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Abstract

We establish the uniqueness of positive radial solutions to the quasilinear
elliptic equation -1iv(|Vu|™~2Vu) + f(|z|,u) = 0 in a ball or an annulus Q in R™,
n 2 3, with the Dirichlet boundary condition on 8Q, where 1 < m < n, Vu denotes
the gradient of u, and f is radially symmetric in = and satisfies f(|z|,0) = 0. We
also establish the uniqueness of ground state solutions to the equation in R™. Our
results applied to a wide class of nonlinearities, including some important model
cases such as f(|z|,u) = puP + u9, u? —u?, m -1 < p < g, and K(|z|)y(x). In
particular, we prove that there exists a unique positive solution to the semilinear
Dirichlet problem Au + pu? + u? = 0 in B with u = 0 on 8B, where B is the unit
ballin R", x> 0and 1 < p < ¢ < (n+ 2)/(n — 2), provided that n > 6. This
result partially solves an open problem raised by Brezis and Nirenberg in 1983.
It is very interesting in view of the well-known non-uniqueness proof in the case
n = 3 by Atkinson and Peletier in 1986. The basic approach used in our proof is

to make extensive use of a new Pohozaev-type identity which we develop in this

thesis.
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Chapter 1
INTRODUCTION

Let 2 be a ball or an annulus in R", n > 3. We are concerned with the
problem of uniqueness of radial solutions of the quasilinear elliptic equation
div (|[Vu|™?Vu) + f(Jz|,u) =0 in £,

A i (1.ig)
u>0 in © wu=0 on 099,

where 1 < m < n, Vu denotes the gradient of «, and f is radially symmetric in
¢ and satisfies f(|z|,0) = 0. We shall also study the question of uniqueness of
ground state solutions of the nonlinesr problem

div (|Vu|""*Vu) + f(lz},u) =0 in R",

u>0 in R", u—>0 as |z|— oco.
A ground state solution is, roughly speaking, a solution of (1.2, ) vanishing at
infinity and behaving like |z|~"=1 for large |z|. It is also called a fast decaying

solution (see the definition below).

When m = 2, the equation of (2.1,,) reduces to the particular interesting
semilinear elliptic equation Au+ f(|z|,u) = 0, where A denotes the n-dimensional
Laplacian. Now protlems (1.1,,) — (1.2,,) take the form

Au+ f(lz],u) =0 in Q,
u>0 in 2, u=0 on 99,
and : . ;
Au+ f(lz[,u) =0 in R",
©u>0 in R", «u—0 as [z]— co.

The existence and uniqueness of nontrivial solutions to these problems, es-

years. The simplest and best understood example of (1.1)-(1.2) seems to be the
case when f(|z|,u) = u?,p > 1. The semilinear equation

Aut+ul =0 p>1, (1.3)

is known as the Lane-Emden equation in astrophysics. In this context, when n = 3,
the function u represents the density of a single star. When p = (n + 2)/(n — 2),
equation (1.3) is also a special case of the Yamabe problem in differential geometry,
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and it is relevant to Yang-Mills equations for n = 4. In a celebrated paper of Gidas,
Ni and Nirenberg [53], it is proved that when 1 < p < (n +2)/(n—2) and Q = By,
the unit ball of R™, the problem
Audtu? =0 in B, o
. . : : (1.4)
«u>0 in By, u=0 on 9B,
has a unique solution and the solution is necessarily radial. On the other hand,
a well-known result of the pioneering work of Fowler [47] in 1931 asserts that
equation (1.3) has a positive radial solution in R™ if and only if p > (n+2)/(n—2).
More precisely. if p > (n +2)/(n — 2), then for any o > 0, there is a unique radial
solution u of (1.3) with u(0) = «, and u is a ground state solution when p =
(n +2)/(n - 2), a slowly decaying solution (behaving like [x|~2/(P~1) a5 |z| — oo,
see definition below) when p > (n+2)/(n—2). The exponent p = (n+2)/(n—2) sets
up a dividing number for the existence and nonexistence of solutions of problems
(1.1)-(1.2). It is critical from the point of view of Sobolev embedding. Since p+1 =
2n/(n — 2) is the limiting Sobolev exponent for the embedding H(Q) c LrtY(Q).
This embedding is not compact when p > (n + 2)/(n - 2). A powerful identity
of Pohozaev [101] demonstrates that problem (1.1) has no solution &t all (radial
or nonradial) when f = u?,p > ;{—g and Q is a starshaped bounded domain (not

necessarily a ball).

A typical example of the nonlinearities without a constant growth is f(u) =
uP, for u > 1;= u% for 0 < u < 1. For this nonlinearity, Erbe and Tang [40]
[42] investigated the uniqueness and the global structure of radial solutions of
problems (1.1) and (1.2) in the range 1 < p < (n + 2)/(n — 2) < q. They proved
that problem (1.1) has a unique solution on a ball, and problem (1.2) has a unique
ground state and infinitely many slowly decaying solutions. This result can be
generalized. Namely, it holds if f(u) is positive for u > 0, and the growth of f is
a nonincreasing function of « > 0 and is subcritical for large u, while supercritical

for small wu.

The proof of [53] for the radial symmetry of solutions of (1.4) is very general.
Namely, it was proved there that if the nonlinearity is independent of |z| and
Lipschitz continuous in u, and  is a ball, then any solution of (1.1) is radial. The
situation is quite different when § is an annulus. At first, on an annular domain Q,
it was shown by Brezis and Nirenberg [14] that even for the simplest nonlinearity
f = uP,p > 1 problem (1.1) has both radial and nonradial solutions (see also
Caffarelli and Friedman [17] for other nonlinearities). Secondly, Pohozaev’s result
does not apply since an annulus is not starshaped. Therefore problem (1.1) may
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admit a solution for a wider class of nonlinearities. For example, if f = uP, then
problem (1.1) has a solution in any finite annulus for all p > 1, and it was proved
by Ni [88] that the solution is unique in the class of radial solutions. Ni and
Nussbaum [90] continued the study of [88] and proved that if f(u) is positive for
u > 0 and has superlinear growth, then problem (1.1) possesses at most one radial
solution provided that the growth of f is less than n/(n -- 2).

When f(u) has the property that f(0) =0, f'(0) < 0 and f(x) has a unique
positive zero, the equation of (1.1) is sometimes called the Euclidean scalar field
equation (see Anderson and Weinberger (8] and Berestycki and Lions [13]). The
existence and uniqueness of ground state solutions of such an equation are relevant
to the search for certain kinds of stationary states of nonlinear Klein-Gordon or
Schrodinger equations and some reacticn-diffusion equations which arise in popu-
lation dynamics theory (see Fife [44]). The existence problem has been extensively
studied by Berestycki and Lions (13]. A typical model of scalar field equations is
Au~u+4u? =0, p> 1. It was shown that (see [13]) this equation has positive
radial solutions in R™ if and only if p is subcritical. Gidas, Ni and Nirenberg [54]
proved that such solutions are radially symmetric. The first uniqueness result for
the solutions was proved by Coffman [22], who studied the case n = p = 3. His
result was extended by MacLeod and Serrin [83], Peletier and Serrin [98] [99]. An

important development was due to Kwong [67] who finally proved the uniqueness
of solutions of (1.2) when f = —y + uP,n > 3,and 1 < p < (n+2)/(n—-2). His

proof was simplified and generalized by MacLeod [82] and Kwong and Zhang [70].

When f(|z,u) = K(|z])uP,p > 1, the equation of (1.1) arises both in physics
and geometry. When K (lz]) = 1/(1+ [z]?), and n = 3, the equation was proposed
by Matukuma as a mathematical model to describe the dynamics of a globular
cluster of stars. When p is the critical number, the equation is now known as a
conformal scalar curvature equation in R™. The symmetricity and the existence
and uniqueness of ground state solutions have been extensively investigated in an

abundant list of literature (see, for example [29] [30] [74] [75] [87] and [110], etc.).

Brezis and Nirenberg [14] considered the existence of solutions of problem
(1.1) when f(|z|,u) = u? + g(|z|, u) and Q is a bounded domain in R™, where q is
the critical Sobolev exponent and 9(lz],u) is a lower-order perturbation of u? in
the sense that limy—c0 g(|z], #)/u? = 0. Some typical examples are g(|z|,u) = \u
and g(|z|,u) = puP,1 < p < q. As we have seen, if f =u?,q = (n+2)/(n~-2), and
{2 is starshaped, then problem (1.1) possesses no solution at all. But this situation
can be reversed by a lower-term perturbation. Let us restrict = B, a finite ball
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in R", and consider the problems

Aut+du+u?=0 in B,

: - - 1.5)
©>0 in B, u=0 on 0B, (1.5)
and o 7
Audpu? +u?’"=0 in B, 7
(1.5)

u>0 m B, u=0 on &B.

Let ¢ = (n 4+ 2)/(n —2), and 1 < p < q. Then the main results of [14] can be

summarized as follows:

(i) When n > 4, problem (1.5) has a solution if and only if A € (0, ;), where
A1 denotes the first eigenvalue of —A; while problem (1.6) has a solution for

every p > (.

(i1) When n = 3, problem (1.5) has a solution if and only if A € (A /4, A1); while
problem (1.6) has a solution only for large values of 4 > 0.

Moreover, it is suggested by numerical computations that
EE Y I

(i) whenn =3, ¢ =25, and 1 < p < 3, there is some to > 0 such that problem
,  f y! / P
(1.6) has at least two solutions for i > g, a unique solution for [ = g, and

no solution for y < py.

Assertion (iii) was proved later by Atkinson and Peletier [10]. An interesting
open problem raised by Brezis and Nirenberg was whether or not the solution of
(1.5)-(1.6), whose existence is ensured in (i) and (i), is unique (except the case
n=3,q=5,and 1<p<3in (1.6)).

The uniqueness of solutions of problem (1.5) was proved by Kwong and Li

[68] for the range 1 < q < (n + 2)/(n — 2), and by Zhang [113] for 1 < ¢ <
(n +2)/(n — 2) simultaneously and independently. Some alternative proofs were
provided by Srikanth [106] and Adimurthi and Yadava [4]. Their proofs made use
of the linearity of the perturbation term Au and it may not be possible to extend
their proofs to study the uniqueness problem of (1.6). In fact, in view of assertion
(iii) above, one can not expect that the uniqueness of solutions of problem (1.6)
holds for all » > 3 and 1 < p < ¢ < (n + 2)/(n - 2). Very recently, Zhang
[114] proved the uniqueness of (1.6) under the assumption (@=1)/(p+1)<2/n.
For instance, if n = p = 3, and 3 < ¢ < 11/3, then (1.6) has a unique solution.

4



Unfortunately, Zhang’s result does not include the important case when q is the
critical Sobolev exponent at all. Since once ¢ = (n + 2)/(n — 2), the condition
(g—1)/(p+1) £ 2/n becomes p > (n +2)/(n — 2). In this thesis, we shall prove
that when n > 6, problem (1.6) has a unique solution for all ¢ >0 and all p,q
satisfying 1 < p < ¢ < (n+ 2)/(n — 2). Thus, the open problem concerning the
uniqueness of (1.6) is completely solved for n > 6. Some detailed analyses will be
given for the cases n = 3,4,5. For example, when n = p = 3, problem (1.6) has at
most one solution if 3 < g < 4.7748332. These results can be simply derived from

one of the main results of this thesis.

This thesis is organized as follows. In Chapters 2-4, we shall limit ourselves
to the case f(|z|,u) = f(u), f(0) = 0, and the finite domain Q is restricted to be

ordinary differential equations. In Chapter 2, we shall present some preliminary
results on the properties of u(¢, ). In particular, we shall show that u(t,a) is a

strictly decreasing function of ¢ whenever it is positive. We say that

(i) u(t,a) is a crossing solution if it vanishes at some 0 < ¢ < co;

(i) u(f,«) is a ground state solution or a fast decaying solution if u(t,a) > 0 on
[0, 00) and limyye0 t"=™/(M=Dy (¢ o) exists and is finite and positive.

ignét(”“mlf(msi)u(t,a) = 00.

If f(s) > O for s > 0, then u(t, @) can be classified into one of the above three
types a":d it is either a solution of problem (1.1,,) for a finite ball or a solution of
(1.2,») -anishing at infinity. Due to the strict monotonicity of u(¢, &), its inverse is
well-defined in the interval (0, ). We shall establish a new Pohozaev-type identity
involving the inverse of u. This identity plays essential roles in the proof of the
main results. Under some natural restrictions on the nonlinearity, we are able to
give a characteristic description for each type of solution by using the Pohozaev
Identity. This result allows us to prove a preliminary result on the global structure

For a given nonlinearity f(s) € C*([0,00)), let F(s) and H(s) be defined by
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F(s) := [ f(r)dr and

H(s) :==[(n —m)sf(s) —nmF(s)]/f(s), for s> 0;
H(s):=0, for s =0.

Now the main results of Chapters 3-4 can be stated as follows:

(1) if 0 < (m —1)f(s) < sf'(s) and H'(s) <0 for s > 0, then problem (1.1,,)
admits at most one radial solution in any finite ball ) (see Theorem 3.1).

(ii) If f(s) > 0 for s > 0, and

F nim-—1)
lim sup () =0, where €, = ZLLl >0,
u—0+ UM n—m

then a necessary condition for the existence of a ground state solution of
problem (1.2,) is that H'(s) assumes both positive and negative values in
s > 0. Moreover, if there exists a number 7, 0 < 7 < co, such that H'(s) > 0
for 0 < s < n, and H'(s) < 0 for s > 7, and H'(s) is not identically zero in
any subinterval of (0, c0), then problem (1.2,,) admits at most one ground

state solution (see Theorem 4.1).
We shall prove the first result, which is exactly the same as Theorem 3.1,in

At first, its assumptions are natural. For instance, if we take f=ul,p>m-—1,
then the conditions of Theorem 3.1 are fulfilled, that is, problem (1.1,;) has a
uniqueness property, if and only if it has an existence property. Secondly, we
shall give two examples to show that if the conditions are weakened, then problem

studying the uniqueness problem of (1.1,,) with a large class of nonlinearities. In
particular, the uniqueness property concerning problem (1.6) will be proved in
Section 3.2.

The nonuniqueness problem is investigated in Section 3.3. We shall show
that if f(u) is given by

flu)=uP —u?, 1<p< fé’,ls.-_, < q,
n-—2

and  is a finite ball with radius R sufficiently large, then problem (1.1) has at
least two solutions.



The second result, which is essentially Theorem 4.1, will be proved in Chapter
4. As an application, we shall prove that problem (1.2,,) has at most one ground
state solution if f(u) is given by

flw)=v? —u?, ————<p<y,

or
) nm-—n-+m
flu)=u?, u>1; =u? u<l, m——l{p{——aﬂ{g;

n—m

Note that the number % can be viewed as a critical exponent for the

m =2,

In Chapter 5 we shall continue the study of the uniqueness problem by
using a so-called Kolodner-Coffman method due to Kolodner [66] and Coffman
[21]. We shall only consider semilinear elliptic equations, but the nonlinearity will
be no longer independent of ¢, and the domain € may be a finite ball, a finite
annulus, or the entire space R™. All our developments in this chapter are based
on a principal lemma which will be given and proved in the first section. Some
sufficient conditions for the uniqueness of positive radial solutions to problem (1.1)
are given in Section 5.2. In Sections 5.3 and 5.4 we shall study the uniqueness of
ground state solutions of problem (1.2) with f a separable function of ¢ and .
Some examples such as the generalized Matukuma’s equation, Henon’s equation,
and the conformal scalar curvature equation are examined in Section 5.5. The
main body of Chapter 5 is an extension of the study of Erbe and Tang [40], [42],
and [43].

In the final chapter, we shall give some further remarks and discussion.

The proofs of the main results are very involved. It is our intention to present

them as transparently and elementarily as possible,



Chapter 2
PRELIMINARY RESULTS

In this chapter and the next two chapters, we shall be mainly concerned
with the uniqueness of radial solutions of problems (1.1,)—(1.2,,). We shall limit

ourselves to the cases when the nonlinearity is independent of ¢, i.e., f(t,u) = f(u),
and the bounded domain ( is a finite ball centered at the origin of R".

Let f(u) be defined and locally Lipschitz continuous on [0,00) with f(0) = 0.
Recall from the well-known result of Gidas, Ni and Nirenberg [53] that if u(z) is
a solution of the nonlinear Dirichlet problem

Au+ flu)=0 in Q,

. (2.1)
©u>0 in Q, u=0 on 99,

then u(z) is radially symmetric, i.e., u(zx) = u(|z]). Concerning the radial sym-
metricity of solutions of the problem

Au+ f(u)=0 in R",

©>0 in R" wu(z)—>0 as z— oo,

(B

(2.2)

it is not known yet whether or not every solution is radial. Nevertheless, it was
shown in Gidas et al. [54] that for a large class of nonlinearities f, if u(z) is a
solution of (2.2) behaving like |z, < 2 — n for large ||, then u(x) is necessarily
radial (see also Li and Ni [75] [76] for related results).

Thus in order to establish the uniqueness of solutions of the above problems,
it is of primary interest to consider the corresponding radial problem

u” + Lt_lu' + f(u) =0,
w'(0) =0, u(t)>0 in [0,b), u(b) =0,

(2.3)

where u is now a function of the radial variable ¢ = |#| and the primes denote
differentiation with respect to ¢, and b > 0 is the radius of . We allow b = 0o in
(2.3) and by it we mean that u(¢) > 0 in [0, 00), and lim,_,, u(t) = 0.

In order to establish the existence and uniqueness of solutions of problem
(2.3), it has become standard to consider the initial value problem

W+ B () =0,
u(0) =a >0, u'(0)=0,

(2.4)

8



where u extends maximally to the right with u > 0. Recall that (see Peletier and
Serrin [98]) problem (2.4) has a unique solution if f is locally Lipschitz continuous

on [0, o).

More generally, let 1 < m < n, we shall study the uniqueness of radial
solutions of the following boundary value problems of quasilinear elliptic equations.
Let u(z) be a radial solution of the problem

div(|[Vu|™?Vu) + f(u) =0 in Q,

o , (2.1m)
u>0 in Q, u=0 on 80
or o
div(lef;rlm"g?u) +f(lu)=0 in R" (2.9,)
u>0 in R" u(z)—>0 as |z|— oo. '
Then u(t) is the solution of the corresponding radial problem

[(m = D + 22| 4 flu) = 0, (2.8,m)

W(0)=0, u(t)>0 in [0,b), wu(b)=0,
for some fixed 0 < b < co. We shall also investigate the structure of solutions of
the initial value problem

n—1

[(m—1)u" + w2 + flu) =
u(0)=a>0, u'(0)=0,

[}
=

(2.4m)

where u extends maximally to the right with « > 0. The uniqueness of solutions
to problem (2.4,,) with some nonlinearities f(u) has been observed by Knaap and

Peletier [65], while a more general theorem has been proved by Franchi et al.[48].
If there exists a unique solution to problem (2.4) or (2.4,,), then we denote the
solution by u(t,a). Note that if m = 2, then (2.1,,)-(2.4,) reduce to (2.1)-(2.4),

respectively.

We divide the rest of this chapter into three sections. In Section 2.1, we
collect some fundamental properties of u(¢,a). In Section 2.2, we shall establish
a new Pohozaev-type identity which involves the inverse of (¢, a). This identity
is crucial to the proof of the main results of this thesis. In Section 2.3, inspired
by Kawano, Yanagida and Yotsutani [64], we characterize each type of solution
u(t,a) by using the Pohozaev-type identity. This characterization allows us to
give a preliminary result on the global structure of solutions of the initial value
problem (2.4,,).



2.1 Properties of the Solution

First, we collect some hypotheses on f that may be assumed under various
circumstances in the following development.

(F1) f € C([0,00)), f(0) =0 and f(s) > 0 for s > 0.
(F2) 0 < (m —1)f(s) < sf'(s), for s > 0.

(F2') 0 < (m —1)f(s) < s5f'(s), for s > 0 and lim, o+ inf uf'(u)/ f(u) > m — 1.

F3) lim,_ o+ supf;;(—‘ﬂ— = 0, where F(s) = [ f(7)dr, and €, = -'i”%“ > 0.
§=m J0 n—m

Condition (F1) will be assumed throughout the remainder of this thesis,
unless otherwise specified. (F2) can be viewed as a generalized superlinearity
assumption on f. Since, when m = 2, (F2) implies that f is superlinear on (0, co)
in the usual sense.

Let u(t, @) be a solution of problem (2.4,,) with a > 0. Define

bla) = sup {T': u(t,a) is defined and u(t,a) >0 in [0.7)}.

Then one has b(a) > 0.

In the following proposition we collect some fundamental properties of u(¢, o)

that are extensions of some well-known theorems in semilinear elliptic equations.

Proposition 2.1. Let u(t, &) be a solution of problem (2.4;) with o > 0. Then
we have

(z) w(b(a),a) =0, if b(a) < co.

(it) u(t,a) € C*(0,b(a)] N C0,b(ax)], when b(er) < oo, or u(t,a) € C2(0,00) N
C1[0,00) when b(a) = oco.

(1) u(t,a) is uniquely determined by a. Moreover, let u = u(t,a), and 4 =
u(t,&) with a > 0, & > 0, be two solutions of (2.4,,). If there exists ty €
[0, min {b(ax),b(&)}], or to € [0,00) when b{a) = b(&) = oo, such that u(ty) =
i(to) and u'(tg) = 0'(t0), then u = 4.

(1) vw'(t, @) < 0 in (0,b(cr)] when b(a) < o0, or in (0,00) otherwise.

10



(v) If b(a) = oo, then u(t,a) — 0 and u'(t,a) = 0 as t - oo.

Proof. (i) follows from (ii) and (iv). (ii) was obtained by Ni and Serrin in the
Appendix of [93], and (iii) was proved by Franchi, Lanconelli, and Serrin in the
Appendix of [48]. We omit the proof of (i)-(iii), and give a detailed proof of (iv)-(v)

here.

In the case m = 2, (iv) is well-known and easy to prove. In general, we

rewrite the equation of (2.4,,) as

(" ™2 = —7 f(w). (2.6)
If there were ¢; € (0,b(a)] such that u'(t;) > 0, then from (2.6) we would have,

for any t € [0,%1),

£ [ ()2 (1) = 17 ()2 (1) — f 5" flu(s))ds

<1
13
> [ s fu(s)ds > 0.
i i
So then /() > 0 in [0,#,), which contradicts u’(0) = 0. This proves (iv).

To prove (v), we let @ > 0 be such that u(t,a) > 0 in [0,00). By (iv) it
follows that there is some uoo such that 0 < u, < 0o and

zlél;n;; u(t,a) = Ueo-

We shall show that u/(t,e) is also convergent as ¢ = co. For this purpose, we

introduce an energy function defined by
_ L m—1 . , .
E(t) = B(t,a) := 2" [u/|™ + F(u). (2.7)

m

If v = u(t, @), then one can easily verify that

Therefore E(t) is decreasing whenever u(t) is defined. In particular, E(t,a) tends
to a nonnegative constant as ¢ — co. Because of the convergence of u(t,a) and
the continuity of F(u), we conclude from (2.7) that |u/(t,)|™ is convergent, so is
u/(¢, @). Due to the fact that u(t,e) > 0 on [0,00), one must have

I A N
igkn;éu (t,a) = 0.

11



It remains to show that ue, = 0. Suppose to the contrary that uee # 0.
Then uq > 0. Recall that

n -

[(m—1)u"(t,a) + flu’(t, a)llu’(t,a)™? = — f(u(t, a)).

Passing ¢ to oo in this identity we have
Tim w"(t, @)[u’(t, 0)|™~ = — f(use)/(m — 1) <0, (2.9)
because m > 1 and limy— v/(¢,&) = 0. It is readily seen that (2.9) implies

lim u”(t,a) =—c0 as m>2, and lim u"(t,a) = —~flus) <0 as m =2,
[ e d= ] f—co ) ’

They are not compatible with limy_ e, u/(2,&) = 0. In the case 1 < m < 2, it
follows from (2.9) that there exist some real numbers + > 0 and T, > 0 such that
if t > T,, then
u"(t,0)|u'(t, 0)|7t < —,
or equivalently,
u”(t,a)/u'(ta) > ..

Integrating both sides of the latter inequality over [T},#) and letting ¢ — oo yield
lim |u'(t,e)| =
Jim [u'(t, )] = oo,

which contradicts lim; e u/(£,0) = 0. Thus we obtain lim,_ u'(t,a) = 0 as
desired. O

Definition 2.2, A solution u(t,a) is called a crossing solution if bla) < oo,
w(t,a) > 0 in [0,
u(t,e) > 0in [0, 00

b(a)), and u(b(e),e) = 0. It is called a decaying solution if
)

and lim;, o u(t,a) = 0.

It follows from (i) and (v) of the last proposition that any solution u(¢, ) is

either a crossing solution or a decaying solution.

Before we start investigating the asymptotic behavior of decaying solutions,
we digress for a moment to the special case n = m. We shall show that, in this
case, every solution u(t, ), @ > 0 is necessarily a crossing solution, and therefore
no decaying solutions exist. To the best of our knowledge, this interesting result

has not been observed in the current literature.
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Proposition 2.3. If n = m, then (2.4,) possesses no decaying solution. Conse-
quently, there is no radial solution to problem (2.2,,).

Proof. Let n = m, and suppose for contradiction that u = u(t,a), a > 01is a
decaying solution of (2.4,,). Then u’ < 0 in (0, 00) and

lim tu' = 0. (2.10)

t—oo

To prove (2.10), note that from the equation of (2.4,,) we can deduce
— 1
(m —1)u” + ”—t—u' <0, te(0,00),
which in turn implies,
(tu') <0, te€(0,00),

since n = m. Thus tu' is strictly decreasing in (0, 00), and there is some number
¢ < 0 such that limy o tu’ = ¢. If ¢ < 0, then one can easily demonstrate that
im0 u = —0c0 to yield a contradiction. Hence ¢ = 0 and (2.10) is proved.

Now, combining (2.10) and the fact that tu’ is decreasing in (0, 00), we
conclude that tu’ > 0 in (0,00). But this is impossible since «’ < 0. The proof is

completed. O

Proposition 2.4. Let1 < m < n, and let u(t,a) be a decaying solution of (2.4),
then t(r=m)/(m=1)y (¢ o) is strictly increasing in [0, 00).

Proof. Let 1 < m < n, and u = u(t,a) be a decaying solution of (2.4,,). Then a
straightforward calculation yields

(#(n=m/(m=1)y )t = gl(n=m)/(m~1))~1 (———" — ";'u + tu’) , t>0.
n —

It suffices to show that

n_nlzu-}—tu'>0 for ¢>0. (2.11)
Note that
n—m ! n—1
( u+ tu') = —1((m u" + —u ) <0



Heru:e u +tu' is decreasing on (0, 00) and l;mt%eg( ="u+tu') exists. In fact,

lim ( 7711 u+tu') =0,

i—=oo m—

0. Thus (2.11) follows and the proof is completed. O

because of lim;_, o 2

Definition 2.5. We call a decaying solution u(t,a) of (2.4m) a fast decaying

solution or a ground state solution if

zhm ¢ln—m)/(m— Du(t,a) exists and is finite, (2.12)
= i

and a slowly decaying solution if

lim ¢r=m/(m=Dy 4 o) = (2.13)

T—os

\I:-J\

. Pohozaev-type Variational Identities

First we recall in the next lemma a generalized Pohoza v-type variational
1dent1ty due to Ni and Serrm [9?] [93] and Pucci and Serrin [10 ] For completeness,

Lemma 2.6. Let u = u(t,a) be a solution of (2.4,,). Then

/ {auf(u) —nF(u) + [«'|™ ( Do a- 1)} = dr

, (2.14)
= —au' ()| (t)| ™ 2u(t)t" ) — (1 - ‘) ! (#)]™ " — F(u(t)",
m
where a is any real number.
Proof. Recall that u satisfies
(PN ()2 (7)) = = f(u()). (2.15)

First, multiplying (2.15) by au(r) and integrating the resultant identity over [0, ¢],
we obtain .
/ [auf(u) — alu'|™)r" ! dr = —au'|u/|™"2w™ L, (2.16)
Jo
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Next, multiply (2.15) by 7u/(r) and integrate the resultant identity over [0, t).
Making use of integration by parts and observi ing that

_ B j _— fr V .
et = S 1
we have
I m = 1
/ [“nF(lL) + "ll ' ] ldr = — fﬂlu’lm F(u)t". (217)

Jo

m
Combining (2.16) and (2.17), we obtain (2.14). O
Let a = 2 —1in (2.14). Then we have
Lemma 2.7. Let u = u(t, a) be a solution of (2.4,,). Then
= 7t =
P(t) = / H(u(r))r" 1 dr, (2.18)
i D

P(t) = P(t,a) = P(t, a,u(t, a))

—(n —m)u'( ()| (t)lm *u(t "l (m = 1)’ (t)]mt" — mF (u(t))t",
(2.19)

and
H(u):=(n— m)uf(u) — nmF(u). (2.20)

In the rest of this section, we concentrate on developing a Pohozaev-type
variational identity involving the inverse of u(t, «). This identity is important and

unusual. It plays a crucial role in proving the main results of this thesis.

Recall from (iv) of Proposition 2.1 that any solution u(t,a) of (2.4,,) is
strictly decreasing in (0,5(a)). Thus the inverse of u(t, «), denoted by t = #(u, a),
is well-defined and is also strictly decreasing in (0, o). We have

up=1/ty, uy= ‘*tuu/ti*

Hence t = #(u, a) satisfies the equation

| =

|myt, (2.21)

(m —1)t"



Lemma 2.8. Let u = u(t,a) be a solution of (2.4m) and t = t(u, o) be its inverse
in (0,a]. We have, for any u € (0,a),

P = [ B /(12 d, (2.22)
where ' = 4L
P(u) = P(u,a) = P(u, o, t(u, ))
T P n (2.23)
= [H(u) — (n — m)u]i%s’lﬂ’ﬁ;‘g —(m — 1)$ ~ mF(u)t",
and 7 i o . 7
Hu) o= { ([j(n —muf(u) —nmF(u)]/f(u), ?1 i g, (2.24)

Proof. A straightforward way to verify (2.22) is to differentiate both sides of the
identity with respect to u. We prefer to give a proof by starting with (2.18). By

using the fact that ¢, = 1/u;, we have

wt™=1 , ot v am
—(n— m)W —(m— DE’T’“ ~ mF(u)t
u (2.25)
= / [(n=m)sf(s) = mnF(s)it" "¢ ds.

Recall from (2.21) that
f(u)i' = ((m, ~ " — +——f )/ 1™
2.25), using mte“mtmn by parts, as follows:

i

[(n —m)sf(s) — mnF(s)t" "¢ ds

n

H(s)f(s)t"™ "¢ ds

L

H( ) ((m — 1) — = H/m d

=1 VT — 1 t" " n— m= /
=t B ds - ) [T HGp= e a

H
1 ) il L N
/ H(s)t""1 ¢ (W) —(n—l)/ H(s)t"=2/|#'|" =2 ds

EH(?& t" l/tlt |n '7)+/ H i,n 1/ t’lf lm 2
+(n—1/H LA AT e i'ls—(n=l/ H(s)t" 2 /1t'|™=2 ds

== H@e = () 4 [ H o ) s

i

Il
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Hence (2.22) follows. [

2.3. Characterization of Positive Radial solutions

It follows from Proposition 2.1 (i) and (v), and Proposition 2.4 that ever
solution u(¢,a) is classified into one of three types: a crossing solution, a slowl
decaying solution, or a ground state solution (a fast decaying solution). In thi
section we shall give a characteristic description for each type of solutions of (2.4, )
As a simple application, we can present a structure theorem on the set of solution
u(t,a),a > 0. In view of Proposition 2.3, we are only interested in the case

b
[ ]
e

l<m<n. (2.

Recall that () is defined to be the first zero of u(¢, o) in¢ > 0, and b(a) =
when u(t, @) is positive in ¢ > 0. Let P(t,a) be as in (2.19). Define

b
o]
~]

P, := limsup P(¢,a). (2.27

t—b(a)—

Lemma 2.9. Let P, be as in (2.27). We have

(). If u(t,a) is a crossing solution, then

(i1). If u(t,a) is a ground solution, and f(u) satisfies (F3), then

P, = Jlim P(t,a) =0. (2.29)
(i1). If u(t,) is a slowly decaying solution, and f(u) satisfies (F2'), then
P, >0, (2.30)
and for any T' > 0, there exists T" > T' such that
P(T",a) > 0. (2.31)

17



Proof. (i). The proof of (2.28) is trivial, we omit it.

(ii). Let u(t,a) be a ground state solution. Then there exists a number Ca
such that

0 <cq < 00, (2.32)
and
lim ¢("=™/ M=y (1 a) = c,,. (2.33)
=00
Observe that
1 1—1 ,
[t(”"l)/(m—])u'(t,a)]' = -T—n——-l—t("‘l)/("'"l)((m - )u"(t, ) + ks tffu'(i,c't))

t(n—l)/(""—l).f('u)
(m —~ 1)|u'(t,a)|m—2
<0,

(2.34)
for all ¢ > 0. This shows that lim,. t("'”/('"‘”u'(t,a‘} exists, and we can

evaluate it by L'Hospital’s rule to give

Co = liin t(""m)/('"_l)u(t,a)

t—oo
) u(t, o) ) u'(t, )
- lliglo t—(n—m)/(m~1) — tli}f{.lo "_—%t—(n-l)/(m-—l)
=
= lim -2 ! =D/ (m=10 /(¢ o),

i n—m

Hence we obtain that

. - _ n—m
lim ¢(n=D/(m l)u'(t,a) = — Cors
t—o0 m—1
and
. _ _ n—m _
thm tn=D/m=D (¢ o] = Ca- (2.35)
yoo m—1

By our assumption n > m it follows that (n — 1)/(m — 1) > 1, which in turn,
combining with (2.35), implies

A o _ o
tl_x)rglo tu'(t,a) = 0. (2.36)
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Thus
P, = lim P(t,a)
t—o00

= lim [—(n ~ m)t"u(t, a)u'(t, a)|u'(t, @)™ 2

— (m = 1)t"|d/(t, )| — mt"F(u(t, a))]

=— lim (n — m)t" un/|0["7% — (m ~ 1) lim t"[u/|™ — m lim ¢"F(u)
{t—o0 t—o00 t—o0

=(n —m) lim u lim (#{"=1/(m=1),/|)ym=1
t—co t—oo

—m lim F(u) lim (t(""")/('""l)u)f'"
t—oo yfm t—co

_ . AR E (n—1)/(m=1), r1ym—1
+(m — 1) Jim (1) lim ')
=0,
because of (2.33), (2.35), (2.36) and (F3).

(iii). Let u(¢,a) be a slowly decaying solution. In view of assumption (F2’ )
we may pick some number m, m > m so that

SJZS) >m—1, 0<s<a. (2.37)
F(u)

We can use this inequality to estimate IR Note that when 0 < u < a,
F(u) _ fou f(s)ds

uf(v) = uf(u)
_ wf(u) — [5 sf'(s)ds _q Jo s f!(s)ds

uf(u) T wf(w)
b d)ds o )
<Ny = iy

This gives

Tt < (238
For simplicity of notations, let £ = =. Then
0<€é<1, mF(u(t,a)) < €ult,a)f(u(t,a)), t>O0. (2.39)
Now, let © = u(t,a) and ¢t > 0, we have
P(t,a) = —(n — m)t" tuu|u/|™ 2 — (m — 1)t /™ — mt" F(u)

> —(n —m}t" ud o |2 — (m = 1)t ™ — € uf(v)

- n—m
= —(m — 1)t"~ "=t o ! ™2
(m — 1)t" " m=tu'|u| =

+ Etu(t™ T |u!|™2) (see (2.6))

= _[(772 - l)t""?_n_:mTu'lu'Im_z(t?n_——ﬂlu)/ + ftu(tn_llullm—l )I]

n—m__l 1 =1 )
tm=-T" "y f{tm-Ty
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-~ 7 i':nf?’? 7 =1y fym=1y
= t"ulu'lm‘l (m - 1) ( ﬂ_muf)f - EL* —,H l* )
faﬁﬁ;i u > tn—lluilmsl

= t"ufu|" 7 [(m — 1) In(t"=F u) — En(en )

= t"ulu!|" " (m — 1) In(t*"=1u) — (m — 1)€ In(t =T )
+ (m = D¢ In(t =T u) — EIn(" = /|1

= t"ulu'|" " [(m — 1) In(t"=T u) — (m — 1)€ In(¢7=T y)

n=—7

+ Eln(tm=Tu)™ T < gln(tmr [0y

= t"ulu|" " (m ~ 1)(1 — €) In(t =T u) 4 € ln((tW=Tw) /(72T o/ [)) 1]
= t"ulu!|" " (m — 1)(1 = €) In(t =T u) + Eln(u/(t]))™ 1),

Recall that lim;_, . them u = +o00, and

W'y > 222 by (2.11)).
n—1uamn

We have

Um [(m ~ 1)(1 — &) In(t"=% w) + € In(u/(t[u’]))™ ] = +oo.

[ =]

Thus for any 7" > 0, there exists a T > T" such that
[(m = 1)(1 = &) In(t %= ) 4 Edn(u/ (e’ )™ i > 0.

Now (2.30) and (2.31) follow immediately. The proof is completed. [

nonexistence of radial solutions to problems (2.1,,) or (2.2,,), is of fundamental

importance. Its proof is based on the Pohozaev-type Identity (2.18) and the last

lemma.
Theorem 2.10. Suppose that (F2') and (F3) hold. Let H(u) be defined as in
(2.20). We have

(i) if there ezists some 0 < ny < oo such that H(u) =0 in [0,71), then every
solution u(t,e), 0 < a < ny is a ground state solution.

(4i) If there ezists an €y > 0 such that H (1) is not identically zero in any
subinterval of [0,ey), and

Hu)>0 in [0,00), (2.40)
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then every solution u(t,a), @ > 0 is a slowly decaying solution. Conse-
quently, problem (2.1,,) admits no radial solutions in any finite ball.

(1ie) If there exzists an ey > 0 such that H (u) is not identically zero in any
subinterval of [0, ex), and

Hu)<0 in [0, 00). (2.41)

Then every solution u(t, a), a > 0 is a crossing solution. Consequently,
problem (2.2,,) admits no radial solutions.

Proof. (i). Let u(t,a) be a solution with 0 < a < nx. Then u(t,a) < ny when
0 <t < b(a). Now by the assumptions of (i) and identity (2.18) we obtain

P(t,a)=0, 0<t<ba)

Thus b(a) = oo and u(t,a) is not a crossing solution. By (2.31) one sees that
u(t, @) is not a slowly decaying solution. Therefore u(t, @) must be a ground state

solution.

(ii). Let u(¢,) be a solution with a > 0. In this case, by using (2.18) and
(2.40) we see that
P(t,a) >0, 0<1t<ba)

Therefore once again it follows that b(a) = co and u(t, ) is not a crossing solution.
We see that u(¢, ) is a decaying solution and there is some ¢ — T, > 0 such that

0<u(t,a)<ey, for t>T.,
which implies P, > 0. Hence u(t, @) is a slowly decaying solution.
(iii). The proof is similar to that of (i), and so we omit it. [

As in [64], [111] and [112], we introduce the following definition.

Definition 2.11. The structure of positive solutions of the initial value problem
(2.4) or (2.4,,) is of
Type C : if u(t, ) is a crossing solution for every a > 0;
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Type F : if u(t, ) is a fast decaying solution ( or a ground state solution) for every
a > 0;

Type S : if u(t, a) is a slowly decaying solution for every a > 0;

Type M : if there exists a unique positive number o* > 0 such that u(t,a*) is a
ground state solution, and u(t, ) is a crossing solution for every a € (a*,00),
a slowly decaying solution for every a € (0,a*).

The next result, which is merely a restatement of Theorem 2.10, describes
the structures of solution sets of (2.4,) in some special cases.

Proposition 2.12. Suppose that (F2') and (F'3) hold. Let H(u) be defined as
in(2.20). Then we have

(i) If H(u) = 0 in [0,00), then the structure of positive solutions of (2.4,,) is of
Type F.

(ii) If there exists an ey > 0 such that H'(u) is not identically zero in any subin-
terval of [0,€p), and (2.40) holds. Then the structure of positive solutions
of (2.4,) 15 of Type S.

i) If there ezists an ey > 0 such that H'(u) is not wdentically zero in any subin-
, / 1 Y

of (2.4,,) is of Type C.

If we repeat the above argument of this section by employing identity (2.22)
rather than (2.18), then we can establish some analogous results with Lemma 2.9,
Theorem 2.10 and Proposition 2.12. We state the results in the next proposition.

Their proofs are omitted.

Proposition 2.13. Let P(u,a) be defined as in (2.29), and H(u) be defined as
in (2.24). Define

P, = limsup P(u, a). (2.42)

u—0+
Suppose that (F2') holds. Then we have
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(1) If u(t,a) is a crossing solution, then
P, = P(0,a) < 0. (2.43)
If u(t, o) is a ground solution, and f(u) satisfies (F3), then
Py = lim P(u,a)=0. (2.44)

u=—0+

(4) If there ezists an ey > 0 such that H'(u) is not identically zero in any
subinterval of [0,¢x), and

H'(u) >0 in [0,00). (2.45)

Then every solution u(t,a), a > 0 is a slowly decaying solution, and the
structure of positive solutions of (2.4, ) is of Type S. Consequently, problem

(ii) If there ezists an ey > 0 such that H'(u) is not identically zero in any
subinterval of [0,en). Then a necessary condition for the ezistence of a
solution of problem (2.1,,) is that H'(up) < 0 for some ug > 0, and a
necessary condition for the exzistence of a ground state solution of problem
(2.2) is that H'(uq) > 0 and H'(us) < 0 for some u; > 0 and uz > 0.

Note that we are unable to establish an analogue of (iii) of Lemma 9.

From (iii) of Theorem 2.10 we have seen that if (2.41) is strengthened to
H(u)<0 in [0,00), (2.46)

then every solution u(¢,a), @ > 0 is a crossing solution. It is natural to ask
the question: is (2.46) sufficient to ensure the uniqueness of solutions of problem
(2.1) in any given finite ball Q7 This question will be answered negatively at
the beginning of the next chapter. More interestingly, we shall show there that a
slightly stronger condition than (2.46) is sufficient.

In dealing with the uniqueness of ground state solutions to problem (2.2,,),
we may only consider the case when H'(u) switches signs in [0, 00) in view of (iii) of
Proposition 2.13. In general, the uniqueness problem of ground states is extremely
difficult to study even for the semilinear problem (2.2), and we have not seen any
result for the general quasilinear problem (2.2,,). In Chapter 4, we shall show that
if H'(u) is positive for small u and negative for large u, and H'(u) changes signs
only once, then one has the uniqueness for the ground states of problem (2.2).
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Chapter 3
UNIQUENESS IN A FINITE BALL

In this chapter, we are concerned with the problem of the uniqueness of
solutions of (2.1), in a finite ball Q of R", in which n >3andl<m<n.

First, let us consider an example. Consider the semilinear Dirichlet problem

Autpu? +4® =0 in 2,0 c R?, 31
>0 in Q wu=0 on 99, (3.1)

in which g > 0 is a real number. (3.1) is a special case of (2.1). Let H(u) be

defined as in (2.20). Since n = 3,m = 2 and flu) = pu? +u®, u > 0, we have

H(u) = (1 — ]%) puPtl,

It follows that H(u) < 0 for # > 0 when 1 < p < 5. On the other hand, as we
have mentioned, Atkinson and Peletier [10] proved that problem (3.1) may have
at least two solutions for some u > 0 and 1 < p < 3. This shows that (2.46) is
not a sufficient condition for the uniqueness of radial solutions of problem (2.1)
or (2.1,,). Nevertheless, we shall show that if (2.46) is strengthened by replacing
H(u) by H'(u), then one obtains the uniqueness,

We state the main result of this chapter as follows.

Theorem 3.1. Problem (2.1),, admits at most one radial solution in any finite
ball Q provided that f(u) satisfies (F2) and

H'(u) <0 in (0,00). (3.2)

Theorem 3.1 will be proved in Section 3.1. The key ingredient in our proof
is making extensive use of the Pohozaev-type identity (2 22) we established in the
previous chapter. In Section 3.2 we apply Theorem 3.! to study the important
model case when f(u) = MuP+u?, in which p < g and q is a suberitical or a critical
exponent. Some interesting results will be derived, especially, an open problem
which arose in Brezis and Nirenberg [14] is solved in higher dimensions when
n 2> 6. In Section 3.3 we discuss the nonuniqueness problem. When condition
(F2) is removed, we shall show that the assertion of Theorem 3.1 is no longer true.

24



We shall examine an example when f(u) = u? — u9, p < q, where p is subcritical,

while g is supercritical.
3.1. Proof of Theorem 3.1

In this section, we shall complete the proof of Theorem 3.1. For a given
a > 0, we always let u = u(t, «) denote the unique solution of (2.4,,) or (2.4), and
t = t(u, ) be its inverse defined in (0, a]. The proof of Theorem 3.1 is based on

the following two technical lemmas.
Lemma 3.2. Suppose that (3.2) holds. Let 0 < o7 < ay and t; = t(u,0q),
t2 = #(u, a2) be the inverses of u(t,a;), and u(t, az) respectively. Then

t1(u) < ty(u), forall ue[0,a;). (3.3)

Lemma 3.3. Assume that f(u) satisfies (F2). If uy = u(t,a1) and uz = u(t, as)

are two crossing solutions of problem (2.4,,) with b(ey) = blaz) and vy < uy in
[0,5(c1)], then u; = us.

plete the proof of Theorem 3.1. Let  be a finite ball in R™, and let b be the radius
of  with 0 < b < 0o0. Suppose to the contrary that problem (2.1);n, has more than
one radial solution. Then we may assume that u; = u(t,a;) and us = u(¢, as)

where 0 < a; < a3 are two solutions of (2.1) .

Let ¢1 = t(u,a1), t2 = t(u,az) be the inverses of u; and Uy, respectively.
From (F2) and Lemma 3.3 it follows that there is some u; € (0, ;) such that

ti(ur) = ta(ur), ty(ur) <ty(ur), and #3(u) <tz(u) in (uz,aq).

But
t1(0) = 12(0) = 0.

There is a point usr € [0,ur) such that
ti(urr) = to(urr), and #1(u) > 4(u) in  (uys,ug).

In particular, one has
t1(urr) = ty(urr).
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But this contradicts (3.3). The proof is completed.

It remains to prove Lemmas 3.2-3.3. We provide a lemma before proving

Lemma 3.2.

Lemma 3.4. Let t;(u) and ty(u) be as in Lemma 3.2. Define

=1 n—1
Slg(u) . ti / tg (34)

HI41m2 ) Gltyme

Then
Si2(1) >0 if and only if t(u) > th(u), we(0,a;). (3.5)

Proof. We have

(B2 = (1= mpT "2 ™2 4 617 (m = 1)1ty

—_T1 S 1577 L
= A7 (SR - 1)
1

=t P2 f(w),
and a similar identity holds for ¢,. Hence

d512(x)

T =TI [P )t 2

—H T P f ) )

=TT R T T I IR 1R f (™ — ().

Now (3.5) readily follows. [J

Proof of Lemma 38.2. Observe that both u(¢,a; ) and u(t, ag) are crossing solutions.

Thus t;, 7 = 1,2 are defined in [0, a;]. Because

lim #)(u) = oo,
U=¥a,

we see that (3.3) holds in a left neighborhood of «j.
(i). First we consider the case
ti(u) <t2(u), u€(0,a). (3.6)
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Note that (3.6) is possible since in this lemma we do not assume (F2). Suppose
to the contrary that there is some u € [0, @) such that #{(u) > #}(u). Then we can

find a u. € [0, @) such that 7
t(uc) = ty(uc), and #(u) < ta(u) for u € (uc aq). (3.7)
Thus t;(u,.) < t, (uc) and

0 #f(ue) - #(ue)
1 n—1 o o Nime1y =11,  ym—1 4
(B2 + s - 2=1ez _ sy ')

Tm-1\ %
_n-1 I 1 N,
T m—1 (tl(ug) tg(uf)) b (uc)

0.

V

This is a contradiction.
(if). Next, we consider the case when the graphs of #; and ¢, intersect in
(0, 1), i.e., there is some u; € (0, 1) such that
ti(ur) = ta(ur) i (ur) < th(ur), and Bi(w) <t(w) i (upa).  (35)

If (3.3) does not hold in this case, then we can find a point u. € [0,0;) as
above such that (3.7) holds. From the proof above it follows that

Ue < UJ. (3.9)

In view of (iii) of Proposition 2.1, the intersection points of ¢; and t; are isolated,

in the sense that they intersect just once in some neighborhood of an intersection

point. Now, if uy is the only intersection point, then
(3.10)

11 (u,;) = fg(ug),
(dr,ur), then

If t; and ¢, intersect in [0,ur), say at v = i} < uy, and t1 >ty in
we must have u. > 47 because of (3.7). Therefore (3.10) is also fulfilled.

Let Se = S12(u.), where S12(u) is defined in (3.4), then
niy )
£ (ue) (3.11)

" (ue)
t3(uc)

£ (uc)
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Let P;(u), i = 1,2, denote the corresponding functions of (2.23) when # and ¢ in
(2.23) are replaced by t;, t/. Then

P (u:) ~ SePy(uc)

o N ) o wy)

= 000 = = mpul (e S )

_ t?(uf) 13 (uc) oy T - oy 5 98
—(m-1) [ — — Set :, - mF(u,:)(ti‘(u,:) = Scty(ue))  (3.12)

[ (uc)l™ g (u) ™

= [ m-1 _ mF(u,:)] (67 (ue) — St (ue)]

() |

< 0.
Since m > 1, F(u.) > 0, and (3.11) is satisfied, by using identity (2.22), we have

Piue) = SePa(ue) = [ BRI () /(8 () ()2 dr

-s. [ B O e dr

= [ HE) [ ol (n)m?) (3.13)
=S5~ ()t 2)] dr
~Se [ H(TET ) ()™ ?) dr

=: Il —_ f;:
Now, since a1 < a;, H'(7) <0 in (a1,a2), and t5(u) < 0 in (ay, a2), we have
L <0 (3.14)
By (3.8) and Lemma 3.4, we know that Syz(u) is strictly decreasing in (u., o).
Hence
Si2(u) < S, for u€ (ue,aq).
That is,
£~ (u) 17~ (u) , |
T (=2~ Ceirapryms > 0w € (uc, an). 3.15
ty(u)|t] (u)|m=2 “th (w)|th (w) =2 > w € (uc, o) (3.15)
Combining (3.15), and the fact that u. < o; and H'(r) < 0, we get
L z0. (3.16)

Therefore,
Pi(uc) = ScPy(uc) > 0,

As an immediate consequence of Lemma 3.2, we have:
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Corollary 3.5. Suppose that (8.2) hoids. Let u; = u(t,a1) and uy = u(t, az)
with 0 < a; < a;. We have

(i) The graphs of u; and us intersect at most once in [0, min{b(a;),b(c2)}).

(i) If b(on) = b(az) < oo, then uy < uy for t € [0,b(ay)).

The proof of Lemma 3.3 is standard, it involves the study of some eigenvalue

problems.

Proof of Lemma 38.3. For simplicity of notations, let b = b(a1) = b(a2). It follows
for (F2) that the function
Fu) i= flu)fum=?
1s strictly increasing for u > 0, and f := lim, o+ f(u) exists and is nonnegative.
Let
pi(t) = flui(t))/u]""'(t), 0<t<b, pi(b)=fo, i=1,2

Then pi(t), i = 1,2 are continuous and nonnegative in [0,5]. It follows from the
strict monotonicity of f that

pr(t) = pa(t) & ur(t) = ws(t), € [0,5] (3.17)
Since u; < uz in [0, 8], we have

n(t) < palt), te[o,B. (3.18)

Note that as u; is a solution of (2.4,,), (1,u;) is an eigenpair of the eigenvalue

problem o o e -
= (T ) = M)l 2, t e [0, B,

) ! ' (3.19)
#(0) = ¢(5) = 0.
As is well known (see Rabinowitz [103] ), the eigenvalue of (3.19) can be charac-
terized variationally. In particular, if we define

By ={u e C'0,b] [«'(0)=u(b)=0},

then u; € Ej, 1 = 1,2, and

’Z fmin=1 _1

"= dt
| = min Ef.-_. |¢'| !
PCEE Jo pit)lglmen=t dt
o et d

T (Ol mtn—t dt
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Thus, )
1=- fab [uy ™" di

E pi(t)|us|min—1 dt
S g

- I3 pa(&)lua|min=1 d
R men=1 at

"R pa(Olugment it

therefore )
B

/ pi(t)|ur ™t dt > / p2(t)|ur |™t" ! dt. (3.20)
Jo Jo
Since u1 > 01in [0, ), (3.20) and (3.18) imply p,(t) = p2(t), t € [0,0), i.e., u; = us.

The proof is completed. O

Before closing this section, we present an example to give a simple application
of Theorem 3.1. Some more examples will be provided in following sections.

Example 3.6. f(u) =uP, p> 0 is a constant.

It is seen that (F2) is fulfilled if p > m — 1, and

H(u) = (n —-m = nm) u.
7 p+1

Thus H'(u) =n—-m — o and

H'(u)<0 ifandonlyif p< M _ntm

n—m
The following result follows easily from Theorem 3.1 and Theorem 2.10.

Corollary 3.7. Suppose that f(u) = u®, where p>m — 1. We have

(i) if p is supercritical, i.e.,
nm-—n+4m

n=m
then problem (2.1,,) has no solution. Moreover, every solution u(t,a), a > 0

18 a slowly decaying solution.



(1) If p is critical, i.e.,
_nm—n+m
T on—-m
then problem (2.1,) has no solution. Moreover, every solution u(t,a), a >C

s a ground state solution.

(i11) If p is subcritical, i.e.,
nm-—n-+m
P —/————,
n—m
then every solution u(t,a), a > 0 is a crossing solution. and problem (2.1)m

admaits at most one radial solution.

Remark 3.8. We believe that Corollary 3.7 can be proved by other methods, but we
have not found any paper in which the assertions of Corollary 3.7 were mentioned
or proved. We helieve that in the case (iii), problem (2.1),, possesses a unique
positive radial solution.

3.2. Applications of Theorem 3.1

We shall apply Theorem 3.1 to study the problem of uniqueness of radial
solutions u satisfying

div(|Vu|"2Vu) + AP +u? =0 in Q,

, (3.22)
v>0 in Q, u=0 on 09,

where A > 0 is a constant, @ C R™is a ball, and 1 < m < n. When m = 2, (3.22)
is reduced to the semilinear elliptic Dirichlet problem

Au+ P +u?=0 in Q,

3.23
u>0 in 9, u=0 on N. (3.23)

We are only concerned here with the case when the nonlinearity is superlinear and
subcritical (or critical). We may assume, corresponding to (3.23),

2
1<p<qg<2te (3.24)
n-—2
In general, corresponding to the m-Laplacian equation (3.22), we assume

n—m
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Note that if 1 < m < n, then we always have

nm-—n+m

m-1< ———-—
n—m
to assure that (3.25) is feasible.
Let f(u) = Au? + u9. Then
1
Flu) = pt1 a+1
(u) p+1u +q+1u ,

and

H(u) = [(n — m)uf(u) — nmF(u)]/f(u)

Anm m

= [/\(n —m)u?t! 4 (n — m)uItt — —% Pl _ %uqﬂ] (AP + u9)
p q

= [,\ (n —-—m— p7T1) uPt! (n —m— qn—:zl> uq'HJ [(Au? +u®).

= [/\ (n —m — pn—*r-nl> u+ (n —m— :IT%) u"“”'“] [N+ u?7P),

For simplicity of notation, we let

zz:—(n—m—z-:—l%), §=—(n—-m— qn:7i) . (3.26)
Then \ pp—
Avu + Eu?~
u)= — - 27
H(u) Nt w7 (3.27)

It can be easily verified that when (3.25) is satisfied, » < 0, £ < 0 and
H(u) < 0, for v > 0. Thus every solution u(t,a), & > 0, has a finite zero.
Differentiating (3.27) with respect to u yields

1 9
H'(u) = T Fare [N+ Avlp—q+ 1) +E(g—p+1)Jv + £o?],

where v = u?7 P, Let

c=vp-g+1)+&q¢—-p+1), (3.28)
and
D(z) := D(z;p,q,\) := €2% + \ox + \2u. (3.29)
Then 1
H'(u) = - D(v). (3.30)

(A +us—r)Z
Applying Theorem 3.1, we have:
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Theorem 3.9. Suppose that N > 0, p and q satisfy (8.25). Let D(z) be the

D(z) >0, for z>0, (3.31)
or equivalently, if
>0 or o <4ue, (3.32)

where v, £ and o are defined in (8.26) and (5.28).

Since v > 0, £ > 0 and p < ¢, we can give a simple condition which is
sufficient for o > 0. It is p—q+1 >0, or

q—p=< L (3.33)

Corollary 3.10. Suppose that A > 0, p and ¢ satisfy (3.25). Then problem (3.22)

possesses at most one radial solution if ¢ — p < 1.

Corollary 3.11. Suppose that A > 0, p and q satisfy (3.25). Then problem. (3.22)

possesses at most one radial solution if n > m + m?2.

Proof. 1t suffices to show that n > m +m? implies ¢ —p < 1 under (3.25). In fact,
by (3.25) we obtain
nm-—n+m

1 =p& ————(m -1
P = T — I (m )

w2

m? m?2
=

Il
=

n—m>_"m+m?—-m

O

The existence and uniqueness of positive radial solutions to the semilinear
elliptic problem (3.23) is of particular interest. In fact, to study the classical
solutions of (3.23) is essentially the same as to study the radial ones, since a
solution u of (3.23) is necessarily radially symmetric. It is well-known that the
existence of positive solutions of problem (3.23) holds for 1 < p < ¢ < 2£2, But
the situation is changed drastically and becames very delicate when the Sobolev
critical exponent is involved, i.e., ¢ = 22 (see Brezis and Nirenberg [14]).



Aut+du+u?=0 in By,
. (3.34)
©u>0 m By, u=0 on @B, '
where B is the unit ball in R™. The uniqueness of solutions of (3.34) was studied
independently and almost simultaneously by Kwong and Li (68], Zhang [113], and
later by Srikanth [106] using different approaches. They proved that (3.34) has
at most one solution when n > 3, and 1 < ¢ < E‘i Later on, a simpler and
elementary proof was given by Adimurthi [4]. In particular, when g = 2£2 the
nonlinearity of (3.34) is a linear perturbation of the critical term u(n+2)/(n=2)
Their results solve an open problem which arose in [14] concerning the uniqueness

of solutions of (3.23) when p = 1.

Let us replace the linear term \u of (3.34) by a superlinear and subcritical
term, and consider
Au+ P +u?=0 in B, o
u>0 in B;, u=0 on OB, (3.35)
with 1 <p < ¢ < (n+2)/(n—2). It is natural to ask whether or not the solution

mentioned, Atkinson and Peletier [10] proved that when n = 3, 1 < p < 3, and
¢ = 9, problem (3.35) has at least two solutions for \ sufficiently large. Therefore,
at least for n = 3, the uniqueness to (3.35) is lost for some numbers p.q and A,

Very recently, Zhang [114] proved that (3.35) admits at most one solution if

(¢—=1)/(p+1)<2/n. (3.36)

For example, when n = 3 and p = 3, uniqueness - * positive solutions of (3.35)
holds for 3 < ¢ < 11/3. In a more general setting, . and Nussbaum [90] studied
the uniqueness of positive solutions for a general nuilinearity f(u). For (3.35),
their results reveal that problem (3.35) has a unique solution if

l<p<g<n/(n-2). (3.37)

Note that (3.36) and (3.37) cover only a part of the range 1 < p<qg= (n+2)/(n—
2), since on this range one has

(g—D/(p+1) <

In particular, the most important case when ¢ = (n +2)/(n — 2) is not included.

2

n—-2

-t

Surprisingly, as an important application of Theorem 3.1, we have:
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Theorem 3.12. Let A > 0,1 < p < g < ﬁ'_’:—g and B, be the unit ball in R,
n > 3. The Dirichlet problem

Au+t+ P +u9=0 in By,
u>0 i By, u=0 on 8B,

admits at most one solution when n > 6.

It remains interesting to deal with the lower-dimension cases n = 3,4, 5.

Remark 3.13. When n = 3, we have

and

0= ———"(5pg+2p+ 2 —3p® — 3¢> + 5).
(p+1)(q+1)(pq P+ 2q — 3p q )

Condition (3.32) becomes
5pg +2p + 2 — 3p° —3¢% +5 > 0, (3.38)
or
(5pq + 2p + 2 — 3p* —3¢* +5)2 < (5 — p)(5 — q)(p + 1)(q + 1). (3.39)

It follows from Theorem 3.9 that if either (3.43) or (3.44) holds, then the nonlinear
problem (3.35) admits at most one solution.

Some similar inequalities to (3.38) and (3.39) can be established when n = 4

or n = 5H.

Example 3.14. The case n = 3 and p = 3: Inequalities (3.38) and (3.39) can be

simplified to
3¢ —17¢+16<0 (3.40)

and
9¢* — 102¢® + 393¢*> — 576¢ + 216 < 0, (3.41)

respectively. By a numerical computation, (3.41) is satisfied when 3 < p <
4.7748332. Therefore, the semilinear Dirichlet problem

Au+ ) +u9=0 on By,

(3.42)
u>0 on By, u=0 on 08B;.
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has a unique solution when 3 < q < 4.7748332.

Remark 3.15. Let By be the unit ball in R®. Consider the problem

Au+ P +u’> =0 on B,

) (3.43)
©u>0 on By, u=0 on 0B,.

Recall from [10] and [14] that if 1 < p < 3, A\ > Ao for some positive constant
Ao, then (3.43) has at least two solutions. On the other hand, it follows from
Corollary 3.10 that if 4 < p < 5, then (3.43) has a unique solution for all A > 0.
It is unclear what happens for the case 3 < p<4.

nomenon Wlth rﬁ-spect t@ f‘he parameter p, in the sense that there is a number
p=p* with 3 < p* < 4 such that if \ is sufficiently large, then the uniqueness of

solutions of (3.48) holds for p* < p < b, and the uniqueness is lost if 1 < p < p*.

Remark 3.16. In the situation where supercritical growth is involved in (3.23), one

may not expect to have uniqueness of solutions. Budd and N orbary [16] considered
problem (3.23) and proved that, when § is the unit ball in R* p=1andgq>5,
there is a critical value A = \.(¢) at which the pmblem has an infinity of positive

C? solutions.

Remark 8.17. In general, consider problem (3.23) when p and ¢ satisfy (3.24). The
examples of the problem we have seen in the literature which admits more than
one sglutmn for some A are only for the case that n = 3 and the critical growth
term «® is involved. We conjecture that the uniqueness of solutions of problem
(3.23) holds if (3.24) is satisfied and n > 4. Even in the case n = 3, we conjecture
that the uniqueness still holds if 1 < p < ¢ < (n + 2)/(n = 2).

Remark 3.18. The breakdown of uniqueness for lower dimension cases is interest-
ing. A similar phenomenon occurs for the existence of positive solutions or nodal
solutions to the Dirichlet problem in the unit ball By of R", n > 3,

Au+,\u+u[u|ﬁ’§ =0 on B,

| , i} (3.44)
u(0)#0, u=0 on IB,.
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A nodal solution of (3.44) is a nontrivial solution which changes sign in By. In
the celebrated paper of Atkinson, Brezis and Peletier [9], it is proved that problem
An elementary proof of this result was given in [1]. On the other hand, Cerami,
Solimini and Struve [20] have proved that if n > 7, then problem (3.43) admits
infinitely many nodal solutions for every A > 0. Recently, Filippicci et al. [45-46]
have shown that the same phenomenon occurs for a much wider class of equations,
including those arising from the m-Laplace operator and the mean curvature op-

erator.

3.3. A Nonuniqueness Example — Multiple Ordered Solutions

First let us take a look at condition (F2) which we assumed in Theorem
3.1. In the case m = 2, (F2) is simply reduced to the requirement that f(u) is
superlinear, i.e., f(u)/u is an increasing function of u when u > 0. When m = 2,
Theorem 3.5 can be stated as: the semilinear elliptic problem (2.1) has at most
one solution in a finite ball of R”, n > 3 if f is superlinear and H’ () <0inu > 0.

If we reverse the inequality of (F2) to get, for m = 2,
uf'(u) < f(u) for u>0, (3.45)

i.e., f is sublinear, and we can simply demonstrate that the assertion of Theorem
3.1 remains valid even without condition (3.2). In fact, if this assertion is false,
then one can find some 0 < b < 00, and 0 < @1 < a3 such that b(cy) = b(ag) = b.
Observe that both u; = u(¢, 1) and uz = u(t, ) satisfy the equation of (2.4).
Multiplying the equation of u; (or uz) of (2.4) by us (or u1), and then subtracting

the resultant equations, we have
[t (wfug — uguy)) = —t" N ug f(u) — ur f(uz)). (3.46)

Since a1 < g, u; < u3 in a right neighborhood of ¢ = 0. Let ¢ = #; be the first
point at which u;(%s) = u2(¢y). Then

ui(t) <up(t) in (0,¢;), and uj(ts) > ub(ts). (3.47)

Note that such a point #, does exist, and 0 < ¢, < b because of b(a;) = b(az).
Integrate both sides of (3.46) over [0,t;) to obtain

tp o T PV R
" (ufug — uyuh)|imep = —/ " uyug (f(ul) - f('ng)) dt.
0 ,

Ui Uz
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The left side of this equality is positive by (3.47), while the right side is negative
since uy < uz in [0,%;) and f(u)/u is decreasing in u > 0, giving a contradiction.

The above arguments show that one has uniqueness in problem (2.1) when-
ever f is sublinear, or f is superlinear and H'(u) < 0. In this section, we shall
show that, if both sublinearity and superlinearity are involved, then one may have
nonuniqueness even though H'(u) < 0. Nevertheless, recall from Corollary 3.5
that if H'(u) < 0 for u > 0 and u; = u(t, ay), uz = u(t,e2), 0 < a; < a, are two
distinct solutions of the semilinear Dirichlet problem (2.1), then they are strictly

ordered in the sense that

ui(zr) <us(z). €. (3.48)

We shall be particularly concerned with the existence of multiple solutions
of problem (2.1) with

<gq. (3.49)

Proposition 3.19. Let f be defined in (3.49). Let u(t.a) be a solution of (2.4).
We have

(i) for a > 1, u(t,a) is positive and strictly increasing in (0. C(a)). where 0 <
((a) < 00, and limy_,¢(a) u(t, @) = co when ((a) < cc.

(i) u(t,1) = 1.

]

(i) for 0 < o < 1, u(t,a) is a crossing solution and is strictly decreasing before

it vanishes.

Proof. (i). As a > 1, u(t,a) > 1 in a right neighborhood of t = 0. Let ¢t = £ > 0
be a point such that u(t,a) > 1 in [0,7]. It suffices to prove that u/(f,a) > 0. In
fact, from the equation of (2.4), one simply has that

oF 3
W', @) = —/ "1 f(u) dt >0,
&/ D

since f(u(t,a)) < 0 in [0,¢]. Thus u'(f,a) > 0 and the proof for this case is

completed.
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(ii). This follows from the fact that f(1) = 0.
(iii) Dbserve that f(u) > 0 W‘héﬂ D <u<l. Thus ifD < a <1, then u(i a)

has a ﬁmte zero. Smc:e for the ,functmg f(u) in (3;49),

H(u) = % [(n —2- Pg_fl) urtl — (n —a- ;:1) uqﬂ] ., (3.50)

we see that H(u) < 0 when 0 < u < 1. It follows from Theorem 2.10 that u(t, a)
is a crossing solution as 0 < a < 1. The proof is completed. O

When a > 1, this proposition shows that u(t, a) is neither a crossing nor a
decaying solution. Thus our consideration below shall be restricted in 0 < v < 1.

The main result of this section is:

Theorem 3.20. Let f(u) be as in (3.49). Let R > 0 be the radius of Q. Then
there ezists R > 0 such that

i) if R < R, then problem (2.1) has no solutions;

i) if R > R, then problem (2.1) admits at least two solutions. And any two

distinct solutions are strictly ordered.

Proof. First we prove the second part of ii). In view of Corollary 3.5 and Propo-
sition 3.19, we only need to show H'(z) < 0in 0 < u < 1. By (3.50) we obtain
u2pP

7 =70

- T(v), (3.51)

where v = u77?, and

T(v v?
= ( - )
O G Iy
) g+1 p+1/] T op+1
Since T(0) =n — ‘3——5, L <0, T"(v) = ( E%)Eﬂ,and
2n ,
T(1) = —— 2<0



We conclude that T(v) < 0 when 0 < v < 1. Hence
H(u)<0 in 0<uc<l, (3.52)
as desired.

It follows from Proposition 3.19 that when 0 < o < 1, b(e) is defined and
b(a) < co. The existence and uniqueness theorem for initial value problems for
ordinary differential equations implies that ' (b(a),a) < 0. Thus, combining the
fact that u(¢,@) is C? in ¢ and C! in a, we see that b(e) is continuous. Since
u(t,1) = 1. The continuity of b(e) implies that b(a) — +00 as a — 1~.

We claim that if o — 07, then it also holds that b(a) = +oco0. Assuming the
claim for the moment, we can readily complete the proof of this theorem. In fact,
if 5(a) = 400 as @ — 0F or @ — 1™, then b(a) attains its absolute minimum at
some points, say o = &, with 0 < @ < 1. That is

b(a) = oérgf;l{b(a)}, 0<ac<l

Obviously, b(a) > 0. Let R = §( @). Then problem (2.1) has no solution if R < B&.
Thus i) is proved. The first part of ii) follows from the continuity of () and the

mean value theorem.

Now we turn out to the proof of the claim. In order to investigate the
behavior of solutions with sufficiently small initial data, we use a standard scaling
argument. The proof we present next is essentially due to Ni and Yotsutani [95].

Corresponding to the solution 1 = u(t, o), let w = w(t, o) = %u(gg ), then

w(0) =1, w'(0)=0, (3.53)
and . .
) —1 P= 9= )
"t n~t——w'+ aﬂz wP — 2 —w? =0.
If 8= alP~1/2 then
-1 ,
w’ + z w + wP — o’ Pw? = (. (3.54)

Let v(t) be the unique solution of problem

v+ %v'+v” =0,

v(0) =1, 2'(0)=0.

(3.55)
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Then v'(¢) < 0 when v(t) > 0. Let ¢, be the unique point at which v(¢,) = 1/2,

then
1

o(t) > 5 in [0.2,].

Note that t, does exist in view of (v) of Proposition 2.1. We claim that

lim [ sup |w —vl] =0. (3.56)

a—0* |o<t<t,

If the claim is true, then for a sufficiently close to 0, one has

1
w(t,a) = su(-;—,a) >0, te][0,t,].

Therefore, b(a) > t, /8, which implies that b(a) — +00 as o — 01 as desired.

It remains to prove (3.56). It can be easily verified that (see [95])

o(t) =1 - i 5 /ot [1 _ (;) "_2] svP(s) ds,
w(t) =1~ ! /Ot [l - (;)n_Z] [wP(s) — a¥ TwI(s)] ds.

n—2

Taking the difference of v(¢) and w(¢). we obtain

S

t n—2
(n=2u(t) = o) =| [ [1= (3)" | sto" = w7 +ar-rat] as
0 t
t t
< / sjoP — wP| dt + a97P / sw? ds.
Jo Jo

Thus, for 0 < t < t,, one has [v(t)] < 1, |w(t){ < 1, and

1 2

t
- 4
w(®) = o)) € = -0t 2 Lo [opp ],
n—2 2 n-=-2 J,

By Gronwall’s inequality (see Hartman [57]), we obtain

1 2 12
sup |w(t) —v(t)] < ca?P. L.exp ( P, _2) :
0<t<t, n—2

which implies lim, 0+ supp<;<¢, [w(t) — v(t)| = 0. The proof is completed. O

Theorem 3.20 can be easily extended to some more general nonlinearities
f(u). But a more interesting problem is to obtain the exact multiplicity of solutions
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whose existence is ensured by Theorem 3.20. We conjecture that the number of
critical points of b(a) in (0,1) is one, and there exist exactly two solutions when
R > R. For the study of exact multiplicity problem, there are few results in the
literature. Ouyang [96] considered the structure of positive solutions of semilinear
equations Au + Au + hu? = 0 on compact manifolds, where A\ > 0, p > 1 are real
numbers, and h = (z) is a function. Under some natural conditions, he proved
that the Dirichlet problem has exactly two positive solutions. But his idea seems
not applicable to problem (2.1) when f is defined in (3.49). Note that

n+2
Flu) = uP —uf, l<p<n ‘)Sq.

contains both supercritical (or critical) and subcritical terms. It has a superlinear
growth for 0 < u < ((p — 1)/(qg — 1))!/9=P)_ and a sublinear growth for ((p —
1)/(g—1)eP) « y <1,
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Chapter 4
UNIQUENESS OF GROUND STATE SOLUTIONS

Recall that a ground state or fast decaying solution u(z) of problem (2.2,)
is a positive radial solution in R™ satisfying

lim f(’i”m)/(m‘l)u(t) =¢, 0<c<oo, (4.1)

t~ro0

or equivalently,
: (n—1)/(m—1), rroy _ E(T’ — m)g 9
:]ifgai u'(t) = Er—— (4.2)

Under assumption (F3), that is,

. F(a , n-—1 ]
lim sup ~ (ul =0, where ¢, = 112%) >0,
up+ U n—m

we have given a characteristic description for ground state solutions. More pre-
cisely, if P(u,a) is defined as in (2.23), and P, := lim sup, 0+ P(u, @), then u is
a ground state solution only if P, = 0. By using this characterization, it has been
shown that a necessary condition for the existence of a ground state solution is
that H'(s) changes signs in s > 0, where H (s) is defined in (2.24).

The main purpose of this chapter is to prove a theorem on the uniqueness
of ground state solutions to problem (2.2;n). In addition to basic conditions (F1)
and (F3), we shall need

7 for

0
s 2 1, and H'(s) is not identically zero in any subinterval of (0,00). There
exists a 77 > 0 such that f'(s) > 0 for 0 < s < 7.

(Hy) there exists 0 < 7 < oo such that H'(s) 2 0for 0 < s < n,and H'(s) <

Note that when (F1) is assumed, the second part of condition (Hy) is very
mild. Recall that H(s) = f(s)H(s), and then H'(s) = F'(s)H(s) + f(s)H'(s).
Under conditions (F1) and (H,), it holds that A’ (8) =2 0 and not identically zero

in any subinterval of (0, min{n,7}). Hence H(s) > 0 in (0, min{n, 7}).

Under assumptions (F1), (F3) and H,), we shall show that problem (2.2,,)

admits at most one ground state solution. It is worth mentioning that we do not
need (F2) here.

The remainder of this chapter is divided into five sections. In Section 4.1, we
state the uniqueness theorem, whose proof is based on two technical lemmas which
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we shall prove in Sections 4.3-4.4. The significance of the theorem is exhibited by
some examples in Section 4.2. We shall also investigate the global structure of
solutions to the initial value problem (2.4,,) in Section 4.5.

4.1. Main Result
We state the main result of this chapter as follows.

Theorem 4.1. Suppose that (F1) (F3) and (Hy) hold. Then problem (2.2,,)

admits at most one ground state solution.

The proof of Theorem 4.1 relies on the following two technical lemmas. As
before, we let u;(t) = u(¢,a;), i = 1,2 be two solutions of (2.4,,). We are going to

investigate the intersection behavior of these two solutions.

Lemma 4.2. Suppose thst (F1) and (F8) hold. If u; = u(t,a1), us = u(t,as)
are two distinct ground state solutions of problem (2.2,,), then u; and u, must

intersect in (0,00). That is, there is some t; € (0,00) such that

ur(tr) = ua(ty), and uj(tr) # ub(tr), (4.3)

Lemma 4.3. Suppose thst (F1), (F8) and (Hy) hold. Then uy and vy can have

at most a finite number of intersection points.

The proof of both lemmas will be postponed to Sections 4.3-4.4. Before their
proof, we show here how they are used to prove Theorem 4.1.

Suppose for contradiction that u; = u(t, ay), ua = u(t,az) are two different
ground state solutions of (2.2,,). Then both u; and u, are strictly decreasing in

(0,00), and thus their inverses are well-defined. Let ti = t(u,0;), 0 < v < ay,

1 = 1,2, be the inverses of u;. Without loss of generality, we assume
0<a; <as. (4.4)
We claim that
a; >, (4.5)
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where 7 is as in assumption Hy). In fact, if ¢; < 7, then u; = u(t,on) < 7 in
(0,00). But then one has H'(u;) > 0, which implies, by Proposition 2.13, that u;
is a slowly decaying solution. This is a contradiction.

From Lemmas 4.2-4.3 we see that there is a unique ur € (0,0;) such that

either

ti(u) > ta(u) in (0,ur), ti(ur) =t2(uy), (4.6)
or

ti(u) <t2(u) in (0,ur), ti(ur)=ta(us). (4.7)
We suppose that the first case occurs. The second case can be similarly handled.

Step 1. Suppose that (4.6) holds. We claim that

t(u) < th(u) in (0,us]: (4.8)

It is easily seen that (4.8) holds at u = us because of (4.6) and (iii) of Proposition
2.1. If (4.8) is false, then we can find a point, say u = uy, 0 < uy < uy, at which

ti(ug) =t3(us), and ty(uy) > ta(uy). (4.9)

By using identity (2.21), we have

(m = 1)(t] — t))(ug) = (m = 1)t (uy) (tl(i.l) - t;(ig)) < 0.

Thus the function #;(u) — ¢2(u) attains a strict maximum at «, which implies

that u s is the unique critical point of ¢, — 5 in (0, u 1), and
t(u) > t5(u) in  (0,uy). (4.10)

Now we make use of the Pohozaev-type identity (2.22) to derive a contradiction.
We have

Pi(u) = [H(u) — (n — m)u]

n—1 n
t;

—(m—1)

Y
'llm
|£;

g m—2 — mF(u)t?
" tlt] win)
= | H'(m™ (i) dr, i=1,2.

J o

and
lim P;j(u)=0, i=1,2 (4.12)
u—0+
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It follows from Lemma 3.2 that
n>uj. (4.13)

Since otherwise, if n < uy, then we can repeat the second part of the proof of
Lemma 3.2 to conclude that t)(u) < #)(u) in [us,a;), which contradicts (4.9).
Now, (4.13) implies

H'(t)>0 in (0,uj]. (4.14)

Let the function Sj2(u) be defined as in (3.4). Then Lemma 3.4 and (4.10) imply
that

Sia(u) >0 in (0,uy). (4.15)
Define
SJ = S]2(‘lLJ) = t;l—l(ltj)/tg—l(‘ltj). (4.16)
Then
Sy>1, and Spo(u) < S; in (0,uy). (4.17)
Therefore,
(m—1) 1 n n
Py(u) — SyPy(uy) = T+ 7TlF(UJ)J [Suts(ws) — 7 (uy)]
[t (ws)]
= ,:—(,—ni——lr)n— + m.F(uJ)} t?—l(‘ltj)[tg('llJ) — t](UJ)] (4.18)
[t1 (wg)]
<0

We also have, by using identity (4.11),
Py(u) — S;Ps(uy)

ug uy

= H'(r)y 7 (#1812 dr = Sy [ H'(r)ea ™Y/ (th]85]m2) dr
a1 a2
ug ruy

H'(T) 7 (#16]™2) dr - S5 / H'(r)2= (g 185 2) dr  (4.19)

i

/0 " (n)S1a(r) = S (Bl 2 dr
0,

because of (4.14), (4.17) and the fact that t, < 0 in (0,2). Thus we get a
contradiction.

v

Step 2. We claim that u; cannot be the unique intersection point of ¢; and
t2 in (0,1). Suppose to the contrary that #; and ¢, only intersect at w;. Then,
in addition to (4.6) and (4.8), we have

ti(u) < tz2(u) in (ur,aq). (4.20)
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And we can use the argument in the first part of the proof of Lemma 3.2 to
demonstrate that
t(u) <thy(u) in (ur,aq).

Combining this inequality with (4.8) we have

o~
H
i
-
L ——

ti(u) <th(u) in (0,0y).

At this case, we define

517 = 5]2(7]).

Thus, by Lemma 3.4 again,

S12(u) > S, if 0<u<mny, and Si2(u) < Sy if n<u<a. (4.22)

contradiction. Similar to the proof of (4.19), we have

As above, we calculate Pj(n) — 53P2(n) by two different ways and then to get a

i/l o N
Pi(n) = S,Py(n) = / H'\r)[S12(7) — S, /(t5]85™2) dr < 0,

and ;
Pi(n) — SyPe(n)

= [ )Satr) - s, 4= dr

=Sy | H(D)GT @l dr
,7] ) Qg ) 7 ]
2 [ H(7)Sn(r) = S,)t57" /(185" 2) dr
>0,

because of Hy), (4.22) and the fact that 0 < 7 < oy < ay. We again arrive at a

contradiction.

is proved, then Theorem 4.1 readily follows.

Suppose to the contrary that there are at least two intersection points. Then
we can find a u = uy; which is the second intersection point of #; and ¢, in the

sense that

]

0<ur<urr<ay, ty(u)>t(u) in (ur,urr). (4.23)
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Then there is some u = u4 such that
ur <ug <urr,  ty(ua) =ty(ug), and tj(u) <th(u) in (0, uqg). (4.24)

At this case, we define
Sq = S12(uq). (4.25)

Making use of Lemma 3.4 again, we have
Si2(u) >S4 in (0, ug), (4.26)

and by Lemma 3.2,
ug < 1. (4.27)

As in the proof of (4.18), we obtain
Py(uq) — SaPa(uq)

— [(mth_dl) + mF(ud)] [Sdt3 (wa) — ] (ua)]

= [M + mF(ud)] t;l—l(ud)[tg(u([) —t1(uq)]

due to (4.23) and (4.24).
On the other hand, as is similar to the proof of (4.19), we can show that
Pr(ua) — S¢P2(ua) < 0, which gives a contradiction. The proof is completed.

4.2. Applications of Theorem 4.1

As applications of Theorem 4.1, some examples are presented in this section
to exhibit the significance of the result.

(I). f(s) = s —s¥, 2EZMEM < p g

n-—m

In the case m = 2, Kwong et al. [69] studied the existence and uniqueness

of the ground state solutions u(z) of the problem

Au+uf —u?=0 in R",

4.29
u>0 in R" u(le]) 20 as |z]— oo, (4.29)
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in which n > 3 and )
n+42 ,
5 <P<g¢ (4.30)

The motivation for their study came from the investigation of the asymptotic
behavior of positive solutions of the Dirichlet problem

Au+uf —eu?=0 in B, ,

o : (4.31)

u>0 in By, u=0 on @B,
where € > 0 is a small constant, B, is the unit ball in R”. When ¢ = 0, (4.31) has
no solution at all. On the other hand, Merle and Peletier [85] showed that for e > 0
and small, problem (4.31) has at least two ordered solutions. Thus, an interesting
and natural question to ask is what happens to solutions of (4.31) as e — 0. In
[85], it was proved that the larger of the solution of (4.31) becomes unbounded at
every x € B;. While the smaller one, denoted by u., ”concentrates” at the origin,
i.e., ue(0) = oo and ue(xr) — 0 when z # 0. Near the origin u. approaches the
ground state solution of problem (4.29). More precisely, setting a, = #.(0) and
ag = uy(0), where uy is the ground state solution of (4.29), then in terms of scaled
variables

y=a; PP D,y (y) = (ag/acuc(z),

it holds that
ve(y) 2> u(y) as e— 0.

By a suitable change of variables, Kwong et al. [69] proved the existence of a

ground state solution uy of (4.29), and

(dp’n))ll(q—p) <ol
¢(g,n) e

where , )
(n=2)s—(n+ 2)

2s+1)

The hardest part of their work was to prove the uniqueness of u,. By employing a
method developed in Kwong [67], they were able to obtain some subtle properties
of the variationial functions of the solutions u(t, a). Their Proof for the uniqueness
is ingenious, but very complicated. It seems that their method is difficult to

generalize to the quasilinear problem, or even to semilinear problem with a different

c(s,n) =

nonlinearity.

In this section, as a simple application of Theorem 4.1, we shall give an
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straightforward. In fact, we shall prove the uniqueness of ground state solutions
for the general quasilinear problem

div(|Vu|" " *Vu) +u? —u? =0 in R

u>0 in R", wu(|z]) >0 as [z]—= oo
Theorem 4.4. Problem (J. 32) possesses at most one ground state solution if
nm—n- m <p<aq. (433)

71—77?

Proof. As before, we let u = u(t,a) be the unique solution of the problem

, n—1 N )
[(m —1)u” - z " u'] [u |72 P —~u? =0,

u(0) =a >0, u'(0)=0.
Let f( ) = sP — 57, in which p ancl q satisf"y (4 33) Then f( ) < D fur all s } 1.

u(i c:r) is Stnctly decreasmg (ar mcreasmg) until to ¢t = oo or a Pgmt at whlch it
vanishes (or blows up) if @ < 1 (or & > 1). Thus any ground state solution ug, if
it does exist, satisfies

0<uy(t)<1, t>0.
Thus, in order to establish the uniqueness of ground state selutions, we are re-

stricted to the region 0 < u < 1.

Obviously, conditions (F1) and (F3) are satisfied. In view of Theorem 4. 1,it
suffices to show that (H,) is fulfilled by f to complete the proof of this theorem.

In fact, a routine calculation yields

( 1 nm mm
Hs)=—<{{n-m- — P+l _ ( -m— — )ﬂ"‘l] .
=73 (== = (= 2wt

H'(s) = %@T(u), (4.34)

Hence

where v = 47" P and

iy ' nm ' o q
Tw)y=[n—-m-—— v+ [2nm +2m - 2n —nm .
T(v) (n m P 1) ve 4+ [ nm + 2m — 2n — nm (q+1 s 1)]

+ m nm
n—m-——-]».
' p+1

(4.35)
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Note that (4.33) implies

nm nm
n—m-———=>=0, d —m—=——>0. 4.36
m Py, and n—m pr) > (4.36)

For the quadratic form T'(v), we have
nm

7(0) = —m——:>0,
(0) =n—> T 1

and

Tﬂ%ﬁ_@:ﬁﬁ;rﬁ@*qfia

Thus there is a unique 0 < v, < 1 such that
H'(v)>0 in (0,v,), and H'(v) <0 in (v,,1).

If we take 7 = vy/“"P), then H,) is satisfied and the proof is completed. O

(II).
fo={5

As we mentioned earlier, the structure of positive radial solutions to the quasilinear
problem (2.45,) is well understood when f(s) = u?, p > m — 1. Let u(t, )
be a solution of the corresponding initial value problem (2.4,,). Then u(t,a) is
(uniformly for all @ > 0) a slowly decaying solution, a ground state solution, or
a crossing solution when p is supercritical, critical or subcritical, respectively. A
natural question one may ask is what happens if f(s) varies the growth order in
8 > 0. When m = 2, this problem has been studied recently by several authors.
Kajikiya ([61-62]) has extensively studied the existence of ground state solutions
of problem (2.2) and the structure of solutions of (2.4) for a class of nonlinearities
which have a supercritical growth for small s and a subcritical growth for large s.

A typical and important model case is

1, nm-—n+m
m-l<p< ————<q.
1 n—1m

m W’

s, s>1. )
5) = 4.37
ro={% 120 (4.37)

withl <p< %’% < ¢. The uniqueness of ground state solutions of problem (2.2)
with f defined in (4.37) was proved by Erbe and Tang [40]. They also proved that
there is a unique o* > 0 such that u(¢,a) is a crossing solution for a > a*, a

slowly decaying solution for @ < a*, and a ground state solution for @ = o*.
By using Theorem 4.1, we generalize a uniqueness result of [40] as follows.
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Theorem 4.5. Let f(s) be defined in (4.37), and suppose that

nm-—n-+m
m—l-sip-iE;
n—m

Then problem (2.2,) has at most one ground state solution.

Proof. Although f is not C' in s > 0 due to the nondifferentiability at s = 1,
it does not essentially affect the uniqueness of radial solution. Since f is locally

fulfilled. The theorem follows readily from Theorem 4.1, Ol

4.3. Proof of Lemma 4.2

We need three lemmas to complete the proof of Lemma 4.2.

Lemma 4.6. Suppose that (F1) holds. Let u; = u(t,o;), and us = u(t, as),
0 < a1 < ag, be two decaying solutions of (2.4,,). If

ur(t) < us(t) in [0, 00), (4.38)

and t; = t(u,01), t2 = ta(u, ) are the inverses of u, and us respectively, then
th(u) < th(u) in (0,a4).

Proof. Note that Hmu;m; (t3—t1)(u) = 400, and ta(u) > ¢1(u) > 0 for u € (0, a1).
If there exists u € (0, 1) such that (t —t|)(u) < 0, then we can find a u, € (0, ;)

such that
(13 —t1)(uc) =0, and (th—t))(u)>0 if u.<u<ay.

Therefore,
(5 — V) (ue) = 0. (4.39)

On the other hand, by (2.21) we can deduce

(m — 1)(t3 (ue) — t{(uc)) = (n ~ 1)(th(ue))? ( 1 ) < 0,

f(ud) ~ hw)

which contradicts (4.39), and the lemma is proved. O
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Lemma 4.7. Suppose that (F1) holds. If uy, us are two ground state solutions of
(2.4,,) satisfying (4{.98), then

lim O(u) =0,

Jim (4.40)
where 7 \
m—~14,4 1 1 m(n—1
Ou) ="t L _ L, g _mh-1)
(u) m 2(|7E_§L,,|m ltglm)’ h m—1
Proof. Suppose that
lim ¢"=™/(M=Dy (¢ a;) = ¢; > 0,
=00 '

then both ¢; and ¢, are finite, and ¢; < ¢;. We show that

C1

Ca.

(4.41)
Suppose (4.41) is not true, then we should have ¢; < ¢;. But
ti(u) ~ Egm—l)/(ﬂ;m)ug(m—l)/(nEm)a as U = D+, i=1,2
Hence
lim (t2(u) — t;(u)) = 0. (4.42)
u—0+ ’

On the other hand, by the proof of Lemma 4.6 we see that t5(u) — ¢, (u) is strictly
increasing in (0, @1 ), which contradicts (4.42). This proves (4.41).

Now we have

: m—1[ . 8 N 1B
lim O(u) = ——= [ lim —2— — lim —2—
u=0+ - m u—0+ [th|™ w0+ |ti|™

/
2 1
48
1 "
=27 lim Pluh|™ - lim =% - lim t8|u)|™
m I + t? N
m—1y/_, , i ) , — ,
= ( lim (¢r—D/(m=1) 1 iym _ {3y ($(P=1/(m=1)1,,1 m)
- m (tli;n;a(t [u2l) tl—ﬁf@(t ful) ,
= 0.
Note that the last equality follows from (4.2). O
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Lemma 4.8. Ift = t(u) is a solution of (2.21), then

+ Flu )J %,t,,l_l- (443)

d[m-1 1
du{ m [¢|m

This lemma can be verified by straightforward computation, and so we omit
the proof.

Proof of Lemma 4.2. Suppose to the contrary that u;, and us are two distinct
ground state solutions of (2.4,,) s satisfying (4.38), and t,, t, and O(u) are defined
as above. Then t; < t; and #} < ty in (0,e) and lim,_,q+ O(u) = 0. With the
aid of identity (4.43), we have, for u € (0, a;),

do (m-—1) E_l( 1 1 ) ,j[m—l( 1 1 )]’
— t — . T2l 1w +fr’; = o e Tir :
izl g™/ 2L m A g

¥
du m 2 "

- _ { ) ] ) .
Sn-08 (e - ) - (L
AN G o[t =T T 4yt [
oy [ L2 1 th ts
= (n = 1)t} 2 b
b (ltélm+lt’lm- A=
t} ta
= — _1\(#31 ¢ m=1 2 2)
(n N1 (i + 3

Since 0 < t;(u) < ta(u), t)(u) < ty(x) < 0in (0, 0;),

P’

i3
ﬁ + —>0. (4.44)

Thus, < 0in (0,a;). Therefore it follows from Lemma 4.7 that © <0in
du
(0, 7). But by the definition of ©(u) and the fact that 1 (u) < ty(u), or equivalent,

[t1(u)] > [t5(x)|, we obtain © > 0 in (0, a; ), which leads to a contradiction. [

4.4. Proof of Lemma 4.3

Let uy = u(t,c;) and up = u(t, ;) be two distinct ground state solutions
of Problem (2.2,;) with 0 < a; < a3. Suppose u1(€) = uz(€) at some € > 0.
We have seen that uj(£) # uj(£). Thus the intersection points of u; and u, are
isolated. Suppose for contradiction that they intersect inﬁnitely many times. Then
the intersection points can be enumerated as 0 < €1 <& <---,and & — oo as
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¢ —= 0. Observe that 0 < @1 < a3 and thus u; < uz in [0,£;), and uf(£;) > us(&y).
Generally, let k be a positive integer. Then one has

uy(€2k-1) > up(€ak—1), ui(Eak) < uh(Ear), (4.45)

and
up >uz in (€k-1,62x), w1 <uz in  (€ax,E2k41) (4.46)

Fori:=1,2, let
Pi(t) = —(n — m)ufluf|™ 2uit""! — (m — 1)|ul|™" — mF(u;)t". (4.47)

It follows from the generalized Pohozaev-type identity (2.18) that

Bt = [ Butry)ria, (4.49)

where H(s) = (n — m)sf(s) — nmF(s). Since both u; and u; approach zero as
t — co. We can find some integer K > 0 such that uy(éak-1) = ua(€ak—1) < 7,
where 7 is determined according to assumption (H,). By the strict monotonicity

of u; and u, we have
ui(bar) < wilbor-1) <7, i=1,2, forall k> K. (4.49)
Thus, condition (H,) implies that
H'(s)>0 for 0<s<ui(ba—y), i=12 Fk>K. (4.50)

Now, suppose for some k > K, it holds that P;(£r~;) — Py(€3r-1) > 0. Then
identity (4.48) yields

Py (&26) — Pa(E2k) = Pi(E2k—1) — Pa(€ar—1)

Lok , _ o )
+ / [H(ui(T)) — H(u;(?’))]*f”il dr

JEap—1

21 B ,
> /Egk‘][ﬁ(u;(f)) — H(ug(r))]7™ ! dr

due to (4.46) and (4.50). Thus, we conclude that for any k > K, it happens that

either
Py (€3x-1) < Py(€ar-1), (4.51)
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or
- P (€3x) > Pa(&as). (4.52)

Suppose at the moment that (4.51) holds for all & > K. Then the definition of
Py(t) yields, at ¢ = &y,

—(n— m)ullull"'"zulfu 1= (m = Dy e,y

Im-2“2§2L 1 — (m— l)lu;lmfé’k_l,

or
(n = m)egc S un (upfup|™ 2 — wf |uf %) + (m — 1)e5Y, (ub™ — luz™) < 0.
Observe that (4.45) implies

ugug|™ 2 ~upui|™? <0, at t=&p ;.

Thus

lua|™ — Jui]™

n--2 _
— -1 . . 4.53
(n m)fzk—]ul + ( )52& 1 uéluélm_z _ u“u“m_g >0 ( 3 )
Let bpp—q = :—:12%:——3—; > 1. Then (4.53) becomes
n—2 b';ri-—l -1 {
(n— M) + (m — 1)y - 22271 5 (4.54)
b2k—1 -1
If we define a function b(z) = ~1)/(z™~! —1). Then it can be easily verified
that b'(z) > 0 when m > 1 and z > 1. But
. m
So we have m
2k—1 — 1 m )
il -1" m-1
Combining this inequality and (4.54) we obtain
(n —m)&e2 un + méq g >0,
or equivalently,
(n — m)éEy2 uafu) ™2 + még L uflvi™? > 0. (4.55)
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. Hence
imsup[(n — m)t™2uy|ul|™2 + mt" " ud juf 2] > 0. (4.56)
t—o0

On the other hand, if for any given k > K, one can find ¥ > % such that
(4.51) fails, then there is a subsequence of {£3;} such that (4.52) always holds.
For simplicity of notations, denote this subsequence again by {é2+}. Then we can

use a similar argument as above to obtain
(n — m)&3 Puz|up| ™ + még  ujlug|™ 2 > 0.

Thus,
limsup{(n — m)t" us|up|™ 2 + mt"  uhul|™ "2} > 0. (4.57)
t—o0

It remains to show that both (4.56) and (4.57) are impossible. In fact, let

tl_l)rgo tr=mm=y. = ;i >0, i=1,2 (4.58)
Then
Jim ¢m=0/0n=Dy —’;{5 ¢ <0, i=1,2. (4.59)

Therefore, for i = 1,2,

Jim [(n — m)t"2ufuf] ™% 4 mt gl )

— tl_l_glo[(n _ m)t(n-—m)/(m—l)uilt(n—l)/(m-—l)u;‘ilmég _ mlt(nél)/(m—l)uglm—i]

n—m\"? n—=m\"?
=(n — m)e; e [ —— et
m—1 m—1

n—m m—1
=—-(m_1> C;n—l<0,

which contradicts (4.56) and (4.57). The proof is completed.

Remark 4.8. When f(s) < 0 or F(s) < 0in 0 < s < ¢ for some small ¢ > 0.
Peletier and Serrin [98] [99] have proved the same result as Lemma 4.3 in the
special case m = 2. They made use of an energy function argument and showed
essentially that if u; and u; are two distinct decaying solutions, then they do not

intersect in 0 < u; < €.

In our situation where f(s) > 0 for s > 0, the proof is different and much
more complicated. The delicate asymptotic estimates (4.55)-(4.56) play key roles
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in our pffmf Iﬁ the study gf the glabal structure of pgsitive radial saluticxns

mterestlng mtersectu:!n phanamennn fcr Slc:wly dec:aymg salutmns MDI‘E preclsely,
let f(s) ' 4 > 5%2 in a small r:lg ne1ghbarhnﬂd Qf §=0,3<n <10,

each ;nteger k> D one can ﬁnd a:mther Slﬂwly dex:aylﬂg salutmn 7 such that ug
intersects # more than & times in ¢ > 0.

Remark 4.9. Lemma 4.3 and its proof are of intrinsic interest. The lemma can be
extended in various circumstances. Since what we essentially need in the proof is
the asymptotic estimates of ground state solutions and the requirement that H(s)

is increasing for small s > 0.
4.5. A Global Structure Theorem

Let u(t,a), a > 0 be the solution of problem (2.4,,). Let us define some
subsets of (0, c0) as follows,
C:={ala >0, u(t,a)isa crossing solution },
D, == {aja >0, u(t,e) is a slowly decaying solution},

Dj:={ala >0, u(t,a)isa fast decaying or ground state solution}.

Proposition 4.10. Suppose that (F1) holds, and there ezists some n* > 0 such
that H(s) > 0 in (0,n*). Then

(i) (0,00) = CU D, U Dy.

(i) The sets C and D, are open sets, and Dy s closed.

Proof. (i) follows from Propositions 2.1 and 2.4. We prove (ii). That the set C is
open follows from the continuous dependence of solutions of (2.4,,) on the initial
data a. It remains to show that D, is open. Let a; € D,. We need to show that
if o is sufficiently close to a,, then o € D,. Let us = u(t, ), and

Py(t) = —(n — m)ul Jul,|™ 2yt — (m — DJul|™t™ — mF(ug)t™.

Then the characteristic property of slowly decaying solutions implies that there is
a large t = T, such that
P,(T,) >0,
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and
0 < u (Ts) < n*.
Now, if a is chosen to be sufficiently close to a,, then we can use the continuous
dependence of solutions as well as the first derivatives of solutions of (2.4,,) on
the initial data to conclude that
0 <u(Ty) <n* and P(T,) > 0. (4.60)

Thus, for any ¢ > T,, whenever u(t) > 0, identity (2.18) yields
t
P(t) = B(T,) + / A(u(r))rdr.
T:
By (4.60) and the strict monotonicity of u(t), this identity implies
P(t)>P(T,)>0, in ¢>T, and u(t) > 0. (4.61)
Note that if there was any point ¢+ = Ty > 7., such that u(Tp) = 0, then the
definition of P(t) would imply
P(Tp) = —(m — D (T)|™Tg < 0,
which contradicts (4.61). So u(¢) must be a decaying solution. Letting ¢ — oo in
(4.61), we obtain
Jlim sup P(t) > P(T,) > 0.
It follows again from the characteristic property of solutions of (2.4,,) that u(¢)
must be a slowly decaying solution. The proof is completed. [J

As a simple consequence of this proposition, we have

Proposition 4.11. Under the assumption of Proposition 4.1 0, the existence of a
crossing solution of (2.4,) implies the existence of a ground state solution.

Proof. For any 0 < a < n*, u(t, @) must be a slowly decaying solution. If there is
some a, say, & = ac, such that u(t, a.) is a crossing solution, then a, > n*. By
the openness of the sets C' and D, and the first assertion of Proposition 4.10 it
follows that Dy N (n*,a.) # 0, the empty set. This completes the proof. [

Note that under the assumptions of Proposition 4.10, if u(t, ") is a ground
state solution, then a* > n*. Also note that the existence of n* is ensured by (Hy).
Now we state a theorem on the structure of solutions of the initial value problem
(2.4:,). The proof of this result follows easily from Propositions 4.10-4.11, and so

we omit it.
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Theorem 4.12. Under the assumptions of Theorem 4.1, the structure of (2.44)
is one of the following types:

i} type S: every solution u(t,a), @ > 0 is a slowly decaying solution;

) type M: there ezists an o = o, a* > n* such that u(t,a*) is a ground state
solution; u(t,a) is a slowly decaying solution if 0 < a < o, a crossing
solution if o > a*;

i) type FS: there exists a unique a = a*, o* > n* such that u(t,a) s a ground
state solution if a = a*, and a slowly decaying solution otherwise.

Remark 4.13. We conjecture that, under the assumptions of Theorem 4.12, type
FS is impossible. That is, the existence of crossing solutions is equivalent to the
existence of a ground state solution.

Remark 4.14. Type S is possible since in Theorem 4.12 we do not require that
H(s) becomes negative for large s. A necessary condition for the existence of a,
crossing solution or a ground state solution is that & (s) assumes negative values
for some s > 0. In addition to the conditions of Theorem 4.12, if we assume
further that there is some £ > 0 such that & (s) < 0 for s > £, then it is still
unclear whether or not the existence of crossing solutions is ensured.



Chapter 5

A VARIATIONAL FUNCTIONAL APPROACH

In the previous chapters, by using various types of Pohozaev Identities, we
have successfully established some criteria for the uniqueness of positive radial
solutions to the Dirichlet problems for quasilinear and semilinear elliptic equa-
tions. In particular, Identity (2.22) we developed in Chapter 2 is an effective tool

Pohozaev-type identities we have employed so far in this work are only related to

the nonlinearity f which is independent on the radius .

In this chapter we shall continue the study of the uniqueness problem by
using a so-called Kolodner-Coffman method due to Kolodner [66] and Coffman [21].
We shall limit ourselves here to semilinear elliptic equations. But the nonlinearity
is no longer independent of ¢, and the domain £ may be a finite ball or a finite
annulus. We shall also consider the uniqueness of positive radial solutions in the
whole space R™ for some special cases. More precisely, we are interested in the

uniqueness of radial solutions of the problems

Au+ f(t,u) =0, in Q
v>0 in ©, u=0 on 09,

X 7 7 5.1
Q={z: z€R", |z <), o
or Q={z: z€R", a<|z|<b}, 0<a<b<oo,
and L
Au%_f(t!u) :D, m R" -
(5.2)

u>0 in R", u—=0 as t— oco.
We assume agrin n > 3. To use a shooting argument, we consider the following

initial value problem

) —1 .
u” 4 E?;u""f(tau) =0, t>0,

: , (5.3)
w(0) =a >0, u'(0)=0,
or 1
7 — .

u(a) =0, u'(a)=a>0.
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For the sake of simplicity, we assume in the whole chapter that the function f(¢,u)
is continuously differentiable with respect to both £ > 0 and u > 0, and that
problems (5.3) and (5.4) have a unique solution for every a > 0. Obviously, this
assumption can be weakened in various circumstances. As before, we let u(t, o)
denote the unique solution of (5.3) or (5.4). The variational function of u(t, @)
with respect to a > 0 is defined by

ot = 2]

It follows that ¢(t,a) is the solution of the following variational problem

n-—-

" 1 / =
¢ + —t—¢ + fu(tvu)qb =0, (5.5)
$(0)=1, ¢'(0)=0,

or 1
¢+ =g+ fult,u) =0,

$(a) =0, ¢(a)=1, a>0.

When u(t, @) is the unique solution of (5.3) and it vanishes in ¢ > 0, we denote
again by b(a) its first zero. Similarly, if u(¢,a) is the unique solution of (5.4) and
it vanishes in ¢ > a, then b(cr) denotes its first zero in t > a. We allow bla) =
referring to the case when u(t, o) is defined and positive in ¢ > 0 or ¢ > a. Thus,
when b(e) < oo, it holds that

(5.6)

u(b(e),a) = 0.
If we differentiate both sides of the identity with respect to a we have
u!(b(a), @)t () + $(b(), @) = .

If f(t,0)=0forall¢ >0, then u=0,¢>0is the unique solution of the equation
of (5.3) or (5.4) satisfying u(tg) = u'(ts) = 0 for any ¢t = tg > 0. Therefore, the
uniqueness of solutions of initial value problems of ordinary differential equations
implies that u'(b(),a) < 0. Moreover, in view of the last identity, it is evident
that &'(a) < 0(> 0) if and only if ¢(b(e), @) < 0(> 0).

Thus, in order to study the uniqueness of positive radial solutions to problems
(5.1)-(5.2), it is an effective way to investigate the oscillatory behavior of the
variational functions. In fact, the essence of the Kolodner-Coffman method is to
show that every solution u(t, @) is nondegenerate in the sense that #(1, @) does not
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vanish at ¢ = b(a) once b(a) is defined and finite. This method has been employeed
by several authors, including Ni and Nussbaum [90], Kwong [67], and McLeod (82],
etc. A common approach in their proof was to use some Sturm-type Comparison
Theorems to show that ¢(t, ) has exactly one zero between the initial state of ¢
and b(a), and more importantly, ¢(b(a), a) < 0. Recently, Erbe and Tang [42-43]
have developed a modified approach and given some easily verified conditions on

f(t,u) that are sufficient for ¢(b(ar), @) # 0 as b(a) < co.

The remainder of this chapter is organized as follows. We present a principal
lemma and give some preliminary results on the properties of u(t, ) and ¢(t, @) in
Section 5.1. Some conditions on f which guarantee the uniqueness of positive radial
solutions to problem (5.1) are given in Section 5.2. In Sections 5.3-5.4 we study
the uniqueness of ground state solutions of problem (5.2) when f is a separable
function of ¢ and u, i.e., f(t,u) = K(t)y(u). Some examples are examined in
Section 5.5. The main body of this chapter is an extension of the studies of Erbe
and Tang [40, 42-43].

5.1. Preliminary Results

In the beginning of this section, we present and prove a principal lemma. It
is fundamental in our approach to the uniqueness problem of radial solutions of
(5.1) in a finite ball or annulus. Throughout the rest of this chapter, we assume
that

f(t,0)=0 forall ¢>0.

Lemma 5.1. Problem (5.1) has at most one positive radial solution provided that
(H1) ¢(b(a),a) # 0 whenever u(t,a) has a finite zero b(a).

(H2) For any given 0 < a1 < ag, if at least one of u(t,a1) and u(t,az) has a
finite zero, then they intersect at least once before one of them vanishes.

Proof. As in Chapter 4, we let N denote the set of a > 0 for which the solution
u(t,a) of (5.3) or (5.4) has a finite zero b(e). Obviously, we are only interested
in the case when N is a nonempty set. N is an open set, and u/(b(a),a) < 0 for
all @ € N. Furthermore,if 0 < & < 0o, @ ¢ N, and if o, € N and o, — & as
n — oo, then b(a,) = +oo.
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As we have seen, condition (H1) implies that '(a) # 0 for all @ € N.
Suppose that J is a component of N, that is, J is an open interval in N whose
end points are not in N, then b’(a) does not change sign in J. Thus b(e) is either
strictly decreasing or increasing in J. For any given b > 0, there is at most one
a € J so that b(a) = b. It is readily seen that the proof will be completed if it can
be shown that NV has only one component.

Suppose to the contrary that N has more than one component. Let J; =
(Jo,J1), J2 = (j2.J3) be two disjoint components of N with 0 < j; < j» < oo.
Then
lim b(e) = lim b(a) = +oo.
a—jy a—rjt
Since b(a) is strictly monotone in each component of N, we see that b'(a) > 0 in
- J1, and ¥/(e) < 0 in Jo. Hence,
C o

f lim+ b(a) < 400, lim b(a) < +oo.

a—jg a—jg

It follows that jo = 0 and j3 = +o00. Moreover, N = (0, ;) U (j2,00). We shall
show that this violates (H2).

Now we have J; = (0,7;) and b'(a) > 0 in Jy. Let by = lim,.,o+ b(), then
0 <bp < co. If Q is a finite ball, then u(¢,a) is a solution of (5.3). Pick an € > 0
sufficiently small, and define

-~

U :=inf{u(t,j1)] 0 <t < bg +€}.

Then U > 0, since u(¢,7;) > 0 for all £ > 0. On the other hand, we can find an
ag > 0 sufficiently small so that b(ag) < bg + € and

U := sup{u(t,a)|0 < t < b(ag)} < U/2.

Thus u(t, ag) does not intersect u(?, 7;) before u(¢, cp) vanishes, which contradicts

(H2).

On the other hand, if  is an annulus, then u(t, ) solves problem (5.4).
Thus u(a,a) = 0, u'(a,a) = @, and by > a. Pick an € > 0 sufficiently small so
that v'(¢,71) > 12‘— for a <t < a+ e Define

~

U:=inf{u(t,j1) |a+e<t <b+ e}

64



Then again U > 0. If ag > 0 is sufficiently small, then blap) < by + € and
u'(t,a0) < & for a <t < minfa + ¢, b(ao)}, and when b(ap) > a + ¢,

U = sup{u(t,a0) | a+ ¢ <t < b(ag)} < U/2.

Thus u(t,a0) does not intersect u(t,7;) at all. (H2) is again violated, and the
proof is completed. O

Remark 5.2. From the proof of Theorem 5.1 it follows that if condition (H2) is
not satisfied, then problem (5.2) has at most two radial solutions.

Now we prepare here a series of preliminary results. Note that in what
follows u(t, a) refers to the solution of either (5.3) or (5.4) if no further comments
are made. To simplify our statements, we let a(a) denote the initial state of u(#, «).
That is, a(a) = 0 in (5.3) and a(a) =a > 0 in (5.4).

Proposition 5.3. Suppose that f(t,u) >0 whent >0 and u > 0. Then we have

(i) if u = u(t,a),a > 0, is the solution of problem (5.8), then u'(t,a) < 0 for
allt € (0,b(a)),

(%) if u = u(t,a),a > 0, is the solution of the initial value problem (5.4) such
that b(a) < oo, then there ezists a unique t = c(a) such that a < c(or) < ba)

and

w(t,a) >0, for a <t <c(a), and u'(t,a) <0 for c(a) <t < b(e). (5.7)

Proof. The proof of (i) is the same as that of (iv) of Proposition 2.1. We prove
(ii) here. From the positivity of u and the boundary conditions we see that u has
at least one critical point in (a,b(e)). At any such critical point, say ¢ = {y, one
has u”(0) = — f(to,u) < 0. Thus u assumes a strict maximum value at ¢ = to. It

follows that the critical point is unique, and (ii) is proved. 0O

Proposition 5.4. Suppose that f satisfies

(FT1) 0 < f(t,u) <ufy(t,u) fort >0 and u > 0.
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Let u = u(t,a),a > 0, be the solution of problem (5.3) or (5.4) with b(e) <
0o, and let ¢ = ¢(t,a) be its variational function. Then we have

(i) ¢(t,a) vanishes in (a(a),b(a)),

(1)) if ao > a, then ug = u(t, ap) intersects u at some point in (a(a), b(a)).

Proof. Rewrite the equations of u and ¢ as
(t" M) = 4" (), (5.8)

and

(") = —t""1 (2, u)o. (5.9)
Multiply both sides of (5.8) by /,and (5.9) by u, then subtract the resulting iden-
tities to obtain:

(" (u'p —ud')) = —t"~ T w) — ufult, u))e. (5.10)

By the initial conditions of u and &, we have

" Hu'p — ug') =0, at t = a(a).

Suppose to the contrary that ¢ does not vanish in (a(a),b(r)). Then ¢(t,a) >0
for all t € (a(a),b(cr)). It follows from (5.10) and (FT1) that

t" ' —ug’) >0, at t = b(a).

Thus,
b(a)" ! (b(a), @)¢(b(a), @) > 0.

But this is impossible because u/(b(a)) < 0 and ¢(b(a)) , and we obtain a
contradiction. Therefore (i) is proved. In order to prove (11), we can use a similar

argument as above. In this case, the argument is based on the identity
[t" (/o = wud)) = ="V F (¢, u)uo ~ f(2, Uup )ul, (5.11)
rather than (5.10). We omit the details. [J
Proposition (5.4) can also be simply proved by using the well-known Sturm

Comparison Principle (see Hartman [57]). As another simple application of this

principle, we have
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Proposition 5.5. For any gwen o > 0 with bla) < oo, ¢(t,a) has at most a
finite number of zeros in [a(a), b(a)).

Proof. If b(a) < oo, then u(t, ) is bounded in [a(a),b(a)). Let 0 < M < oo be
such that
[fult,u(t, @) <M in [a(a),b(a)).

Let v(¢) be an arbitrary solution of the linear equation
w,n—1, v
v +—t—v + Mv = 0.

If v(2) is defined in [a(a), b(a)], then it can have at most a finjte number of zeros
in this range. But the Sturm Comparison Principle implies that ¢(¢,a) can not
have two consecutive zeros within any two consecutive zeros of v. Thus #(t, o) has
at most a finite number of zeros in [a(a), ()], and the proof is completed.

For any real numbers £ 2> 1 and @ > 0, we introduce a function

h—-1
2

Gh(t) = Gu(t,u,a) := u(t, a) + w'(t,a). (5.12)

This function is well-defined in [a{a),b(a)]. It is useful in investigating the oscil-
latory behavior of (¢, a). Corresponding to a solution u = u(t,a), let L, denote

the linear operator defined as

d? —1d
Lu(¢) =22 + P ft s (5.13)

Then it is straightforward to verify
h—1
Lu(Gr(t)) = ufu(t,u) - hf(t,u) - —5—tfi(t, u). (5.14)
Note that if h = 1, then G4 (t) = u(t), and
Lu(u(t)) =ufu(t,u) - f(t,u).

To close this section, we state two propositions on G4(t). In the first one we
establish an identity which is similar to (5.10). The proofs of both propositions
are straightforward, and we omit them.
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Proposition 5.6. For any given h > 1 and a > 0, we have

F"HGL (Dt @) — Ga()¢'(t, )] = 1" (¢, @) Ly (Ga(2)). (5.15)

Proposition 5.7. Suppose that h > 1 and a > 0. We have

(i) ifu = u(t,a) is the solution of problem (5.8) with b(e) < oo, and u'(t,a) < 0
for 0 <t < b(a), then Gi(t) has at least one zero in 0 < ¢ < b(«). Denote
the first zero of Gx(t), h > 1, by 7. Then 7, is a strictly decreasing function
of h, and

lim 7 =b(e), lim 7, =0; (5.16)

h—1+ h—oco

(i) if u = u(t,a) is the solution of problem (5.4) with b(a) < oo, and u(t,a) has
a unique strict mazimum at c(a) over (a,b(a), then Gi(t) has at least one
zero in c(a) < t < bla), and 1y, is again a strictly decreasing function of h,
and

h{l_)nll_,- Th = b(a), hli)rr;o T = c(a). (5.17)

5.2. Uniqueness of Radial Solutions of (5.1)

In this section we are concerned with the uniqueness of radial soluticns of
problem (5.1). Our discussion is basically based on Lemma 5.1. From Lemma 5.4
it is seen that condition (FT1) implies (H2). As we shall see, (H1) is satisfied by a
various class of nonlinearities. On the other hand, it is usually extremely difficult
to show that the variational function ¢ is nondegenerate, i.e., (H2) is satisfied.
The main purpose of this section is to find some easily verified conditions on f so
that (H1) is fulfilled.

The following assumption plays an essential role in our discussion.
(FTH) Let A > 1, @ > 0, and u = u(t, ). The function

On(t) = Ul 0,0, h) = wfultw) = A () - P Les )

does not change signs from positive to negative as ¢ increases from a(a) to

b(a).

68



that
(i) f(t,u) satisfies (FT1) and (FTH), in the case that Q is a finite ball, or,
(i) f(t,u) satisfies (FT1), (FTH) and
(FT2) f(t,u)+ Ltfi(t,u) >0, forall ¢>0, u>0,

in the case that {2 is a finite annulus.

Proof. Let o be such that b(a) < co. In view of Theorem 5.1 and Lemma 5.4,
we only need to show that ¢(b(a), ) # 0.

Suppose for contradiction that ¢(b(a),a) = 0. By Lemmas 5.4-5.5, ¢ van-

ishes at least once and at most finitely many times in a(a) < t < b(a). Thus we
can find a point ¢ = 7(a) such that

a(a) < 7(a) < b(a), ¢(r(a),a)=0, (5.18)

and
¢(r(a), @) #0, in (r(a),bla)). (5.19)
That is, 7(a) is the last zero of ¢ in t < b(a).

(1). In the case that  is a finite ball, u and ¢ are the solutions of problems
(5.3) and (5.5), respectively. Gy (%, ) satisfies

Lu(Gh(t, @) = G} + "Z=G}, + fult,w)Gh = n(2)

Gr(0) =a, G},(0) =0.

(5.20)

It follows from Proposition 5.3 that u/(t,a) < 0 for 0 < t < b(a). By using
Proposition (5.7), the first zero of Gj(t), denoted by 74, is defined for h > 1. 7
is a strictly decreasing function of & and satisfies (5.16). Thus there is a unique
1 < h < oo such that 75, = 7(a).

We claim that 5(7;) = 0. In fact, if 15(r;) < 0, then condition (FTH)
implies that ¢5(¢) < 0 for all ¢ € [0, 7(a)]. By the equation of ¢ in (5.5), identities
in (5.20) and a similar argument as in the proof of Proposition 5.4, we can show
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of 7. This claim can also be proved by using the Sturm Comparison Principle.
Actually, if 5 (t) < 0 for all ¢ € [0, 7(a)], then G} (t) oscillates faster than ¢ over
[0, 7(c)] whenever Gj(t) is positive. We again obtain a contradiction.

It follows from the above claim and (FTH) that Yp(t) = 0 for all £ €
[7(), b(c)]. Moreover, it holds that

Y5(t) >0, ¥3(t) is not identically zero for ¢ € [7(a),b(a)]. (5.21)

Since if ¥5(¢) = 0 in [r(a), b(@)], then both G};(t) and ¢ are solutions of the same
homogeneous linear differential equation in [r(a), b(a)]. Because

Gi(r(a)) = ¢(r(a),a) =0,

G} and ¢ are linearly dependent over [r(a), b(a)]. Therefore
Ga(b(a)) = ¢(b(a), @) = 0.

But, on the other hand,

h—1

-~

Gp(b(a)) = b(a)u'(b(av), @) < 0,

yielding a contradiction.

It is easy to show that G} (#) is not identically zero in any right neighborhood
of 7(). The behavior of G4(¢) in [r(c),b(c)] is then classified into three cases.
We shall show that each case leads to a contradiction.

Case 1. There exists a § > 0 such that
Gi(t) <0 in (7(a),7(a) +6), and 7(a)+d < b(a). (5.22)

First we show that
T(a) + 6 < b(a). (5.23)

If not, then 7(a) + 8 = b(e), ie., G(t) < 0 for all t € (7(@),b(r)). Integrating
both sides of (5.15) trom 7(a) to b(a) yields

M) | 7
~b" ()G (b(@))d' (b(a), o) = / "L (t, @)y (t)dt. (5.24)
Jr{w)
If ¢(t,2) < 0in (7(a),b(c)), then the right side of (5.24) is negative. Thus the
left side of (5.24) is also negative, which implies that ¢’ (b(e), &)< 0, contradicting
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#é(b(a),a) = 0. On the other hand, if ¢(t,a) > 0 in (r(a),b(a)), then a similar
argument using (5.24) again implies ¢’ (b(a),a)> 0, also giving a contradiction.
This proves (5.23).

Observe that (5.23) implies that G}, vanishes within (r(a),b(a)). Let t =
71(a) be such that 7(a) < 71(e) < b(a) and

Gr(ni(a)) =0, G(t) < 0in (7(a), 1 {a)). (5.25)

By identity (5.15), it is easy to show that Gi(t) # 0 at ¢ = m1(a). Hence
Gh(71(a)) > 0. There is a right neighborhood of 7(a) in which G5(t) is posi-
tive. But Gy (b(«r)) < 0, and hence we can find a number ¢ = 7,(a) such that

71(a) < my(e) < b(a)
and
Gi(m2(a)) =0, G;(t)>0, in (n (a), 2(a)). (5.26)
Note that in (71(a), 72(a)), G(t) > 0, and L(G4(2)) = Yi(t) = 0. By using
identity (5.15) we can show that G (t) oscillates more slowly than #(t,a) in this
interval, i.e., #(,a) has at least one zero in [r1(@), 2(a)]. But this contradicts
the fact that 7(a) is the last zero of ¢ in ¢ < b(a).

Case 2. Gj(t) > 0 in a right neighborhood of 7(a), corresponding to the
case when G} (t) has a local minimum at 7(a). If this happens, then we can find
a point t = 73(a) such that

(@) < 13(a) < b(a)
and
Gi(ms(a)) =0, Gi(t) > 0in (r(a),m3(a)).
A similar argument as in Case 1 will show that #(t, ) has at least one zero in

(7(@), m3(@)), again yielding a contradiction.

Case 3. 7(a) is a cluster point of the zeros of Gj(t). In this case, an easy
argument by using the Sturm Comparison Principle will show that &(t, a) has to
have infinitely many zeros near 7(e). This contradicts Lemma 5.5.

(i) In the case that  is a finite annulus, u and ¢ are the solutions of
problems (5.4) and (5.6), respectively. It follows from (FT1) and Proposition 5.3
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that u(¢,a) has a unique critical point, denoted by ¢(e), in (a,b(a)), satisfying
(5.7). Since u(t,@) > 0 in (a,b(e)), it follows that Gi(t) > 0 in (a,c(a)] for all
h > 1. We show that assumption conditions (FTH) and (FT2) imply

#(t,a) > 0 in(a,c(a)]. (5.27)

In fact, if (FT2) holds, then we can find a sufficiently large h = h such that

Sa(ele) =uhut) + ghlt) b (ft)+ Jentw) | <o
= = /' H=ela)
Then, by assumption (FTH), we have
P;(t) <0, te€(a,cla)). (5.28)

Since Gi(t) > 0 in (a,c(a)], we can use a similar argument to that in the proof
of Proposition 5.4 or use the Sturm Comparison Principle to show that ¢(¢,a)
oscillates more slowly than G, (t) in this interval. Thus ¢(¢, «) can not have a zero
in (a,c(e)], and (5.27) is proved. The remaining part of the proof in this case
is the same as the case when  is a ball. We can simply repeat the proof there,
replacing a(a) by ¢(a), and omit the details. The proof is completed. O

In this section and the next one we study the uniqueness of ground state
solutions to problem (5.2). This problem has been studied in Chapter 4 for the
nonlinearity independent of ¢. But the situation becames very complicated in
the general case. We can prove a uniqueness theorem only for the case when
f is a separable function of ¢ and u. Even for this specialized nonlinearity, our
assumptions are restrictive. It is worthwhile to mention that the techniques we
develope below may not be extendable to more general cases. Our discussion
is based on a Pohozaev-type Identity and some detailed investigations for the
oscillatory and asymptotic behavior of the solutions and their variational functions.

When f(2,u) = K(t)u?,p > 1, the semilinear equation arose from differential
geometry and physics (see Ni and Yotsutani [95]), and the problem of the existence
and uniqueness of ground state solutions has been a sub ject of extensive studies
since the first general and systematic study of Ni [87]. See also [29-30] [64] [75-76]
[89] and [110-112].
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In this section we investigate the general behavior of solutions of initial value
problem (5.3) by a shooting method, and state the main results at the end. Their
proof will be given in the next section. Analogously, we say that

(i) u(t, @) is a crossing solution if b(a) < oo,

(ii) u(t,a) is a slowly decaying solution if u(t,a) > 0 in [0,00) and lims oo
1" 2y(t, a) = oo,

(iii) u(¢,a) is a ground state solution or a fast decaying solution if u(t,a) > 0 in
[0,00), limy o0 ™2 u(¢, @) exists, and is finite and positive.

Note that if u is a ground state solution, then it necessarily holds that lim; 00
u = 0. But the definition of a slowly decaying solution here is slightly different
from that of Chapter 3, since it is not required now that u really ”decay”, i.e., it
may or may not hold that lim, ,., u = 0.

Proposition 5.9. Suppose that f(t,u) >0 when t > 0 and u > 0. Then every
solution u(t, o), > 0 is classified into one of the above three types.

Proof. By Proposition 5.3, u(t, a) is strictly decreasing in ¢ > 0 when it is positive.
Thus we have either b(a) < oo, or u(t,e) > 0 in [0,00). It remains to show
that in the second case lim;_, o, t7~2 u(t, @) does exist and the limit is either a
positive finite number or co. We do this by showing that the function t"2u(t, o)

is increasing in £ > 0.

Suppose u(t) = u(t,a) > 0 in [0,00). Let v(s) = t"~2u(¢), s = t"2. Theu
v(s) > 0 for all s > 0. By a routine calculation we obtain
dv 1 ,

E=u(t)+n_2tu,

where / = ?1‘17’ and

d2v_[

n,n—1, . 1 L 43—n
g = tu” + u] - t

n—2 n—2

= —mt4—nf(t, U).

Thus
v <0, for s>0
ds? ’ )
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In view of v(s) > 0 in s > 0, we must have

2250, for s3>0 (5.29)
ds

Observing that 4% = (n — 2)t"—34E (5.29) implies 2 > 0. This ccmpletes the
proof. O
In the rest of this section, we will restrict ourselves to the special case

f(t,u) = K(t)y(u). (5.30)

Some assumptions we shall impose on Ii” and v are

(K1) K(t) € C'(0,00), k() > 0in (0, c0),

(K2) K'(t) <0in (0, 0),

(I'1) v(s) € C*(0,0), 4(s) > 0 in (0, 00),

(T'2) ~(s) is superlinear. For all s > 0, u(s)y'(s) > ~(s),

(I'3) there exists an 7, > 0 such that if 0 < s < M+, then (n—2)sy(s)~2nI'(s) > 0,
in which I'(u) = [ y(7)dr.

Proposition 5.10. Let f(t,u) = K(t)y(u). Let u = u(t,a) be the solution of
problem (5.3). Define

[

Q) = Q(t,u,a) 1= —t"y'2 — (n = 2)t" uu’ — 2" K ($)[(u). (5.31)

Then

Q) = /(: UK () [(r = 2)uy(u) — 2nl(u)ldr — 2/(; T"K'(7)T(u)dr. (5.32)

Proof. From the equation for u we obtain

(" 'y = —t" LR (t)y(w),
[tw’ + (n = 2)u]’ = =K (t)y(u).
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Hence J
n [(t" ")t + (n — 2)u)]
= —t" T K (t)y(u)(tu' + (n - 2u) — "W tK (t)y(u)
== 2K (tu'y(u) — (n ~ 2)t" K (H)uy(u).
Integrating this identisy over [0,], and using integration by parts yields
"/ ftu’ + (n — 2)u]

t

= /t.‘ZT”K(T)'y(u)u'dT - (n-2) / T K (7)uy(u)dr
Jo Jo
t — d t 1 o .
= —/0 2" K (7) [Ef(u)] ar — (n — 2) /0 V(T Yury(u)dr
=—=2t"K()I'(u) + 2/0 Pu)d(r"K (7)) ~ (n — 2)/0 " K (7 )Yuy(u)dr.
Thus,

Qt) = —t"u? — (n — 2t Tuu’ — UK ()T(u)

=— /thT"—lK(T)I"(u)d'r - 2/t 7" K'(7)T(u)dr

0 0

+(n—2) /0 P U (r Yy () dr

= / T K ()]0 - 2)ur(w) ~ 20D (w)ldr — 2 / " I ()T (u)dr.
0 J0

The next lemma is an analogue of Lemma 3.2, giving characteristic properties

of each type of solution.

Proposition 5.11. Suppose that (K1), (T'1) and (T'2) hold. We have
(i) if u(t,a) is a crossing solution, then QR(b(a)) <0,

(i) if u(t,a) is a slowly decaying solution, then for any ¢t = T > 0, there is q
Ty > T such that Q(T1) > 0,

(i) if u(t, ) is a ground state solution, then limy 00 Q) = 0 provided that

. 27~ 2—ny __
sliglos K(s)v(s*™™) =0. (5.33)
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Proof. The proof of (i) trivial. Observe that (I'2) implies I'(u) < Luy(u). There-
fore the proof of (ii) is the same as that of Lemma. 3. 2, except we take m = 2 and
replace f(u) with K (¢)y(u) there. As before, if u is a ground state solution, then

‘IHl‘
P‘

. ,’_tn ’gé -9 n—1,
Jim (~#"u'2 — (n ~ 2)" Ty

On the other hand,
,1;,% =2t"K(t)I'(u) =0

follows from (5.33). This proves (iii). O

Remark 5.12. Condition (5.33) is very mild. It reduces to (I'2) if n > 4. In fact,
(5.33) is always satisfied for all n > 3 if (I'2) holds and limy—, t/(¢) = 0. In any
case, (5.33) is fulfilled if (K1), (K'2),(T'1) and (I'3) hold.

Remark 5.18. Suppose that (K1 — K2) and (I'l — I'3) hold. If it happens that
K'(t)=0 in (0,00), and (n —2)sy(s) — 2nT'(s) =0, for 0 < s <7, (5.34)

then for any 0 < & < 17y, one has Q(¢) = 0 in (0, o). It follows from Proposition
9.11 that u(#,a) is a ground state solution. Therefore Problem (5.2) possesses

infinitely many ground state solutions in this case.

lutions, we shall assume that (5. 3%) dﬂes not hc:ch Mare f_unaclS(;-lyn3 we need to
assume that

(KT) if (n —2)sy{(s) = 2nI'(s) = 0, for 0 < s < N+, then K'(t) < 0 for some
t € (0, 00).

We can make an argument similar to that of Remark 5.13 to establish the
following

Proposition 5.14. Suppose that (K1 — K2), (I'l — I'3) and (KT) hold. If 0 <
a < 1y, then u(t,a) is a slowly decaying solution.

Next, we will present two interesting propositions concerning the asymptotic
behavior of slowly decaying solutions.
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Proposition 5.15. Suppose that (K1) and (1) hold. Then any slowly decaying
solution tends to a positive number if there ezists a t = Ty > 0 such that

tK'(t) + (2n - 2)K(t) <0, if t> Ty. (5.35)

Proof. Let u = u(t, ) be a slowly decaying solution. Suppose to the contrary that
lim; 400 u = 0. Then by using L’Hospital’s rule we have

tl_i)m t(n=1)y! — —(n—2) il_i)m "y = — 0. (5.36)
e o] oC

Since t(»~1y/ is decreasing and lim;—, o ("~ 2 u = co. Define

M(t) :== M(t,u, ) = 2" "2[u/(,0)? /2 + K (#)(u(t, a))l. (5.37)
Then
tl_i)ngo M(t) = oo. (5.38)

It is easy to verify that
M'(t,a) = t2"_31“(u)[(2n — 2)K(t) + tK'(¢)). (5.39)

Thus M’ < 0 for t > T}y because of (5.35) and (I'1). But this contradicts (5.38).
The proof is completed. O

Proposition 5.16. Suppose that (K1) and (I'1) hold. Then any slowly decaying

solution tends to zero if

o0
/ tK (t)dt = oco.

Proof. Let u = u(t, ) be a slowly decaying solution. Let
w(t,a) := (n — 2)u + tu'.

It follows from the proof of Proposition 5.9 that w > 0 in ¢ > 0. By the equation

for u we have
w'(t) = —tK(¢)T(u).

Now, suppose to the contrary that there is a o, > 0 such that

lim 4 = Ugo.
t—o0
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Then we can find constants ¢ > 0 and #r such that
w'(t) < —ctK(t), if t>tr

Integrating both sides of this inequality from #r to T > ir and letting T tend to
00, we obtain

lim w = —oo0.
t—o0
Hence
lim tu' = —oo0.
{—c0
But the last identity would imply lim;—yo # = —00. We obtain a contradiction. O

For technical reasons, we need one more condition on k.
(I{3) Thereis a t = Ty > U such that
tK'(t) + (2n — 2)K(t) > 0, if ¢t > T
and

/ th(t)dt = oo.

Similar to condition (FTH), we assume

(KTH) let h > 1, & > 0, and u = u(¢, ). The function

Un(t) = K(t)(uy'(w) — hy(u)) — f ; lt"/(u)I\"(t). (5.40)

does not change signs from positive to negative as ¢ increases from 0 to b(a),
and ¢,(t) is not identically zero in ("7, c0) for any ¥ > 0.

Now we are in the position to state the main results on this subject.

Theorem 5.17. Suppose that (K1 — K3),(I'1 ~ I'3), (KT) and (KTH) hold.
Then Problem (5.2) has at most one ground state solution, but infinitely many
slowly decaying solutions. Moreover, problem (5.1) has at most one positive radial
solution in any finite ball Q.

On the global structure of solutions of problem (5.3), we have
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Theorem 5.18. Under the same assumptions of Theorem 5.17, the structure
of positive solutions of (5.8) is of either Type S or Type M. More precisely, the
structure is classified into one of the following types:

(i) every solution u(t,e) is a slowly decaying solution,

(ii) there is a unique o* > Ny such that u(t, o) is a slowly decaying solution for
0 < o < a* u(t,a*) is a ground state solution, and u(t,a) is a crossing

solution for a > o*.

5.4. Proof of Theorems 5.17-5.18

Defining the subsets N, D, and D; of (0, 00) as those in Chapter 4, we have:

Lemma 5.19. Under the assumptions of Theorem 5.17
(t) NUD,UDjs=(0,c0).
(i) Ds is nonempty, and (0,7,] C D,.

u1) Both N and D, are open sets, Dy is a closed set.

Proof. (i) follows from Proposition 5.9. (ii) follows from Proposition 5.14. The
continuous dependence of solutions of (5.3) on initial data implies that N is an
open set. In view of (i), we only need to show that D, is an open set to complete
the proof of (iii). Let @ = u(¢,&) be a slowly decaying solution. By Propositions
(5.11) and {5.16) we can find a t = T}, sufficiently large such that

u(Ty,a) <ny/2, and Q(T,,a)> 0. (5.41)
Thus, if « is sufficiently close to &, then
0 <u(Ty,0) <1y/2, and Q(T,a) > 0. (5.42)
Since u(t, ) is decreasing whenever it is positive, we have
u(t,e) <ny/2, if ¢>T,, and u(t,a)> 0. (5.43)
By Identity (5.32) and conditions (K2),(I'3) we obtain
Qt,e) > Q(Ty,a), if t>T,, and u(t,a)>0, (5.44)
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which implies that u(¢,a) > 0 for all ¢ > T, - Since otherwise, say, at t = Ty > Ty,
one has u(Tp,a) = 0. Then Q(Tp,a) < 0, contradicts (5.44). By using (5.44)
again, we have

lim Q(t,0) > Q(T;,a).

Therefore u(t, a) must be a slowly decaying solution in view of Proposition (5.11).

The proof is completed. [

Now we can give an outline of the proof of Theorems 5.17-5.18. Since

(0,7,) C Dy, we can define
a*:=sup{a>0: o' € D, if0<a’ <a.} (5.45)

If @* = oo, then the structure of solutions of ( 5.3) is of Type S. and every solution

u(t,a) is a slowly decaying solution. If
a* < oo, (5.46)

then u(t,a*) is a ground state solution because D, and N are open sets. In this
case, we shall show that every solution u(t,a) with a > o* is a crossing solution.
Once this assertion is proved, the uniqueness of ground state solutions readily

follows.

To complete the proof of the main results, w: shall apply the theory of
linear second order ordinary differential equations to analyze the oscillatory and
asymptotic behavior of ¢(¢,a*). In what follows, we assume that (5.46) holds. For
simplicity of notations, we let u* = (¢, a*) and ¢* = #(t,a*). The following two

technical lemmas are crucial in our proof.

Lemma 5.20. Suppose that (K1) — (K2).(I'l — 3) and (KT) hold. Then o*

vanishes exactly once in (0, co).

Lemma 5.21. Under the assumptions of Theorem 5.17. There ezists a constant

¢y > 0 such that
lim ¢* = —¢;. (5.47)
{—o0

We divide the rest of this section into three parts. We shall prove Lemma

completed in 5.4.3.
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5.4.1. Proof of Lemma 5.20

In what follows, we shall show that ¢* vanishes at least once in (0,00) in
Lemma 5.22, and that it vanishes at most once in (0,00) in Lemma 5.23. Once
Lemmas 5.22-5.23 are established, Lemma 5.20 is proved.

Lemma 5.22. Suppose that (K1) and (I'l — 2) hold. Then ¢* vanishes at least

once in (0, 00).

Proof. From (5.10) we have
[ (w6 — w g™ ) = —t" UK () [y (u”) - uty (u*)) . (5.48)

Integrating both sides of (5.48) from 0 to ¢ > 0 we get

t

" u Bt —utg) = /0 TR (1) (u (u”) — y(w*))dr. (5.49)

Suppose to the contrary that ¢* > O forall t € (0,00). Then ¢t"~! ('zf"c;ﬁ* —i;*d)*') >
0 in (0,00), which implies that u*/¢* is strictly increasing in (0,00) and so is
(t""2u*)/(t"2¢*). Since lim/—eo " ~2u* exists and is finite, there is a number

0 < d* < oo such that

: n—2 % __ g% =E
tl-l-f{.lot ot =d*. (5.50)
By L’Hospital’s rule one has
lim "7 1¢* = (2 - n)d* <0. (5.51)

t—oo
Note that (5.50) implies that lim;—,co ¢* = 0. By (5.50) (5.51) and the fact that
u* is a ground state solution, we obtain

lim "} (u* ¢* — u*¢* ) = 0.

t—o00

On the other hand, letting ¢ tend to oo in (5.49), in view of (1) and (I'2), we
have
lim "~ (u* ¢* — u*¢*') > 0.

t—o0

We get a contradiction, and the lemma is proved.
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Lemma 5.23. Suppose that (K1)—(K2), (T'1)~(Gamma3) and (KT) hold. Then
¢ vanishes at most once in (0, 00).

Proof. It suffices to show that u* intersects every solution u(t,a),0 < o < a*
exactly once in ¢ € (0, 00). Recall that u(t, o) is a slowly decaying solution when
0 < o < o*. Hence it must intersect u* at least once in ¢ € (0, c0).

At first we claim that there is a 0 < € < a* such that u* intersects u(t, ) at
most once when 0 < a < €.

Suppose no such an € exists. Then we can find a sequence {;}32, such that
im0 i = 0, and every u(t, a;) intersects u* at least twice. Denote the second
intersection point by a;. Since a; — 0 as i — 00, and u'(¢,a;) < 0 in (0, 00), we
have

lim a; = oo. (5.52)

100
Recall that o; < o* and a; is the second intersection point, we have
u(a;, o;) = u*(a;), and u'(a;, ;) < 'u*'(a,') <0, i=1,2,---. (5.53)
Without loss of generality, we assume

a; <ny/2,i=1,2,-.-.

Recall the Pohozaev-type Identity (5.32), conditions (I'2),(I'3) and (KT'), and let
u; = u(t, a;) we get

Qi(a;) := Q a,,a,)

TR () [(n = 2)uiy(ug)

\

(3] (554)
= 2nD(u;)]dr — 2 / "R (7)) (u;)dr
Jo
> 0.
Let Q*(t) = Q(¢,a*). Recall the characteristic property of u* that lim, 4. Q*(¢) =
0. Using identity (5.32) again yields

Q*(a;) = — /°° TR (7)[(n - 20wt y(u?) - 2nT(u*))dr

42 / K ()T ) (5.55)

<0
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(5.54) and (5.55) lead to
Qi(a;) > Q*(a;). (5.56)

Combining this inequality with (5.31) and (5.53) we obtain
(n— ;‘2)[u*i(ai) — uj(ai)]u*(ai)al ™t + [u* (a;)% — wi(a;)?la? > 0. (5.57)
Factoring [u* (a;) — u}(a;)] out, and using (5.53) again, one has
(n = 2)u*(a;)al~? + 2u* (a;)a? ™! > 0. (5.58)

But then we have a contradiction. Since u* is a ground state solution, it has been
proved in Chapter 4 that

lim [(n — 2)8"~2u*(t) + 26" u* (¢)] < 0.

t=oo ’

The claim is proved.

Let € be the largest number in (0, a*) so that the claim is valid. It remains
to prove € = a*. Suppose that € < a*, then there is a sequence {Ej}fil such that
€ < fBj < o, limjye0 B =€, and u(t, B;) crosses u* at least twice. Since B; < a*
and u* < u(t, ;) for large ¢, u(t,4;) and u* must intersect a third time, say, at

t = cj. Then lim;j_,o ¢j = 00, and
u*(cj) = u(ej, Bj), u*’(c_i) <u'(ej,Bi) <0, j=1,2,---. (5.59)

For simplicity of notation, let u; = u(t,$;), M*(t) = M(t,u*,a*) and M;(t) =
M(t,u;,B;). Where M is defined in (5.37). Thus

M*(c¢;) > Mj(c;). (5.60)

lim M*(t) < oo,
{—eco ’

since limy_yo0 "~ 'u* is finite, and lim—o0 2"~ 20(u*(¢)) = 0 by (I'3). Denote
M, = limy00 M*(t) < 00. Choose Ty > Ty sufficiently large that M (T, €) >
4M,, where Ty is as in (K'3). Without loss of generality, we can suppose c¢; > Ty
and M;(Tp) > 2M, for all j = 1,2,.... Since M, is increasing in (Tx,00) by
(/£3), we must have M;(c;) > 2M,, which is impossible in view of (5.60). The

proof is completed.
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5.4.2. Proof of Lemma 5.21

Consider a linear second order equation
(") + VK (1) (u(2) = 0. (5.61)
We say that equation (5.61) is nonoscillatory on (0, o) if it has a solution vanishing
at most finitely many times on (0, 00). Since ¢* is a solution of (5.61) with v(0) = 1,
v'(0) = 0, and ¢* has exactly one zero in ¢ > 0 as we proved in Lemma 5.20,
equation (5.61) is nonoscillatory on (0, o0).

Let us introduce another equation

(" lw') =0, (5.62)

which has two linearly independent solutions wi(t) = 1, wa(t) = t2=". Let

v1(t),v2(?) be two independent solutions of (5.61). Then every solution of (5.61),

particularly, ¢*, is a linear combination of v;(¢),v2(¢). At first, we shall show that

[y

ultimately v; behaves like w;, i = 1, 2.
We state Theorem 9.1 of Hartman (page 379 of [57]) in a simplified version

as follows.

Lemma 5.24. v; ~ w;i,i = 1,2 as t = co. in other words, lim,_ o vi/w; is a

nonzero finite constant, provided that

/ wywat" TR ()Y (u*(1))dt < oo. (5.63)

To see that (5.63) is valid, recall that K'(¢) is bounded above, u* ~ 277,
and (I'3) implies that the growth of 4’ is greater than 4/(n — 2). Thus
wiwat" T K (£ (u(8)) = o(t2mMHN=D=) — g(3=3),

and (5.63) follows. Which in turn, implies that

S

vi(t) ~ wi(t), t=1, (5.64)

Proof of Lemma 5.21. Let vy, s be two constants such that
" = 1 (t) + vava(t). (5.65)
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It suffices to show that vy # 0.

Suppose to the contrary that », = 0, then ¢* ~ 2" as # — oo. Let
G (t) = Gr(t,a*), it holds for all k > 1 that

Jim "G (1)¢* () ~ Gh()$" (1)) = 0. (5.66)

Let 7(a*) be the unique zero of ¢*. Let (; be the first zero of G}, (t), if G} (¢) does
vanish in (0,00). Note that ¢4 may not be defined for all h > 1. By a similar
argument to that in the proof of (i) of Theorem 5.8, we can show that there is a.
number & such that

T(a®) = ¢,

and
Ui(r(a®)) = ¥5(Cs) 2 0. (5.67)

Therefore,
NG (8)¢ (1) — Gh(1)e*' (1) = 0, at t=1(a"). (5.68)

In view of (5.67) and (KT H), we have

¥5(t) 2 0, and 3;(t) is not identically zero in(r(a*), o0). (5.69)

= f TG () (1)t
(a*)
< 0.
But this contradicts (5.66). The proof is completed.

5.4.3. Proof of Main Results

Lemma 5.25. There ezists a p > 0 such that u(t,e) is a crossing solution if
a* <a<a*+op.

Proof. For any given 0 < A\ < n — 2, define

z(t) = za(t, @) = tMu(t,e*) - u(t, a)). (5.70)
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Then =(t) satisfies
M+ n-1- 2)\)2?, +AA+2- n)ti2 + A K () [y(u*) - y(u)] = 0. (5.71)
If there are a > 0 and #5 > 0 such that
Z'(to) =0, and 0 < u(t) < u*(to), (5.72)

then

z"(to) = {Mn — 2= N)/t2 — K(to)[v(u*(t0)) — 7(u(to))])/[w*(to) — u(t)]}=
= [Mn ~2—X)/t — K(t0)7'(8(t0))] =,

(5.73)
where u*(?0) < 6(t0) < u(ty). We recall that ¥ (u*(t)) = o(t™*) when ¢t — oco. It
follows that if #o is sufficiently large and (5.72) is valid, then

z”(to) > 0. (5.74)
Recalling that ¢* has a unique zero t = T(o*) and behaves like a negative

constant for ¢ large, we have t*¢*(t) — —oo as t.— 00, A > 0. It follows that when
t =T" > v(a*) is sufficiently large,

e (t) <0, (a*(t)) <0, ift =T (5.75)
Note that
£'¢*(t) = lim (t)/(a* - a). (5.76)

Suppose to the contrary that a > a* is sufficiently close to a* and u(¢,a) is not a

crossing solution, then
z(T*) >0, Z(T*)>0. (5.77)

Therefore, z(t) increases in a right neighborhood of T*. If z(t) decreases for some
t > T*, then there exists some t; > T* such that

z(to) >0, 2'(t) =0, and z(t) has a local maximum at ¢g.
But this contradicts (5.72) and (5.74). If z(¢) is increasing for all ¢ > T*, then
z(t) > 2(T*)>0 for t>T ,tgné:(t) > z(T*) > 0,

which is not compatible with the assumption that u is not a crossing solution. The

lemma is proved.
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Proof of Theorem 5.17. As we have seen, if o* defined in (5.45) is finite, then
u(t,a*) is a ground state solution, u is a slowly decaying solution if 0 < o < o,
and u is a crossing solution if a* < a < a* + p. Thus, for a* < a < a* + p, the
first zero b(a) of u is well defined, and

lim b(a) = co.

o=t

rem 5.8 we have shown that b'(e) # 0. Thus b'(a) < 0 whenever a > a* and b(ex)
is defined.
Qe :=sup{a>a": o' €N ifa* <o <a.} (5.78)

Then b(a) is defined and strictly decreasing in (a*, Qo). Therefore, lim,, —ag Ha)

< oo, which in turn implies
Qoo = 00,
since otherwise, one should have lim_ —az, ba) = 0.
In summary, we have shown that

N =(a",00), b(a)<0, if a€N,Dj=a*D,=(0,a%). (5.79)

This proves Theorem 5.17. [

It is evident that Theorem 5.18 follows from (5.79).
5.5. Examples
5.5.1. f(t,u) = K(t)uP,p > 1.
The following mathematical model, now called Matukuma’s equation, was

proposed by Matukuma in 1930 to describe the dynamics of a globular cluster of

stars in astrophysics,

1 i .
A —u? =0, =€ R3.
i+ T+ legu T E

This equation and its generalization
Au+ K(|z))u?P =0, z € R". (5.80)
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have been extensively studied by many authors. See for example [29],[75],[87]
and [110], just to mention a few. When p = 242 pt blem (5.80) is also called a
conformal scalar curvature problem. It arises from the problem of finding conformal

Riemannian metrics with prescribed scalar curvature K.

It has been observed that if I'(¢) = 1, and u(¢, @) is a positive radial solution

of the equation

Ihtimar

Au+ K(|z))u"=2 =0, z € R", (5.81)
with u(0,a) = «, then it is a ground state solution. Let (t) be a nonnegative,
nonincreasing, and nonconstant function defined in [0, 00) with (0) < 1. It was
proved in Ding and Ni [29] that

(i) if K(t) = 1+ x(¢), then u(,a) is a slowly decaying solution behaving like
2=n

t7Z ast - oo,

(i) if A'(t) = 1 — s(t), then u(t,) vanishes at some finite ¢, i.e., it is a crossing

solution.
Note that x(t) can be taken arbitrarily small and with compact support.
very sensitive to small perturbations. More generally, we can prove:

Proposition 5.26. Suppose that K'(t) € C*((0,00)) is a positive, and noncon-
stant function. Let u(t,a),a > 0 be a radial solution of (5.81). We have

(i) if K'(t) <0, then u(t, @) is a slowly decaying solution,

(ii) if K'(t) = 0, then u(t,a) is a crossing solution.

In other words, when K'(t) € C'((0,00)) is positive, the structure of radial
sciutions of problem (5.81) is of Type F if It is a constant; it is of Type Sif K is
decreasing (and not a constant); and it is of Type C if K is increasing (and not a

constant).

We sketch only the outline of a simple proof for this proposition. Let Q(t)
o . i . . . . . a42 . ) . '
be defined as in (5.31). Substituting v(u) by uvEE i (6.32) yields
n ! nt2

Qt) = — 1 [D R (rYu(r) R dr,

n—2
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In the first case, it holds that Q(¢) > 0 if u(, a) > 0, implying that u« is not a
crossing solution. Moreover, lim— Q(t) exists and is positive. Thus u is a slowly

decaying solution. The second case can be similarly handled.

As an application of Theorem 5.8, we give some uniqueness results to the

positive radial solutions of equation (5.80).

Proposition 5.27. Let f(t,u) = K(#)u”, p > 1. Then Problem (5.1) has at most
one positie radial solution provided that one of the following conditions is fulfilled,

(i) K(t) =11 >~

i

(i) K(t) = .

() K(t) = 2,7 > 2, and Q is a finite ball.

1+(¥3 =

In the first case, the equation of (5.1) is proposed by Henon [58] as a model
in astrophysics to study "rotating stellar systems”. When A is as in (iii). the
corresponding equation of (5.1) is sometimes called the generalized Matukuma's

equation.

Proof. 1t is casily scen that condition (FT1) is satisfied because p > 1. In order
to check (FTH). we write v (t) as

o . -1
() = ul((p — W () — " Laray) (5.82)
Let the functions .J(t) and .J,(t) be defined by
J(t)=K(t)+ = tI (1),
h—1 (5.83)
Jp(t) = (p—=h)K(t) - '?———’tff'(t), h=1.

Then ¢4 (t) = u’Jy(t), and condition (FT2) is fulfilled if J(¢) > 0 for ¢ > 0. We
give in the following the proof of (i) and (iii) separately, the proof of (ii) follows

from that of (iii).

(1). In this case, we have J(t) = t!(1 + 4 ),3 and Ju(t) = ti(p — h — _ll)
Thus (FTH) is obviously satisfied for all | € R, and (F'T 2) holds for [ > —2. The

assertion follows from Theorem 5.8.

39



(iii). It is straightforward to verify that

1 - T
)= ————(#T(1 = =)+ 1
, 1 . ) CT(h—=1) _
Ju(t) = ?ﬁ[(l}1h) +(p—h+ —T=)f 1.
Thus J(t) > 0int > 0if r <2, and (FTH) holds if
(p§i1.+ﬁ;7;lé)=)f§ﬂfc:r all h > 1,

which is satisfied, for example, when 7 > 2. The remaining argunient is trivial,

and so we omit it. [

5.5.2. f(t,u) = t'y(u).

Theorem 5.28. Let f(t,u) = t'y(u),l > ~2. Suppose that v(u) € C'([0, 00)),
and 0 < y(u) < uv'(u). Let F(u) = uvy'(u)/v(u). We have

(1) problem (5.1) has at most one positive radial solution provided that F(u) is

nonincreasing in u.

(1i) Problem (5.2) has at most one ground state solution provided that J(u) is
nomincreasing in w, i addition, [ < 0 and (I'3), (KT) are satisfied.

Proof. Observe that 1 (t) can be simplified to

b (t) = thy(u)(yp(u) — b - ! 5 1

Since u(t, ) is strictly decreasing in [c(«), b(cr)], we see that (FTH) is satisfied if

¥(u) is nonincreasing in u. On the other hand, (FT?2) is fulfilled if
ty(u)(1+1/2) > 0,

which is valid if [ > —2. Thus (i) follows from Theorem 5.8. The proof of (ii) can

be similarly completed by using Theorem 5.17. O

) (5.84)

Corollary 5.29. Let f(t,u) = t'u? for u > 1; f(t,u) = tlu? for 0 < u < 1.
Suppose that -2 <1<0,1<p< %3;% < q. We have

(1) problem (5.1) has at most one radial solution,

(11) problem (5.2) has at most one ground state solution.
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6.1. Existence Results

The existence of positive radial solutions for semilinear elliptic equations
in annular domains subject to various boundary conditions has been extensively
studied in recent years. Let 0 < R; < Ry < oo, and  be an annulus in R" defined

by Q={z: 0< R <t=|a| - Ro}, n > 3. Let f € C'([0,00)), f(0) = 0,
f(s) >0 for s > 0. Consider the problem of the semilinear equation

Au+ f(u) =0 in 9. (6.1)
subject to one of the following sets of houndary conditions:

0 on t=R,, and t=R,, (6.2,)

u

u=0 on t=R;, and %:D on t= Ry, (6.2p)
du
Bandle, Coffman and Marcus [11] have proved that if f(s) is superlinear at s = 0
and s = oo, i.e., lim, o+ f(s)/s = 0, and limy— oo f(5)/s = oo, and if f is non-
decreasing in (0, 00), then problem (6.1)-(6.2) possesses a positive radial solution.

0 on t=R;, and u=0 on t=R,. (6.2,)

Their result was extended by Lin [77] to the equation
Au+g(lz])f(u) =0 in £ (6.3)

with one of the boundary conditions of (6.2). Very recently, Lee and Lin [72]

proved the existence of positive radial solutions to equation (6.1) subject to some

non-homogeneous Dirichlet boundary conditions.

The result of Bandle et al. [11] has been generalized in Erbe, Hu and Wang
[34], Erbe and Wang [37-38], Erbe and Tang [39] [41] and Hu [59]. In particular,
Erbe and Tang [41] have established the existence of multiple radial solutions to

problem (6.1)-(6.2).

For results on the existence of positive radial or nonradial solutions to var-
lous types of nonlinear boundary value problems of semilinear elliptic equations,
quasilinear elliptic equations and second order ordinary differential equations, see
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[25-27] [31-33] [35-36] [49] [52] [63] [79-80] [104] and [109] and the references cited

therein.
6.2. Nodal Solutions

Let f € C'([0,00)), f(0) = 0. Let u(t,a) be a crossing solution to the
initial value problem (2.4). If we extend the domain of f in such a way that
J(—s) = —=f(s), then f € C'((—c0,0)) and is an odd function. Correspondingly,
u(t, @) can be extended after it reaches the first zero b(a). In this context, it is of
particular interest to study the existence and uniqueness of solutions which change
signs in ¢ > 0, to the problem

Au+ f(u) =0,
, , (6.4)
w(0)>0, u=0 on €,

Au+ f(u) =0, 7
— i (6.5)
u(0) >0, u—0 as t— oo.
By a nodal solution we mean a solution of (6.4) or (6.5) which has k simple
zeros, where k > 0 is an integer. Note that when f(0) = 0, any zero point of a

nontrivial solution is simple and isolated. Namely, if u(t9) = 0 at some to > 0,

cially infinitely many nodal solutions of problems (6.4) or (6.5) has been studied
with various nonlinearities. An important model case is the so-called scalar field
equation 7
Au—u+ |[ulf7u =0, o
, (6.6)
u(t) >0 as t— oo,
where 1 < p < (7 + 2)/(n —2). Berestycki and Lions [13] have proved the exis-
tence of infinitely many radially symmetric nodal solutions of (6.6) by variational
methods. But they did not give detailed information on the shape of solutions,
and in particular, it was an open problem for some years as to whether solutions
exist with a prescribed numbers of zeros. This question was answered in the affir-
mative by Jones and Kupper [60] by using a dynamical system approach and an
application of the theory of the Conley index. A simple proof of Jones-Kupper’s
result was given by McLeod et al. [84] using ordinary differential equations theory

It was conjectured by Berestycki and Lions [13] that for any given k >
0, the nontrivial solutions of (6.6) with k zeros are unique. This problem still
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remains open. It seems that the uniqueness of nodal solutions of (6.4) or (6.5)
is extremely difficult to study. The only exceptions are the cases when f(u) has
some homogeneous property or ) is a sufficiently "thin” annulus. For instance.
if f(u) = uP, p > 1, and 9 is an annulus, then one may transform the equation
of (6.4) into an autonomous planar system by making a change of variables. A
simple phase plane analysis for the autonomous system may lead to the desired
uniqueness result (see [24], [86] and [90] for details). On the other hand. if © is a
thin annulus in the sense that the ratio of the outer radius and the inner radius
ts sufficiently small, and if f is superlinear, then problem (6.4) has at most one
nodal solution with any prescribed number of zeros (see Hale and Raugel [55-56)
and Ni and Nussbaum [90]).

For other results on the existence of infinitely many radis' solutions or solu-
tions with a prescribed number of zeros, see [12] [19] [61-62] [81] and [107-108].

6.3. Nonradial Solutions

Let f € C'([0,00)) and f(0) = 0. Let B be a finite ball in R”. As we have
mentioned earlier, any solution of the Dirichlet problem

Au+ f(u)=0 in B,

CL : (6.7)

©u>0 in B, u=0 on @B,
15 radially symmetric according to [53]. A natural question to ask is if we replace
B by an annulus in (6.7), is it still true that any solution of the new problem has

of a simple form. The existence of nonradial solutions has been investigated by

several authors in recent years. In [23], Coffman considered the following problem

Au—u +u’=0 in D(i", d) C Rin@

, ‘ ) ) 6.8
u>0 m D(r,d), u=0 on 8D(rd), (6:8)

where p > 1ifn =2, and 1 < p < (n4+2)/(n - 2) if n > 3. Both r and d are

positive numbers, and

D(r,d) :={z e R": 2 < [:7:|2 < (r+ fl)g}.

It is proved in [23] that there could be many nonrotationally equivalent nonradial
solutions to problem (6.8). More precisely, the number of nonrotationally equiva-
lent nonradial solutions of problem (6.8) tends to +00 as r — +oo0, in the case of
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n=2,p>1,orn 2> 3beingevenand 1 < p < n/(n—2). This result was improved
by Li [73] who filled up the gap for n > 4 and n/(n —2) < p < (n +2)/(n—=2). It
remains open if the same result is true for the case n = 3.

It is also not clear whether or not all positive solutions of the problem
Au+ f(u)=0 in R,

u—=0 at oo, (6.9)

are necessary radial (see the survey paper of Ni [89]). If we drop the positivity
requirement of (6.9), then Ding [28] proved that the problem

Au+ |ul72u=0 in R™

u—+0 at oo,

has infinitely many distinct solutions which change signs on R™. Moreover, none

of these solutions are radial.
6.4. Singular Solutions

Let Q be a finite ball in R” or = R™, n > 3. Consider the following

problem
Au+ f(u) =0 in Q- {0},

lim u(z) = oo.
r—0

(6.10)

A positive solution u(z) of (6.10) is called a singular solution. It is called a singular

ground state solution if Q = R" and lim) ;|0 u(z) = 0.

When f(0) = 0 and f is subcritical, the existence of positive singular solu-
tions of (6.10) on finite balls has been shown by Ni and Sacks [91], and Lin [78].
While the nonexistence of positive singular solutions of (6.10) on finite balls has
been shown by Ni and Serrin [94] for the case when f is supercritical. Recently,
Pan [97] studied the existence of singular positive ground state solutions of prob-
lem (6.10) for f(u) = u? + u("*+2/(*~2)_ He proved that Problem (6.10) possesses
a singular ground state solution when n/(n —2) < p < (n+2)/(n —2). Note that
a singular ground state solution does not exist if 1 < p < n/(n — 2).

6.5. Singular Equations
When a nonlirearity f(t,u) is assumed to be singular in the second variable,
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e hey, o+ f(t,u) = oo for each fixed ¢ € (0, 1], the boundary value problem

Au+ f(t,u) =0,
>0 in B, r=0 on 8B,

wvas studied by Gatica, Hernandez and Waltman [50] with a view to obtaining the
existence of classwal solutions. A model case for such singular nonlinearities is
f(t,u) = a(t)u™P, p > 0. Other relevant results can be found in [51] and [71].

6.6. Other Quasilinear Equations

Our study for the m-Laplace equations can be extended to other quasilinear
equations. In particular, the uniqueness of positive radial solutions to the mean

curvature equation

div ——L + f(u) =0
VI+[Vul? B

can be similarly investigated.

We mention here a quasilinear equation studied by Serrin and Zou [103]

which takes the form
Au+uf - |Vu|? = (6.11)

They were interested in the question of existence and non-existence of radial
ground states of (6.11). It was proved that problem (6.11) has a ground state

solution if either

n+2 n+2 n+2 2r
> , 1 =——7z,q<p, orm)p< ——m- .
Dp>—5, ii)p w59 <p orii)p< o 1< 31
and (6.11) does not have a ground state solution if either
2 2 ,
p s IE ‘QP 1 . _ n
l)Q>-:T’ 0<p<i, Drn)q}p_Fl 1§p£11;§i

The uniqueness and asymptotic behavior of ground states of (6.11) was studied in
Peletier, Serrin and Zou [100] for the case n = 1.

6.7. Semipositone Problems

restricted to the case f(t, 0) = 0. SDITIE c;:ther cases have been studled recentlyi
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For instance, Castro et al. [18] considered the radial solutions to the problem

u(r) =0 for z€dB,

where B; denotes the unit ball in R®, n > 1, centered at origin and A > 0. They
assumed that f: R — R is monotonically increasing, superlinear with subcritical
growth on [0, c0). In particular, they were concerned with the case f(0) <0, ie.,
f is semipositone. They established the structure of radial solution branches for
the above problem. It was also proved that if f is convex and f(s) [(sf'(s)— f(s))
is a nondecreasing function, then for each A > 0 there exists at most one positive
solution u such that (A, u) belongs to the unbounded branch of positive solutions.
The model case f(s) =s? —k, k> 0,1 < p < (n+2)/(n - 2) was studied. See
Allegretto et al. [6-7] for other studies on the positive sciutions to semipositone

problems.
6.8. Effect of the Dimension

As we have seen, a striking feature of the elliptic problems is that the ex-
istence of nontrivial solutions is sometimes dependent on the dimensions of the
space R™, especially when the Sobolev critical exponent is involved. It is worth
mentioning that this interesting phenomenon also occurs in the study of Neumann
problems. Let A > 0 and consider the following problem

Au=du+u"tD/=D =g iy B,
u>0 inB;, 2=0 on 0B, (6:12)
ov

where v denotes the outer normal vector on dB;. Problem (6.12) always admits a
constant solution ug = A("~2)/4, The existence of a nonconstant solution to this
problem has been considered by Adimurthi [2-3] and Budd, Knaap and Peletier
[15]. They proved that there exists a constant Ao > 0 such that if 0 < A < Ao,
then (6.12) admits a nonconstant solution when n = 4,5,6, while no solution
exists when n = 3. Recently, Adimurthi [5] proved that problem (6.12) possesses
no solution for 0 < A < Ag when n > 7. Thus, if we restrict n to be an integer and
n > 3, then problem (6.12) has a nonconstant solution for small \ if and only if
n=4,5,6.
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