
Approximation Algorithms for Min Sum k-Clustering
and Balanced k-Median

by

Rohit Sivakumar

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Rohit Sivakumar, 2015

Abstract

In this thesis, we consider two closely related clustering problems, Min Sum k-

Clustering (MSkC) and Balanced k-Median (BkM). In Min Sum k-clustering,

one is given a graph and a parameter k, and has to partition the vertices in the

graph into k clusters to minimize the sum of pairwise distances between ver-

tices in the same cluster. In the Balanced k-Median problem, one is given the

same set of input, and has to partition the vertices into k clusters, C1, . . . , Ck,

where each cluster Ci is centered at a node ci, while minimizing the total as-

signment costs for the points in the metric; here the cost of assigning a point

j to a cluster Ci is equal to |Ci| times the (j, cj) distance.

The most important contribution of this thesis, described in Chapter 4, is

an O(log n)-approximation for both these problems, where n is the number of

nodes in the input graph. This improves over the previous best O(ε−1 log1+ε n)-

approximation by Bartal, Charikar and Raz [1] by a factor of O(ε−1 logε n). As

in the work of Bartal et al., our approximation for general metrics uses prob-

abilistic embeddings into Hierarchically Separated Trees (HSTs). Specifically,

we prove that both MSkC and BkM have constant approximation algorithms

in HSTs.

ii

Acknowledgements

I would like to thank my supervisor, Mohammad Salavatipour, for his support

and guidance over the last two years, and for his patient reviews of various

stages of this thesis. I would also like to thank Babak Behsaz and Zachary

Friggstad, without whom this work would have not been possible.

I feel deeply indebted to both the staff and the graduate students at the Insti-

tute of Mathematical Sciences, Chennai. The hours I spent at their summer

school in Theoretical Computer Science has been my first and biggest inspira-

tion to pursue research in algorithms.

I am thankful to my parents for their overwhelming support, and for con-

stantly and unconditionally placing my interests ahead of theirs.

Finally, I would like to thank the Department of Computing Science for finan-

cially supporting me during my course of study.

iii

Table of Contents

1 Preliminaries 1
1.1 Motivation . 1
1.2 Graph Theoretic Fundamentals 2
1.3 Approximation Algorithms . 4

1.3.1 Linear Programming 6
1.3.2 Approximation: An Example 7
1.3.3 A Collection of Optimization Problems 9

2 Problem Statements and Initial Results 10
2.1 Problem Definition . 10
2.2 Previous Work . 10
2.3 Hardness Results . 13
2.4 Relation between BkM and MSkC 19
2.5 An existing approximation for BkM 20

2.5.1 Hierarchically Separated Trees 21

3 Balanced k-Median on the line metric 24
3.1 Structural results and laminarity 24
3.2 An Exact Dynamic Program 28

3.2.1 Running Time . 30

4 BkM on General Metrics 32
4.1 Reduction to RBkM . 32
4.2 Structural Results for RBkM on HSTs 34
4.3 Dynamic Program for full-binary HSTs 38
4.4 Dynamic Program for arbitrary HSTs 42

4.4.1 Analysis and Running time 48

5 Conclusion 51
5.1 Summary . 51
5.2 Future Work . 52

Bibliography 54

iv

Chapter 1

Preliminaries

1.1 Motivation

Clustering is a popular research field in the computing world, which aims at

partitioning a given set of data into groups such that items in the same group

have similar properties. Clustering is also a well-studied problem in the Op-

erations Research community, where it is viewed as an optimization problem

with the goal of identifying clusters to minimize a given objective function.

In this thesis, we consider two closely related optimization problems, namely

Balanced k-Median and Min Sum k-Clustering and devise approximation al-

gorithms for them.

Given a collection of n points called nodes, the distances between every pair of

nodes, and a parameter k < n, k-Median refers to the problem of selecting k of

the n given nodes as centers to minimize the sum of distances from every other

node to its closest center. This NP-hard problem has been studied extensively,

both by the Operations Research as well as the Theoretical Computer Science

communities. The current best known approximation algorithm for this prob-

lem is by Byrka et al. [21], who gave a factor (2.611 + ε) approximation earlier

this year, for any arbitrary constant ε > 0. In a solution to k-Median, a center

c is said to serve a node v if c is v’s closest open center.

Since the k-Median problem solely aims at minimizing the sum of distances

from the nodes to centers, it is possible to have optimal solutions where a large

1

fraction of the n nodes are served by a single center, while other centers serve

very few or no other nodes. In real world scenarios like facility location, where

the centers represent locations where facilities are opened and the remaining

nodes represent clients, such solutions can be unpleasant due to the huge im-

balance in the load on the open facilities.

The most obvious solution to mitigate these unpleasant scenarios is to modify

the k-median objective to place hard capacity constraints on the opened facil-

ities. These constraints typically give an upper bound on the number of nodes

each open center can serve. This problem, referred to as the Capacitated k-

Median, has been extremely hard to approximate. Even after a long line of

research work spanning over fifteen years [16, 17, 18, 19, 20], there does not

exist a true approximaton to this problem which meets all the input capacity

constraints.

In the main result of this thesis, covered in Chapter 4, we give an approxima-

tion algorithm for a problem called Balanced k-Median, which penalizes large

capacities in the k-Median solution without actually placing hard capacity

constraints on the centers. The penalization is done by means of a balancing

function on the size of the clusters. We also give auxiliary results for this prob-

lem in Chapters 2 and 3. The rest of this chapter provides an introduction to

the algorithmic and graph theoretic machinery essential to understanding the

chapters that follow.

1.2 Graph Theoretic Fundamentals

A graph G is represented by two sets (V,E) where V is the set of vertices (or

nodes) and E is the set of edges. An edge e ∈ E of a graph is an unordered

pair (u, v) (also denoted as uv) where u and v are two distinct vertices in V ,

also referred to as the endpoints of e. Two vertices u, v ∈ V are adjacent if

and only if there exists an edge (u, v) ∈ E. An edge e = (u, v) is said to be

directed if it has an orientation where one of its endpoints is called the head of

2

the edge and its other endpoint is called the tail of the edge. A graph is said

to be directed if its edges are directed and is called undirected otherwise. In

this thesis, we restrict ourselves to problems involving undirected graphs. A

weighted graph is a graph G(V,E) where each edge e ∈ E has an associated

weight (or cost) given by the function w : E → R. The weight of an edge can

be used to represent features like the amount of resource spent (or earned)

while moving from one endpoint of the edge to another.

A v1 − vk walk in G is a sequence of vertices (v1, v2, · · · , vk) such that for any

two consecutive vertices vi and vi+1, the edge (vi, vi+1) ∈ E for all 1 ≤ i < k.

The cost of the walk is equal to the sum,
k−1∑
i=1

w(vivi+1). A v1 − vk path in G

is a v1 − vk walk where each vertex vi is distinct. The shortest u− v path in

G is a path that begins at u ∈ V , ends at v ∈ V , and has the minimum cost.

We denote the cost of this path by cG(u, v). The diameter of the graph G is

equal to max
u,v∈V

cG(u, v), the cost of the longest shortest path in G. A cycle in

G is a walk (v1, v2, · · · , vk) where v1 = vk and every other vertex vi, 2 ≤ i < k,

is distinct. A graph is acyclic if it does not contain any cycles. An undirected

graph G(V,E) is connected if and only if there exists a u − v path between

each pair of vertices u, v ∈ V . A tree is a connected acyclic graph. A complete

graph G(V,E) is a graph in which every pair of distinct vertices u, v ∈ V is

connected by a unique edge in E. The open neighborhood of a vertex v ∈ V

in the graph G, denoted by No(v), is the set of vertices adjacent to V . The

closed neighborhood of v, NG(v) = No(v)
⋃
{v}.

A hypergraph H is a pair (V,E) where V is the set of vertices and each X ∈ E

is a non-empty subset of V , called a hyperedge. It is a generalization of graphs

where an edge can connect any number of vertices. The size of every hyperedge

X is the cardinality of the set X. A k-uniform hypergraph is a hypergraph, all

of whose hyperedges have size k. A generic graph we saw earlier, can also be

called a 2-uniform hypergraph.

3

A graph (or hypergraph) G(V,E), whose vertices V can be partitioned into k

disjoint sets V1, V2, · · · , Vk such that no edge e ∈ E connects vertices from the

same partition Vi , i ∈ {1, 2, · · · , k} is called a k-partite graph. When k = 2

or 3, these graphs are called bipartite and tripartite, respectively.

A function d : V × V → R defined over pairs of vertices of a complete graph

G(V,E) is called a metric if it satisfies the following properties for every triple

u, v, w ∈ V .

• d(u, u) = 0

• d(u, v) = d(v, u)

• d(u, v) + d(v, w) ≥ d(u,w)

The first property says that a metric cannot have weighted self-loops and the

second property implies that the metric is symmetric. The third and most im-

portant property of a metric is triangle inequality. According to this property,

for any pair (u,w) of vertices, the cost of every u− w path in the graph is at

least equal to the weight of the u − w edge in the graph. A graph G′(V,E ′)

is called the shortest path metric completion of G if it has the same set of

vertices as G and for two vertices u, v ∈ V , the weight of the (u, v) edge in

G′ is equal to cG(u, v), the cost of the shortest u, v path in G. It is easy to

see that the edge weights in G′ satisfy the metric property. The edge weights

d : V ×V → R of a graph G(V,E) forms a line metric if it satisfies the proper-

ties d(u, u) = 0 and d(u, v) = d(v, u), and its vertices V can be represented by

an ordered sequence v1, v2, · · · , vn such that d(vi, vj) =
j−1∑
p=i

d(vi, vi+1) for each

pair of vertices vi, vj ∈ V and i < j.

1.3 Approximation Algorithms

Given a set of feasible solutions F and an objective function O, the goal of

an optimization problem is to find a feasible solution f ∈ F that minimizes

4

(or maximizes) the objective O. Since many natural optimization problems

of practical relevance in fields such as vehicle routing and job scheduling are

NP-Hard, these problems cannot be solved optimally and efficiently unless

P = NP . Under these circumstances, we fall back to the approach of finding

near-optimal algorithms to solve these problems. Such near-optimal solutions

whose difference from the optimum can be bounded mathematically for every

instance of the problem are called Approximation Algorithms.

An approximation algorithm A with a polynomial running time for a problem

P has an approximation ratio of α ≥ 1 if, for every instance I of P , the cost

C(I) of the solution returned by algorithm A is within a factor α of the cost

C∗(I), of the optimal solution. (i.e) max
I

(C(I)
C∗(I)

, C
∗(I)
C(I)

) ≤ α.

A randomized polynomial time algorithm R for a problem P has an approxi-

mation ratio of α ≥ 1 if, for every instance I of P , the cost C(I) of the solution

returned by algorithm R is within a factor α of the cost C∗(I) of the opti-

mal solution, in expectation. (i.e) E[max
I

(C(I)
C∗(I)

, C
∗(I)
C(I)

)] ≤ α. A constant factor

approximation algorithm is an approximation algorithm whose approximation

ratio is upper bounded by a constant.

A Polynomial Time Approximation Scheme (PTAS) is a set of algorithms

which takes an instance of an optimization problem and a constant ε > 0 and,

in polynomial time, produces a solution whose cost is within a factor (1 + ε)

of the optimal solution.

An (α, β) Bi-criterea Approximation to a problem Π is an approximation al-

gorithm which takes an instance, I of Π, as input and returns a solution S of

cost at most α times the optimum of Π; but this solution S could exceed a

chosen bounded-valued parameter specified by a constraint in Π by a factor of

at most β.

An optimization problem is APX-Hard if there is no PTAS for it unless

5

P = NP . In other words, these are problems which cannot have polyno-

mial time approximation algorithms with an approximation ratio less than a

constant, c > 1. This constant, c, is called the hardness gap of the optimiza-

tion problem.

1.3.1 Linear Programming

Linear Programming is a widely used technique for developing approximation

algorithms. An Integer Linear Program (ILP) consists of a linear objective

function and a set of linear inequalities called constraints, each containing

variables capable of taking values from a discrete integral set. The following set

of equations represent a generic ILP formulation of an optimization problem.

minimize
n∑
j=1

cjxj

subject to
n∑
j=1

aijxj ≥ bi, i = {1, 2, · · · ,m}

xj ∈ {0, 1} j = {1, 2, · · · , n}

The linear programming relaxation of an integer program is obtained by re-

laxing the constraint that each variable must be 0 or 1 to a weaker constraint

that each variable takes real values in the interval [0, 1]. Thus, the constraints

of the aforestated ILP can be relaxed in the following manner into a linear

program (LP).

6

minimize
n∑
j=1

cjxj

subject to
n∑
j=1

aijxj ≥ bi, i = {1, 2, · · · ,m}

xj ≥ 0 j = {1, 2, · · · , n}

xj ≤ 1 j = {1, 2, · · · , n}

The constraints of a linear program determine the feasible region of the op-

timization problem. In other words, a given solution S to a set of linear

constraints is feasible if and only if none of the constraints are violated by the

assignment S. A well-known property of linear programs is that they can be

solved optimally and efficiently. Since the feasible region for an ILP is a subset

of the feasible region of its LP relaxation, the optimal value returned by solv-

ing the LP is a lower bound on the optimal ILP solution for a minimization

problem.

The integrality gap between a minimization integer program P and its LP re-

laxation RP is defined as sup OPTP (I)
OPTRP (I)

where the supremum is taken over all

instances I of P and OPTP (I) and OPTRP (I) are the optimal solutions to

instance I of P and RP , respectively.

1.3.2 Approximation: An Example

We illustrate some of the concepts seen above with the help of a simple ap-

proximation algorithm [24] for the metric k-center problem. The choice of

this problem comes from its relatively simple approximation algorithm and its

relevance to clustering.

Problem Statement: Given a metric graph G(V,E) with edge weights

d(u, v) between vertices u and v and a positive integer k such that 1 ≤ k ≤ |V |,

7

Figure 1.1: A 2-approximate k-center

the objective is to find a subset S ⊆ V such that |S| = k and S minimizes

max
v∈V

min
s∈S

d(v, s).

In the following algorithm by Gonzalez [24], d(v, S) denotes min
s∈S

d(v, s) and

argmax
v
d(v, S) denotes argmax

v
min
s∈S

d(v, s).

Approximation Algorithm for k-Center

1. Start with an arbitrary vertex s1 ∈ V ; S ← {s1}
2. for i← 2 to k do
3. si ← argmax

v
d(v, S)

4. S ← S ∪ {si}
5. return S

Lemma 1 The above algorithm is a 2-approximation to metric k-center.

Proof. Let S∗ = {s∗1, s∗2, · · · , s∗k} be an optimal set of centers and let OPT =

max
u∈V

min
s∗i∈S∗

d(u, s∗i). Consider an arbitrary vertex v ∈ V \S. By pigeon-hole prin-

ciple, there exist two distinct elements, v1 and v2, in the set S ∪{v} which are

served by the same center, s∗j , in the solution S∗. Moreover, |{v1, v2} ∩ S| ≥ 1

by our choice of v1 and v2.

If |{v1, v2} ∩ S| = 2, then both d(v1, s
∗
j) and d(v2, s

∗
j) are upper bounded by

OPT . Therefore, by triangle inequality, d(v1, v2) ≤ 2 · OPT . Without loss of

8

generality, if v1 was added to S before v2, then we know by our choice of v2

that d(v, S) ≤ d(v2, v1) ≤ 2 ·OPT .

On the other hand, if |{v1, v2} ∩ S| = 1, then exactly one of v1 or v2 is

in our solution S while the other vertex must be v. By metric property,

d(v1, v2) ≤ d(v1, s
∗
j) + d(v2, s

∗
j) ≤ 2 ·OPT proving that d(v, S) ≤ 2 ·OPT .

From the above arguments, d(v, S) ≤ 2 ·OPT , for every vertex v ∈ V \S. For

every other vertex v′ ∈ S, it is clear that d(v′, S) = 0. This validates the claim

of our lemma.

1.3.3 A Collection of Optimization Problems

The following list contains three NP-hard problems which are referenced in

the subsequent chapters of this thesis.

• k-Median: Given a metric graph, G(V,E) with edge weights d(u, v)

and a positive integer k ≥ 1, the objective of k-median is to find a sub-

set S ⊆ V such that |S| = k, to minimize the value of the expression,∑
v∈V

min
s∈S

d(u, s).

• Dominating Set: Given a graph G(V,E), Dominating Set is the

problem of finding the smallest cardinality subset S ⊆ V such that⋃
v∈S

NG(v) = V .

• Three Dimensional-Matching (3DM): Given a 3-uniform tripartite

hypergraph H(V,E), the objective of 3DM is to determine whether or

not there exists a subset of hyperedges, X ⊆ E such that |X| = |V |
3

and⋃
e=(u,v,w)∈X

{u, v, w} = V .

9

Chapter 2

Problem Statements and Initial
Results

2.1 Problem Definition

In the Balanced k-Median problem (BkM), we are given a graph G(V,E) with

edge weights d(u, v) between vertices u, v ∈ V , and a parameter k. The goal of

this problem is to partition the set V into k clusters C1, C2, · · · , Ck, with each

cluster Ci centered at a distinct vertex ci ∈ Ci, i ∈ {1, 2, · · · , k} to minimize

the value of
k∑
i=1

|Ci|
∑
j∈Ci

d(ci, j). This objective function penalizes large clusters

to give a balanced partition with respect to the cluster sizes.

Much like BkM, in Min Sum k-Clustering (MSkC), we are given a graph

G(V,E) and a parameter k. The objective of MSkC is to partition the set V

into k clusters, C1, C2, · · · , Ck, minimizing the sum of distances between pairs

of vertices in the same cluster. i.e: to minimize
k∑
i=1

∑
u,v∈Ci

du,v.

2.2 Previous Work

The Min Sum k-Clustering problem was introduced in 1976 by Sahni and Gon-

zales [2] who proved the problem to be NP-Hard. This is the dual of the Max

k-Cut problem, which involves partitioning the input graph into k clusters with

the objective of maximizing the sum of weights of edges between vertices in

different clusters. Frieze and Jerrum [10] gave a k
k−1 approximation algorithm

10

for the Max k-Cut problem. Kann et al. [11], in 1997 proved that Max k-Cut

cannot be approximated better than a factor 1 + 1
34k

unless P = NP . In the

same paper, the authors prove that MSkC cannot be approximated beyond a

factor O(n2−ε) for any k > 2.

Bartal et al. [1] devised the first approximation algorithm for the Min Sum

k-Clustering problem. They gave an O(ε−1 log1+ε n)-approximation to both

MSkC and BkM in metric spaces for any arbitrary constant ε > 0, which was

the only approximation algorithm known for the general metric instance of

MSkC before our O(log n)-approximation [3] in 2015. In Bartal et. al’s pa-

per, the authors also give a O(1) bicriterea approximation for BkM that uses

at most O(k) clusters.

In addition to the above results, Min Sum k-Clustering has been further stud-

ied in restricted settings. Fernandez de la Vega et al. [9] gave a (1 + ε)-

approximation algorithm for MSkC with a running time of O(n3k2ε
−k2

). BkM

can be solved in time nO(k) by guessing the center locations and their capac-

ities, and then finding a minimum-cost assignment from the clients to these

centers [12]. The same algorithm can be used to yield a 2-approximation for

MSkC when k is regarded as a constant. For the special case that k = 2,

this approximation ratio was improved to a PTAS by Indyk [13]. For the

case where the distances do not form a metric, when k = 2, an O(
√

log n)-

approximation is known for MSkC as this is just a reformulation of the Min-

imum Uncut problem [14]. For the case that k = o(log n/ log log n), Czumaj

and Sohler [6] gave a (4+ε)-approximation for MSkC. For MSkC in geometric

spaces, Schulman [15] gave an algorithm that runs in time no(log logn), returns

a solution of total cost (1 + ε) times optimal, and partitions (1 − ε) factor of

all the points optimally.

The Balanced k-Median problem, on the other hand, was first introduced by

Bartal et al. in [1] and has only been studied in the context of approximating

MSkC in metric spaces [6, 1]. It is known from [1] that the optimal costs

11

of MSkC and BkM on a metric instance are factor 2 from one another. For

k = o(log n/ log log n), the authors of [6] give a sampling technique for Bal-

anced k-Median, which gives a (2 + ε)-approximate BkM solution.

A problem closely related to Balanced k-Median is Capacitated k-Median,

whose objective is to partition the given graph into k clusters with hard ca-

pacities on the cluster sizes, while minimizing the sum of distances from every

node in the graph to its cluster center. Much like BkM, this is a well-known

clustering problem where clients are not guaranteed to be served by their near-

est open center (unlike k-center or k-median). This problem has resisted many

approximation techniques. An evidence to the difficulty of the problem is that

a natural LP relaxation of the Capacitated k-Median has an unbounded inte-

grality gap even when we are allowed to exceed the number of open facilities

by a factor of (2− ε).

The first bi-criterea approximation to this problem was developed by Charikar

et al. [16], who gave a 16-approximation algorithm for the case of uniform

capacities that violates the capacity constraints by a factor of 4. Chuzhoy and

Rabani [17] presented the first approximation algorithm for the case of non-

uniform capacity constraints. In their solution, the capacity constraints are

voiolated by a factor of at most 50 while the cost of their solution is at most

40 times the optimum. In 2013, Gijswijt and Li [18] developed an algorithm

which reduced the number of open facilities to 2k + 1 and their algorithm

returns a solution of cost at most (7 + ε) times the optimum.

Li [19] reduced the margin of infeasibility for this problem by proposing an

algorithm which opens at most k(1 + ε) facilities and gives an eO(1
ε2

) approxi-

mate solution to Capacitated Uniform k-Facility location, a generalization of

Capacitated k-Median. Recently, he extended this result to the case where

capacities are non-uniform [20].

At the heart of both the Balanced k-Median and the Capacitated k-Median

12

objectives is the problem of k-Median, where we partition the given set of

points into k sets C1, · · · , Ck, each having a center ci to minimize the total

sum of distances of the points to their respective centers. There is a long line

of research on this problem within the approximation algorithms community.

Some of the recent results are [22, 23, 21], which bring down the approxi-

mation ratio to 2.611 + ε. However, we believe that BkM is much harder to

approximate than k-Median because the assignment of clients to centers are

not obvious in BkM, even when one is given the location of the open centers.

2.3 Hardness Results

The Min Sum k-Clustering problem was proved to be NP-hard by Sahni and

Gonzales [2], when they first introduced it in 1976. The Balanced k-Median

problem on the other hand, has only been looked at in [1] and [6], and in both

cases, the focus of the authors has been to use BkM as a tool for approximating

MSkC. In this section, we prove hardness results for BkM through Theorem 1.

We also define a new problem called, the Generalized Balanced k-Median and

prove that it is APX-Hard on metric spaces. In the rest of this thesis, we say

that a center (or facility) at a location vf serves (or covers) a client vc if the

vertex vc belongs to the cluster centered at vf . Moreover, the total number of

clients served by the open facility vf is called the capacity or multiplier of the

facility.

Theorem 1 It is NP-hard to find an α-approximate Balanced k-Median for

any α ≥ 1, if the input instance is not a metric.

Proof. We prove this theorem by a reduction from the Dominating set prob-

lem. Given an instance of dominating set on an unweighted graph G(V,E),

we create a new weighted complete graph G′(V,E ′) with the same vertex set

V . The weights of the edges in E ′ are assigned as follows:

w(e) =

{
1 e ∈ E
(α + 1)n3 e /∈ E

13

We claim that G has a dominating set of size at most k if and only if the

optimal BkM solution in G′ has a cost of at most n3. We also claim that the

optimal BkM in G′ has a cost of at least (α+ 1)n3 if the size of the minimum

dominating set in G is greater than k. A reduction of this type is called a Gap

Introducing Reduction and the proof of our claims are as follows:

Suppose that G has a dominating set of size k. Then, there exist k vertices

d1, d2, · · · , dk ∈ V , the union of whose closed neighborhoods,
⋃

i∈1,··· ,k
NG(di)

span the entire graph. By choosing the pair (di, N
′
G(di)) in G′ as the centers

and clusters respectively with ties broken arbitrarily, we get a feasible BkM

solution of cost at most
k∑
i=1

|NG′(di)|
∑

j∈NG′ (di)
1 =

k∑
i=1

|NG′(di)|2 ≤
k∑
i=1

n2 ≤ n3.

Alternatively, if G does not have a dominating set of size k, then any choice of

k centers for BkM in G′ will contain a vertex v ∈ G′ at a distance of (α+ 1)n3

from every open center, incurring a cost equal to at least this value in the

optimal BkM solution. This proves the our claim.

As the problem of finding the existence of a dominating set of size k is NP-

hard, it is NP-hard to decide whether the optimal BkM solution in G′ has a

cost less than n3 or greater than (α+ 1)n3, thereby proving the inexistence of

an α-approximation.

Since it is NP-hard to find any α-approximate BkM solution for α ≥ 1, it

follows as a weaker statement of the above theorem that BkM is NP-hard.

Moreover, as the cost of any given BkM solution can be verified in polynomial

time in a straight-forward way, this problem is clearly in NP, resulting in the

following corollary.

Corollary 1 The decision version of the Balanced k-Median problem is NP-

complete.

Having established the APX-hardness of BkM, it would be interesting to know

if the metric Balanced k-Median problem is APX-Hard (or NP-Hard). To the

14

best of our knowledge, this still remains an open problem. However, we define

a new problem called the metric Generalized Balanced k-Median and prove its

APX-Hardness in Theorem 2.

In the metric Generalized Balanced k-Median problem (GBkM), we are given

a graph G(V,E) with metric edge weights d(u, v) between vertices u, v ∈ V ,

a parameter k and two sets F ⊆ V and D ⊆ V such that F ∪ D = V de-

noting the set of facilities (or centers) and clients, respectively. The goal of

this problem is to partition the set D into k clusters C1, C2, · · · , Ck with each

cluster centered at a vertex ci ∈ F , i ∈ {1, 2, · · · , k} to minimize the value of
k∑
i=1

|Ci|
∑
j∈Ci

d(ci, j). This problem is identical to BkM if F = D = V .

Theorem 2 Metric GBkM cannot be approximated within a factor 148
147

unless

P = NP .

Proof. We prove this theorem by a reduction from the 3D matching problem.

Given a 3-uniform hypergraph H(V,E) on independent sets of vertices, A, B

and C, each containing n nodes, we construct a new metric graph G(V ′, E ′) on

|V |+ |E| vertices as follows. We copy each vertex in H into G and denote this

set of new vertices by D. We also add a set F of new vertices, vei , for every

edge ei ∈ E. For each hyperedge ei = (a, b, c) ∈ E such that a ∈ A, b ∈ B and

c ∈ C, we add three unit weighted edges (vei , a
′), (vei , b

′) and (vei , c
′) to the

graph G, where a′, b′ and c′ are copies of a, b and c in G, respectively. For each

two nodes in F or two nodes in D, we add an edge of weight 2, and for any two

non-adjacent nodes, u ∈ F and v ∈ D, we add an edge of weight 3. Note that

the edge weights we assigned form a metric. We consider the GBkM problem

on G with k = n, by setting F to be the set of locations where facilities can

be opened and D to be the set of clients to be served.

Claim 1 There exists an optimal solution to GBkM on the graph G with k = n

of cost 9n if the hypergraph H has a 3D matching saturating all its vertices.

15

(a) Hypergraph H with 4 labeled edges

(b) Unit-weighted edges of graph G formed by reduction from Figure 2.1a

Figure 2.1: Proof of Theorem 2

Furthermore, if the size of the maximum 3D matching in H is at most αn,

then the optimal GBkM solution on G has a cost of at least 15n− 6αn.

When α is set to be the hardness-gap of the 3D matching problem (97
98

) [7, 8],

this results in a hardness gap (of 148
147

) for BkM.

Proof of Correctness: Suppose that H has a perfect 3D matching M. For

each edge ei = (ai, bi, ci) ∈M , we open a cluster with the vertex vei as center

in G and have it serve copies of the clients ai, bi and ci in G. Thus, each

cluster in this solution has a capacity of 3 and the total cost of this solution

is
∑

e=(a,b,c)∈M
3(d(ve, a) + d(ve, b) + d(ve, c)) = 9n.

Proof of Soundness: We claim that there exists a 3D matching of size

greater than αn in H if G has a GBkM of cost less than 15n− 6αn.

16

In any feasible GBkM solution, O, on the graph G, every client in D is served

by exactly one facility, and among all the clients that an open facility f ∈ F

serves, at most three clients located at unit distance from f . Let β > αn. If

O contains β open facilities, which serve all the three clients at unit distance

from it, then, by our construction, the hyperedges in H corresponding to these

β facilities form a 3D matching of size β in H. Therefore, if H has a maximum

3D matching of size at most αn, then any feasible solution to GBkM on G

can have at most αn open facilities which serve all the three clients at unit

distance from it.

In the rest of this proof, we aim to lower bound the cost of the optimal GBkM

on G, given that at most αn open facilities can serve all the 3 clients at unit dis-

tance from it. We call this new constraint as the hardness constraint. Firstly,

observe that for two vertices, f ∈ F and d ∈ D, the weight of the edge (f, d)

in G is equal to either 1 or 3, by construction. Every cluster C, in a feasible

solution to GBkM, is represented by a duple (p1, p3), called its type, where p1

and p3 represent the number of clients in C at a distance of 1 and 3 from its

center, respectively. The cost of such a cluster type is the contribution of C

towards the cost of the GBkM solution, which equals (p1 + p3)(p1 + 3 · p3).

A multiset of n type values, (p11, p
1
3), · · · , (pi1, pi3), · · · , (pn1 , pn3) is permissible if

the following constraints hold.

(a) pi1 ≤ 3, for 1 ≤ i ≤ n,

(b)
∑

i:pi1=3

1 ≤ αn, and

(c)
n∑
i=1

(pi1 + pi3) = 3n,

where the first constraint represents that an open facility can serve at most

three clients at unit distance from it, the second constraint denotes the hard-

ness constraint, and the third constaint denotes that every client is served.

17

It is clear that every feasible solution to GBkM on G, with the hardness con-

straint, gives us a permissible multiset of n type values. Therefore, the min-

imum value of
n∑
i=1

(pi1 + pi3)(p
i
1 + 3 · pi3) over all permissible type values, lower

bounds the optimal cost of GBkM with the hardness constraint. In what fol-

lows, we find an optimal multiset of permissible type values to minimize the

above expression.

To this end, we start with an arbitrary feasible multiset of type values and

prune this set by applying the following rules one after another. Each rule is

applied several times to the multiset until the point it cannot be applied any

further. Each of these rules, both preserve the permissibility of the multiset

and reduce the cost of the objective function. This can be verified easily by

computing the difference in cost of the affected type values before and after a

rule is applied.

Rule 1 For a type T of the form (p1, p3):

• If p1 + p3 ≤ 2, replace T by (p1 + p3, 0).

• If p1 + p3 ≥ 3 and p1 < 2, replace T by (2, p1 + p3 − 2).

After applying rule 1, notice that the remaining types in our set can be divided

into six groups. These are:

(A) (1, 0)

(B) (2, 0)

(C) (2, 1)

(D) (3, 0)

(E) (3, p3), s.t. p3 > 0.

(F) (2, p3), s.t p3 > 1.

Observe that type values, (p1, p3), of the form A and B have p1 +p3 < 3, while

p1 + p3 = 3 for type values of the form C and D, and p1 + p3 > 3 for type

18

values of the form E and F . Moreover, since the mean value of p1 +p3 is equal

to 3 in every permissible multiset of type values as
n∑
i=1

(pi1 +pi3) = 3n and there

are n elements in the multiset, elements of type E or F exist if and only if

elements of type A or B can be found in our multiset.

Rule 2 For each element of type A and an element (p1, p3) of type E or F ,

replace these by two new elements, (2, 0) and (p1, p3 − 1).

Now, we have removed elements of type A completely, while elements of types

B through F still remain in our multiset.

Rule 3 For each element of type B and an element (p1, p3) of type E or F ,

replace these by a set of two new elements, (2, 1) and (p1, p3 − 1).

After applying Rule 3, elements of type A and B are not present in our solu-

tion anymore, which implies that elements of type E and F don’t exist either.

Moreover, each of the above rules maintain a permissible multiset of type val-

ues and reduce the cost of the feasible solution we started with. As the cost

of an element of type C is equal to 15, the cost of a type D element is equal

to 9, and there are at most αn elements of type D in the new multiset, the

optimal cost of permissible type values is at least 15n− 6αn.

Since this value is a lower bound on the optimal cost of GBkM with the hard-

ness constraint, GBkM on G has a cost of at least 15n − 6 · αn if the size of

the maximum 3D matching in H is at most αn. This proves both Claim 1 and

Theorem 2.

2.4 Relation between BkM and MSkC

The two clustering problems, MSkC and BkM, are so closely related that an

approximation algorithm for an instance of one of these problems guarantees

an approximation algorithm for the other. More specifically, Bartal et al.

[1] show that every α-approximate cluster to BkM is a 2α-approximation for

19

MSkC on the same graph. A stronger statement of this result is contained in

the following lemma.

Lemma 2 (Bartal et al.[1]) Given a graph G(V,E), there exists a feasible

partition of the vertices into clusters with a total cost of C under the MSkC

objective if and only if G contains a partition C1, C2, · · · , Ck of clusters with

centers c1, c2, · · · , ck such that

1

2

k∑
i=1

|Ci|
∑
j∈Ci

d(ci, j) ≤ C ≤
k∑
i=1

|Ci|
∑
j∈Ci

d(ci, j)

Proof. From triangle inequality, we know that d(u, v) ≤ d(u,w) + d(w, v) for

any three vertices u, v, w ∈ V . Therefore,

C =
k∑
i=1

∑
u,v∈Ci

d(u, v) ≤
k∑
i=1

∑
u,v∈Ci

(d(u, ci) + d(ci, v)) ≤
k∑
i=1

|Ci|
∑
j∈Ci

d(ci, j)

If we set ci = argmin
u∈Ci

∑
v∈Ci

d(u, v), we have that

1

2
· C =

1

2

k∑
i=1

∑
u,v∈Ci

d(u, v) =
k∑
i=1

∑
u∈Ci

∑
v∈Ci

d(u, v)

≥
k∑
i=1

∑
ci∈Ci

∑
v∈Ci

d(ci, v) =
k∑
i=1

|Ci|
∑
v∈Ci

d(ci, v)

Using the above result, the focus of research (in [1, 3, 6]) has been on using

approximation algorithms for BkM to get algorithms for the MSkC problem.

In the next section, we illustrate the techniques used by [1] to achieve this

goal.

2.5 An existing approximation for BkM

Since both Bartal et al.’s O(1
ε

log1+ε n)-approximation [1] and our O(log n)

approximation [3] for BkM rely heavily on the metric embedding of the given

input graph into a special tree structure called Hierarchically Separated Trees

(HSTs), we use this section to explain the concept of probabalistic embeddings

and HSTs and give a high level overview of the algorithm in [1].

20

2.5.1 Hierarchically Separated Trees

Definition 1 [Hierarchically Well Separated Trees [4]] For µ > 1, a µ-Hierarchical

Well Separated Tree (µ-HST) is a metric space defined on the leaves of a rooted

tree T of diameter ∆. Let the level of an internal node in the tree be the num-

ber of edges on its path to the root and, for a vertex u ∈ T , let ∆(u) denote

the diameter of the metric restricted to the leaves of the subtree rooted at u.

This metric is a µ-HST if the following properties hold:

• All edges at a particular level have the same weight.

• All leaves are at the same level.

• For any internal node u at level i, ∆(u) = ∆ · µ−i.

By this definition, any two leaf nodes u, v with least common ancestor w are

at distance exactly ∆(w) from each other. If T is a µ-HST then we let dT (u, v)

denote the distance between u and v in T .

Definition 2 [Probabilistic Embedding [4]] Given a metric over vertices V

of a graph G(V,E) with distances d(u, v) between two vertices u, v ∈ V , we

say that the metric is probabilistically embedded into µ-HSTs with a stretch of

f(n) if there exists a probability distribution over a family of µ-HSTs where

the leaves of each HST are the vertices V and d(u, v) ≤ dT (u, v) for every

pair of vertices u, v ∈ V and for each tree T in the family. Furthermore,

ET [dT (u, v)] ≤ f(n) · d(u, v), where the expectation is over all the trees T

sampled from this distribution.

The following Theorem is a result from [5].

Theorem 3 [5] For any integer µ > 1, any metric can be probabilistically

embedded into µ-HSTs with stretch O(µ · logµ n). Furthermore, we can sample

a µ-HST from this distribution in polynomial time.

Fakcharoenphol, Rao and Talwar [5] obtained this result by a randomized

hierarchical decomposition of the input metric graph into smaller subgraphs

21

of decreasing diameter. This approach, in log2 ∆ iterations, where ∆ is the

diameter of the input metric results in 2-HST s. The intermediate nodes in

the 2-HST represent the subgraphs obtained by successive decompositions by

the algorithm. This procedure, along with Bartal’s [4, 1] algorithm to proba-

bilistically embed a 2-HSTs into µ-HSTs with an expected stretch of O(µ
log µ

)

serves as a proof to the above theorem.

The authors of [1] use dynamic programming on HSTs to achieve their ap-

proximation guarantee. At a high-level, their algorithm works as follows.

Since all the facilities and clients are located at the leaves of the µ-HST, for a

pair u, v of vertices, where u is a facility and v is a client, it suffices to know

the height of the least common ancestor of u and v and guess the capacity

of u to accurately determine the u − v connection cost. Recall that the level

of a node in the HST is the number of edges on its path to the root. For

every level ` node v in the graph, an entry in the dynamic programming table

D(v, k, s, n1, n2, · · · , n`) stores the value of the optimal solution for the subtree

of the HST rooted at v, Tv, such that k leaves of Tv are chosen as centers, at

most s clients of Tv are connected by facilities outside Tv, and the facilities in

Tv serve ni clients through a least common ancestor located at level i in the

tree, for i ∈ {1, 2, · · · , `}.

By designing a dynamic program in which the value stored at every cell is

consistent with that stored in its neighboring cells (the details of which we

omit in this thesis), this dynamic program computes the BkM optimally in

time nO(logµ n) because each of the logµ n different entries n1, n2, · · · , n` can

take a value of up to n.

By discretizing the values of ni by rounding them up to their nearest power

of α, one can construct a similar dynamic program as above that returns an

α-approximate BkM solution on the µ-HST. For each value of v and k, the

algorithm computes (logα n)logµ n different values, which is equal to nO(1
ε
) by

22

setting µ = O(logε n) and α = 1 + 1
c·log2 n . The dynamic program now has a

polynomial size, and a subset of these are visited before computing the value

of each cell, giving an α approximation for BkM on µ-HSTs. When combined

with Theorem 3, this result gives an O(1
ε

log1+ε n) approximation for BkM on

general metrics. This result is due to Bartal et al. [1].

23

Chapter 3

Balanced k-Median on the line
metric

Despite the fact that Balanced k-Median is NP-Hard in general metrics, it

can be solved in polynomial time on the line metric. In the first half of this

chapter, we prove structural results for BkM and in the latter half, we show

how to exploit these structures to solve BkM exactly on line metrics.

In what follows, we assume that we are given a set of n nodes on a line and

denote the vertices as v1, v2, · · · , vn based on their ordering from left to right

on the metric.

3.1 Structural results and laminarity

In this section, we prove some results about the structure of an optimal BkM

solution on the line. Note that, Claim 2 and Lemma 3 (which follow) hold

even if the given instance is not a metric. As a warm-up, we look at an easier

case of the problem where there are only two facilities, whose locations and

capacities are known.

Given a graph with n clients, and the locations and capacities of two open

facilities, we consider the problem of assigning every client to one of the given

facilities to optimize the Balanced k-Median objective. Known techniques

24

such as min-cost flow can solve this problem even if we have up to n facilities

with their capacities known. In this thesis, we start by showing that a simple

greedy technique gives us an optimal solution for the case of 2 facilities. We

will introduce structural properties of optimal solutions, which extend to cases

where there are more than two facilities, whose locations and capacities are

not known.

Let the two given facilities be denoted by f1 and f2 with capacities mf1 and

mf2 , respectively. Without loss of generality, we assume that mf1 ≥ mf2 . Our

algorithm simply assigns mf1 clients v, with a minimum value of mf1 ·d(f1, v)−

mf2 · d(f2, v) to the facility f1 and the remaining clients to f2.

Claim 2 The aforementioned algorithm returns an optimal Balanced k-Median

cluster.

Proof. Let us denote the clusters centered at f1 and f2 as C1 and C2, respec-

tively. The proposed solution has a cost of
∑

j∈C1
|C1|d(j, f1)+

∑
j∈C2
|C2|d(j, f2).

By adding and subtracting the term
∑

j∈C1
|C2|d(f2, j), we get∑

j∈C1∪C2

|C2|d(f2, j) +
∑
j∈C1

(|C1|d(f1, j)− |C2|d(f2, j)).

The first term in the above expression is always a constant for a given instance,

and our greedy solution minimizes the second expression by picking the |C1|

smallest values of mf1 · d(f1, v) −mf2 · d(f2, v) into the solution. This proves

that our solution is optimal.

Claim 2 holds even when the underlying graph is not a metric. This result can

be extended to the following lemma, which states that in any optimal solution

to BkM, if we are given the locations and capacities of any two facilities along

with the set of clients that the two facilities serve combined, the greedy solution

discussed above finds an optimal assignment of the clients to the two facilities.

We skip the proof of this lemma as it is identical to the proof of Claim 2.

25

Lemma 3 Given the location of two open facilities, f1 and f2, and their re-

spective capacities mf1 and mf2, along with the set of clients these facilities

together cover in an optimal solution to BkM, the strategy of picking clusters

from the greedy algorithm of Claim 2 returns an optimal assignment of clients

to f1 and f2.

Notice again that this lemma holds even if the given graph is not a metric.

For two facilities i and i′ opened with capacities ci and ci′ , respectively, and a

client j, the value ci ·d(i, j)− ci′ ·d(i, j) denotes the gain in the BkM objective

with respect to j if j is served by i as compared to a solution where j is served

by i′. We call this value as the gain of client j with respect to facilities i and

i′ and notate it as gi,i
′

j . The following lemma proves that for any two facilities

i and i′, the values gi,i
′

j increase as we move closer to i, irrespective of the

location of i′.

Lemma 4 Let f1 and f2 be two open facilities in any optimum solution to

metric BkM serving c1 and c2 clients, respectively, such that c1 ≥ c2. If j and

j′ are any two arbitrary clients such that j lies on the shortest path from j′

to f1, then gf1,f2j ≤ gf1,f2j′ . In other words, if both f1 and f2 serve exactly one

client each from j and j′, it is always better for f1 to serve j and f2 to serve

j′.

Proof. Let the distance between the two clients j and j′ be equal to p.

As j lies on the shortest path from f1 to j′, p = d(f1, j
′) − d(f1, j). Since

the distance between the two clients is equal to p, by triangle inequality,

|d(f2, j)− d(f2, j
′)| ≤ d(j, j′) = p.

Now,

gf1,f2j − gf1,f2j′ = (c1 · d(f1, j)− c2 · d(f2, j))− (c1 · d(f1, j
′)− c2 · d(f2, j

′))

= c1(d(f1, j)− d(f1, j
′)) + c2|d(f2, j

′)− d(f2, j)|

≤ −c1 · p+ c2 · p

≤ 0,

26

Figure 3.1: Proof of Lemma 4

where the reduction to −c1 · p uses the fact that p = d(f1, j
′) − d(f1, j) and

the reduction to c2 · p uses the fact that |d(f2, j)− d(f2, j
′)| ≤ p. Additionally,

−c1 · p+ c2 · p ≤ 0 because c2 ≤ c1.

We can strengthen the above lemma in the case of line metrics in the following

way. Consider an optimal solution to BkM on line metrics, where the client

assignments conform to the structure observed in Lemma 4. Let f ′ be an open

facility, vl and vr be the left most and the right most vertices that f ′ serves,

respectively. We use the term span(f ′) to denote the interval between the

clients vl and vr, both inclusive. Let f be an open facility with the highest

capacity (ties are broken arbitrarily) in the solution. It is clear from Lemma 4

that since f is the facility of the highest capacity, there cannot exist a vertex

v1 between f and vl which is not served by f . Similarly, there cannot exist

a vertex between f and vr which is not served by f in the optimal solution.

Therefore, every client in the interval [vl, vr] in the metric is served by f .

From Lemma 4, this structure of the solution recursively follows for the re-

maining clients and facilities when the facility f along with the clients it serves

are removed.

Therefore, no optimal solution for BkM contains two facilities f1 with capacity

c1 and f2 with capacity c2 (with c1 ≥ c2) such that f2 serves a client in span(f1).

27

3.2 An Exact Dynamic Program

Using the results from the previous section, we build a dynamic program to

solve BkM exactly on line metrics. In our dynamic programming algorithm,

we maintain that the cost of serving a client v by a facility f of capacity cf ,

cf · d(f, v) is charged to the client v.

Each cell of our dynamic programming table is of the form A[k′, i, j, f, cf , nf]

for 1 ≤ i ≤ j ≤ n. The terms i and j denote the interval between the ver-

tices vi and vj. i.e. this includes all vertices (vi, vi+1, · · · , vj). We represent

this interval by [vi, vj]. The cell A[k′, i, j, f, cf , nf] stores the minimum cost

of serving all the clients in [vi, vj] either by opening at most k′ new facilities

that only serve the clients in the interval [vi, vj] or by an external facility f of

capacity cf such that f serves at most nf clients in [vi, vj]. If there exists no

such facility in the subproblem, we replace f by ⊥ and cf and nf by 0. As per

our algorithm, f is the facility with the largest capacity among all the open

facilities whose span intersects the interval [vi−1, vi].

We start with the base cases where each interval has exactly one client i = j

and fill the table in the increasing order of j − i.

Base Cases: A[k′, i, i, f, cf , nf]

• k′ > 0: We open a new facility at vi with capacity 1 to serve its collocated

client. The value at this cell is equal to 0.

• k′ = 0, f 6= ⊥ and nf > 0: We serve vi from f . The cost is cf · d(vi, f).

• If neither of the above cases hold, then the cost is ∞ because there are

no facilities to serve client vi.

Recursive Cases:

In order to find the value at A[k′, i, j, f, cf , nf], we look at the following cases

and assign this cell the minimum value from among the values set by the

respective subproblems.

28

• f 6= ⊥, nf > 0 and f serves vi:

If f serves vi, then f can serve at most nf − 1 clients in the interval

[vi+1, vj]. The associated cost follows from the equation:

A[k′, i, j, f, cf , nf] = cf · d(f, vi) + A[k′, i+ 1, j, f, cf , nf − 1]

• If k′ > 0:

We guess the location of a new facility f ′ such that vi is the left most

client it serves, guess cf ′ , the capacity of f ′, guess j′ such that vj′ is the

right most client that f ′ serves and guess k′′, which is the number of

facilities that only serve clients in the interval [vi+1, vj′]. In this case, the

associated cost of the cell is the minimum cost from all our guesses and

is equal to:

A[k′, i, j, f, cf , nf] = min
f ′,cf ′ ,j

′,k′′
(cf ′ · d(f ′, vi)

+ A[k′′, i+ 1, j′, f ′, cf ′ , nf ′]

+ A[k′ − k′′ − 1, j′ + 1, j, f, cf , nf])

• If none of the above cases hold then, k′ = 0 and nf = 0, and the cost is

equal to ∞.

At the end of the computation, the optimal cost of BkM is stored in the cell

A[k, 1, n,⊥, 0, 0] and the optimal set of clusters along with their centers can

be computed by maintaining and iterating through an auxilary data structure

which stores the minimum-cost decision at each step of the dynamic program.

The only problem with the solution retrieved above is that our guessing strat-

egy can lead to multiple facilities being opened at a single vertex. The following

paragraph gives a way to remedy this without increasing the cost of the opti-

mal solution.

Given a set of p clients v′1, v
′
2, · · · , v′p that are served by a single facility, say f

of capacity p, the contribution of the facility f towards the cost of the BkM

solution is equal to p ·
p∑
i=1

d(f, v′i). To find an optimal location for f given the

29

clients, we have to minimize the sum,
p∑
i=1

d(f, v′i).

It is easy to see that, if we are given a set of clients in a line, the median of

these clients minimizes the sum of absolute deviations from each of the loca-

tions. (i.e) f minimizes
p∑
i=1

d(f, v′i) if f is chosen to be the median of the nodes

v′1, v
′
2, · · · , v′p.

There exists a non-trivial median if p is odd. However, when p is even, every

node f in the interval [v′p
2
, v′p

2
+1] minimizes the value of p ·

p∑
i=1

d(f, v′i).

If the DP returns a solution that contains multiple facilities collocated at a

single vertex v, we know that at most one of the collocated facilities serves

the client at v. Moreover, from the above argument, every facility f at v that

does not serve its collocated client serves an even number of clients such that

the position of v falls between the 2 medians of the clients served by f . In this

case, we simply move the facility f to the location of its nearest collocated

client at no additional loss in the cost of the objective function.

3.2.1 Running Time

Each cell of the table is of the form A[k′, i, j, f, cf , nf]. The attributes k′, cf

and nf are restricted to take values between 0 and n while i and j can only

take values between 1 and n. The attribute f can either denote a node in the

line graph or can be ⊥; hence f takes n+ 1 different values. The total number

of cells in the table is bounded by O(n6).

For computing the value of each of theseO(n6) cells, the dynamic programming

algorithm looks at at most O(n4) different subproblems: 1 subproblem for the

case that f covers i and O(n4) subproblems for each guess of the variables

f ′, cf ′ , k
′′ and j′ (refer to the algorithm for notations). Therefore, the total

running time of the dynamic program is O(n6+4) = O(n10), which is clearly

polynomial.

30

The results discussed in this chapter prove the below theorem:

Theorem 4 The Balanced k-Median problem can be solved in polynomial time

on line metrics.

31

Chapter 4

BkM on General Metrics

In this chapter, we give an approximation algorithm for the metric Balanced

k-Median problem. At a high level, we achieve this goal by first embedding

the given metric into 2-HSTs, followed by a dynamic programming algorithm

which gives a 2-approximation to BkM on HSTs. The main result of this

chapter is the proof of the following theorem.

Theorem 5 There exists an O(log n) approximation algorithm to the metric

Balanced k-Median problem.

We begin by introducing a variant of BkM, which we call the Restricted Bal-

anced k-Median (RBkM) problem.

4.1 Reduction to RBkM

In a feasible Balanced k-Median solution, we define the load of a cluster C

with center v, to be the number of clients C contains. The contribution of

the cluster C towards the cost of the BkM solution is equal to |C| ·
∑
j∈C

d(v, j)

where the first term, also called the balancing term of the objective function

is the load of C and the second term represents the sum of distances of the

clients in C to its center, v.

We define the Restricted Balanced k-Median (RBkM) to be a variant of Bal-

anced k-Median where the balancing term of each cluster’s cost function is

always a power of 2, i.e. in any optimal RBkM solution, a cluster C with

32

center v contributes a cost of UC ·
∑
j∈C

d(v, j) where UC is the closest power of

2 greater than or equal to the load of C. Intuitively, the open facility at v is

capable of serving UC clients, but it only serves |C| clients, where |C| ≤ UC .

In what follows, the capacity of an RBkM cluster C, denotes the value UC .

The following claim proves how one can convert an approximation algorithm

for RBkM into an approximation algorithm for BkM.

Claim 3 Every α-approximate solution to the minimum cost RBkM is a 2α

approximation to BkM on the same graph.

Proof. Given a metric graph G(V, E) and a parameter k as input, let us

denote the optimal cost of RBkM in the given instance by OPTR and the op-

timal cost of BkM by OPTB. Since every feasible solution to RBkM is also a

feasible BkM solution, OPTB ≤ OPTR. Furthermore, by taking any optimal

BkM solution and rounding up the balancing term of its clusters to the nearest

power of 2, we get a new feasible RBkM solution of cost at most 2 · OPTB.

This is because the rounding up operation, in the worst case, doubles the con-

tribution of every cluster’s cost.

The existence of a feasible RBkM solution of cost at most 2 ·OPTB, combined

with the fact that OPTB ≤ OPTR proves the above claim.

In section 2.5.1, we saw that any given metric I can be embedded into a µ-

HST with an expected stretch of O(µ logµ n). This embedding increases the

distance between every pair of nodes in I by a factor of O(µ logµ n), in ex-

pectation. Thus, by linearity of expectation, this embedding increases the

contribution of an arbitrary cluster C’s cost towards the BkM objective in the

given metric, |C| ·
∑
j∈C

d(v, j), by a factor of O(µ logµ n), where v is cluster C’s

center. Therefore, Fakcharoenphol et al.’s algorithm [5] to approximate the

metric I by µ-HSTs increases the cost of the optimal BkM by a factor of at

most O(log n), when µ is regarded as a constant.

33

Moreover, their algorithm [5] also ensures that the distance between every pair

of nodes, u and v in the HST s obtained by the metric embedding of I is at

least equal to the distance between the two points in the metric I. When com-

bined with Claim 3 and the arguments in the preceding paragraph, this proves

that, an α approximation algorithm to RBkM on HSTs yields an O(α log n)

approximation to BkM on the given metric, I.

We show in the rest of this chapter, a dynamic programming framework to

solve RBkM exactly on 2-HSTs. We prove some structural results for opti-

mal RBkM solutions in section 4.2. Using these results, we give an intuition

to our dynamic program by illustrating its working on full binary 2-HSTs in

Section 4.3. This is a hypothetical case modelled to provide the reader with

a flavor of the dynamic program since the HST obtained by embedding is not

guaranteed to be a full binary tree. The complete algorithm for arbitrary 2-

HSTs is described in Section 4.4.

In general, the techniques described in this chapter can be extended to obtain

a µ
µ−1 factor approximation algorithm for BkM in µ-HSTs, by choosing the

capacities to be powers of µ
µ−1 . For simplicity of exposition, we confine to the

case of 2-HSTs in this thesis.

4.2 Structural Results for RBkM on HSTs

To solve RBkM exactly on 2-HSTs using dynamic programming, we start by

demonstrating the existence of an optimal solution with certain helpful struc-

tural properties. Let T = (V,E) denote the 2-HST rooted at a vertex r ∈ V .

For any vertex v ∈ V , let Tv denote the subtree of T rooted at v and ∆(v)

denote the diameter of Tv. By the properties of HST s, it is obvious that Tv

itself is a 2-HST . A client (or facility) is said to be located in the subtree Tv if

the vertex in T representing this client (or facility) is a leaf of Tv. In the same

vein, a client (or facility) is located outside Tv if it is located in the subtree

34

T\Tv.

We emphasize that all clients are located at the leaf nodes of 2-HST s and we

can only open facilities at leaf nodes. An open facility vf is of type i if it has a

capacity of 2i. Thus, each client v served by vf contributes a cost of 2i ·d(vf , v)

towards the RBkM solution.

Lemma 5 In an optimal RBkM solution in HSTs, every facility serves its

collocated client.

Proof. Suppose there exists an optimal RBkM solution that opens a facility

at a location vf ∈ V but vf does not serve the client located at vf . Let w

be the deepest node in T such that vf ∈ Tw and there is some client vc ∈ Tw
served by vf . We close the facility at vf , open a facility at vc, and have all

the clients previously served by vf be served by this new facility at vc. After

this operation, the distance from vc to its serving facility strictly decreases and

the distance of all other clients served by this facility remain the same by the

properties of 2-HST s, which contradicts optimality of the solution.

We will use the above result to simplify the base cases of our dynamic program.

Recall that an open facility has type i, if the cluster it serves has a capacity of

2i.

Lemma 6 In an optimal RBkM solution on 2-HST s and for every vertex v of

the tree, there is at most one type of facility in Tv which serves clients located

outside Tv. Furthermore, if a facility of type i in Tv serves clients located

outside Tv, then every open facility in Tv has type at least i.

Proof. Let v be a non-root vertex of T (as the lemma is trivial otherwise) and

let pv be its parent node. Suppose there are two open facilities f1, f2 ∈ Tv of

types i1, i2 respectively such that i2 < i1. Also, suppose f1 is serving a client

c1 /∈ Tv. Note that by Lemma 5, facility f2 is serving its collocated client. Let

u denote the least common ancestor of f1 and c1. Observe that u lies above v

35

Figure 4.1: Proof of Lemma 6

in the tree. We claim that the modified solution in which f2 serves c1 and f1

serves f2’s collocated client (with other assignments remaining unaffected) has

a lower cost. The following inequality formally proves the claim by showing

the difference in cost between the modified and initial solutions.

2i1 ·∆(v) + 2i2 ·∆(u)− 2i1 ·∆(u) ≤ 2i1 ·∆(v)− 2i1−1 ·∆(u)

≤ 2i1−1 ·∆(u)− 2i1−1 ·∆(u)

= 0.

The first inequality uses i2+1 ≤ i1, and the second one uses the fact that u is at

a strictly higher level than v, and by the property of 2-HSTs, ∆(v) ≤ ∆(u)/2.

Finally, since f2 is no longer serving its collocated client, we get a strictly

cheaper solution by moving f2 to its nearest client (as in the proof of Lemma

5), contradicting the optimality of the initial solution. Therefore, any facility

that is open in Tv has type at least i1. The same reasoning also shows that if

f2 is also serving a client c2 6∈ Tv then i1 = i2. Otherwise, if, say, i2 > i1 then

the new solution that has c2 served by f1 and the client collocated with f1 be-

ing served by f2 would be cheaper (after moving f1 to its next nearest client).

Having proved Lemmas 5 and 6, we now lay out some observations, which are

direct results of the above lemmas. These observations are immensely helpful

36

in constructing the dynamic program that we will see in Sections 4.3 and 4.4.

Observation 1 In an optimal solution to RBkM with two vertices u, v ∈ V

such that Tu and Tv are disjoint, there cannot exist two facilities fu and fv

and clients cu and cv in the subtrees rooted at u and v, respectively, such that

fu serves cv and fv serves cu.

If this were not the case, we can reduce the cost by swapping the clients and

having fu serve cu and fv serve cv to yield a solution of strictly smaller cost.

Observation 2 For any feasible solution to RBkM and a vertex v in the tree,

if u,w ∈ Tv are two clients served by two facilities fu, fw /∈ Tv then the cost of

fu serving u and fw serving w is the same as the cost of fu serving w and fw

serving u.

This is because, for every vertex v ∈ T , all clients and facilities in Tv are

equidistant from v by Definition 1.

Observation 3 For a facility with capacity mf located at vf and a client

located at vc, let vlca denote their least common ancestor. Then the cost of

serving vc at vf is 2 ·mf · d(vf , vlca).

The above observation stems from the fact that d(vf , vlca) = d(vc, vlca) =
d(vf ,vc)

2
, by properties of HSTs. This will be helpful in our dynamic program-

ming algorithm, because, in some sense, it only keeps track of the distance

between vf and vlca for a client vc served by vf . For an edge e between vf

and vlca, we call 2 · mf · d(e) the actual cost of the edge e for the (vc, vf)

pair, where d(e) is the weight of e in the metric. Note that the sum of the

actual costs of edges between vf and vlca is precisely mf · d(vf , vc). We rely

on the actual cost of the edges to find the cost of intermediate solutions in

our dynamic program. Below, we give two definitions that will be used in our

algorithm for RBkM on HSTs.

37

Definition 3 For a subtree Tv of T and any feasible solution to RBkM, we

use costinTv to refer to the sum of the actual costs of edges within Tv accrued

due to all the facility-client pairs (vf , vc) where vf ∈ Tv.

Thus, for any feasible solution to RBkM, costinTr is the cost of this solution.

Definition 4 In any partial assignment of clients to facilities, the slack of a

facility f with capacity 2t is the difference between 2t and the number of clients

that are being served by f . Moreover, for a vertex v in the 2-HST, the slack

of subtree Tv denotes the sum of slacks of the facilities located in Tv.

4.3 Dynamic Program for full-binary HSTs

In this section, we present our dynamic programming algorithm under the

assumption that the 2-HST obtained by metric embedding is a full binary tree,

i.e. each non-leaf node in the HST has exactly two children. As mentioned

earlier, this is a hypothetical scenario and we present this first because it is

simpler than the general case and still introduces the key ideas behind our

algorithm. The general case is more technical and requires two levels of DP;

the details appear in Section 4.4. To define a subproblem for the DP, let us

consider an arbitrary feasible solution and focus on a subtree Tv, for v ∈ T .

We start by defining a few parameters:

• kv is the number of facilities opened in the subtree Tv.

• tv denotes the type of the facility, if any, in Tv which serves clients located

outside Tv (c.f. Lemma 6). We assign a value of −1 to tv if no client in

T\Tv is served by a facility in Tv.

• uv is the number of clients in T\Tv that are served by facilities in Tv.

• dv is the number of clients in Tv that are served by facilities in T\Tv
(and)

• o is the slack of Tv.

38

Each entry in our table is of the form: A[v, kv, tv, uv, dv, o]. For a vertex

v ∈ V , the value stored in this table entry is the minimum of costinTv over all

possible feasible solutions with parameters kv, tv, uv, dv, o if the cell denotes a

non-pessimal state (defined below) and has a value of ∞ otherwise.

Observation 3 in the previous section gives insight on why it is sufficient to

keep track of the dv values without caring about the type or the location of

the facilities outside Tv for calculating the cost of the solution. Our algorithm

for RBkM fills the table for all permissible values of parameters v, kv, tv, uv, dv

and o in the decreasing order of the level of the vertex v (from leaf to root).

For vertices in the same level, ties are broken arbitrarily.

Pessimal States and Base Cases

An entry of the dynamic programming table is said to be trivially suboptimal

if it is forced to contain a facility that does not cover its collocated client and

is said to be infeasible when either the number of clients to be covered or the

number of facilities to be opened within a subtree is greater than the total

number of nodes in the subtree. We call an entry of the table pessimal when

it is either infeasible or trivially suboptimal. It is easy to determine the pessi-

mal states in the DP table at the leaf level of the tree. For other subproblems,

a cell in the table is pessimal if and only if all its subproblems are pessimal

states. For the ease of execution of our DP, we assign a value of ∞ to these

cells in our table.

Notice that, at the leaf level of a 2-HST, all the vertices are client nodes.

But some of these nodes may also be locations where collocated facilities are

opened in a solution. At this stage, the only non-pessimal subproblems are

the following:

(a) Facility nodes that correspond to subproblems of the kindA[v, 1, tv, uv, 0, o]

satisfying the capacity constraint that uv+o+1 = 2tv , where the number

1 indicates the facility’s collocated client from Lemma 5 (and)

39

(b) Client nodes which have subproblems of the form A[v, 0,−1, 0, 1, 0].

The value stored in these entries is zero.

Recurrence

If a vertex v has two children v1 and v2 and the values for the dynamic program

are already computed for all subproblems of Tv1 and Tv2 , then the recurrence

we use is given as follows:

A[v, kv, tv, uv, dv, o] = min
k′,k′′,t∗1,t

∗
2,u
∗
1,u
∗
2,d
∗
1,d
∗
2,o1,o2

{A[v1, k
′, t∗1, u

∗
1, d
∗
1, o1]

+ A[v2, k
′′, t∗2, u

∗
2, d
∗
2, o2]

+ 2
∑

i={1,2},t∗i≥0

2t
∗
i · u∗i · d(v, vi)} (4.1)

where the subproblems in the above equation satisfy the following consistency

constraints:

1. Type consistency: We consider two cases for tv assuming that uv > 0.

If uv = 0, the problem boils down to the case where tv = −1.

(a) If tv = −1, then no facility in Tv serves clients located in T\Tv.

Therefore, all the clients served by facilities in Tv1 are located either

in Tv1 or in Tv2 . Similarly, for the subtree Tv2 , every client served by

a facility in Tv2 is either located in Tv1 or in Tv2 . But it is clear from

Observation 1 that an optimal solution cannot simultaneously have

a facility in Tv1 serving a client in Tv2 and a facility in Tv2 serving

a client in Tv1 . Hence, min(tv1 , tv2) = tv = −1.

(b) If tv ≥ 0, then there exists at least one client in T\Tv that will be

served by a facility in Tv. If one of the two subtrees Tv1 or Tv2 , say

Tv1 has type tv1 = −1, then the type of the other subtree tv2 must

be equal to the type of the facility leaving its parent, tv. Otherwise,

if both the values, tv1 and tv2 , are non-negative, Lemma 6 implies

that min(tv1 , tv2) = tv.

40

2. Slack consistency: The slack of Tv comes from the combined slack of

facilities in both its subtrees, Tv1 and Tv2 . Therefore, o = o1 + o2.

3. Consistency in the number of facilities : kv is the number of facil-

ities opened in Tv. Since these facilities belong to the subtrees Tv1 and

Tv2 , we must have kv = k′ + k′′.

4. Flow consistency: u∗1 +u∗2 +dv = d∗1 +d∗2 +uv. This constraint ensures

that the subproblems we are looking at are consistent with the uv and dv

values in hand. More specifically, note that u∗1 is the number of clients

in T\Tv1 served by facilities in Tv1 and that these u∗1 clients can either be

located in Tv2 or in the subtree T\Tv. Let us denote by u∗1a, the number

of such clients in T\Tv and by u∗1b, the number of clients in Tv2 served by

facilities in Tv1 . Likewise, let u∗2a be the number of clients in T\Tv and

u∗2b, the number of clients in Tv1 which are served by facilities in Tv2 . It

is easy to see that u∗1a + u∗1b = u∗1 and u∗2a + u∗2b = u∗2. Additionally, by

accounting for the clients in T\Tv served by facilities in Tv, we have

uv = u∗1a + u∗2a (4.2)

Now, out of the d∗1 clients in Tv1 and d∗2 clients in Tv2 which are served by

facilities located outside their respective subtrees, dv of these clients are

served by facilities in T\Tv, while the remaining clients d∗1 +d∗2−dv must

either be served by the u∗1b facilities situated in Tv1 and u∗2b situated in

Tv2 . Hence,

d∗1 + d∗2 = dv + u∗1b + u∗2b (4.3)

Summing the Equations (4.2) and (4.3) and from the observation that

u∗1a+u∗1b = u∗1 and u∗2a+u∗2b = u∗2, we get the flow constraint stated above.

The last term in Equation (4.1) gives the sum of actual costs of the edges be-

tween v and its children for the client-facility pairs where the facility is inside

one of the two subtrees Tv1 or Tv2 . From Definition 3, this value is equal to

41

the difference, costinTv − (costinTv1 + costinTv2).

The optimal RBkM solution is the minimum value from amongst the entries

A[r, k,−1, 0, 0, o] for all values of o. Note that the values o (the slack variable)

can take lie in the interval [0, n − 1] in any optimal solution, where n is the

number of leaf nodes in T . This is because the slack of any facility is strictly

smaller than half its capacity (otherwise we can reduce the type of this facility

by 1).

4.4 Dynamic Program for arbitrary HSTs

Now that we have seen a dynamic program for full binary 2-HST s, we finally

look at extending this algorithm to solve RBkM exactly for generic 2-HST s.

For a vertex v ∈ T with `(v) children, we maintain an arbitrary total order of

these children and denote them by v1, v2, · · · , v`(v). For 1 ≤ i ≤ `(v), let Tv,i

represent the subtree of T induced by the vertices in {v} ∪ Tv1 ∪ Tv2 ∪ · · · ∪ Tvi .

In addition, let Tv,0 denote the trivial tree containing the singleton vertex

{v}. In order to define the subproblems of our DP, consider an arbitrary

feasible solution and consider an arbitrary v, i and focus on Tv,i. The following

parameters are used to define our subproblems.

• kv : is the number of facilities open in the subtree Tv,i.

• tv : is the type of facility in the subtree Tv,i, if any, that serves clients

located outside Tv. If there is no such facility, tv is equal to −1. By

Lemma 6, there is a unique value for tv in every subtree Tv.

• uv : is the number of clients outside the subtree Tv that are covered by

type tv facilities located in Tv,i.

• dv : Much like the uv values above, the dv value represents the number

of clients in Tv,i that are served by facilities located outside Tv.

• rv : is the number of clients in the subtree Tv\Tv,i that are served by

facilities located in Tv,i.

42

• lv : is the number of clients in the subtree Tv,i that are served by facilities

located in Tv\Tv,i.

• o : is the slack of Tv,i.

Each entry in our table is of the form:

DP [v, i, kv, tv, uv, dv, rv, lv, o] (4.4)

For a vertex v ∈ V with `(v) > 0 children, and any 1 ≤ i ≤ `(v), the

value stored in this table entry is the minimum of costinTv,i , over all possible

feasible solutions with parameters kv, tv, uv, dv, rv, lv, o if the subproblem de-

notes a non-pessimal state. For a leaf vertex v ∈ V with `(v) = 0, the cell

DP [v, 0, kv, tv, uv, dv, rv, lv, o] stores a value of 0 (which is equal to costinTv,0)

if the parameters correspond to a non-pessimal state and ∞ otherwise. We

discuss this case in detail, later in this section.

High Level Overview

Our algorithm for RBkM populates the table for each subtree Tv,i, and for

every possible value of kv, tv, uv, dv, rv, lv and o, in the decreasing order of the

levels of the nodes across levels (from leaf to root) and in the increasing order

of the ordering of the children of v for vertices in the same level that share the

same parent node. For two vertices in the same level that do not share a com-

mon parent, ties are broken arbitrarily. Let the vertex v have `(v) children,

named as per the total ordering as v1, v2, · · · , v`(v).

Note that the number of facilities and clients that are reaching in and out of

the tree Tv,i will be split across the subtrees Tv,i−1 and Tvi . Additionally, the

only feasible states we will need to look for in the subtree Tv,`(v) will be the

ones with rv and lv values of 0.

Pessimal states in the execution of the DP are either infeasible states or triv-

ially suboptimal states, as defined in the case of binary 2-HSTs. These states

are dealt with by setting a value of ∞ to the respective cells in our table, in

43

the same vein as our algorithm for the binary case.

If we denote the root of T by vr, it is clear that in any feasible solution to

RBkM on T , all the clients in T are covered by facilities within T . Since

we have discretized the values of the capacities on the facilities into O(log n)

buckets, there can be facilities in T which are assigned to fewer clients in

T , as compared to their capacities. Therefore, the final solution to RBkM

would entail picking the minimum-cost solution from among the values stored

in DP [vr, `(vr), k,−1, 0, 0, 0, 0, o] for all possible values of o. Again, the value

of o is at most n− 1 because the slack of every facility in any optimal solution

is strictly less than half its capacity.

Base Cases

At the leaf level of a 2-HST , all the vertices are client nodes, although some

of the clients are also locations where collocated facilities are opened. At this

stage, the only subproblems capable of being a part of an optimal solution are:

(a) Facility nodes that correspond to subproblems of the form

DP [v, 0, 1, tv, uv, 0, 0, 0, o]

satisfying the multiplicity constraint that uv + o + 1 = 2tv , where the

number 1 indicates the facility’s collocated client from Lemma 5 (and)

(b) Client nodes which have subproblems of the form

DP [v, 0, 0,−1, 0, 1, 0, 0, 0].

These base cases have value zero. Subproblems at the leaf level which do not

belong to the above categories are pessimal states.

Computing Table Entries

Assume that we are now considering the subproblem Tv,i with appropriate

values of the other parameters and we wish to determine the value of

DP [v, i, kv, tv, uv, dv, rv, lv, o], where 1 ≤ i ≤ `(v), given that the minimum

44

cost incurred in each of the assignments for all subproblems within Tvi and

for various instances of Tv,i−1 (if i ≥ 2) are precomputed. We analyze the

recursive structure of the dynamic program as two separate cases.

1. If i = 1 : When i equals 1, we are looking at the subtree of T induced

by the vertices in Tv1 ∪{v}. As v1 is the first vertex in the total order of

the children of v, the facilities and clients in any feasible solution to the

subproblem must come from Tv1 . Therefore,

DP [v, 1, kv, tv, uv, dv, rv, lv, o] = DP [v1, `(v1), kv, t
∗, u∗, d∗, 0, 0, o]

+ Ec1 ,

where Ec1 =

{
2 · 2t∗ · u∗ · d(v, v1) if t∗ ≥ 0

0 if t∗ = −1

where t∗ denotes the type of the facility in the subtree rooted at v1 having

clients outside this subtree, u∗ is the number of clients outside Tv1 served

by a facility inside Tv1 and d∗ is the number of clients in Tvi served by

facilities located outside this subtree. Moreover, the value of t∗, u∗ and

d∗ can be determined from the following consistency constraints:

(a) Facilities located outside Tv1 : Consider the set of d∗ clients

in Tv1 , which are served by facilities located outside this subtree.

These facilities can be situated either in the subtree T\Tv or in

the subtree Tv\Tv1 . From the table entry considered, we know that

there are a total of dv clients of the former category and lv clients

of the latter. Therefore, d∗ = dv + lv.

(b) Clients located outside Tv1 :

• Case (i): Suppose tv 6= −1. Then, there must exist uv clients

outside Tv, served by facilities of type tv located in Tv1 . From

Lemma 6, there exists a unique type of facility in Tv1 serving

clients outside this subtree. Also, these facilities serve uv clients

45

from T\Tv and rv clients from Tv\Tv1 . Therefore, t∗ = tv and

u∗ = uv + rv.

• Case (ii) : If tv = −1, then every client served by a facility

in Tv1 is either located within this subtree or is located in the

subtree Tv\Tv1 . Hence, u∗ = rv.

The last term in the DP recurrence, Ec1 captures the actual cost of the

edge (v, v1) in the feasible solution obtained. This value is equal to

costinTv,1 − cost
in
Tv1

.

2. If 2 ≤ i ≤ `(v) :

If i ≥ 2, a feasible solution to the subproblem on Tv,i is obtained from

feasible solutions to problems on subtrees Tv,i−1 and Tvi , for various

values of the other parameters kv, tv, uv, dv, rv, lv and o. The recurrence,

in this case is as follows:

DP [v, i, kv, tv, uv, dv, rv, lv, o] = min
k′,k′′,t∗,u′v ,u

∗,d′v ,d
∗,r′v ,l

′
v ,o1,o2

{

DP [v, i− 1, k′, tv, u
′
v, d
′
v, r
′
v, l
′
v, o1]

+DP [vi, `(vi), k
′′, t∗, u∗, d∗, 0, 0, o2]

+ Ec2},

where Ec2 =

{
2 · 2t∗ · u∗ · d(v, vi) if t∗ ≥ 0

0 if t∗ = −1

where the k′ is the number of open facilities in Tv,i−1, and k′′ is the

number of open facilities in the subtree Tvi , subject to the constraint

that k′+k′′ = kv, t
∗ denotes the type (can also be -1) of the facility in the

subtree rooted at vi having clients outside this subtree, u∗ is the number

of clients outside Tvi served by a facility inside Tvi , d
∗ is the number of

clients in Tvi served by facilities located outside this subtree, o1 and o2

are the slacks of Tv,i−1 and Tvi respectively, satisfying o1 + o2 = o. The

46

other variables in the recurrence statement, u′v, d
′
v, r
′
v and l′v conform to

the following consistency constraints:

(a) Clients located outside Tv : We break the u∗ clients outside Tvi

that are served by a facility in the subtree into two groups: let u∗2 be

the number of clients in Tv\Tvi that are served by a facility inside Tvi

and u∗1 = u∗ − u∗2 be the rest (which are the clients outside Tv that

are served by a facility inside Tvi). Then constraint u′v = uv − u∗1
ensures consistency in the number of facilities leaving Tv to serve

the associated clients.

(b) Facilities located outside Tv : As in the above constraint, if we

split d∗ into d∗1 and d∗2 where d∗2 refers to the number of clients of

Tvi served by a facility in Tv\Tv,i and d∗1 is the number of the clients

of Tvi that are served by a facility outside Tv. Similar to the above

constraints, d′v = dv − d∗1 is a necessary and sufficient consistency

constraint for the facilities located outside Tv,i serving clients within

the subtree.

(c) Type Constraint for Tvi : We know from Lemma 6 that every

facility in Tv that serves clients in T\Tv is of the same type. There-

fore, u∗1 can be greater than zero only when t∗ = tv. If t∗ 6= tv, then

u∗1 = 0.

(d) Flow consistency for the subtree Tv : Consider the total num-

ber of facility and client pairs in the trees rooted at the children of

v. The condition r′v + u∗2 + lv = l′v + d∗2 + rv should be met for any

feasible solution to RBkM. The proof to this statement is similar

to the proof of the flow consistency constraint in the case of full

binary 2-HSTs.

The last term in the recurrence, Ec2 gives the sum of actual costs of the edge

(v, vi). From Definition 3, this value is equal to the difference, costinTvi −

(costinTvi−1
+ costinTvi).

47

4.4.1 Analysis and Running time

To compute the running time of our algorithm, we start by finding an upper-

bound on the size of our table. For a fixed value of v and i, the parameters

kv, dv, uv, lv and rv cannot exceed n. The slack variable o is at most n − 1

in any optimal solution. The only remaining variable, tv, can take a value

of at most dlog2 ne, which is by definition. Finally, for any fixed value of v,

each i represents a unique index of the children of vertex v from our total

ordering of the children of v in T . We know that these children are all in

the same level of the tree T . Since the number of nodes in any single level

of a rooted tree is at most the number of leaves in the tree, a vertex v in the

tree can have at most n children, which is also the number of values i can take.

The number of distinct values of v is equal to the number of nodes in the tree

T , which by the algorithm of [5] is at most n · log2 ∆, where ∆ is the diameter

of the original metric. By a losing a factor of (1 + ε) on the approximation

ratio, standard techniques can scale the distances so that ∆ = n2. Then num-

ber of nodes in the tree is at most 2n · log2 n = O(n · log n).

From the above arguments, the total number of entries in our DP table is at

most O(n8 · log2 n).

Before filling each entry in the DP table, we look at a number of cells based

on the values of the variables k′, k′′, t∗, u′v, u
∗, d′v, d

∗, r′v, l
′
v, o1 and o2. Moreover,

from the consistency constraints, it follows that the variables k′ and k′′ are

dependent. i.e. Setting a value for one variable leaves us with exactly one

choice for the other variable to meet the consistency constraints. Therefore,

there are at most O(n) guesses needed to set k′ and k′′. Similarly, the slack o

in the dynamic program’s recursive equation is divided among o1 and o2; thus,

a guess on one of these variables gives us exactly one choice to set the other

and there are at most O(n) guesses needed to set o1 and o2.

48

Since the type variable t∗ can take at most O(log2 n) many values, these are

the number of guesses that will be needed in the worst case for t∗. As for

the other variables (u′v, u
∗, d′v, d

∗, r′v and l′v), we infer from the flow constraint

(r′v + u∗2 + lv = l′v + d∗2 + rv) that these variables are dependent. As each of

these six variables are capable of taking a non-negative integral value of at

most n, we have n5 ways to set a value to these variables, while meeting the

consistency constraints.

From the above arguments, the total number of pairs of cells in the DP table

that we look at to compute a single entry is at most O(n · n · log n · n5) =

O(n7 log n). As there are at most O(n8 · log2 n) entries in the DP table and

computing each entry looks at O(n7 log n) cells in the table, the running time

of the dynamic program is of the order O(n15 log3 n).

Running Time Improvements

As we just observed, our dynamic programming algorithm has a running time

of O(n15 log3 n). The following lemma aims to reduce both the size of our table

and the running time of the DP by a factor of O(n).

Lemma 7 In each optimal subproblem DP [v, i, kv, tv, uv, dv, rv, lv, o] of our

DP table, one of the two variables rv and lv is always equal to 0 for an RBkM

solution.

Proof. Let us assume that our HST, T is not binary. Otherwise, the lemma

trivially holds from Observation 1.

Let v1, v2 and v3 be three distinct vertices in T that share a common parent

v such that the following hold in an optimal RBkM solution:

• The subtree rooted at v1, Tv1 , contains an open facility f1, which serves

a client, c2, where c2 is located in Tv2 .

49

• There exists a client c1 in Tv1 , which is served by an open facility, f3

located in the tree Tv3 .

If there do not exist such vertices v1, v2 and v3, then the lemma holds by

default. Consider the new feasible solution where the facilities serving c1 and

c2 are switched. i.e. the facility f3 serves the client c2 and the facility f1 serves

client c1. By Observation 2, the contribution of the cluster centered at f3 is

unaffected by having it serve the client c2 instead of c1, but the contribution of

the cluster centered at f1 strictly decreases by at least 2 ·d(v1, v), contradicting

the optimality of the initial solution.

Therefore, an optimal solution cannot contain a vertex v1 such that an open

facility in Tv1 serves a client in Tv\Tv1 and a client in Tv1 is served by an open

facility in Tv\Tv1 at the same time.

As a direct consequence of the above lemma, the number of guesses on the

variables rv and lv in the dynamic program reduces from O(n2) to at most

2 · n. Instead of storing both rv and lv in a DP cell, we gain by storing only

the rv−lv values, improving the running time of the algorithm to O(n14 log3 n).

50

Chapter 5

Conclusion

5.1 Summary

In this thesis, we gave an O(log n) approximation algorithm for both Min Sum

k-Clustering and Balanced k-Median. Intuitively, these results were obtained

by repeatedly breaking down MSkC and BkM, and recasting them into other,

relatively easier problems at a loss of a bounded approximation factor. In

what follows, we enumerate the key steps of the algorithm.

(a) Every instance of metric Min Sum k-Clustering can be transformed into a

corresponding instance of metric Balanced k-Median on the same graph,

at a loss of an approximation factor of 2, using Lemma 2. Therefore,

any approximation algorithm to BkM guarantees an approximation al-

gorithm to MSkC. At this step, we have collapsed the two problems into

one single problem, BkM.

(b) By using Theorem 3, we convert an instance of metric BkM into an

instance of BkM on 2-HSTs, at a loss of an additional factor of O(log n)

to the approximation ratio. At this stage, an α approximation to BkM

on 2-HSTs guarantees an O(α log n) approximation to both MSkC and

BkM on general metrics.

(c) At a further loss of factor 2, we convert the Balanced k-Median problem

into Restricted Balanced k-Median (RBkM), a variant of BkM where

the capacities of opened facilities are restricted to being powers of 2.

51

(d) In Chapter 4, we prove that RBkM can be solved exactly on 2-HSTs.

Working backwards through the approximation factor we have lost along

the way, this gives us an O(log n) approximation for metric instances of

both MSkC and BkM.

This result improves on the previous best O(ε−1 log1+ε n)-approximation by

Bartal et al. [1] by a factor of O(ε−1 logε n), where ε is any arbitrarily small

constant greater than 0.

Besides the above result, we also gave auxiliary results to Balanced k-Median

in Chapters 2, 3 and 4. In Chapter 2, we proved that no approximation al-

gorithms exist for Balanced k-Median if the instance is not a metric. We

also defined a new problem, the Generalized Balanced k-Median problem and

proved that it is APX-Hard, in Theorem 2. In Chapter 3, we showed an exact

algorithm for Balanced k-Median on line metrics (cf. Theorem 4). It is inter-

esting to observe that most of the structural results leading to this algorithm

hold for general metrics too. Our techniques from Chapter 4, which give a

2-approximation algorithm for BkM on 2-HSTs, can be generalized to give a

µ
µ−1 approximate BkM for µ-HSTs.

5.2 Future Work

In Chapter 2 of this thesis, we proved a generalized version of metric Balanced

k-Median (GBkM) to be APX-Hard. Though we believe that the metric Bal-

anced k-Median problem is also APX-Hard, proving this still remains an open

problem. Moreover, one can also focus on improving the hardness gap of

GBkM.

Our O(log n) approximation for Balanced k-Median relies heavily on embed-

ding metric instances into HSTs. In fact, we lose a factor of O(log n) in the

approximation ratio at this step, the bound for which was shown to be tight by

[5]. Therefore, it is clear that any algorithm that beats the factor of O(log n)

52

must use vastly different techniques, not involving HSTs.

In Chapter 3, our algorithm for BkM in line metrics leverages on the laminar-

ity of an optimal solution. Although the structural properties leading to an

exact algorithm on line metrics hold in the case of arbitrary metric instances as

well, these results have been inadequate for us to formulate an approximation

algorithm. However, they can be seen as a starting point for future research

towards better algorithms for metric BkM.

As with most optimization problems, another avenue towards developing ap-

proximation algorithms for these problems is linear programming. Unfortu-

nately, nothing is known about the linear program for BkM. Proving lower and

upper bounds on the integrality gap of the linear program as well as develop-

ing techniques to round an optimal LP solution are other promising areas for

future research.

Bartal et al’s [1] approximation technique results in a quasi-polynomial time,

O(log n) approximation algorithm for the Generalized Balanced k-Median prob-

lem. However, finding a polynomial time, true approximation for GBkM still

remains an open problem. In addition to the above, future work on these

problems can also focus on developing lower bounds to approximate BkM and

MSkC.

53

Bibliography

[1] Y. Bartal, M. Charikar and D. Raz. Approximating min-sum k-Clustering
in metric spaces. In Proceedings of STOC, 2001.

[2] S. Sahni and T. Gonzalez. P-Complete Approximation Problems. J. of
the ACM (JACM), v.23 n.3, p.555-565, July 1976.

[3] B. Behsaz, Z. Friggstad, M. Salavatipour and R. Sivakumar. Approxi-
mation Algorithms for Min-Sum k-Clustering and Balanced k-Median. In
Proceedings of ICALP, 2015.

[4] Y. Bartal. Probabilistic approximation of metric spaces and its algorith-
mic application. In the Proceedings of the 37th Annual Symposium on
Foundations of Computer Science, p. 184-193, 1996.

[5] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approxi-
mating arbitrary metrics by tree metrics. In Proceedings of STOC, 2003.

[6] A. Czumaj, C. Sohler. Small Space Representations for Metric Min-Sum
k-Clustering and Their Applications. In Proceedings of Symposium on
Theoretical Aspects of Computer Science, p. 536-548, 2007.

[7] M. Chlebik, J. Chlebikova. Approximation hardness for small occurrence
instances of NP-Hard problems. ECCC TR02-073, 2002.

[8] P. Berman, M. Karpinski. Improved Approximation lower bounds on
small occurrence optimization. ECCC TR03-008, 2003.

[9] W. Fernandez de la Vega, M. Karpinski, C. Kenyon and Yuval Rabani.
Approximation schemes for clustering problems. In In Proceedings STOC
2003.

[10] A. Frieze and M. Jerrum. Improved approximation algorithms for Max
k cCut and Max Bisection. Algorithmica, Volume 18, Issue 1 , pp 67-81,
1997.

[11] V. Kann, S. Khanna, J. Lagergren, and A. Panconessi. On the hardness
of max k-cut and its dual. In Israeli Symposium on Theoretical Computer
Science, 1996.

[12] N. Guttman-Beck and R. Hassin. Approximation algorithms for min-sum
p-clustering. Discrete Applied Mathematics, 89:125-142, 1998.

[13] P. Indyk. A sublinear time approximation scheme for clustering in metric
spaces. In Proceedings of FOCS, 1999.

54

[14] S. Arora, M. Charikar, K. Makarychev and Y. Makarychev. O(
√

log n)-
approximation algorithms for Min UnCut, Min-2CNF Deletion, and di-
rected cut problems. In Proceedings of STOC, 2005.

[15] L.J. Schulman. Clustering for edge-cost minimization. In Proceedings of
STOC 2000.

[16] M. Charikar, S. Guha, E. Tardos and D.B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. In Proceedings of
STOC, p 1-10, 1999.

[17] J. Chuzhoy, Y. Rabani. Approximating k-median with non-uniform ca-
pacities. In Proceedings of SODA, pp 952-958, 2005.

[18] K. Aardal, P. L. van de Berg, D. Gijswijt and S. Li. Approximation
Algorithms for Hard Capacitated k-facility Location Problems. European
Journal of Operational Research, 2015.

[19] S. Li. On Uniform Capacitated k-Median beyond the Natural LP Relax-
ation. SODA, p:696-707, 2015.

[20] S. Li. Approximating capacitated k-median with (1 + ε)k open facilities.
http://arxiv.org/abs/1411.5630.

[21] J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan and K. Trinh. An im-
proved approximation for k-median, and positive correlation in budgeted
optimization. SODA, p:737-756, 2015.

[22] S. Li and O. Svensson. Approximating k-Median via psuedo-
approximation. In the Proceedings of STOC, 2013.

[23] C. Wu, D. Xu, D. Du and Y. Wang. An improved approxima-
tion algorithm for k-median problem using a new factor-revealing LP.
http://arxiv.org/abs/1410.4161.

[24] T.F. Gonzalez. Clustering to minimize the maximum intercluster dis-
tance. Theoretical Computer Science, p:293-306, 1985.

55

	Preliminaries
	Motivation
	Graph Theoretic Fundamentals
	Approximation Algorithms
	Linear Programming
	Approximation: An Example
	A Collection of Optimization Problems

	Problem Statements and Initial Results
	Problem Definition
	Previous Work
	Hardness Results
	Relation between BkM and MSkC
	An existing approximation for BkM
	Hierarchically Separated Trees

	Balanced k-Median on the line metric
	Structural results and laminarity
	An Exact Dynamic Program
	Running Time

	BkM on General Metrics
	Reduction to RBkM
	Structural Results for RBkM on HSTs
	Dynamic Program for full-binary HSTs
	Dynamic Program for arbitrary HSTs
	Analysis and Running time

	Conclusion
	Summary
	Future Work

	Bibliography

