
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Reengineering Web Applications to Web-service Providers

by

Yingtao Jiang

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta

Spring 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ONK1AON4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, me Wellington
Ottawa ON K1A0N4
Canada

0 -4 9 4 -0 8 0 8 9 -2

Your file Voire reference
ISBN:
Our file Notre reference
ISBN:

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lntemet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n*y aura aucun contenu manquant

■♦i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Web services are the latest technology to integrate applications through Internet.

Many B2C services backed by web applications could be reused in an application

integration scenario. Correctly and effectively migrating those web applications that

sit behind a presentation layer poses a challenging problem for researchers of

software engineering.

ServiceBuilder is a tool that can automatically generate a web-service compliant

wrapper around web application without knowledge about its code base. To achieve

this ServiceBuilder collects a set of HTML documents by feeding the web application

with input data. Then it applies pattern-mining techniques on the collected response

documents and with little user involvement, generates data extraction rules for data

around predefined labels of interests. Finally, ServiceBuilder generates a wrapper that

at run time forwards the service requester’s input data to the web application and

extracts the output data from the responding document and returns it to the service

requester.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to extend my heartfelt gratitude to my supervisor, Dr. Eleni Stroulia, for

her guidance, insightful feedback and support throughout this work. Without her

vision, guidance and encouragement, this work would not have been possible.

I would also like to extend my thanks to my colleagues and friends for their help and

encouragements during my graduate studies. My special thanks goes to Edward

Zadrozny and Sze-Lai Mok for their contributions towards the implementation of the

prototype system. Special thanks also goes to Dr. Mohammad El-Ramly for providing

me with the original implementation of the IPM algorithm.

Finally, I would like to thank my family and my wife for all their love and support

throughout the years.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

CHAPTER 1 INTRODUCTION AND MOTIVATION____________________1

1.1 In tr o d u c t io n ...1

1.1.1 Traditional web applications..1

1.1.2 Web Services...3

1.2 T he Research P roblem : M otivation an d Background 5

1.3 Th e Proposed So lution ...7

1.4 Th e Co n tribu tio n s...9

1.5 T h esis O u t l in e ... 10

CHAPTER 2 RELATED WORK

2.1 W r a ppe r In d u c tio n ..12

2 .1.1 Kushmerick ’s work.. 12

2.1.2 SoftMealy... 14

2.1.3 Stalker..17

2.2 HTML St r u c tu r e b a se d a p p r o a c h e s .. 19

2.2.1 Xwrap.. 19

2.2.2 W4F...20

2.2.3 Lixto...20

2.2.4 RoadRunner...21

2.3 S u m m a riz a tio n a n d C o m p ariso n s w it h S e rv ic e B u ild e r23

CHAPTER 3 THE SERVICEBUILDER SYSTEM: ARCHITECTURE AND

PROCESS 26

3.1 T h e D a ta R e t r ie v e r .. 26

3.1.1 The Document Collector...27

3.1.2 The Cleaner...30

3.1.3 The Translator...30

3.2 The Extractton-Rule Lea rn er ... 32

3.2.1 The Pattern Miner...32

3.2.1.1 Sequitur..33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.1.2 IPM.. 34

3.2.1.3 Filtering Heuristics.. 34

3.2.1.3.1 Minimum Rule Set (MRS) Heuristic... 35

3.2.1.3.2 Maximum Common Sub-pattern (MCS) Heuristics...........................35

3.2.2 The Pattern Viewer.. 36

3.2.3 The Type Editor... 39

3.3 T he Code Gen era to r ... 43

CHAPTER 4 EXPERIMENTAL EVALUATION_______________________ 47

4.1 Extracting Serv ices w ith F ix ed -attributes Ob je c t s49

4.1.1 Efficiency o f IPM...51

4.1.2 Effectiveness o f IPM ..55

4.1.3 Efficiency and effectiveness o f MRS heuristic...59

4.2 E xtracting Services w ith Variant-a t t r ib u ie s Ob je c t s60

4.2.1 Effectiveness and Efficiency o f IPM ..61

4.2.2 Efficiency and effectiveness o f the MCS heuristic.......................................63

4.3 Evaluation and d isc u ssio n ... 65

4.3.1 Distinct ServiceBuilder Features..65

4.3.2 Limitations... 67

CHAPTER 5 CONTRIBUTIONS AND FUTURE WORK_________________ 70

5.1 Research contributions... 70

5.2 F uture w ork .. 71

BlkjUOORAl^HY 73

APPENDIX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables
T a b l e 1: Ex per im en t d a t a o f IPM r u n t im e (m s) ... 77

T a b l e 2: Ex per im en t d a t a o f P M p a t t e r n n u m b e r ... 78

T a b l e 3: L a n d m a r k c o v e r a g e r a t e (100% su ppo r t) ..79

T a b l e 4: MRS r u n t im e (m s) ..80

T a b l e 5: Pa tter n n u m b e r s a f ie r MRS h e u r ist ic s .. 81

T a b l e 6: PM Run t im e f o r A m a z o n a n d Ch a pt e r s (m s) ...82

T able 7: Object coverage r a t e ... 82

T a b l e 8: T im e Sp e n t in T h e MCS h eu r ist ic (m s) ..83

T able 9: Pattern num ber before MCS h eu r istic s... 83

T a b l e 10: P a tt e r n n u m b e r a fte r MCS h e u r is t ic s ..84

T able 11: L andm arks u sed in yahoo stock-qu ote service ...84

T a b le 12: A su m m ary o f th e co m p ariso n s am o n g w ra p p e r c o n s tru c tio n to o l s . 85

T a b le 13: A su m m ary o f som e f a c to r s t h a t a f f e c t t e e S e rv ic e B u ild e r r u n tim e.

..85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures
F igure 1: T hree-tiered architecture o f w eb application .. 2

F igure 2: Basic Service-Oriented ARCHrrECTURE... 3

F igu re 3: The architecture o f future W eb . (Reproduced fro m W 3C w ebsite) 6

F igu re 4: E xam ple docum ent. .. 13

F igu re 5: W IEN w rapper... 14

F igu re 6: An exam ple docum ent (m odified from [HD98b]) .. 16

F igu re 7: SoftM ealy FST w rapper (m odified from [HD98b]).. 17

F ig u re 8: T h e overall architecture and process o f th e ServiceBu ild er tool. .. 26

F igu re 9: m ainCo nfig .x sd .. 28

F ig u re 10: E xam ple requestP rotocol.x m l ..29

fig u r e 11: An exam ple o f inputD ata .xm l file .. 30

F igure 12: T he pattern view er ...38

F ig u re 13: Sim ple type editor ... 39

fig u r e 14: Com plex data ty pe ed ito r ... 41

F igu re 15: An exam ple ty pe fil e ..42

F igu re 16: Rela tion sh ip betw een Co d e Generator and the code r r generates. .. 45

F igu re 17: W SD L file generated fro m the w rapper 46

F igure 18: An exam ple o f fdoed-a tir ib u tes o b jec t .. 48

FIGURE 19: AN EXAMPLE OF VARIANT-ATTRIBUTES OBJECT...49

F ig u re 20: E xperim ent result of IPM run tim e ...51

F igure 21: Num ber o f patterns m in ed by IP M ... 52

F igu re 22: Average docum ent l e n g t h ...53

fig u r e 23: Num ber of pa ttern vs. pa ttern length ..53

FIGURE 24: IPM RUN TIME VS. NUMBER OF TRAINING EXAMPLES..54

F igu re 25: Landm ark coverage r a t e ... 56

F igu re 26: Four types o f CBC w eather output d o cum ent ...58

F igu re 27: E xperim ent results o f M RS heuristics efficien cy59

F igu re 28: Experim ent results o f M RS effec tiv en ess ..60

F ig u re 29: Efficiency o f IPM ...62

F ig u re 30: Effectiveness o f IP M ...62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F ig u re 31: R un tim e o f MCS..63

F igure 32: Num ber of pattern before T he MCS h eu r istic ...64

F igure 33: Num ber o f patterns after MCS h eu ristic ..65

fig u r e 34: Situation w here both sm all and large pattern can be u s e d69

fig u r e 35: Situation w here only large pattern is u s e f u l ..69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1 Introduction and Motivation

The World Wide Web is changing rapidly from an application-to-human interaction

medium to an application-to-application interaction and integration medium. Web

services are the latest standard that dictates the application interaction and integration

through the Web. In this chapter, we first give a short introduction to web services. Then,

we establish the motivation of this research and briefly describe our proposed approach to

the research problem. Finally, we summarize the main contributions of this research and

outline the thesis organization.

1.1 Introduction

Since its invention, the World Wide Web has been expanding very fast. The major

driving force behind this growth is the businesses’ use of WWW as a service delivery

channel. As the business demands change from supporting B2C interactions to also

supporting B2B collaborations as well, the technologies behind the delivery of services

change accordingly. In this section, we review the traditional web application

technologies that only support human-machine interaction and the newest web services

technology that support machine-machine interaction.

1.1.1 Traditional web applications

In its early days, the World Wide Web consisted of static HTML (Hyper Text Mark-up

Language) documents weaved together by hyperlinks and was mainly used in academia

as a media of information sharing. As the Web evolved, it quickly attracted the attention

of businesses and was used as an information-publishing and service-delivery channel.

The software systems responsible for delivering services through the web are called web

applications. By definition, a web application is “a software program that uses HTTP for

its core communication protocol and delivers Web-based information to the user in the

HTML language.”[MWSD] A typical web application is usually a three-tiered system as

shown in Figure 1.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We can see that the whole system is divided into three separate tiers: presentation,

business logic, and data storage and access. This architecture makes it possible to develop

and maintain each tier separately. In a working web application, the presentation tier

tends to be changed more frequently than the other two tiers.

As the web application uses a browser as its client side, it is obvious that it intends to

deliver service to an end-user, i.e. a person. Therefore, web applications are usually used

in a B2C business model. Nowadays, a large number of online businesses provide

services to their customers in this fashion (i.e. a machine to human interaction style).

According to [EMR02], a report published by the United States Census Bureau, in 2002

the total sales value of this kind of E-commerce in the United States alone is $85 billion.

It is interesting to note that many of the services delivered in this way could be reused in

a B2B (Business to Business) scenario. For example, the services provided by online

hotel reservation, car rental, plan ticket booking etc. could be reused by an online travel

planning service. In other words, a new travel planning service could be created by

integrating those services currently provided to users online.

Presentation Her

I

Database

Data Storage Tier

Business Logic H er

Figure 1: Three-tiered architecture of web application.

However, this is not an easy task. If we look back at the three-tier web application

architecture, we can see that the actual business functionality we want to integrate lies in

the business logic tier, which is hidden behind a presentation layer and not directly

available through a programmatic API. This kind of web application architecture is not an

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

arbitrary choice. It conforms to the traditional web architecture, which essentially is

defined in terms of a URL, as the unique location from where to access the application,

HTTP, as the protocol to communicate with the application, and HTML, as the language

of the interface of the Web. HTML is a human-oriented interface. But to integrate

functionality through the Web, we need a machine-oriented interface, i.e. a programming

interface.

The effort to integrate web applications started in the early days of web applications.

Limited by the old web architecture, integrations were usually formed in an ad hoc

manner since there were no standards to guide the way how to integrate those

applications and how to define the programming interface through which an application

should exposed to the web.

1.1.2 Web Services

The web-services stack of standards constitutes the latest technology in support of a

standard way for applications to expose their functionalities on the web and interoperate

with other applications. Web services are based on a new architecture paradigm called

Service-Oriented Architecture (SOA). Figure 2 shows a basic service-oriented

architecture. In this architecture, there are three roles: a service provider, a service

requester and a service broker.

PublishFind

Bind

Service
Description

Service

Service
Requester

Figure 2: Basic Service-Oriented Architecture
3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The service provider is the host of a service and its implementation. A service requester

is an entity that uses the service provided by the service provider. The service provider

and the service requester communicate with each other through message exchange. The

syntax of the message exchange is defined by the interface of the service, which is

documented in a file called service description file. In order for the message exchange

between service provider and service requesters to be successful, they must make an

agreement in advance on both the syntax and the semantics of the message to be

exchanged.

It is the third role in the architecture, i.e., the service broker, which is responsible for the

establishment of the syntactic and semantic agreement between the service provider and

service requester. In a typical scenario, the three roles interact as follows:

• The service provider publishes its services description and service semantics to

the service broker.

• A service requester finds the service provider by submitting criteria of the

expected service provider to the service broker.

• The service broker use the criteria provided by the service requester to locate a

service that meets the criteria and returns the service description of the found

service to the service requester.

• Based on the information provided in the service description, the service requester

initiates a message “conversation” with the service provider. In other words, the

service requester binds with the service provider.

The web-services stack of standards defines the basic elements of the implementation of

the above-discussed service-oriented architecture. More specifically, web services

includes the following basic standards:

• WSDL (Web Service Description Language). The metadata language developed

by World Wide Web Consortium (W3C) as the service description language. A

WSDL description file is the contract a service promised to the outside world. It

specifies four major aspects of the service described:

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o The data format a service consumes and produces in terms of a data type

system.

o The messages format exchanged between a service and its client,

o The high level functionality a service provides in terms of operations,

o The actual access point on the web of this service.

• SOAP (Simple Object Access Protocol). SOAP is a lightweight XML-based

protocol for messaging and Remote Procedure Calls (RPCs). It is the

recommended messaging protocol for web services by W3C.

• UDDI (Universal Description Discovery & Integration). UDDI is an OASIS

(Organization for the Advancement of Structured Information Standards)

specification that defines a registry framework to implement the service broker

services as described in SO A.

WSDL, SOAP and UDDI together constitute the basic set of web services standards that

implement the basic service-oriented architecture. WSDL defines the way to describe the

service, SOAP defines the communication protocol between service provider and service

requester, and UDDI defines a standard registry service and the API to interact with i t So

far those web service standards receive a universal support from vendors. There are other

web services standardizations efforts out there to address issues such as service

choreography (composition), security, quality of service (QoS) etc. But most of those

efforts are not as mature and stable as the three standard we mentioned above.

12 The Research Problem: Motivation and Background

With the business demand for the Web to support new kinds of services, especially the

support for machine-to-machine interaction, the architecture of the Web slowly evolves.

Figure 3 shows the vision of the future web architecture by W3C. In this new architecture,

the web services we introduced in the previous section are the standard way for an

application to expose its functionality as a programmatic interface to the web. If an online

application provides a web service interface, it is ready to be integrated by other services

through the Web.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As the functionality of many legacy web applications already available on the web could

be reused in a business-to-business integration scenario, reengineering existing web

applications into web-services providers becomes a compelling research problem.

One possible way to reengineer a legacy web application into web services is by code

based migration, which usually involves writing a new component that reuses the old

code and packages it in a novel way to expose the desired functionalities as web services.

This approach is time consuming and error prone. In order to write the new code, the

programmer needs to fully understand the existing code base, which is not an easy task

especially when the legacy web application is large with sparse documentation.

XML j C !/"

HTTP

Figure 3: The architecture of future Web. (Reproduced from W3C website)

Another way is to use a middleware product such as [Artix] from IONA to migrate

existing code base to web services. Those kinds of products provide tool support for

migrating existing code bases to web services. Compared to the first approach, this

approach is faster and less error prone. But it usually requires that the existing code base

already conform to a certain kind of middleware standard or a specific object model.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Furthermore, it requires the purchase of new pieces of middleware that is usually too

costly to afford for small companies, especially since the business model for using and

providing web services is not completely clear yet

Both of the above mentioned migration approaches assume the modification of the source

code of the web application being migrated. However, that is not always a viable

assumption: for example, the company that runs the web application does not own the

source code or does not want to expose the source code to a third party for security

reasons. Another example would be a newly started online travel assistant service that

wants to migrate the publicly available online weather forecast services into web services

so their can reuse it as part of the service their provide to their customer. In both cases, a

challenging migration problem exists: how to migrate a web application into web service

without access to its code base? This thesis provides a novel solution to address this

problem.

13 The Proposed Solution

We propose a migration approach based on interaction reengineering [ERSS02], which

does not require modifications to the source code. This approach is based on the

observation of how a web application interacts with a user. The web application receives

input as a user hits a submit button after filling a form in a web document. As a result, the

web application executes its business logic and possibly contacts its underlying database

and returns a dynamically generated web document containing the data the user expects.

Note that, in this interaction, both the input and the output data are embedded in some

HTML documents. If we write a piece of code to simulate the user input to the web

application and to extract the user expected data out of the HTML document returned by

the web application, then we could expose this piece of code as the programmatic

interface to the original web application. Essentially this piece of new code is a wrapper

around the user interface of the legacy web application. The major challenge of building

such a wrapper is to determine where in the returned documents to extract the data a user

expects. In other words, the wrapper needs to have the appropriate output-data extraction

rule.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ServiceBuilder is a prototype system built to facilitate the automatic generation of such a

wrapper. The generated wrapper conforms to the web service standards and is ready to be

deployed as a web service. The basic idea behind ServiceBuilder’s wrapper-generation

process is that, even though each individual document returned by the web application

might be different from one another in its contents, there are, however partial structural

invariants among most returned documents that contain the actual returned data. Those

invariant structural features - called valid patterns in ServiceBuilder - could be used as a

stencil to extract data out in the future returned documents. There might be other

invariant structures among returned documents that do not contain data of interest to the

user. In order to distinguish those structures from patterns containing data, we introduce

the concept of “landmarks”. Landmarks are those words or symbols in the returned

documents that are located in close proximity to data of interest. If a pattern contains

landmarks, it is most likely also to contain data of interest. Intuitively, the data of interest

is usually close to the meaningful domain-specific labels contained in the returned

response document of the web application.

To leam the data-extraction rule, the ServiceBuilder first takes as input a set of

“landmarks” and a set of example input data from the user. Then it encapsulates the

example input data into properly formed of HTTP requests and sends those requests to

the target web application. Once it has received all the returned documents from the

target web application, ServiceBuilder uses sequential pattern mining techniques to mine

through the collected documents and generates a set of valid patterns. The ServiceBuilder

displays those patterns with whatever data they happen to contain in the HTML

documents collected from the web-application responses highlighted to the user and lets

the user decide which pattern actually contains data the user interested in. After the user

selects the valid patterns, the ServiceBuilder presents a data type editor window, and

supports the user in defining the desired output data format. The ServiceBuilder

automatically establishes the mapping between the output data format and the rule used

to extract data. Based on this mapping information, the ServiceBuilder automatically

generates a Java implementation conforming to the web service standard that wraps

around the target web site.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

At run time, the wrapper takes input from its client application, appropriately formulates

the client input and initiates a HTTP request to the target website. Upon receiving the

web document from the target website, the wrapper uses the appropriate pattern to extract

data from it and populates the extracted data into a Java Bean object, which is returned

back as the result to the client.

1.4 The Contributions

The main contributions of this thesis are outlined below:

• It proposes a new methodology with a corresponding toolkit to migrate traditional

web applications into web services providers.

• It introduces the use of sequential pattern mining techniques to solve the problem

of extraction-rule learning in wrapper construction. This new approach has

several advantages over traditional wrapper induction and tree structure based

wrapper construction techniques.

o First, it does not require the manual labeling of training examples,

o Second, the produced wrapper is more robust to source changes than

wrappers generated by other approaches,

o Third, this approach can efficiently learn from a large amount of examples,

thus providing more confidence for the resulting dala-extraction rale.

• It provides a highly automatic, easy to use, wrapper construction toolkit

ServiceBuilder is highly automatic. With proper setup information, the user only

needs to specify a set of landmarks and the tool automatically collects training

examples from the web application and generates a small set of candidate

extraction patterns. Those candidate patterns are visually presented to the user in

the context of actual web documents collected. Once the user selects the pattern or

patterns containing data of interest and defines the output data format with the

help of a wizard, the tool automatically generates the final Java implementation.

The whole wrapper construction process is just a matter of minutes.

• ServiceBuilder offers a set of heuristics that can efficiently and effectively

eliminate most spurious patterns and greatly free the user from the burden of

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

wading through a large amount of candidate patterns to select the one that

containing data of interest. Depending on the properties of the output web

document of a web application, the user could select different heuristics to filter

the candidate patterns.

• The generated wrapper is a Java implementation of web services and ready to be

deployed on a variety of platforms. As a web service, the wrapper is accessible to

a broad range of clients.

• This work provides a foundation for further service composition extensions. Now

ServiceBuilder can only migrate one step, search engine like services into web

services. With a state management component and a platform that support the

future web service composition standards, it could be extended to migrate multi-

step, complex web applications into web services.

1.5 Thesis Outline

This thesis is organized as follows. Chapter 2 provides an overview of some related

research on wrapper construction in general. Some representative web wrapper

construction tools are described and compared to ServiceBuilder. Chapter 3 describes

ServiceBuilder in detail. A high-level architecture overview is given first Then following

the data flow, the implementation and the process of each individual component is

discussed in detail. Experiments and evaluations are described in Chapter 4. Chapter 5

summarizes the thesis with major contributions of this research and points out some

possible future research directions.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2 Related Work

The web service implementation generated by the ServiceBuilder is essentially a wrapper

around the web application. In this chapter, we will review some previous research works

in the field of web wrapper construction and will compare them with ServiceBuilder.

A Web wrapper is a software component that can do the following:

• Retrieve web document;

• Identify data of interest from the web document;

• Extract the identified data and package it into a format desired by the user of the

wrapper.

The major challenge in building a wrapper is to learn the extraction rule that can be used

to correctly and efficiently extract the right data out of target web documents.

During the early days of the web, wrappers were usually manually constructed using

different kinds of general programming languages such as Java, C++ or Perl. The major

problem with these hand-coded wrapper-construction processes is that they are labor-

intensive, error-prone and hard to maintain.

To alleviate this situation, researchers mainly in the database community started to

develop languages [CM98][AM98] especially designed to write wrappers. Compared to

general-purpose programming languages, these languages provide more expressive

power and reduce the effort needed to write a wrapper. But major drawbacks still persist:

wrappers are constructed manually; to write a wrapper, previous knowledge of the

structure of the web documents is required.

To further help users to find the extraction rule, a lot of research work has been done

[LPHOO] [SAO 1] [BFGO1] [CMMO1] [KusOOa] [HD98a] [MMKO1]. They either provide tool

support in the process of extraction-rule discovery or they provide new techniques that

can semi-automatically or automatically leam the extraction rule. Research work toward

automating the process of wrapper construction can be loosely divided into two

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

categories. The first school of research is called wrapper induction [KWD97][Kus97].

Nicholas Kushmerick formulated the automatic wrapper construction problem as an

inductive learning problem. By providing the learning algorithm with some labeled

training examples, the learning algorithm generates delimiter-based extraction rules that

can later be used to extract data from web document. The second group of wrapper

construction research makes use of the structural information of HTML documents. They

usually represent the HTML document as some kind of tree structure in memory and then

interact with user to generate extraction rules. The generated rules usually contain path

information of the tree.

Following, we will review some of the major works of each category.

2.1 Wrapper Induction

2.1.1 Kushmerick’s work

Kushmerick [KWD97][Kus97][Kus00a] formalized the wrapper construction problem as

an inductive learning problem enabling the automatic generation of extraction rules. He

described six different classes of wrappers each appropriate to a certain kind of web

documents (or other documents). For each of those classes of wrappers, a machine-

learning algorithm is provided to learn the extraction rule.

The general idea of this work is as follows:

• A document is viewed as a sequence of characters.

• One or more tuples with fixed number of attributes exists in each document A

tuple is roughly corresponding to a record in the backend database.

• The training example is labeled. A labeled example is represented by a matrix.

Each row of the matrix is a K element vector. Each element of this vector is a

<start, end> pair, representing the start and end position within the example

document of the corresponding attribute value. The labeling process basically

identifies two things:

o It distinguishes each tuple from one another,

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o It distinguishes each attribute from one another within a tuple.

• With a set of labeled training examples, the algorithm tries to find a vector of

delimiter string that could be used to extract each tuple out of the document.

Consider for example the following example document from [KusOOa]:

<HTML><TlTLE>Some Country Codes</TITLE><BODY>
Congo <I>242</1>

Egypt <l>20 </l>

Belize <l>501 </lxB R >
Spain <l>34 < /lxB R >
</BODYx/HTML>

Figure 4: Example document

There are four tuples in this example document, each tuple with 2 attributes i.e. “country

name” and “country code”. This document could be wrapped by the simplest kind of

wrapper - LR wrapper. “L” and “R” represent “left” and “right” respectively. The task of

the LR wrapper-leaming algorithm is to find two delimiters (a “left” delimiter and a

“right” delimiter) for each attribute in a tuple. In this example, the learning algorithm

needs to find 4 delimiters. One possible learning result will be 11=, rl=<YB>, 12=<L>,

r2=</I>. Using those four delimiters and two operation Skip(li) and Extract(ri) the

wrapper can extract the ith attribute out of a web document

The WEEN (Wrapper Induction Environment) tool implemented some of Kushmerick’s

wrapper learning algorithm. By providing the tool a set of labeled examples and selecting

which kind of wrapper is appropriate for these examples, the tool can generate a specific

kind of wrapper that can be used to extract data. The wrapper generated by WIEN is

essentially a linear finite-state transducer (FST). Each attribute is a state with two

possible out-going edges, one for extracting texts and the other for skipping to the next

state. The input to the SkipO operation is the delimiter.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

extract^) extract(r2) extract(r3) extract(r4)

sk ip (l1) skip(l2) skip(l3) skip(l4)

Figure 5: WIEN wrapper.

Kushmerick’s work is seminal in that it is the first one to propose the use of inductive-

leaming techniques to solve the automatic wrapper construction problem. Furthermore, it

identified six types of wrapper classes and corresponding wrapper-leaming algorithms.

The major limitations of this work are as follows:

• It needs manually labeled training examples.

• It only deals with tuples with fixed number of attributes. If there are missing

attributes or the order of the attributes varies the technique fails.

• It can only deal with flat tuples and cannot deal with data with nested structures.

If we compare ServiceBuilder to WIEN, we can see that the ServiceBuilder in general

solves the above mentioned problems: it does not need labeled training examples and it

can deal with nested structure and missing attributes as well. This is not to say

ServiceBuilder is always “better” than WTEN, as those two tools have different

assumptions. WIEN assumes the flat fixed attributes tuple structure of the target web

documents, where ServiceBuilder assumes the existence of the “landmark” word in the

target web document. If the target web documents happen to satisfy the first assumption

and not the second, then ServiceBuilder will fail where WIEN will succeed. Another

difference between ServiceBuilder and WIEN is that the “atomic” building block of

delimiter is different. ServiceBuilder uses “token” i.e. HTML tag or “word” as the basic

elements of delimiter while WIEN use “character” as the basic element, as it is learned

the delimiter “character” by “character.” Thus, in extreme cases, it is possible that a

“perfect” (100% support) wrapper cannot be found with ServiceBuilder but could be

found with WIEN.

2.1.2 SoftMealy

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Similar to WIEN, SoftMealy [HD98a] is a wrapper induction tool that can generate data

extraction wrappers represented as a finite-state transducers. But unlike WIEN that only

generates linear FSTs, SoftMealy can generate non-linear FSTs. In other words, in the

FSTs generated by SoftMealy, it is possible to have more than one successor states. As

each state represents an attribute, this means that SoftMealy can deal with missing

attributes and varying order of attributes in the training samples. Another difference

between SoftMealy and WIEN is that, SoftMealy replaced literal “delimiters” used in

WIEN with a more abstract artifact called “contextual rules” to locate the attribute values

of interest.

The basic concepts of SoftMealy is as follows:

• Token: a segment of input string. HTML tags, numbers, words, punctuation

marks are all tokens. A token is denoted as t (v), where t is a token class and v is a

string. For instance, a string “123” in a web document is denoted as Num (123),

which means this is a number token, and its value is 123.

• Separator the invisible borderline between two tokens.

• Dummy attribute: a sub-string we want to skip; denoted as -k if it following the k

attribute.

• Contextual rule: a sequence of tokens t(v) and its generalized form t(-), which

denotes any token of class t (e.g. Num (-) denotes any number). Contextual rules

are used to characterize a set of individual separators that separate two adjacent

attributes.

Take Figure 6 for an example. It contains two records of personal information of a certain

department. Each record contains several attributes that are already marked out by

rectangles with the attribute name. For example, the first record contains attributes like

“URL”, “Name”, “Academic title” and “Admin title”.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U (URL)_____________
^LI>(< A HREF="mani.htnil">|

N (Nam e) A (Academic title)__________
Mani Chandy:. -L -professor of Computer Science|</I> and

M (Admin title)_____________________
<I>fexecutive Officer for Computer Science-)'.-'I>

U (URL)
^LI>)< A~HREF="david. htmT*>|

U M (Admin title)
j David E. Breen. <I> Director o f Computer Graphics Lab</I>

Figure 6: An example document (modified from [HD98b])

The separator between “<I>” and “Professor7’ can be characterized by the following two

contextual rules:

• LefiRule: Html(<I>). This means before the invisible separator is a HTML tag

<I>;

• RightRule: ClAlph(Professor) Spc(l) Oalph(of). Token class “ClAlph” represent

a string starts with a capital letter; “Oalph” means a string starts with a lower case

letter. Spc(x) suggest x number of space characters. So this right contextual rule

suggests that after the invisible separator is a “Professor of” string.

Unlike WIEN-generated wrappers where each state represents an attribute, states in

SoftMealy wrappers represent either an attribute or a “dummy attribute”. A “dummy

attribute” basically represents a state where the wrapper skips a series of strings until the

input is a contextual rule that leads to a new “attribute” state. As the example documents

are already labeled and the operations in each state are fixed (extraction in attribute states

and skipping in dummy attribute states), the only thing that needs to be learned to

construct a SoftMealy wrapper is to learn the contextual rules that characterize those

separators of each individual attribute. SoftMealy uses a generalization algorithm to learn

those contextual rules from the labeled examples. Here we do not present the details of

the learning algorithm, instead we just demonstrate how SoftMealy wrappers can deal

with missing attributes and different attributes situations. The FST wrapper shown in

Figure 7 is learned from the example document in Figure 6.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

skip extract skip extractextract

<g> o &
extract

vN
extract skip extract / j

Figure 7: SoftMealy FST wrapper (modified from [HD98b]).

Comparing Figure 7 with Figure 6 we can see that the missing of attribute “Academic

title” in the second record in the example document is simply reflected by a shortcut

transition edge from state —N to M. That is to say, if a new instance of mutation of

attributes appears in the example document, a new transition edge or new states (in case

new attributes exist in the new record) will be added to the existing FST.

SoftMealy is a big improvement as compared to WIEN. It solves the missing and variant

attribute order problem of WIEN by changing from linear FST to non-linear FST. But it

still needs labeled training examples and assumes a flat tuple structure of the web

document Compared to ServiceBuilder, SoftMealy - like WIEN - does not need the

appearance of “landmark” word that adjacent to the attributes to be extracted.

ServiceBuilder basically sacrifices the generality of the learning approach in favor of

removing the labeling process of the training examples. This trade off is well justified

since in dynamically generated web documents those kinds of “landmark” words are

usually available. Furthermore, nested structure is not a problem to ServiceBuilder.

2 .13 Stalker

Stalker [MMK01] is a wrapper induction algorithm that was originally developed in the

information agent framework Ariadne [KMA+98]. It further developed the techniques

used in WIEN and SoftMealy and the generated wrapper is more general and can deal

with hierarchical data extraction.
17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In Stalker, a new kind of formalism called embedded catalog tree (ECT) is developed,

which can describe the structure of a wide-range of semi-structured documents. The ECT

description of a web document is a tree-like structure in which leaves are the relevant

data of interest to the user. The internal nodes of the ECT represent lists of tuples. Each

of those tuples can be either a leaf node or another embedded list. To learn the wrapper,

Stalker requires the following two inputs:

• A ECT description of the structure of the target documents;

• A set of training examples in the form of sequence of tokens representing the

surroundings of the data to be extracted.

The Stalker wrapper induction algorithm uses a greedy strategy to generate data

extraction rules. It first tries to learn a rule that covers as many training examples as

possible. After this, it deletes all the covered examples. If there still exist uncovered

examples, it repeats the learning process again and generates a new disjunctive rule. This

process continues until there are no more uncovered examples. The result of this learning

process is a set of disjunctive rules that can be used in the data extraction process.

The wrappers generated by Stalker are more general than the ones generated by

SoftMealy. For example each disjunctive rule in SoftMealy is either a single SkipToO, or

a SkipToOSkipUntilO combination in which two contextual rules must match

immediately after each other, while in Stalker, a disjunctive rule could be multiple

SkipToO and SkipUntilO combinations, thus more expressive than SoftMealy. Compare

to WIEN and SoftMealy, the Stalker wrappers can extract objects inside nested structure

in a web document.

Though Stalker generate wrappers that more expressive than that of WIEN and

SoftMealy, it suffers its own limitations as compared to ServiceBuilder. First like WIEN

and SoftMealy, Stalker requires that the user prepare the training examples. It provides a

GUI to help the user to prepare each individual training example. The GUI does

somehow relieves some human error, but the human involvement in making the training

examples implies that using a large amount of training examples is not practical. The

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

second problem of Stalker is that it needs the explicit knowledge of HTML structure of

the target documents expressed in the form of ECT tree as input. This is the price of

having the ability to extract objects in nested structures. ServiceBuilder does not need the

explicit knowledge of the structure of the source documents and can still deal with

objects in nested structure. However, both SoftMealy and Stalker are better than

ServiceBuilder in that they have the concept of “token class” which provides a higher

level of abstraction than “token”. The token class corresponds to the wildcard in regular

expressions. The use of “token class” in some cases can dramatically reduce the number

of extraction rules needed to cover all the training examples.

2.2 HTML Structure based approaches

2.2.1 Xwrap

Xwrap [LPHOO] is a wrapper construction tool that shares the similar architecture with

ServiceBuilder. It consists of the following four components:

• Syntactical Structure Normalization component that is responsible for fetching,

cleaning a specific web document and generating a internal parse tree of the

document;

• Information-Extraction component that is responsible for displaying the document

in a tree format and interacting with the user step by step to explore and generate

the extraction rule;

• Code-generation component that generates java code which implements the

wrapper, and

• Testing component that run the generated wrapper on other user specified

documents to test whether the wrapper could extract the correct data from other

similar documents or not

Among those four components, the Information-Extraction component is the most

important one. It displays the source document to the user in an XML-tree graph. Then

the user selects semantic tokens that are of interest to them from the tree and also

identifies the structure within the tree that contains all the data of interest and this
19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

component will generate a set of data extraction rules. After that the user will use the

code generation component to generate a Java implementation of the wrapper and use the

Test components to test the generality of the new generated wrapper.

Xwrap provides an interactive environment for the wrapper constructor to interactively

build a wrapper without actually coding. But except for calculating the corresponding

path to the semantic token, the system does not really try to generalize these paths into

extraction rule. In other words, these rules are specific for the document where they are

generated. If a similar document has a slightly different tree structure, then the learned

rule may fail and Xwrap does not provide a mechanism to get a more general rule that

could work on both documents.

2.2.2 W4F

W4F [SA01] (The World Wide Web Wrapper Factory) was developed in the University

of Pennsylvania. This tool translates an example document into a DOM tree in memory.

Each inner node in the tree is a HTML tag and each leaf node is a piece of data contained

in the document. Based on this kind of representation, each piece of extraction rule is a

path either absolute or relative in the tree that leads to a leaf node. Extraction rules are

explicitly specified by the user in a high-level scripting language called HEL (HTML

Extraction Language). Even though the tool displays the corresponding path of the piece

of data when a user points the mouse to it in an editor, it still relies largely on the user to

figure out and specify in HEL a general extraction rule. If all the target documents share

the exact same HTML structure, then this tool works fine. But when there are structure

variations among web documents, especially when the variation is large, it is hard or even

impossible for the user to generalize a general extraction rule. So, in the sense of

extraction rule “learning”, W4F demonstrates no “intelligence” at all. But compared to

Xwrap, W4F provides the scripting language that could be used by the user to write

general data extraction rules.

2.23 Lixto

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lixto [BFG01] is an interactive wrapper-generator tool that also relies on the tree

structure of HTML. But different from W4F, Lixto does not only rely on path

information to get the extraction rule but can combine other constraints. It displays an

example web document in an interactive GUI and lets the user indicate the interesting

data items. After the user indicates a piece of data, the tool will try to generalize the

underlying pattern and highlight all the instances in the example that satisfy the same

kind of pattern. Depending on the result, the user can iteratively refine the pattern until

the highlighted instances are only those that the user interested in. Now the user can save

the last pattern as a data-extraction rule. Behind the scenes, an internal Elog script

program is generated and saved, which can be executed by the Lixto executor component

later to extract data from similar documents.

Compared to W4F, Lixto demonstrates “intelligence” in helping the user generalize the

rule within a document. But this kind of help is limited, as it only tries to generalize one

rule at a time. To generate all the rules that could cover the whole complex object of

interest multiple rounds of trial and error are necessary. For documents that contain

multiple complex objects, this process can be very time consuming.

2.2.4 RoadRunner

Before talking about RoadRunner [CMM01], let’s briefly summarize some limitations

the previous introduced techniques have. First, HTML structure based techniques like

Xwrap, W4F and Lixto are based on a single example document As a result the

generated wrappers are specific to that document. Even though some systems like Xwrap

support the user to test the generated wrappers on other documents, they do not provide

any assistance in generalizing the wrappers among multiple example documents. This

characteristic limits their applicability to the general problem case of generating wrappers

across multiple documents. Second, all the wrapper induction techniques we reviewed are

essentially supervised learning techniques, i.e. labeled training examples are required. As

preparation of these training examples is tedious and can be error-prone, unsupervised

learning is preferred to supervised learning in this case.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RoadRunner is a wrapper-learning algorithm that does not have the two limitations

mentioned above. It can leam wrappers from two or more example documents that

belong to the same “document class”. The basic idea behind RoadRunner is that a

template can be found by comparing two documents and finding similarities and

differences between them. The similarities or the invariants are the common HTML

structures in the example documents; the differences are the actual data populated to the

structure from the backend database.

But unlike other HTML structure based techniques, which represent the example

document as a tree structure in memory, RoadRunner represents each example document

as a string consisting of a sequence of tokens. It deems the dynamic document generation

process as an encoding of the database content into string of HTML code and hence, the

data extraction process as a reverse decoding process. The wrapper to be learned is a

union-free regular expression that represents the HTML structure that contains database

contents.

Tokens in the example documents are divided into two classes: HTML tags and ordinary

strings. To leam the wrapper, RoadRunner use a match technique called ACME (Align,

Collapse under Mismatch, and Extract). This algorithm works on two objects at a time:

• A sequence of token called sample;

• A wrapper, in other words a union-free regular expression.

Before the execution of the algorithm, the sample and the wrapper are initialized with the

two example documents. Then the algorithm is trying to find a common regular

expression for the two documents by sequentially comparing tokens from each object and

trying to solve token mismatches between the wrapper and the sample. When a mismatch

happens, the algorithm first determines the type of mismatch. If the mismatch is a string

mismatch, i.e. a mismatch between two string tokens then this token spot is marked as

#PCDATA, i.e. it is a contents comes from the database. If the mismatch is a tag

mismatch, the algorithm will first try to search whether it is a start of a repeated pattern.

If the search is successful, a generalization pattern is inserted in the wrapper otherwise

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the algorithm will mark one of the mismatched tags (determined by a bit more further

search in both wrapper and sample) as an optional tag. The result of dealing with

mismatch is the generalization of the wrapper, i.e. either find a variable slot #PCDATA

or find an optional tag or find a repeated pattern.

The major limitation of RoadRunner is that when string mismatch happened in place

other than data of interest, RoadRunner would wrongly marked that spot as a piece of

data of interest. This is based on RoadRunner’s basic assumption: all string mismatches

indicate a place corresponding to a variable in the backend script. RoadRunner relies on

this assumption to discover data of interest and thus does not need labeled training

examples. ServiceBuilder, on the other hand, rely on landmarks to help locate data of

interest and hence avoid this problem. Of course, this comes with a price - the loss of

fully automation, as in ServiceBuilder the user needs to specify a set of landmarks before

the learning process starts. However, we believe this tradeoff is justified as with a little

bit loss of fully automation, the accuracy of the generated wrapper is much more

improved. Instead of returning data mixed with a lot of irrelevant information, the

ServiceBuilder only returns those pieces of data that the user really wants at runtime.

23 Summarizations and Comparisons with ServiceBuilder

In this section, we summarize the works of HTML structure based wrapper construction

techniques and compare them with ServiceBuilder. In general, the works we introduced

in section 2.2 can be roughly classified into two categories:

• Tree path based approach: Xwrap, W4F and Lixto;

• Token sequence based approach: RoadRunner.

Though fundamentally both of them leverage the HTML structure invariants present in

the examples to get the extraction rule(s), they attack the problem in different ways. The

first approach (Xwrap, W4F and Lixto) uses the tree-structure information directly. These

tools model a web document either as a DOM tree or a similar tree structure in memory.

Data of interest are leaves in the tree and the internal nodes of the tree are the HTML

elements. The objective is to find a generalized path expression to the data of interest.
23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This path expression is either an absolute path or a relative path to a certain HTML

element. At run time, the wrapper translates a web document into a tree and then uses the

path to find the relevant leaf node from the tree and extract the data out.

On the other hand, the second approach (RoadRunner) deems the web document as a

sequence of tokens (HTML tokens and data tokens). Its goal is to generalize a sub

sequence of tokens from the input sequence that contains the data of interest. In this sense,

RoadRunner is similar to WIEN, SoftMealy and Stalker. But RoadRunner makes explicit

use of knowledge of “structure” information of HTML by treating “HTML tag”

mismatch and “data string” mismatch differently.

In general, the token-sequence approach is better than the path-based approach, as a

sequence of tokens could be translated to a context-free structure in the whole tree. It can

be seen as a path from anywhere in the tree to a structure that contains the data of interest

The major limitation of the path-based methods is that all of them are based on a single

example. The extraction path is generalized to cover multiple objects within the same

document and does not necessarily cover different documents. This greatly affects the

practicality of using this kind of techniques to build wrappers for web applications whose

output documents do exhibit structure variations. On the other hand, RoadRunner is

based on two or more training examples, thus the generated wrapper is more general than

those tree path-based approaches.

Compares to the wrapper construction techniques we reviewed in this chapter,

ServiceBuilder has the following features that make it suitable to generate wrapper for

web applications:

• The extraction-rule learning process is automatic. This is a characteristic shared

with most wrapper induction techniques. All the HTML structure-based

techniques except RoadRunner are interactive: they either rely totally on the user

or they require the user’s help to leam the data extraction rule.

• It does not need annotated training examples. All the wrapper induction

techniques we reviewed need labeled training examples to guide the learning
24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm to generate the data extraction rule. ServiceBuilder does not need

labeled training examples. Instead, it relies on a set of landmarks to direct the

system to generate a small set of candidate extraction rules. Compare to labeling a

large amount of training examples, preparing a set of landmarks is a fairly simple

task.

• The extraction rules generated by ServiceBuilder are based on a large number of

training examples. All other tools - except WIEN - generate extraction rules that

are only based on one or two documents. The fewer the examples on which the

extraction rules are based, the more fragile usually the wrapper is. From our

observations, any tool that generates extraction rules based on a HTML tree

structure suffers from this problem.

• The extracted data structure is not explicitly expressed but is rather implicit in the

way the user defines the complex type. This enables it to extract complex

structured data from a web document.

• The generated extraction rules are not based on a rigid tree structure of the source

document but rather rely on the combination of a flexible (as certain HTML tags

can be intentionally excluded from the interesting delimiters set) sequence of

HTML tags and the landmarks to define extract rules, which makes the resulting

wrapper more robust to website changes.

A table summarizing comparisons of the wrapper construction tools reviewed in this

chapter is attached as Table 12 in Appendix.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3 The ServiceBuilder System: Architecture and Process

The ServiceBuilder system consists of three major components: the data retriever, the

pattern learner and the code generator. Figure 8 illustrates the architecture of

ServiceBuilder and how it works in the context of wrapping a web application into web

services. We will examine each component in detail in the rest of this chapter and we will

illustrate their individual functionalities and the overall ServiceBuilder process with an

example of wrapping a stock-quoting web application.

Pattern Learner

Data Retriever I

Document Collcctoi P

Code Generator

HTML

Figure 8: The overall architecture and process of the ServiceBuilder tool.

3.1 The Data Retriever

The data retriever component is responsible for interacting with the target web

application and transforming the output of the web application into a suitable format

ready for the pattern learner component to consume. It consists of three sub-components:

the document collector, the cleaner and the translator.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.1 The Document Collector

This component simulates the behaviors of a web-application user interacting with the

web application with proper input data and saves the responses of the web application as

HTML documents. For the document collector to work correctly, it needs to be properly

configured. There are three types of configuration files that define the behavior of

document collector, i.e. mainConfig.xml, requestProtocolxnd and inputData.xmL

The mainConfig.xml is the master configuration file of the document collector component.

Only one mainConfig.xml exists in the system. The schema of mainConfig.xml is shown

in Figure 9. From the schema, we can see that mainConfig.xrrd consists of one or more

site elements. Each site element represents one web application to be reengineered. There

are four sub-elements of a site element

• The siteName element gives a unique descriptive name to the target web

application;

• The requestProtocolLoc element specifies the file handle to the second kind of

configuration file i.e. requestProtocol.xml that specific to this web application;

• The outputLoc element specifies the directory in the local file system where the

collected HTML response documents from this web application should be stored;

and

• The inputSet element specifies the third kind of configuration file, i.e.

inputData.xml that describes the “test data” based on which the requests to the

web application will be formulated.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<?xml versions"1 .0"?>
<xsd:schema xmlns:xsd='http://www. w3. org/2001/XHLSchema’ >
<xsd: element name="mainPCConfig">

<xsd: complexType>
<xsd: sequence>

<xsd:element ref=”rs i te " min0ccurs='0" maxOccurs='unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd: element >

<xsd: element name="site">
<xsd: complexType>

<xsd: sequence>
<!— th e name of th e s i t e —>
<xsd: element ref="siteName" minOccurs=" 1' maxOccurs="l"/>
<!— th e lo ca tio n of th e request pro tocol —>
<xsd: element ref="requestProtocolLoc' minOccurs='l" maxOccurs="l"/>
<!— th e lo ca tio n where th e output w ill be put —>
<xsd: element re f=" outputLoc' minOccurs="l" maxOccurs="l"/>
<!— input se t f i l e —>
<xsd: element r e f ^ input S e t ' minOccurs=" 1* maxOccxirs=' 1V>

</xsd:sequence>
<fxsd:complexType>

</xsd: element>

<xsd: element name='siteH'ame" type='nonEmptyString*r/>
<xsd: element name='re quest ProtocolLoc' type='nonEag>tyStringV>
<xsd: element name=' oirtputLoc' type="nonEmptyString'/>
<xsd: element name=' input Set" type='nonEmptyString'/>

<xsd: simpleTj?pe name='nonEmptySt ring" >
<xsd: r e s t r ic t ion base= 'xsd :string">

<xsd:minLength value="l"/>
<fx sd :re s t ric tion>

</xsd: simpleType>

</xsd:schema>

Figure 9: mainConfig.xsd

A requestProtocoljcml file describes the HTTP request protocol used by the document

collector to access the target web application. Each target web application has its own

requestProtocoljcml file. An example requestProtocoljcml file is shown in Figure 10.

The document’s root element is the request and it consists of a method and di form sub

element. The method element has two mandatory attributes: “type”, which specifies the

type of the HTTP request, in this example GET, and “uri”, which specifies the location of

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www

the web application. The form element consists of one or more parameter sub-elements.

Each parameter element corresponds to an input variable of the request: the “name”

attribute indicates the variable name of this input parameter in the HTTP request and the

“value” attribute indicates either an element name in the corresponding inputData.xml or

a literal value depending on the third attribute - “input”. If input equals “yes”, the actual

input value will come from elements of the corresponding inputData.xml file, and the

corresponding element name is given by the value of the second attribute “value”. If the

input attribute is absent, then the value of the “value” attribute is deemed literal. Figure

10 specifies the syntax of the HTTP request to the yahoo web site to obtain the current

value of a stock symbol. It is a GET request with two input parameters, named “s” and

“d” respectively. Variable “s” will take a different value from the “symbol” element of

the corresponding inputData.xml file with each HTTP request while “d” will use the

literal value “v l” as its value every time.

<?xml version="1 .0'?>
<request>

<method type='GET" url="h ttp :/ / f in a n c e . yahoo, com/q'/>

<form>
<parameter name='s' value="symbol" input="yes"/>
<parameter name='d" v a lu e= 'v l'/>

</form>

</request>I

Figure 10: Example requestProtocol.xml

An inputDatajcml file is the third kind configuration file that the document collector

needs. It contains the actual data to be used in “testing” the web application, i.e., in

formulating requests to it according to the request-protocol specification. Following the

example above the corresponding inpuxDatcuxml file is shown in Figure 11. It consists of

a sequence of input elements- “symboF as specified in the requestProtocol.xml file (see

Figure 10).

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://finance

Base on the information provided by the requestProtocoljonl and the inputDatcucml, the

document collector component can generate a series of HTTP requests to the target web

application and store the response HTML documents in the directory specified in the

mainConfig.xml file.

<?jonl version="1 .0">

<inputSet>

<ssxribol> HSFT </s3?nibol>

<s-?Mibol> AHD </s?ntool>

<syKtool> IBH </syiribol>

<s?iribol> KRK < /s Y t tb o l>

<symbol> KVH </syn>bol>

<syxttool> ORCL </synibol>
AotnV HP </synibol>

<syntool> INTC </sytttool>

<synibol> AAPL </symbol>

<symbol> SGI </syntool>

</inputSet>

Figure 11:An example of inputData.xml file.

3.1.2 The Cleaner

This component consumes the documents collected by the document collector and deletes

possible scripts embedded in them and cleans up potential mismatched HTML tags and

other syntactical errors they may contain. The output is a set of well-formed script-free

HTML documents.

The HTML document cleaning process is based on [JTidy], a robust and easy to use open

source HTML syntax checker. By setting up the configuration file properly, JTidy can

find and fix HTML syntactical errors in the document.

3.13 The Translator

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The purpose of the translation process is to convert the collected clean HTML responses

into a format suitable for the subsequent pattern-mining process, the so-called DM format,

by eliminating all unnecessary information contained in them. The translation process is

governed by two configuration parameters. The first one is a list of “interesting

delimiters”, identifying the HTML tags that will be retained. Intuitively, this list makes

explicit some tacit knowledge about the domain of HTML-document design: usually,

designers highlight interesting output information within HTML tags, such as tables and

lists, or with a distinct font attribute, such as color or italic or boldface. Other HTML

elements, such as images and unstructured paragraphs usually contain peripheral

information, not directly related to the output expected by the user issuing the request.

By default, the interesting delimiters of ServiceBuilder are set to the set of valid HTML

tags. As long as the ServiceBuilder can find useful patterns with the presence of some

“noise” tags that are irrelevant to the output data, we do not remove them from the

interesting delimiters even though their existence may cause some performance penalties

for the pattem-leaming algorithm. We only remove those “noise” tags from interesting

delimiters when their presence actually prevents ServiceBuilder from finding useful

patterns. The reason we adopt this “lazy” philosophy is that we do not want to

subjectively decide beforehand which tags are “interesting” and which are not. Actually

in the experiments described in Chapter 4, we only remove the tag . Of course, if

we can remove most noise tags from the interesting-delimiters set, the mining algorithm

will be more efficient as the average input document length will be greatly reduced.

The second configuration parameter is the “landmark!'’ list. A landmark is defined as a

word or phrase frequently used in a specific application domain. For example, in the

stock-quote domain, the following phrases are usually found: “last trade”, “market”,

“bid”, “open” ...etc. Intuitively, these landmark phrases are expected to be used as labels

in close proximity to the output information of the web-application HTML responses.

The landmarks for our stock-quote service-building example are shown in Table 11 of

Appendix.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Once the interesting delimiters and landmarks are determined, the system maps each

element of those two lists into a unique integer based on which list they belong to and

their relative position in the list. The translator then converts all the collected clean

documents into one token list. Here a token refers to either a HTML tag or a string

between HTML tags. Then it iterates through this list: if the token is a HTML tag that

belongs to the interesting-delimiter list or a string that contains an item in the landmarks

list, then a unique integer corresponding to the interesting-delimiter or the landmark is

inserted into the output; otherwise, the token is simply discarded. Thus, the delimiter

HTML tags and landmark phrases are the only parts of the original response content

retained in the DM format.

3.2 The Extraction-Rule Learner

After the web-application’s responses have been collected and translated to the DM

format, the next step of the service-building process is the mining of the data-extraction

rules1. The extraction-rule learner consists of three sub-components: the pattern miner,

the pattern viewer and the type editor.

3.2.1 The Pattern Miner

The pattern miner is responsible for generating the candidate patterns for data-extraction

rules to be inspected by the user. Its first function is to use two mining algorithms to

extract all repetitive patterns in the collected documents. As a result, a series of patterns

that are “frequent” in the input are generated. We call these patterns “raw patterns”, as

most of them do not contain data that are of interest to the user.

To eliminate those unsuitable patterns, the whole set of raw patterns is forwarded to the

subsequent filtering step. The filter is equipped with a set of heuristics that aim to

eliminate those patterns that do not contain data of interest to the user. Those heuristics

can be configured by the user to run individually or pipelined to run sequentially.

1 We use the word “rule” and “pattern" interchangeably in this thesis.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let us now discuss in more detail the mining algorithms and the heuristics of the pattem-

miner component.

32.1.1 Sequitur

The first data-mining algorithm of the miner component is Sequitur [NMW97]. This

algorithm compresses a string into a context-free grammar (without recursion) by

inferring the grammar from the string. If there is structure and repetition in the input

string then the grammar may be very small compared to the original string, and the

composition rules of the grammar capture essentially the frequently repeated subsequence

in the original string. Sequitur relies on two intuitive rules: First, that no pair of adjacent

symbols (diagram) should appear more than once in the grammar (instead it should be

substituted with a composition rule) and second, every production rule should be used

more than once (there should be no non-iepeatable rules).

As the desired patterns need to meet a minimum occurrence threshold, in the actual

implementation of the pattern miner, we wrap the Sequitur algorithm with a frequency

calculator component. After running the Sequitur algorithm on the input data in DM

format, we get a group of composition rules. Each rule corresponds to a repeated

subsequence in the input data. Then the frequency calculator calculates the actual number

of occurrences of each rule in the input data and removes those not satisfy the minimum

occurrence threshold.

The original reason we choose Sequitur to implement the pattern mining is that it is very

fast compare to the IPM algorithm introduced in the next section. However, pilot

experiments [JS04] showed that the actual number of useful patterns found by Sequitur is

very low, and all the patterns found by Sequitur could also be found by IPM, as the later

is an exhaustive pattern-mining algorithm. After the pilot experiment, we re-implemented

the IPM algorithm and inserted some constraints into the inner loop of the algorithm and

the speed of P M was greatly improved, so its efficiency shortcomings are not as grave

and its effectiveness advantages far more outweigh them. As a result, the Sequitur

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm is deprecated now in the ServiceBuilder. We introduce it here only for

historical reasons.

3.2.1.2 IPM

The second pattern-mining algorithm of the pattern miner is IPM [ERSS02]. IPM is a

sequential pattern-mining algorithm, designed to discover patterns with insertion errors,

i.e., patterns whose instances may not be exact replicates of the pattern itself but may

contain a certain number - below a configurable threshold - of extraneous alphabet

characters. This feature makes it especially suitable in situations where the input

sequences may be noisy and a certain degree of flexibility is desired when inferring a

pattern.

IPM is based on Apriori [AS94] in that it starts with short patterns and it proceeds to

expand them in order to identify longer ones. However, unlike Apriori that identifies item

sets, IPM identifies sequential patterns with a pre-defined number of insertion errors.

IPM is an exhaustive pattern-mining algorithm, i.e., it can find all the patterns that exceed

the minimum occurrence threshold.

In our implementation, in order to further improve the run time efficiency of IPM

algorithm, we put some domain specific constraints into the algorithm. For example, all

candidate patterns that contain <html> or </html> tags in its middle are immediately

pruned and are not used to generate longer patterns, since in our problem domain, we are

not interested in patterns across the HTML document borders.

3.2.13 Filtering Heuristics

In practice, the pattern-mining algorithm usually outputs a large number of patterns, often

in the order of several hundreds, and most of them do not contain data of interest to the

user. If all these patterns were forwarded to the pattem-viewer component, it would result

in a nightmare for the service developers, as they would have to sift through these

hundreds of patterns to locate the ones that actually contain data of interest.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus, ServiceBuilder employs two heuristics to help filter out those irrelevant patterns.

We use landmarks as the indicators of the degree of relevance of the pattern, as

landmarks by definition are in close proximity to data of interest. Each of these two

heuristics is appropriate in different situations. We will discuss when they are applicable

in detail in Chapter 4. Following, we will describe each of the heuristics in detail.

3.2.13.1 Minimum Rule Set (MRS) Heuristic

The goal of this heuristic is to find the minimum subset of the input pattern set that can

cover all the landmarks covered by the input pattern set. More formally:

• Given a set of patterns S that covers N landmarks, find S’ a subset of S, such that

o S’ covers all the N landmarks, and

o There is no other subset S” with smaller cardinality that also covers the

same landmarks.

This is a classic NP-complete problem known as the ‘‘minimum cover set” problem. We

have implemented a greedy heuristic, as introduced in [Joh73] to obtain an approximate

solution to this problem. The general idea of the heuristic is to iteratively look for a

pattern in the input pattern set that contains the largest number of uncovered landmarks

and move it from the input pattern set to the solution set until all the landmarks that

appear in the input set of patterns are covered. Even though there is no analytical upper

bound to the number of cycles of the process iterations, in practice our experiments (see

section 4.1.3) have shown that it works quite well in this application.

33.13.2 Maximum Common Sub-pattern (MCS) Heuristics

To explain this heuristic, we need to introduce the “effective sub-pattern” concept

• An effective sub-pattem of a pattern P, denoted as esp(P), is the sub-pattern of P

that starts with the first landmark in pattern P and ends with the last landmark in

pattern P.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The goal of maximum common sub-pattern heuristic (from now on referred to as MCS

heuristic) is to cluster the input patterns into groups so that all patterns in a group have

the same effective sub-pattern. Then a single pattern, called the maximum common sub-

pattem, can be used to represent the whole pattern group.

The heuristic works as follows:

• First, it calculates the effective sub-pattem of each individual pattern.

• Second, it groups patterns with the same effective sub-pattem into different

groups.

• Third, within each group, the algorithm tries to generate a representative

maximum common sub-pattem through the following steps:

1. Pattern alignment: The algorithm aligns all the patterns according to the

common effective sub-pattem and the resulting representative maximum

common sub-pattem is initialized to the common effective sub-pattem.

2. Head extension: The algorithm examines the token just before the

maximum common sub-pattem of each individual pattern. If all the tokens

examined in the pattern group are the same, the token is inserted into the

head of the maximum common sub-pattem. This step is repeated until

either there is a mismatch or the head of one of the pattern in the group is

reached.

3. Tail extension: A similar technique as head extension is used to extend the

maximum common sub-pattem at the tail.

This heuristic tries to use a single representative maximum common sub-pattem of a

pattern group to represent all the patterns in that group. MCS is a fairly simple heuristic;

however, we will demonstrate with experimental results in Chapter 4 that it quite

effective in practice.

3.2.2 The Pattern Viewer

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After the pruning of the heuristics, the ultimate output of the pattern miner component is

a set of “good” patterns, which together cover the parts of the web-application response

documents that contain the information of interest to the user of the web application.

Each pattern corresponds to a frequently occurring sequence of HTML tags and domain-

specific landmarks, which is hypothesized to be a consistently structured part of the

HTML response containing some of the desired information output of the request.

However, the user is not necessarily interested in all the output data of the target web

application. It is possible that the user actually is only interested in a sub-set of the output

data. This is why the “good” patterns generated by the pattern miner are forwarded to the

next component, the pattern viewer, which highlights these patterns in the context of the

collected examples and lets the user make the final decision regarding which candidate

patterns actually contain the data that they are interested in.

The graphical user interface (GUI) of the pattem-viewer is shown in Figure 12. We can

see that it consists of three frames. The frame to the left displays a list of candidate

patterns (rules) generated by the pattern miner component In the bracket following each

pattern, there is a pair of numbers separated by a “/”. The first number indicates the

number of example documents that contain this pattern; the second number indicates the

total number of example documents used in the pattern learning process. For example the

pair “18/20” follows “rule 1” suggests that rule (pattern) 1 appears in 18 of all the 20

example documents used in the pattern learning process. Essentially, this ratio is an

indicator of the support of this pattern in the collected document set.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ftm Mt Fxwte Took Ha* irte » tp ;

mRafcQtto/att
rt) Rule 108 /20)

■1) Rule 2 (20/20)

tfcg> tothelatettmtStwicpg wformaaon riop to msft news headfae*

microsoft corporation
nudaq msft am

vntt arm aatttm | m«ft iww | ntlft I m*ft Chart t
analyst: I msft too holders

y p m qao te view right now is deferred • f« t re d t h y “ /<>« " » O d ra M r ?

17jua2004. 04:00pm et last p m * 27.769 0.449 or (1.64%)
w«fr 4etiflf4 pricing

vab»
9.60
45.92
27.29 - 27.92
2731'
2̂32!
106j»̂672

ansSafiuk; 673®9i480
M & n p & t i c k r e 299.757.84 m
^ K H k m g r 24.01 to 30.00
1 « N k change: 4.90%
1 MMthdiaMK____ 750%

hid:
ask:
day's low & high:
flfMEBf.
pcrrimfrdoŝ

ha Next

I■.■5-
.3

Figure 12: The pattern viewer.

The frame at the right side is used to display a response document returned by the web

application, with the areas covered by the selected pattern highlighted. For example, in

Figure 12 we see that the selected Rule 2 represents a pattern, whose occurrence in the

displayed response document covers part of the tabular structure containing information

about “open”, “previous close”, “volume”, “avg. volume” etc.

The frame to the bottom contains a set of controls to select different example web

documents used in the learning process. Using the “Prev” and “Next” links, the user can

see the occurrence of the same rule in other documents of the collection. In this manner,

the user can perceive whether the rule covers consistent parts of the HTML response with

information of interest to the user. If this is the case, the pattern is useful for extracting

(some of) the data expected as part of the return message of the potential web service.

Finally, the submit button, contained in the middle of this frame, is used to confirm to the

system that the current displayed pattern as a valid data-extraction rule.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.23 The Type Editor

Once the user submits a pattern by clicking on the “submit” button in the pattern viewer,

the following information is sent to the backend type server.

• The current selected rule number, and

• The content of the current displayed document.

Based on the above information, the server calculates the relative position of each piece

of the highlighted string in the pages within the selected rule. Then the result is

propagated through an event mechanism to a GUI component called type editor. Upon

receiving the result from the type server, the type editor activates its simple type editor

interface as shown in Figure 13.

optic

previous dose:
9038
volume
4,200200
mg. volume:
5 ,0 9 4 ,3 1 5
market capitalization:

Figure 13: Simple type editor.

Every piece of data highlighted in the pattern viewer is by default listed as a simple type

in the left-hand side frame of the type-editor interface. In the right-side frame four types

of information are displayed:

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The user can input a meaningful name in the “Name” field for the selected type.

For example, in this picture, a number “90.50” is selected in the left-hand side

pane, which is the “open price” of the stock displayed in the example document.

In this case, the name in the “Name” field may be set to “openPrice”.

• The ‘Type” field indicates what the data type this simple data type is. It can be

selected from a predefined group of types such as “string”, “int”, “boolean” and

“float” etc. In this example, the type may be set to “string” or “float”.

• The “Rule” field displays a number to indicate which rule the user just submitted

through pattern viewer component; this is also the rule that contains those pieces

of information listed in the left hand side. This field is provided for maintaining

the context of the overall mining process in this type-editor phase: it reminds the

user which rule is used to extract the instance of the data type that is currently

being edited

• The “Position” field indicates the relative position of the instance of this data type

with respect to the rule instance. Similar to “Rule”, this is also an informative read

only field

There also exist a “Save” button and a “Delete” button at the right side pane. After

specifying the type name and selecting the appropriate data type, the user can click the

“Save” button to save the selected simple data type. The name of the newly created

simple data type will appear at the list at the left-hand side pane. The user can use the

“Delete” button to delete any undesired simple data types.

Instead of extracting one piece of data from a web document and returning it to the client

every time the user may want to extract a set of information out of a single page all at

once and pack them together and return to the client as a whole. To accommodate this

need the type editor provides a complex data type editor window. Using this window, a

user can create complex data types by composing those simple data types already defined

A complex data type editor window is shown in Figure 14. The use of the complex data

type editor is straightforward.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• By default all the simple data types a user has created using simple type editor

are displayed in the “Simple Types” field. In the following picture, three simple

types are listed, i.e. “openPrice”, “PreviousClosePrice” and “volume”;

• A new complex type may be defined by an identifier specified in the “Name”

field. In this example, the identifier of the new type is “Stocklnfo”;

• All the simple types that will constitute the sub-elements of the complex type

may be selected from the “Simple Types” field. Clicking on the “Save” button

then results in the newly created complex data type to be displayed in the left

hand side pane. In this example, the “openPrice” and “PreviousClosePrice” are

the chosen sub-elements of the Stocklnfo.

Stocklnfo locklnfo

Figure 14: Complex data type editor

A user can create any number of complex data types. After creating all the complex data

types, the user can choose to save all the type related information during type editing into

a type file. An example type file is shown in Figure 15.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<?xjil1 versions'1.0'?>
Ctypes xmlns: x si= 'h ttp : / / m w3. org/2001/XMLSchema-inst ance

xsi:noNamespaceSchemaLocation=’ . /types, xsd’ >
<service>

<serviceName>LycosQuotes</serviceName>
<rulef ileName>rules. tx t< / ru lef ileName>
<siapleTypes>

<simpleType>
<name>openPrice</name>
<type>St ring</type>
<rule>2</rule>
<path>8</path>

</siapleType>
<sii?)leType>

<name>PreviousClosePrice</nane>
<type>String</type>
<rule>2</rule>
<path>19</path>

<J sinplelype>
<sin5>lelype>

<nane>volime</nane>
<type>String</type>
<rule>2</rule>
<path>30</path>

</simpleType>
<J sis5»leTypes>
<coi^>lexTypes>

<complexType>
<naae>St ocklnf o </name>
<property>openPrice</property>
<property>PreviousClosePrice</property>

<fconplexType>
<fcoaplexTypes>

<J service>
</types>

Figure 15: An example type file.

A type file is an XML file consisting of a number of <service> elements. Each service

element contains all the type information about a target web application. The <service>

element contains the following sub-elements:

serviceName element: a unique name of the target web application. It is used to

distinguish one target web application from another.

ruleFileName element: the name of the corresponding rule file of the target web

application. The rule file contains all the data extraction rules learned during learning

process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

simpleTypes element: it contains a series of simpleType sub-element. Each simple type

element contains all the type information we get in the type editing process. This element

essentially establishes all the information need to extract different kind of data out during

wrapper execution.

complexTypes element: it contains a series of complexType sub-element. Each

complexType element specifies how to using simple type instances to construct a complex

type instances.

In short, the type editor is a wizard that guides the user to define the data extraction and

packaging rules. More specifically: first, through defining sample types it establishes the

data-extraction rule for each elementary piece of data on the web documents and

associates it with a meaningfully named type; second, through defining complex types it

establishes the output data encapsulation schema. In other words, it defines how the

extracted data will be packed together.

33 The Code Generator

The code generator component takes the type file as input and produces a set of java

classes as the wrapper implementation. The code-generation process consists of the

following steps:

• Generation of a bean class: In this step, the code generator extracts the service

element from the type file that corresponds to the current target web application.

Then it extracts all the complex data types and translates each complex data type

into a JavaBean class.

• Generation of the service interface: The service interface is essentially a set of

getComplexTypeName (InputType formalParameter) methods. At run time,

ComplexTypeName will be replaced by the actual complex data type name from

the type file. The number of “get*” method are determined by the number of

complex data types defined in the target web application. In our current

implementation, as we do not support complex input data (a limitation of our

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

current implementation of the document collector component), the InputType is
always instantiated into “String”.

• Generation of a service implementation class. At run time, a wrapper behaves as
follows:

o Receives the input from its client.

o Instantiates a document collector, forwards the user input to it, and uses it
to collect the response of the target web application and cleans this
response.

o Uses one or more patterns to extract data from the cleaned document and
packs the extracted data into a predefined complex object.

o Returns the complex object to the client.

From the above steps we can see that the logic of the various wrappers is the same, with
different data-extraction rules and complex data types used in each wrapper. Thus,
ServiceBuilder provides a GenericServicelmpl class that encapsulates the generic data
extraction logic as presented above. Then at the service (wrapper) implementation
generation stage, the code generator generates a concrete class by subclassing the
GenericServicelmpl class and customizes the data extraction rules and complex data
types according to the information of the type file.

Figure 16 shows the class diagram of part of the code generator component and the
relationship between the code-generator classes and the classes that it generates. In this
diagram, the saved type information is encapsulated in the SimpleTypes and

ComplexTypes classes. Both these two classes are collections of more fine-grained type
classes. SimpleTypes contains a collection of SimpleType objects; each corresponding to
a simple type defined using simple type editor. ComplexTypes contains a collection of
ComplexType objects, each corresponding to a complex type defined using type editor.
The RuleSet class is used to model a set of learned rules and the HTMLPage class is used
to model a cleaned HTML document. In addition to other operations, the HTMLPage

class provides a series of very important getValue operations. For example, the method
getValue (Rule aRule, int pos) takes as input a Rule object and an integer, searches the

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

document to find a subsection that matches the Rule object, extracts the data value

between positions pos and (pos+1) and returns that value.

At run time, first the SimpleTypes and ComplexTypes and RuleSet objects are initialized

according to the information in the type and the learned pattern files. Then the code

generator object translates each ComplexType object into a *BeanClass where the *

represents the actual name of the complex type. In the same manner, the code-generator

object generates a single *ServiceIF interface for the target web application. A series of

get*BeanClass method are defined in the interface.

The last class generated by the CodeGenerator object is the *ServiceImpl class. This

*ServiceImpl class extends the GenericServicelmpl class and all its methods follow the

same template, customized where appropriate. For example, in the code example in the

diagram, all the string “Instance” in the code body will be replaced by the actual complex

type name.

SlmpleTyp

-serviceNameiStnng
-simpleTypes:SimpleTypes
-complexTypesrComplexTypes -curRuleSet RuleSet

-deanPage HTMLPage
-resuttBean: Objectinterface

JnstanceSsrvicefF
+CodeGenerator
+run:void
generateBeansvoid
generateServicelFrvoid
generatelmpClass.’void

PGenencServicelmpI
ffinitvoid
#getDataSource: HTMLPage
#getResuttBean:Object
#setResuttBean:void

♦SetPropertyKvoid
+SetPropertyY:void

+getinstance8ean:lnstanceBeanClass

private void invoke(String input)
{ super.getOataSource(input).
IInew the bean object
InstanceBeanClass bean = new -HnstanceSetvicelmpl

invoke.'void
+geBnstanceBeanCiass: InstanceBeanClassi/use deanPage to get all the property value

bean setPropertyXQ:

r/save the bean
super.setResultSean(bean); public lnstanceServicelmpl(X

superO;
super.initflnstance)
>

Figure 16: Relationship between Code Generator and the code it generates.
45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After the wrapper has been generated, we can use the tool provided by most web-service

platform to generate a WSDL specification for the service and deploy the wrapper code

as a web service to the web service platform. A WSDL specification for the stock-quote

service wrapper we produced is shown in Figure 17.

<?xml version="1.0" encoding="UTF-8"?>
d efin itio n s xmlns="h ttp ://schemas.xmlsoap.org/ssdl/" xmlns:tns="urn:Foo" xmlns:xsd="http://mnr.s3.org/2001/XHLSchema"

xmlns: soap*"http: / / schemas.xmlsoap. org/ssdl/soap/" name^yahooStocKService" targetNamespace="urn:Foo">
<types>

{schema xmlns="h ttp : / / m . «3.org/2001/XHLSchema" xmins:soapll-enc="h ttp ://schemas.xmlsoap.otg/soap/encoding/"
xmlns:xsi="http://mnr.93.org/2001/XHLSchema-instance" xmlns:vsdl="h ttp : / / schemas.xmlsoap.org/vsdl/"
targetNamespace="um:Foo">

<import naraespacc°"h ttp ://schemas.xmlsoap.org/soap/encoding/”/ >
{complexType name="StockInfoBean">

<sequence>
<element name="lastTrade" type="string"/>
<element name»"tradeTimc" type*"string"/>

</sequence>
</complexTspe>

</schema>
</types>
<message name*"YahooStockQuoteServiceIF_getStockInfo">

<part name="String_l" type="xsd:string"/>{/mes3age>
{message name="YahooStockQuoteServiceIF_getStoc)cIn£oResponse">

<part name=”resu lt” type=”tns:Stoc)cInfoBean"/></mes3age>
{portType name="YahooStocfcQuoteServiceIF”>

<operation name»*getStocfcInfo” parameterOrder»”String_l”>
<input message=”tns:YahooStockQuoteServiceIF_getStoc)cInfo"/>
{output message="tns:YahooStockQuoteServiceIF_getStoclcInfoRespon3e”/x/operationX/portType>

{binding name=”TahooStocWuoteServiceIFBinding” type="tns: TahooStockQuoteServiceIF”>
{operation name*"getStockInfo">

<input>
<soap:body encodingStyle="h ttp ://schemas.xmlsoap.org/soap/encoding/" use="encoded" namespace="urn:Foo"/X/input>

<output>
<soap:body encodingStyle="http://schemas.x»lsoap.org/soap/encoding/" use="encoded" namespace="urn:Foo"/x/output>

<soap: operation soaplction«""/x/operation>
<soap:binding transports "http://schemas.xmlsoap.org/soap/http" styles "rpc”/x/binding>

{service name="YahooStockService">
{port name=nTahooStockQuoteServiceIFPort" binding="tns:TahooStockQuote5erviceIFBinding,'>

<soap:address xmlns:asdl="http://schemas.xmlsoap.org/usdl/"
location”"h ttp ://localhost:8080/yahoostockguote-jaxrpc/yahooStock"/>

</port>
</service>

</definitions>

Figure 17: WSDL file generated from the wrapper.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://schemas.xmlsoap.org/ssdl/
http://mnr.s3.org/2001/XHLSchema
http://m
http://schemas.xmlsoap.otg/soap/encoding/
http://mnr.93.org/2001/XHLSchema-instance
http://schemas.xmlsoap.org/vsdl/
http://schemas.xmlsoap.org/soap/encoding/%e2%80%9d/
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.x%c2%bblsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/http
http://schemas.xmlsoap.org/usdl/
http://localhost:8080/yahoostockguote-jaxrpc/yahooStock%22/

Chapter 4 Experimental Evaluation

In the previous chapters we described how ServiceBuilder could be used to generate a

service wrapper for a web application. In this chapter, we focus on evaluating the tool in

terms of the following aspects:

• Efficiency: How quickly does the tool get the job done?

• Effectiveness: Does it produce the correct result?

• Scope: What types of web applications does it deal with?

In this chapter, we are trying to answer those questions by a series of experiments and

evaluations. Our experiments are mainly focused on the pattern miner component,

because, human-factors aside, it is the most complex and most time-consuming

component of the whole service-generation process and its quality attributes determine

the corresponding quality attributes of the whole system. All the experiments presented in

this chapter were performed in an IBM NetVista with 2.5MHZ Intel Pentium 4 processor

and 1G memories.

There are two steps involved in the process of extraction rule learning: first, pattern

mining with IPM, aim at identifying all the patterns appearing in the example documents

that conform to the input criteria, and second, heuristic filtering of the generated patterns,

aimed at eliminating the spurious patterns among them. Thus, the efficiency and

effectiveness of the pattern-mining process depend on the efficiency and effectiveness of

those two algorithms.

To explain the design of our experimental-evaluation procedure, let us introduce the

concepts of fixed- and variant-attribute objects. If we refer to the set of data we want to

extract from the web-application’s response document as the “target object”, then each

individual piece of data that constitutes the object is an “attribute” of this object. For

example, if we want to extract stock-quote information from the response document as

shown in Figure 18, then the target object is the complex object inside the red box, which

consists of attributes such as “last trade price”, “previous close price”, “open price”,

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“bid”, “ask” etc. In general, two kinds of objects could appear on a response document of

a web application i.e. fixed-attribute objects and variant-attribute objects.

The term “fixed-attributes object” refers to the kind of object that whenever it appears in

a web document it contains a fixed set of attributes. The stock quote object in Figure 18 is

a fixed-attributes object because no matter what the input tick is, the output object always

consists of the same set of attributes as shown in Figure 18.

W tn d tttC B II
Unlimited25, Free Trades

84.94
.Aug 27
*025(030%)
64 69
84,65
NfA
NTA
10547

Day* Range
5McRang»:
V oiiro:........
AagVoipm);
Market Cap:
PJE (dm)
EPS(tB»>:
OivCYMkt

84 5 9 -8 4 95
8156-100.43
2.444,800
4.615.909
142296
1823
4.66
0.72(0.85%)

S A - v / ' '*
Fixed-attributes

,A<»|frMtoPmtto«P ^.setAWrt « o v m lS S T & a

Figure 18: An example of fixed-attributes object

On the other hand, the term “variant-attributes object” refers to the kind of object that

with each of its appearance, it may have a slightly different set of attributes. Figure 19

displays a document returned by the Amazon search engine with the input keyword

“extreme programming”. The returned document contains a list of books-related

information. Each item of this list is a complex object we could call “book object”. If we

examine each “book object” carefully, we see that even though most “book object”

contains the same set of attribute such as “list price”, “our price”, “you save” etc.,

variations do exist. For example, item 6 only contains “our price” attribute. Item 4

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

contains attributes such as “US list price”, “CDN equivalent” that are not common in

most other “book object”.

l-i

Different
attributes

Figure 19: An example of variant-attributes object

In the extraction rule learning process, depending on which kind of output object is

contained in the returned document, different pattern-filtering heuristics must be

employed. Therefore, we, used the fixed- vs. variant-attribute object distinction as the

criterion differentiating the two experiments designed to test the ServiceBuilder system.

4.1 Extracting Services with Fixed-attributes Objects

In this experiment, we test the efficiency and effectiveness of IPM algorithm and the

MRS heuristics that is only appropriate to web documents where the object of interest is

of the fixed-attributes type and there is no more than one object of the desired type on

each document.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This experiment was performed as follows:

• We selected the following five web applications that conform to the above

mentioned criteria:

o CBC weather (http://www.cbc.ca/weather/map.isp’):

o CNN weather (http://weather.cnn.com/weather/forecast.isp~):

o Yahoo quote (http://finance.vahoo.com/):

o PC quote (http://www.pcQuote.com/): and

o Lycos quote (http://finance.lvcos.com/Qc/default.aspx).

• For each web application we collected 6 different sets of example documents

(namely 5, 10, 20, 30, 40, and 50 documents) by feeding them with appropriate

input data;

• With each collected example document set, we performed the mining process 6

times, each time with a different minimum and maximum pattern length range (30

to 39,40 to 49,50 to 59,60 to 69,70 to 79, and 80 to 89). The support rate of the

pattern was always set to 100%. In other words, we only looked for those patterns

that appeared on all the example documents.

• For each run of the mining process we recorded the following data:

o Time consumed in running the 1PM algorithm,

o Number of patterns generated by the IPM algorithm,

o Time consumed in applying Minimum Rule-Set (MRS) heuristics,

o Number of patterns remaining after the application of the MRS heuristics,

o Percentage of landmarks covered by the remaining patterns.

This experiment was designed with the following considerations in mind. The run time of

IPM reflects its efficiency, and the study of its run time with respect to factors such as

pattern and training sample number reflects how these factors affect its efficiency. The

effectiveness of IPM can be evaluated based on the percentage of landmarks that are

covered by the generate patterns2. The efficiency of the MRS heuristic is reflected by its

2 Note: this is just an approximation, as it is possible that one document only contains a subset of all the

landmarks.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cbc.ca/weather/map.isp%e2%80%99
http://weather.cnn.com/weather/forecast.isp~
http://finance.vahoo.com/
http://www.pcQuote.com/
http://finance.lvcos.com/Qc/default.aspx

run time, while its effectiveness can be determined by the ratio of patterns eliminated by

the heuristics.

4.1.1 Efficiency of IPM

The original experiment data of IPM run time collected is shown in Table 1 of the

Appendix. All the data in Table 1 are visualized as a chart in Figure 20. From this figure

we can see that in our experiment configurations, in the worst case (PC Quote, 5 samples,

length 80-89), it took IPM 57.497 seconds to generate all the patterns, which is

realistically practical for a learning algorithm. In most cases, the run time of IPM is under

30 seconds and the average run time is 14.342 seconds.

70000
~ 60000
E, 50000
| 40000
i= 30000
i 20000
K 10000

PCQuote Yahoo
Quote

Lycos
Quote

CNN
Weather

CBC
Weather

Number of training sample

— Length 30-39
Length 40-49

- Length 50-59
- x - Length 60-69

Length 70-79
Length 80-89

Figure 20: Experiment result of IPM run time

The figure also clearly demonstrates that the run time of IPM algorithm is increased with

the increase of the desired pattern length, which is an inherent characteristic of IPM, as

the generation of the longer patterns is based on the shorter patterns. There is a

substantial variation in the run time of IPM among different web applications, with the

highest average of 35.248 seconds (PC Quote) and the lowest average of 1.887 seconds

(Lycos Quote). Overall, the average run time is 14.342 seconds. There are two factors

that may affect the run time of IPM. The first one is the degree of similarity among the

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

training samples. In general, the higher the similarity, the longer IPM will run. The

similarity among training examples can be partially reflected by the number of patterns

actually mined by the algorithm. Another factor that may affect the run time is the

average document length of the training example, the longer the average document length,

the longer the IPM run time will be. The actual IPM run time is determined by the

combined effect of those two factors. Figure 21 shows the number of patterns mined by

IPM for the tested web applications (for detailed data see Table 2 in Appendix) and

Figure 22 shows the average document length of the tested web applications. If we

compare Figure 20 with Figure 21 and Figure 22, we can see that they roughly display

the same figure pattern. That is consistent with our above analysis of the relationship

between IPM run time, similarity among documents and document length.

400
e 350

300
£ 250
o 200
hi
o 150
E 100
3
z 50

0
tiz c b tic o ro 3 3 3 npbbbp op pb 3 d T-cnP3w3o

PCQuote Yahoo
Quote

Lycos
Quote

CNN
Weather

CBC
Weather

Number of training sample

-♦—Length 30-39

-■—Length 40-49
a Length 50-59

-x— Length 60-69
Length 70-79

- •—Length 80-89

Figure 21: Number of patterns mined by IPM

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PCQuotes Yahoo Quote Lycos Quote CNN CBC
Weather Weather

Figure 22: Average document length

350
(0
c 300
o>
5 250 a

200«*-o
0Si
£
3
C

150

100

30-39 40-49 50-59 60-69 70-79 80-89
Pattern length

— PC Quote
Yahoo Quote
Lycos Quote
CNN Weather
CBC Weather

Figure 23: Number of pattern vs. pattern length

The relationship between the number of patterns mined and the desired pattern length is

illustrated in Figure 23. For the simplicity of the figure, we only select one row of data

(the row with 30 training examples) from each web application. All the other rows of data

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

follow the same trend. The figure illustrates that with the increase of the pattern length,

the number of patterns found decreases. This kind of decrease can happen in two

different situations:

• All the shorter patterns are contained within one or more longer patterns;

• Some shorter patterns are not included by any longer patterns.

If the first situation happens, then we did not lose anything. Because the less number of

longer patterns covers at least the same amount of areas as those shorter patterns can

cover. But if the second situation happens, then some of those areas covered by all the

shorter patterns are not covered by larger patterns. This may affect our ability to get the

pattern that can cover those data of interest to us. We will discuss this in more detail in

the section when talking about the effectiveness of the algorithm.

(0
E

40000
35000
30000
25000

E 20000
c 15000
3
01 10000

5000
0

• — --------- • —
\

* — --------- * ----

* \ \
X---- --------- X ----

— —a — - - - - - - - a
- .

—■
■— s e — —
— * ------

- - - - - - -3K
--- - - - -X

■
A

--------- M —
• ■--------- ♦ -— * “ —■----------■

1 ♦ - - ♦ - ----- ♦

5
i

10

oCOoCM 40 50

Sample number

•30-39
40-49
50-59
60-69
70-79

-80-89

Figure 24: IPM run time vs. number of training examples

How does the number of sample documents affect the run time of IPM then? Intuitively,

we might tend to believe that the larger the number of sample documents, the longer the

time needed to mine the pattern. However, the experiment results show that if we keep

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the same support rate, the increase of the number of training documents have little effect

on the IPM run time.

Figure 24 shows the relationship between the IPM run time and the number of training

examples in the experiment of CNN weather. The experiment results of the other web

application hold the similar trend. We only show result of CNN weather for a clear view

of the experiment result. From the graph we can see that with the increase of the training

sample between 5 and 20, the corresponding run-time changes are barely noticeable. The

same is true to the change between 30 and 50. The only noticeable change is a decrease

between 20 and 30. By examining the corresponding training documents, we discovered

that the decrease of the run time is due to the fact that the newly introduced training

documents contained a noticeable structural change that did not appear in the previous

training samples, which decreased the overall pattern numbers sharply.

A summary of the major factors that affect the run time of ServiceBuilder (dominated by

IPM run time) is attached in Appendix as Table 13.

4.1.2 Effectiveness of IPM

The previous section discussed the question of how fast the IPM algorithm can generate

the result patterns and what factors can affect the run-time efficiency of IPM. In this

section, we examine what percentage of the data of interest is covered by the generated

patterns. As we assume that the data of interest is in the proximity of landmarks, we can

use the percentage of landmarks covered by the generated patterns as a measure of the

percentage of data of interest being covered by the patterns. In this experiment, the

landmark coverage rate is defined as the number of landmarks covered by the mined

pattern set divided by the number of landmarks appearing on the training documents. In

general, the larger the landmark coverage rate, the greater the chance any piece of data

appearing on a document could be extracted by at least one of the rule.

Figure 25 shows the visualized experiments results of the landmark coverage rate. For

more detailed experiment data, see Table 3 in Appendix. From the figure we can see

three kinds of trends in the coverage rate:

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• With the increase of the pattern length, the coverage rate decreases. (Yahoo Quote

and CBC Weather).

• With the increase of the number of training examples the coverage rate drops. (PC

Quote, CNN Weather and CBC Weather)

• No change at all. (Lycos Quotes)

The first trend reflects the fact that small HTML structures that are consistent among the

training examples collectively contain more data of interest than larger invariant

structures. In other words, there are structural changes within the big block that contains

the data of interest. The second trend reflects the fact that some previous patterns are

eliminated due to the new structural changes appearing in the newly introduced example

documents. The last situation reflects the fact that all the shorter patterns are contained by

larger patterns and hence they cover the same amount of landmarks.

Yahoo
Quote

PCQuote Lycos
Quote

CNN
Weather

CBC
Weather

Length 30-39
Length 40-49

Length 50-59

Length 60-69
Length 70-79

Length 80-89

Figure 25: Landmark coverage rate

From this experiment, we can see that in most cases ServiceBuilder can find a pattern set

with 100% support (those patterns appeared on each single example document) that

contains most of the data of interest. But in order to construct an effective wrapper, we do

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

not need to be confined by those patterns. We could use other, less supported patterns as

well. For example, Figure 26 shows four output documents of the CBC weather

application. Each document displays the weather condition of a specific city (Edmonton,

Beijing, S t Petersburg and Tokyo). Actually, the four documents are the representatives

of four major types of output documents of the application (this is the types we

discovered so far experimenting with around 100 different input city names). Edmonton

represents the type of documents that contains the most detailed weather information. It

contains three blocks of information, i.e. “current condition”, “forecast” and “text

forecast”. Beijing represents the kind of document with slightly less detailed weather

information, which only has the “current condition” and “forecast” information. St.

Petersburg of Russia represents the kind of document with even less weather information,

which only has “forecast” information. The last one Tokyo contains no information at all!

This is actually the only city that the CBC weather forecast service that returns nothing.

Though no actual weather information appears on the last document, it could be viewed

as representing a kind of “exception” condition. It is exactly because we happened to

include “Tokyo “ as an example input and there is no data object on this document, that

the IPM algorithm could not find any pattern that appears on all the example documents

(see Figure 21).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

Tokyo, Japan, Asia (RJTD)

Figure 26: Four types of CBC weather output document

Therefore, in practice, we need not set the support rate of a pattern to be 100%. A 60% or

70% support rule makes sense, as the above example shows. One thing we have not dealt

with yet is how to deal with “exceptions” like the case of Tokyo. Tokyo is different from

the other three outputs. All the other documents are “valid” output documents that

contain the expected data, but the Tokyo case roughly corresponds a “null” exception in
58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

programming language. Even though it does not contain weather data, it conveys an

exception probably useful to its user. The wrapper should be able to either throw an

exception or return a “null” object to its client accordingly. The current implementation

of ServiceBuilder does not include such a mechanism.

4.13 Efficiency and effectiveness of MRS heuristic

The run time of the MRS heuristic is shown in the Figure 27 (see Table 4 in the Appendix

for the data). In the worst case (CBC Weather, 10 examples, pattern length 30-39), it only

took 0.139 seconds to apply the MRS heuristic. In most cases, it took less than 0.02

seconds. Compared to the IPM algorithm (14.342 seconds on average), the MRS

heuristics is very fast.

«
E,
a>
E53
C
3i—
(0o

(O
DC

PCQuote CNN
Weather

CBC
Weather

Yahoo
Quote

Lycos
Quote

—♦—Length 30-39
—■—Length 40-49

Length 50-59

- x —Length 60-69
— Length 70-79
—• —Length 80-89

Number of training samples

Figure 27: Experiment results of MRS heuristics efficiency

Recall that the main goal of applying the heuristic is to eliminate those redundant patterns

and return a relatively small yet sufficient set of patterns that cover the same set of data

of interest as all the patterns generated by IPM algorithm. Therefore, the effectiveness of

the heuristic can be measured by the number of patterns remaining after running the

heuristic or what percentage of the patterns has been eliminated by the heuristic. The

number of patterns left after heuristics is show in Figure 28 (see Table 5 in Appendix for

the complete data).

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10
2 9

StoQ.

<Dn
E

8
7
6
5
4
3
2
1
0

■■■■■■

>;xxxxx

-xxx-xx-x-

HHel l h l l l K l K l K K

PCQuote Yahoo
Quote

Lycos
Quote

CNN
Weather

CBC
Weather

Number of training samples

-♦—Length 30-39

• —Length 40-49
Length 50-59

-x— Length 60-69

■X— Length 70-79

• —Length 80-89

Figure 28: Experiment results of MRS effectiveness

We can see that in all cases less than 10 patterns are left after the MRS heuristic has been

applied and in most cases the pattern number is no more than 5, which is a very small

number and would not bring too much burden to the user to select from. If we compare

this figure with Figure 21, we can see that in most cases 97% of the patterns generated by

IPM are eliminated. With this high elimination ratio, we can safely say that MRS is very

effective in eliminating redundant patterns.

42. Extracting Services with Variant-attributes Objects

In this experiment, we examine the efficiency and effectiveness of our system when

dealing with web applications whose output documents contain objects with a variant

attribute set and there may be multiple objects of the same type appearing on the same

document. An example of this kind of document is shown in Figure 19.

The experiment design is similar to the previous one.

• We selected two web applications:

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o Amazon book buying search engine:

(http://www.amazon.ca/exec/obidos/tg/browse/-/915398/701-3668674-

9981157)

o Chapter online book buying search engine:

(http://www.chapters.indigo.ca/default.asp?gog=l)

• For each web application, we used the same set of input data with 10 keywords

and collected the returned documents.

• We run the mining algorithm with different minimum support number and desired

pattern length and recorded the following data:

o Time consumed by IPM

o Number of patterns generated by IPM

o Percentage of objects covered by those patterns

o Time consumed by the MCS (Maximum Common Sub-pattern) heuristic

o Number of patterns’ after groups the application of the heuristic

In this experiment, the goal was similar to the previous experiment, i.e. to test the

efficiency and effectiveness of our system when dealing with these more complex web

documents, and thus implicitly also assess the scope of the overall applicability of the

ServiceBuilder process.

4.2.1 Effectiveness and Efficiency of IPM

Figure 29 illustrates the run time of IPM in this experiment (see Table 6 in the Appendix

for the complete data). We can see that in the worse case, it only takes less than 0.9

seconds for IPM to generate all the patterns. The average run time is 0.351 seconds.

Compared to the IPM run time in the first experiment (Figure 20), IPM runs much faster

with these applications. This can be explained by the fact that the degree of similarity

among the response documents of these applications is much less than that of the

previous experiment.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.amazon.ca/exec/obidos/tg/browse/-/915398/701-3668674-
http://www.chapters.indigo.ca/default.asp?gog=l

1000 1
900 -

tT 800-
£ 700-
<D 600 -
£ 500 -
t— 400 -
£3 300 -
a: 200-

100-
0 -

20 30 40 50 60 70

Amazon

20 30 40 50 70 90

Chapters

-♦— 20-29

-■ -30-39

40-49
- x - 50-59

Minimum number of support

Figure 29: Efficiency of IPM

1.2

(0e

0.2

Amazon Chapters

Minimum support number

Figure 30: Effectiveness of IPM

To evaluate the effectiveness of IPM in this experiment, we recorded the number of

objects in the returned documents that are covered by the patterns and calculated the ratio

between the number of covered objects and all the objects on the returned documents.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 30 shows the visualized results (for original data, see Table 7 in Appendix). From

the figure we can see that in most case, the patterns can cover more than 80% of all the

objects returned by the web application. Only in three cases the coverage rate is less than

80% (0% actually). When we look into those three cases, we found that, that is due to the

fact that there is simply no patterns meet the length requirement and the minimum

occurrence requirement at the same time. Those three cases actually reflect a shortcoming

of ServiceBuilder in this stage: the result is affected by the input parameters and right

now the selection of input parameters are totally up to the end user, we do not provide

any support to help the user select those input parameters.

4.2.2 Efficiency and effectiveness of the MCS heuristic

The execution time of the MCS heuristic is illustrated in Figure 31 (for original data see

Table 8 in Appendix). The average run time is 0.049 seconds. The worst case is 0.184

seconds. Compare to the time consumed by IPM in this experiment, the execution time of

the MCS heuristic is almost negligible.

200
180

— 160 to
£ 140
O 120
£ 100
c
3
a:

Amazon Chapters

Number of support

-+—20-29

-■—30-39

-‘—40*49
-x—5059

Figure 31: Run time of MCS

In order to evaluate the effectiveness of the MCS heuristic, we could compare the total

number of patterns mined by IPM and the number of pattern remained after the MCS

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

heuristic. Figure 32 and Figure 33 illustrate pattern rained by IPM before MCS heuristics

and pattern number after MCS heuristics under different experiment configurations (for

original experiment data, see Table 9 and Table 10 in Appendix respectively).

From Figure 32 we can see that, in most cases the pattern number before heuristics is less

than 80. In the worst case the pattern number is 106. The average pattern number before

heuristics is 36.54.

Figure 33 shows that in most cases there are less than 8 patterns left after the MCS

heuristic has been applied and in the worst case the number is 13. The average number of

pattern left after the heuristic in this experiment is 4.06 that are only about 11% of the

number of pattern before heuristics. To put it another way, without MCS heuristics, on

average, a user needs to view around 36 different patterns as compared to view around 4

patterns if the MCS heuristics is applied. That is a nearly 90% reduction of the user’s

workload.

120

100

60

Amazon Chapters

Minimum number of support

Figure 32: Number of pattern before The MCS heuristic

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c 12

Amazon Chapters
Minimum number of support

40-49
x—50-59

Figure 33: Number of patterns after MCS heuristic

43 Evaluation and discussion

In this section, we hope to provide an overall assessment of the ServiceBuilder system.

We identify the distinct features of ServiceBuilder and its limitations, and we outline

possible solutions to address these limitations in future research.

43.1 Distinct ServiceBuilder Features

ServiceBuilder does not require manually labeled training examples as most other

wrapper-induction tools do. Training example labeling is a labor intensive and error

prone process especially for complex and lengthy web documents. Even with tool support,

labeling a large amount of training example is just too expensive to be practical.

ServiceBuilder can collect any number of training examples specified by the user. To

collect these training examples, it only requires that the user provide input data for each

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

training example, much like in a web-application testing scenario3. Compared to labeling

a web document, preparing input data for a web application is a much simpler task.

ServiceBuilder can leam from a large number of training examples. Learning from a

large amount of examples is extremely important for wrapping web applications, as the

web documents structure is controlled by the internal logic of the web application.

Depending on certain properties of the input of the web application, the output document

may reveal different layout. This is clearly demonstrated in the CBC weather application

we discussed previously in Figure 8. If only a small number of examples (say 10

documents) are examined, it is likely that not all those four types of output documents

will be included. The more example documents are available the more likely it is that got

all the different types of output documents will be included and thus the discovered

patterns will represent all types of desired data. The experimental results in section 4.3.1

already show that run time of IPM is not affected by the number of training examples.

This means that ServiceBuilder can leam from a larger number of examples without

sacrificing its efficiency.

The wrapper produced by ServiceBuilder tends to be more robust to source document

changes than wrappers generated by other approaches. That can be explained by the fact

that ServiceBuilder is not trying to find a pattern that “literally” appeared on the source

document But instead, it mines the pattern on an already “filtered” sequence of tokens.

The translator component works as a filter, and the “interesting delimiters” and

“landmarks” collectively determine what tokens can sift through. Just like a filter in an

electronic circuit can filter away certain degree of electronic noise and guarantee the

smooth performance of the output side, the translator at run time can filter out certain

new introduced source changes and protect the wrapper from corrupting. Of course this

kind of protection does not always work, but it is still more robust than those wrappers

that based on literal patterns that lack of this filtering mechanism.

3 In fact the input data may already be available in a test-case suite employed to exercise the web

application.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.2 Limitations

One important limitation of ServiceBuilder is that the generated wrapper code does not

completely simulate the behaviors of an actual browser that could cany and receive

cookies that used to maintain a state in the server side. As a result, the cunent

ServiceBuilder can only generate wrappers for web applications that implement only one-

step interactions with the user. It cannot generate wrappers for web applications that

implement workflow interactions with the user. For example, an online bookstore

application usually involves the following steps: “Search the desired book”, “Add the

book to the shopping cart”, “Proceed to checkout”, “sign to secure server”...etc. During

the process from one step to another, a token called cookie is transfer from the client to

the server as an identification of the client enabling the server to maintain an internal

state.

With an addition of a component that can simulate the browser’s capability of receiving

and managing cookies and a platform that supports web-services composition, the

ServiceBuilder could support the generation of wrappers for this kind of workflow-based

web applications. The idea is that ServiceBuilder would first be used to wrap each step of

the interaction as a web-service wrapper, and then these elementary services could be

composed into a larger service wrapper corresponding to the whole web application. Of

course, that would require the client to supply all the data necessary during the web-

application interaction all at once.

The second limitation of the current ServiceBuilder is that it lacks a “crawler” capability.

Some web applications, like book-buying search engines actually return a large amount

of data objects that span multiple web documents. When a real person interacts with the

web application, the user will click a certain button to request the next result document

that contains data until all the result documents are viewed. To simulate this behavior, a

crawler capability would be required in the generated code that can continually issue

requests to the server until all the result documents are received. This capability would

require support for state maintenance ability as above.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A third limitation of ServiceBuilder is the determination of its input parameters. To leam

the patterns, three major input parameters need to be specified by the user, i.e., the

minimum support, minimum pattern length, and maximum pattern length.

The minimum support specifies the minimum number of occurrence a pattern needs to

appear in the training examples. Any pattern with fewer occurrences will be eliminated.

There is no rule of thumb for determining how large this support should be. It all depends

on each individual web application. For web applications “expected” to output the same

“type” of web documents, this support could be set to a high value compared to the

estimated number of objects appearing in the training examples. However, if a trial run

reveals that there are different “types” of returned documents, like in the CBC weather

example, this parameter should be lowered to try to mine the least supported pattern.

The minimum pattern length and maximum pattern length - as their names suggest -

determine the target pattern length range. Ideally, this range should be long enough to

cover the biggest object appearing in the returned response document but not too long to

sacrifice the efficiency of the mining algorithm. As we demonstrated in the previous

section, the longer the target length of the pattern the slower the mining algorithm will be.

For web documents where there is no duplicate attributes in the same document, the

pattern length is not a very important parameter if the pattern is too short to cover the

whole object, one can always use several smaller patterns to extract data and compose

them into the larger actual object. For example, in Figure 34, suppose the whole stock

information object is the desired object; then four patterns — p i, p2, p3 and p4 - can be

used to extract the data from the document and compose those data in the final target

object. However, for web documents that contain multiple objects and the objects have a

variant-attributes set, the selection of those two parameters becomes crucial. If the mined

pattern is not long enough to cover the whole target object, you cannot use smaller

patterns to compose larger object, as there is no fixed blueprint (long enough pattern) for

you to follow in the process of composing. For instance, in Figure 35, without longer

patterns like pi and p2 that can distinguish each book object from one another, shorter

patterns like p3 does not really help. As we do not know where the “object boundary” is

and which object an instance of the smaller pattern belongs to.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Xabesl M /Y a h o o l Mas Search]
Finance Heme - Male

W e d n e s d a y . S e p te m b e r l . 2 0 0 4 . 4 : 4 2 a m E T - U .S . M a r V e ts o p e n m 4 h o u r s a n d 4 8 m in u te s .

xOniAUg3ii-84^89 1 -0 2 9 Xft3<%> Reuters

Q u o t e s & Into F fit t*r S y ■»):

jntecnallonalB usinessM aclitaaaCorppBM)

•Quotes
►Summary *8 T rades F ree T rad es

S7 Trades ►COI
U n l i m i t e d Get Free

Streamer

U*afl£*LEQ£tS

waccrwrtur
P I

- Company Cvsms
Mfrgnnr-Baata

,:©
a . P 2

>JSaaasatSBGC
'seCFtngg...-

Last Trade: 84 .6 9 D ay's Range: 8 3 .6 5 - 8 * 6 9
T rade Time: Aug 31 52wk R ange: 81 9 0 - 1 0 0 4 3
Change: * 0 2 9 (0 .3 4 %) Volume. 3.401.400
P w Close: 84 4 0 Aug vol (3m): " "4 .583 .272"1
upon: 34.55 Market C ap ' 141.87B
Bid: N/A P /E (ton): 18 17
A sk NIA E P S (ton): 4 .68
l y T arget E s t 105.47 Diva Yield: 0 .72 (0.85%)

W toP actW io ^ S e t A i e r -. Down***) Dal

as.3 3 5 * 5 *3m *m iv Tvisi sa

Free Tnal

figure 34: Situation where both small and large pattern can be used

• Be*au£*_l£is* CMti wmw PfBBMwrnma Im t
by Ron JeffiriM (Author), a t al (P ap w tm dt • October 16, 2000)
A v o .C m to w r K p »!■—

A kst by knmana.
rtu b w w Advisor

<10 itam Kst)
gwwnawea /

Lfi&HMMS
fcam m u t n t AT

a Kst by cymcMman
Oavaiopar

(13 it am kst)
by Kant Bode (Author)
a wg. CuOatMc fv b w October S, 1990)

Tnah
A list by Manxes, CS

Studant/Nard
(15 item kst)

List Price: COW 4405
Our Pries: CON$ 3 1 .4 7
You Saw*: CONS 13.48 (30%)
Naw an d t w d CONS a t .*7

• Book*
S saisb G x trm tn m Pronm wwiwUrwi g w n la » M * T g m b r a g »

by Kant Back (Author) (P op*rbadt - Novambar 2004) AvnaJatttBmscRsYtett
CUaUcal MuSkr Saareh

Not yat w b i n d

Extreme Pregramtntofl in Procacs
by)a n t s W. Nawfcirfc (Author). Robert C. Martin (Author) (1, 2001)
kw i.C m nw iw rB aQ tiw

Figure 35: Situation where only large pattern is useful

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5 Contributions and Future Work

5.1 Research contributions

In this thesis, we presented ServiceBuilder, a new wrapper-construction tool that can

semi-automatically reengineer a web application into a web service provider. The main

contributions of this thesis are summarized in the following.

• ServiceBuilder represents and implements a new approach to migrating traditional

web applications into web services providers. Traditional reengineering

approaches usually assume access to code base of the target web application while

our approach does not have this requirement (discussed in section 1.2).

• We introduced sequential-pattem mining techniques to solve the problem of

extraction-rule learning in wrapper construction in general. This technique has

several advantages over traditional wrapper induction and tree-structure based

wrapper construction techniques (discussed in section 4.3.1).

o First, it does not require the manual labeling of training examples; the data

of interest is assumed to be in the vicinity of domain-specific landmark

words. In general, it is simpler and less error prone to identify the domain-

specific words that are used as labels for the data of interest on the web-

application responses than to label the actual data itself.

o Second, the produced wrapper is more robust to source changes than

wrappers generated by other approaches; the robustness comes from the

fact that the mining algorithm does not working on the original source

document. Instead, it works on a sifted token sequence. So any source

changes that cannot pass through the sift process (translation) will not

affect the wrapper.

o Third, this approach can efficiently leam from a large amount of training

examples and consequently provides more confidence for the resulting

data-extraction rules. The larger the number of training examples the more

likely it becomes that several variations of the source documents will be

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

examined during learning. As a result, the data-extraction rules learned

from a larger set of example tend to be more general and robust than those

from a smaller set of examples.

• ServiceBuilder is a highly automated, easy to use, wrapper construction toolkit.

With proper setup information, similar in nature to the information required for

test the web application, the tool automatically collects training examples from

the target web application and learns a small set of candidate extraction patterns.

The tool then visually presents these patterns to the user in the context of example

web documents and lets the user select the pattern or patterns containing the data

of interest and defines the output data format with the help of a wizard. Finally,

the tool generates Java implementations that essentially wrap the target web

application and presents it as a web service provider (discussed in Chapter 3).

• ServiceBuilder offers a set of heuristics that can efficiently and effectively

eliminate most spurious patterns and greatly alleviate the user’s burden of wading

through a large amount of candidate patterns to select the one that containing data

of interest (discussed in section 3.2.1.3, section 4.1.3 and section 4.2.2).

• The generated wrapper is a Java implementation readily deployable as a web

service and therefore easily accessible on a variety of platforms. As a web service,

the wrapper is accessible to a broader range of clients.

5.2 Future work

There are several possible extensions on ServiceBuilder that could be explored in the

future:

• This work provides a foundation for further service composition extensions. Now

ServiceBuilder can only migrate single-step, search-engine-like services into web

services. With a state management component and a platform that support the

future web service composition standards, it could be extended to migrate multi-

step, complex web applications into web services.

• One possible way to enable the generated web-service wrapper with the ability of

state maintenance would be to add a cookie and state management framework into

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the code generator component. At run time, the code generator will generate a

customized cookie and state management component for each individual wrapper.

• Crawler functionality should also be added to the generated web service wrapper

to enable multi-step interaction migration. This extension would require the

support of state maintenance extension we discussed above. Furthermore, the

system would require a way to know the widgets on the return page that leads to

the subsequent documents containing the rest of the result. This information could

either provided by the user or through testing the web application with a learning

algorithm.

• Even though, wrappers generated by ServiceBuilder are more robust to source

changes than wrappers generated by other techniques, they are not immune to

corruption. To be practical in a realistic world, the ability of automatic detection

of wrapper failure and automatic wrapper repair is desired. Some research works

[LMK03][Kus00b] have already been done on those topics. Incorporating and

extending these techniques into ServiceBuilder, would result in a more practical

and more useful wrapper-construction tool.

• Finally, intelligent techniques could be developed to automatically learn the

object boundary. If this could be done in an efficient manner, then the input

parameter selection is not a critical problem, as discussed in section 4.3.2. In this

case, small patterns could be employed to extract the data, which could then be

composed into a complex object without mixing the data members of different

objects together.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[AM98] Gustavo O. Arocena, Alberto O. Mendelzon: WebOQL: Restructuring
Documents, Databases and Webs: in Proceedings of the 14th TRKF. International
Conference on Data Engineering, pp. 24-33, Orlando, Florida, 1998.

[AS94] R. Agrawal and R. Srikant: Fast algorithms for mining association rules:
In Proc. 1994 Int. Conf. Very Large Data Bases (VLDB’94), pp. 487-499, Santiago,
Chile, Sept. 1994.

[BFG01] R. Baumgartner, S. Flesca and Georg Gottlob: Visual Web Information
Extraction with Uxto: Proceedings of the 27th International Conference on Very Large
Data Bases, pp. 119—128,2001.

[CM98] Valter Crescenzi, Giansalvatore Mecca: Grammars Have Exceptions:
Information Systems. Vol. 23, No. 8, pp. 539-565,1998.

[CMM01] V. Crescenzi, G. Mecca and P. Merialdo: RoadRunner. Towards
Automatic Data Extraction from Large Web Sites: in Proceedings of 27th International
Conference on Very Large Data Bases, pp. 109—118, Rome, Italy, 2001.

[EMR02] 2002 E-commerce Multi-sector Report, available at:
http://www.census.gov/eos/www/papers/2002/20Q2finaltext.pdf: Last access to site: July
2004.

[ERSS02] M. El-Ramly, E. Stroulia, P. Sorenson: Interaction-Pattem Mining:
Extracting Usage Scenarios from Run-time Behavior Traces, The Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, July 23 - 26,2002,
Edmonton, Alberta, Canada.

[GSB+01] S. Graham, S. Simeonov, T. Boubez, T. Boubez, D. Davis, G. Daniels, Y.
Nakamura, and R. Neyama: Building Web Services with Java: Making Sense of XML,
SOAP, WSDL and UDDI: Sams, 2001.

[HD98a] C.-N. Hsu, and M.-T. Dung: Generating Finite-State Transducers for
Semi-Structured Data Extraction from the Web. Information Systems. Vol. 23, No. 8, pp.
521-538,1998.

[IBM-FAQ] IBM FAQ, What is a component model, available at:
http://www.deveIoper.ibm.com/tech/faq/individual?oid=2:22733: Last access to site: July
2004.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.census.gov/eos/www/papers/2002/20Q2finaltext.pdf
http://www.deveIoper.ibm.com/tech/faq/individual?oid=2:22733

[Joh73] D. S. Johnson: Approximation algorithms for combinatorial problems:
Proceedings of the fifth annual ACM symposium on Theory of computing, pp. 38—49,
Austin, United States, 1973.

[JS04] Yingtao Jiang, Eleni Stroulia: Towards Reengineering Web Sites to Web-
services Providers: Proceedings of the 8th European Conference on Software
Maintenance and Reengineering, pp. 296-308, Tampere, Finland, 2004.

[KMA+98] C. Knoblock, S. Minton, J. Ambite, N. Ashish, J. Margulis, J. Modi, I.
Muslea, A. Philpot, and S. Tejada: Modeling web sources for information integration.: In
Proc. 15th Natl. Conf. Artif. Intell. (AAAI-98), 1998, pp. 211-218.

[KT03] S. Kuhlins and R. Tredwell: Toolkits for generating wrappers: In NODe02,
Vol. 2591 of LNCS, pp. 184-198,2003.

[Kus97] N. Kushmerick: Wrapper induction for information extraction: PhD
Thesis, University of Washington, Seattle, WA, 1997.

[KusOOa] N. Kushmerick: Wrapper induction: efficiency and expressiveness: Artif.
Intell., Vol. 118, No. 1-2, pp. 15—68,2000.

[KusOOb] N. Kushmerick: Wrapper verification: World Wide Web J. 3(2): 79-94,
2000.

[KWD97] Wrapper induction for information extraction: In Proc. UCAI-97, Nagoya,
Japan, 1997, pp. 729-735.

[LMK03] Kristina Lerman, Steven N. Minton, and Craig A. Knoblock: Wrapper
Maintenance: A Machine Learning Approach: Journal of Artificial Intelligent Research,
18:149-181,2003.

[LPH00] L. Liu, C. Pu, and W. Han. XWRAP: An XML-enabled wrapper
construction system for web information sources. International Conference on Data
Engineering (ICDE), documents 611—621,2000.

[MMK01] Ion Muslea, Steven Minton, and Craig A. Knoblock: Hierarchical wrapper
induction for semistructured information sources: Autonomous Agents and Multi-Agent
Systems: Vol. 4, Issue 1-2 (2001), pp. 93-114,2001

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[MWSD] Microsoft Windows 2000 Server Documentation, available at
http://www.microsoft.com/windows2000/en/server/iisAitm/core/iigloss4.htm: Last access
to site: September 2004.

[NMW97] C. G. Nevill-Manning, I. H. Witten. Identifying hierarchical structure in
sequences: A linear-time algorithm. Journal of Artificial Intelligence, 7:67-82,1997.

[PS03] Sanjay Patil, Nick Simha: Integration approaches: Web services vs.
distributed component models - WSJ feature: Web Service Journal, May, 2003.

[SA01] A. Sahuguet and F. Azavant: Building intelligent web applications using
lightweight wrappers: Data and Knowledge Engineering, Vol. 36, No. 3, pp. 283-316,
2001.

[SOAP] Simple Object Access Protocol (SOAP)
http://www.w3.org/TR/2003/REC-soapl2-part0-2003Q624/: Last access to site:
September 2004.

[SERIS03] E. Stroulia, M. El-Ramly, P. Iglinski, P. Sorenson: User Interface Reverse
Engineering in Support of Interface Migration to the Web, Automated Software
Engineering Journal 10(3) 271 - 301 2003, Kluwer Academic Publishers.

[UDDI] Universal Description, Discovery and Integration of Web Services
(UDDI), available at http://www.uddi.org/; Last access to site: September 2004.

[Vin02] Steve Vinoski: Where is Middleware? : IEEE Internet Computing, Vol. 6,
No. 2, pp. 83-85,2002.

[Vin03] Steve Vinoski: Integration with Web Services: TF.HF. Internet Computing,
Vol. 7, No. 6, pp. 75-77,2003.

[Vog03] Wemer Vogels: Web Services Are Not Distributed Objects: IEEE Internet
Computing, Vol. 7, No. 6, pp. 59-66,2003

[WSA] Web Services Architecture, available at:
http://www.w3 .org/TR/2004/NQTE-ws-arch-20040211/: Last access to site: September
2004.

[WSDL] Web Services Description Language (WSDL), Version 2.0, W3C working
draft, 26 March, 2004; available at http://www.w3.org/TR/wsdl20/; Last access to site:
September 2004.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.microsoft.com/windows2000/en/server/iisAitm/core/iigloss4.htm
http://www.w3.org/TR/2003/REC-soapl2-part0-2003Q624/
http://www.uddi.org/
http://www.w3
http://www.w3.org/TR/wsdl20/

Internet Resources

[Artix] Artix Developer Kit. Available at:

http://www.iona.coTn/devcenter/artix/download.htm: Last access to site: September 2004.

[HD98b] SoftMealy 98 Talk

http://www.iis.sinica.edu.tw/~chunnan/ST.TDES/softmealv98.ppt

[JTidy] JTidy, Available at:

http://itidv.sourceforge.net/: Last access to site: September 2004.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.iona.coTn/devcenter/artix/download.htm
http://www.iis.sinica.edu.tw/~chunnan/ST.TDES/softmealv98.ppt
http://itidv.sourceforge.net/

Appendix

Table 1: Experiment data of IPM run time (ms)

30-39 40-49 50-59 60-69 70-79 80-89

PC Quote

5 18064 25266 32644 40128 49660 57497
10 16898 22734 29722 36368 43429 51266
20 17378 24101 30792 37409 43925 52003
30 17771 23797 30629 38741 45382 52472
40 18852 24845 32117 38396 46201 53256
50 18242 25816 32002 40256 46527 54332

Yahoo
Quote

5 7342 9670 10786 12322 13631 14943
10 7924 9254 11065 12712 13954 15306
20 7915 9426 11416 12970 14074 15511
30 B096 9526 11271 12788 13930 15488
40 7614 9117 10771 12081 13266 14435
50 8005 9369 10934 12471 13523 14816

Lycos
Quote

5 1760 2205 2520 2901 2932 3166
10 1585 1746 2115 2263 2324 2250
20 1485 1880 2252 2319 2270
30 1320 1332 1482 1526 1693 1674
40 1222 1379 1646 1696 1616 1735
50 1250 1450 1691 1589 1689 1743

CNN
Weather

5 10500 14808 18766 23957 28677 34306
10 10563 14618 19070 24143 29249 34443
20 10955 15331 19740 24888 29541 35768
30 8864 12061 14535 17344 19921 22848
40 8752 11421 14098 17191 19522 22279
50 9094 11657 15125 17483 19895 23039

CBC
Weather

5 2617 3504 4783 5967 7091 B477
10 2002 3018 4009 5140 6186 7739
20 2173 3151 4012 5175 6473 7877
30 1901 2661 3552 4462 5345 6564
40 2233 3292 4111 5218 6259 7588
50 2406 3223 4251 5292 6350 7616

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2: Experiment data of IPM pattern number.

Length 30- Length 40-Length 50-Length 60-Length 70-Length 80-

364 373 373 373 373 373
10 315 314 304 294 284 274
20 315 314 304 294 284 274

PCQuote
315 314 304 294 274284
315 314 304 294 274284
315 314 304 294 284 274
165 153 143 133 123 113
165 153 143 133 123 113

Yahoo
Quote

165 153 143 133 123 113
161 149 139 129 119 109

40 159 147 137 127 114

159 147 137 127 114 94
133 133 133 133 133 133
114 104

Lycos
Quote

114 104 74 64
114 104

114 104 94 6474
114 104
247 257 267 297277 287
247 257 267 297277 287

CNN
Weather

247 257 267 277 287 297
169 159 149 139 129 119
169 159 149 129 119139
169 159 149 129 119139
172 172 172 169 159 155
153 153 153 153 153153

CBC
Weather

153 153 153 153 153153
30 117 107 97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3: Landmark coverage rate (100% support)

Training
Sample
number 30-39 40-49 50-59 60-69 70-79 80-89

PC Quote

Sample 5 1 1 1 1 1 1
Sample 10 0.963 0.963 0.963 0.963 0.963 0.963
Sample 20 0.963 0.963 0.963 0.963 0.963 0.963
Sample 30 0.963 0.963 0.963 0.963 0.963 0.963
Sample 40 0.963 0.963 0.963 0.963 0.963 0.963
Sample 50 0.963 0.963 0.963 0.963 0.963 0.963

yahoo
Quote

Sample 5 0.9444 0.6111 0.6111 0.6111 0.6111 0.6111
Sample 10 0.9444 0.6111 0.6111 0.6111 0.6111 0.6111
Sample 20 0.9444 0.6111 0.6111 0.6111 0.6111 0.6111
Sample 30 0.9444 0.6111 0.6111 0.6111 0.6111 0.6111
Sample 40 0.9444 0.6111 0.6111 0.6111 0.6111 0.6111
Sample 50 0.9444 0.6111 0.6111 0.6111 0.6111 0.6111

Lycos Quote

Sample 5 0.9231 0.9231 0.9231 0.9231 0.9231 0.9231
Sample 10 0.9231 0.9231 0.9231 0.9231 0.9231 0.9231
Sample 20 0.9231 0.9231 0.9231 0.9231 0.9231 0.9231
Sample 30 0.9231 0.9231 0.9231 0.9231 0.9231 0.9231
Sample 40 0.9231 0.9231 0.9231 0.9231 0.9231 0.9231
Sample 50 0.9231 0.9231 0.9231 0.9231 0.9231 0.9231

CNN
Weather

Sample 5 1 1 1 1 1 1
Sample 10 1 1 1 1 1 1
Sample 20 1 1 1 1 1 1
Sample 30 0.9167 0.9167 0.9167 0.9167 0.9167 0.9167
Sample 40 0.9167 0.9167 0.9167 0.9167 0.9167 0.9167
Sample 50 0.9167 0.9167 0.9167 0.9167 0.9167 D.9167

CBC
Weather

Sample 5 0.8667 0.8667 0.8667 0.8667 0.8667 0.8667
Sample 10 0.8667 0.8667 0.8667 0.8667 0.8667 0.8667
Sample 20 0.8667 0.8667 0.8667 0.8667 0.8667 0.8667
Sample 30 0.8667 0.8667 0.8667 0.8667 0.8667 0.6
Sample 40 0 0 0 0 0 0
Sample 50 0 0 0 0 0 0

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4: MRS run time (ms).

Length 30- Length 40- Length 50-Length 60-Length 70- Length 80-

20
PCQuote

Yahoo
Quote 30

Lycos
Quote

CNN
Weather

139

CBC
Weather

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5: Pattern numbers after MRS heuristics.

Length 30- Length 40- Length 50- Length 60-
59 59

Length 70- Length 80-

20
PCQuote

Yahoo
Quote

Lycos
Quote

CNN
Weather

20

CBC
Weather

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6: IPM Run time for Amazon and Chapters (ms)

20-29 30-39 40-49 50-59

Amazon

20 461 602 680 B17
30 286 382 454 570
40 275 364 429 493
50 253 327 360 395
60 181 204 213 216
70 180 192 203 198

Chapters

20 464 557 705 886
30 392 456 525 601
40 272 316 376 345
50 231 256 260 252
70 201 161 165 160
90 123 123 126 140

Table 7: Object coverage rate

20-29 30-39 40-49 50-59

Amazon

20 0.9386 0.8298 0.8298 0.9255
30 0.8404 0.8298 0.8298 0.8298
40 0.8404 0.8298 0.8298 0.8191
50 0.8404 0.8298 0.8298 0.8191
50 0.8298 0.8191 0.8191 0.8191
70 0.8298 D.8191 0.8191 0.8191

Chapters

20 1 1 1 0.9681
30 1 1 0.9894 0.9574

40 1 1 0.9574 0.9574
50 1 1 0.9574 N/A
70 0.9894 0.9574 N/A N/A
90 0.9574 N/A N/A N/A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 8: Time Spent in The MCS heuristic (ms)

20-29 30-39 40-49 50-59

107 140

116
57

Amazon

20

20 90 117 184
30
40

Chapters
50

Table 9: Pattern number before MCS heuristics

20-29 30-39 40-49 50-59
20 70 78

67
Amazon

4648

104 106

40
Chapters

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 10: Pattern number after MCS heuristics

20-29 30-39 40-49 50-59

Amazon

60

Chapters

Table 11: Landmarks used in yahoo stock-quote service.

last trade:
trade tine:
change:
prev close:
open:
bid:
ask:
ly target est:
day's range:
52wk range:
volume:
avg vol
(3m)
market cap:
p/e
(ttm)
eps
div Stamp; yield:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 12: A summary of the comparisons among wrapper construction tools.

WIEN SoftMealy Stalker XWrap W4F Lixto RoadRunner ServiceBuilder

Requires labeled training

examples
yes yes yes no no no no no

Feasible to leam from a

large amount of examples
no no no no no no yes yes

Automatic learning process yes yes yes no no no yes yes

Can deal with nested

structures
no no yes yes yes yes yes yes

Can dealing with

variant/missing attributes
no yes yes yes yes yes yes yes

Robustness of the

generated wrapper
low moderate moderate low low low low high

Table 13: A summary of some factors that affect the ServiceBuilder run time4.

Target

pattern

length

Minimum

support rate

Degree of similarity

within/among page(s)

Average

page length

Number of training

examples

ServiceBuilder

runtime
positive negative positive positive positive/negative5

4 “positive” in the table means the bigger (higher, larger...) the value of a factor, the longer the run time

of ServiceBuilder and “negative” means the opposite.

5 Depends on the actual minimum support and the degree of similarity within/among page(s), this factor

may positively or negatively relates to ServiceBuilder run time. In general, when minimum support rate is

high, the relation is negative and vice versa.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

