63276 | 0.316255 | 8.52179| 0.357153

Table E.36: Double Faults of Query Typ:c 4 at 200 Frames

146

147
E.2 Nested Loop Join with Non-Clustered Ou-

ter Index and Clustered Inner Index

Throughput
Buffer Size || Hot Set DBMIN
30 0.086633 | 0.0861974
50 0.0861527 | 0.086006
70 0.086013 | 0.0857882
100 0.0857829 | 0.0858999
150 0.0853953 | 0.0854335
200 0.0853496 | 0.0854138

Table E.37: Throughput of Query Type 5 at 20 Frames

Hot Set DBMIN
Buffer Confidence Confidence
Size I/0s Interval I/0s Interval
30 385.217 18.4687 387.256 20.4026
50 387.457 20.4301 388.037 18.8601
70 388.036 19.4582 389.082 20.0913
100 389.09 19.7896 388.549 19.5512
150 390.922 21.1527 390.745 21.0879
200 391.111 20.776 390.773 19.9163

Table E.38: I/Os of Query Type 5 at 20 Frames

Hot Set DBMIN
Buffer | Response | Confidence | Response | Confidence
Size Time Interval Time Interval
30 256.09 11.7559 257.272 12.1672

50 256.837 12.0721 257.551 11.9446
70 256.784 11.3479 257.475 11.6929
100 256.722 10.86 256.918 10.6238
150 256.351 9.67009 256.505 9.58124
200 256.225 9.98061 256.292 9.71462

Table E.39: Response Time of Query Type 5 at 20 Frames

Hot Set DBMIN
Buffer || Page | Confidence | Page [Confidence
Size Faults Interval Faults Interval
30 486.114 23.0297 503.445 23.9834
50 470.567 21.6696 492.386 22.9144
70 468.705 21.0468 477.994 21.5964
100 468.617 19.8572 469.924 20.1053
150 467.458 17.9027 467.915 17.8426
200 467.366 18.1716 467.293 18.0563

Table E.40: Page Faults of Query Type 5 at 20 Frames

Hot Set DBMIN
Buffer || Buffer | Confidence | Buffer | Confidence
Size Faults Interval Faults Interval
30 436.666 20.463 465.88 22.1157
50 345.792 16.0277 392.718 18.0686
70 264.814 12.3638 308.524 14.1164
100 207.173 8.66631 218.185 22.502
150 166.01 6.2511 186.037 8.77306
200 139.674 5.39045 151.424 15.6992

Table E.41:

Buffer Faults of Query Type 5 at 20 Frames

Hot Set DBMIN
Buffer || Double | Confidence | Double | Confidence
Size Faults Interval Faults Interval
30 417.216 19.7353 428.193 20.4103
50 342.944 16.0122 366.971 17.1651
70 264.24 12.289 297.609 13.8861
100 207.03 8.66114 216.424 21.8278
150 165.968 6.25298 185.719 8.57199
200 139.656 5.39129 151.424 15.6985

Table E.42;

Double Faults of Query Type 5 at 20 Frames

148

Table E.43: Throughput of Query Type 5 at 30 Frames

Throughput
Buffer Size || Hot Set | DBMIN
30 0.103187 | 0.101234
50 0.101859 | 0.100422
70 0.101942 { 0.100032
100 0.101808 | 0.100875
150 0.101185 | 0.101064
200 0.101204 | 0.101175

Hot Set DBMIN
Buffer . Confidence Confidence

Size I/0s Interval I/0s Interval
30 323.395 15.0617 329.666 16.049

50 327.619 15.3827 332.336 16.2692
70 327.402 16.4029 333.668 17.0084
100 327.85 16.8068 330.877 16.836

150 329.861 16.746 330.267 16.9912
200 329.803 16.7742 329.915 17.1353

Table E.44: I/Os of Query Type 5 at 30 Frames

Hot Set DBMIN
Buffer || Response | Confidence | Response | Confidence
Size Time Interval Time Interval
30 214.692 9.85804 219.209 10.4186
50 217.541 10.2801 220.79 10.5767
70 216.852 10.0152 221.184 10.3656
100 216.434 8.53034 218.313 8.80024
150 216.484 8.47356 216.685 8.63855
200 216.439 8.71471 216.522 8.57227

Table E.45: Response Time of Query Type 5 at 30 Frames

149

] Hot Set DBMIN
Buffer || Page | Confidence | Page | Confidence

Size Faults Interval Faults Interval
30 485.321 22.1513 504.556 23.3918
50 440.194 21.2834 494.479 23.32

70 424.128 19.4837 465.004 21.4134
100 420.675 16.9442 430.794 17.5585
150 419.719 16.5496 421.013 16.406
200 419.553 16.4209 419.596 16.3986

Table E.46: Page Faults of Query Type 5 at 30 Frames

Hot Set DBMIN
Buffer || Buffer | Confidence | Buffer | Confidence
Size Faults Interval Faults Interval
30 438.056 | 19.2513 451.169 20.1663
50 350.141 17.6498 392.627 16.7531
70 273.836 11.9401 319.853 13.8616
100 214.446 9.41215 229.395 10.0169
150 169.325 6.46643 184.865 6.94881
200 142.288 5.06553 144.621 5.72702
Table E.47: Buffer Faults of Query Type 5 at 30 Frames
Hot Set DBMIN
Buffer || Double | Confidence | Double | Confidence
Size Faults Interval Faults Interval
30 391.642 18.3307 391.167 18.1034
50 339.411 16.904 342.352 15.5292
70 270.815 11.7693 290.124 12.7818
100 213.621 9.21809 222.311 9.53223
150 169.166 6.47403 183.785 6.73531
200 142.22 5.07994 144.62 5.72673

Table E.48:

Double Faults of Query Type 5 at 30 Frames

150

Table E.49: Throughput of Query Type 5 at 50 Frames

Throughput
Buffer Size || Hot Set | DBMIN
30 0.125085 | 0.111192
50 0.145145 | 0.112637
70 0.12275 | 0.117104
100 0.118765 | 0.120344
150 0.117801 { 0.118368
200 0.117856 | 0.118269

Hot Set DBMIN
Buffer Confidence Confidence
Size I/0s Interval I/0s Interval
30 266.742 11.5804 300.073 13.1178
50 229.905 10.4813 296.209 12.5881
70 271.802 11.3653 284.908 12.0305
100 280.911 11.5396 277.246 11.8773
150 283.326 14.1807 281.915 13.0227
200 283.117 12.5846 282.169 13.3876

Table E.50: I/Os of Query Type 5 at 50 Frames

Hot Set DBMIN
Buffer || Response | Confidence | Response | Confidence
Size Time Interval Time Interval
30 176.462 7.8167 199.168 8.39915
50 151.272 8.57995 195.983 7.85067
70 179.293 8.71426 1874443 8.47745
100 183.709 7.18238 181.074 6.80752
150 184.125 7.0577 183.226 6.16385
200 183.556 6.81448 183.06 7.31702

Table E.51: Response Time of Query Type 5 at 50 Frames

151

Hot Set DBMIN
Buffer Page | Confidence | Page | Confidence
Size Faults Interval Faults Interval
30 423.382 16.6787 481.988 21.1686
50 302.667 16.1161 462.578 21.3516
70 346.332 16.5112 416.729 17.7582
100 357.151 12.8965 366.16 13.9125
150 358.34 12.672 361.085 12.7284
200 359.138 12.6985 358.619 13.8037

Table E.52: Page Faults of Query Type 5 at 50 Frames

Hot Set DBMIN
Buffer Buffer | Confidence | Buffer | Confidence
Size Faults Interval Faults Interval

30 398.793 15.9407 439.12 19.2364
50 263.643 13.8992 377.983 16.0678
70 236.48 12.2179 302.91 12.2906
100 189.96 3.78718 203.995 8.28565
150 144.562 | 4.50676 161.115 2.73264
200 118.225 | 4.28782 119.719 4.19271

Table E.53: Buffer Faults of Query Type 5 at 50 Frames

Hot Set DBMIN
Buffer || Double | Confidence | Double | Confidence
Size Faults Interval Faults Interval

30 278.51 | 11.7598 | 346.103 | 14.0083
50 || 227.639 [13.5696 | 297.839 | 12.7462
70 | 226.707 | 12.3576 | 251.341| 10.1608 |
100 || 186.817 [3.97685 | 191.151 | 7.11054
150 | 143.789 | 4.52671 | 159.028 | 2.78649
200 | 117.91 | 4.24087 | 119.703 | 4.18915

Table E.54: Double Faults of Query Type 5 at 50 Frames

Throughput
Buffer Size | Hot Set | DBMIN
30 0.291593 | 0.239643
50 0.244238 | 0.229159
70 0.307508 | 0.246994
100 0.337222 | 0.321062
150 0.339842 | 0.332276
200 0.327091 | 0.318933

Table E.55: Throughput of Query Type 5 at 100 Frames

Hot Set ' DBMIN
Buffer Confidence Confidence
Size I/0s Interval I/0s Interval
30 114,472 5.95103 139.232 6.0915
50 136.604 5.79985 145.603 6.38629
70 108.484 4.26238 135.215 8.23532
100 98.9113 3.52845 104.043 6.66837
150 98.2148 5.01143 100.541 6.66338
200 102.13 6.69707 104.762 7.16599

Table E.56: 1/Os of Query Type 5 at 100 Frames

Hot Set DBMIN
Buffer [[Response | Confidence | Response | Confidence
Size Time Interval Time Interval
30 76.276 3.33507 93.0463 4.70327
50 90.3869 3.30509 96.3983 4.35184
70 72.932 2.97975 89.9148 3.15789
100 66.4372 2.20267 68.6013 3.25721
150 64.6645 2.74792 65.2924 3.19547
200 66.6692 3.07051 67.9001 3.37292

Table E.57: Response Time of Query Type 5 at 100 Frames

Hot Set DBMIN
Buffer | Page | Confidence | Page | Confidence
Size Faults Interval Faults Interval
30 403.291 18.7858 430.653 20.2991
50 260.507 £.90074 380.314 17.3654
70 177.731 8.96793 298.379 12.3455
100 141.995 4.98519 186.973 6.96664
150 127.711 5.29924 140.976 9.01045
200 127.914 5.925 128.042 5.61999

Table E.58: Page Faults of Query Type 5 at 100 Frames

Hot Set DBMIN
Buffer | Buffer | Confidence | Bulfer | Confidence
Size Faults Interval Faults Interval

30 396.327 18.5922 406.757 19.8515
50 240.983 3.01795 347.994 15.3013
70 160.162 7.80397 269.667 10.8358
100 115.829 3.79808 161.932 6.27345
150 75.0753 2.99056 95.1964 6.4039
200 49.6059 2.24948 52.943 2.20549

Table E.59: Buffer Faults of Query Type 5 at 100 Frames

Hot Set DBMIN
Buffer || Double | Confidence | Double | Confidence
Size Faults Interval Faults Interval
30 17.482 5.28199 170.472 8.12177

50 140.182 5.6488 169.095 7.60408
70 113.17 5.30839 152.916 7.53004
100 98.5063 3.48633 107.294 4,72831
150 69.9711 2.62809 76.7239 3.26595
200 47,4594 2.08873 52.7907 2.19462

Table E.60: Double Faults of Query Type 5 at 100 Frames

Table E.61: Throughput of Query Type 5 at 150 Frames

Throughput
Buffer Size || Hot Set | DBMIN
30 0.579723 | 0.344085
50 0.531965 | 0.319664
70 0.467189 { 0.350113
100 0.530711 | 0.465177
150 0.554896 | 0.550772
200 0.574034 | 0.578299

Hot Set DBMIN
Buffer Confidence Confidence
Size I/0s Interval I/Os Interval
30 57.5584 2.57657 096.9781 4.41865
50 62.7589 3.48767 104.354 3.95918
70 71.5088 4.74973 95.372 5.49737
100 62.8995 | 3.35424 | T1.7988 | 4.46722
150 60.133 2.67704 60.5911 2.88743
200 58.1187 | 2.37363 | 57.7133 | 2.84905

Table E.62: I/Os of Query Type 5 at 150 Frames

Hot Set DBMIN
Buffer || Response | Confidence | Response | Confidence
Size Time Interval Time Interval
30 38.4708 1.77127 64.8442 3.10912
50 41.4273 1.80312 69.0258 3.38521
70 47.9626 2.86633 62.7165 3.90323
100 42.1089 1.76119 47,4344 3.03691
150 40.0406 1.51955 39.3112 1.67902
200 38.2099 1.49859 37.8402 1.79023

Table E.63: Response Time of Query Type 5 at 150 Frames

Hot Set DBMIN
Buffer Page | Confidence | Page | Confidence
Size Faults Interval Faults Interval
30 405.734 17.9628 404.534 18.4862
50 278.02 10.9787 358.82 16.4185
70 179.12 8.11317 277.071 12.4629
100 140.907 7.07036 177.572 11.2611
150 117.448 4.83482 124.798 6.18532
200 107.746 4.61849 102.269 4.40715
Table E.64: Page Faults of Query Type 5 at 150 Frames
Hot Set DBMIN
Buffer | Buffer | Confidence | Buffer | Confidence
Size Faults Interval Faults Interval
30 400.941 17.8122 384.595 16.7661
50 266.557 10.8417 330.638 14.702
70 160.994 7.8929 251.529 11.0368
100 114.527 5.75664 155.637 10.3045
150 74.367 3.16857 90.228 4.49302
290 47.7174 1.76756 50.7622 1.90789

Table E.65:

Buffer Faults of Query Type 5 at 150 Frames

Hot Set DBMIN
Buffer || Double | Confidence | Double | Confidence
Size Faults Interval Faults Interval
30 63.2524 2.86221 119.438 5.8374
50 66.9833 3.03433 122.285 5.52341
70 76.4631 4.52409 108.746 6.40926
100 67.5039 2.86637 78.7833 4.46287
150 57.6:444 2.48426 55.4272 2.14208
200 40.8453 1.40391 48.3241 1.91029

Table E.66: Double Faults of Query Type 5 at 150 Frames

156

Throughput
Buffer Size {{ Hot Set | DBMIN
30 1.02982 | 0.891554
50 1.0389 | 0.522297
70 1.06689 | 0.543637
100 1.02346 | 0.76573
150 1.20151 | 1.04918
200 1.23917 | 1.10131

Table E.67: Throughput of Query Type 5 at 200 Frames

Hot Set DBMIN
Buffer Confidence Confidence
Size I/0s Interval I/0s [nterval
30 32.3941 1.28664 37.4211 1.55207
50 32.1113 1.28007 63.86 2.19438
70 31.2923 1.73066 61.3794 2.76765
100 32.5988 1.34708 43.5748 1.92544
150 27.7544 | 0.789317 | 31.7895 1.06194
200 26.9103 | 0.747721 30.2795 | 0.860262

Table E.68: I/Os of Query Type 5 at 200 Frames

Hot Set DBMIN
Buffer |{ Response | Confidence | Response | Confidence
Size Time Interval Time Interval
30 21.6639 0.997389 24.9378 1.09862
50 21.3335 1.11316 42.14 1.23371

70 20.8039 0.965157 39.3519 2.07448
100 21.7882 0.876355 28.3345 0.869482
150 18.3969 0.443059 20.6972 0.315122
200 || 17.7738 0.339456 19.7032 0.507448

Table E.69: Response Time of Query Type 5 at 200 Frames

-1

Hot Set DBMIN
Buffer || Page | Confidence | Page [Confidence
Size Faults Interval Faults Interval
30 399.645 19.0795 375.181 17.3069
30 285.415 13.9614 331.77 12.9825
70 216.283 9.96841 258.244 11.2237
100 147.061 7.68702 165.116 9.41752
150 113.249 4.10782 112.432 4.07364
200 97.1104 3.70708 94.6364 3.49661

Table E.70: Page Faults of Query Type 5 at 200 Frames

Hot Set DBMIN
Buffer [Buffer | Confidence | Buffer | Confidence
Size Faults Interval Faults Interval
30 394.104 18.7661 369.869 17.1662
50 274.118 13.7815 309.462 11.4407
70 199.202 9.40287 235.726 9.85028
100 119.609 6.79869 144.386 8.24883
150 71.1568 2.15138 81.0423 2.38322
200 43.8498 1.40974 45.8085 1.409
Table E.71: Buffer Faults of Query Type 5 at 200 Frames
Hot Set DBMIN
Buffer || Double | Confidence | Double | Confidence
Size Faults Interval Faults Interval
30 38.2148 1.72183 43.404 1.89007
50 37.5492 1.8948 74.2961 2.44589
70 36.4142 1.58668 69.714 J3.62815
100 36.9006 1.50697 49,2392 1.65016
150 30.7116 | 0.808264 | 32.7361 | 0.326341
200 25.6362 | 0.477676 | 29.5354 | 0.461046

Table E.72: Double Faults of Query Type 5 at 200 Frames

158

