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Abstract

This thesis deals with several process control issues related to Syncrude’s
extraction process.  Since startup in 1978, many changes have been made to the
extraction control system and numerous new scnsois were installed. The potential
benefits of these changes and additions have not been fully realized as yet due to a
lack of suitablc real time models capable of integrating the information from the new
sensors into the overall control strategy. The topics discussed here are part of an
ongoing cffort by Syncrude Research to improve the control strategy for the
cxtraction plant to achieve better reliability and throughput for the process. These
include the development of a method for on-line calibration and performance
cvaluation of composition analyzers applied to the plant feed composition analyzer,
spectral analysis of process data and an example for the design and implementation of
a suitable filter to improve control loop performance, process time delay estimation

and empirical model identification.
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1. Introduction

Syncrude’s predecessor, then part of Royalite Oil Company. started rescarch
into bitumen extraction from the Athabasca oil sands in the mi:t 1950%s.  The
company was incorporated under the Syncrude name as a separate entity in 1964 and
continued it’s research efforts until it received permission to build a production
facility in 1969. After several years of engineering cffort, construction commenced in

late 1973 and the plant went into operation in 1978.!"!

Currently, Syncrude is the world’s largest producer of synthetic crude oil, the
largest single source of oil in Canada and Canada’s second largest oil producer with
an average production of over 200,000 barrels (1 barrel equals 159L) per day of high
quality synthetic crude oil. This represents approximately 20% of light and mcdium
crude oil produced in Canada. In 1995 Syncrude produced 73.9 million barrcls of
crude, more than 12% of Canada’s total petroleum needs, at a cost of $13.69 per
barrel, a 37% reduction since 1981. The expected production for 1996 is 75 million

barrels.

The Company provides an estimated 15,000 direct and indircct jobs across
Canada and is the country’s largest individual employer of Aboriginal pcople.
Syncrude employs about 3,600 people directly in addition to some 1,000 contractors.
It’s corporate headquarters are located in Fort McMurray (440km northcast of

Edmonton, Alberta) and it’s production facility is 40km north of Fort McMurray.

The Syncrude production facility consists of thrce major strategy arcas:
mining, extraction and upgrading. Oil sand is mined in a large open pit mine (current
size: Skm by 7km by 60m deep) at a present rate of over 141 million tonnes per ycar

using a combination of draglines and bucketwheels. Qil sand is transported over a
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scrics of conveyor belts totaling 50km in length to the processing facility. The
Extraction plant processes 1n the neighborhood of 360,000 tonnes of oil sand per day,
scparating the bitumen from the sand. The upgrading facility converts the black, tar-
like bitumen to low sulphur synthetic ciude oil, similar in appearance and viscosity to
standard enginc oil. In addition to the production units, the company operates a large
utilitics plant providing steam ( 1,700,000%’ at 6,400kPa and 500°C), generating
clectricity (268 megawatt capacity) as well as producing air for plant instrumentation
and nitrogen for some of the process units. A very important part of the operation is
the environmental department. With an annual budget of over $6 million, it has been
in cxistence since the mid 1960°s, almost ten years before construction was started.
It’s mandate is to carry out research into minimizing the environmental impact of the
opcration and to develop and implement efficient methods of land reclamation. Since
the reclamation phase of their work started in 1979, over 1.3 million trees szedlings
were raised in Syncrude’s greenhouses and planted. In 1993, 48 wood bison, a
species «+ - used to inhabit this area, but had been absent for many decades, were

successfully introduced into the newly reclaimed land from Syncrude’s mining

operation.

The company engages in extensive, high-tech research and development
activities with an annual expenditure of over $24 million.”! The Edmonton based
rescarch facility is the third largest private-sector research program in Western
Canada and ranks in the top 25 R&D spenders in this country. The Research
department employs just under 90 full-time staff and has extensive links with the
University of Alberta and other Canadian universities as well as to private and
government research facilities. Research carried out at the Edmonton facility
encompasses eight diverse fields. These include studies in the following areas:

e separation processes
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e measurements and analysis
e bitumen chemistry

e colloid and surface science
e analytical chemistry

e materials research

¢ tailings management

e slurry transport

This thesis deals with a few process control rclated aspects of Syncrude's
extraction facility: basic control loop analysis, on-linc instrument calibration and

process model development.

Since production started in 1978, the extraction plant was operated according
to a set of operating guidelines which were refined over the years as operating
experience increased. The impact that the changes to these guidclines have had on the
operation was difficult to assess, since no on-linc mcasurcments of strcam
composition existed. For example, the goal of the primary extraction process is to
extract the maximum ame . “t of bitumen from the oil sand feed and deliver the best
possible quality of bitume froth to the downstrcam units. Yect no sensors were
available to measure any of the propertics of the oil sand feed to the plant, the water
and solids content of the froth, the amount of froth produced, or thc amount of
bitumen lost through the waste streams. Over the years, on-linc sensors for oil sand
composition, froth composition and froth flow rate, all developed at the rescarch

department, have been installed.

In 1990 the original control room instrumentation was replaced by a modern,
computer based control system. The commissioning of this system made it possible
to consider introducing an automatic critrol strategy for the extraction plant. It was

anticipated that computer based control would make it possible to reduce the number
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of upsct conditions, make more cfficient use of costly resources, obtain more uniform
product quality and cnable higher throughput. The first step in developing such a
strategy is to attempt a mathematical model of the major process units. This model
must be ablc to make maximum use of the few on-line process data points that are
now available. To date, a model that could be used for real time operator ussistance

docs not exisis.

The oil sand processed by Syncrude is a mixture of bitumen, water, and solids
of varying proportions. Bitumen content can vary from just a few percent by weight
to as high as 15% or 16%, with an average of somewhere between 9% and 11%. Oil
sand with bitumen content of less than 6% is discarded in the mine and does not reach
the extraction plant under normal circumstances. Water content ranges from 3% to
8% by weight. The remainder of the oil sand, 80% to 90%, is solids. The type of
solids contained in the oil sand significantly impacts on the performance of the
extraction circuit. Quartz and silica particles with diameters larger than 40 um have
- no cffect on the process. Clay particles on the other hand can have a serious impact
on the amount of bitumen recovered and on the quality of the froth produced,
cspecially if their concentration in the middling layer in the Primary Separation

Vessel {(PSV) gets too high.

The Syncrude extraction plant consists of four identical, parallel processing
strcams (‘trains’). Each train can be divided into four sections: oil sand conditioning,
primary rccovery, secondary recovery and tailings disposal. The work presented in
this thesis focuses on a few aspects of the first two sections of the extraction process.
Figure 1-1 represents a schematic view of one of the trains up to and including the
PSV. Oil sand is delivered from the mine via conveyor belts at a nominal rate of

1250 % . It is loaded into a 30m long, cement kiln type tumbler where it is mixed
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Figure 1-1: Schematic of the oil sand conditioning and primary rccovery portion of a

single train in Syncrude’s extraction plant,

with caustic (NaOH) and hot water and heated to about 80°C with stcam. The oil
sands slurry exiting the tumbler is screened to remove large rocks and undigested oil

sand lumps, diluted with additional hot water and pumped into the PSV.

The PSV has a diameter of 18.9m and a volume of over 1,700,000L. It has
three distinct zones. At the top is a froth layer with a nominal thickness of 0.8m. The
conical shaped bottom of the vessel contains mainly coarsc sand that is removed
through the tailings line. The center portion is made up of the middling layer. The
diluted slurry is introduced into this layer and it is the region where the separation

between the bitumen and the sand occurs.

Once the diluted slurry is introduced into the center of the PSV, the hcavy
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sand scttles almost immediately to the bottom of the cone shaped vessel and is
removed as primary tailings. The bitumen contained in the slurry rises to the top of
the vessel and overflows into a collection trough. In order to balance the flow into the
PSV with thc outflow a third stream, the middling stream, is withdrawn from the

central periphery. It contains mostly water, fine solids and some bitumen.

The scnsors indicated in the Figure 1-1 represent all the relevant
mcasurcments currently available for this portion of the process. On the feed
conveyor a weigh scale (‘Feed Rate’) records the instantaneous oil sand feed rate; the
Oil Sand Analyzer (‘Grade’) measures the oil sand bitumen and water content; and
the ‘Gamma’ analyzer (‘Fines’) gives some information about the clay content in the
feed. It measures the naturally emitted gamma radiation from one of the potassium
isotopes (K*y which are associated with the oil sand clays. Three flow meters report
the volumes of caustic, tumbler water and flood -vater added to the process. A
density gauge on the discharge end of the feed pump gives diluted slurry density. A
second weigh scale (‘Reject Rate’) on the riect conveyor records the amount of
material that could not be processed. Probes located in the froth layer at the top of the

separation vessel give an estimate of froth water content and froth density. In

addition, on-line density is available for the ling and tailings streams. The
position of the interface between the midd’ and the froth is also recorded
(‘Interface Level’). Finally, a flow meter . 4 on the froth discharge line from

the PSV. The part of the extraction plant described so far represents the original

portion of the process (base plant).

In the early 1990’s, the Extraction Auxiliary Production System (EAPS) was
built and brought on-line to boost processing capacity. It differs from the base plant
in the oil sand conditioning step. The oil sand feed is passed through a crusher to

reduce the size of the oil sand lumps and any rocks that are present. The crushed oil
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sand is then mixed with hot water and caustic in a cyciofeeder and the resulting slurry
is pipelined over several kilometers and pumped dircctly into the PSV. Only minimal
measurements are available for this portion of the plant, which poscs considerable

difficulties in the development of process modcls.

The Extraction Plant is controlled by a Honcywell TDC3000 control system.
Data collected by the DCS is transferred at onc minutc intervals to a plant wide
database on a dedicated VAX computer. Data from this data basc was for the

investigations presented in this thesis.

1.1.  Thesis outline

The purpose of this thesis was to apply different data analysis tools to
illustrate how useful information can be extracted from routine plant operating data.
The work presented here is a small part of a much larger ongoing effort to devclop
real-time optimization and operator assistance tools that aim at improving both the

bitumen recovery efficiency and product quality in the extraction plant.

Chapter 2 explores the feasibility of using the current plant databasc
information to calibrate on-line sensors and evaluate their ficld performance. Two
specific examples are given: calibration of the Oil Sand Monitor, which measurcs oil
sand composition as it enters the extraction plant, and the performance cvaluation of
the oil sand feed weighing system. Also included is an analysis of the accuracy which
can be expected from such a method based on accuracy estimates for the individual

measurements used.

In Chapter 3, spectral data analysis is applied to identify noise components
within the process measurements and their downstream effects. An example is given,

where the design of a proper data filter for a measurement, based on the results of the
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spectral analysis, has dramatically improved the performance of a control loop.

An important step in the development of a process model, as well as in
controller design, is the cstimation of process time delays (dead times). Chapter 4
describes four methods used to estimate the time delays for the extraction process up

to and including the PSV.

An cmpirical model for the PSV is developed in Chapter 5 using Partial Least
Squares (PLS) analysis. The applicability of this method to this particular data set as
well as its limitations arc examined. Also included is a simulation technique, based
on the PLS model, that attempts to compensate for slow, long term changes in plant
bchavior as well as for unmeasured process inputs due to periodic changes in the plant

flow configuration which are not recorded in the plant database.

1.2. References

[1] Micheal Lupien, Ed., “Everything you ever wanted to know about Syncrude”
Syncrude Canada Ltd., Public Affairs Department, Fort McMurray, Alberta.

[2] *“Celebrating the science behind the sands” Syncrude Canada Ltd., Syncrude

Research Centre, Edmonton, Alberta.
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2. On-line Sensor Calibration and Performance Evaluation

Without sensors, any form of process control is impossible. For these sensors
to be useful, their output signal (usually some clectrical quantity) must usually be
transformed into a physically meaningful quantity (gencrally engincering units). This
transformation is accomplished using experimentally derived calibration curves. The
accuracy of the sensors depends heavily on how closely the cxperimental conditions
in the laboratory can be matched to the actual service conditions. For simple sensors,
like a temperature sensor for example, matching of calibration and service conditions
is not very critical and when ihis sensor is installed in the field, there is a high degree
of confidence that the reported temperature will be indicative of the actual process
temperature. Another class of seiisors, such as flow sensors, requirc more closcly
matched laboratory and service conditions. If the process fluid to be mcasured is a
single phase material with well dcfined and relatively constant physical propertics,
matching of laboratory condition to the process should not posc any significant
problems, and the resulting calibration will yield representative results. For many
advanced control applications however, measurements of simple stream propertics arc
not sufficient. These applications often rely on sophisticated on-line composition
analyzers. Performir 3 calibrations on this class of sensors can be quite difficult. In
most cases, it is not possible to match the laboratory conditions to the process, which
raises the question of how accurately the readings obtained from the unit reflect
stream composition when it is on-line. In addition, these sensors often exhibit
calibration drift over time and require periodic re-calibration. It would be
advantageous to have some method of verifying the performance of such sensors, and

possibly re-calibrating them, while they are on-line.

Syncrude’s extraction process employs a composition sensor on the oil sand
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feed strecam to the plant, commonly referred to as the Oil Sand Monitor. Even though
this scnsor has been operating in the plant for quite some time, it has not been
possible to verify it's on-line performance until recently. In the remainder of this

chapter, the on-linc performance of the Oil Sand Monitor will be examined.

2.1. Background

In 1983 the first version of the Oil Sand Monitor was installed in the
extraction plant on the feed conveyors. This instrumznt was designed to measure the
bitumen content of the oil sand feed on-line. The unit was a commercially available
instrument intcnded to measure the presence or absence of an oil film on top of
cffluent water. It measured the intensity of two specific wavelengths of light reflected
from the water surface. The wavelengths were selected by two light filters mounted
in a rotating filter wheel. The instrument responded to a change in the ratio of the
intensitics of these two wavelengths. Substantial in-house modificaiions were made
to the instrument in order to measure bitumen content in oil sand. The information
from the Oil Sand Monitor became a vital part of the control strategy for extraction.
The instrument was replaced by a newer version in 1990. Even though this version of
the instrument was optically and mechanically designed to use up to eight light filters,
no provisions were made in the electronics to process information from more than
two. Laboratory tests have shown that, if more wavelengths were available, the
instrument would be capable of measuring other oil sand components in addition to
bitumen. A project was carried out aimed at replacing the analog electronics supplied
by the instrument manufacturer with microprocessor based digital electronics capable
of measuring up to eight signal channels. Several benefits were realized as a result of
this project. The signal to noise ratio was improved by several orders of magnitude,

the instrument drift present in the earlier versions was greatly reduced and the water
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content of oil sand could now be measured. A prototype instrument was installed in
the extraction plant in 1994 and evaluated over an extended period of time. In carly

1996 all instruments in the plant were replaced with the new version.

2.2.  Principle of operation
The oil sand analyzers are based on the principals of Near !nfrared Reflectance
Analysis (NIRA). The oil sand is illuminated by a 250W halogen light source as it
moves past the instrument on the feed conveyor (Figurc 2-1). Some of the light from
this source is diffusely reflected back towards the analyzer, where the intensity of the
reflected light at several wavelengths is measured. One wavclength was selected to
be in a region of the spectrum where the bitumen does absorb (mcasurcment signal),

the other is in a region where the bitumen does not absorb (refercnce signal). The

Analy zer

Figure 2-1: Plant installation of Syncrude's Oil Sand Monitor.
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ratio of the intensities of the reflected light at these two wavelengths indicates the
amount of bitumen in the oil sand. Similarly, two different wavelengths were chosci
(onc as the measurement signal and one as the reference signal) in such a way that

their ratio gives a measure of the water content in the oil sand.

The instrument is designed to operate at a distance of approximately 55 inches
from the oil sand surface and monitors a circular area with a 2 inch diameter. The

accuracy is estimated at plus or minus 0.5% bitumen by weight (absolute).

2.3. Instrument Description

The instrument is divided into two sections. A transmitter housing and a
receiver housing. The two sections are physically separated to prevent overhating ef
the receiver by the lamp. The transmitter consists of a 250W, 115VAC halg; =2 lamp

mounted at the focal point of a parabolic reflector.

The receiver houses the mechanical, optical, and electronic components of the
instrument. The mechanical and optical components are closely related and will be
described together. The light enters the receiver through an infrared transmitting lens,
which focuses the light beam onto the infrared photo detector. A rotating filter wheel,
with provisions for up to eight optical interference filters, is located between the
receiver lens and the detector (Figure 2-2). The purpose of this filter wheel is to
‘chop’ the incoming light beam and pass light at specific wavelengths to the sensing
element. There are seven optical filters and one blank installed in the filter wheel.
The objective of the blank is to block all light to the detector so that an electronic
background reference can be determined. The filter wheel rotates at approximately

3300 revolutions per minute.
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Figure 2-2: Optical measurement system for Oil Sand Monitor.

The electronics for the instrument consist of an analog scction, for pre-
processing the detector signal, an analog-to-digital converter and a digital scction for
data processing and filter wheel synchronization. Data processing consists of
separating the eight serially acquired signals from each revolution of the filter whecl
into their respective channels. The electronic background reference signal is then
subtracted from each of the seven measurement channels and, since NIRA methods
inherently result in quite noisy measurements, ecach channcl is averaged over

approximately 25 seconds.

2.4. Instrument calibration

The instruments are initially calibrated in the laboratory using actual oil sand
samples of known composition. Secondary standards were developed for use in the

field to adjust for instrument drift during normal operation. Both calibration methods
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usc static samples, whercas the process measurement is on a sample moving at
620 feet per minute. During laboratory calibration, a pan of oil sand is placed under
the instrument (Figure 2-3). The surface of the oil sand in the pan is leveled and does
not vary significantly from onc sample to the next. The composition of each sample
has been determined previously by an analytical reference method. In each case, the
instrument averages about 1375 light intensity readings from the same area of the oil
sand sample prior to rcporting a composition value. Any difference observed trom
one sample to the next is solely due to changes in oil sand composition. When the
instrument is taking measurements on-line, the measurement surface changes
continuously. Neither the distance to the instrument, nor the surface orientation and
topography can be controlled. Since the intensity measurements for the different
wavelengths of light are taken sequentially, not even the measurement and reference

signals used in a single ratio calculation are from exactly the same area. Sampling the

! Analysce
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Figure 2-3: Laboratory calibration setup for Qil Sand Monitor.
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o

oil sand on the conveyor belt during normal operation and comparing the laboratory
analysis to the instrument reading is impossible due to the speed of the moving oil
sand. One 25 second average reading of the instrument represents, at nominal feed

rates, approximately 35,000kg of oil sand.

Laboratory calibration of the instrument for bitumen content in the oil sand is
relatively easy, since it changes very slowly when the sample is handled and exposed
to the air. Calibrating for water content is a different matter. The oil sand will lose
water every time it is transferred from the sample container to the pan and also while
it is under the instrument due to the heating effect from the intcnse illumination by the
instrument’s lighi source. This introduces an uncertainty into the calibration curve for

this measurement.

2.5.  Process description

The following is a brief description of the process as it pertains to the model
developed in the next section. A process schematic showing all mcasurcments
relevant to the model is presented in Figure 2-4. Oil sand is fed to the tumbler via
two conveyor belts in series. The first one is the collection conveyor and the sccond
one is the plant feed conveyor. Each of thesc two belts have independent
measurements of feed rate. Hot water (tumbler water) and an aquceous caustic
solution are added to the oil sand as it enters the tumbler. The amount of caustic
solution added is very smal' compared to all the other flow rates (<0.01% by weight
of total flow) and was omitted from the model. Steam is injected at the discharge end
of the tumbler, some of which condenses and adds to the water in the tumbler and the
rest of the steam vents into the atmosphere. The main purposc of the stecam addition

is to raise the temperature of the oil sand and water mixture. The heavy slurry



Page 16

Pate Role

0 tumbie: Waler Stean
! i J
e
- lurnbler
Collectinn

Conveyot Plant 1 eed Rate -
Conveyor
) Flood Waler
Reject

Slurry to PSV

Figure 2-4: Process schematic for the oil sand conditioning section of the extraction
plant showing the location of the process measurements used in the on-line

calibration.

discharged from the tumbler is passed over a set of vibrating screens, which remove
any large, undigested oil sand lumps and rocks. The material that does not pass
through the screens is removed as reject. The rest of the stream is further diluted with
hot water (flood water) in the pump box to form the feed for the primary separation

vessel (PSV), referred to as PSV slurry.

2.6. Model based calibration

Oil sand contains three main constituents: bitumen, water and solids. As long
as only bitumen could be measured 1 was impossible to evaluate the sensor
performance, such as instrument drift for e” 1mple, using any type of material balance
model. With the addition of the water measurement two out of the three components
are now known making it possible to perform an on-line performance evaluation for

this instrument.
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Due to the difficulties in the laboratory calibration for the water measurement,
an attempt was made to derive an on-line, model based water calibration curve. The
hypothesis being, that if this calibration curve is close to the one obtained in the
laboratory, the instrument is giving valid results on-linc and the lab calibration

procedures are valid.

The model encompasses the feed system, the tumbler, the reject system and

the pump box. The definition of the notation used in the model cquations is as

follows:

my, = mass flow rate of water W = water fraction in oil sand

m, = mass flew rate of bitumen B = bitumen fraction in oil sand

mg = mass flow rate of solids FR = oil sand feed rate

m, = mass flow rate of reject TW = tumbler water volume flow ratc
Psum = PSV slurry density FW = flood water volume flow ratc
pim = density of water in PSV slurry SR = steam mass flow rate

Py, = density of tumbler water o = steam condensation factor

py. = density of flood water Chl = water measurement signal

pp = density of bitumen in PSV slurry Ch2 = water reference signal

ps = density of solids in PSV slurry X, = intercept for water calibration . ¢

pr = density of reject X, = slope for water calibration curve

The material balance model used here is based on the PSV feed slurry density,

which can be expressed as a function of process input and output rates:

my, +my +mg — m,
My My Mg m,

P;SVI""'" Ps Ps Py

pSiurrj\' -

(2.1)

Where the mass flow rates of the individual constituents arc as follows:

my, = (W)(FR)+p;, (TW)+a(SR) + ply (FW)
my =(B)(FR) (2.2)
my = (1~ W - B)(FR)
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Substitution of these mass 1w rates into the Equation 2.1 yields:

~ (W)(liR)fr;[)ri',.i(”TlVr)t’a(Sk‘)+p,’,’1(FW)+(B)(FR)+(1—B—W)(FR)—mR 2.3)
Pt = (W)FR)+ py(TW)+ (SR} +p;y (FW) N (B)(FR) N (1- B-W)(FR) _my .

)1’“

Pu Py Ps Pr

Bascd on information gathered during laboratory calibration, the water fraction can be

cxpressed as:

Chi
Ch2

W=Xl-X2

(2.4)

Replacing the water fraction, W, in Equation 2.3 with Equation 2.4 and rearranging
the resulting expression into the form $,X, — B, X, =y, allows it to be solved for X1

and X2 using lincar regression. This leads to the following expression:

(FR)(WJ___L)XI_(FR)(CI;I)( 1 —i)Xz

Surry Sturry

P Py (Ch2) \py™ g
B Q;L(FW)+p,",‘.(TW)+a(SR)+(FR)—mR (2.5)
pSIurr_\'
_pu(TW)+a(SR)+py (FW) m, L (B)FR) (1-B)(FR)
Sturry T
Pw P Ps Ps

Several assumptions had to be made to enable the development of this model:

* Since no reject composition data is available on-line, the long term average

based on lab analyses was used: p, =2.0%.
e Bitumen density is constant at: p, =1.008-£ .
e Solids density is constant at: p, =2.65%

* The steam condensation rate inside the tumbler was fixed at 7¢% resulting

in: a=075.
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e The tumbler water temperature was assumed to be constant at 90°C:

pr =0962%
e The flood water temperature was taken as 80°C: p;, = 0972*¢

e The temperature used for the PSV slurry was also 80°C: p)""" = 0972

2.7.  Data analysis and results

Selection of a good data set for the calibration is critical regardless of whether
it is for an on-line calibration or a laboratory calibration. When samples arc choscn
for a laboratory based calibration, the widest possible composition range is sclected in
order to adequately cover the entire measurement range of the instrument. The
criteria for plant data selection on the ther hand is that the plant was operating in a
stable manner and under control over the entire selected time period. Unfortunatcly,
this is only the case when the feed composition is relatively stable. Conscquently, the
instrument will only be calibrated over a very small portion of its opcrating range. In
this case, small disturbances in the data set will result in large biases for the

calibration constants.

The sample set selected for the lab calibration consisted of 65 oil sand samples
ranging in water content from 0.16% to 9.71% as determincd by Syncrudc’s standard
analytical method for oil sand assay. Each sample was placed under the Oil Sand
Monitor and the readings for channel 1 (water measurement wavelength) and channel
2 (water reference wavelength) were recorded. Care was taken during the handling
and measurement steps to minimize the evaporation of water. The calibration curve
was derived by linear regression of the water content and the ratio on the two channcl

readings for each sample.
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The data set for the on-line calibration was taken from the plant data base.
The sclection critcria was three consecutive days of operation without feed
interruptions and upsets. The criteria could not quite be met and a sample set of 3536
samples covering 59 hours of operation from July 29", 1995 at 13:00 to August 1%,
1995 at 0:00. At each one minute sample step, all ten model parameters were
recorded. One of these, the oil sand feed rate, had redundant measurements which
unfortunately differed significantly from each other. Since the feed rate is a key
variable in the model, the calibration calculations were carried out twice, once using

the plant feed conveyor values and once using the collection conveyor values. The

result are summarized in Table 2-1.

Upon initial inspection, all three results look significantly different. However,
when the calibration curves are plotted (Figure 2-5), it becomes apparent that the
calibration based on the collection conveyor feed rate is much closer to the lab
calibration curve than is the one based on the plant feed conveyor rate over the
calibration ranges. In spite of the visual similarity, based on the 95% confidence limit

intervals these two curves are statistically different.

There is however another way of comparing these results. The standard errors
of 1.94 and 1.05 for the slope and intercept, respectively, for the on-line calibration

appears to be quite low considering the noise present on the data used in the

Lab Calibration On-line Calibration
Plant Feed Conveyor Rate | Collection Conveyor Rate
Value | 95% Limit Value 95% Limit Value 95% Limit
35.27 55.82 49.76
Slope 29.81 2436 51.90 4797 4595 42.15
26.39 33.73 34.25
Intercept 22.84 19.29 31.59 29,46 32.18 30.11

Table 2-1: Summary of calibration results.
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Comparison of Calibration Curves
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Figure 2-5: Comparison of the laboratory calibration curve and the two on-line

calibration curves.

calibration. This is most likely due to the large number of data points for the
regression. Since the on-line calibration is done using a density based model, it is
impossible to distinguish between bitumen, with a density of 1.008 * , and water at
just under 1% . The accuracy of the bitumen measurement has been estimated at
+0.5% absolute. It is reasonable to assume that, since bitumen aﬁd water arc
measured on the same instrument using the same technique, thcir respective
accuracies are of the same order. The way the on-line calibration was carried out, all
the error is associated with the water measurement and the bitumen is assumed to be
absolutely accurate. Therefore, what can be expected is that thc on-line water
calibration should give results that are within +1% absolute of the true value. Over
the valid range for the on-line calibration this holds true for the results obtained when
the collection conveyor feed rate is used. At the upper end of the on-linc calibration

range the absolute difference is 0.85% and at the lower limit it is 0.81%, which is
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within the anticipated +1% absolute accuracy range.

The water content in the oil sand feed over the time period from noon on July
29" to midnight on August 1* is shown in Figure 2-6. As expected, it shows quite
clearly that there is a good agreement between the laboratory calibration and the on-
linc calibration when the collection conveyor feed rate is used. The plant feed
conveyor ratc based calibration shows quite a large bias. Also, the average water
content given by the latter calibration, of approximately 3%, is rather low when
compared with what has been observed when fresh oil sand samples are analyzed
analytically. This is another indication that the other two calibrations yield more

consistent results.

Comparison of Water Rates
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Figure 2-6: Comparison of water content measured using the laboratory calibration
curve (—) and the two on-line calibration curves: based on plant feed conveyor

rate (--x--) and collection conveyor rate (--0--).
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2.8.  Effect of uncertainty in the process measurements

Since each process measurement used in the on-line calibration does have
different amounts of uncertainty associated with it, the effect of this uncertainty was
evaluated. Whenever possible the variance chosen for this test was close to what one
would expect from the type of sensor employed. The analysis examined the effect on
the on-line water calibration one measurement at a time. No attempt was madc to
define an expected variance band that combined the uncertainty of all measurements.
This analysis was carried out on the calibration which used the collection conveyor
for the feed raw, since it is in better agreement with the laboratory based calibration.
In most cases the variations used in this analysis are given as a pereentage change in
the sensor reading. Changing a sensor reading by -5% for cxample, is cquivalent to
saying that the sensor’s output is biased high by 5%. Only sensor bias nceds to be
considered, since random fluctuations around the mean sensor reading arc averaged
out by the least squares calculation, regardless of their magnitude. The biascs

investigated are as follows:

¢ Oil sand feed rate measurement: the oil sand feed rate was varicd by
+10% relative. In light of the discrepancy between the two redundant
measurements for this quantity, this probably does not cover the

complete range of variability.

* Reject density: for this part of the analysis, the effect of fixed reject

densities of 2.25% and 1.75% was investigated.

e PSV slurry density measurement: this data was varied by +2.5%

relative.

e Steam condensation rate: the factor for steam condensation inside the
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tumbler was changed from the nominal value of 0.75 by +33.3%

resulting in o =1.0 and o =05.

e Flood water rate measurement: the flood water flow readings were

changed by £5%, relative, from their recorded values.

e Tumbler water measurement: these values were varied by 5%

relative.

e Bitumen concentration: these readings were changed by +0.5%
absolute, which represents the known accuracy range for this

measurement.

A summary of the limits established by the sensitivity analysis results is given
in Table 2-2. Figures 2-7 through 2-13 are graphical representations of the result of
the sensitivity analysis over the calibration range and compare them to the laboratory
calibration curve. As can be seen in these graphs, in every case the on-line calibration
is only close to the laboratory based calibration over the narrow range over which the
on-line calibration was carried out. Extrapolation beyond this range results in

significant discrepancies betweern the two.

Feed rate variations have the largest impact on the calibration constants only
because of the magnitude of their uncertainty. If the confidence in the feed rate
measurement would be higher, the impact would be greatly reduced. The calibration
method is most sensitive to the slurry density measurement. This in not entirely
unexpected, since the method is based on this parameter. Fortunately, quantities that
are impossible to measure, such as reject density and steam condensation rate inside

the tumbler, have a minimal impact on the results.
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Measurement

X Change in .\| X, Change in Y,
Reference 31.59 44.66
Feed rate +10% (relative) 32.01 1.32% 40.71 -8.85%
Feed rate -10% (relative) 31.08 -1.61% 49.49 10.81%
Reject density fixed at 2.65 & 30.94 -2.08% 44.34 -0.71%
Reject density fixed at 2.00 & 32.44 2.67% 45.07 0.91%
Slurry density +2.5% (relative) 29.80 -5.67% 47.99 7.46%
Slurry density -2.5% (relative) 33.47 5.96% 41.16 -7.84%
Steam condensation +33% (a. = 1.0) 31.25 -1.10% 44.75 0.21%
Steam condensation -33% (a. = 0.5) 31.94 1.10% 44.56 -0.21%
Flood water flow +5% (relative) 31.97 1.20% 46.58 4.30%
Flood water flow -5% (relative) 31.22 -1.20% 42.74 -4.30%
Tumbler water flow +5% (relative) 31.10 -1.56% 44.89 0.53%
Tumbler water flow -5% (relative) 32.08 1.53% 44.42 -0.53%
Bitumen content +0.5% (absclute) 31.12 -1.49% 44.66 0.00%
Bitumen content -0.5% (absolute) 32.07 1.49% 44.66 0.00%
Table 2-2: Summary of sensitivity analysis results.
Effact of Feed Rate Sensor Bias on On-line Calibration
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Figure 2-7: Effect of a 10% relative bias in the feed rate on the on-line calibration

curve.




Page 26

Effect of Reject Density Variations
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Figure 2-8: Effect of errors in the assumed reject density on the on-line calibration

curve.

Effect of Sturry Density S r Bias on On-line Calibration
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Figure 2-9: Effect of a 2.5% relative bias in the PSV slurry density measurement on

the on-line calibration curve.
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Effect of Steam Condensation Factor on On-line Calibration
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Figure 2-10: Effect of changes in the stcam condcnsation fuctor inside the tumbler

on the on-line calibration curve.

Effect of Flood Water Sensor Bias on On-line Calibration
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Figure 2-11: Effect of a 5% bias in the flood water flow rate measurement on the on-

line calibration curve.
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Figure 2-12: Effect of a 5% bias in the tumbler water flow rate measurement on the

on-line calibration curve.
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Figure 2-13: Effect of a 0.5% absolute bias in the bitumen content determination on

the on-line calibration curve.



Page 29

2.9. Feed rate evaluation

The rather large differences between the feed rate measured at the collection
conveyor and the one measured at the plant feed conveyor arc shown in Figurc 2-14.
The feed rate in both cases is determined using a nuclear weigh scale. As has been
pointed out by a scientist at Syncrude’s Research depanmenllI ! the measurement of
feed rate from these units is heavily influenced by the deposition shape of the material
on the conveyor belt. Through simulations he has shown that, using the exact same
mass of oil sand and changing only its distribution across the belt, the feed rate
reading from this instrument changes by up to 20%. The discrepancy in the
observations presented in Figure 2-14 are closc to this valuc. Since the two

measurements are taken on separate conveyor belts that are at right angles to cach

Comparison of Feed Rate Measurements
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Figure 2-14: Comparison of plant feed conveyor (--x--) and collection conveyor
(--0--) feed rates.
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other and have a transfer point between them, it is reasonable to expect that the way
the oil sand is distributcd on the two belts is quite different. An additional source of
crror between these two measurements could be instrument bias, since these units are
quite difficult to calibrate. Figure 2-15 shows a plot of the plant feed conveyor feed
ratc versus the collection conveyor feed rate. The expected relationship between
these two measurements is indicated by the dashed line in this figure. The fact that all
but onc of the data points are above this theoretical line points to the presence of a
bias between the two instruments. However, simple re-calibration can not address the
measurement crrors due to the changing oil sand profile on the belts. On the other
hand, since the general trend in the data is parallel to the expected line, it can be

concluded that the oil sand distribution on the two belts is similar.

Comparison of Feed Rate Measurements
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Figure 2-15: Plot of the plant feed conveyor feed rate versus the collection conveyor

feed rate.
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Total Fe Avcrage Feed Rate
Method for determining feed rate otal Feed kg
(kg) ( ) scc)
Collection conveyor measurement 4 530 665 1 281
Plant feed conveyor measurement 4019 259 1137
Model 4 427 482 1252

Table 2-3: Comparison of different oil sand feed rate determination methods.

It is impossible to devise a truly independent method of determining which of
the two feed rates is closer to the actual one. But, if onc accepts the water calibration
obtained in the laboratory for the Oil Sand Monitor, then the model equations used for
the on-line calibration can be rearranged to calculate a fced rate, which is given by:

_ 030ulPa{[Psum ~ 05 TR (TW) + (SR + Pl (FW)] - 3 m,} - g, i,

PR{P.w.,,,;\-P}f[r"m[P:;(B) +pu(W)-p, - p.\.(B)] + p.\'pn[p;("w = P (W )]}

FR

(2.0)

The assumptions made for o, py,, p;,, P, puy. Py and p, stated carlicr
were not changed for this investigation. A compérison of the two measured and the
calculated feed rates is presented in Figure 2-16. The calculated feed rate, for the
most part, is close to the une measured at the collection conveyor, but docs have
significant deviations at times from either measurement. Table 2-3 summarizes the
total amount of feed over the 59 hour interval used here, as well as the average feed
rate to the plant over this time period. The large discrepancy between the two
measurements has a serious impact not only on both the production and rccovery

calculations for the plant, but aisn ¢ 1% tumbler control loops.
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Comparison of Calculated and Measured Oil Sand Feed Rates
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Figure 2-16: Comparison of the calculated feed rate (—) and the two measured feed

rates: plant feed conveyor (--x--), collection conveyor (--0--).

2.10. Conclusion

For the first time since the initial installation of the Oil Sand Monitor in 1983
the investigation presented here has proven that, in spite of the significant difference
in conditions between the laboratory calibration and on-line operation, the results
obtained from this instrument reflect the true oil sand composition as the material

moves past on the conveyor belt.

Using a model of the process to calibrate an on-line sensor is theoretically
possible, but the accuracy requirements for all measurements that are used in the
model are quite severe and probably can not be met in a majority of the cases. The

observed deviations between the laboratory and the collection conveyor feec rate
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based on-line calibrations are within the expected limits over the valid calibrat.o-

range of the on-line calibration. However, it is quite evident that outside the narrow
on-line calibration range this no longer holds true. This leads to another concern with
model based on-line calibration methods. Since stable plant operation is cssential to
collecting a good data set fo- the calibration calculations, it is unlikely that this
coincides with large fluctuations in the property of interest, resulting in a calibration
over a very narrow range. Extrapolation, usually linear, beyond the calibration range
raises serious questions about the validity of the readings obtained. Random
variability in the sensor readings does not create a problem for on-linc calibration,
provided the data set used is sufficiently large. Biased sensor readings on the other
hand do affect the calibration constants, often significantly, as was secn in the
sensitivity analysis. A sensitivity analysis is a crucial part of the on-linc calibration
process since it can be used to determine if the desired accuracy for the calibration
can be achieved. For example, if it shows that a certain parameter must be known to
an accuracy of £0.1%, but can at best be measured to +1%, then an on-line calibration
is not possible unless the accuracy expectations for the calibration arc lowered. The
conclusion therefore is that a careful laboratory calibration is still the best way of
calibrating an instrument. However, if laboratory conditions can not approximate the
service conditions in the plant, a study similar to this one should be carried out to
confirm that this difference in conditions does not affect the measurement. If the
performance evaluation shows that the laboratory calibration does not yicld
satisfactory results, a model based on-line calibration can be carried out, bearing in

mind all the limitations stated above.

The fact that the feed rate is measured independently in two locations is
fortunate, considering the measurement problems with the nuclear weigh scales.

However, changing the way this measurement is carried out, to make it independent
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of the oil sand deposition shape would have a positive impact far beyond the on-line
calibration and performance evaluation of the Oil Sand Monitor. Nevertheless, even
with the feed rate measurements available today, several improvements to the process
arc possible. As shown in the section on feed rate evaluation, it is possible to use the
modecl developed here to calculate a feed rate, the reliability of which is most likely
greater than the reliability of the actual measurements as they are currently carried
out. This calculated feed rate can be used in determining recovery and throughput
cstimates for the extraction plant. Unfortunately, since the calculated feed rate is
based on the PSV slurry density, which is measured after the tumbler, it is impossible
to use this value for controlling tumbler water and caustic addition. Currently these
control loops use only the plant feed conveyor rate as their input. It would be equally
possible to use the collection conveyor rate for this purpose. A control strategy could
then be devised where the calculated feed rate could be used to select which of the
two feed rates should govern the tumbler control loops. This could be updated at
maybe 10 or 15 minute intervals depending on which of the two rate measurements
was closer to the calculated feed rate over the past interval. While this does not give
optimal control of the tumbler, it would represent an improvement over the current

control strategy.

2.11. References

[1] Dougan, P.D., “An Analysis of Nuclear Weighing Systems in Extraction.”

Confidential internal Syncrude Research report.
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3. Spectral Data Analysis and Filtering

Data collected from operating industrial plants often contains a substantial
noise component. Noise in a data stream arc obscrved variations that are independent
of the process dynamics. These variations can be cither random or systematic. Often
the source of the noise is inherent to the sensors smployed to obtain the data or to the
characteristics of the process equipment and can not be climinated. Carcfut

examination of the »oise component of a signal will lead to better process models and

better controli .lc<ions,

When noisy data is used for process identification, the noisc will incrcasc the
uncertainty in the models that are developed by obscuring the truc dynamics of the
process and in some cases introducing artificial dynamics. Using this data ‘as is’ for
process control will degrade the controller performance and can propagatc artificial

dynamics to other parts of the process.

Filtering of data for identification and control is an effective way of
attenuating unwanted components from the data. At this stage, a good understanding
of the process is essential in defining the parameters of the filter. Unfortunatcly, a
simple time series plot of the data is often not sufficient for filter design. Spectral
analysis of the data is helpful in identifying the frequency components of the signal

on which the filter parameters can be selected.

In the remainder of this chapter, a case study involving the oil sand fecd ratc

signal for Syncrude’s extraction plant will be presented.

3.1.  Spectral analysis of feed rate signal

The data used for this analysis consists of 2820 values collected over a 47
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hour period at the rate of one data point per minute. A time series plot of this data is
presented in Figure 3-1. In order to characterize the nature of the noise present in this
signal, a fast Fouricr transform (FFT) was performed on the data. The frequency
spectrum resulting from this analysis is given in Figure 3-2. Two distinct features
were found in this spectrum: a very sharp peak at a period of 4 minutes and a much

broader peak at 720 minutes.

The 720 minute period corresponds to the 12 hour shift for the plant operators.
It can be interpreted in two ways. One interpretation is that each operator sets the
feed rate for the duration of the shift at a different level. Another explanation could
bc that during the shift change period, the feed rate is temporarily adjusted to
facilitate in some way the transition from one crew to the next. Further investigation

is required to determine which of the twe scenarios is the most likely.

Oil Sand Feed Rate
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Figure 3-1: Time series plot of oil sand feed rate.
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Figure 3-2: Frequency spectrum of oil sand fecd rate.

The feature that has the largest impact on the operation of the tumbler water
control loop is the sharp spike at a period of 4 minutes. This corresponds to the timc
required for the plant feed conveyor belt to make one complete loop. The source of
this disturbance was found to be the measurement system itsclf. Determination of
feed rate is done by using a nuclear weigh scale. A radiation sourcc emits a narrowly
focused beam of gamma radiation down onto the plant feed conveyor belt. The
detector mounted just below the belt measures the amount of radiation that passes
through the oil sand and the belt itself. A decreese in the radiation measured by the
detector is interpreted as an increase in the amount of material on the belt, and hence a
higher feed rate. Conversely, an increase in the observed radiation corresponds to a
decrease in the feed rate. Normally the belt attenuates this radiation by a constant
amount. However, when the section of the belt where the two ends arc spliced

together passes in front of the detector, the attenuation due to the belt is increased.
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The recason for this lies in the belt construction and in the way the belt ends are
spliced togethzr. The belt has @ reinforcing core made up of a substantial number of
steel cables spaced evenly acros: its width. In order to connect © : two ends of the
belt together, the steel cables {rom onie end of the belt are laid alongside the ones from
the other end and the top and bottom rubber layers are sealed together. This in effect
doubles thec number of cables over the distance of the splice section. The decrease in
the radiation seen by the detector due to the increased attenuation caused by the belt
splice is interpreted as an increasc in feed rate. One impact of this is that the feed rate
to the plant will have slight bias. A miore significant impact, however, is the effect on

control loops that use this signal as one of their ir:puts.

3.2. Downstream effects

One of the control loops on which the oil sand feed rate has a direct impact is
the tumbler water control circuit shown in Figure 3-3. The feed rate signal is fed to a
ratio controller that maintains a constant oil sand to tumbler water ratio. The output
from the controller actuates a flow control valve on the water line. Feedback to the
controller is via a flow meter on the same line. A time series plot of both the
controller output and the flow meter output is given in Figures 3-4 and 3-5,
respectively. Spectral analysis of the two signals confirms that the 4 minute spike
passes all the way through the system as shown in Figures 3-6 and 3-7. The fact that
it can be seen in the output from the flow meter confirms that the flow controller
actually reacts to the spike. The effect on the process is that the actual feed rate to
water ratio does not remain constant at the desired level. What, if any, impact this has
on the process is difficult to assess and may in practice not be significant. Another
effect may be an insignificant amount of increase in the hot water consumption. The

most significant impact, from a practical point of view, is the added movement in the
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Figure 3-4: Time series plot of tumbler water controller output.
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Figure 3-5: Time series plot of tumbler water flow.
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Frequency spectrum of tumbler water controller output.
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Figure 3-7: Frequency spectrum of tumbler water flow.
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flow control valve and its actuator, causing added wear of the mechanical

components.

The tumbler water controller output signal and the associated flow rate also
exhibit a significant peak at 720 minutes. This perio.! zorresponds to the twelve hour
operating shifts in the plant. This particular disturbance is much more pronounced in
the tumbler water addition data in the feed rate and probably indicates differences in
the ratio set point between different operators. Unfortunately this can not be

confirmed, since the ratio controller set point is not logged in the plant data base.

3.3. Feed rate data filter design

As identified above, applying a filter to the oil sand feed rate should result in
an improved tumbler water control loop performance. The main objective for the
filter is the removal of the spurious spike at a period of 4 minutes in the frequency
spectrum. The filter chosen for this application was a recursive infinite impulse
response (IIR) type low pass filter. Several filters with a cutoff period of 5 minutes
and an order ranging from one to eight were designed and their performance was
compared (Figure 3-8). The frequency units (F) on the abscissa in Figure 3-8 is

relative to the sampling period of the signal (P ). Table 3-1 summarizes the

sampling

significant points on the frequency unit scale. Frequency units can be converted to

the period ( P) by the following equation:

2P, .
P= sn];;plmg (3 1 )

As can be seen in Figure 3-8, low order filters are not capable of attenuating
the signal at 0.5 frequency units significantly. High order filters on the other hand

remove the offending frequency very well, but exhibit a significant overshoot at 0.35
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Filter Response (Filter Orders: 1 to 8)
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Figure 3-8: Filter performance evaluation.

frequency units. A fifth-order filter was chosen since it represented a good
compromise between these two extremes. Realizing that it is impossible to achicve
the filter specification as outlined in Figure 3-8 (100% of the signal with pcriods of 5
minutes and longer is passed and all of the signal with periods of less than 5 minutes
is removed) several fifth-order order filter designs with different frequency responsc
specifications were evaluated. The one sclected is shown in Figure 3-9. The

frequency design points for this filter are 0.3333 (6 minutes) for the upper limit of the

Frequency Unit j Period (minutes)
0.0 o0
.4 5
0.5 4
10 2

Table 3-1: Significant frequency unit points.
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roll off and 0.4444 (4.5 minutes) for the lower one. It attenuates the undesired spike
with a 4 minute period by more than 90% and exhibits virtually no overshoot. The

cquation for this filter is given by:

y, =00631x, +01485x, , +02182x,_, +01962x, _, + 01186x,_, +0.0308x, 32)

+10222y, , —11235y, , + 05068y, , — 02210y, _, + 00407y, _,

where:  y, = current filter output
v,.; = filter output at the i" previous time step
x, = current filter input
x,_, = filter input at the i previous time step

The time series plot ¢ d the frequency spectrum plot for the filtered feed rate are
shown in Figures 3-10 and 3-11, respectively. As can be seen from the frequency

spectrum, the spike at 4 minutes has been removed without affecting the frequency

Filter Response (Filter Order: 5)
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Figure 3-9: Response of filter used for filtering the oil sand feed rate.
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responsc of the rest of the signal. Furthermore, comparing Figures 3-1 and 3-10, it is
cvident that the feed rate signal has beer smoothed considerably without removing or

distorting any important fced rate fluctuations.

3.4. Simulation results

In order to cvaluate the effect of the filtered feed rate on the amount of water
addcd to the tumbler and on the control effort for the control loop, a simulation was
carricd out. The results for the simulation are given in Table 3-2. To verify the
accuracy of the simulation, it was also carried out on the raw (unfiltered) feed rate

data, establishing a benchmark for the simulation.

As can be seen from these results, the simulation of water addition using the
raw feed rate data agrees well with the actual volume of water added. Using the
filtered feed data, this volume did not change significantly. However, a dramatic
improvement in the control effort was observed. The control effort was defined as the
sum of all incremental cortrol moves carried out over the simulation interval:

N
CE=Y |x;,— x| (3.3)
The percent control effort for the simulation with the filtered feed rate was

referenced to the raw feed data case as follows:

Raw Feed Rate | Filtered Feed Rate
Total volume of water added (actual) 733 185L
Total volume of water added (simulation) 733364 L 733942L
Control Effort (CE) 100.00 % 33.61 %

Table 3-2: Summary of simulation results for the time period from

August 19™ 0:00 to August 20™ 23:00, 1995,
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%CE - CEI:illcrcdl)am_ x 100% (34)

Raw Data
The considerable reduction in the control effort, when filtered feod rate data is used,
implies that the amount of movement of the control valve will also be reduced by that
amount over what is currently the case. This will result in a considerable reduction in
the wear and tear of the tumbler water flow control valve. It must be pointed out
here, that the reduction in control effort shown by this simulation represents a very
conservative estimate >f what can be achieved in the plant by filtcring the feed rate
signal. The reference data used here was collected at onc minute intervals.
Therefore, any control fluctuations with a period of less than two minutes arc not
visible in this data set, and therefore are not included in the calculation of CF,, .-
This results in a low estimate for tnis value. However, these more rapid fluctuations

would also be removed by the low pass filter.

Figure 3-12 shows a plot of the tumbler water flow rates for the raw and
fitered data case. For clarity, the scales for the two water rates have been shifted by
100 L. The scale on the left is associated with the raw feed rate case (lower tracc)
and the scale on the right with the filtered data case (upper trace). The reduction in
control effort is quite evident in thic graph. The upper trace shows a significant
reduction in high frequency variations while still matching the water rate closely wi‘:

true shifts in feed rate.

3.5. Conclusion

Spectral analysis of process data offers a unigue way of pinpointing periodic
abnormalities in a set of data. In the case of the oil sand feed rate measurement, it
was possible to identify the source of the spurious signal. Eliminating the spike with

a period of four minutes in the frequency spectrum by applying a low pass filter to the
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Simulated Tumbler Water Rates
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Figure 3-12: Comparison of tumbler water flow rates based on unfiltered and filtered
feed rates.

signal resulted in a significant reduction in the control effort. This is expected to
increase the service life of the water flow control valve substantially. It will result in
a direct saving in maintenance cost without requiring any expenditures, since the
ability to filter incoming signals is built into the digital control system. It has been
shown through simulation, that the oil sand to water ratio is not affected by the feed
ratc data filter ar.i that all ‘true’ fluctuations in feed rate are still matched by the

control loop.
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4. Time delay estimation for PSV model

Estimating the time delay between the inputs to a plant and its outputs is an
important and necessary step not only in the development of a model, but is also
essential when designing a controller for a process. Many modeling technigues can
not accommodate time delays between the input and output data. It is thercfore
necessary to shift data in the input block with respect to each other and with respect to
the output data, in order to arrive at a data set that has all time delays removed before

trying to model a plant.

The data set for modeling the primary separation vesscl (PSV) in the Syncrude
extraction plant consists of 11 inputs and 4 outputs as shown in the block diagram in
Figure 4-1. A process schematic outlining the physical location of thc measurcments

i1s given in Figure 4-2. The difficulty in finding a suitable data set for this
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Figure 4-1: Block diagram of primary extraction circuit.




Page 50

Figure 4-2: Schematic for the primary extraction circuit showing the physical

location of the sensors.

investigation is that the PSV has two sources for it’s feed slurry. One is the original
feed system shown in Figure 4-2 and the other is the auxiliary feed system (see Figure
1-1 for a complete schematic). The auxiliary feed system can account for up to 25%
of the total material entering the PSV. Unfortunately, it is very poorly instrumented
and neither composition nor flow rate data is available for this stream. The
implication of this is, that if a data set were used frc.a a time when this feed system
was operating, any model developed with this data set would be distorted by this very
significant unmeasured ‘disturbance’. When scanning the plant data base for a data
set that could be used for deriving a model for the PSV, five days were found when
the auxiliary feed system was shut down. These were four consecutive days from

September 4" to September 7", 1995, and 24 hours on September 9", 1995. Each 24
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hour period consists of 1440 data values for each variable. Tables 4-1 and 4-2 givc a
brief description of the input and output data respectively. Duc to the inaccuracy of
the two oil sand feed rate measurements, as explained in Chapter 2, the calculated
feed rate, based on the material balance equation presented in the same chapter, was

used as the feed rate input.

The challenge in determining time delays for a multiple-input system is that

Measurement

Description

% Bitumen

Bitumen content of oil sand feed as measured by thc OSM.

% Water

Water content of oil sand feed as measured by the OSM.

Gamma Count

Measurement of naturally occurring y radiation (Potassium 40)

from oil sand - related to clay content of the oil sand feed.

Oil Sand Feed Rate | Calculated, based on PSV feed density.
PSV Feed Density | Density of slurry feed to the PSV.
Tumbler Water Water flow rate into the tumbler.
Flood Water Water flow rate into the pump box.

Caustic Flow

Flow rate of NaOH solution into the tumbler.

Steam

Steam addition rate to the tumbler.

Interface

Interface level between froth and middling layers insidc the
PSV.

Reject Rate

Rate of reject material removed from the tumbler slurry

Table 4-1: Summary of process inputs.

Measurement Description
Froth Dielectric Proportional to the water content of the froth.
Middling density Density of the water layer below the froth in the PSV.
Froth density Density of the froth at the top of the PSV.
Froth flow PSV product flow rate.

Table 4-2: Summary of process outputs.
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the time dclay estimate must be done on a one input to one output basis. In this case,
all other inputs, which may or may not influence a given output must be ignored.
This makes determining the delay for that particular input — output pair difficult, since
the intcraction between the two signals may be masked by the other inputs. Four
methods werc used here to determine the time delays: cross-correlation, impulse
response cocfficient estimation, transportation delay estimation and a hybrid method

combining the first two with the transportation delay method.

4.1.  Use of cross-cerrelation for time delay estimate

02 compares how

The first method evaluated here was cross-correlation.
well the input and output signals match when they are shifled w:th respect io eacn
other one sample interval at a time. The number of shifts (lags) with the largest cross-
correlation value represents the time delay in number of sample intervals between the
two signals. To determine the time delays for the PSV data, a cross-correlation

analysis for each input with each output (for a total of 44) was carried out for each of

the 5 days.

To get an idea for what kind of results could be expected from this method, a
simple simulation of a second order system with delay, including coloured noise, was
carried out. The results of this simulation are plotted in Figure 4-3. The transfer

function used is as follows:

. 0.75¢7° +05¢™°
" 1-025¢7" +05¢™

i+ noise “4.1)

It can be quite clearly seen that the number of lags, and hence the time delay

of the system, where the highest cross-correlation value occurs is at 5 sample
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Figure 4-3: Cross-correlation results for simulation of second order system with

delay and coloured noise.
intervals.

The cross-correlation function used here is normalized, thercfore for N

number of data points in each data vector, the highest value over the entire rangc from

-N to +N number of lags will be 1.0. Even though the cross-correlation is carried out

over this range, only the region of interest, from 0 to 20 lags, is shown in Figure 4-3.

Applying the identical analysis to the plant data yielded quitc different results.
In the past, it had been observed that the clay content of the oil sand (y count) had an
effect on froth quality (froth dielectric). Of the five days examined here, only 3 gave

any indication of a correlation between the two signals. Figures 4-4 and 4-5 arc an
example of this. They show the cross-correlation results for September 4™ and
September 5" respectively. The very broad peak in these plots arc duc to the
influences of some of the other inputs on the froth dielectric reading. For Septcmber

4™ the curve reaches 1.0 at lag 22, giving a 22 minutc time delay. For September 5

th
2
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Normalized Crosscorrelation Function (Gamma Count - Froth DE)
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Figure 4-4: Cross-correlation result for y count and froth dielectric for September 4",

1995
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Figure 4-5: Cross-correlation result for y count and froth dielectric for September 5“‘,

1995
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however, the maximum value within the region of interest is just under 0.6, rather
than the expected 1.0, indicating that the highest correlation between the two data
vectors is outside the physically feasible region for this process. For the other two
days 1hat gave estimates for the time delay, the results were 29 minutes (Scptember
7™ and 5 minutes (September 9‘“). Even though these differences appear to be quite
large. these results are in better agreement than many others in this data sct. Very few
input - ot combination gave consistent results. Table 4-3 summarizes the results
of all cross - reelation time delay estimates. Blank cells within this table indicate

that no time dclay estimate could be obtained.

4.2. Use of impulse response coefficient estimation for time delay

determination

Another method investigated was the use of impulse responsc coefficicnt
determination to obtain the time delays.[3| When these coefficients arc plotted, the lag
of the first coefficient that falls outside the confidence interval around zero represents

the delay of the system.

A simulation using the transfer function described in the previous section was
performed for this method as well using the transfer function given in Equation 4.1.
A plot of the impulse response coefficients resulting from this simulation is given in

Figure 4-6. Again, the 5 minute delay for this system is unmistakable.

As with the cross-correlation method, the plots for the process data were quite
different from the simulation. First of all, using the raw process data did not give any
sensible results. Each input — output pair in the data set gave essentially the same

result (Figure 4-7): the largest impulse response was at zero lag, indicating no time
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September

Input Output 4" 5" 6" 7™ 9"
% Bitumen Froth Density 15 15
% Water in Oil Sand Froth Density 75
y Count Froth Density
Caustic Rate Froth Density 15
Feed Density Froth Density 38
Feed Rate (calc.) Froth Density 22 32
Flood Water Rate Froth Density
PSV Interface Position | Froth Density
Reject Rate Froth Density 41
Steam Rate Froth Density
Tumbler Water Rate Froth Density 7
% Bitumen Froth Dielectric 33 26
% Water in Oil Sand Froth Dielectric
¥ Count Froth Dielectric 22 29 25
Caustic Rate Froth Dielectric 32 17 26
Feed Density Froth Dielectric
Feed Rate (calc.) Froth Dielectric 51
Flood Water Rate Froth Dielectric
PSV Interface Position | Froth Dielectric
Reject Rate Froth Dielectic 55
Steam Rate Froth Dielectric
Tumbler Water Rate Froth Dielectric
% Bitumen Froth Flow 16
% Water in Oil Sand Froth Flow 8
v Count Froth Flow 72 70
Caustic Rate Frotb Flow 84 65
Feed Density Froth Flow 9 38 30
Feed Rate (cz 7) Froth Flow 46 33
Flood Water i le Froth Flow
PSV Interface 'ssition | Froth Flow 37
Reject Rate Froth Flow 44 60 39 58
Steam Rate Froth Flow
Tumbler Water Rate Froth Flow 37 27
% Bitumen Middling Density 14
% Water in Qil Sand Middling Density
v Count Middling Density 20 25 16
Caustic Rate Middling Density 7 9
Feed Density Middling Density 5 6 36 4
Feed Rate (calc.) Middling Density 9 15 10 12
Flood Water Rate Middling Density
PSV Interface Position | Middling Density 34
Reject Rate Middling Density 36 14 5 7
Steam Rate Middling Density
Tumbler Water Rate Middling Density 5 9

Table 4-3: Time delay estimation results (minutes), based on cross-correlation.
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Impulse Response

Impulse Response Estimation (Normal Input and Output, Coloured Noise)
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Figure 4-6: Impulse response coefficients for a simulated second order system with

delay and coloured noise.

impulse Response
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Figure 4-7: Impulse response coefficients for y count and froth dielectric for

September 4™, 1995, using raw process data.
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delay whatsoever and subsequent coefficients alternate between positive and negative

values and their magnitude was decaying exponentially.

In an attempt to improve the impulse response coefficient determination, the

data sct was normalized using the following equation:

XiTh (4.2)

where:  x, = raw data value

r, = scaled data value
X = mean value of the data set
o, = variance of the data set

Repeating the impulse response determination using normalized data yielded
results that were closer to what was expected. Unfortunately these were no more

consistent than the cross-correlation results. Figure 4-8 shows the impulse response

Impulse Response Estimation (Gamma Count- Froth DE)
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Figure 4-8: Impulse response coefficients for y count and froth dielectric for

September 4™, 1995, using normalized process data.
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coefficients for the y count and froth dielectric input - output pair for September 4™,
The first significant (non zero) impulse response coefficient occurs at a lag of 17. For
the September 5™ data (Figure 4-9) no significant impulse response cocefficients were
found. For the other days, only September 7" (16 minutes) and Scptember 9" (14
minutes) gave significant impulse responses. The fact that the days that did not yicld
any results for this input — output pair are the same as for the cross-corretation method
is purely coincidental. Many incidences were found were onc method gave a time
delay estimate and the other did not. Tabie 4-4 summarizes the results of all impulse

response based time delay estimates.

Impulse Response Estimation (Gamma Count- Froth DE)
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Figure 4-9: Impulse response coefficients for y count and froth dielectric for

September 5" 1995, using normalized process data.
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September
lnput Outpul 4xh Slh 6lh 7lh ()lh
Y Bitumen Froth Density 49 15
% Water in Oil Sand Froth Density 57
[ Count Froth Density 57 5 35 10
Caustic Rate Froth Density
Feed Density Froth Density 14 12
Feed Rate (cale.) Froth Density 17
Flood Water Rate Froth Density 31 11 44
PSV Interface Position | Froth Density 13
Reject Rate Froth Density 24
Steam Rate Froth Density 12 29 4
Tumbler Water Rate Froth Density 11
% Bitumen Froth Dielectric 42 8 10 9
% Water in Oil Sand Froth Dielectric 17 7
¥ Count Froth Dielectric 17 20 16 14
Caustic Rate Froth Dielectric
Feed Density Froth Dielectric 3 10
Feed Rate (c. Froth Dielectric 46 3 5
Flood Water k Froth Dielectric
PSV Interface ! aon | Froth Dielectric 3 11
Reject Rate Froth Dielectric 32 23 25
Stcam Rate Froth D:electric 3
Tumbler Water Rate Froth Dielectric 7
% Bitumen Froth Flow 11 11 14
% Water in Oil Sand Froth Flow 5
—y Count Froth Flow 11 54
Caustic Rate Froth Flow
Feed Density Froth Flow 37 1 4
Feed Rate (calc.) ¥roth Flew 38 6
Flood Water Rate Froth Flow
PSV Interface Position | Froth Flow 2
Reject Rate Froth Flow 37 1
Steam Rate Froth Flow 7
Tumbler Water Rate Froth Flow 9
% Bitumen Middling Density 8 9
% Water 1n Oil Sand Middling Density 5
v Count Middling Density 12 5 6
Caustic Rate Middling Density
Feed Density Middling Density 2 1 1 5
[ Feed Rate (calc.) Middling Density 7 4 7 6
Flood Water Rate Middling Density 6
PSV Interface Position | Middling Density 7
Reject Rate Middling Density 3 21
Steam Rate Middling Density 26
Tumbler Water Rate Middling Density 26

Table 4-4: Time delay estimation results {minutes), based on impulse response.
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4.3.  Trarsportation time based time delay estimation

In confrast to the first two mecthods described here, this one does not rely on
actual plant process measurements. It offers the advantage of being able to determine
the delay between a particular input and output independently.  For pure
transportation delays (conveyor belts, pipes etc.) it is casy to arrive at a good estimate.
However for delays that occur within a process unit, such us delays within the PSV,
this method may give rather unrcliable estimatcs. The transportation delays for the
different sections of the process are given below using the Oil Sand Monitor location

as the reference point:

e The transit time for the oil sand from the place where the Oil Sand
Monitor and y Analyzer are located on the plant feed conveyor to

the tumbler entrance (front end) is 2 minutes.

e The inputs used for calculating the feed ratc were adjusted to give
the rate at the location of the Oil Sand Monitor, hence no time

delay.
e The residence time of the material inside the tumbler is 3 minutcs.

e The steam discharge pipes inside the tumbler run approximately
two thirds of the length of the tumbler from the discharge end
towards it’s front, giving an average differcnce from the time the
stcam flow rate is measured until the water from the condensed

steam is discharged from the tumbler of 2 minutes.
¢ The tumbler discharge tc pump box time difference 1s negligible.

e The tumbler discharge to the reject ratc mecasurement time
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difference is 1 minute.

e The delay from the pump box to the PSV feed distributor is about

1 minute.

The time delays for the inputs are summarized in Table 4-5. Delays given in the table
are with respect to the feed distributor inside the PSV and indicate how many minutes

ago a particular input quantity was measured.

Estimat.ng the delays inside the PSV is somewhat more tenuous. The time
required for aerated bitumen droplets to rise through the middling layer to the froth —
middling interface is, at the very least, a function of middling density, middling
viscosity, turbulence inside the vessel and the amount of air attached to the droplet.
These parameters are not known and probably vary considerably. It is therefore
impossible to determine a delay for this part of the process. Another time delay that

can not be ascertained by this method is the one between the feed distributor and the

Input Time Delay (min.)
% Bitumen in oil sand feed 6
% Water in oil sand feed 6
Y count for oil sand feed 6
Oil sand feed rate 6
Tumbler water rate 4
Caustic rate 4
Steam Rate 3
Flood water rate 1
PSV feed density 1
Reject Rate 2

Table 4-5: Summary of transportation delays up to the PSV feed disiributor.
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middling density meter on the middling withdrawal line. However, the large volume
of middling inside the PSV, in the order of 1 450m", rcsults in very slow process
dynamics, compared to which the time delay is most likely insignificant.
Determining the rise time for bitumen through the froth layer is somewhat casicr. If
one assumes that the froth layer hehaves as a plug flow, the average froth flow rate
and the average froth volume inside the PSV can be used to estimate the time it takes
for a particular bitumen droplet to travel from the middling -- froth interface to the top

of the froth layer and exit the PSV. This results in the following expression for the

delay:
o 1000 70(r Y Fyn
t‘; th — —(—I.\l) Frotl (43)
’nl"rnlh
5/":‘0//:
where: 1, =radius of PSV (9.45m)
s, = nominal height of froth laycr (0.8m)
m,,.., = average froth mass flow rate (fj;)
Prom = average froth density ("7‘)
The data and results for the ti. ~~ "¢'., .+ .tes for the froth layer arc presented in

Table 4-6. Considering the inconsisten! cstimates obtained by the previous two
11ethods, the results in Table 4-6 are remarkably close. A valuc of 18 minutes will be

used for overall time delays for this part of the process.

Date Average Froth Flow | Average Froth Density | Time Delay Estimate
(:—i) (5,*-) (min:scc)
September 4" 172.5 0767 | 16:38
September 5" 159.2 0.831 i 19:32
September 6" 171.1 0.844 18.27
September 7" 154.2 0.821 18.43
September 9" 156.6 0.788 18:49 |

Table 4-6: Data and results for the froth layer time delay cstimaticn.
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Inputs Ontputs
Froth Dielectric | Middling Dens. Froth Density Froth Flow
% Bitumen 24 6 24 24
% Water 24 6 24 24
¥ Count 24 0 24 24
Feed Rate 24 6 24 24
PSV Feed Dens. 19 1 19 19
Tumbler Water 22 4 22 22
Flood Water 19 1 19 19
Caustic Flow 22 4 22 22
Steam Rate 21 3 21 21
Interface 0
Reject Rate 20 2 20 20

Table 4-7: Matrix of time delays, in minutes, based on transportation delays only.

Since the top surface of the froth is fixed by the rim of the PSV, any
movement in the froth — middling interface is reflected immediately in the froth flow

rate, giving a zero time delay between the two measurements.

The results obtained thus far can be combined into time delay estimates for the
process. A summary of these estimates is given in Table 4-7. It must be noted
however that these estimates do not include the delays incurred in the middling layer,

since these are impossiblc to estimate by this method.

4.4. Hybrid method for time delay estimation

One way of working around the limitations of a simple transportation delay
approach to delay time determination is to combine it with one of the process data
based determinations presented in the first two sections of this chapter. This approach
weuld use the transportation delay method for the process up to the PSV feed
distributor, where this method yield very reliable results, and use cross-correlation

and/or impulse response coefficients for the PSV delays.
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Figure 4-10: Block diagram of PSV input — output signals for PSV time delay

estimation

The advantage of using the process data based methods only on the PSV is
that instead of having to deal with eleven interactive inputs, the system is now
reduced to four: namely the bitumen, water, solids and caustic which make up the
PSV slurry. A block dia tam for the 47~ only is given in Figurc 4-10. The slurry
mass flow rates and composition can . - 5ained from the following material balance

equations:
Mass flow rate of water in the PSV slurry:
m = (W)(FR)+ ply(TW)+ (SR) + pL(FW) ~ (W){em, ) (4.4)
Mass {low rate of solids in the PSV slurry:
mg"™ = (i— W~ B)(FR)~(1- W - B)(m,) (4.5)
Mass flow rate of bitumen in the PSV slurry:

m,"" =(B)FR)-(B)(m,) (4.0)
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Mass flow rate of caustic in the PSV slurry:

Sturrs (W)m,)(m.)

m." =m, - . - (4.7)
(WY FR)+py(TW) + a(SR) + m,.
Mass fraction of water in the PSV slurry:
Sturry
Sturry__ . ’”Ii’ (4 8)
iy = Sty — Turr arre .
"'iz,lmr\ +"l:'/mr\ +’".I:lurl\ + ’n;\‘lurr)
Mass fraction of solids in the PSV slurry:
Surry
Nurry R "13‘ (4 9)
Ay - T s X 3 . T .
HI,':,I‘"“ + ”I..:‘l.ll‘l‘l +’";Iurn + '":'I“ v
Mass fraction of bitumen in of the PSV slurry:
Sturry
Starry ’nR ’
A - Slurry Sturry Sturry Sturry (4 1 0)
my, + Mg + my + me
Mass fraction of caustic in of the PSV slurry:
Sturry
Sturry "1( -
X = — . . , 4.11)
”1‘:{llrl\ + 'n;Iurr_\ + nl;lu Y +’n(5‘[mr\

The following notation was used in Equations 4.4 through 4.11:

m. = mass flow rate of caustic to tumbler

m, = mass flow rate of reject

Sturry

m"" = mass flow of caustic in slurry
niy"™ = mass flow of bitumen in slurry
my""™ = mass flow of solids in slurry
my"™ = mass flow of water in slurry
X" = mass fraction of caustic in siurry
X3 = mass fraction of bitumen in slurry
X" = mass fraction of solids in slurry

_Slurry

Xy = mass fraction of water in slurry

p,, = density of flood water
p;. = density of tumbler water
o = steam condensation factor
B = bitumen fraction in oil sand
W = water fraction in oil sand
FR =oil sand feed rate
FW = flood weter volume flow rate
SR = steam mass flow rate
TW = tumbler water volume flow rate
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The results for the PSV delay estimates arce given in Tables 4-8 and 4-9 for the

cross-correlation and impulse responisc methods respectively. It is clear from these

summaries, that the estimates, even though somewhat more consistent in some casces,

are still not very reliable.

September

Input Quiput 4" 5" o" 7" o
Water mass flow Froth Dielectric
Bitumen mass flow Froth Dielectric 32 10
Solids mass flow Froth Dielectric
Caustic mass flow Froth Dielectric 28 14 23
% Water Froth Dielectric
% Bitumen Froth Dielectric 29 15
% Solids Froth Dielectric
% Caustic Froth Dielectric 28 19 22
Water mass flow Middling Density 0
Bitunen mass flow Middling Density 15 30
Solids mass flow Middling Density 4 7 S
Caustic rass flow Middling Density 3 6
% Water Middling Density S 9 34 4
% Bitumen Middling Density 7
% Solids Middling Density 5 7 s 4 13
% Caustic Middling Density 3 6
Water mass flow Froth Density 13
Biturnen mass flow Froth Density 11 1
Solids mass flow Froth Density O 27
Caustic mass flow Froth Density 12 35 )
% Water Froth Density 14 2
% Bitumen Froth Density 11 2
% Solids Froth Density 38 6 27
% Caustic Froth Density 12 35
Water mass flow Froth Flow 36 25
Bitumen mass flow Froth Flow 35 8
Solids mass flow Froth Flow 28
Caustic mass flow Froth Flow
% Water Froth Flow 7 30
% Bitumen Froth Flow 8
% Solids Froth Flow (] 30
% Caustic Froth Flow 28

Table 4-8: Summary of PSV time delay estimates (minutes) based on feed siurry

compcsition using cross-correlation.
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Septemb.r

Input Output 4" 6" 7™ 9"
Water mass flow Froth Dielectric 4
Bitumen mass flow Froth Dielectric 19 9
Solids mass flow Froth Dielectric 19 14
Claustic mass flow Froth Dielectric 15
% Water Froth Dielectric 19 3 10
% Bitumen Froth Dielectric 19 13 5 3
% Solids Froth Dielectric 30 10
% Caustic Froth Dielectric 21 1
Water mass flow Middling Density 3 4
Biturmen mas: flow Middling Density 3 3 1 1
Solids mass flow Middling Density ] 3 1 1
Caustic mass flow Middling Density 30 1
Y% Water Middling Density 2 3 1 5
% Bitumen Middling Density 3 3 3 5
% Solids Middling Density 2 7 2 5
% Caustic Middling Density 2
Water mass flow Froth Density
Bitumen mass flow Froth Density 24 1
Solids mass flow Froth Density 1
Caustic mass flow Froth Density 11
% Water Froth Density 12 1
% Bitumen Froth Density 12 24 1
% Solids Froth Density 1
% Caustic Froth Density 11
Water mass flow Froth Flow 2
Bitumen mass flow Froth Flow 6 6 1
Solids mass flow Froth Flow 33 11 1
Caustic mass flow Froth Flow
% Water Froth Flow 14 4
% Bitumen Froth Flow 6 6 1
% Solids Froth Flow 19 1 4
% Caustic Froth Flow 20

Table 4-9: Summary of PSV time delay estimates (minutes) based on feed slurry

4.5. Tine delay variability

composition using impulse respense coefficients.

While some of the time delays for this process are constant, others exhibit

significant fluctuations. In this section the different time delays will be examined for

their variability individually.

The transportation delay for the oil sand on the conveyor belt is the same
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regardless of how much material is being processed. It depends only on the speed of

the conveyor belt which is constant. The same holds true for the reject measurement.

The residence time in the tumbler on the other hand is dependent not only on
the oil sand feed rate, but also on the amount of tumbler water added. ['his process
unit has, for all practical purposes, a fixed volume. Therefore, as the amount of
material that is fed into the unit increases, the residence time decrcases resulting in a
shorted time delay. Fortunately, this variability is relatively small: no more ti = + |

minute over the normal feed rate range.

The reject screen and the pump box have almost no time delay whatsoever and
thus do not contribute to ik : variability of the total delay in the system. Also, the
delay in the slurry pipe between the pump box and the PSV, whilc having some
dependency on the volume that passes through it, has a negligible contribution to the

overall time delay fluctuations.

The part of the process that contributes the most to the changes in time delay
is the PSV. Since it was not possible to determine delays for the middling layer, it is
equally impossible to arrive at an estimate for it’s changes. The plug flow model
(Equation 4.3) discussed earlier, on the other hand lends itself well to a detailed
analysis. The two factors that affect the delay in the froth iayer arc it’s thickness and
the froth flow rate. The nominal thickness of this layer is 0.8m, but it can casily vary
by as much as +0.2m. Using a constant froth flow rate cqual to the average flow rate
and average froth density recorded in the September 4" data sct (172.48  and
0.7666*,—{’ respectively) the minimum, average and maximum time delay was
calculated. The results are presented in Table 4-10. The second causc that was

identified for changes in the dead :ime of the froth layer was froth flow rate.
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Thickness of Froth Layer Froth Volume Time delay
(m) (L) (minutes)
0.6 168,330 12.5
0.8 224,440 16.6
1.0 280,550 20.8

Table 4-10: Time dclay variability due to changes in the froth layer thickness at a

constant froth flow rate.

Assuming a constant froth thickness, Figure 4-11 shows the difference in the time

delay based on the plug flow model for the September 4™ data. The variations

indicated here are also quite considerable ranging from 12.9 minute to 19.5 minutes.

In reality the two variations discussed here separately combine giving a considerable

uncertainty in any time delay estimate.
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Figure 4-11: Tire delay variability due to changes in froth flow rate at a constant

froth layer thickness.
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4.6. Conclusion

Fiiding a good method for time delay estimation is difticult for complex,
highly interactive systems. The methods relying solcly on process data yiclded very
inconsistent and inconclusive results, in part due to input - input interactions that can
.ot be taken into account. The most significant cause for the poor results from the
cross-correlation and impulse response estimation methods was the high variability in
the actual time delays. The delay time for the froth layer is most likely the biggest
single source of variability. In general, when results were obtained by both cross-
correlation and impulse response estimation, the time delay from the latter method

was the shorter of the two.

The transportation delay basc! method gave good delay cstimates for the plant
up to the PSV and also gave relatively close results for the 24 hour averages for the
delay in the {roth layer. However, no delays associated with the middling layer could
be obtained. Quite possibly though, the delay within the middling layer is small
relative to the time constant of any processes within it due to the very large volume of
middling in the PSV (approximately 1 450m"). and can be ncglected. The analysis of
the plug flow model for the froth layer did give some estimate of the short term

variability in the time delays.

The hybrid method did not yielded much better results than the first two
methods. Again most likely due to the extreme variability of the froth layer dclays.
Even though reducing the dimensionality of the system did only yicld a small
improvement in the consistency of the results for most input — output combinations,
some of the values obtained, especially by the impulse response coefficient cstimates,
did show some similarity and supported the delays calculated for the PSV by the

transportation delay method.
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What this investigation clearly points out is that a ‘black box’ approach to
time delay cstimation in the case of a complex, highly interactive plant does not yield
very reliable results. It is important, that any knowledge about the process is
incorporated into the time delay estimation even though the possibility exists that bias
is introduccd into the estimate and that verifying the results through the use of process

data may, at best, be difficult.
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S. PLS Analysis of Extraction Data

The computer based control system in the Extraction Plant at Syaerude
collects a vast amount of process data. Currently this information is only used by the
operators for the immediate control of the process. All data is stored once per minute
in a large data base. This data basc represents a vast amount ¢ information that, at
present, is only sparsely utilized. The difficulty in analyzing this data, aside from the
sheer number of entries (over 23,000 measurements per day for the part of the
extraction circuit considered here alone, and in the neighborhood of 200,000 for all of
extraction), lies in the complexity of the correlation between the measurements.  In
addition the reliability of many of the measurements is poor and often considerable

noise is present in the data.

For a detailed description of the extraction process please refer to Chapter 1 of

this thesis.

¢ been made in the past to develop modcls for the process based

0 ationc. but many of the key mcasurements nceded for them are
all. or are only available on a very infrequent basis. Since the

-ges continually, frequent mcasurcments arc cssential for

Many of the parameters affecting the performance of the

_aiation Vessel (PSV), which would alfow for the calculation of product

quality and quantity fer example, can not be ascertained theoretically, and therefore

are difficult to include in a theoretical model.

5.1.  Objectives

The operating objectives for the extraction plant arc quite simple: recover the
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maximum amount of bitumen from the feed in the form of high quality (i.c. low water
content) froth with a minimum amount of process inputs, such as caustic, hot water
and stecam. Currently there is very little automated help available to the operator to
help him/ber achieve this goal. They mainly rely on their past expericnce and

feedback from the froth quality sensor to decide on operating parameters.

The objective of this study is to develop an empirical model of the process
that will give the operator an indication of the quality of froth and the recovery of
bitumen from the PSV for the current feed composition and operating conditions.
The long time constants for the process and the very high throughput rates translate
into a significant economic incentive for making this information available to the
operators. For example, if the process conditions arc not optimized for a particular
feed grade, it will take over 30 minutes until the froth quality monitor will indicate
poor froth quality and it will take an equal amount of time for the process to respond
to the operator’s corrective actions. During these 30 minutes, approximately 375,000
kg of poor quality froth will have been produced. A similar scenario holds truc for

bitumen recovery.

Due to the large number of variables and thc high degree of corrclation
between them, many of the traditional statistical techniques, such as multiple lincar
regression analysis for example, either give very unreliablc resuits or fail outright.
Development of the Partial Least Squares (PLS) mcthod was started by H. Wold in
the mid 1960’s and many refinements have been added subsequently by S Wold and
coworkers.!"* *?! Unlike Multiple Linear Regression (MLR), this mcthod is capable
of handling large, ill-conditioned, highly cotrelated and noisy data sews. In addition, 1t
will identify the key variables that have the largest impact on the process output. The

implication is that this method will take a high dimensional process and give the best
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possible lower dimensional model. Identification of these key variables and how they
affect the process means that the operator can control the process by monitoring only

a few parameters closely instcad '! paramcters, a much more manageable task.

5.2.  Sensitivities of the PLS mcthod

Beforc applying PLS, or any other method for that matter, it is important to
identify the limitations of the technique in the context of the available plant data.
Most process identification methods, including PLS, are not able to cope with time
delays (dead time) in the process. The input and output data must therefore be shifted
to remove any dead time from the data set. Determination of the time delays for the
cxtraction process has proven to be rather difficult (see Chapter 4) and the results
obtained were not very rcliable. Also, this method is essentially a steady-state
identification technique. Since the oil sand processed in the extraction plant is a
highly variable and non-homogeneous feed stock, the plant is, in reality, never at
stcady-state. A simple three input, one output model was used to examine these
cffects on the PLS results. In transfer function form, the model used in the following

investigations is given by:

-7 -5 -10
y=|-—L e _____ 4 __|, (5.1)
1-06g™ 1-075¢" +05¢° 1-09¢™" ||
A

As can be seen from the above equation, this investigation was carried out on

a noisc free system.
5.2.1. FEffect of non steady-state condition on PLS results

In order to examine this effect, one must compare the response of the process

fo the frequency content of the input signal. Figure 5-1 shows the step response for
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the threc individual transfer functions in the model. The top chart shows that the
transfer function for 1, has a very fast response time.  The middle chart also exhibits
a fast initial response, but rt  cs somewhat more time to reach steady-state. The
third transfer function, bottom chart, has the slowest response of the three. For the
first simulation the input signals were designed in such a way that changes in the
input did not occur any faster than twice the time required for their respective transfer
functions to reach steady-state. Figurc 5-2 gives the three input signals used in the

first simulation.

The output for this system was simulated and the data was analyzed using
PLS. Table 5-1 summarized the results of the analysis. Most of the variation is
explained by the first latent variable, a much smaller amount by the second and
virtually nothing by the third. A comparison of the PLS model output and the

simulation is given in Figure 5.3. For the most part, the PLS prediction:: approximate
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Figure 5-1: Step response for the three transfer functior.s used in the model.
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Figure 5-2: Plot of the three input signals used in the first simulation.

the output reasonably well. When comparing Figures 5-2 and 5-3, the three large

changes in the level of the output can be attributed to u,. The other variations can not

be as clearly identified, but it appears that i, has a greater influence on y than u,.

Based on this simple comparison, the PLS results are not surprising. But it is also

clear that, even in the absence of noise and with no unmeasured disturbances, this

mcthod can not capture all the variability in y, and therefore the total amount of

output variance explained by all three latent variables is less than 100%.

Latent Variable Number % Variance Captured by PLS Model
1 85.38
2 6.48
3 0.34
Total: 92.20

Table 5-1: PLS results for first simulation.
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Figure 5-3: Comparison of output signal (—) for first simulation and PLS model
predictions (---).

For the second simulation the number of transitions for all three inputs was
increased to the point where in many cases stcady-state could not he recached before
the next step change in the input. Figure 5-4 shows three inputs, and Figure 5-5 gives
the comparison of the output signal and the PLS model prediction. Similaritics
between the inputs and y are no longer clear. This is reflected in the PLS results
(Tabie 5-2) for these signals. The large influence of u, on the output is still there, duc
to the much higher gain of it’s transfer function, but is distorted by the fact that it was
never able to attain steady-state. This lack of stcady-state caused the PLS model to
~ariae much less of the output variability. The method captures the ‘level’ changes
a1+ vvell, but misses the transitions. Modifications to PLS have been proposcd by

J. K1vsta to achieve dynamic identification.!*!
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Latent Variable Number % Variance Captured by PLS Model
1 68.96
2 1.10
3 0.00
Total: 70.00

Table 5-2: PLS results for sccond simulation using unfiltered data.

If the above hypothesis is true, then it would be expected that filtering the
input and output signals with a filter that has a time constant that is just shightly
longer than the slowest individual transfer function for the system, should restore
quasi steady-state conditions and improve the predictive capabilitics of the PLS
model. For this example here, this task can be easily accomplished since the transfer
functions are known. For actual process data, this is not the case and a method must
be found for selecting a filter based only on the data. A common way of verifying
how good a simulation result is, is to calculate the residuals (Equaticn 5.2) and check

if they are uncorrelated (white).
reSid(k) = ynrl:ml (k) - yprmli(lwl(k) (5 '2)

The residuals for the second simulation were determined. Using the
autocorrelation function on them revealed a significant correlation pattern. The filter
needed to convert the residuals to white noise was calculated by applying the

autorcgression function. The resulting unity gain filter function is given by:

0.0822

— (5.3)
1--05178¢

The time constant for this filter is indeed just slightly longer than the onc for
the slowest transfer function. Using this filter on the above residuals did yicld white
noise. Figure 5-6 shows the autocorrelation for the unfiltered residuals on the top and

for the filtered ones on the bottom.
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Latent Variable Number % Variance Captured by PLS Modcl
1 76.17
2 2.18
3 0.01
Total: 78.30

Table 5-3: PLS results for second simulation using filtered data.

The next step was to filter the three inputs used in the second simulation and
the corresponding output and repeat the PLS analysis using filtered data.. The results
of this analysis are given in Table 5-3. While this did not give back the 92% total
captured variance seen in the first simulation, it did increase the predictive capability
of the PLS model. Figure 5-7 shows the results of the PLS model predictions using

data that was filtered.

Even though more of the output variance is captured when the input and
output data is filtered, this comes at the expense reduced time resolution. A much
longer time constant filter was also tried (T((T);)TT') which did incrcasc the total
variance explained to just over 86%, but the resolution of the model was further
reduced. It is felt that the filter obtained by using the autoregression function on the

residuals represents a good compromise between resolution and predictive capability

for the extraction data.
5.2.2. Effect of time delay errors on PLS results

Obtaining an accurate estimate of the time delay for the process data proved to
be quite difficult (Chapter 4). To evaluate the sensitivity of the PLS method to crrors
in the time delay, a simulation was carried out using the same model and the samc

inputs described in the previous section. From the transfer functions and their
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Latent Variable % Variance Captured by PLS Model % Change Due
Number Corrcct Delays 1 Sample Interval Error to Error
] 68.96 60.93 11.6
2 1.10 0.95 13.6
3 0.00 0.00 0.0
Total: 70.06 61.88

Table 5-4: PLS results for time delay error analysis (unfiltered data).

respective step responses, it 2an be seen that the correct time delays for the model are
7,5 and 10 sample intervals for u,, , and u,, respectively. The PLS analysis ¢:urried
out in the second simulation above using unfiltered data and the correct time c=izys
will be used for a reference. The output was the shifted by 1 sample interve
changing the delays for the three inputs to 6, 4 and 9 and the analysis v.as repuais
without filtering ta. The results are given in Table 5-4. When these resuits arc
compared, it co seen that even the smallest possible error (one sample interval)

has a significant effect on the result. Furthermore, the relative change in the first two

latent variables is of the same magnitude.

The next step was to investigate the effect of filtering the input and output
data with several different short to medium (approximately 3 to 10 sample periods)

time constant filter to see if this reduces the sensitivity to time delay errors. The

Latent Variable % Variance Captured by PLS Model % Change Due
Number Correct Delays 1 Sample Interval Error to Error
1 70.17 62.83 10.4
2 1.17 1.03 12.0
3 0.00 0.00 0.0
Total: 71.34 63.86
Table 5-S: PLS results for time delay error analysis (filtered data).
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results for this are given in Table 5-5. Unlike in the previous section, where filtering
gave improved model predictability, it did not reduce the effect of errors in the time

delay estimate for the system appreciably.

5.3. Time delays for the extraction data

In light of the difficulties encountered in cstimating the time delays for the
extraction data sets described earlier, the system delays were re-examined using the
time delay sensitivity of the PLS method. As a staring point for this analysis, the
delays estimated from Chapter 4 were used. These were then varied, over what was
felt to be a reasonable range for this process, and the total percent variance captured
by the PLS model was calculated for each of the delay cstimates. This was done for
all five days of data. Tables 5-6, 5-7, 5-8 and 5-9 show the total percent variance
explained by the PLS model for different time dclays for froth density, froth flow rate,
froth dielectric (quality) and middling density for the five days using the raw data.
The bolded entries in the tables indicate the highest captured variance for cach day.
The delay time marked with an asterisk (*) is the one that was cstimated ir the
previous chapter. Since a single time delay is required for building a process vl
and testing its validity and the new estimates still did show quite a bit of variability
from one day to the next, the delays that gave the highest captured variance were
simply averaged. These average delays, given in Table 5-10, were then uscd to build
the model. One interesting point to note i< that the variance captured by the model
differs considerably more from one day to the next than it does as a result of the
assumed time delays. One possible explanation is that this is due to relatively slow,

but significant, unmeasured changes in either the feed or the process itself.
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Time Delay Total % Variance Captured by PLS Model
(minutcs) Sept. 4" Sept. 5" Sept. 6 Sept. 7" Sept. 9"
14 40,78 68.24 70.01 45.59 38.42
16 40.56 66.79 70.02 45.86 37.61
20 38.21 66.53 70.11 44 .81 40.18
24* 36.35 65.71 69.21 43.41 41.63
29 30.48 66.05 69.52 41.57 31.60
34 29.27 65.82 68.94 40.54 25.86

Table 5-6: Total percent variance captured by PLS model for froth density as a

function of time delay.

Time Dclay Total % Variance Captured by PLS Model
(minutes) Sept. 4" Sept. 5" Sept. 6" Sept. 7" Sept. 9"
14 30.17 49.96 60.76 57.51 38.80
19 30.73 49.02 61.66 58.83 35.85
24 29.68 46.96 61.72 59.56 35.76
29 26.58 43.97 61.05 62.14 34.17
34 25.02 43.09 61.36 64.59 29.58
39 24.17 43.92 61.21 66.78 24.39

Table S-7: Total percent variance captured by PLS model for froth flow rate as a

function of time delay.

Time Delay Total % Variance Captured by PLS Model
(minutes) Sept. 4" Sept. 5™ Sept. 6" Sept. 7" Sept. 9"
19 41.19 6143 36.98 63.13 56.39
24* 50.73 62.01 36.91 64.60 63.87
29 56.57 62.11 39.75 64.06 51.51
34 56.79 59.75 39.35 61.30 47.19
39 52.17 56.82 38.60 57.15 41.83

Table 5-8: Total percent variance captured by PLS model for froth dielectric as a

function of time delay.
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Time Delay Total % Variance Captured by PLS Model

(minutes) Sept. 4" Sept. 5 Sept. 6" Sept. 7" Sept. 9"
5 60.59 69.77 65.90 08.74 3650 |

6* 61.11 70.66 00.44 0991 37.39

7 61.41 71.53 606.96 71.22 38.28

9 61.63 73.16 08.04 72.94 40.83

11 60.84 74.66 68.80 72.48 41.09

14 59.04 76.13 68.90 70.07 40.19

16 57.72 76.88 68.00 08.21 3931

Table 5-9: Total percent variance captured by PLS model for middling density as a

function of time dclay.

54. Determination of data filters for the extraction data

Using the time delays given in Table 5-10, a PLS analysis was carricd out on

the PSV data set for all 5 days. The residuals were calculated for cach day’s PLS

model predictions, using the same data set for both model determination and

verification.

These residuals were then employed to determinc the data filter as

described in Section 5.2.1 above. The filter specified was a third-order, unity gain

filter. Even though, when applied to the residuals, it did not result in perfectly white

noise (one or two points fell outside the 95% confidence region around zcro of the

Process Measurement

Time Delay (Minutes)

Froth density 18
Froth flow rate 22
Froth dielectric 28
Middling density 12

Table 5-10: Time delays used for the PLS model.
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Table 5-11: Summary of data filters for the PSV data based on autoregression of the
residuals.

autocorrclation function), it is a good compromise between complexity and
cffectivencss. The resulting filters for each day for the four outputs are given in Table

5-11.

Simply looking at the filter equations in Table 5-8 does not give a clear
picture of how much they differ from one day to the next for a given output or
between outputs. It is much easier to see the differences between the filters when
their step responses are plotted. Figures 5-8, 5-9, 5-10 and 5-11 are the step responscs
for all five days for froth density, froth flow rate, froth dielectric and middling
density, respectively. While there are day to day differences between the optimal
filters these are not as much as the differences between some of the outputs. It is
clear from these plots that any one of the filters can be used to filter the data before
building a model for a given output, but that different filters should be used for the

different outputs.
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5.3. PLS model for the extraction data

The PLS method is capable of handling both multiple input / single output
(M150) and multiple input / multiple output (MIMO) systems. Any MIMO system
can be divided into as many MISO systems as there are outputs. Using the MISO
approach gives more freedom in tailoring the data filter for cach individual MISO
system, In addition, a different number of latent variables can be chosen for cach.
This allows for optimizing the analysis for each output. The MIMO approach on the
other hand requires the use of a single data filtcr and one sct of latent variablces.
However, it takes into account correlation between the different outputs, which can
have a significant affect on the model. Both approaches will be used for the

extraction data set.

From the investigations carried out thus far, it appears that the data sct for

th

September 5 is the most consistent. This is based on the total variance capturcd by

the PLS model determined when testing the data sets for the time delay in Scction 5.3.

The PLS models will be developed using this data set.
5.5.1. Four separate PLS models (MISO approach)

Both the input and output data was filtered prior to mode! identification with

the filters developed in the previous section for this particular data set, specifically:

Filter used for the froth density model:

01021
- 5 = (5.4)
1.000-0.9899¢ " +0.5135¢ " —04215¢
Filter used for the froth flow rate model:
0.0267 (5.5)

1000-0.7237¢™' +0.01954 — 02690
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Filter used for the froth diclectric model:

0.0303

1000—12385¢" +0.6227¢ % — 03539~

Filter uscd for the middling density model:

00430

1000~ 09874 ™" +0.3093¢ 2 — 02790g

(5.6)

(5.7)

Onc of the advantages mentioned earlier of the PLS technique is it's ability to

rcducc a problem with a high dimensionality to a lower dimension one. in order to

decide how many latent variables to retain for the final model development, the PLS

analysis on the filtered data was carried and all eleven latent variables were included.

Tables 5-12 to 5-15 give the PLS result for all latent variables for the four models and

Figure 5-12 is a plot of the cerresponding regression weights.

Latent Variable Input Block Output Block
Number Individual Total Individual Total
] 46.6814 46.6814 57.6465 57.6465
2 20.5001 67.1815 13.2469 70.8934
3 15.9398 83.1212 2.5052 73.3986
4 3.5579 86.6791 3.9758 77.3743
5 1.7728 88.4519 2.1282 79.5025
6 1.8894 90.3413 0.5981 80.1006
7 2.7966 92.9379 0.2588 80.3594
8 5.3574 98.2952 0.0503 80.4097
9 1.2656 99.5608 0.0546 80.4643
10 0.4350 99.9958 0.1169 80.5812
11 0.0042 100.0000 1.7889 82.3701

Table 5-12: Percent variance captured by the PLS model for froth density when all

eleven latent variables are retained (MISO approach).
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Latent Variable Input Block Output Block
Number Individual Total Individual Total
1 50.5741 50.5741 50.9952 50.9952
2 11.6047 62.1787 9.8471 00.8422
3 18.1945 80.3732 5.5241 00.3604
4 7.3385 87.7117 5.7200 72.0863
5 8.7525 96.4643 0.8895 72.9758
6 1.9024 98.3667 0.7964 73.7722
7 0.9674 99.3341 0.4142 74.1803
8 0.5129 99.8469 0.1101 74.2964
9 0.1093 99.9562 0.4353 74.7317
10 0.0239 99.9801 3.8940 78.6258
11 0.0199 100.0000 2.8715 81.4973

Table 5-13: Percent variance captured by the PLS model for froth flow ratc when all

eleven latent variables are retained (MISO approach).

Latent Variable Input Block Output Block
Number Individual Total Individual Total
1 46.4623 46.4623 62.2866 62.2866
2 25.7303 72.1926 11.8799 74.16065
3 12.4790 84.6716 4.0678 78.2343
4 59173 90.5889 3.6055 81.8398
5 4.9004 95.4893 2.2371 84.0769
6 1.4925 96.9818 2.0266 86.1035
7 1.3741 98.3559 0.1322 86.2357
8 0.9804 99.3363 0.1054 86.3410
9 0.6031 99.9394 0.0577 86.3987
10 0.0581 99.9976 0.0026 86.4013
11 0.0024 100.0000 0.0239 86.4251

Table 5-14: Percent variance captured by the PLS model for froth dielectric when all

eleven latent variables are retained (MISO approach).
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Latent Variable Input Block Output Block
Number Individual Total Individual Total

] 49.6594 49.6594 65.4732 65.4732

2 13.1792 62.83¢) 12.5529 78.0260

3 14.8571 77.6957 3.5650 81.5910

4 10.9067 88.6024 3.2012 84.7922

5 6.2256 94.8280 0.3222 85.1144

6 2.3957 97.2237 0.2910 85.4054

7 1.2802 98.5039 0.2790 85.6845
0.6558 99.1597 0.1648 85.8493

9 0.7395 99.8992 0.0109 85.8602

10 0.0768 99.9760 0.2256 86.0858

11 0.0240 100.0000 0.4484 86.5342

Table 5-15: Percent variance captured by the PLS model for middling density when

all eleven latent variables are retained (MISO approach).
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Figure 5-12: Plot of regression coefficients (MISO approach) for eleven latent
variable model for froth density (top, left), froth flow rate (top, right), froth dielectric
(bottom, left) and middling density (bottom, right).
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Examination of the above data indicates, ' ny of the latent variables do
not significantly contribute to explaining the vauance observed in the outputs.
Therefore, for the four models developed here, between four and six latent variables
will be used, depending on which output is modeled. Using more latent variables will
result in overfitting the problem and modeling of noisc which will lcad to reduced
overall predictive capabilities for the models. Tables 5-16 to 5-19 summarize the
PLS results using only the minimum number cf latent variables and Figure 5-13 is a
plot of the regression weights for these models. To arrive at the best possible
parameter estimates for the models, cross validation was used during development.!"!
The data was split into a validation set of 250 data points and the rest of the data was
used for identification. The model was rebuilt and tested 10 times with randomly

selected validation sets. The final regression vectors are presented in Table 5-20.

Latent Variable Input Block Output Block
Number Individual Total Individual Total
1 46.6814 46.6814 57.6465 57.6465
2 20.5001 67.1815 13.2469 70.8934
3 15.9398 83.1212 2.5052 73.3986
4 3.5579 86.6791 3.9758 77.3743
5 1.7728 88.4519 2.1282 79.5025

Table 5-16: Percent variance captured by the PLS model for froth density when five
latent variables are retained (MISO approach).
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Latent Variable Input Block Output Block
Number Individual Total Individual Total
I 50.5741 50.5741 50.9952 50.9952
2 11.6047 62.1787 9.8471 60.8422
3 18.1945 80.3732 5.5241 66.3664
4 7.3385 87.7117 5.7200 72.0863

Table 5-17: Percent variance captured by the PLS model for froth flow rate when

four latent vectors are retained (MISO approach).

Latent Variable Input Block Output Block
Number Individual Total Individual Total
1 46.4623 46.4623 62.2866 62.2866
2 25.7303 72.1923 11.8799 74.1665
3 12.4790 84.6716 4.0678 78.2343
4 5.9173 90.5889 3.6055 81.8398
5 4.9004 95.4893 2.2371 84.0769
6 1.4925 96.981¢ 2.0266 86.1035

I'able 5-18: Percent variance captured by the PLS model for froth dielectric when six
latent variables are retained (MISO approach).

Latent Variable Input Block Output Block
Number Individual Total Individual Total
1 49.6594 49.6594 65.4732 65.4732
2 13.1792 62.8386 12.5529 78.0260
3 14.8571 77.6957 3.5650 81.5910
4 10.9067 88.6024 3.2012 84.7922

Table 5-19: Percent variance captured by the PLS model for middling density when

four latent variables are retained (MISO approach).
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Figure 5-13: Plot of regression coefficients (MISO approach) for reduced number of
latent variable model for froth density (top, left), froth flow rate (top, right), froth

dielectric (bottom, left) and middling density (bottom, right).

Variable Measurement Froth Froth Froth | Middling
Number Density Flow Quality | Density
1 Oil sand gamma count 0.0632 | -0.2107 | 0.2168 { 0.0907
2 Oil sand bitumen content 0.1138 | -0.3169 | -0.0168 | 0.0200
3 PSV feed density -0.1799 | 0.4704 | -0.4916 | 0.3352
4 Tumbler water flow rate -0.6447 | 0.0676 | -0.5801 | -0.0339
5 Flood water flow rate -0.3650 | 0.0121 | -0.1871 | -0.2111
6 Caustic flow rate 0.1197 | 0.0084 | -0.0287 | 0.0887
7 Tumbler steam flow rate -0.0430 | -0.3940 | -0.2777 | -0.1615
8 Reject rate 0.5365 | 0.6577 | 0.5381 0.6101
9 Oil sand water content 0.0122 | -0.1571 0.1588 | -0.1601
10 Oil sand feed rate -0.4177 | 0.3043 | -0.5571 0.2013
11 PSV interface level 0.1003 | 0.4413 | -0.4339 | 0.2103

Table 5-20: Normalized regression coefficients for the PLS models (MISO

approach).




Page 97

The relative magnitude of the regression coefficients indicate how influential a
particular input parameter is on the output of interest. The operational implications
arc that the operator now has a tool which assists him/her in deciding which inputs to
change to achieve a given operating goal. For example, if the froth density must be
adjusted, based on the results presented in Table 5-20, the most effective way would
be to manipulate the tumbler water flow rate. Additionally, the sign of the regression
coefficient indicates if a particular input is directly or inversely related to a given
output. However, it is also clear that this is not the only way to affect the froth
density. Since the results identify several parameters which could be used to
influence a given output, the operator can achieve the same goal even though one of
the variables might be constrained for some reason. Continuing with the froth density
example, if the tumbler water can not be changed due to hot water limitations,

adjusting the oil sand feed rate is almost as effective.
5.5.2. Single PLS model (MIMO approach)

Again both the input and output data was filtered prior to model identification.
However, since the filters identified previously were tailored to each output rather
than to the system as a whole, there is no basis for selecting any one of them in this
case. The filter chosen for this investigation was a simple first order filter with a time
constant similar to the one for the slowest filter for the MISO approach. The filter

used for the MIMO model is given by:

0.02

e 5.8
100-098g™" (>8)

In order to decide how many latent variables to retain for the final model

development, the PLS analysis on the filtered data was carried and all eleven latent
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Latent Variable Input Block Output Block
Number Individual Total Individual Total
1 49.9986 49.9986 52.7813 52.7813
2 23.8583 73.8569 16.8392 09.6224
3 13.0577 86.9140 4.7760 74.3984
4 5.5743 92.4889 4.5292 78.9276
5 4.0435 96.5324 2.8874 81.8150
6 1.7311 98.2635 2.0347 83.8497
7 0.9992 33.2627 1.3479 85.1970
8 0.5649 99.8277 0.3351 85.5327
9 0.1313 99.9589 0.2082 85.7409
10 0.0246 99.9835 1.0163 86.7573
11 0.0165 100.0000 1.3707 88.1280)

Table 5-21: Percent variance capturcd by the PLS modecl when all eleven latent
variables are retained (MIMO approach).

variables were included. Table 5-21 gives the PLS result for all latent variables for

the model and Figure 5-14 is a plot of the corresponding regression weights.

As expected, many of the latent variables did not significantly contribute to
explaining the variance observed in the outputs. Six latent variables, cxplaining about
84% of the total output variance, will be used for the final MIMO modec! to prevent
modeling of noise and overfitting of the data set. Table 5-22 summarizes the PLS
results using only the six most significant latent variables. Figure 5-15 is a plot of the
regression weights obtained for this model. The procedure employed for this casc
was identical to the one used for the MISO approach. The data was split into a 250
point validation set with the rest being used for model identification during cross
validation. The model was rebuilt and tested 10 times with randomly selected

validation sets. The final regression vectors are presented in Table 5-23.
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Figure 5-14: Plot of regression coefficients (MIMO approach) for eleven latent
variable model for froth density (top, left), froth flow rate (top, right),
froth dielectric (bottom, left) and middling density (bottem, right).

Latent Variable Input Block Output Block
Number Individual Total Individual Total
1 49.9986 49.9986 52.7831 52.7831
2 23.8583 73.8569 16.8392 69.6224
3 13.0577 86.9146 4.7760 74.3984
4 5.5743 92.4889 4.5292 78.9276
5 4.0435 96.5324 2.8874 81.8150
6 1.7311 98.2635 2.0347 83.8497

Table 5-22: Percent variance captured by the PLS model when six latent variables

are retained (MIMO approach).
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Figure 5-15: Plot of regression coefficients (MIMO approach) for six latent variable
model for froth density (top, left), froth flow rate (top, right),
froth dielectric (bottom, left) and middling density (bottom, right).

Variable Measurement Frotb Froth Froth Middlfng
Number Density Flow Quality | Density
1 Oil sand gamm  »unt 0.2032 | -0.2444 | 0.4318 | 0.0598
2 |Oilsand bitume, ontent | -0.0141 | -0.1630 | -0.0862 | -0.0082
3 PSV feed density‘ -0.0465 | 0.5270 | -0.2851 0.4150
4 Tumbler water flow rate -0.3270 | 0.0892 | -0.3844 | 0.0127
5 Flood water flow rate -0.1364 | 0.0013 | -0.0399 | -0.1760
6 Caustic flow rate -0.0278 | 0.0619 | -0.0115 | -0.0360
7 Tumbler steam flow rate -0.4100 | -0.3426 | -0.2913 | -0.2876
8 Reject rate 0.2503 | 0.6340 | 0.2408 | 0.6057
9 Oil sand water content -0.1559 | -0.0605 | -0.0764 | -0.0966
10 Oil sand feed rate -0.1969 | 0.3779 | -0.3428 | 0.2590
11 PSV interface level 0.1676 | 0.6037 | -0.1459 | 0.2597

Table 5-23: Normalized regression coefficients for the PLS models (MIMO
aprroach).
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5.6. PLS model validation

Proper modcl validation requires the usc of a different data set for testing than
was uscd for development. Since the data set for September 5™ was used to develop
the modecl, it was verificd by comparing the model predictions for the other four days
of data to the actual outputs. Prior to developing the PLS model, the identification
data sct was mean centered and scaled to unit variance. Therefore, the data used for
the va: .dation must also be normalized by subtracting the same mean and dividing by
the samce variance that were used in the normalization of the model identification data
sct. Also, the data filters developed for the identification data set were applied to the
validation data sets.  The regression coefficients calculated during model

development were then used to determine the model outputs:

V=B 4Bty + B+ 4B, 1, (5.9)
where: v = predicted output
B, = n" regression coefficient
u, =n" input
In order to check that the models developed are at least self consistent, the
predicted outputs for the September 5™ data set (used for model identification) were

also included in the validation.
5.6.1. Validation for the MISO approach

Figures 5-16 to 5-20 are plots of predicted versus actual outputs using the
regression weights obtained by the MISO approach for the four outputs. Table 5-24
lists the mean value for the residuals for the model predictions. These indicate the
average amount of deviation between the actual outputs and the model predictions.

The expected value for them is zero.
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Figure 5-16: Comparison of actual measurements (-—) to model predictions (---) for
September 5" data set (MISO approach).
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Figure 5-17: Comparison of actual measurements (—) to model predictions (---) for
September 4" data set (MISO approach).
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Figure 5-18: Comparison of actual measurements (—) to model predictions (---) for
September 6" data set (MISO approach).
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Figure 5-19: Comparison of actual measurements (—) to model predictions (---) for
September 7™ data set (MISO approach).
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Figure 5-20:

September 9" data set (MISO approach).

Comparison of actual measurements () to model predictions (---) for

As seen in Figure 5-16, the predictions of the model for the day it has been

developed are, for the most part, quite reasonable. The model captures the changes in

the magnitude of the measurements but does not predict thc dynamics as well.

However, with a few exceptions, the predictive capability of the model for the other

days that it was tested on, is poor.

This finding is consistent with the observations

Section 5.3 that showed large differences in the total percent variance captured by the

model from one day to the next (Tables 5-6 to 5-9).

Measurcment Sept. 4™ | Sept. 5" | Sept. 6™ | Sept. 7" | Sept. 9"
p

Froih density -4.21 8x10M 147 -0.11 -3.10

Froth flow rate 15.69 2x10"°| 16.63 | -37.27 -1.74

Froth dielectric -29.14 7x10"°| 26.54 | 46.10 8.14

Middling density 0.18 -1x10" 2,59 -4.60 -4.39

Table 5-24: Relative meai of residuals (%) when comparing the model output to

actual measurements (MISO approach).
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5.6.2. Validation for the MIMO approach

Similar to the validation performed for the MISO approach, Figures 5-21 to 5-
25 arc plots of predicted versus actual outputs for the MIMO approach.. Table 5-25

lists the mean value for the residuals for the model predictions.

Again, as for the MISO approach, the model gives good predictions for the
data that was uscd during the development, but for the most part, other data sets show
large discrepancies between the predicted and measured values. Also a visual
comparison of the predictions obtained by the two methods show significant
differences. From the data sets examined here, it is not possible to draw any definite

conclusions as to which of the two approaches is better suited.
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Figure 5-21: Comparison of actual measurements (—) to model predictions (---) for
September 5" data set (MIMO approach).
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Figure 5-22: Comparison of actual measurements (—) to model predictions (---) for
September 4" data set (MIMO approach).
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Measurement Sept. 4" | Sept. 5™ | Sept. 6™ | Sept. 7" | Sept. 9"
Froth density -2.80 5x10% | 6.76 -1.65 -3.90
Froth flow rate 25.81 1x10™"° 11.96 -32.19 -0.74
Froth dielectric -20.90 -ox10” | 27.13 8.00 | -16.25
Middling density 099 | 2x10°| 396 | -1.84 | -1.91 |

Table 5-25: Relative mean of residuals (%) when comparing the mode! output to
actual measurements (MIMO approach).

5.7. Adaptive model

The most obvious shortcoming of the PLS model described above is that, in
most cases, it exhibits a large bias for all data sets except the one that was uscd during
model development. The most probable explanations for this arc changes in
operating modes (periodic operation of recycle loops, for examplc) in addition to
other disturbances. Since neither of these are recorded in the data base, it is
impossible to incorporate them into the model. One way to improve the model
performance under such conditions is to make it adaptive. Presented in this section is

an adaptive model for the PSV.

The fixed model used for the simulations for the MISO case (Section 5.6.1) is

given by:

.)A):Blul +ﬁ2uz+---+Bnuu (5.10)

where:  y = predicted output
B, = regression coefficient for n" input
u, =n" input

The proposed adaptive model is based on the above equation, but contains an
additional factor that can be dynamically adjusted to compensate for any unrecorded

changes in the process. The adaptive model equation is:
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V=Bx +Byx,+ B X, + A {5.11)

where:  y = predicted output
B, = regression coefficient for n" input

o athe
X, =n" mput

A = model update parameter

The model update parameter in Equation 5.11 can be viewed as a model bias
correction term that is modified periodically based on past model - process mismatci,
This update method relies on the fact that many of the disturbances the model is
adapting to are slow compared to the length of the parameter update window. In thc
case of changes to the plant operating modes, this is definitely the case. The status of
recycle streams, for example, are changed in the order of once or twice per day at the
most. However, for any disturbances that affect the output within a time frame close
to, or faster than the length of the update window the update mechanism proposcd

here will not be adequate.
5.7.1. Simulation results using the adaptive model

The simulation carried out to test the performance of the adaptive model were
for the MISO case using the September 5™ , 6™ and 7" data sets. The model update
parameter was adjusted once every 60 samples (i.e. once per hour of process time),
resulting in a prediction horizon for the model of 1 hour. The results of simulations

for the adaptive model are given in Figures 5-26 to 5-28.

Since the fixed model for the MIMO approach is almost identical to the one
for the MISO approach, the adaptive model was not tested for the MIMO case, even
though it could quite easily be extended for it. It is expected that the results would be

almost identical to the ones presented here.
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Figure 5-28: Comparison of actual measurements (—) to model predictions (---) for
September 7" data set using the adaptive model.

One important point to note is that in the case were the fixed model gives

good predictions, the adaptive model does not have a negative impact on the results

(Figures 5-26 and 5-16). For the data sets where the fixed model exhibited large

offsets, the adaptive model improved the agreement with tlie plant output

significantly (Figures 5-27 and 5-18 for the September 6" data set and Figures 5-28

and 5-19 for September 7™). While this new model was quite effective in removing

the large observed biases, the model has difficulty at times matching the dynamics of

the process. There are several reasons for this behavior:

e the model is a linear approximation of a non-linear process

e significant, unmeasured process disturbances occur too fast for the

adaptive algorithm to compensate for
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¢ unreconciled input and output data

Overall, while the adaptive model still falls short of giving reliable enough
results for on-line implementation, it is a significant improvement over the fixed
model. One possible way to further improve the adaptive model is by finc tuning A
between the 60 minute update intervals based on some knowledge of the expected
trajectory of the parameter. Figures 5-29 to 5-31 show the values for A for the data

presented here. Unfortunately, the values do not exhibit any discernible pattern.

5.8. Conclusion

The investigations carried out here showed that the PLS mecthod is quite
sensitive to errors in the process dead time as well as to the lack of steady-state

conditions. This poses a significant problem for the development of a PLS model for
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Figure 5-29: Trajectory of model update parameter for September 5™ data set.
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the extraction plant. Many of the time delays in the system are a function of the
amount of oil sand processed, the volume of water added and the different operating
conditions chosen by the opcrators. As was found in Chapter 4, some of the delay
times can vary by up to 6 minutes. This amount of error in the delay time will

seriously affect the model’s performance.

It was found, that the model developed using the September 5" data set did
capture a significant amount of the output variation for this data sct. This is
illustrated by the relatively good agreement between the actual and the predicted
outputs as well as by the low bias in the residuals for this day. It is cqually clear,
however, that this model does not predict the system behavior for the other data sets
on which 1t was tested. It is encouraging however, that in a few cascs, similaritics in
overall trends can be seen, even though large offsets are present. Onc such example is
the froth dielectric predicted by the MIMO model for September 4™. Another onc is
the froth density predictions (MISO model) for the September 7" data set. Here, the
model does not predict the short term variations very well, but the level predictions
are relatively close. The differences observed appear to be too large though to be
solely attributable to changes in the delay times. Unmeasured disturbances and

unrecorded changes in operating conditions contribute as well to a large extend.

The adaptive model proposed in Section 5.7 addresscs some of these concerns.
It was quite effective in removing biases caused by infrequent changes in operating
conditions. The simulations for the adaptive model however, show quitc clearly that
a linear approximation of the process does not yield satisfactory results. A non-lincar,
adaptive model that includes some form of real time data validation s+ reconciliation

is needed.

Differences between the multiple MISO and single MIMO approaches were
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also observed. The four scparate MISO models gave generally better predictions
(based on prediction bias) han the single MIMO approach. This is somewhat
surprising since comparing the total output variance explained by the two approaches
arc quite similar: 80%, 72%, 86% and 85% for the four MISO models and 84% for
the MIMO model. Comparing the four regression vectors for the two approaches
shows significant diffcrences between their magnitudes and in some cases, even the
sign is diffcrent. On the other hand, a comparison between Figures 5-13 and 5-15
shows that the distribution pattern for the regression weights for the two approaches

arc similar and that for both cases, the same inputs are identified as significant.

The heavy filtering that was necessary for these data sets makes it impossible
for this approach to meet the original objectives, even if the models were capable of
perfectly predicting the outputs. Taking the filter time constants into account, the
time resolution of the models is in the order of one hour or more and not the two to

five minutes required for an operating tool.

The findings here do not rule out the usefulness of PLS for building a model
for the extraction process, but rather indicate that a significant amount of work is
required in improving the current process measurements, adding important process
parameters that are not in the present data base, optimizing the existing regulatory

control loops and developing good on-line, real time data validation techniques.
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6. Conclusions and Future Work

A truly overwhelming amount of operating data from Syncrude's extraction
plant is being collected and archived on a daily basis. Unfortunately however, this
cnormous source of information remains underutilized to a great extend. The
common themc that evolved from the investigations presented here is that some effort
needs to be made to improve the quality of the data this database as well as the basic

regulatory control of the process.

The ultimate objective of developing a real time model that will assist the
operator in maximizing the product quality and quantity from this process and
minimizing the cost of operation can only be realized if reliable, high quality data is
available for model development, all basic control loops are functioning optimally

and all relevant measurements are available and as accurate as possible.

Many of the regulatory control loops have a very fast response time compared
to the time constant of the process they are designed to control. This results in the
controller responding to random measurement noise in addition to true process
variations. The effect of this is twofold: excessive wear on the control element and
increased downstream variability. A good example of this is the tumbler water
control loop described in Chapter 3 where the application of a simple filter was able

to reduce the control effort to one third.

An important aspect to improving the quality of the data collected from the
process is real time data validation and reconciliation. Some sensors currently
operating in the plant show excessive bias and uncertainty (the oil sand feed rate
measurement comes to mind). On-line verification of measurements and model based

on-line calibration can significantly improve the quality of the measurements, which
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in turn will lead to better control of the process and enable the identification of

models with better predictive capabilities.

The large variations in delay time are inherent in the process and this situation
can not be improved upon. The implications of this can be divided into two parts:
output prediction and model identification. The effect on model prediction is the
easier of the two to deal with. If the actual current delay times for the various parts of
the process are known, then the appropriate past input readings can be chosen at cvery
prediction step in order to calculate an output estimate. Therefore, a method must be
developed to estimate the process time delays in real timc based solcly on the precess
inputs and pass them to a model capable of accepting changing time delays. When
building a model on the other hand, the data used must be over a sufficiently long
time period to obtain statistical significance. The data set must also include as widely
varying operating conditions as possible to ensure that the process dynamics arc
adequately captured. However, this implies that the dead times within the data set

will vary considerably, interfering with the model identification process.

The PLS model identified here for the PSV outputs was capable of capturing a
fair amount of the process dynamics and gave reasonable predictions for the data set
that was used during the development phase. When this model was applied to other
data sets however, large biases and differences in the predicted dynamics were
observed. These can only partially be attributed to the difficultiecs mentioned above.
A significant portion of the observed deviations can only be explained through the
presence of unmeasured disturbances. Some effort should be made in identifying
these and devising a strategy for incorporating them into future models. Also the long
time constant filters needed to achieve the predictions presented herc makes this

model unsuitable for model based control or real time operator assistance.
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Overall, the analyses carried out here identified key issues that need attention.
On the practical side, real time data verification and reconciliation as well as
improvements to the regulatory control loops are of prime importance. On the
theoretical sidc, some method must be found that will result in good predictive

models in the presence of significantly varying process dead times.
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Appendix

Most of the daia piocessing, simulation and data visuvalization for this thesis
has been carried out in Matlab”." This appendix is a compilation of all special

Matlab® programs which have been used in carrying out the research.

All PLS model development was done using the PLS toolbox version 1.3

developed by Barry M. Wise.!"!

The ‘inplot.m’ function plots a data series and superimposes a small window
containing a subset of the data, giving a more detailed view of a particular region.
This program is available, free of charge, from The MathWorks, Inc.’s fip site. It was

used without modification.

function [h]=inploct (xvec,yvec,sran,cl,bdsl,c2,bds2,c3,bds3)

This function plots the data (xvec,yvec) and then plots a
sukset in the upper left corner of the screen to give you a
"picture-in-a-picture".

Jeff Butera, jvbutera®@eos.ncsu.edu, 30 November 95 (with much
help from Mike Buksas).

Required INPUTS:

xvec - vector of x data points

yvec - vector of y data points, same length as xvec

sran - 2 vector of form [smin, smax] for subset to be plotted.
Note that (smin,smax) must be a subset of (min{xvec),max(xvec)).

Optional INPUTS:
c - a character, either 'w','p', or 's'
bds - 4 vector in form [xmin xmax ymin ymax]

If c=='p' then bds specifies the axis bounds for the outermost
Plot.

If c=='s' then bds specifies the axis bounds for the Subplot.

If c=='w' then bds specifies the absolute bounds of the Window
location.

The bounds for the window location will be "clipped" so the
subplot window does not run off the top or sides of the main
plot.

O° O dP OF dP OP OP OP O° O I P I I I W O I O° N I K K N d° dP oP

* A registered trademark of The MathWorks, Inc.
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OUTPUTS:
h - a 2 vector of handles. The first entry is the main graph
and the second is the subplot graph.

Examples:

x=[-500:500]; y=randn(1,1001);

inplot(x,y, [-200 -180]))

inplot(x,y, [200 230],'w', [-400 400 4 101)

inplot(x,y, {300 315],'p', [-500 500 -3 8], 'w', [-400 400 4 7])
inplot(x,y, [180 197]),'s"', {175 200 -1 1],'w', [-400 400 4 11])

W M K K N N N K KR N N

function [h]=inplot (xvec,yvec,sran,cl,bdsl,c2,bds2, c3,bds?)
%
ymax=max (yvec) ;
ymin=min (yvec) ;
xXmax=max (xvec) ;
xmin=min(xvec) ;
%
% Figure out if user set window, entire plot or subplot axis, and
$ which is which...
%
wbhds=[0 0 0 0]:
pbds=[0 0 0 0];
sbds=[0 0 0 0];
if (nargin»>3),
if ((cl=='w')|(cl=='W")),
wbds=bds1;
elseif ((cl=='p')| (cl=='P"')),
pbds=bds1;
elseif ((cl=='s')| (cl=='8")),
sbds=bds1;
end
end
if (nargins5),
if ((c2=='w')| (c2=='W")),
wbds=bds?2;
elseif ((c2=='p')| (c2=='P')}),
pbds=bds2;
elseif ((c2=='s'})| (c2=='5")),
sbds=bds2;
end
end
if (nargins>7),
if ((e3=='w')| (c3=='W")),
wbds=bds3;
elseif ((c3=='p')| (c3=='P')),
pbds=bds3;
elseif ((c3=='s')|(c3=='S")),
sbds=bds3;
end
ena
if (pbds==([0 0 0 0}),
pbds=[xmin xmax ymin-0.15*(ymax-ymin) ymax+1l.25* (ymax-ymin)];
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end
plenx=pbds (2) -pbds (1) ;
pleny=pbds (4) -pbds (3) ;
%

% plot data in large window with plot axis already set
%

clf
plot (xvec,yvec)
axis (pbds)
hold on
%
$ Check to see if user set window size manually
%
if (wbds==[0 0 0 0]),
wbds=[0.2 0.6 0.3 0.25];
else
%
% Clip subplot window so it doesn't run off top or sides of figure
%
tbds=wbds;
wbds (1} =max (0.775* (tbds (1) -pbds (1)) /plenx+0.13,0.2) ;
wbds (2) =0.815* (max (tbds (3) ,pbds (1)) -pbds (3) ) /pleny+0.11;
wbds (3} =min((0.775* (tbds (2) -pbds (1)) /plenx) +0.13-wbds (1),0.85
wbds (1)) ;
wbds (4)=min((0.815*(tbds (4) -pbds (3) ) /pleny)+0.11-wbds(2),0.85-
wbds (2)) ;
end
%
% See if limits are valid
%
if (sran(1)>=sran(2)),
disp(' ')
disp((['Lower bound ‘', num2str(sran{(l)),...
' must be less than upper bound', num2str(sran{2))]);
disp(' ‘')
sran(l)=sran(2)-1;
end
%
% Clip data
%
i=min (find (xvec>=sran(1)));
j=max (find (xvec<=sran(2))) ;
%
% Check to see if user set window bounds manually...
%
if (sbds==(0 0 0 0]),
sbds=[sran (1) sran(2) min(yvec(i:j)) max(yvec(i:j)}];
else
sbds (1) =min(sran (1) ,sbds (1)) ;
sbds (2) =max (sran(2),sbds (2)) ;
end
%
% Plot delimiters...
%
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8l=pbds (1) +plenx* (wbds (1) -0.13+wbds (3) * (sran (1) -sbds (1)) / (sbds (2) -
sbds (1)))/0.7775;
sr=pbds (1) +plenx* (wbds (1) -0.13+wbds (3) * (sran(2) -sbds (1) ) / (sbds (2) -
sbds (1)))/0.7775;
yl=min (ymax, pbds (3) +pleny* ( (wbds (2)-0.11)/0.815-0.1) ) ;
y2=pbds (3) +pleny* ( (wbds (2) -0.11) /0.815-0.07) ;
y3=pbds (3) +pleny* ( (wbds (2)-0.11) /0.815-0.05) ;
plot ([sran(1) sran(l) sl sl], [pbds(3) y1 y2 y3],'r-')
plot([sran(2) sran(2) sr sr], [pbds(3) y1 y2 y3],'r-')
hold off
%
% Switch axes handle for small plot...
%
gcal=gca;
gca2=axes ('position',wbds);
plot (xvec, yvec)
axis (sbds)
axes (gcal) ;
if (nargouts>0),
h=[gcal gca2];
end
%
return

The three functions ‘plotacf.m’, ‘plotxcf.m’ and ‘plotcra.m’ were used to
calculate and display the results of the auto-correlation and cross correlation functions

and the impulse response coefficients, respectively.

function {acf,lim]=plotacf(y,errlim, len,code, TitleExt)

Function to plot normalized autocorrelation
[acf,lim]=plotacf (y,errlim, len, code, TitleExt)
Input: y - time series data
errlim - = 0 --> no error limits
<>0 --> error limit: 2/sqgrt(length(y))
len - = 0 --> number of lags: length(y)/2
> 0 --> uses 'len' number of lags
code - = 0 --> no plot

<>0 --> plot results
TitleExt - Optional plot title extension (string)

Output: acf - autocorrelation values
lim - 95% confidence limit
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if nargin < 4 _
disp('A minimum of 4 input arguments are required for this...
function:');
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help plotacft;
return
end

acf=xcov (y);
l=length(y) ;
acf-acf/acf (1) ;
r=1:2*(1-1);
lim=2/sqrt (1) ;
rl=1:1length(r) ;
N=length(rl) ;
acf=acf (r);

if len>0 & len<N
rl=N/2+1:N/2+len+1;
acf=acf (rl);
N=0:1len;

else
len=N/2-1;
rl=N/2+1:N/2+1+len;
acf=acf (rl) ;
N=0:1len;

end

if code>0

if errlim>0

plot(N,act, ...
N,acf,'o', ...
N, lim*ones(size(N)),'r:',
N, -lim*ones(size(N)),'r:', ..
N, zeros{(size(N)),'k-');
else
plot (N,acf,N,acf,'o');
end
if nargin == 4
TitleExt='"';
end

axis ([0 len min(min(acf),-1im-0.1) 1.1]);
title(['Normalized Autocorrelation Function ',TitleExt]);
ylabel ('ACF');
xlabel('Lag');

end

return

function {xcf,lim]=plotxcf(y,u,errlim,len,code, TitleExt)

% Function to plot normalized crosscorrelation
%
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(«cf,lim}=plotxcf(y,u,errlim,len, code, TitleExt)
Input: Y - plant output data
u - plant input data
errlim - = 0 --> no error limits
<>0 --> error limit: 2/sqrt(length(y))
len - = 0 --> number of lags: length(y)/2
> 0 --> uses 'len' number of lags
code - = 0 --> no plot

<>0 --> plot results
TitleExt - Optional plot title extension (string)

Output: xcf - crosscorrelation values
lim - 95% confidence limit
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if nargin < 5

disp('A minimum of S input arguments are required for this...

function:');
help plotxcf;

return
end
if length(u) ~= length(y)
disp('The two data series must be the same size!');
return
end

xcf=xcov(u,vy);
l=length(y) ;
xcf=xcf/max (abs (xcf));
r=1:2*(1-1);
lim=2/8qrt(1};
rl=1:length(r);
N=length(rl);

xcf=xcf (r);

if len>0 & len<N
rl=N/2+1:N/2+len+1;
xcf=xcf (rl);
N=0:1len;

else
len=N/2-1;
rl=N/2+1:N/2+len+1;
xcf=xcf (rl);
N=0:len;

end

min_y=min (min(xcf),-1im-0.1);
max_y=1.1;

if codes>0
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clf reset;
if errlim>o0

plot (N, xcf, ...
N, xcf, 'o', ...
N, lim*ones(size(N}),'r:', ...
N, -lim*ones(size(N)),'r: ',
N, zeros(size(N)),'k-');
else

plot (N, xcf,N,xcf, 'o');

end

if nargin ==
TitleExt='
end

5

LI
!

axis ({0 len min_y max_yl);

title(['Normalized Crosscorrelation Function ',TitleExt]);
ylabel ('XCF') ;
xlabel ('Lag');

end

return

function [ir,r,cl]=plotcra(y,u,na,len,plot,TitleExt)

Input:
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Eb Mueller,

Function to plot impulse response estimate

[ir,r,cl]=plotcra(y,u,na,len,plot,TitleExt)

y - plant output data
u - plant input data

na - = 0 --> no prewhitening
> 0 --> order of prewhitening filter (Default = 10)
len - = 0 --> number of lags: 20 (Default)
> 0 --> uses 'len' number of lags
plot - = 0 --> no plot
= 1 --> plot impulse response coefficients (Default)
= 2 --> plot all columns of r
TitleExt - Optional plot title extension (string)
Output:
ir - impulse response coefficients
r(:,1) - lag indices
r(:,2) - covariance function of y (prewhitened if na > 0)
r(:,3) - covariance function of u (prewhitened if na > 0)
r(:,4) - correlation function Letween (prewhitened if na > 0)

u and y (positive lags indicate influence from u to y)
99% confidence limit

March 1996
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if nargin «
TitleExt="'";
end

- 0

if nargin < S
plot=1;
end

if nargin < 4
len=20;
end

if nargin < 3
na=10;
end

if nargin < 2
disp ('A minimum of 2 input arguments are required for this...
function:');
help plotcra;
return
end

if isempty(plot)
plot=1;
end

if isempty(len)
len=20;
end

if isempty(na);
na=10;
end

clf reset;
[ir,r,cl}=cra([y ul,len+l,na,plot);

axis ([0 len min(-cl-0.05,min(ir)-0.05) max(cl+0.05,max(ir)+0.05)]);
title{['Impulse Response Estimation ', TitleExt]):

ylabel ('Impulse Response') ;

xlabel ('Lag') ;

return

The spectral analysis was carried out using the function ‘fdist.m’.

function [power, freq,period]=fdist (x,t)

¥ Function for calculating and plotting the frequency distribution
% of a data set.
%
%

Input:
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% x - data vector

% t - title for plet enclosed in single quotes ('...')
% (if no title is specified, no plot will be generated)
%

% Outputs:

% power - power vector

% freq - frequency vector

% period - period vector

%

% Eb Mueller, March 1996

y = fft(x);

y(1) = {1;

n = length(y);

power = abs(y(1:n/2)) .* 2;
freq = [(1:n/2)/(n/2) * 0.5}"';
period = 1 ./ freq;

if nargin == 2
clf reset;
plot (period, power) ;
ylabel ('Power') ;
xlabel ('Period (sample intervals per cycle)');
title(t);
end

return;

The “filtord.m’ function was empioyed for the design and cvaluation of the

digital data filters.

function [a,bl=filtord(f,m,minord, maxord)

coefficients, respectively.
first row --> 'minord' order filter coefficients

% Comparison of different order filters

%

% [a,bl=filtord ({,m minord,maxord)

%

% Inputs:

% f - frequency specification vector

% range: 0 to 1, where 1.0 corresponds to

% one half the sampling frequency

% value: frequency / (0.S5*sample frequency)

% m - magnitude specification vector (magnitude

% of desired recponse at the points specified in f).
% minord - minimuri {:lter order to be evaluated

% maxord - maximum f liey rrder to be evaluated

%

% Outputs:

% b & a - matrices of numerator and denominator filter
%

%
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ESER S 4

See also: yulewalk

- S

Eb Mueller, March 1996

a=zeros (maxord-minord+1,maxord+1) ;
b=zeros (maxord-minord+1, maxord+1) ;
h-zeros (128, maxord-minord+1) ;
w=zeros (128 ,maxord-minord+1) ;

n=0;

for i=minord:maxord
n=n+1l;

[bi,ai]=yulewalk (i, £, m);
a(n,:)=[ai zeros(1,maxord-i)];
b(n, :)=[bi zeros(l,maxord-i)];

(hi,wi]l=freqz(bi,ai,128);
h(:,n)=hi;
w(:,n)=wi;

end

clf reset;
plot (f,m,w/pi,abs{(h));
grid;

if (maxord-minord) ==

sl=int2str (maxord) ;

title(['Filter Response (Filter Order:
else

sl=int2str (minord) ;

s2=int2str (maxord) ;

title(['Filter Response (Filter Orders:
end

xlabel ('£/(0.5*fs) ') ;
ylabel {'Magnitude') ;

return;

',Sl,')' )’.

',s1,"

to

second row --> 'minord+1' order filter coefficients

last row --> 'maxord' order filter coefficients

',82,')']);

Removal of time delays from the data set was done with the function ‘shift.m’.

function [xb,ybl=shift(xdata,xshift,ydata,yshift)

% Function to remove time delays from process data.

¥

% [(xb,yb]l =shift (xdata,xshift,ydata,yshift)
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Inputs: xdata - process input data block

xshift - row vector with as many elements
as there are columns in xdata giving
the delay for each proress input

ydata - process output data block

yshift - row vector with as many elements
as there are columns in ydata giving
the delay for each process output

Outputs: xb - time shifted process input data block
yb - time shifted process output data block

Note: Select the earliest measurement in both the input and
output data blocks and use it as the reference point for
'xshift' and 'yshift'. All delays specified in these two
vectors must be positive.
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[nx, mx]=size (xdata) ;
xs=length (xshift) ;
[ny,myl=size(ydata);
ys=length(yshift);

if (mx ~= xs) | (my ~= ys)
disp('Error in input arguments');
help shift
return

end

if (min(xs) < 0) | (min(ys) < 0)
disp('All delays must be positive');
help shift
return

end

maxdelay=max ( [max (xshift) max(yshift)]);
for i=1:xs
xb(:,i)=xdata(xshift (i)+1:nx-maxdelay+xshift(i),i);
end
for i=1:ys
yb{:,1i)=ydata(yshift (i) +1:ny-maxdelay+yshift(i),i);
end

return;

The filtering of the data matrices used for the PLS analysis was done with the

function ‘datafilt.m’.
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function [xf)]=datafilt(b,a,x)

Function for filtering data matrix. The filter
is applied to the data one column at time with
initial condition matchaing.
[#«f]=datafilt (b,a, x)
Inputs: b = filter numerator

a - filetr denominator

x - data matrix

Output: xf - filtered data matrix

See also: filter
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[row,coll=size(x) :

lyy.xx]=dstep(b,a);
n=3*length(yy);

for j=1l:col
[temp,icl=filter(b,a,x(1,j)*ones(n,1));
xf(:,j)=filter(b,a,x(:,3),ic);

end

return

The adaptive simulation algorithm was implemented in the ‘sim.m’ function.

function [yp, fbeta,lambda)=sim(x,y,r,ibeta)

Simulation function with moving average
bias correction (MISO system).

Inputs:
X - plant input data matrix
y - plant output data vector
r - regression coefficient vector
ibeta - initial value for bias correction

Output :
yp - output prediction
fbeta - final value for bias correction
lambda - correction term trajectory
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[nx, mx] =siza(x});
{ny,my]=size(y);
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if nx ~= ny

disp('Input and output data must have the same number of

observations') ;
help sim;
return;

end

if my ~= 1

disp('This routine applies to MISO systems only');

help sim;
return;
end

YP = zeros(ny,1);
e = zeros(60,1);
beta = ibeta;

k = floor(nx/60};
lambda=zeros(k 1};
t=0;

for j = 1:k
lambda (j) veta;
fer 1 = 1:60
t = t+1;
yp(t) = x(t,:)*r+beta;
e(i)= y(t)-yp(t);
end
beta = beta+sum(e)/60;
end

for i = t+1l:nx

t=t+1;

yp(t) = x{t,:)*r + beta;
end

fbeta = beta;

return;
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