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ABSTRACT

A numerical method for solving nonlinear, unsteady partial differential equations is
developed to simulate the motion of an elastic string. The equations that govern this
motion are reconstructed in conservative form to take advantage of a conservative discret-
ization. This conservative model is required to capture the propagation of the wave gener-
ated by the motion of the string.

The partial differential equations that describe the motion of a string are discretized by
an implicit finite difference approximation. These implicit equations are time advanced by
a fictitious first order partial differential equation, whose steady state solutions is equiva-
lent to the solution of the string motion at the next time step. The fictitious first order par-
tial differential equation is integrated to its steady state by an explicit Runge-Kutta
method.The resulting numerical method is extremely robust and will be used in future
investigation of fluid structural interaction problems.

This numerical method is evaluated for five test cases. The first test case is a compari-
son between analytical and numerical solutions. For the rest four test cases the solutions
obtained are analyzed for their ability to maintain the conservation of the total energy in
the system and in the case of low amplitude waves the maintenance of a constant propaga-

tion speed.
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CHAPTER ONE

INTRODUCTION

1-1 Historical Background

The motion of an elastic string has been the subject of interest since the sixteen century.
In 1741 Taylor took the first steps towards formulating the equations for a string motion by
describing it as the force proportional to a normal acceleration. In 1743 D’ Alembert
derived an explicit partial differential equation for small motions of a heavy vibrating
string and in 1751 Euler formulated the correct equation of motion for large vibrations of a
string. A good historical presentation can be found in “The Rational Mechanics of Flexible
or Elastic Bodies* by C.Truesdell [1].

The intellectual journey begun in the sixteen century has not finalized investigations of
an elastic string. The equation of string motion, which is mainly dependent on the consti-
tutive relations, is still under study for different material properties. For material that are
elastic, thermostatic and viscoelastic the constitutive relations depend on stretch, stretch

and temperature, and finally stretch or the time derivative of stretch, respectively.



Physical systems are often modeled mathematically by nonlinear equation that are dif-
ficult to solve, as a result these equations are often linearized for simplicity. In some cases
a linearization causes the mathematical model to lose its intended feature, on the other
hand one could simply formulate a linear model. This can be achieved by assuming a
purely transverse motion which results in a constitutive relation as discussed by
J.B.Keller [2].

Any mathematical model of significant sophistication is sure to result in a series of non-
linear equations.Solving these nonlinear, hyperbolic partial differential equations is diffi-
cult by direct methods. It is also difficult to find solutions to these equations, by the
traditional method of characteristics. However, through the years there have been many
numerical methods suggested to approximate the solutions of these problems. The accu-
racy of which are not the same. Some of these different methods are presented below to
show both current progress and the need for alternative.

1) Von Neumann’s Method: A method of solution for wave propagation in a continuous
media was presented in 1944 by John Von Neumann [3]. Von Neumann proposed that the
treatment of hydrodynamic shock problems corresponds to a return from the continuum
theory to a kinetic theory using a very simplified quasi-molecular model. Unfortunately
this method doesn’t produce an equivalent discrete mathematical model of the continuum
media when there is a discontinuity in velocity or strain. Applying this method to the solu-
tion of an elastic string problem is discussed by S.S. Antman([4] as follows: “using the
principle of classical particle mechanics, the equation of motion of K beads are joined in

sequence by massless, non-linearly elastic springs with both ends fixed.



The solutions for the positions, velocity, and strain of this discrete model converges to the
string model only in the classical (smooth) solution, not to the one which suffers jump dis-
continuity in its velocity and strain. The numerical method Von Neumann proposed can be
used to find a smooth solution only.”

2) Galerkin method: An approximate solution of the equation of motion of an elastic
string can be produced from a Faedo-Galerkin method. In this method the presence of a
mass matrix (a matrix which is time dependent) makes it difficult to find the solution of the
system of ordinary differential equations[5].The analysis of the above method on a quasi-
linear model of an elastic string was carried out in 1973 by R.W.Dickey(6]. He proved that
the solution of the system of ordinary differential equations converges to the classical
(smooth) solutions of the partial differential equations if there is no shock (discontinuity)
in the propagation of the wave. This method requires the governing equations to be written
in the first order differential equation and imposes the condition that the stretch should be
greater or equal to one. Like Von Neumann’s method, the Faedo-Galerkin method is also
valid only for smooth solutions.

3) Godunov scheme: One of the most current method for solving the equation of an
elastic string is a Godunov scheme. For a good work using this method on elastic string
motion see J.Wegner, J.B.Haddow and R.J.Tait in 1989[7), also K.Abdella in 1989(8] and
J.L.Zhong in 1994 [9]. This method is based on the Riemann problem. A comparison
between different Riemann solvers, starting from the exact solver ;o different ways of
approximations was investigated in 1991 by R.J.Tait et.al. {10]. Unfortunately this method

requires a significant amount of computing resources and is not easily extended to



multidimension. This method also requires the governing equations to be written in the
first order differential equation and imposes the condition of stretch to be greater or equal
to one.

While there has been significant development in the modeling of an elastic string, there
is still the need for a multidimensional model that dose not impose the condition of stretch

to be greater or equal to one.

1-2 Objectives

The objectives of this thesis are to develop a numerical scheme which will provide a
solution for the dynamical response of the motion of a string with out imposing the condi-
tion that stretch to be greater or equal to one. The objectives can be broken down into three
main parts.

First, the numerical method should be stable. It should also be capable of simulating
long time wave motion with possible wave reflections from a boundary. These require-
ments are fulfilled by the following actions: (i) Undertake no linearization of the equation
of string motion or it’s numerical construction; (ii) Imposing no condition on stretch;

(iii) Ensure at least Von Neumann stability [11]; (iv)The method will be tested for number
of wave reflections to ensure consistency.

Second, the numerical method should be accurate in space and time as well as econom-

ical in computer time and memory requirements.



The discretization is performed in conservative form, which is similar to a finite volume
approach where the equation of motion is satisfied in each computational grid cell. To be
efficient in computer time and memory, a modified explicit, four stage Runge-Kutta
method is used time advance the unsteady model. This approach has the advantage of con-
trolling the stability and accuracy of the scheme, which is achieved by controlling stage
coefficients in the Runge-Kutta formulation.

Third, the numerical method should be able to be extended to solve a mathematical
model of a fluid structural interaction problem. This will be fulfilled since the numerical
method is not constructed to be valid only for an elastic string. The approach can be used
to solve nonlinear unsteady partial differential equations. For future analysis of the wave
propagation in the face of fluid and elastic structural interactions, an external force is con-
sidered which will couple the two media.To test the resulting method, a number of differ-

ent test cases will be simulated.

1-3 Outline

In Chapter Two the nonlinear equations that describe the unsteady motion of an elastic
string are developed. This construction is divided into three parts: (1) a kinematics of
deformation, which specifies the length, the shape, the boundary and initial conditions of
the string; (2) a dynamical equation of motion, which considers all forces acting on the
string and utilizes the relation of unbalanced forces with acceleration; (3) a constitutive

relation, which embodies the material property of a perfectly flexible elastic string in the



mathematical model.

Formulation of the governing equation in conservative form is necessary to take the
advantage of conservative discretization. In Chapter Three the conservative version of the
governing equation is constructed from the principle of linear momentum. Hyperbolic,
nonlinear equations that have been investigated by researchers for years; some of these
works are briefly cited in Chapter Three. The formation of shock and its relationship to the
type of constitutive relation used is discussed in this Chapter. From this discussion it will
be shown that a linear constitutive relation can not produce shocks.

The velocity of the wave is calculated using a traveling wave model. The total energy of
the system is a summation of kinetic energy, stored energy, and potential energy. An
expression for total energy is constructed and used to validate our numerical simulation. In
most previous investigation a condition for stretch to be greater or equal to one is
imposed. However, this condition is only required for stable equilibrium configuration,
and need not be imposed for the dynamical problem.

A conservative numerical discretization of the conservative equation of motion is pre-
sented in Chapter Four. Construction of a conservative discretization, the effect of nonlin-
ear mathematical model on the discretized form, and the problem in handling the
boundary condition is discussed in Chapter Four. Based on a linearized version of the gov-
erning equation and using a Von Neumann stability analysis as a guide, a discrete form of
the governing equation, which fulfills the Lax equivalence theorem [11], is chosen. The
numerical discretization used is an implicit treatment that is second order accurate both

spatially and temporally.



One of the objective of this these is to develop a numerical method which can be used
in the future fluid structure interaction problem. Thus we require a method that is capable
of simulating the long time response of a dynamical motion. Thus to show why a first
order numerical method is not suitable for simulating a large time response we will illus-
trate the performance of several TVD method.

In Chapter Five we will construct a new method for solving the equation. A fictitious
first order partial differential equation is defined in such a way that the steady state solu-
tions of this equation is equivalent to one time step advancement of the discretized implicit
equation of string motion. To find the steady state solution of this first order partial differ-
ential equation, an explicit, four stage Runge-kutta method is chosen. This method is
adapted from the work of Jameson [12].

The steady state solution of the defined fictitious first order partial differential equation
is taken as one time step advancement of the unsteady equation of string motion. By
repeated operation of the above scheme, the solution is obtained for a desired length of
time.

In Chapter Six results for several test cases are presented. The test cases include:

(1) a Comparison of a numerical and analytical solution. (2) a dynamical response in the
absence of external pressure; (3) a dynamical response to impact only. (4) a large ampli-
tude simulation to initiate nonlinear behavior.

For the first case the position of the sting obtained form the numerical as well as the
analytical solution are shown on the same graph. For the last four test cases, the position of

the string before and after reflections and a comparison of two wave positions at every



25,000 time steps are presented. Characteristics of the residuals of first order partial dif-
ferential equation, which shows how many time steps are taken in the explicit Runge-
Kutta scheme, are plotted. The percentage of normalized total energy is plotted to show
the characteristics of the numerical solutions in conservation of the total energy of the sys-
tem. For large amplitude motion of the string the stretch for different time levels are plot-
ted to show the variation of the streach.The motion of the string for 100,000 time steps,
which is equivalent to fifty reflections, gives encouraging results of the accuracy of the

system for the tested period.



CHAPTER TWO

MATHEMATICAL MODEL

In this Chapter, an equation of motion for a perfectly flexible string is formulated. Even
though the string under consideration is one dimensional, the particles (material points)
occupy one Euclidean space and therefore the movements of these particles are observed
in the 2D plane. A detailed description of the geometrical configuration is given under the
section on the kinematics of deformation.

A motion can be initiated in a system due to unbalanced forces acting on the sys-
tem.These forces can be constant or variable. The interaction and the relationship of these
forces with acceleration is presented in the section on the dynamic equation of motion. and
finally the material property of the considered material is modeled by an appropriate con-
stitutive relation. The constitutive relation will determine the type of response the material
renders to the subjected forces and geometrical conditions. In the last section of this Chap-
ter, a non-dimensional form of the governing equation is constructed to investigate the

characteristics of the string equation.



2 - 1 Kinematics of Deformation

Consider the space in which the string is observed in an Euclidean point spaces, €, and
the time it is observed in real time, R. A reference configuration is defined as the configu-
ration in which the string lies in the i- direction along the interval of [0, L]. A string con-
sists of a continuously distributed material. Each material point in the string is

distinguished by its coordinate S in the reference (un deformed) configuration.

Fig. 2.1 Reference configuration

After the string undergoes some motion, its particles occupy a different positions in the
Euclidean point space. The new shape of the string is known as the deformed configura-
> L
tion. 0 /\
/
S ds
s s +ds

I(s +ds)

0

Fig. 2.2 Deformed configuration at fixed time
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Let
S =reference arc length
s(S) = arc length along the deformed string
The relation between the reference and deformed configuration is expressed by stretch,

which is a deformation gradient.Here

AS) = ds is a local “stretch* of the string at a fixed time.

ds

For the dynamical case,

as

AS,t) = 35

When A(S,t ) > 1 the string is elongated, and when A(S,t ) < 1 the string is com-

pressed.Most investigation, impose the condition A.(S,t ) > 1.But this condition is not
imposed in our investigation for the reason presented in Chapter Three.The strain, which is
defined as a ratio of a change in deformed length over a reference or original length, is

related to stretch as:

_9ds-dS _,
d = 35 =A-1

where O is the strain.
Boundary Conditions

Let the ends of the string be fixed at the points 0 and L, and let I be continuous on [0
1] for all t > 0. Then prescribing Fat S=0and S = | provides the following boundary

conditions:

11



r.) =0 rae =L

50,;z) =0 L) =0
Initial Condition
Assume that the string is initially in an unstretched configuration with no initial veloc-

ity. This means that the initial conditions are as follows:

rs,0=5s 5,(5,0) = 0
ar$,0)_ ar,(5,0)
ot B at N

2 - 2 Dynamic Equation of Motion

Forces acting on a system are external forces and contact forces, which are the internal

resistance of the material to deformation. The configuration of the forces acting on the sys-

tem is shown in Fig.2. 3.

A pbds

f(s+ds)

S +dS
- K(S) S

Fig.2. 3 Configuration of forces
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Consider all acting forces on an elemental part of a string. Using a relation of unbal-
anced force and acceleration, the dynamic equation of motion is derived as follows.
Let f(S,t) be the force exerted by the part (S , L] on the remaining part [0, S ) at time
t; let b (S.t) be the force applied externally per unit mass; and let p(S,t) be the mass per

unit initial length. At a fixed time,

2
fs+ds)y- f(S)+pbds = paa—z‘rdS
t

This is equivalent to

af

2
+pb = péﬂ' @.1)

2 - 3 Constitutive Relation

Those material properties which relate the contact force f(S,t) to the motion of the string
are called the constitutive relations. These constitutive relations distinguish the different
responses of different materials. Thus a rubber band, a steel wire, a cotton thread, a ther-
moelastic or viscoelastic material would all require different constitutive relations.

A defining property of a string is its perfect flexibility, which is expressed mathemati-
cally by the following requirement: that f{(S,t) be tangent to the curve at I(S,t) for each S

and t.

13



ar

Letl= 35 be a unit tangent to deformed string; then a unit tangent can be related to

stretch as follows.

2~} 2.2)

)
1
]
]
I

Q
@l
S1&
%
~

QU
7}

Assuming that there is no shear force on the string so that f (S,t) is parallel to 1, then the
contact force can be written as
fs.n=fsnl (2.3)
Here £(S.t) is the intensity of the force. Assuming that the intensity of force is some

function of stretch (A), f(S,t) = f(A) ( this is the elastic case, similar to a rubber band),

then
-1 or
fsol= A f (k)ﬁ (2.4)
if g(A) = x—lf(X). 2.5)

Then Eqn. 2.3 can be written as
ar
fsn=g) 5% (2.6)

Using the above constitutive relation in Eqn.2.1, the equation of motion will have the

following form:

d ar _ . ar
2 (0 ) vob = 32



2 - 4 Governing Equation of Motion

Considering an elemental length of a deformed string with the external force applied on

it, the configuration is shown in Fig. 2.4 below. The equation of motion, Eqn. 2.7 can be

further analyzed as follows.

Fig. 2.4 pressure distribution on deformed string
Now p b is the applied force per unit initial length; to find the force per unit deformed
length, multiply p b by A.Then
pbA~! = force per unit deformed length.

Let P be pressure intensity and N a unit normal to the deformed string. The relation-

ship between pressure and external force can be written as
A'pb=-PN

then pb =-PNA (2.8)

15



If K is a unit vector perpendicular to the page then
N=k X1
AN = kXAD 2.9)

where ‘X’ represents a cross product. Using the relationship of a unit tangent and the con-

cept of stretch of Eqn. 2.2 in Eqn. 2.9

kx99
AN=kX 35 (2.10)

Eqn. 2.8 and Eqn. 2.10 can be combined to form the following equation.

- ar . _, or
ph-‘P(_leﬁ )-P(ES-' Xk) (2.11)

Eqn. 2.11 can be written in tensor notation as

ar;
pb= P55 € Xk) 2.12)

For the system under consideration, K has only one component; thus Eqn. 2.12 can be

written as
or;
= Si 3 —_.f é;
pb =P j 35 J 2.13)
dr, or.
=p&iiz__ie; —pEji_ie;
J 35 P%J 35 J 2.19)

€;;  inthe above equation is an Alternating tensor that can have the values

16



En=8€Ex=0 E;p=1 €y =-1

Using the relation of Eqn. 2.14 for external force in Eqn. 2.7, the equation of motion in

two-dimensional Euclidean space will be:

P ._13g o o ¥x ar, a7
' hal /i €, 2 - 525
Mgz *h mas asasz t Pl Py @

wherei=1,2andj=1, 2.

Assume a linear relationship between contact force and stretch as shown in the follow-

ing equations:

fA) = E(A-1)

2(\) = E(l—%) 2.16)

where E is an elastic constant.

after substituting the above relation in Eqn. 2.15, the equation of string motion in

expanded form will be:
E(l——)arl +.§. anazrl + . 821‘2 E)I{_ 875__ az_n
A)3s? " ,3|3s53s? © 3s as? 95~ a5 Par
E(l__)a E(ndn o Prnn on _ I
) 357 T 3\asas? tas 552 Jas *Pas T P

Q.17

17



Using the matrix representation of the governing equation, it is important to find the

equation type and characteristics of the string. In matrix form, the governing equation can

be written as:

= — 2.18
sz ot @19
where
’-5(1-1) 0
a=|P
0 E (1_1)
i P 1
i ]
E(mdn a &n P
B = |95 9s? " 3s 9s? p
P E(ndn_ on n
P YE 35 052  3S as?
) ] T _[ 2|
_a__-r - r‘a'i a’Zr - az'i o2 _a_r_l
as - % 982 T 952 ’ ot2
2
o, r o
a5 | 952 | | 02 |
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2-5 Dimensional Analysis

Dimensional analysis is used to determine the dimensionless characteristics of the
equation of string motion.The non-dimensional form of the equation is obtained by choos-

ing non-dimensional quantities as follows (the hat representing the non-dimensional quan-

tity).
s _ PL
P‘E
§=% e[0 1]
A
"=
A= A
f:tiz.
pL
d _9 9§ _1 9
S 35 9§ L 33
2 2
9.1 9 (2.19)
832 LZaS'



3 E 3

2

a? pL 2512

Let éo ‘—‘(

if)

(2.20)

Where é 0" the propagation speed, is a dimensionless characteristic of the equation of

motion and depends on the property of the material, E and p. Using the above relations in

eqn. 2.17, the non-dimensional form of the governing equation, after dropping the hat, will

be

(a»rl or
A

20

35 as2

3s 352

dr;

as

ar;
aS

(2.21)



CHAPTER THREE

CONSERVATION LAWS &
PROPERTIES OF MOTION

There are different types of waves propagated in an elastic media, one of which is shock
wave. A shock wave is defined as a surface whose motion is continuous, but whose veloc-
ity, deformation gradient, and higher order derivatives suffer finite jump discontinuities
[13]. A substantial amount of work has been done in shock wave propagation in gas
dynamics.However wave propagation in elastic material varies significantly from wave
motion in gases. In elastic media, shock waves and continuous simple waves occur in both
expansive and compressive motion as discussed by Courant - Friedrichs [14]:

“there is always a sonic discontinuity at the head of a rarefaction wave entering a

zone in which the material is unstrained. In contrast to a gas, which expands

indefinitely under zero pressure, an elastic material assumes a well defined

original state when it suffers no stress.”

Another type of elastic wave is an acceleration wave. An acceleration wave is defined as

a surface whose motion and first order derivatives are continuous, but the acceleration,
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the second and the higher order derivatives of the motion suffer finite jump discontinuities
[15]. In the section of shock and constitutive relation we will discuss the possibility of
shock formation for the constitutive relation used in this thesis.

It has been shown by Lax and Wendroff [16] that a discontinuous solution can be com-
puted without special treatment of the discontinuity if both the partial differential equa-
tion, and its numerical approximation, are constructed in conservative form.

In the following Chapter a conservative form of the governing equation of string
motion, based on the conservation of momentum, is constructed. Other properties of
motion which will help in the understanding of wave motion; i.e, wave velocity and equa-
tion for the total energy of the system will also be investigated.At last section of Chapter
Three we present energy criteria for stability, which will show why we don’t require that a

condition on stretch be imposed in our investigation.

3 - 1 Conservation Laws

The conservation of momentum for a moving string requires that the total change of
force flux across the boundary is equal to the total rate of change of momentum.
For a string which is contained in the closed interval of [0 L], the total amount of

momentum is given by

or
p 5= ds

O =y ™



Let F be the flux across the boundary. From conservation of momentum, the following

relation is obtained.

0 J‘L or _J-La_F
3 pa— ds = 035 ds 3.1

The non-dimensional form of Eqn. 3.1 is constructed using the following non-dimen-

sional terms (the hat represents the non-dimensional terms);

"~
i
i

ILp (E)ardﬁ EOF & 3.2)
0 0

Dropping the hat, the integral form of the equation of motion become:

J‘:(% (’gfr )"% )ds =0 (33)



If every point where all partial derivatives of %l' and F exist, the differential equation

form of the conservation law will be

aF _ 3 (ar
35 ‘m(at) 39

We now connect this conservation form of the equation with the previously derived

governing equation in Chapter Two.

Let F= (F, ,_Ez)T

r= (r, , EZ)T
where

a1 onh

_E = ﬁl ‘%’(ﬁl)—l’fz (3.5a)
dk  1(d.

E 35 +X(§§ +Pn (3.5b)

T
2 (2r)_ [ 7 s

Using the above relation, Eqn. 3.4 can be written in expanded form as

9 (3K 13Ky .\ _ 3 (3h
ss(as ~2las)-7) = 3l )

24



_d (95
—{as x(asi)”’ 1) =53 ) ¢

3 - 2 Wave Velocity

The velocity of a propagating wave is dependent of the deformation gradient, elastic
modulus and mass of the material [17]. Traveling waves are waves whose solutions have
the form of {L =I(S - Ct)}, where C is a constant speed of the wave. The transformation of
the governing equation of string motion from two independent variables S and t to one
independent variable { £ =S - Ct } is done as follows.

Let

C = constant speed of the wave

at t=0 E=S,
E=S5-Ct
=E+Ct

Transforming each term of the governing equation separately

e |t ——
b —4



3% "€ CaE =k
3 (M ALY 3 O\ .37
o9 (S 9 (o) 29K _ 2

322 as(ag at) at( Caé) =¢ o2 ] e
i(g(k) 1) = g(x)———+ %(h) o1
d as oS 95 (3.8)
B 98\ _ 9g(h)

as dA as
Form Eqn. 2.2 using the relation of stretch

2 _dn drF

M=35 3

oL 1 0F & ar
then a—s~ = x ﬁ 352 (3.9)

Eqn. 3.9 can be written as an equation dependent on a single variable using the transfor-

mation given in eqn. 3.7:

ag(l) ’;_ v'; " (3.10)
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Thus after substituting Eqn. 3.10 in Eqn. 3.8 we get:

il dg(A) 9 _ 1dg(d) ..,

sMycatas a5 = ST+ U R R

(5013, + 13380077 )
=A; re

1 a ' '
where Ay =g)d;+ Xﬁg(x)rg r (3.11)

and d;; is Kronecker delta, which can have the values d; =1ifi=j

8,-,- =0 if i #j
The governing equation of string motion written in Eqn. 2.15 can be transformed to a

single independent variable § using the above equations:
pPC2r" = A I"+PE&: I (3.12)

The primes in Eqn. 3.12 are a partial differential with respect to & .

Recall the relation of Eqn. 2.5 that

g0y = L4 (l)
then 5%.- = %’—a—i—éf(l) (3.13)

A; j of Eqn. 3.11, after substituting Eqn. 3.13, can be written as
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f(A 1, 1d
A, = ()(50 r )+lza{ ' (3.14)

But for a unit tangent the relation from Eqn. 2.2 can be written as

= Il?' = llx (3.15)

QJIQJ
Gnj =N

Substituting Eqn. 3.15 in Eqn. 3.14 the equation of A;;  will be

Ay = f&—}‘)(@j —l.—é-)+g—{41j (3.16)

To find the speed of propagation, let the wave be an acceleration wave, where the first
order differentials are continuous but the second order and higher differential are discon-
tinuous.

Thus at discontinuity the equation of string motion, Eqn. 3.12, will have the following
two forms, one from the left side ‘L’ and the other from the right side ‘R’ of the disconti-

nuity as follows:

pC2(1"), = Aij (F")+P& r' (3.17a)

PC2(1")g A; (Mg +PE; r' (3.17b)
(A,-j b = (A,-j R = A,j because A,-,- depends on ¥ ' which is contin-

uous.

Subtracting Eqn. 3.17b from Eqn. 3.17a we get

PC(r") =R ) = Ay (") = (T "R ) (3.18)
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But Eqn. 3.18 can be written as
pC%d; = A; d; (3.19)
where d; = ("), ~(F"k
From Eqn. 3.19 it can be seen that pC2 is an eigen value of A,-J-

To find the eigen value of A ij ~multiply Eqn. 3.16 by é
Ay b= B0q 0 -1yl Fa

(3.20)

Bu [ =1 (3.21a)

81 = I, (3.21b)

Then using Eqn 3.21a and 3.21b, Eqn. 3.20 is reduced to

A,‘j lj = g—{'l, (3.22)

Thus %{- is one of the eigenvalues of A ij - Using a linear relationship between

stretch and contact force (Eqn. 2.16), this eigenvalue is equal to E (elastic constant).

Since Ai j  is a symmetric two by two matrix, it has two real eigenvalues.

To find the other eigenvalue of A ij »multiply Eqn. 3.16 by 1\5 , a unit normal to the

deformed string.
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A; N; = f(;‘)(QJN lgN)+afll (3.23)

J

since lJN ; =0 and SUIVJ = N, (3.29)

Eqn. 3.23 after substituting Eqn. 3.24 will be

A N; = f 0“) =N, (3.25)

fA)

thus from Eqn. 3.25, )

is the other eigen value of A ij - Using the linear relation-

ship of stretch and contact force, this eigen value is equal to E (l - %’) .

The speed of the wave in the string can be found from Eqn 3.19 and the two eigen val-

ues of A ij as follows

/E E 1
C =+ 5 and C=1¢% 5 (1 7\.) (3.26)

The first speed in Eqn. 3.26 is the fast wave, which depends on the material property
i.e., the elastic constant and mass per unit length of the material. For the string under con-
sideration A = 1 is the reference configuration and for real eigen values A 2 1 ; thus the
second wave speed in Eqn. 3.26 is less than the first wave speed, which is called the slow
wave speed. The *+’ and ‘-’ sign shows a wave moving to the left or right direction,
respectively.
To calculate the time (T) which the wave will take to move from S =0to S = I based on

the fastest wave speed (this wave speed is equal to the longitudinal wave speed calculated
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by M.E. Beatty & J.B. Haddow [18)).

=L LR
T_Cf LJ; (3.28)

where, C ¢ is the fast wave speed. The non dimensional time it takes for the wave to travel

from one boundary point to another is T =1 (using Eqn. 2.19 for non dimension-

ing).

3 - 3 Shock & Constitutive Relations

It is possible to produce large amplitude waves using a linear stress and stretch relation-
ship.But from experimental investigations we know that high stretch values are not possi-
ble with a linear constitutive relation. To mimic physically plausibly often the Ogden’s or
Mooney-Rivlin model for constitutive relation is used. These constitutive relations have a
non-linear relation between stress and stretch. However this constitutive relation will
allow shocks to form during the propagation of the wave. In this section, the relation
between shock formation and constitutive relation will be constructed.

The relations between shock formation and material properties are discussed by
J.D.Achenbach [19]. To show these relations of material property and shock formation, a

general equation of wave propagation without external force is presented as follows.
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azr 82r
C(F)—, = — 3.29
B35 = 52 G

where F = Al is the deformation gradient and f ) is stress

The general relation between stress and deformation gradient can be represented graphi-

cally as
! ¥E) &
d d
372 >0 352 0
f(F)
¥ ®) 0
aF? =
S
F

Fig. 3.1 stress and deformation gradient

To analyze Eqn. 3.29 lets consider the following initial and boundary conditions

t <0 x=x0=o F =F, (3.30)

t >0 S=0 %‘ v (0,t) = h (1) 3.31)

where h(0) =0

Eqn. 3.29 can be written as

av 9
5 ~C(F)

IF _

ﬁ-O
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vV oF _
ﬁ - é_t. =0 (3.32)

where V = 3

The characteristic curve of Eqn. 3.32 in (S,t ) plane is

4 _ +oF) (3.33)

dt
If a new coordinate § and m are introduced in such a way that
€ = constant along +C (F ) curves

N = constant along -C (F ) curves and introducing a quantity Q(F) as
F

2(F) = [ C(F)dF (334)
F,

Eqn. 3.32 can be transformed to a new equation along the introduced new coordinates sys-

tem as
aV 90 _
éﬁ'——ﬁ =0 along +C (F)
oV . 30 _
3E +x =0 along -C(F) (3.35)
Eqn. 3.35 can be integrated to yield
VEW-02Enm) = g,@&) along +C (F)
VEM+QEM) = g,(8) along -C (F) (3.36)
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Applying the initial condition on Eqn. 3.36 and at S =0, & =1 =t, we will have the fol-
lowing condition in the (§ ,m) plane.
E<O V=0 0=0
§=m=t V=nh(t)=h@E) (3-37)
Thus the solution for V (§.1) and Q (€ ,n) are

V= h()
h FCFdF 3
Q0 =-h() —IFO (F) (3.38)

in Eqn.3.38 V and Q are function of & only.This implies that F = F (§) and C = C ()

Thus integration of

gitg =+C (§) subjected to the condition & =tat S =0 gives
S = CE)(-8) (3.39)

The solution given by Eqn. 3.36 are simple wave solutions and are valid as long as the
+C (F) characteristic do not intersect. If we consider the case that A (€) increases

monotonically, when C(F) > 0 thus from Eqn. 3.38 F decreases in magnitude. If

e

352 >0, C (&) decreases monotonically as F decreases, Thus +C (F ) characteris-

tics then never intersect. Thus the simple wave solution presented are valid. If

6

372 <0, C (&) increases as F decreases thus an intersection will occur, which is a
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shock formation. From the above we can see that shock formation is a nonlinear effect in
a concave curve of stress and stretch relation. For a linear stress and stretch relation there
will not be a shock formation. There for we believe that non linear behavior observed
when a high amplitude wave propagated in the string is not due to shock formation, but

instead a consequence of stretch being less than one.

3 - 4 Energy of the System

The total energy of the system is composed of kinetic energy, strain energy (stored
energy), and the potential energy due to the external force. The total energy of the system
for a conservative system should be constant with respect to time.

The total kinetic energy of the system, represented by K is calculated over the region

[0 1] and is given by the relation,

1 2
K = j P ds (3.40)
0

ar
ot

for the same domain the strain energy density is given by

o = J?f(l)dk (3.41)

The total stored energy at a given time t is given by:

1
¥ = J' P (A, S)dS (3.42)
0
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if the external force has the form
b(St)=2g(r(st)S) (3.43)

Let ® be a function of r and S, then the potential energy density of the external force is

represented by

oy
i
QJ' QU
e

if g is conservative, then the total potential energy of the system due to external force is

represented by the following relation:
I
Q = J' w(r.S)dS (3.44)
0

using the initial conditions specified in Chapter Two, the total energy of the system from

initial time t =0 to t = T is given by

2
+Q ]dS (3.45)

. 1| ar
E,. = Y4+~ 22
T -[ol: 2| or

For the case when there is no external force applied, Eqn. 3.45 will be

_ 1| ar
ET—J‘I:\P-'.EE_{

2
]dS (3.46)
0

but using the linear relationship between contact force and stretch the total stored energy

can written as:

(A = J':\E(x—l)dx (3.47)
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after substituting Eqn. 3.47 and applying the dimensional analysis of Chapter Two, the

total energy of the system (Eqn. 3.46)in non-dimensional form can be written as:

_ Y 1 1] 9r |2
ET—IO(E--1+§+§ 5

——

JdS (3.48)
t

This equation will be used in the numerical approximation section to check the obtained

numerical solutions for maintaining the conservation of the total energy.

3 - 5 Energy Criteria

In this section, the energy criterion for the stability of a string in equilibrium is derived
from a variational principle. We will show that the stable equilibrium configuration exists
when the local stretch is every where greater or equal to one, to minimize the potential
energy.

Lets assume that I'(S) be an energy minimizing configuration (original configuration).
The original configuration is given a small virtual displacement. The new displaced posi-
tion is assumed to fulfill the boundary condition of the original configuration. Virtual work
has been done by the external force to produce the new displaced configuration. For a sta-
ble string configuration, the virtual work done by the external force should not exceed the
increase of the stored strain energy. However if the stored strain energy is less than the vir-
tual work done by the external force, the excess energy will appear as kinetic energy and

ultimately produce a motion.Thus a stable configuration is defined as an equilibrium
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configuration with minimum potential energy.

If the admissible configuration (displaced position which fulfill the boundary condition
of the original configuration) represented by I'*(S). For equilibrium configuration from the
principle of minimum potential energy

Y ’)admissible 2 Y =h)orginal (3.49)

Yisa potential energy and primes represent derivation with respect to S

The proof for Eqn. 3.49 can be found in K. Washizu [20]. The energy criterion of elastic
stability for network has been derived by A.A. Atai and D.J.Steigmann [21]. Here, their

derivation is adapted for elastic string problem.
Let r¥ ) =rS)+aees) (3.50)

where @ is a fixed vector and Sy, S,, S; are three arbitrary points in the interval

[0 1] with §; <S; <S3 then (S ) is defined as

do(S) (§ €[0 S;1VI[S;1])
&S ) =1{9,(5) (S €[S; S, (3.51)
$,(S) (S €[S, S3])

and

0o(S) = 0.0,(S) =S —S5,.0,(5) = («(6/(1-0)))(S-S3) (3.52)

Integrating Eqn. 3.49 in the region [ S3]1<[0 1]
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thus

S

k

3(‘I’(r *-¥(r'yds =0 (3.53)

1

substituting Eqn. 3.50, 3.51 and 3.54 in Eqn. 3.53 and dividing by A

S, S
e : 1-0¢° v 0
- - r'- -2 -
| Yo raas o ) ¥(r - 2ga)ds
1 2
S
1¢° :
- r 2 .
AIS W(r"ds =0 (3.55)

l

Let A— 0 thus A}, A, — 0 with 6 fixed and use of mean value theorem also dividing
by 6 >0 gives the algebraic Weierstrass inequality

Y(r'+a) +18—9‘I‘(r - % )-%‘I’(r =0 (3.56)

For small 8, the second term in Eqn. 3.56 is given the leading order by

1-0 .0 _1 "y N of (r . (1-6)
T‘P(r +ma)-e‘f'(r) W(r'y-aef (r )+—9 0(8)

3.57

Lk )

e = f(M)1 (3.58)

wheref(r " =
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substituting Eqn.3.57 in Eqn. 3.56 and when 8 —  0*

Yr'+a)y-WY(r ')-aof(r >0 (3.59)
i A=rl.u=|r'+a|ladl=2"'r" (3.60)
also from Eqn. 3.42

Y'ir')y = p@) (3.61)

substituting Eqn. 3.58,3.61 and 3.59 in Eqn. 3.56

pR)-pR)2f)lea (3.62)
If@ = (u-A)] since @ is arbitrary fixed vector, then Eqn.3.62 will be

PU)-pA)2MU-N)f(A) . p>0 (3.63)

Eqn. 3.63 implies that f ' (A) 20, thus the tangent modulus of the string is non negative

at every point in the minimum potential energy configuration.
Ifa@ = am , where I is any unit vector perpendicular to 1 then
B = Il.l+a m , = A2 +a? which give Eqn.3.62 as
PM)-pA)20 p>2 (3.64)
for small |a | Eqn. 3.63 gives
W-MIF Q) +m-2)To (n-2))]120 (3.65)

dividing Eqn. 3.64 by (0 —A) >0 and with the limit (. — 1) ~> 0* Eqn. 3.65 will

became



f(A)=0 (3.66)
The linear constitutive relation from Eqn. 2.16
fA) = EM-1) (3.67)
form Eqn. 3.66 and Eqn. 3.67 it can be deduced that
A1 (3.68)
Eqn. 3.68, the direct consequence of Eqn. 3.66 is a sufficient condition for stable con-
figuration of a string. This condition is not valid for motion of a string which experience
instability. When a high amplitude wave initiated in the string there is a possibility for the
string to experience all kind of behavior, stable as well as un stable configuration. Thus it
is our conjecture that one doesn’t need to impose Eqn. 3.68 in the dynamical investigation

of an elastic string.
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CHAPTER FOUR

DISCRITIZATION AND
EFFECT OF APPROXIMATION

4 - 1 Conservative form of Discretization

To construct a conservative discretization in general, let F(S) be a function defined in
therange B < § < E , where the interval [B E] is discretized by considering the
set of points as a cell center. these cell center points are S, S,....S;_{, Si, Sit1--Sm-2:Sm-1
and the boundary represented by S = B and S, = E. The discrete representation of a func-
tion is (F(B), F(S)), F(Sy.....F(S;.)), FS), FS;,p)...F (Sm-2).F(Spy-1), F(E). Half way

between the cell center is represented as the cell boundary of the individual cells. These

boundaries are S /2532 oS 1St 120 e Sm_3/2m—1,2 asshownin
the fig. 4.1
1 | | [ -
- —4+———¢——0¢— ]
So Siaz St S S Sivin  Sis Sivan Sm

Fig. 4.1 Conservative Discretization
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If the quantity (S;,| - S;) is the mesh size which is taken as constant given by
AS =(S;, - Sg)/m and S;=Sg+iAS fori=0,l......m.
The differential of K'(S) is approximated at cell center by a conservative discretization

form as

aF(S,-) % E @4.1)
35 =

AS

where F i+1,s2 and F, i—1,2 are the values of a function F* at the cell boundaries.

This approximation insures that the flux at the right side of one cell is equal to the left side
of the neighboring cell at their common boundary.

The selected form of discretization approximate the flux term at two time levels, at n+1
and n. This implicit form of discretization with implicitness control parameter applied on
the conservative form of the partial differential equation of the string motion; Eqn. 3.4; is

given in conservative form as follows.

n+l n+l
m En/z "Fi—l/z + (1-p) i+ /2 127-1/2 _
AS AS

n+1

n n—
i =2r +1r,
At 2

4.2)

n n n T n
where E+1/2=(E ’ F; etz o=, )i
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n is time level and p is implicitness control parameter range from O to 1. When i =0 the
scheme is fully explicit and when p = 1 it became fully implicit, the value in between will

makes it partial implicit.

4 - 2 Effect of Non-Conservative Form

One of the advantages of a conservative discretization is that it can be used to calculate
the solution of a partial differential equation which has a discontinuity in its first order
term. However this advantage as shown by Lax and Wendroff [16), will not be utilized
unless both the differential and discretized equations are in conservative form.

To show how various partial differential equation forms will lead to different dis-
cretized equation, a conservative and a quasi-linear equation forms are considered. For
both equation forms each term is approximated by conservative discretization for a length
of three grid cells for illustration purpose.

Lets consider three grid cells A,B,C as shown in Fig. 4.2 below

r = = = == - T —-—— e e - T - - )
e ————————— |
| Sy | O Sigt |
0 b — o e — d o d o - J L
Sian Si.in Sisin Sis3n
A B C
Fig.4.2 Three grid cells.



S;, Si+1 and S; | are points at the cell center and S; 315, S;_12, Sj+1/2 and S;, 3, are cell

boundaries.

The conservative mathematical model which is valid for each cells can be written as

oF dV
- _ ¥ _ 4.3
s "% -0 @3
or
where V = m

The conservative discrete form for each cell can be written as:

forcell A

E— 172 — E—3/2 3‘4-1

- = 4
AS ot 0 (442)
for cell B
E+[/2 ~ E-l/z &V, =0
AS - gt. = (4.4b)
for Cell C

E+3/2 - E-«»I/Z_a_‘{i»l -
AS ot (4.4c)

The sum of the three cells (Eqn. 4.4a, 4.4b, 4.4c) average is equivalent to one cell

whose center is at i and it’s cell boundary at S;, 3, and S; 3

4.5)

F.syy _F_,, _Q(VEH +Vi "'Vi-l) =0
3AS dt 3 -
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The above construction shows that the conservative discretization on conservative
mathematical form leads to a cancellation of the internal fluxes and the final discretized
form (Eqn. 4.5) is in conservative form.

If the mathematical model is written in quasi-linear (non-conservative) form, Eqn. 4.3

will became
or aV
_— - =— = 4.
() 35 3 0 (4.6a)
ar oF
_—= 4.
where D) 35 = 35 (4.6b)
Applying conservative discretization on the three cells using Eqn. 4.6,
for cell A:
K12 ~F-3,2 V., _
o di-1 AS - 'a—t =0 4.7a)

but @(7 );_ can be approximated as the average of ®(");_ /2 and (") i-3/2

then
DT )12 +PT)_3,2\(Fi_1/2 —F_32\ V_,
( . )( - )-5; =0 4.7b)
Similarly for cell B and C are
for cell B

=0 4.7c)

CTivis2 4@ )12 ('E+1/2 -’E-l/z)_g‘f
2 AS dt



for cell C

(‘D(”)i+3/2 +¢(")i+1/2)("i+3/2-ri+l/2) _a_‘_l[“ =0 (4.7d)

2 AS "ot

The sum of the three cells average (Eqn. 4.7b, 4,7c, 4,7d) is given as

((D(r)ns/z +‘D(")i-3/2)(ri+3/2-ri-3/2)__a_(Vi*'l +V.+ Vi, )
2 3AS ot 3

(R )is3/2—-D(T); - 1/2)("1'+ /2~ ri-3/2)
6AS

@(r )i+ /72— (D(r)i—3/2)(ri+3/é;;i‘ 1/2) (4.7e)

But discretizing Eqn 4.6b in one cell, i as the cell center and i+3/2, i-3/2 cell boundaries

cD(r),-(ri+3/2-ri‘3/2) - F;+3/2 -—E-s/z 4.8)

3AS 3AS

but @(¥ ); can be approximated as the average of ®(); 3,2 and®(@");_3 /5 , then

Eqn. 4.8 can be written as

(‘D(")i+3/z +(D(r)i-3/2)(ri+3/2"ri—3/2) _ E, ., _F_5, 49)

2 3AS 3AS

substituting Eqn. 4.9 in Eqn. 4.7 the discretized form of the non conservative equation

will became

47



Fispp ~F_sp Qi(‘,:#l +Vi +Vi-l)
3AS ot 3

@T)iv3/2—-O(r);_ 1/2)(ri+ 1/2 = ri-3/2)
6AS

@ )is 12— (D(r)i—3/2)(ri+3/2 —ri- 1/2)
6AS 10

The final form of the discretized equation of the quasi-linear partial differential equa-
tion is not in conservative form. since extra terms are produced on the right hand side of
Eqn.4.10, a conservative discretization of a differential equation is equivalent to the inte-
gral (weak) form of the conservation law (the proof for this can found in Lax and Wen-

droff [16] or G.A.Sod[22]). Thus the conservative form is the preferred approach.

4 - 3 Approximation at The Boundary

In general a numerical approximation requires more boundary conditions than its par-
tial differential counter part [22]. The additional boundary conditions, can be another
source of instability.

(1) General Finite Deference Discretization

Fig. 4.3 General Finite Difference Boundary Discretization
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Applying a central difference discretization at the interior points, each point needs
information from both of its neighbors. If point 1 is considered, the discrete form needs
information from 0 and 2. However the physical boundary condition gives information at
point O on the position r; and r,, but not on their spacial derivatives. Stretch at the bound-
aries are unknown, but are required by the finite deference scheme.

(2) Full Cell Type of Discretization

r—=—  — = 4+ — — 5 F—— = — ==
i | | i | | | |
{ S — SRy
| I ) | I m2 | mi1 | m !
L__..l._._.l.__.l R T TP
-12 12 312 512 m-5/2 m-3/2 m-172 m+1/2

Fig.4.4 Full Cell Type of Discretization
A full cell type of discretization, considering each cell centers as evaluating points, will
need values at half cell at both sides of the boundary. To evaluate at the cell center 0 and m
an information at boundaries -1/2 and m+172 is required in addition to the information in the
internal computational domain.

(3) Internal Computational Domain

r=— =" | i |
| | | |
- —-———¢
Ly L T L |
0 I | I m1 | m
L o— —dJ b — — J
172 in m-3/2 m-1/2

Fig.4.5 Internal Computational Domain
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In internal computational domain discretization, evaluation of the differential equation
is done in the internal points between 1 and m-1. The boundary conditions of the problem
is included in the calculation by averaging at the boundaries 1/2 and m-1/2 of the geomet-
rical quantities at a point 0,1 and m-1, m respectively. This kind evaluation is adapted in

this work.

4 - 4 Stability Analysis

When constructing of a finite difference approximation, one must exercise choices of
grid size, time step size, and time advancement. These choices shouldn’t allow a trunca-
tion error to grow indefinitely (amplified) as the solution progress from one time step to
another. To make decision on the above choices, a stability analysis is used as a guide.

In this thesis a Von Neumann method of stability analysis is used. Von Neumann
method is a linear stability analysis based on a finite Fourier analysis. This method investi-
gates the characteristic of the error as a function of the frequency content of the initial con-
ditiomrand of the solution.

To apply the Von Neumann method on our discretization, lets consider the conservative

discretized equation 4.2, for clarity rewriting the equation.

n+l n+1l n n
H(En/z ‘Fi-vz )+(l_u)(5+1/2“5-1/2j -

AS AS

n+1 n n-1
I =2r +r, 4.8)

At 2

50



In the above equation i is a spacial grid point and n is time level. For linear stability analy-

ar;
sis, lets consider the coefficients of ﬁl and 7; in Eqn. 3.5 as constants C, and C,,

where C; = 1 - % and C, = P E; Further assuming F as a single equation, Eqn. 3.5

will become:

or

F=Cla—s—

-C,r 4.9)

The discretized form of F is given as

n+l Vi1 -7, n+l n+l
F..» =C, a5 ~ Gl (4.10)

applying the same discretization on F in Eqn. 4.8, at different grid points the discretized

equation in expanded form will become.

Vie1 =20 +1;_, Visi/2=Tic12\1" !
u[C'( AS 2 )_Cz( AS ):l *

Vie1 =20 +71;_, ri+l/2"ri—-l/2)n _
(1 —u)[Cl( AS2 )'C2( AS :l =

';n+l_2';n+ rin—[

At?

(4.11)
The values of I at the cell boundary are approximated as the average of the values at the

cell center on the left and the right of the considered cell boundary as:

51



r _ Tt and I _ri+r

i+1/2 ) i-172 = 2 (4.12)

Substituting Eqn. 4.12 in Eqn. 4.11 and rearranging the discretized equation will be.

At2 A n+l
U-(Cl ASz(rH-l 2r+rz-l) C2 ZAs(rz+l 1-[)) +

As? "
(a-w(ey $5 ruvi=2re 1 )= C Bl (-1 )

If the exact solution of the partial differential equation (2.17) is assumed as r: " and
the numerical solution by 7; " then the difference between these values is the error, rep-

resented by € . Mathematical relationship between the error and numerical solution is

given as

+&; 4.14)

Substituting Eqn. 4.14 in Eqn. 4.13 the equation for the error is found, which is the

same form as the discretized equation
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At2 A n+l
l-l( AS 2(81+l -2€;+8€;_))- C22AS(81+1 i-l)) +

At? A2 )"
i- l)

A-(C) T3 €01~ 260+ €)= C; S (v~

gt ~2¢" +e"! 4.15)
The error term can be decomposed using a Fourier series as

& = qe kias &, =a"eithas @4.16)

In Eqn. 4.16 L is a complex number equals to /~1, @” is amplitude, k is a wave num-

ber, i is spacial grid point and AS is the grid spacing. Substituting Eqn. 4.16 in Eqn. 4.15

and after rearranging, the equation for the error will became

Ha“l C, Ar? @*AS _2 yo-Tkas ) _ C, A’Z’.(elkAS_e-ncAS) +
A82 2 2AS8

n At? | ias ~Ik AS At2  Las  _ikas ) _
(1-w)a (Cl ASZ( -2 +e ) - C 2AS(e —e )| =

a"*L2a"+a"!

4.17)
Amplification factor G is defined as the ratio of an error amplitudes of two consecutive

time levels, mathematically written as

(4.18)
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The error equation in terms of amplification factor can be found after substituting

Eqn. 4.18 in Eqn. 4.17 using Euler formula, the equation for amplification factor will be:

2 2
G Zu{cl i%i(zcosms-z)-cz %%(1 sinkAS)} +

G(1- i €, AL (2coskaS - 2) - ¢, A1 sinkAs)
LAs2 2 AS

G2-2G +1
(4.19)
If Cn is assumed as Courant number represent as
Cn = "/—CT[At (4.20)
AS

and Cc is a constant coefficient represented by

ce = 24 i @.21)
AS
let O be a phase angle represented by

0 =kAS (4.22)

then substituting Eqn. 4.20, 4.21 and 4.22 in Eqn. 4.19 and rearranging, the equation of

the amplification factor will be
G%[ p{Cn? (2cos0 - 2 )~Cc(l sin@)}-1] +

G [(1-p){Cn2(2c0s0-2)~Cc(I sin®)} +2] -1=0 (4.23)



Von Neumann stability criteria: A finite difference scheme (with constant coefficients)
is stable if and only if the modules of the amplification factor is less than one.[11]
IGI <1 (4.24)
The modules of the amplification factor of Eqn. 4.23 is determined graphically by fixing
the value of u and Cc for different values of Cn. Fixing these two values is chosen since
Cc is a constant which is related to external force and varies as a square of the time step,
but Cn which depends on the speed of the wave varies in the order of the time step. The
variation of Cc is very small compared to Cn. Thus Cc is fixed at 0.1, the implicitness con-
trol parameter @ = 0.89, and Chn is varied from 0.5 to 1.5 for the phase angle 0 to pi. For
an explicit discretized form of the equation of string motion, the modules of the amplifica-
tion factor vs. phase angle is plotted in Fig. 4.6. The amplification factor for explicit
method is calculated by using p = 0 in Eqn. 4.23. Thus form Fig. 4.6 we can see that
an explicit discretization is unstable under all condtions. For an implicit discretization
using the above specified values the plot for the modules of the amplification factor vs.
phase angle is shown in Fig. 4.7.Then form fig. 4.7, the modulus of the amplification fac-
tor which fulfill the Von Neumann stability criteria and also which give a minimum area
under the modulus of the amplification factor vs. phase angle curve is selected. Thus a
time step Az = 1 x 10~* and a grid spacing of AS = 5 x 10~3 for a courant number 0.5
are obtained for the selected modulus of amplification factor curve. These values are used

in the numerical approximation of the string motion.
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Growth Factor with increasing Courant Number
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Fig. 4.6 Growth Factor for the explicit Discretization
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Modulus of Growth Factor for Different Courant Numbers

0.8

G|

Modulus of Growth Factor
o
Y

L s 1] L} L

0.2 °
) + Cn=10 1
®x Cnhn=05
o p— 1 ] ? s
0 0.5 1 1.5 2 25

Phase angle 0 <= Bds <= Pj

Fig. 4.7 Growth Factor for the implicit Discretization
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CHAPTER FIVE

METHOD OF SOLUTION

There are varies types of numerical methods for solving a nonlinear, discretized, partial

differential equations. To cite some of these methods (1) Newton’s method: For solving

systems of n by n nonlinear equations requires a good initial approximation, evaluating n?
partial differentials and solving n equations at each step of an iteration. Evaluation of a
Jacobian is not economical in either computational time or storage. Because of these dis-
advantages a Newton’s method is not preferred. (2) Broyden’s method: This method
replaces the Jacobian matrix of Newton’s method with an approximation matrix which is
updated on each iteration. However Broyden’s method like Newton’s method requires a
good initial approximation, and therefore difficulty of converge when there is no close ini-
tial approximation.

In this thesis a different numerical method is developed to solve the nonlinear,
unsteady, discretized, equation of the string. A pseudo unsteady, first order partial differen-
tial equation is defined to integrate the nonlinear discretized equation of the string motion.
Steady state solution of this first order partial differential equation is equivalent to the time

advancement of the string equation.
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To find the steady state solutions of the defined fictitious in time of first order partial
differential equation, a four stage Runge-Kutta method is used. The detail implementation

of this method is presented in the following sections.

5 - 1 Selected Numerical Methods

Long Time Performance

Many numerical methods preform well for short period investigation of the wave
motion, but their dissipative behavior makes them unfit for long time simulation. In this
section we will investigate the behavior of a number of total variation diminishing (TVD)
numerical methods. Since we are interested in a numerical method which has a good long
time response, we will show why these methods were not chosen for our investigation.

First order one dimensional wave equation wave propagation is given by

.é_t-}-C-a—S;:O (5.1)

where C is a wave speed
with initial and boundary condition as follows

boundary condition, the string is fixed at both ends

r(0,t) =0 r(l,t) = 2000
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the initial condition contain three wave shapes, rectangular, triangular and parabolic rep-

resented by the following equations

( 0 (§<20)
—(S — 2
Jl (3 - 30DS) (20<§5£40)
(10DS)2
0 (40<5<60)
S-60DS
——— <
rs.0) =1 10DS (60<5<70)
S-70DS
—_—— <
(1 10DS ) (70<5=380)
0 (80 < S <100)
1 (100 < S <£120)
\ 0 (S >120)
(5.2)
The discretized form of Eqn. 5.1 for each method is given as follows.
CDt
Let Cn = DS Courant Number
1) Upwind method
"t =rt—cn@r"-rl ) (5.3)



2) Lax Wendroff method

"ERT—(Cn@" -k ) =((Cr)/2)(A=Cn) (B, -2+ 1", )
549

3) Min Mod method

YRR -(Cn@;" -2 ) -((Cn)/2)(1-CnYO(EE, —21" + 17 )

where
SR
A =2 L ; 2 ® = max (O,min (1,A)) (5.5)
o -K_,
5) MUSCL

Y o=t (-Cn@"-r" ) -

((Cn)/2)(1-Cn)(d, (1), -5")-0,0" 52, )

n n n n
where @, = |Fo1_—%3 | R | il
n n
" -rh | Fey =T
o -t —hh o - N =nl
c~ n n ’ d — r" r"
r -r-, iv1 i
®,+D, D+,
¢ = 1+®, 0= 1+®, S
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The solution obtained using all the above method for the position of the wave at 500
and 2000 time steps are shown in Fig. 5.1 and 5.2. From the result we can observe that all
the methods except Lax Wendroff shows a significant amount of dissipation. The initial
wave shape is lost due to numerical dissipation. Note that the calculation is done with out
reflection. If reflection is included in the calculation all of the wave may have dissipated
out. In Lax Wendroff method even though it is not dissipative, the undershoot and over-
shoot and finally it loses of the initial wave shape is observed. Since for the tested period
the performance of these methods are not satisfactory for long period investigation of

wave motion. Thus we chose not to purse any of these methods for our investigation.

S - 2 Defining a Residual

A conservative construction of the governing equation of the string requires that the
change in the flux at the boundary to be equal to the rate of change of momentum. A resid-
ual is defined as the change between the flux at the boundary of a mesh cell and the rate of
change of momentum with in this cell. In a conservative system this residual is zero. The
primary objective of this method of solution is to reduce the residual to zero, by doing so
the conservation principle will be insured as well as the solving method will deliver the

required solutions.
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Mathematically the residual is defined by rewriting the discretized Eqn. 4.2 as follows

n+l n+1
r,"t! H[En/z -F;—-I/Z ]
= - .

AS

2r" E+';/2‘ i—':/Z rn-l
- (1-p) Aave) (5.8)

Ineqn 5.8 E +1,2 and E -1/2 can be written in expanded form using Eqn.3.5c¢ as fol-

lows:
| ’ s
iv12= (K |i+l/2 » K li+l/2) (5:9)
E = r 5.10
e = (K|, El_.,) ©-10)

2 =N (T, T,
El”l/z:(l-xiu'*;vi)( H ( - (5.11)

2 rll-rll f"2|+"2|
K Ii—l/z = (1 ‘ki—l F A )( ) ) J (5.12)

\

similarly the other components of F i.e, E |i+ L and [v; 1y ¥ constructed.
l—

Solution of the nonlinear equation (5.8), when it is done by the traditional method is

given in a general form as [23]

AN n'“llozd-Hi R*(';Mllold";"’ ';"—I)Bi G-

new
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The solution of nonlinear equations using this method is achieved by iterating Eqn. 5.13

until it meet a pre stated tolerance limit. If we denote the Jacobian of R* as A n"* ! ),

for Newton’s method I{, =A; ! and B; = 1.0,where evaluation of A ; inverse is

required for each iteration. Thus this method is not used since it requires a good initial
approximation, large storage and significant computational time. A method which is
developed in this thesis treats eqn. 5.8 as a modified steady state problem in a fictitious

time t* and solved using a multi stage Runge-Kutta method.

S - 3 Time Marching

A fictitious first order partial differential equation is defined as dependent of a fictitious
time t* (a time different from the one used in the string equation of motion) and contains

the nonlinear equation 5.8 as follows.

a%f +R*(r ,r", 5"y =0 (5.14)

where

~ r z+l/2"F 172
R*(x ,’E",'E"—l)=z—- [ -

- 11 F F n—1
2A7t22 - (l—u)[ ’“’2 = ) + ';Atz (5.15)



In Eqn. 5.15 E.(.[/z and E-l/z are given as

~

BEoe = @ |i+l/2 » B li+l/2 .16)
g g ~ T
F-1n =(H ,i—l/2 E, [i—l/2) G-17)
where
F:’l _ (1_ 2 ) ':;,ii»l-;[li _p ':;|i+1+6,i
tlivrrz Aol + As AS )
Flyn = (12 o) (2l
Lli-172 ii—l"‘ii AS 2
Eqn. 5.15 can be written in a compact form as
R pmnm=') = o pR(T =S ¢ "5
(5.18)
where
R r~ _ E+l/2 - E-l/z

n n

2rn F —F_ r.n-1

n ogpn-1y_ g _ i+1/2 *i-1/2 _ i
St VRS u)( S ] < (5.19)
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The residual defined in Eqn.5.18 can be considered as a summation of two parts.
The first part which is the active part contain terms at n+1 time level. The second part,

which is called the source term contain terms at n and n-1 time levels. Thus in marching to

steady state, only the variable #; ,where I' " and F; "~ L are held fixed over the

pseudo time integration.

At steady state Eqn. 5.14 will become
R*r r*.5"'y=0 (5.20)

Comparing Eqn. 5.20 and Eqn.5.8, the two equation are equal when ':'. =r"tth

Thus by time marching of Eqn. 5.14 to steady state, the solutions for each time steeps of
the unsteady nonlinear equation of the string motion are obtained. This time marching of
Eqn. 5.14 to steady state is done using a modified explicit, four stage Runge-Kutta

method.

5 - 4 Modified Multi-Stage Runge-Kutta Method

To find steady state solutions of the first order partial differential equation (5.14), a
modified four stage Runge-Kutta method is used. In a classical Runge-Kutta method the
stage coefficients are evaluated for accuracy by comparing Runge-Kutta expression with a
Taylor series. In a modified multi stage Runge Kutta method some of the stage coefficients

are used to get the required order of accuracy by comparing with Taylor series, while the



rest of the coefficients are determined from a stability analysis.

The general construction of m stages of Runge-Kutta method can been done as follows:
F = r"
FO = rr — aar R(F)
F? =r" oA RF V)

) =r" - a,a RFED

F) = r" —a, A RFF™) (5:21)

Where 7™ is the value of ¥~ at m stage, Oy, Oy, O3, ..., O, | are stage

coefficients, their values are determined from the point of stability and accuracy,

o, = 1 for consistency.

m
More stages implies more control over stability and accuracy as well as more computa-
tional time. Thus for some applications the gain produced by increasing the number of
stages may not offset the additional computational time required. In this work a four stage
method is used.To perform the linear stability analysis, the active term, which is given in
section 5.3 is used after a constant coefficient applied for the equation of F from section

4.4. The source term is set equal to zero since only the active term is changing in the
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fictitious time until it reached steady state. The amplification factor of any stage is a func-
tion of amplification factor of the preceding stage [24]. The equation of the amplification
factor for each stage is constructed as follows.

The equation for the first stage is written as

FU= rn — aAr RF) (5.22)

equation 5.22 after substituting the linear relation of section 4.4 will be.

~ () HAr2 ]J.At ~ )

FvV=r"-a At*(r ~C ~2F +T_ )+ ~r;

i 1 AS 2( 3 l) Cz 2A S i-1
(5.23)

Let Cr be the Courant number in the Runge-Kutta method given by

At*C,

AS (5.24)

Cr =

let Ck be a constant which relate the fictitious time step and the external force given by

Ar¢C,

AS (5.25)

Ck =

Substituting Eqn. 4.14, 5.24 and 5.25 in Eqn. 5.23 and using the relation r=rnr

the error equation for the first stage will be

808 -a,(& -cr “A‘ B (B~ 28+ .>+Ck&<8.+l &)

(5.26)

Using the Fourier series decomposition give by Eqn. 4.16, the error Eqn. 5.26 will became
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a—-(l )

2
-d -al[i(l— cr EoE(2cos8 - 2) +Chuaid(l sinO))

(5.27)
where @V and @ are the amplitudes of first stage and the initial respectively. L is a

complex number equals to v/~1, 0 isa phase angle given by 0 = k AS
The amplification factor for each stage is defined by the ratio of the amplitudes of two

consecutive stages as follows

ae)

o (5.28)

G, =

Substituting Eqn. 5.28 in Eqn. 5.27 the equation for amplification factor for the first stage

will be.

2
Gi=1-oy(1-Cr B (2c0s0 - 2) +cipartu sing))  (529)

The equation for the second stage is written as

FO =r" ~oar REGE W) (5.30)

Eqgn. 5.30 in expanded form will be

FP=r"a At*( W l'lAt( -2 +T_) )
s2!
At? ~
- 8GR (et Fily) (5.31)
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Constructing an error equation for the second stage and applying the Fourier series

decomposition on Eqn. 5.31 it is found:

nAr2
AS

a?=a —-azﬁ(l)(l -Cr (2cosO - 2) +CkuAt2(I sinﬂ))

(5.32)
Using the relation of Eqn. 5.28, the equation for amplification factor of the second stage is

written as:

WAz 2 2 .

Gy=1-a,G\(1-Cr c(2c0s8 - 2) +CkpAr( sind)
(5.33)

Extending Eqn. 5.33 for m stage the amplification factor at m stage is given by the equa-

tion.

nAz?
AS

G,=1- ame_l(l ~cr BA% 3c0s0 — 2) +CkpA( sine))

(5.34)
The modulus of amplification factor for four stage is determined graphically for dif-

ferent combinations of stage coefficients as shown from fig. 5.1 to 5.4. Using a Taylor

series, two of the stage coefficients are determined for second order accuracy as oty = 1

and o3 = 1 - For the stability analysis of the Runge-Kutta method the values of Ck is

[\S)

fixed to 0.01.The Courant number is varied from 0.1 to 1 for different combination of the
two stage coefficients. From a number of amplification factor curves, the one which fulfills

the Von Neumann stability criteria and a minimum area under the curve of the
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amplification factor vs. phase angle is chosen. Thus from the above analysis o, = %

o = é and the fictitious time step At * = 1 x 10~5 of Cr = 1.0 is obtained.

By repeated operation of the modified explicit Runge-Kutta method the solution of the

unsteady string equation is obtained for the desired length of time.
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Growth Factor with increasing Courant Number
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Growth Factor with increasing Courant Number
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Growth Factor with increasing Courant Number
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Solutions of Seiected Numerical Methods at 500 Time-steps
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Solutions of Selected Numerical Methods at 2000 Time-steps
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CHAPTER SIX

RESULTS

Five test cases are conducted on the developed numerical method of solution. The first
test case, a transversely impacted string is investigated using a Mooney-Rivlin constitutive
relation. and the solution is compared with analytical results. Then two test cases are con-
ducted by changing the boundary condition at one side to initiate a low and a high ampli-
tude wave motion. The last two test cases are done by applying pressure in five grid points
for one time step. As the previous two cases in this case also a low and a high amplitude
wave initiated by changing the intensity of the pressure for the two cases. For low ampli-
tude cases the shape of the string at different time levels, the characteristic of the total
energy and the history of the residual in marching the fictitious first order partial differen-
tial equation to steady state are plotted. For high amplitude waves the shape of the string at
different time levels, the characteristic of the total energy, the residual in marching the fic-
titious first order partial differential equation to steady state and the plot of stretch vs. grid

position for different time levels are plotted. All tests are done on 500 grid points with a
grid spacing of 5 x 107 , atime step of 1 x 107 in the unsteady equation of the string, a

fictitious time step of 1 x 10~ in the Runge-Kutta method and implicitness control
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parameter @ = 0.89 for 100,000 time steps which are equivalent to fifty reflections.

6 - 1 Comparison of Numerical & Analytical Solutions

A comparison of numerical and analytical solutions is performed to show the validity
and accuracy of the numerical solutions. Analytical solutions using the method of similar-
ity for the dynamics of transversely impacted string have been investigated by J.B.Haddow
(18] and J.L..Wegner[25]. The constitutive relation used in Wegener analytical solution is
Mooney-Rivlin constitutive relation. The Mooney-Rivlin constitutive relation is a nonlin-
ear relation between stress and stretch which give a higher stretch value for certain stress
relative to the linear constitutive relation.

In the wave motion of an elastic string which has Mooney-Rivlin constitutive relation,
the wave motion will experience a shock after the first reflection of the wave at the bound-
ary. During shock formation two characteristic line of the similarity solution will meet.
Thus we will have a multiple solution at a point of intersection of the two characteristic
lines.Due to multiple solution in the analytical solution will appear after the first reflec-
tion, Wegner analytical solution is valid for the wave motion in the string until the first
reflection occurs. The calculation for the analytical and numerical solution is preformed as

follows.

= 5 (=052 4)
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where @ = a positive constant in the rangeof 0<a <1

The longitudinal and transverse wave speeds are given by
172 172
e, = {LEM 1 _E (1 2), 300y
pIA P A3 A4

172 172
s o B s O

where C; = Longitudinal wave speed

Cy =Transversal wave speed

6.2

6.3

For the transversely impacted string the following boundary and initial condition are con-

sidered.
Boundary condition
rl(O,t) =0 rl(l,t) =1
"2(0J ) = -0t r2(1,t ) =0
where Q is a constant velocity
Initial condition
ry$§ 0 =S8 ry(S,0) =0
ar(S.0 _ IS .0) _
3t =0 3t =0
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Let A, =The maximum stretch after impact

A. =The critical stretch in isothermal stress-stretch relation for Mooney-Rivlin
material, which separate the region of C;, > C; form C, < Cy
Ao =The initial stretch value
0 =The angle which the string makes with the horizontal
8 =The angle which the deformed string makes with the horizontal after impact
Analytical solutions using the similarity method for the case of C . >Cr and A <A,

with the boundary and initial condition given by Eqn 6.4,6.5 were performed by Wegner

[25]. The solution contain four regions in the (S , t ) plane as follows.

Region 1

§ >C, (Ay)

A=k . O=u=v=0
Region 2
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:l(.f)‘- >_:
t

l=l.f,9=9f,u=0 vv=—Q
where u = tangential particle velocity v = vertical particle velocity

A
I = [cp(dn
e

The deformed shape of the string at an arbitrary time t will have the following shape

At lcdcosO; t :¢ >

|
AeCL(Af) - IAf)]t |- .[

|
ACulAg)t |

Fig. 6.1 Transversely Impacted String
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One need to specify oo of Mooney-Rivlin constitutive relation to obtain the numerical
solution of the transversely impacted string. The value of ot = 0.6 gives a close fit with
simple tension experimental data for stretch up to 3.5. Thus o = 0.6 is used in the numer-
ical as well as the analytical method.For the specified value of o the critical stretch value
A, =2.4733. This critical stretch value determines the region of stretch which makes the
longitudinal wave speed grater than the transverse wave speed or vice versa. At critical
stretch the two wave speeds are equal. Thus the value of critical stretch is important to
determine the appropriate similarity solution to compare with the numerical solution. The
other constant need to be specified is Q. The value of Q the constant speed which is
applied initially. Thus a non-dimensional constant speed of Q = 1 is used in the numerical
analyses. The boundary and the initial condition used for both, numerical and analytical

methods are the same.

The analytical and numerical solution calculated are plotted in Fig. 5.2. From the Com-

parison of the two solutions the following observation are made a) The angle after
impact,ef for numerical solution is calculated an average error of 1.65% at the pointe
where their is a discontinuity of . b) From the visual observation of the plots of the two

methods, there is no appreciable difference in the position of the string. This observation

shows that the numerical method capture the speed of propagation.

From the comparison of the two solutions, the position of the string calculated from the
numerical solution is valid and accurate. With this confidence we will now apply our

numerical method to a number of other test cases.
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Comparison of Numerical and Analytical Solutions
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Fig. 6.2 Comparison of Numerical & Analytical Solutions.




6 - 2 Small Amplitude Disturbance by Changing the

Boundary Condition at One Side

In this test case the boundary at one side is displaced in the vertical direction by 0.01

non dimensional units ( 7"2(S,t ) = 0.01, S = 1) for the entire tested period. The posi-

tions of the string at different time levels are shown from Fig.6.1 to Fig. 6.7. Since the
amplitude is very small, the wave propagate as a linear wave. Thus the speed of propaga-
tion captured by numerical method is constant as expected for the linear range.This prop-
erty is preserved for the tested length of time, for fifty reflections.Smoothing property
observed at the corners of the wave front and 3% wave shift at the center of the string.
The number of time steps needed to march the fictitious first order partial differential
equation to study state is the price paid to advance the solution of the unsteady string
equation by one time step. The plot of the residual of this fictitious first order partial differ-
ential equation vs. time step in Runge-Kutta method at two different time levels of the
unsteady equation is shown in Fig.6.8 and Fig.6.9, for the residual in r; and ry. The per-
centage of the normalized energy vs. time step is plotted from Fig. 6.10 to Fig. 6.12 to
show the stability of the scheme and the numerical does not violet the conservation of the
total energy.For clarity, the plots for positions of the string are done at an interval of three

data points.
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Postion of r2

Postion of the String for 0.01 Amplitude Disturbance
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Fig. 6.3 Position of the Sting for the First 2000 Time-steps for Small Amplitude
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Postion of r2

Postion of the String for 0.01 Amplitude Disturbance
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Fig. 6.4 Position of the String from 2000 to 4000 Time-steps for Small Amplitude
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Postion of r2

Postion of the String at 25000 and 27000 Time-~steps
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Fig. 6.5 First Comparison of Two Wave Positions for Small Amplitude
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Postion of r2

Postion of the String at 25000 and 27000 Time-steps
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Fig. 6.6 Second Comparison of Two Wave Positions for Small Amplitude
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Postion of r2

Postion of the String at 49000 and 51000 Time—steps
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Postion of r2

Postion of the String at 75000 and 77000 Time-steps
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Fig. 6.8 Fourth Comparison of Two Wave Positions for Small Amplitude
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Postion of r2

Postion of the String at 97000 and 99000 Time-steps
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Residual of r1 for 0.01 Amplitude Disturbance
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Fig. 6.10 Residual of I} for Small Amplitude Case
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Residual of r2 for 0.01 Amplitude Disturbance
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Fig. 6.11 Residual of I, for Small Amplitude Case



Percentage of Normalized Total Energy(for Time-level 1 to 1 5000
50 g T T T LI LI L]

(=]
™
1

3

Percentage of Nor. Total Energy ((En ~ E1)/E1)*100

N
]

2000 4000 6000 8000 10000 12000 14000
No. of Time levels

Fig. 6.12 Percentage of Normalized Total Energy in the First 15000 Time-steps for

Small Amplitude case
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6 - 3 Large Amplitude Disturbance by Changing the

Boundary Condition at One Side

In this test case the boundary at one side is displaced in the vertical direction by 0.5 non

dimensional units ( 75(S,t ) = 0.5 ,S = 1) for the entire tested period. The positions of

the string at different time levels are shown from Fig.6.1 to Fig. 6.7. The stretch vs. grid
poison are plotted next to each plot of the string postion.From the plots of the position of
the string it can be seen that the string motion is nonlinear. When the stretch value goes
well bellow one the shape of the string corresponds to this low stretch value is different for
other regions.But the value of the stretch below one is observed on a short length of the
string for short period of time.

The number of time steps needed to march the fictitious first order partial differential
equation to study state is the price paid to advance the solution of the unsteady string
equation by one time step. The plot of the residual of this fictitious first order partial differ-
ential equation vs. time step in Runge-Kutta method at two different time levels of the
unsteady equation is shown in Fig.6.8 and Fig.6.9, for the residual in r; and r,.The per-
centage of the normalized energy vs. time step is plotted from Fig. 6.10 to Fig. 6.12 to
show the stability of the scheme and the numerical does not violet the conservation of the
total energy For clarity, the plots for positions of the string are done at an interval of three

data points.
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Postion of the String for 0.5 Amplitude Disturbance
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Fig. 6.14 Position of the Sting for the First 2000 Time-steps for Large Amplitude
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Stretch Vs. Postion of Grid Points
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Postion of the String for 0.5 Amplitude Disturbance
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Fig. 6.16 Position of the String from 2000 to 4000 Time-steps for Large Amplitude
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Stretch Vs. Postion of Grid Points
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Figf 6.17 Stretch Value from 2000 to 4000 Time-steps for Large Amplitude
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Postion of the String for 0.5 Amplitude Disturbance
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Fig. 6.18 Position of the String from 25250 to 27000 Time-steps for Large Amplitude
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Stretch Vs. Postion of Grid Points
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Fig. 6.19 Stretch Value from 25250 to 27000 Time-steps for Large Amplitude
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Postion of the String for 0.5 Amplitude Disturbance
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Fig. 6.20 Position of the String from 49250 to 51000 Time-steps for Large Amplitude
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Stretch Vs. Postion of Grid Points
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Fig. 6.21 Stretch Value from 49250 to 51000 Time-steps for Large Amplitude
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Postion of the String for 0.5 Amplitude Disturbance
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Fig. 6.22 Position of the String from 75250 to 77000 Time-steps for Large Amplitude
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Stretch Vs. Postion of Grid Points
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Postion of the String for 0.5 Amplitude Disturbance
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Fig. 6.24 Position of the String from 97250 to 99000 Time-steps for Large Amplitude
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Stretch Vs. Postion of Grid Points
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Fig. 6.25 Stretch Value from 97250 to 99000 Time-steps for Large Amplitude
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Residual of r2 for 0.5 Amplitude Disturbance
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Fig. 6.27 Residual of I, for Large Amplitude Case
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Percentage of Normalized Total Energy(for Time~level 1 to 1 5000
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Fig. 6.29 Percentage of Normalized Total Energy from 85000 to 100000 Time-steps for

Large Amplitude case
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6-4 Small Amplitude Disturbance by Low Pressure

In this test case a low intensity instantaneous pressure applied on five grid points only at
the first time step. This low pressure initiates a small amplitude wave. The plots of Fig
6.13 to Fig.6.21 shows the position of the wave at different time levels, the initial stage
before reflection, after reflection and a comparison of two waves at varies time levels.
Since the amplitude is very small, the wave propagate as a linear wave. Thus the waves
initiated at the middle of the string progresses to the right and left with constant speed as
expected for the linear range.This property is preserved for the tested length of time, for
fifty reflections.Smoothing property observed at the corners of the wave front and 3%
wave shift at the center of the string.

From the plot it can be seen that the numerical method preserved the symmetry of the
problem for all the tested length of time.The plot for the residual of the fictitious first order
partial differential equation in the Runge-Kutta method vs. the time steps required to reach
this equation to steady state are shown on  Fig. 6.22 and Fig.6.23.The percentage of the
normalized energy vs. time step is plotted from Fig. 6.10 to Fig. 6.12 to show the stability
of the scheme and the numerical does not violet the conservation of the total energy. For

clarity, the plots for positions of the string are done at an interval of three data points.
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X 12-5 Postion of the String for Low Pressure
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Fig. 6.30 Positions of the String for First 1000 Time-steps for Low Pressure Case
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Fig. 6.31 Positions of the String form 1250 to 2000 Time-steps for Low Pressure Case
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Fig. 6.32 Positions of the String form 2250 to 3000 Time-steps for Low Pressure Case
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Postion of the String for Low Pressure
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Fig. 6.33 Positions of the String form 3250 to 4000 Time-steps for Low Pressure Case
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-5 Postion of the String for Low Pressure
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Fig. 6.34 Positions of the String form 25250 to 26000 Time-steps for Low Pressure Case
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x 10~ Postion of the String for Low Pressure
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Fig. 6.35 Positions of the String form 49250 to 50000 Time-steps for Low Pressure Case
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x 107° Postion of the String for Low Pressure
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Fig. 6.36 Positions of the String form 75250 to 76000 Time-steps for Low Pressure Case
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Fig. 6.37 Positions of the String form 97250 to 98000 Time-steps for Low Pressure Case
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Residual of r1 for Low Pressure Case
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Fig. 6.38 Residual of I'; for the Low Pressure Case
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Residual of r2 for Low Pressure Case
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Fig. 6.39 Residual of I, for the Low Pressure Case
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Perce. of Norm. Total Energy(for Time—-level 1 to 15000
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Fig. 6.40 Percentage of Normalized Total Energy in the First 15000 Time-steps for Low

Pressure Case

125



Perce. of Norm. Total Energy(for Time-level 85000 to 100000

900+ 7

800

700+ )

v
Il

500

400} :

300

¥

200 .

100+ 1

Percentage of Nor. Total Energy ((En ~ E1)/E1)*100

or i

BT L S S e S e ——
0%.5 9 . 9.5 10
No. of Time levels x 10*
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6-5 Large Amplitude Disturbance by High Pressure

In this test case a high intensity instantaneous pressure applied on five grid points only
at the first time step. This high pressure initiates a large amplitude wave. The plots of Fig
6.13 to Fig.6.21 shows the position of the wave at different time levels, the initial stage
before reflection, after reflection and a comparison of two waves at varies time levels. The
stretch vs. grid poison are plotted next to each plot of the string position. From the plots of
the position of the string it can be seen that the string motion is nonlinear. When the stretch
value goes well bellow one the shape of the string corresponds to this low stretch value is
different for other regions.But the value of the stretch below one is observed on a short
length of the string for short period of time.

From the plot it can be seen that the numerical method preserved the symmetry of the
problem for all the tested length of time.The plot for the residual of the fictitious first order
partial differential equation in the Runge-Kutta method vs. the time steps required to reach
this equation to steady state are shown on  Fig. 6.22 and Fig.6.23.The percentage of the
normalized energy vs. time step is plotted from Fig. 6.10 to Fig. 6.12 to show the stability
of the scheme and the numerical does not violet the conservation of the total energy. For

clarity, the plots for positions of the string are done at an interval of three data points.
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Postion of the String for High Pressure
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Fig. 6.42 Positions of the String for First 1000 Time-steps for High Pressure Case
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Stretch Vs. Postion of Grid Points
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Postion of the String for High Pressure
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Fig. 6.44 Positions of the String form 1250 to 2000 Time-steps for High Pressure Case
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Stretch Vs. Postion of Grid Points
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Fig. 6.45 Stretch Value form 1250 to 2000 Time-steps for High Pressure Case
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Postion of the String for High Pressure
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Fig. 6.46 Positions of the String form 2250 to 3000 Time-steps for High Pressure Case
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Stretch Vs. Postion of Grid Points
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Fig. 6.47 Stretch Value form 2250 to 3000 Time-steps for High Pressure Case
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Postion of the String for High Pressure
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Fig. 6.48 Positions of the String form 3250 to 4000 Time-steps for High Pressure Case
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Fig. 6.49 Stretch Value form 3250 to 4000 Time-steps for High Pressure Case
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Postion of the String for High Pressure
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Fig. 6.50 Positions of the String form 25000 to 25750 Time-steps for High Pressure Case
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Fig. 6.51 Stretch Value form 25250 to 26000 Time-steps for High Pressure Case
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Postion of the String for High Pressure
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Fig. 6.52 Positions of the String form 49000 to 49750 Time-steps for High Pressure Case
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Stretch Vs. Postion of Grid Points
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Postion of the String for High Pressure
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Fig. 6.54 Positions of the String form 75000 to 75750 Time-steps for High Pressure Case
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Fig. 6.55 Stretch Value form 75250 to 76000 Time-steps for High Pressure Case
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Postion of the String for High Pressure
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Fig. 6.56 Positions of the String form 97000 to 97750 Time-steps for High Pressure Case
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Fig. 6.57 Stretch Value form 97250 to 98000 Time-steps for High Pressure Case
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Residual of r1 for High Pressure Case
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Fig. 6.58 Residual of I'; for the High Pressure Case
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Residual of r2 for High Pressure Case
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Fig. 6.59 Residual of I, for the High Pressure Case
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CHAPTER SEVEN

CONCLUSION

The numerical method developed in this thesis is based on the governing equation of
motion for an elastic string. The partial differential equation of string motion is con-
structed and discretized in conservative form. This makes the numerical scheme to obtain
the solution even when there is a discontinuity in the first order term of the partial differen-
tial equation.

A linear stability analysis is used as a guide in the choice of the type of finite difference
technique, the grid size and the time steps to implement in order to produce a stable
numerical solution.The form of discretization found from the stability analysis is a central
finite differencing in time and space, which approximate the flux at two time levels with
implicitness control parameter.

The method of solution developed to solve the implicit discretized form of the govern-
ing equation of the string motion is by defining a fictitious first order partial differential
equation, in such a way that the steady state solution of this first order equation is equiva-

lent to one time step advancement of the solution of the string equation of motion.
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To march the defined first order partial differential equation to steady state, a modified,
explicit, four stage Runge-Kutta method is used. Two of the stage coefficients of Runge-
Kutta method are specified to get a second order accuracy and the rest two are determined
from stability analysis.

Five test cases are conducted on the developed method of solution, to investigate its
validity, accuracy, response to small and large amplitude waves.Also an investigation is
conducted on the conservation of the total energy of the system and for small amplitude
waves the maintenance of the propagation speed for number of reflections. For small
amplitude waves the speed of propagation for 100,000 time steps equivalent to fifty reflec-
tions was constant as the pre determined calculated value.

In the first test case comparison of analytical and numerical solution is done. This com-
parison done using a constitutive relation of Mooney-Rivlin. The numerical solution
showed in the impact angle an average error of 1.65% at the point of discontinuity of 6.
The result from the comparison gives as a confidence on the validity and the accuracy of
the scheme.

The conservative equation of string motion which requires a constant total energy is
used to check the obtained numerical solution for the maintenance of the conservation of
the total energy. From the conservation test the total energy remain constant for 100,000
time steps equivalent to fifty reflections after experiencing a big jump initially since the
initial condition is not the solution of the equation of the string motion.

The method of solution developed is not based on the characteristic equation of an elas-

tic string. Thus it can be extended to solve fluid structural problems.
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