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Abstract 1 

 2 

The rapid advances in omics technologies have led to a tremendous progress in our 3 

understanding of the rumen microbiome and its influence on cattle feed efficiency. 4 

However, significant gaps remain in the literature concerning the driving forces that 5 

influence the relationship between the rumen microbiota and host individual variation, and 6 

how their interactive effects on animal productivity contribute to the identification of cattle 7 

with improved feed efficiency. Furthermore, little is known about the impact of mRNA- 8 

based metatranscriptomics on the analysis of rumen taxonomic profiles, and a strategy 9 

for the discovery of lignocellulolytic enzymes through the targeted functional profiling of 10 

carbohydrate-active enzymes (CAZymes) remains to be developed. Study 1 investigated 11 

the dynamics of rumen microorganisms in cattle raised under different feeding regimens 12 

(forage vs. grain) and studied the relationship among the abundance of these 13 

microorganisms, host individuality and the diet. To examine host individual variation in 14 

the rumen microbial abundance following dietary switches, hosts were grouped based on 15 

the magnitude of microbial population shift using log2-fold change (log2-fc) in the copy 16 

numbers of bacteria, archaea, protozoa and fungi. Three groups of log2-fc in the bacterial 17 

and fungal abundance (Low, log2-fc < -1; Stable, -1 < log2-fc < 1; and High, log2-fc > 1) 18 

were identified from the magnitude of change in baseline rumen microbial populations. 19 

By monitoring the microbial population shift within the same animal in response to the 20 

diet, significant ecological features of rumen microorganisms were identified and shed 21 

new light on their dynamic roles in animal feed utilization and individual variation. Study 22 

2 compared the outcomes of two methods, Kraken (mRNA based) and a pipeline 23 

developed in-house based on Mothur (16S rRNA based), concerning the taxonomic 24 
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profiles (bacteria and archaea) of rumen microbial communities using total RNA 1 

sequencing of rumen fluid collected from cattle with different feed conversion ratios (FCR). 2 

Both approaches revealed a similar phyla distribution of the most abundant taxa, with 3 

Bacteroidetes, Firmicutes, and Proteobacteria accounting for approximately 80% of total 4 

bacterial abundance. For bacterial taxa, although 69 genera were commonly detected by 5 

both methods, an additional 159 genera were exclusively identified by Kraken. Kraken 6 

detected 423 species, while Mothur was not able to assign bacterial sequences to the 7 

species level. For archaea, both methods generated similar results only for the 8 

abundance of Methanomassiliicoccaceae and Methanobrevibacter ruminantium. 9 

Although Kraken enhanced the microbial classification at the species level, identification 10 

of bacteria or archaea in the rumen was limited due to a lack of reference genomes for 11 

the rumen microbiome. Study 3 investigated the effect of cattle breeds on specific ruminal 12 

taxonomic microbial groups and functions associated with FCR, using two genetically 13 

related Angus breeds as a model. Total RNA was extracted from rumen content samples 14 

collected from purebred Black and Red Angus bulls fed the same forage diet and then 15 

subjected to metatranscriptomic analysis. Multivariate discriminant analysis (sPLS-DA) 16 

and analysis of composition of microbiomes (ANCOM) were conducted to identify 17 

microbial signatures characterizing Black and Red Angus cattle. Although Black and Red 18 

Angus are genetically similar, sPLS-DA detected 25 bacterial species and ten functions 19 

that differentiated the rumen microbial signatures between those two breeds. ANCOM 20 

revealed an association between FCR and breed with Chitinophaga pinensis and 21 

Clostridium stercorarium, suggesting that these bacterial species may play a key role in 22 

the feed conversion efficiency of forage-fed bulls. Study 4 combined selective pressure 23 
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to enrich the rumen for lignocellulolytic microbes with bioinformatic tools to guide the 1 

discovery of unknown CAZymes in the microbiome. It was demonstrated that the rumen 2 

microbiome increased the abundance of lignocellulolytic bacteria, such as Fibrobacter 3 

succinogens, and a diverse set of CAZymes over time, including 18 uncharacterized 4 

members of the family GH11 (xylanases) and three of the family GH45 (endoglucanases). 5 

Further experiments confirmed the lignocellulolytic activity of xylanase using such 6 

approach. In summary, the data presented in this thesis provide fundamental knowledge 7 

on the role of the rumen microbiome in cattle feed efficiency and offers opportunities to 8 

further explore the potential of the rumen as a source for novel enzyme discovery. 9 

 10 

 11 
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Chapter 1 18 

Literature review 19 

 20 

1.1 Introduction 21 

The agri-food industry contributes to the economic development of many countries 22 

through the provision of employment, income and food security. It has been estimated 23 

that this industry employs over 1 billion people around the world, accounting for 1 in 3 of 24 

all workers of the global workforce (Network 2016). In the domestic scenario, the beef 25 

industry is the largest component of the Canadian food processing sector, with annual 26 

sales surpassing $28 billion, including exports exceeding $6 billion and direct employment 27 

for over 66,000 people (Statistics Canada, 2017). The Canadian beef sector is the 12th 28 

largest globally and provides around 1.9% (around 62 million metric tonnes) of the world’s 29 

beef supply (USDA, 2017). However, increased global demand for food will continue to 30 

rise as the global population will continue to increase to 9.15 billion people by the year 31 

2050. Despite the importance of Canada’s beef industry in the world, the dramatic 32 

increase in the human population will require a further growth of 70% in food production 33 

to meet the global demands for adequate nutrition (Nations 2015, Alexandratos and 34 

Bruinsma 2012). 35 

 However, with the increase in the demand for animal protein, there is a 36 

simultaneous increase in greenhouse gases (GHG) produced by the environmental 37 

footprint of ruminant agriculture (Huws et al. 2018). On a global scale, it has been shown 38 

that ruminants contribute between 9 and 11% of total anthropogenic GHG production 39 

(Pickering et al. 2015b), with approximately 44% of ruminant emissions generated in the 40 

form of methane (Rojas-Downing et al. 2017). Furthermore, methane emissions represent 41 

2-12% energy loss from the gross energy intake in cattle, and this outcome reduces host 42 

feed efficiency (Johnson and Johnson 1995). Therefore, mitigating methane emissions 43 

from ruminants is a necessary step in the process of reducing the negative impacts of 44 

GHG on the environment, and also to improve animal feed efficiency. 45 
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 One fascinating microbial community that has raised much interest is the one that 46 

resides in the upper digestive tract of ruminants, termed the rumen microbiome (Shaani 47 

et al. 2018). A detailed understanding of the structure and function of the rumen 48 

microbiome is central to improving animal feed efficiency and minimizing energy loss as 49 

a result of methane emissions, as the rumen microbiota plays a fundamental role in the 50 

food digestion and provision of energy for the host (Matthews et al. 2018). In the last 51 

decades, the advent of high-throughput sequencing technologies has greatly advanced 52 

our understanding of the major microbial populations and functional pathways of the 53 

rumen microbiome involved in methane emissions and feed efficiency (Denman et al. 54 

2018, Huws et al. 2018). However, little is known about the precise mechanisms of host- 55 

microbe interactions in ruminants, and how the dynamics of individual changes in the 56 

rumen microbial communities impact the host feed efficiency. Since inter-individual 57 

variability and the microbiome are likely to vary simultaneously (Bashiardes et al. 2018), 58 

a comprehensive understanding of their interactive effects on the host may create 59 

opportunities to enhance animal productivity and alleviate the pressure of the livestock 60 

sector on the environment. 61 

In addition to its role in feed degradation and host energy provision, the rumen 62 

microbiome is a valuable source of novel enzymes with major applications in the 63 

biotechnology and biofuels industries (Seshadri et al. 2018, Ribeiro et al. 2016). The 64 

rumen microbiome remains a source of valuable bioactives for the biotechnology industry 65 

due to the proven ability of the rumen enzymes to break down and release the vast energy 66 

stored in the most abundant carbon polymer on the planet, namely lignocellulose (Hess 67 

et al. 2011, Gharechahi and Salekdeh 2018, Meng Qi et al. 2011). The importance of 68 

discovering novel rumen-derived enzymes capable of converting lignocellulose into 69 

biobased alternatives stems from the growing demands for a bioeconomy less dependent 70 

on petroleum-derived fuels (Clark et al. 2006). Despite the wealth of knowledge on the 71 

rumen microbiome and its relevance as a source for enzyme discovery, limitations related 72 

to the analysis of microbiome datasets still exist and they are exacerbated by the vast 73 

differences in analytical approaches employed across studies. Thus, standardization of 74 

the sample processing workflow - from collection to analysis - to allow more reliable 75 

comparisons of results across studies will provide comprehensive insights into the rumen 76 
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microbial composition and its functional capacity, which will ultimately lead to the 77 

development of intervention strategies to reduce livestock methane emissions and to 78 

discover new enzymes. 79 

 This literature review consists of four main sections. The first will summarize the 80 

rumen microbiome and its microbes, and the contribution of the rumen microbiome to 81 

ruminant feed efficiency and methane emissions. The second section relates to the rumen 82 

microbiome as a reservoir for novel enzyme discovery. The third section reviews 83 

molecular approaches used to investigate the rumen microbiome and to discover rumen 84 

enzymes. The fourth section discusses the optimal statistical approaches for analyzing 85 

microbiome datasets generated from the molecular technologies. 86 

1.2 Importance of the rumen microbiome to cattle production 87 

1.2.1 Rumen microbial diversity and functions 88 

The ruminant forestomach is composed of four compartments, the rumen, reticulum, 89 

omasum, and abomasum. The rumen is the largest compartment and contains a vast 90 

array of anaerobic microorganisms (bacteria, archaea, protists, and fungi) that functions 91 

in a coordinated fashion to ferment feed into volatile fatty acids (VFA), which are ultimately 92 

used as energy source for milk and meat production (Russell and Rychlik 2001). The 93 

rumen is the primary site of microbial fermentation and is lined with a filiform and foliate 94 

epithelium with an extended surface area that facilitates the absorption of VFAs (Steele 95 

et al. 2016). Temperature, pH, buffering capacity, osmotic pressure, and redox potential 96 

(Eh) contribute to the maintenance of ruminal homeostasis and create the ideal habitat 97 

for the growth of anaerobic and facultative anaerobic microbes (Russell and Rychlik 2001, 98 

Weimer 1992). A distinguishing feature of the rumen microbiome compared to other 99 

microbiomes (e.g., soil) is that it exhibits a highly anaerobic condition (Eh = -150 to -350 100 

mV) that creates the ideal environment for microbial fermentation of feed particles 101 

(Russell and Rychlik 2001). This fermentative activity results in a continuous production 102 

of gases that are largely removed via eructation (Russell and Rychlik 2001, Weimer 1992). 103 

Chemical reactions with reducing agents and a dedicated population of facultative 104 

anaerobic microorganisms maintain the anaerobic conditions in the rumen for the whole 105 

microbial population by scavenging oxygen taken in with food and drinking water (Weimer 106 
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1992). This synergistic microbial consortium is made up of cellulolytic, hemicellulolytic, 107 

amylolytic, and biohydrogenating species that exhibit a high level of functional 108 

redundancy (Firkins and Yu 2015, Hobson and Stewart 1997, Weimer 1992). Enhancing 109 

our understanding of this complex microbial community is critical to provide the framework 110 

needed to address the current challenges (e.g., mitigating methane emissions and 111 

improving feed efficiency) of the ruminant agriculture chain. The next sections will discuss 112 

in depth the major microbial members of the rumen microbiome (bacteria, archaea, 113 

protozoa, and fungi) and their functions. A more in-depth discussion about the rumen 114 

microbiome membership and their functions can be found in Huws et al. (2018) and 115 

Matthews et al. (2018). 116 

1.2.1.1 Rumen bacteria 117 

Bacteria represent the most abundant organisms of the rumen microbiome (density of 118 

1010-1011
 
cells/ml rumen fluid), making up more than 50% of the cell mass (Creevey et 119 

al. 2014). Rumen bacteria are dominated by members of the Firmicutes, Bacteroidetes 120 

and Proteobacteria phyla, which can account for >90% of the total bacterial population 121 

(M. S. McCabe et al. 2015, Henderson et al. 2015, Fouts et al. 2012). Bacteria can be 122 

free in the rumen fluid, attached to ingested feed particles (firmly or loosely), adhered to 123 

the rumen wall (known as epimural bacteria), or associated with eukaryotic organisms 124 

(Stewart et al. 1988, Cheng et al. 1979, Miron et al. 2001, McAllister et al. 1994a). 125 

Numerically, the digesta-associated bacteria are the most abundant among the four 126 

fractions (McAllister et al. 1994a), followed by the liquid-associated (planktonic) fraction 127 

of the rumen fluid, which comprises around 30% of the rumen bacterial population (Millen 128 

et al, 2016).  The digesta-associated bacteria ferment feed or utilize the end-products of 129 

this fermentation, and are dominated by fermentative species. In contrast, the epimural 130 

bacteria are often facultative anaerobes, producing urease and scavenging oxygen to 131 

assist in the maintenance of the ruminal anaerobic environment (Liu et al. 2016).  132 

Early work indicated that at least 22 bacterial species had been characterized by 133 

the beginning of the 21st century using culture dependent-methods (Russell and Rychlik 134 

2001), but molecular techniques showed that less than 20% of the rumen microbiota can 135 
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be cultured using standard culture-based techniques (Krause et al. 2013, Nocker et al. 136 

2007). The assessment of the rumen bacterial diversity in the Ribosomal Database 137 

project revealed 13,478 bacterial sequences and the estimated number of bacterial 138 

species in the rumen was of approximately 7,000 species (Kim et al. 2011). Recently, a 139 

global census of rumen bacterial membership analyzed 742 rumen content samples 140 

collected from 32 ruminant species across 35 countries and found that 30 dominant 141 

bacterial genera were present in over 90% of animals and represented 89.4% of all 142 

generated sequence data (Henderson et al. 2015). This study concluded that the current 143 

technologies have already defined the dominant groups of rumen bacteria, and also 144 

revealed the existence of a “core” group of rumen microbes, ubiquitous to ruminants 145 

worldwide, containing the most abundant ruminal bacterial species, such as Prevotella 146 

spp., Butyrivibrio spp., and Ruminococcus spp. (Henderson et al. 2015). However, the 147 

taxonomy of ruminal bacteria is continually being updated, and the possibility of 148 

discovering unculturable or previously unrecognized ruminal bacteria still exists.   149 

1.2.1.2 Rumen archaea 150 

The domain archaea is divided into two different kingdoms; Euryarchaeota, consisting of 151 

methanogens and extreme halophytes, and Crenarchaeota, consisting of 152 

hyperthermophiles and nonthermophiles (Bayley et al. 1999).  Rumen methanogens 153 

belong exclusively to Euryarchaeota (with a range of 106 to 108 cells per ml) and account 154 

for 0.3-3.3% of the ruminal microbial population (Peter H. Janssen and Marek Kirs 2008, 155 

Lin et al. 1997). These microbes require a very low redox potential (Eh = -300 mV) to 156 

grow and are among the strictest anaerobes on Earth (Sirohi et al. 2010). The assessment 157 

of the rumen archaeal community present in the Ribosomal Database project revealed 158 

3,516 archaeal sequences and an estimated number of 1,500 species (Kim et al. 2011). 159 

Despite this diversity, studies have shown that 90% of rumen archaea belong to the 160 

Methanobrevibacter (63.2% of the methanogenic population), Methanomicrobium (7.7%), 161 

Methanosphaera (9.8%), Rumen Cluster C (now referred as Methanomassiliicoccaceae, 162 

7.4%), and Methanobacterium (1.2%) genera (Peter H. Janssen and Marek Kirs 2008, 163 

Patra et al. 2017). Most methanogens (e.g., Methanobrevibacter species) use hydrogen 164 

gas as electron donors to reduce CO2 to methane (formate can also be used as an 165 
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electron donor and may contribute to the production of up to 18% of ruminal methane) 166 

(Hungate 1967). Other species, such as Methanosphaera stadtmanae, only produce 167 

methane through the reduction of methanol with hydrogen, having one of the strictest 168 

energy metabolisms of all methanogenic archaea (Peter H. Janssen and Marek Kirs 169 

2008). The continuous production of methane carried out by methanogens leads to a low 170 

concentration of hydrogen in the rumen and creates a favorable environment for the 171 

growth of other species and more efficient fermentation (Peter H. Janssen and Marek Kirs 172 

2008). 173 

 However, methane produced in the rumen is eructed and released into the 174 

environment, leading to atmospheric pollution (Matthews et al. 2018). Due to these 175 

environmental concerns, research on rumen methanogens has attracted great interest in 176 

the last decade (Wallace et al. 2014, Johnson and Johnson 1995). Therefore, 177 

manipulating the rumen microbiome to mitigate the activity of methanogens would help 178 

reduce the negative impact of methane emissions on the environment and improve the 179 

feed efficiency of ruminants. Strategies of mitigating methane emissions in ruminants and 180 

the contribution of the rumen microbiome to host feed efficiency are discussed further in 181 

sections 1.2.2 and 1.2.3. 182 

1.2.1.3 Rumen protozoa 183 

Protozoa are found in the range of 104 to 106 cells per ml in the rumen and are 184 

accountable for 20-50% of the rumen microbial biomass (McSweeney and Mackie 2012). 185 

They are involved in lipid hydrolysis and can produce large amounts of hydrogen via their 186 

hydrogenosomes (Tymensen et al. 2012), and thus may contribute to methane production 187 

via interspecies hydrogen transfer with methanogens (Hobson and Stewart 1997, S. 188 

Kittelmann et al. 2015, Gijzen et al. 1988). Morphological studies have identified over 250 189 

ciliate species in a range of ruminant hosts, represented by around 40 genera (Veira 1986, 190 

Williams and Coleman 1997).  The Entodinium genus is the most abundant protozoan in 191 

the rumen, and other common genera include Polyplastron, Epidinium and Eudiplodinium 192 

(Kittelmann et al. 2013a, Carberry et al. 2012a, Sylvester et al. 2004). Protozoa rapidly 193 

digest feed particles via engulfment, and also predate on bacteria and other small 194 

microbes, to ultimately convert them to an iodophilic storage polymer through a vast array 195 
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of enzymes such as amylases and glucosidases (Matthews et al. 2018, McSweeney and 196 

Mackie 2012). 197 

 The contribution of protozoa to rumen fermentation remains controversial in the 198 

scientific community. Deliberate removal of protozoa from the rumen, known as 199 

defaunation, does not have a detrimental effect on the animal survival but it can affect 200 

feed degradation efficiency in the rumen (Newbold et al. 2015). Defaunation can be 201 

carried out by several techniques such as chemical removal of protozoa through the use 202 

of copper sulphate, calcium peroxide, alcohol ethoxylate, coconut oil, linseed oil or soya 203 

oil hydrolysate (Jouany 1995). A recent meta-analysis analyzed 23 in vivo defaunation 204 

studies with the goal of determining the function of rumen protozoa and concluded that 205 

the removal of protozoa from the rumen decreased the degradation of neutral and acid 206 

detergent fibers, indicating that protozoa play important roles in fiber digestion (Newbold 207 

et al. 2015). In addition to their functional importance as fibrolytic microbes, protozoa have 208 

been associated with methanogenesis since defaunation reduces methane output by 11% 209 

(Morgavi et al. 2012b, Newbold et al. 2015).  Protozoa-associated methanogens also 210 

account for approximately 37% of methanogenesis in ruminants (Finlay et al. 1994), and 211 

defaunation could disrupt this symbiotic relationship in order to reduce methane 212 

production (Matthews et al. 2018). However, research outcomes suggest that a strategy 213 

to eliminate all protozoa in the rumen may not be the best approach to mitigate methane 214 

emissions as it can compromise the activity of those protozoa involved in fiber 215 

degradation (Newbold et al. 2015), and this can affect the ruminal fermentation stability 216 

and consequently host productivity. 217 

1.2.1.4 Rumen fungi 218 

Anaerobic fungi (103 to 106 zoospores/ml) were firstly described by Colin Orpin in 1975 219 

who reported them in the gastrointestinal tract of herbivores, particularly in the rumen and 220 

caecum (Orpin 1975). These strictly anaerobic microbes within the phylum 221 

Neocallimastigomycota are key players in the degradation of lignocellulosic feedstuffs 222 

within the gut of ruminant and non-ruminant herbivores (Gruninger et al. 2014). The 223 

anaerobic rumen fungi are currently grouped into eight genera (Neocallimastix, 224 

Piromyces,  Ontomyces, Buwchfawromyces, Caecomyces, Orpinomyces, Anaeromyces, 225 
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and Cyllamyces) characterized primarily using classical microscopy (Dollhofer et al. 2015). 226 

However, next-generation sequencing technology has revealed an immense and 227 

undiscovered biodiversity which may have been underappreciated in the past (Koetschan 228 

et al. 2014). Each genus is distinguishable by morphological features such as thallus 229 

morphology (monocentric vs. polycentric), rhizoids morphology (filamentous vs. bulbous) 230 

and zoospore flagellation (monoflagellate vs. polyflagellate) (Ho and Barr 1995, Ozkose 231 

et al. 2001). 232 

To illustrate the importance of anaerobic fungi in plant cell wall degradation, 233 

several experiments provided insight into their contribution to fiber digestion, feed intake, 234 

rumen fermentation and rumen metabolism (Gruninger et al. 2014). For example, the 235 

removal of anaerobic fungi from the rumen can reduce voluntary feed intake and dry 236 

matter degradation, indicating that feed digestion is usually impaired when they are 237 

removed from the rumen (Akin et al. 1988, Morrison et al. 1990, Gordon and Phillips 1998). 238 

Furthermore, the elimination of anaerobic fungi from the rumen significantly reduced the 239 

degradation of dry matter, neutral detergent fiber, acid detergent fiber and the activity of 240 

carboxymethylcellulases (Ford et al. 1987, Gordon and Phillips 1993, Gao et al. 2013), 241 

further confirming the importance of these microbes for fiber digestion in the rumen. 242 

1.2.2 Feed efficiency and the rumen microbiome 243 

Feed efficiency is a measure used to determine the relative ability of cattle to convert feed 244 

into useable products (beef or milk), and it is a moderately heritable trait in cattle 245 

(Cammack et al. 2018, Berry and Crowley 2013). In the past, beef cattle performance 246 

was traditionally evaluated using traits that measured total output (i.e., weight gain or lean 247 

meat carcass yield) without considering input measurements such as feed intake. As the 248 

costs associated with feed increased dramatically to 55-70% of the total costs in beef 249 

cattle operations (NRC 2016), the selection for feed efficient cattle is essential for the 250 

continuous growth in farm profitability as well as environmental sustainability. Feed 251 

conversion ratio (FCR) (gain in body weight per unit of feed consumed) has been 252 

considered as one of the standard measures of feed efficiency for individual farmers, and 253 

selecting for low FCR (efficient) animals usually results in a corresponding improvement 254 

in gross efficiency (e.g., growth rate) (Korver 1988). The popularity of FCR among farmers 255 
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is a reflection of its moderate heritability for gross efficiency (Crews 2005), and this means 256 

that selecting for low FCR animals leads to a simultaneous improvement in gross 257 

efficiency.  258 

However, FCR-based selection strategies result in increased growth rate and 259 

mature cow size, leading to increased nutritional requirements to maintain the breeding 260 

female that can thus increase the feeding costs (Gunsett 1984). To circumvent this 261 

limitation, a metrics called residual feed intake (RFI)  has been proposed as an alternative 262 

to FCR (Koch et al. 1963). Expected feed intake is calculated by regressing average daily 263 

gain and metabolic mid-test weight on standardized feed intake, and the difference of this 264 

value from actual feed intake provides a “residual feed intake” or RFI value. Genetically 265 

independent of growth, animals may be classified as low-RFI (efficient) or high-RFI 266 

(inefficient) (Alemu et al. 2017, Kong et al. 2016, Carberry et al. 2014b, Montanholi et al. 267 

2010). The main limitation to adopting the RFI methodology for predicting feed efficiency 268 

on a large-scale basis is the inability to accurately measure feed intake in a feedlot setting. 269 

However, with advancements in individual feed intake recording systems, such as 270 

GrowSafe® Feeding Systems (GrowSafe Systems Ltd., Airdrie, Alberta), accurate feed 271 

intake monitoring has been possible, and the use of RFI measures to estimate feed 272 

efficiency in cattle has increased in recent years (Thompson 2015). 273 

 Regardless of the differences in the feed efficiency metrics (FCR vs. RFI) used in 274 

beef cattle operations, it has been reported a significant variation in feed efficiency from 275 

one animal to the other that is influenced mainly by the feeding behavior, energy 276 

metabolism, the rumen microbiota composition, and the genetic background of the host 277 

(Cantalapiedra-Hijar et al. 2018). Although all these factors are usually interconnected 278 

with each other, studies have revealed that energy metabolism-related factors (at the 279 

cellular level) are more relevant to explain individual variations in feed efficiency than 280 

digestion-related factors (e.g., feeding behavior) (Cantalapiedra-Hijar et al. 2018). The 281 

main finding described in those studies is that feed efficient cattle produce less heat than 282 

inefficient animals due to a decreased protein turnover and a higher efficiency of 283 

mitochondrial ATP production generated from the digestion and catabolism of 284 

carbohydrates, proteins and lipids in the rumen (Kong et al. 2016, Cantalapiedra-Hijar et 285 
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al. 2018). The lower energy metabolic rate observed in feed efficient cattle is independent 286 

of changes in feeding behavior (e.g., voluntary feed intake), suggesting that metabolic 287 

energy-consuming metrics need to be taken into consideration to explain individual 288 

variations in ruminants’ feed efficiency (Cantalapiedra-Hijar et al. 2018, Nkrumah et al. 289 

2006). 290 

Another important factor contributing to individual variations in feed efficiency is 291 

the rumen microbiota as it plays essential roles in feed degradation and host energy 292 

provision (Matthews et al. 2018). Several studies have shown linkages between rumen 293 

microbial profiles and feed efficiency (Shabat et al. 2016, Guan et al. 2008, Carberry et 294 

al. 2012b, Fuyong Li and Le Luo Guan 2017), including the linkages between efficient 295 

cattle and the abundances of the bacterial Lachnospiraceae and Veillonellaceae families 296 

(Myer et al. 2015a, F. Li and L. L. Guan 2017), and a number of archaeal taxa (Carberry 297 

et al. 2014a, Carberry et al. 2014b, F. Li and L. L. Guan 2017). In the attempt to 298 

understand the rumen microbiota of feed efficient cattle, a study of the functional activity 299 

of the rumen microbial population revealed that efficient cattle (Low RFI) had lower rumen 300 

microbial diversity and richness than inefficient cattle (High RFI)  (Fuyong Li and Le Luo 301 

Guan 2017), demonstrating that the rumen microbiota of efficient animals is less complex 302 

and more specialized in harvesting energy from the diet than inefficient animals (Shabat 303 

et al. 2016). More recently, Li et al. (2019b) analyzed the rumen microbiota of 709 beef 304 

cattle and showed that multiple factors including sex, breed, and diet are responsible for 305 

variations in the rumen microbial composition. The authors found that the relative 306 

abundance of ~34% of microbial taxa as well as the copy number of total bacteria were 307 

associated with feed efficiency and had a heritability estimate ≥ 0.15, suggesting that they 308 

are influenced by the host genetic background.  309 

As mentioned above, the interactions of the rumen microbiome with the host can 310 

lead to individual variations in feed efficiency and understanding their influence on animal 311 

production may provide opportunities to create strategies aiming to reduce the impact of 312 

ruminant agriculture on the environment as discussed in the next section. 313 

1.2.3 Rumen microbial contribution to methane emissions 314 
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The rumen microbial fermentation represents a significant source of greenhouse gas 315 

emissions, with CH4 production contributing to reduce host dietary energy availability by 316 

up to 12%  (Johnson and Johnson 1995). This outcome has led to the urgent need for the 317 

development of strategies to mitigate methane production in the livestock sector while 318 

concurrently improving animal feed efficiency to meet the increasing global demand for 319 

food. 320 

The development of strategies to mitigate methane production by ruminants 321 

depends on our understanding of the linkage between methanogens and methane 322 

production in the rumen. Hydrogen is a by-product of normal rumen fermentation, and is 323 

a regulator of methane production in ruminants (Hegarty et al. 2007), whereby 324 

methanogens consume ruminal H2 in the terminal step of carbohydrate fermentation 325 

(Deppenmeier 2002). As described previously, hydrogenotrophic methanogenesis is the 326 

predominant pathway in the rumen, and is carried out mainly by Methanobrevibacter 327 

species, which typically account for over 90% of archaeal 16S rRNA reads (Hristov et al. 328 

2012). Species of Methanosphaera, Methanimicrococcus, and Methanobacterium also 329 

utilize H2 to produce CH4 (Tapio et al. 2017). The less abundant methylotrophic 330 

methanogens include members of the Methanosarcinales, Thermoplasmatales, 331 

Methanophaera, and Methanomassillicoccaceae (Tapio et al. 2017, P. H. Janssen and 332 

M. Kirs 2008, Poulsen et al. 2013). Due to the important role played by rumen archaea in 333 

CH4 production, several strategies have been developed to reduce enteric methane 334 

emissions, either by directly targeting the methanogen population or attempting to reduce 335 

the substrates for archaeal metabolism. 336 

 These mitigation strategies include dietary manipulation, plant lipid feeding, 337 

synthetic methanogen inhibitor supplementation, defaunation, and genetic selection for 338 

reduced methane emitting animals (Hristov et al. 2013, McAllister et al. 2015, Martin et 339 

al. 2010, Knapp et al. 2014, Kumar et al. 2014, Cammack et al. 2018, Pickering et al. 340 

2015a). A promising compound for reducing ruminal methanogenesis is 3- 341 

nitrooxypropanol (3-NOP), which has been shown to reduce methane emissions by up to 342 

30% (Hristov et al. 2015, Jayanegara et al. 2018). However, reductions in methane 343 

emissions do not always result in a redirection of energy towards enhancing animal 344 
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production efficiency while supplementing with 3-NOP, likely because the biochemical 345 

processes involved in VFA and H2 production derived from cellulose breakdown requires 346 

energy input (Jayanegara et al. 2018). Thus, the combination of 3-NOP supplementation 347 

with phloroglucinol has been proposed to capture the excess of ruminal H2 from 348 

methanogenesis and generate valuable metabolites (e.g., propionate) for the host 349 

(Martinez-Fernandez et al. 2017). Although promising, it should be noted that the costs 350 

of the application of 3-NOP supplementation and the long-term effect of this strategy on 351 

the abatement of methane production in ruminants still need to be assessed in more 352 

details. 353 

Another promising method of reducing ruminal methane emissions per unit product 354 

is through selecting genetic traits that increase the general efficiency of production in 355 

ruminants  (Kamke et al. 2016). This strategy aims at associating genetic traits (e.g., 356 

weaning weight, dag score, muscle depth, etc.) with the rumen microbiota in order to 357 

predict methane yield phenotypes across ruminant species (Kamke et al. 2016). 358 

Researchers have recently characterized the rumen microbiota of sheep and found that 359 

some microbial profiles were associated with low methane production in some individuals, 360 

which they named as low methane emitting sheep. Species closely related to the lactic 361 

acid producing bacteria Sharpaea azabuensis showed an increased abundance in low 362 

methane emitting sheep, likely indicating rapid heterofermentative pathways resulting 363 

from higher rumen turnover rates. However, H2 producing Ruminoccocaceae, 364 

Lachnospiraceae and Verricomicrobia were more prevalent in the rumen of high methane 365 

yielding sheep (Kittelmann et al. 2014, Kamke et al. 2016). In other ruminant species like 366 

cattle and goats, high methane emitting animals exhibited an increased abundance of 367 

Verrucomicrobia and Synergistetes bacteria and a decreased abundance of 368 

methanogens (Denman et al. 2015, Wallace et al. 2015, Martinez-Fernandez et al. 2016). 369 

Collectively, these findings suggest that the selection for animals that yield less methane 370 

per unit of consumed feed based on the rumen microbiota may be beneficial for animal 371 

production systems. 372 

It is important to note that in addition to concentrating efforts to mitigating methane 373 

emissions from ruminants and improving cattle feed efficiency through the understanding 374 
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of the rumen microbiota, researchers have discovered valuable enzymes in the rumen 375 

that can be applied in the biotechnology industry (e.g., feed additives), and this topic will 376 

be discussed in the next section. 377 

1.3 Rumen microbiome: a potential reservoir of industrially important microbial 378 

enzymes 379 

The success of ruminants in digesting recalcitrant biomass is largely explained by the 380 

ability of ruminal microorganisms to metabolize the constituents of plant structural 381 

carbohydrates (Russell and Rychlik 2001), as the ruminant genome lacks the genes 382 

encoding for the enzymes involved in the breakdown of lignocellulose (Seshadri et al. 383 

2018). Structural carbohydrates (plant cell wall) are complex structures composed 384 

mainly of lignocellulose – the most abundant organic material on Earth – which is a 385 

matrix composed of polysaccharide networks, glycosylated proteins, and lignin (Chafe 386 

1969, McNeil et al. 1984). Although abundant in nature, lignocellulose represents a 387 

critical barrier for the conversion of plant biomass into feed sources and biofuels owing to 388 

the lack of an efficient enzymatic system to deconstruct lignocellulose and release all 389 

fermentable sugars it contains (Bader et al. 2010).  390 

The lignocellulolytic matrix is comprised of three main components: cellulose, 391 

hemicellulose, and lignin. Cellulose is a linear biopolymer of anhydroglucopyranose 392 

molecules, connected by β-1,4-glycosidic bonds and represents the most abundant 393 

component of the lignocellulose complex, accounting for approximately 20-30% of the dry 394 

weight of most plant primary cell walls (Chafe 1969, McNeil et al. 1984). Adjacent 395 

cellulose chains are bound by hydrogen bonds, hydrophobic interactions, and Van der 396 

Waal’s forces that generate a parallel alignment of crystalline structures known as 397 

microfibrils (Zhang et al. 2006). The second most abundant component of lignocellulose 398 

is hemicellulose, which consists of mixed polymers of pentoses (including xylose and 399 

arabinose), hexoses (mainly mannose, less glucose, and galactose) and sugar acids 400 

(Bhatia et al. 2012). Although the composition of hemicelluloses varies considerably 401 

depending on the plant source (Saha 2003, Saha 2000), hemicellulose is composed 402 

mainly of xylans with a backbone structure of β-1,4-linked xylose residues attached to 403 
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various sidechain molecules such as acetic acid, coumaric acid, glucuronic acid, ferulic 404 

acid, and arabinose (McNeil et al. 1984). Lignin is the third main polymer of lignocellulose 405 

and possesses a structure comprised of three aromatic alcohols: coniferyl alcohol, sinapyl, 406 

and p-coumaryl (McNeil et al. 1984). Compared to cellulose and hemicellulose, lignin is 407 

the most recalcitrant structure for rumen microorganisms to degrade and extract 408 

metabolizable energy (Himmel et al. 2007, Sanchez 2009). The surface area available 409 

for microbial attachment and the retention time of the ingested feed in the rumen are listed 410 

as the main obstacles for lignin digestion by rumen microorganisms (Wang and McAllister 411 

2002). Thus, solubilization of lignin is a necessary step for increasing digestibility of 412 

lignocellulosic compounds through microbial fermentation in the rumen (Weimer et al. 413 

1990).  414 

Due to the recalcitrant nature of lignocellulose, the degradation of the complex 415 

cross-linkage structure intertwined by cellulose, hemicellulose, and lignin requires the 416 

synchronized action of a diverse array of rumen microbial enzymes to cleave the 417 

numerous bounds within the plant cell wall structure and access specific substrates in the 418 

lignocellulosic fiber (Wang and McAllister 2002). Owing to the efficacy of the rumen 419 

enzymes to deconstruct lignocellulose, researchers have recommended these 420 

biocatalysts to the animal feed industry as feed additives for ruminants (Sehgal et al. 2008) 421 

and non-ruminants (poultry and swine) (Theodorou et al. 2007). Potent polysaccharide- 422 

degrading enzymes derived from the rumen have also raised the interest of several 423 

industries including brewing, food, textile, paper, and biofuel production (Gruninger et al. 424 

2014). A broad group of enzymes present in the rumen which are of particular interest to 425 

the industry are the carbohydrate-active enzymes (CAZymes), and they will be discussed 426 

in the topic of the next section. 427 

1.3.1 CAZymes 428 

Microbes play a significant role in regulating the biochemical processes of feed digestion 429 

in the rumen (Russell and Rychlik 2001) and are valuable sources of enzymes that have 430 

various biotechnological applications (Seshadri et al. 2018). The interest in discovering 431 

new enzymes for the saccharification of lignocellulose has led to the creation of an 432 

extensive database describing CAZymes families of structurally-related catalytic and 433 
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carbohydrate-binding modules (CBMs) that are continually updated to cover all CAZymes 434 

across organisms and subfields of glycoscience (Cantarel et al. 2009, Lombard et al. 435 

2014). CAZymes and their associated CBMs are classified based on sequence similarity 436 

and encompass biocatalysts whose job is to modify and cleave carbohydrates (glycoside 437 

hydrolyses (GHs), polysaccharide lyases - PLs, carbohydrate esterases - CEs) and 438 

synthesize them (glycosyltransferases) (Cantarel et al. 2009, Lombard et al. 2014). Today, 439 

well over 100 GHs families of over 50 CBM families have been described in the 440 

Carbohydrate-Active enZymes - CAZy database. In the next sections, important 441 

CAZymes will be discussed, with the reader being encouraged to visit the CAZy database 442 

for more details about the structure and classification of CAZymes (http://www.cazy.org). 443 

  444 

1.3.1.1 Cellulases 445 

Cellulases are family members of the broad group of GHs (e.g., GH5, GH6, GH9, GH45), 446 

which have gained interest for a number of biotechnological applications (e.g., treatment 447 

of paper pulp) owing to their ability to hydrolyze 1,4 β-D-glycosidic linkages of the 448 

cellulose chain (Bayer et al. 1998). Based on the structure and functionality, cellulases 449 

have been classified into three groups: 1) Endoglucanases, a group of cellulases that 450 

exhibits a deep cleft or groove to accommodate the cellulose chain at any point along its 451 

length in order to cleave internal bonds at amorphous sites of new chain ends; 2) 452 

Exoglucanases, in contrast, are a group of cellulases that possess the active site in an 453 

extended loop that forms a tunnel, though which one of the termini of a cellulose chain 454 

can be threaded; and 3) β-glucosidases, which are cellulases that hydrolyze cellobiose 455 

to generate two molecules of glucose, and are often associated with the microbial cell 456 

surface when cellodextrins are transported into the cell (Bhat and Bhat 1997).  457 

In addition to the free enzymes, self-assembled multienzyme complexes known as 458 

cellulosomes have been reported in several anaerobic environments including the rumen 459 

(Artzi et al. 2016, Bayer et al. 1998). To date, the only rumen species that exhibits an 460 

elaborated cellulosomal system is the mesophilic bacterium Ruminoccocus flavefaciens 461 

(Dassa et al. 2014). The major difference between free enzymes and cellulosomal 462 

enzymes is that the free enzymes usually contain a CBM to guide the catalytic domain to 463 

http://www.cazy.org)/
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the substrate, while the cellulosomal enzymes carry a dockerin domain that incorporates 464 

the enzyme into the cellulosomal complex (Artzi et al. 2016). The attachment of the 465 

cellulosomal machinery to cellulose chains is achieved via cellulose-binding proteins 466 

(Family 3a-CBM) of the scaffoldin subunit, which contains one or more cohesin modules 467 

connected to other types of functional modules. The arrangement of the modules on the 468 

scaffoldin subunit and the specificity of the cohesins and/or dockerin for their modular 469 

counterpart dictate the overall structure of the cellulosome  (Artzi et al. 2016, Bayer et al. 470 

1998, Doi and Kosugi 2004). Due to their high hydrolytic activity, cellulosomes have a 471 

great potential for the degradation of biomass and are the focus of much effort to engineer 472 

an effective cellulosomal structure for the conversion of lignocellulose into valuable 473 

products, such as biofuels.   474 

1.3.1.2 Hemicellulases 475 

In contrast to cellulose degradation, the digestion of hemicelluloses poses a different 476 

challenge, as this group of polysaccharides includes widely different types of sugars or 477 

non-sugar constituents with different types of bonds. Thus, hemicellulases can be divided 478 

into two main groups: a) those that cleave the mainchain backbone (e.g., mannanases 479 

and xylanases), and b) those that degrade sidechain substituents or short end products 480 

(e.g., arabinofuranosidase) (Shallom and Shoham 2003). Thus, the catalytic modules of 481 

hemicellulases can be either glycosyl hydrolases that hydrolyze glycosidic bonds, or 482 

carbohydrate esterases, which hydrolyze ester linkages of acetate or ferulic acid side 483 

groups (Shallom and Shoham 2003). Due to the different structures of the hemicellulose 484 

molecule, details of the various hemicellulases needed for their catabolism are given 485 

below. 486 

1.3.1.2.1 Mannanases 487 

Mannan is a component of hemicellulose and consists of β-1,4 linkages between 488 

mannose monomers that form the hemicellulose cross-linkages (Hogg et al. 2003). β- 489 

Mannanases (e.g., GH5, GH26) hydrolyze mannan-based hemicelluloses and release 490 

short β-1,4-manno-oligomers, which can be further hydrolyzed to mannose by the action 491 

of β-mannosidases. Deficiency in these enzymes in ruminants (termed β-mannosidosis) 492 

causes skeletal abnormalities (Shallom and Shoham 2003), demonstrating the relevance 493 
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of β-mannases for the digestion of mannan in ruminants. Recently, researchers have 494 

applied exogenous β-mannanases from Aspergillus niger in the animal feed industry as 495 

an additive to improve feed conversion efficiency in dairy cattle (Tewoldebrhan et al. 496 

2017). However, the rumen microbiome possesses the ability to degrade mannan as 497 

demonstrated in the discovery of a multifunctional glycosyl hydrolase encoded in the 498 

genome of the bacterium Prevotella bryantti B14 (Palackal et al. 2007). 499 

1.3.1.2.2 Arabinofuranosidases 500 

Arabinose is found in conjunction with xylan as a hemicellulose component of plant cell 501 

walls, with arabinose units being attached to xylan via alpha-1,2,1,3,1,5 or linked to C2 502 

or C3 positions on the arabinoxylan chain (Shallom and Shoham 2003). In the rumen, 503 

arabinose units can be cleaved off the xylose backbone by arabinofuranosidases (e.g., 504 

GH3, GH43) expressed by rumen bacteria such as Ruminococcus albus (Greve et al. 505 

1984).  506 

1.3.1.2.3 Ferulic acid esterases 507 

Ferulic acid esterase (e.g., CE1) is a group of enzymes that forms a subclass of carboxylic 508 

ester hydrolases. These enzymes hydrolyze the bonds between hydroxycinnamates and 509 

sugars to release ferulic acid (Rashamuse et al. 2007, Wang and McAllister 2002). In the 510 

rumen, these ester bonds are cleaved by ferulic acid esterases encoded in the genome 511 

of the rumen fungi Anaeromyces mucronatus (M. Qi et al. 2011) as well as by rumen 512 

bacteria such as P. ruminicola (Kabel et al. 2011). 513 

1.3.1.2.4 p-Coumaric acid esterases 514 

p-Coumaric acid esterase or p-coumaroyl esterase (e.g., CE1) is an essential enzyme for 515 

efficient degradation of lignocellulose biomass in the rumen (Wang and McAllister 2002). 516 

This enzyme targets the p-Coumaroyl ester bonds that connect lignin to hemicelluloses, 517 

releasing p-Coumaric acid. Surprisingly, this type of enzyme is exclusively produced by 518 

anaerobic rumen fungi (phylum Neocallimastigomycota) and was not yet described in 519 

rumen bacteria (Borneman et al. 1990), further strengthening the ecological role and 520 

significance of anaerobic fungi for deconstructing lignocellulose biomass in the rumen 521 

(Gruninger et al. 2014).      522 
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1.3.1.2.5 Xylanases 523 

The xylan molecule consists of β-1,4 linked xylopyranosyl residues and contains 524 

sidechains with acetyl group and L-arabinofuranosyl residues. Xylanases (e.g., GH5, 525 

GH8, GH10, GH11, GH51) are responsible for the hydrolysis of xylan by breaking the 526 

glycosidic linkages present in the xylan backbone (Shallom and Shoham 2003). Like the 527 

cellulases, the xylanases can be classified into three groups: endoxylanases, β- 528 

xylosidases and acetyl xylan esterases (Beg et al. 2001). All three enzymes hydrolyze 529 

the xylan molecule, rendering D-xylose sugar (Kosugi et al. 2001). The scientific interest 530 

in discovering new xylanases is reflected by the vast number of research papers 531 

published in recent years describing numerous xylanases applications in the pulp and 532 

paper industries (Beg et al. 2001, El Enshasy et al. 2016), and as exogenous enzyme 533 

preparations marketed by the animal feed industry (Wang and McAllister 2002). The 534 

rumen harbors a wide range of microbes cable of degrading xylan, including Prevotella 535 

spp. (such as P. ruminocola, P. albensis, P. brevis, and P. bryantii) and non-Prevotella 536 

spp. (such as Ruminococcus and Fibrobacter)  (Russell and Rychlik 2001, Dai et al. 2015). 537 

1.3.1.3 Pectinases 538 

Pectin exists in the primary cell wall and represents the plant’s first line of defense against 539 

dehydration and penetration by phytopathogens. The pectin’s structure is a backbone of 540 

alpha-1,4-linked residues of D-galacturonate that is degraded by rumen pectinolytic 541 

enzymes (e.g., PL11, GH28) including pectin lyases, polygalacturonases and pectin 542 

methylesterases  (Wang and McAllister 2002). One of the major pectinolytic bacterial 543 

species that inhabits the rumen is Lachnospira multiparus, which produces pectin lyases 544 

and pectin methylesterases (Silley 1985, Russell and Rychlik 2001). In addition to that 545 

bacterial species, rumen fungi also exhibit pectinolytic enzymes (Orpin and Joblin 1997, 546 

Gordon and Phillips 1992). 547 

1.3.1.4 Polyphenol degrading enzymes 548 

Feed consumed by ruminants contain not only the nutrients required by the host animal 549 

for maintenance and production, but also hold naturally occurring plant secondary 550 

compounds such as tannins, saponins, phenolic acids and silica that usually cause 551 
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adverse effects on the activity of fibrolytic enzymes (McAllister et al. 1994b, Bae et al. 552 

1997). However, some gastrointestinal microbes of ruminants are able to break down 553 

tannin-protein complexes through an enzyme known as tannin acyl hydrolase (tannase), 554 

which catalyzes the hydrolysis of ester bonds present in gallotannins, complex tannins, 555 

and gallic acid esters (Rodríguez et al. 2009, Ramírez et al. 2008). Tannase activity in 556 

ruminants has been reported mainly in Streptococcus caprinus (now Streptococcus 557 

gallolyticus) (Brooker et al. 1994) and Selenomonas ruminantium (Skene and Brooker 558 

1995). These tannninolytic microbes possess tannin-degrading ability to tolerate tannins 559 

in feeds, and their selection to promote long-term protection against tannin toxicity can 560 

be used to improve the nutritive value of tannin-rich feeds (Goel et al. 2005). 561 

It is important to note that a key component to improve our understanding of the 562 

rumen microbiome and its role in animal productivity and enzyme discovery is the 563 

development of bioinformatic tools specially tailored to overcome the technical challenges 564 

of the analysis of massively paralleled, high-throughput sequencing data. The section 1.4 565 

of this chapter will discuss in depth the molecular biology techniques designed for 566 

investigating the rumen microbiome, its microbes and enzymes. 567 

1.4 Molecular approaches to study the rumen microbiome 568 

The work of Robert Hungate, outlined in the book “The Rumen and its Microbes” (Hungate 569 

1966) formed the foundation for investigations of basic rumen microbial ecology in the 570 

context of agricultural production (McCann et al. 2017). Hungate’s roll-tube method called 571 

for the use of rumen fluid in growth media to isolate ruminal microbes, and quickly became 572 

the most common approach available for rumen microbiologists to discover new species 573 

(Bryant and Burkey 1953, Bryant and Robinson 1961). By the 1990s and before the rise 574 

of the ‘omics’ approaches, rumen microbiologists perfected culture media techniques to 575 

isolate rumen bacteria and redefined our understanding of how the anaerobic microbiota 576 

functions (Krause et al. 2013).  This pioneering work enabled the identification of at least 577 

22 major bacteria and improved the knowledge of the interrelationship between 578 

carbohydrate and protein-nitrogen metabolism driven by ruminal microbes (Russell and 579 

Rychlik 2001). From the use of the Hungate “roll-tube” technique, modern culture-based 580 

approaches were decisive to unveiling the biochemical and physiological activities of 581 
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rumen microbes since the cultured organisms present in the public collections can be 582 

studied both in vitro and in vivo (Huws et al. 2018).  583 

Our ability to culture rumen microbes was further improved by technologies (e.g., 584 

dilution to extinction and removal of reducing agents) that can be used to culture the as 585 

yet unculturable rumen microbes (Kenters et al. 2011, Poelaert et al. 2017). Despite the 586 

success of cultivation experiments to characterize undescribed rumen microbes, most 587 

cultures are not available in every collection, and culture-based methods may also be 588 

limited to, or biased toward, strains that are highly abundant and organisms which are of 589 

specific interest to research (Zehavi et al. 2018, Huws et al. 2018). Furthermore, it has 590 

been demonstrated that the number of microbial species isolated and characterized from 591 

the rumen is low (Morgavi et al. 2013), highlighting the importance of molecular biology 592 

methods to overcome the limitations of culture-based approaches to study the rumen 593 

microbial composition and diversity (Morgavi et al. 2013). As new technology has become 594 

available, what initially involved the isolation and culture of strains in the laboratory, has 595 

now moved to large-scale sequencing of the ‘total’ detectable rumen microbiota nucleic 596 

acids (e.g., metagenomics and metatranscriptomics) (Denman et al. 2018). The 597 

comprehensive application of these new technologies in most ruminant microbiota studies 598 

has caused significant advances in our understanding of the rumen microbiota diversity 599 

and function, and therefore these techniques will be discussed in more details in the 600 

following sections. 601 

1.4.1 Metataxonomics 602 

Metataxonomics (or amplicon sequencing) refers to the high-throughput sequencing 603 

analysis of amplified taxonomic marker genes and has been used to characterize the 604 

taxonomic composition of microbiota of many ecosystems (Marchesi and Ravel 2015). In 605 

ruminant studies, this method has been routinely employed to capture variations in the 606 

microbial composition in response to perturbations such as dietary changes, subacute 607 

acidosis, and different feed efficiencies and methane production (Petri et al. 2013, 608 

McGovern et al. 2017, Henderson et al. 2015, Myer et al. 2015b). Studies of bacterial and 609 

archaeal diversity have relied on primer sets that target the 16S rDNA or rRNA gene 610 

(Deusch et al. 2015, Matthew Sean McCabe et al. 2015, McGovern et al. 2017), whereas 611 
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18S rRNA and Internal Transcribed Spacer (ITS) genes have been used for eukaryotic 612 

targets, typically protists and fungi (Kittelmann et al. 2013b, Sandra Kittelmann et al. 613 

2015). While metataxonomics is a cheap, fast technology to characterize the rumen 614 

composition and diversity in a wide range of ruminant hosts (McGovern et al. 2017, Tapio 615 

et al. 2016, F. Li et al. 2016, M. S. McCabe et al. 2015, Myer et al. 2015a, Jami et al. 616 

2013, Jami and Mizrahi 2012), it is subject to several limitations. These include PCR 617 

biases (primer specificity and sensitivity, non-specific annealing, differential amplification 618 

specificity of taxonomic groups, artefact formation), poor resolution beyond the genus 619 

level, and the fact that amplicon sequencing cannot account for marker gene copy 620 

number variations (Firkins and Yu 2015, Poretsky et al. 2014). Another critical step in 621 

metataxonomics is the construction and maintenance of updated and representative 622 

databases to aid accurate taxonomical assignments of rumen phylotypes. Commonly 623 

used databases in rumen metataxonomic studies are the Greengenes (DeSantis et al. 624 

2006) and SILVA (Quast et al. 2013) databases for bacteria, RIM-DB (Seedorf et al. 2014) 625 

for methanogens, the ureC database (Jin et al. 2017) for ureolytic bacteria, and AF- 626 

RefSeq (Paul et al. 2018) for anaerobic fungi. 627 

In such analysis, phylogenetic gene investigations are based on the sequence 628 

similarity or, more precisely, on evolutionary divergence between defined taxonomic units 629 

(Denman et al. 2018). In earlier studies, a value of 97% sequence similarity was used to 630 

define a species level rank at least for the full-length 16S rRNA gene (Stackebrandt and 631 

Goebel 1994). With the rise of shorter sequences generated from next-generation 632 

sequencing technologies, the previously recommended threshold of 97% has now been 633 

revised to a suggested value of 99 to 100% sequence similarities to define the operational 634 

taxonomic unit (OTU) (or more commonly now, the Amplicon Sequence Variant) 635 

(Callahan et al. 2016). However, using a value of 100% is also likely to generate multiple 636 

OTUs from the same species, as a single species (or different strains) may possess 637 

multiple copies of an identical 16S rRNA gene (Větrovský and Baldrian 2013). The choice 638 

of a suitable variable region along with the similarity threshold of 99% to allow for possible 639 

polymorphism effects may be a desirable step to mitigate those limitations (Denman et al. 640 

2018). The most popular variable region currently being targeted to cover both bacterial 641 

and archaeal populations is the V4 region (Kozich et al. 2013), but other researchers have 642 



 
 

22 

suggested that the V1-V3 and V6-V8 regions should be the choice for rumen bacteria and 643 

archaea, respectively (Peter H. Janssen and Marek Kirs 2008, Fuyong Li et al. 2016). 644 

While metataxonomics provides insight into the composition of the rumen microbiota, this 645 

technique cannot assess the microbial function within a given environment, which needs 646 

to be performed using other methods as discussed below. Regardless of this limitation, 647 

researchers can still predict the rumen metabolic functions from phylogenetic data 648 

through programs derived from the PICRUSt tool (Langille et al. 2013) such as CowPi 649 

(Wilkinson et al. 2018) although such tools are still subject to the inherent biases and 650 

limitations of amplicon sequencing.  651 

1.4.2 Metagenomics 652 

The concept of metagenomics was first used by Handelsman et al. (1998) to explore the 653 

biosynthetic machinery of soil microbiota, and later it became the recommended 654 

approach to characterize the potential function of the microbiota directly from their 655 

genomes (Marchesi and Ravel 2015). Determining the functional capacity of the rumen 656 

microbiota is feasible and can be achieved through random sequencing of all genetic 657 

material contained in a sample (metagenomic shotgun sequencing), with the aim of 658 

cataloging genes and species (Denman et al. 2018). Metagenomic shotgun sequencing 659 

can thus be used to profile the taxonomy, catalogue the functional genes, discover new 660 

enzymes and pathways, assemble whole- and fragmented-genomes, and quantify the 661 

abundance of functional genomic elements across and between samples (Shinichi 662 

Sunagawa et al. 2013, Gupta et al. 2016b, Huws et al. 2018). Metagenomics can provide 663 

informative taxonomic and functional profiles using several analytical methods (S. 664 

Sunagawa et al. 2013), which include the analysis of informative marker genes (e.g. the 665 

16S rRNA gene) or contigs assembly aligned to databases of reference microbial 666 

genomes (Gupta et al. 2016a). Several studies to date have employed those analytical 667 

approaches in rumen microbiome investigations, including the first functional 668 

metagenomic assessment of the rumen microbiome in pre-ruminant calves (Li et al. 2012) 669 

and the effect of feed conversion rate and breeds on the structure and functions of the 670 

rumen microbiome (Roehe et al. 2016).   671 
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While shotgun metagenomics allows for the study of uncultivable microbial profiles 672 

and has become an essential tool for understanding the genomic potential of the rumen 673 

microbiome (Morgavi et al. 2013), limitations still apply to this method. Sample collection 674 

protocols, DNA extraction techniques and issues around varying levels of genomic DNA 675 

for different species can bias the detection of closely related species or strains that can 676 

become inadvertently co-assembled by traditional metagenomic approaches (Denman et 677 

al. 2018). To overcome these limitations, binning techniques have been developed to 678 

exploit the functional capacity of the rumen microbiota through the construction of 679 

complete or near complete microbial genomes directly from metagenomic sequencing 680 

data (Tyson et al. 2004). The ability to bin genomes from metagenomes stems from an in 681 

silico approach whereby metagenomic assembled contigs are placed in common bins 682 

based on the frequency and abundance of nucleotides, and coverage depth within the 683 

sample using programs like PhyloPythiaS, GroopM, and MetaBat (Patil et al. 2011, Kang 684 

et al. 2015, Imelfort et al. 2014). Completeness and contamination of metagenomic 685 

assembled genomes (MAGs) can then be assessed based on the presence of multiple 686 

lineage-specific single-copy marker genes using programs like CheckM or PhyloSift 687 

(Darling et al. 2014, Parks et al. 2015). These methodologies also allow for assigning 688 

taxonomic information to MAGs from single-copy markers genes concatenated in 689 

genome-based taxonomy trees (Denman et al. 2018). The utility of MAGs was 690 

demonstrated by Svartström et al. (2017), who assembled 99 microbial genomes from 691 

the moose rumen, and by Stewart et al. (2018), who assembled 913 microbial genomes 692 

from the rumen of cattle. 693 

In addition to the applications discussed previously, metagenomics can be used to 694 

identify novel enzymes in the rumen. The discovery of enzymes in metagenomes can be 695 

accomplished using two different strategies: a) sequence-based metagenomic 696 

approaches that look for homologous enzymes in metagenomic datasets, and b) 697 

functional metagenomic approaches, in which metagenomic libraries are constructed, 698 

and clones are screened for enzyme activity (Lam et al. 2015, Sabree et al. 2009). 699 

Sequence-based metagenomic techniques rely on the search for genes that code for a 700 

particular enzyme through the design of PCR primers or hybridization probes on 701 

conserved regions and motifs of known protein families (Ferrer et al. 2009). In contrast, 702 
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the functional approach is not dependent on previous genomic knowledge and allows for 703 

the discovery of novel enzymes with unexpected peptide sequences (exhibiting classical 704 

or new activities) that would not be predicted based on DNA sequencing alone (Distaso 705 

et al. 2017).  706 

The diversity of hydrolytic enzymes in a metagenomic library was screened for 707 

hydrolase activity for the first time in 2005 (Ferrer et al. 2005), when a total of 22 clones 708 

with hydrolytic activities were identified and characterized in the rumen of a cow. Since 709 

then, numerous metagenomic studies have reported the diversity of fibrolytic enzymes in 710 

ruminants fed forage diets (Brulc et al. 2009, Hess et al. 2011, Wang et al. 2013). While 711 

metagenomic techniques have successfully uncovered genes for lignocellulose 712 

breakdown, this method cannot provide further information about transcripts that are 713 

actively transcribed during lignocellulose breakdown (Rosnow et al. 2017). As described 714 

above, shotgun metagenomics can be used for taxonomic identification, functional 715 

characterization and discovery of novel enzymes in the rumen microbiome, but it tends 716 

to be biased towards the most abundant genes encoded by the most numerically 717 

abundant microbial species, and this outcome may not necessarily reflect the importance 718 

of a gene, species or strains residing in the metagenome. 719 

1.4.3 Metatranscriptomics 720 

Metatranscriptomics refers to the analysis of expressed RNAs by high-throughput 721 

sequencing of the corresponding cDNAs, and is the method used to provide information 722 

on the regulation and expression profiles of complex microbiomes (Marchesi and Ravel 723 

2015). While metagenomic shotgun sequencing and MAGs have been advantageous 724 

over metataxonomic techniques, they cannot distinguish whether the genomic content of 725 

the microbiota is from viable cells as opposed to active function revealed by RNA-based 726 

technologies. Currently, metatranscriptomics is considered a reliable approach to identify 727 

metabolically active microbial communities (Franzosa et al. 2014) and to find new 728 

functions and/or enzymes that would not be otherwise revealed by metagenomic 729 

approaches (Rosnow et al. 2017). Metatranscriptome profiling has become popular in 730 

rumen microbiology studies in recent years and was initially used to reveal the snapshot 731 

of the composition and relative abundance of active species (bacteria and fungi) involved 732 
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in the lignocellulose breakdown (Meng Qi et al. 2011, Dai et al. 2015). In addition to 733 

taxonomic identification, metatranscriptomic techniques have been used to explore the 734 

functional capacity of the rumen microbiome to degrade lignocellulose as exemplified by 735 

the investigations of novel CAZymes (e.g., glycoside hydrolases, carbohydrate-binding 736 

modules, carbohydrate esterases) involved in the ruminal digestion of recalcitrant diets in 737 

ruminants (Fuyong Li and Le Luo Guan 2017, Comtet-Marre et al. 2017, Comtet-Marre 738 

et al. 2018).  739 

Currently, most metatranscriptomic analyses employ techniques to deplete the 740 

rRNA sequences with the aim of increasing the number of non-rRNA reads in the datasets, 741 

as concentrations of rRNA are not consistently correlated with microbial growth and can 742 

differ between closely related taxa (Blazewicz et al. 2013). Another reason for rRNA 743 

depletion is that rRNA transcripts are highly abundant (~90% of all the read data) and this 744 

may bring issues to the analysis of mRNA sequences (Fuyong Li and Le Luo Guan 2017). 745 

Thus, metatranscriptomic analysis requires either computational binning of the rRNA 746 

genes to identify and remove ribosomal sequences (using total RNA- or mRNA-based 747 

methods) or use of kits (probes) to deplete rRNA pre-sequencing (Huws et al. 2018). In 748 

the first alternative, computational programs such as SortMeRNA (Kopylova et al. 2012) 749 

can be used to sort the filtered metatranscriptomic reads (total RNA-based methods) into 750 

fragments of 16S rRNA for taxonomic identification using pipelines like Mothur (Schloss 751 

et al. 2009, Fuyong Li et al. 2016) or to obtain mRNA sequences for microbial 752 

classification using software like Kraken (Neves et al. 2017, Wood and Salzberg 2014). 753 

The second alternative is the use of kits to remove prokaryotic and eukaryotic rRNAs, but 754 

a large variety of kits are required to remove rRNAs from complex microbiomes such as 755 

the rumen, and this may be costly and laborious (Huws et al. 2018). Additionally, the time 756 

required to perform the removal of ribosomal sequences using the kits may cause partial 757 

RNA degradation and thus introduce biases in the downstream analysis (Huws et al. 758 

2018).  Despite these limitations, bespoke kits used to remove rumen-derived microbial 759 

rRNAs were described in a study on dairy cows in France where 18 newly ribosomal 760 

depletion probes were designed to remove rumen microbial rRNAs and covered a 761 

significant proportion of the rumen bacterial, archaeal, fungal, and protozoal populations 762 

enriched for non-rRNA reads (Comtet-Marre et al. 2017). More recently, Li et al. (2019a) 763 
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suggested that mRNA-enriched metatranscriptomics should be used for the study of 764 

specific genes and/or metabolic pathways with low expression levels, while total RNA- 765 

based metatranscriptomics are best for linking compositional and functional profiles of the 766 

rumen microbiota to host phenotypes. 767 

While metatranscriptomic analysis is a powerful tool to identify which organisms 768 

are present and genes that are expressed in a sample, one major challenge is the de 769 

novo assembly of the sequencing data to obtain a more reliable annotation of the 770 

expressed genetic content of the metatranscriptome (Davids et al. 2016). In addition to 771 

the challenges associated with identifying unique transcripts through assembly, 772 

metatranscriptomic analysis does not account for variations in the translation and turnover 773 

rates of transcripts transcribed into proteins, and thus functional activities captured by 774 

metatranscriptomics are poorly inferred from correlations between the gene content 775 

(enzyme abundance) and the transcript expression (transcript abundance) (Rosnow et al. 776 

2017). Thus further investigations in protein detection could offer additional information 777 

about the microbial activity and protein expression in the rumen. 778 

1.4.4 Metaproteomics 779 

Metaproteomics is a method used to characterize the entire protein content of 780 

environmental samples at a given point in time and was introduced by Wilmes and Bond 781 

(2004). The method indiscriminately identifies proteins from the environmental samples 782 

(metagenomes) and is performed using liquid-chromatography-based separation 783 

techniques coupled to mass spectrometry (Marchesi and Ravel 2015). Inference of 784 

proteins from the identified peptides and the determination of the taxonomic origin and 785 

function of these proteins can then be achieved using protein alignment tools such as 786 

UniPept (Mesuere et al. 2012). This method has been successfully used to detect proteins 787 

and to identify physiological responses to changes observed in various environmental 788 

conditions such as in soil sediments (Benndorf et al. 2009), rhizosphere (Wu et al. 2011) 789 

and human distal gut microbiota (Verberkmoes et al. 2008). However, a limited number 790 

of metaproteomic studies have been published for the rumen. The technical issues that 791 

have been presented to explain the shortcomings of metaproteomics for predicting the 792 

function of rumen proteins include the interference of polyphenolic compounds of the diets 793 
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with protein isolation procedures. Phenolic compounds (e.g., tannins and humic acids) 794 

co-precipitate with proteins and alter gel mobility, resulting in unresolved smears rather 795 

than distinct protein bands, and thus limit the resolution of the peptides from the rumen 796 

microbiome (Snelling and Wallace 2017). 797 

Despite these limitations, Snelling and Wallace (2017) identified rumen microbial 798 

proteins, such as actin, alpha and beta tubulins, and axonemal isoforms dynein light chain, 799 

which are involved in the locomotion of ciliate protozoa. Removal of protozoa from digesta 800 

before protein extraction revealed the prokaryotic metaproteome and the results showed 801 

a predominance of enzymes of the central metabolism originating from the Firmicutes and 802 

Bacteroidetes phyla (Snelling and Wallace 2017). Another possibility is to combine 803 

shotgun-metaproteomics with 16S rRNA amplicon-based methods to unveil the 804 

metaproteome expressed by the digesta-associated microbiota in cattle undergoing 805 

dietary changes. By using this approach, Deusch et al. (2017) identified over 8000 806 

bacterial and 350 archaeal proteins in the rumen, further improving our understanding of 807 

the complicated interplay among rumen microbes, proteins and their adaptation to various 808 

fermentation substrates (e.g., starch, cellulose, hemicellulose).  More rumen microbiome 809 

research is likely to be published in the upcoming years as bioinformatic and technical 810 

progress enhance the metaproteomic coverage and maximize the focus on microbiome- 811 

derived peptides. 812 

1.4.5 Future perspectives in omics technologies to study the rumen microbiome 813 

Each of the previously described technological approaches are powerful tools in 814 

assessing the microbial composition and functional potential of the rumen microbiome, 815 

but our understanding could be further enhanced if the information generated by those 816 

technologies were integrated into multivariate models (Huws et al. 2018). However, this 817 

integration is a complicated process owing to the complex and heterogeneous nature of 818 

the available datasets generated by a wide variety of omics approaches (Fan et al. 2014). 819 

Although challenging, there are instances of success in the literature showing the benefits 820 

of integrating a varied array of data types generated from omics technologies in rumen 821 

microbiome studies.  Hart et al. (2018) compared metaproteomic data with published 822 

genomic datasets of the rumen microbiome and improved protein identification that could 823 
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be impossible without integrating the information generated by the different datasets. 824 

Advances in statistical methods could also offer more opportunities to integrate large- 825 

scale molecular omics datasets and assess microbial interactions at multiple functional 826 

levels.  827 

Despite these developments, there is still a need to increase the number of 828 

representative isolates in the microbial culture collections of rumen origin. The 829 

“Hungate1000” project recently sequenced 420 representatives of rumen microbes, and 830 

thus provided significant input of data for the scientific community (Seshadri et al. 2018). 831 

Notwithstanding all of these efforts, it has been estimated that only 3.6% of the OTUs (61 832 

out of 1,698 OTUs) of the sequenced rumen samples have representative isolates in the 833 

Ribosomal Database project and only 117 bacterial species (not including different strains) 834 

of rumen origin are available from international culture collections (Nordberg et al. 2014, 835 

Seshadri et al. 2018, Zehavi et al. 2018, Cole et al. 2014). Thus, it is imperative the 836 

adoption of complementary approaches (e.g., single-cell genomics) to sequence the DNA 837 

of the whole microbiota in order to study the genomes of as-yet uncultured species from 838 

the rumen. Single-cell genomics analysis aims to characterize the genomic variability 839 

among individual cells, and thus it could be used to reconstruct cellular ancestries in the 840 

form of a lineage tree (Shapiro et al. 2013). In addition to single-cell genomics 841 

technologies, metabolomics could be used to profile (qualitatively and quantitatively) the 842 

metabolites of a microbial community to prospect novel compounds and metabolic 843 

pathways in the rumen microbiome (Yi et al. 2016, Deusch et al. 2017, Deusch et al. 844 

2015). These technologies are in constant development, and the continued technical and 845 

analytical advances in the field of molecular biology are likely to cause the emergence of 846 

new technologies in the coming years. 847 

1.4.6 Future perspectives in molecular techniques to investigate lignocellulolytic 848 

enzymes 849 

While metagenomics and metatranscriptomics have been successful to identify novel 850 

enzymes responsible for lignocellulose degradation, these techniques have limitations to 851 

evaluate changes in protein abundance, isoform expression, turnover rates, and post- 852 

translational modifications and interactions (Larance and Lamond 2015). These 853 
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limitations have been overcome by high-throughput screening methods developed in 854 

recent years, and with the progress in robotics and functional assays. In discovery-based 855 

studies, quantitative MS and MS/MS measurements and nuclear magnetic resonance 856 

spectroscopy are the most popular methods to identify enzymes and metabolites involved 857 

in lignocellulose degradation (Rosnow et al. 2017). Efficient screening tools such as 858 

fluorescence-activated cell sorting in combination with substrate-induced gene 859 

expression have been developed to perform direct measurements of active enzyme in a 860 

sample and to identify enzyme functions necessary for lignocellulose breakdown (Distaso 861 

et al. 2017). These tools are still in their infancy, and as the new technical and analytical 862 

advancements are achieved, we will see a continued breakthrough in our understanding 863 

of how microbial enzymes accomplish lignocellulose breakdown. 864 

1.5 Statistical challenges associated with the studies of the rumen microbiome 865 

Datasets generated using omics technologies discussed in previous sections are 866 

inherently compositional, a feature which is known to be problematic and should not be 867 

ignored by data analysts (Pawlowsky‐Glahn et al. 2015, Aitchison 1982, Fernandes et 868 

al. 2013, Warton et al. 2012, Gloor et al. 2017, Pearson 1897). Compositional data is a 869 

type of dataset comprised in a mathematical space known as simplex space, where the 870 

features (OTUs, genes, etc.) in each sample hold proportions of a unit varying between 871 

0 and 1 (Aitchison 1982). Unlike the simplex space, the Euclidean space does not exhibit 872 

constraints between 0 and 1, but can accept any real number along its dimensions 873 

(Fernandes et al. 2014). Thus, the analysis of microbiome data requires statistical 874 

methods accounting for the simplex structure of compositional datasets and excludes 875 

standard statistical techniques (including Pearson correlations, Principal Component 876 

Analysis, linear regression, etc.) that use the assumptions of the Euclidian space 877 

(Pearson 1897, Aitchison 1982, Lovell et al. 2015, Gloor and Reid 2016, Fernandes et al. 878 

2014). Despite these limitations, those traditional statistical methods are still commonly 879 

used by the scientific community.  880 

The original problem in analyzing compositional data was first identified by 881 

Pearson in 1897 (Pearson 1897) when he realized that the count values per feature in a 882 

compositional data are not independent, with the value of one feature necessarily 883 
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restricting the value of at least one other feature (Fernandes et al. 2014). This property 884 

can lead to negative correlation biases and false univariate inferences in compositional 885 

data, which renders invalid any correlation- or covariance-based results (Pearson 1897, 886 

Aitchison 1982, Fernandes et al. 2013). An easy analogy to explain this distortion is the 887 

“see-saw effect”, in which a change in the abundance of one feature results in a biased 888 

correlation between the other features (one goes up, another goes down). In addition to 889 

the possibility of obtaining spurious results, investigators should acknowledge that the 890 

relationship between absolute abundance in the environment and the relative abundance 891 

after sequencing is not equivalent in compositional datasets because the number of reads 892 

obtained for a sample is determined by the capacity of the instrument and not by the 893 

actual number of molecules of DNA in the environment (Mandal et al. 2015, Gloor and 894 

Reid 2016). Therefore, compositional datasets are very different from datasets composed 895 

of ordinary numbers that can take any value, and treating high-throughput sequencing 896 

data as compositional is rather intuitive if one considers that the number of counts in such 897 

datasets reflects the proportion of counts per feature per sample multiplied by the 898 

sequencing depth (Fernandes et al. 2014, Gloor et al. 2017).  899 

 Sequencing depth (the total number of counts observed) between samples is 900 

another significant confounder of the analysis, as abundance issues arise around the 901 

variation in the number of sequences obtained for each sample. Rarefying or subsampling 902 

the read counts of each sample to a defined level across samples excludes lower 903 

abundant features (OTUs, genes, etc.) leading to a loss of precision (McMurdie and 904 

Holmes 2014). If the researcher chooses to use the entire dataset (without rarefying), 905 

s/he must account for the magnitude of sequence depth between samples and usually 906 

needs to employ a transformation or scaling method (e.g., trimmed mean of M values – 907 

TMM and the median methods)  (McMurdie and Holmes 2014, Weiss et al. 2017, 908 

Robinson et al. 2010, Anders and Huber 2010, Robinson and Oshlack 2010, Lovell et al. 909 

2015, Love et al. 2014). Methods for the identification of differentially abundant OTUs 910 

associated with a given phenotype or treatment should not use models that apply Poisson 911 

distribution because it is too restrictive to deal with overdispersion (Anders and Huber 912 

2010). To address the overdispersion problem, researchers have proposed the use of 913 

negative binomial distributions, but this tends to increase the false discovery rate arising 914 
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from the compositional nature of the data (Lovell et al. 2015, Anders and Huber 2010, 915 

Gloor et al. 2017). Taken altogether, the data analyst should be careful while analyzing 916 

microbiome data as it exhibits a compositional structure that needs to be dealt with 917 

appropriately in the statistical analysis.  918 

1.5.1 Alternative techniques to study microbiome data 919 

As outlined above, data collected from high-throughput sequencing platforms present 920 

challenges to ecological and statistical analysis, and to circumvent these issues, 921 

alternative statistical methods have been developed to substitute the standard statistical 922 

approaches in the analysis of compositional data. The reader is directed to a review by 923 

Gloor et al. (2017) who provided a more in-depth discussion of the application of these 924 

techniques in the analysis of microbiome data as alternatives to the standard statistical 925 

approaches. These alternative methods include initial normalization of the count data 926 

using log-ratio transformations (centered or isometric) rather than rarefaction. Another 927 

significant change in the analysis steps is the replacement of beta diversity analysis using 928 

Aitchison calculations of distances for Bray Curtis. Researchers have also suggested 929 

substituting philr transform for the unifrac distance metric when analyzing phylogenetic 930 

trees (Silverman et al. 2017), and that beta diversity variance is visualized based on 931 

compositional principal component biplot rather than principal co-ordinate plots (Gloor et 932 

al. 2017). Correlation analysis to assess the extent to which a pair of random variables 933 

are proportional should be performed with appropriate metrics such as the “goodness-of- 934 

fit to proportionality” statistic ϕ rather than Pearson or Spearman correlations (Lovell et al. 935 

2015). Finally, identification of differentially abundant features and microbial signatures 936 

has been advised using ANCOM (Mandal et al. 2015) and MixMC (Cao et al. 2016). 937 

These two methods will be briefly discussed below. 938 

1.5.1.1 ANCOM 939 

The Analysis of Composition of Microbiomes (ANCOM) (Mandal et al. 2015) is a statistical 940 

procedure that compares the Aitchison’s log-ratio of the abundance of each taxon with 941 

the abundance of all remaining taxa one at a time. Then, differential tests (e.g., Mann- 942 

Whitney U, ANOVA, ANOVA with Linear Mixed Effect Models, Friedman, Kruskal-Wallis, 943 

Wilcoxon tests) are calculated on each log ratio to reveal differences in the relative 944 
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abundance of a taxon between two ecosystems. If there are “m” taxa, then for each taxon 945 

ANCOM performs “m-1” tests and the final significance of each test for a taxon is 946 

determined using Benjamini-Hochberg (Benjamini and Hochberg 1995) algorithm to 947 

control for false discovery rates. For each taxon, ANCOM counts the number of tests 948 

among the m-1 tests and obtains a count random variable W that represents the number 949 

of null among the m-1 tests that are rejected. To deal with the sparsity of the data, 950 

ANCOM uses an arbitrary pseudo count value of 0.001 to replace the zero counts and 951 

calculate the log-ratios. For drawing inferences regarding taxon abundance in the 952 

ecosystem, ANCOM has been suggested as a reliable method to control the identification 953 

of false positives and has been recently incorporated into the QIIME2 pipeline (Caporaso 954 

et al. 2010) (https://qiime2.org). ANCOM was recently implemented in a bioinformatic 955 

pipeline developed by our group (Neves et al. 2017) to detect differentially abundant taxa 956 

identified by Kraken (Wood and Salzberg 2014) and Mothur (Schloss et al. 2009) in the 957 

rumen metatranscriptome.   958 

1.5.1.2 MixMC 959 

MixMC (Multivariate Statistical Framework to Gain Insight into Microbial Communities) 960 

(Cao et al. 2016) is a framework that takes into account the inherent characteristics of 961 

microbiome data (sparsity and compositionality) to identify microbial signatures 962 

associated with their environment, and it is currently implemented in the package 963 

mixOmics (Rohart et al. 2017). In MixMC, the method Sparse Partial Least Square 964 

Discriminant Analysis (sPLS-DA) is associated with centered log-ratio (CLR) 965 

transformations to project the data from a simplex space to a Euclidian space and 966 

includes a multilevel decomposition for repeated measurements designs that are 967 

commonly encountered in microbiome studies (Cao et al. 2016). To account for subject 968 

variability, the data variance is decomposed into within variation (due to habitat) and 969 

between-subject variation. This is an appropriate analytical step towards detecting subtle 970 

differences between samples when high inter-subject variability is present due to 971 

sampling repeatedly performed on the same subjects and in multiple habitats (Westerhuis 972 

et al. 2010, Liquet et al. 2012, Cao et al. 2016). Before the datasets are log-transformed 973 

(CLR) and analyzed by the sPLS-DA models, preprocessing and normalization (e.g., total 974 

https://qiime2.org/
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sum scaling) steps are performed to account for the sparsity of the dataset and uneven 975 

sequencing depths across samples.   976 

1.5.2 Current challenges when comparing results across studies 977 

While next-generation sequencing resulted in an explosion of publications exploring the 978 

rumen microbial diversity and functions in the last decades, interpretation of the data 979 

generated across multiple studies are still hampered by the lack of standardization in the 980 

bioinformatic and statistical procedures employed by the different research groups. As 981 

discussed previously, differences among studies exist for DNA extraction methods, 982 

primers, PCR cycling parameters, and downstream bioinformatic analysis which make 983 

comparisons across studies problematic and impractical at the moment. One instance of 984 

this problem appeared when the rumen microbiome of efficient cattle was compared 985 

across studies in order to find consensus microbial genes that could serve as global 986 

biomarkers for predicting ruminant feed efficiency and methane emissions. Huws et al. 987 

(2018) reported that microbial gene correlations with RFI  described by Shabat et al. (2016) 988 

overlapped with those of Fuyong Li and Le Luo Guan (2017) only in relation to a lower 989 

abundance of genes involved in amino acid metabolism in the rumen of feed efficient 990 

animals. However, genes related to methanogenesis did not show a consensus between 991 

the datasets of Shabat et al. (2016) and Fuyong Li and Le Luo Guan (2017), indicating 992 

that a standardization in the analysis is needed to compare across studies and promote 993 

reproducibility of the results. 994 

Considering the limitations of the omics technologies and the lack of awareness to 995 

use robust statistical tools to analyze compositional data, there is an urgent need for 996 

guidelines and practices that standardize rumen microbiome studies from the wet 997 

laboratory to the publication stage. Aspects of the analysis that are important to 998 

standardize include the methods of OTU picking, the databases (public or customized) 999 

and algorithms for taxonomy classification, cutoffs for taxa inclusion/exclusion, and the 1000 

statistical methods used to analyze the microbiome data (Goodrich et al. 2017). 1001 

Irrespective, only after the standardization of the workflow (from sample collection to the 1002 

analysis) is completed, there will be more reliable comparisons of results across studies. 1003 
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1.6. Knowledge gaps, hypothesis and objectives 1004 

The significant advances in omics technologies in recent years has revolutionized our 1005 

understanding of the rumen microbiome, its role in feed efficiency, and the degree to 1006 

which it is influenced by the host genetic background. However, despite these steps 1007 

forward, there remain substantial gaps in our knowledge. The broad aim of this thesis 1008 

was to fill the gaps concerning the driving forces that influence the relationship between 1009 

the rumen microbiota and host individual variation, and how their interactive effects on 1010 

animal productivity contribute to the identification of cattle with improved feed efficiency. 1011 

Moreover, this thesis fills the knowledge gaps concerning the impact of mRNA-based 1012 

metatranscriptomics on the analysis of rumen taxonomic profiles. Further assessing such 1013 

methodologies will contribute to elucidate the link between these taxonomic profiles and 1014 

feed efficiency at the RNA level. Another gap in the literature is the lack of a strategy for 1015 

the discovery of lignocellulosic enzymes through the targeted functional profiling of 1016 

CAZyme families, as the discovery of these biocatalysts is usually performed using 1017 

metagenomic screening or metatranscriptomic analysis that do not prioritize the 1018 

identification of novel enzymes based on their ecological relevance in the microbiome. 1019 

Therefore, further investigations of the microbial and functional dynamics of the rumen 1020 

metatranscriptome are needed, and examining how they relate to the ruminant ability to 1021 

degrade lignocellulosic biomass will be critical in designing innovative strategies to 1022 

discover unknown enzymes for the breakdown, biosynthesis or modification of 1023 

lignocellulosic biomass. 1024 

 The overall hypotheses for this thesis were that the stratification of dietary 1025 

responses obtained from the magnitude of change in baseline rumen microbiota can be 1026 

used to identify feed efficient cattle, and mRNA-based metatranscriptomic methods can 1027 

be applied to characterize the microbial composition, diversity and functional profiles of 1028 

the rumen microbiome in cattle with different feed efficiencies. Moreover, I hypothesized 1029 

that feed efficiency affects the structure of the rumen microbiota and subsequently the 1030 

expression of enzymes associated with lignocellulose degradation. The research 1031 

presented in this thesis contributes to our understanding of the dynamics of the rumen 1032 

microbiome in cattle undergoing dietary changes and also sheds light on the factors within 1033 
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the microbiome and the host that maximize the degradation of lignocellulosic biomass. 1034 

The objectives of this thesis were as follows: 1035 

1. To investigate the dynamics of rumen microorganisms in cattle raised under different 1036 

feeding regimens and understand the relationship among the abundance of these 1037 

microorganisms, host individuality and phenotypic traits; 1038 

2. To compare and contrast methodologies (mRNA- vs. total rRNA-based methods) to 1039 

assess the taxonomic profiles of the rumen microbiota and to investigate the impact of 1040 

the comparative analysis of both analytical approaches on the rumen microbial 1041 

classification obtained from cattle exhibiting different feed efficiencies; 1042 

3. To characterize active microbial functional signatures differentiating breeds of beef 1043 

cattle, and identify specific taxonomic microbial groups and functions associated with feed 1044 

efficiency; 1045 

4. To identify and validate biological associations (composition and functions) between 1046 

the rumen metatranscriptome and feed efficiency in beef cattle, and use this knowledge 1047 

to discover new enzymes for lignocellulose degradation. 1048 
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Chapter 2 2076 

Dynamics of microbial populations driven by interactions between diet and host 2077 

shed light on individualized rumen microbiota 2078 

 2079 

2.1 Introduction  2080 

The bovine rumen harbors a symbiotic community of anaerobic bacteria, archaea, fungi, 2081 

and protozoa that plays an essential role in feed degradation and energy provision for the 2082 

host. The fermentation of host-indigestible plant biomass by the rumen microbiota 2083 

provides up to 70% of the energetic requirements of ruminant animals, mainly through 2084 

the production of VFAs (NRC 2016, Russell and Rychlik 2001). While vital to efficient milk 2085 

and meat production, rumen microbial fermentation is also a significant source of 2086 

greenhouse gas emissions (Huws et al. 2018), with CH4 exhibiting a global warming 2087 

potential 25 times greater than that of CO2 (IPCC 2006), as well as reducing host dietary 2088 

energy availability by up to 12% (Johnson and Johnson 1995). Microbial composition in 2089 

the rumen is primarily affected by the diet and exhibits a large degree of individual 2090 

variation that may be a reflection of differences in the host nutrient utilization efficiency 2091 

(Henderson et al. 2015). Because individuals may respond differently to dietary changes 2092 

(Hernandez-Sanabria et al. 2012), a greater understanding of the drivers that affect the 2093 

relationship between the rumen microbiota and host responsiveness to the diet could help 2094 

to develop better dietary interventions to meet individual host nutritional requirements 2095 

(Healey et al. 2017, Morgavi et al. 2012a).  2096 

The success of rumen microbes in digesting recalcitrant feedstuffs depends on the 2097 

microbial interactions that occur in the ruminal ecosystem (Wolff et al. 2017, Russell and 2098 

Rychlik 2001), which is in turn modulated by at least two possible factors: 1) the 2099 

environment (e.g., nutrient availability for microbial growth) (Yang et al. 2017), and 2) the 2100 

inter-individual variability of the host organism in terms of feed degradation (Weimer 2101 

2015). While nutrient availability is related to niche occupancy (Yang et al. 2017), inter- 2102 

individual variability may reveal the effectiveness of the microbiota of one particular 2103 

animal versus another in terms of efficiency of feed utilization (Weimer 2015). Individual 2104 

animals are heterogeneous regarding the responsiveness to the diet, and thus they 2105 
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exhibit a ‘personalized’ rumen microbial composition even when fed an identical diet and 2106 

raised in the same environment (Brulc et al. 2009, Z. P. Li et al. 2016). Such host 2107 

specificity does not appear to be restricted only to bacteria, as the inter-individual variation 2108 

has also been observed in the methanogenic archaeal and protozoal communities (Zhou 2109 

et al. 2012). Despite the wealth of information explaining how individual hosts control the 2110 

rumen microbiota in relation to phenotypic traits (e.g., feed efficiency and CH4 emissions) 2111 

(Roehe et al. 2016), little is known regarding the precise mechanisms of host-microbe 2112 

interactions in ruminants undergoing dietary changes. Moreover, interactions of host 2113 

variation in feed efficiency with rumen microbial populations are not well understood, and 2114 

further investigating their interactive effects on animal productivity may contribute to the 2115 

identification of feed efficient animals and the reduction of methane emissions.  2116 

In this context, several studies have demonstrated that rumen bacteria and 2117 

archaea (composition and abundance) play important roles in the feed conversion 2118 

efficiency of cattle (Fuyong Li and Le Luo Guan 2017, Neves et al. 2017), suggesting that 2119 

the identification of host-specific microbes should be considered as the regulating 2120 

targets to improve host feed efficiency. Sequencing technologies were indispensable 2121 

tools to quantify transcripts involved in feed efficiency in those studies, but we speculated 2122 

that the application of qPCR in the current study could offer an opportunity to assess the 2123 

dynamics of the rumen microbiota in a cost-effective manner. Here, we hypothesized that 2124 

the stratification of dietary responses obtained from the magnitude of change in baseline 2125 

rumen microbiota using qPCR can be used to identify individualized shifts of rumen 2126 

microbes in cattle undergoing diet changes. The objectives of this research were (i) to 2127 

investigate the dynamics of rumen microorganisms in cattle raised under different feeding 2128 

regimens (forage vs. grain) and (ii) understand the relationship among the abundance of 2129 

these microorganisms, host individuality and phenotypic traits. 2130 

2.2 Materials and methods 2131 

2.2.1 Animal study 2132 

The experimental procedures described in this study were approved by the Veterinary 2133 

Services and the Animal Care Committee, University of Manitoba, Canada. Fifty-nine 2134 
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purebred Angus bulls (mean age of 249 ± 22 days and average body weight of 313.9 ± 2135 

32 kg) were raised in confinement at the Glenlea Research Station, University of 2136 

Manitoba, Canada in accordance with the guidelines of the Canadian Council on Animal 2137 

Care (Olfert et al. 1993). The bulls were randomly assigned into four pens, and each pen 2138 

was bedded with a mixture of barley/flaxseed straw and equipped with GrowSafe® 2139 

(GrowSafe Systems Ltd., Airdrie, Alberta) feed bunks and a heated watering bowl. Bulls 2140 

were fed forage or grain diets over two experimental periods (Period 1 and 2, each with 2141 

an 80-day duration) in a crossover design (Table S1). In the first feeding period (FP1), 2142 

two pens (1 and 2) were fed forage-based diets and the remaining two pens (3 and 4) 2143 

were fed a grain-based diet on an ad libitum basis, as described in Table S1. Following 2144 

FP1, the animals in pen 2 were switched from a forage-based to a grain-based diet, and 2145 

the animals in pen 3 were switched from grain to forage diets (Table S1). Bulls in pens 1 2146 

and 4 were exclusively fed forage and grain diets, respectively, in both FPs (Table S1). It 2147 

is important to mention that a 14-day adaptation period was observed before the 2148 

commencement of the second feeding period.  Nutritional composition of the forage and 2149 

grain diets is listed in Table S2.  2150 

Individual feed intakes were measured using the GrowSafe® feeding system to 2151 

provide growth and intake data (DMI) needed for the estimation of feed conversion ratio 2152 

(FCR), which was used as a measure of feed efficiency in this study. FCR was determined 2153 

as a ratio of DMI to average daily gain (ADG) (computed on a biweekly basis) (Montanholi 2154 

et al. 2010). Starch and neutral detergent fiber (NDF) contents (Table S2.) of the 2155 

respective diets were used to calculate starch and NDF intakes from the daily DMI (NRC 2156 

2016). Finally, enteric CH4 emissions were measured in four 24-h periods during Period 2157 

1, and in three 24-h periods during Period 2 using the Sulphur hexafluoride (SF6) 2158 

technique as described by Thompson (2015). 2159 

2.2.1.1 Rumen fluid sampling. Two rumen fluid samples were collected on days 0 and 2160 

80 in both FP1 and FP2 using a Geishauser oral probe (Duffield et al. 2004). However, 2161 

the downstream analysis was performed only on the rumen samples taken on day 80 in 2162 

each period, as a previous statistical analysis (data not shown) revealed a carryover effect 2163 

on the rumen microbial abundances between feeding periods likely because the washout 2164 

https://www.dropbox.com/s/brb227z4bg0cj1c/FEMS%2C%20Neves%20et%20al_SupportingInformation.docx?dl=0
https://www.dropbox.com/s/brb227z4bg0cj1c/FEMS%2C%20Neves%20et%20al_SupportingInformation.docx?dl=0
https://www.dropbox.com/s/brb227z4bg0cj1c/FEMS%2C%20Neves%20et%20al_SupportingInformation.docx?dl=0
https://www.dropbox.com/s/brb227z4bg0cj1c/FEMS%2C%20Neves%20et%20al_SupportingInformation.docx?dl=0
https://www.dropbox.com/s/brb227z4bg0cj1c/FEMS%2C%20Neves%20et%20al_SupportingInformation.docx?dl=0
https://www.dropbox.com/s/brb227z4bg0cj1c/FEMS%2C%20Neves%20et%20al_SupportingInformation.docx?dl=0
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period (adaptation phase) was 14 days (Table S1). Approximately 250 mL of rumen fluid 2165 

was collected in each sampling, snap frozen using liquid nitrogen, and then stored at - 2166 

80°C awaiting molecular analysis. 2167 

2.2.2 Feed chemical analysis 2168 

Briefly, the composited and dried feeds were analyzed for DM (dry matter; method 934.01) 2169 

as described by AOAC (2000).  Both Neutral (NDF; with α-amylase and sodium sulphite) 2170 

and acid (ADF) detergent fiber (Van Soest et al. 1991) were quantified using Ankom Fiber 2171 

Analyzer  (Ankom Technology Corporation, Macedon, NY, USA). Starch was determined 2172 

by the -amylase method as described by Hall (2009). A Leco combustion nitrogen (N) 2173 

analyzer (FP-428N Determinator, Leco Corporation, St Joseph MI, USA) was used to 2174 

measure N content. Crude protein (CP) was calculated as N × 6.25 (NRC 2016).  2175 

2.2.3 VFA analysis 2176 

Supernatants from rumen fluid samples were obtained after centrifugation at 3,000 × g   2177 

for 15 min at 4˚C and mixed with 25% phosphoric acid (4:1; v/v) for the subsequent gas 2178 

chromatography (GC) analysis.  After adding the internal standard to the samples and 2179 

incubating them at -20˚C overnight, they were centrifuged at 19,000 × g for 5 min at 4˚C 2180 

and the supernatant was transferred to the GC vials (1.8 mL). Next, 0.8 mL of the sample 2181 

was combined with 0.2 mL of 25% phosphoric acid and 0.2 mL of internal standard 2182 

solution. Standards (for acetic, propionic, isobutyric, butyric, isovaleric, valeric, and 2183 

caproic acids) were prepared by combining 1 mL of standard solution and 0.2 mL of 2184 

internal standard solution. The GC analysis was performed using the column Stabilwax- 2185 

DA 30 meter (Restek Corp), the head pressure of 7.5 psi, split vent flow of 20 mL/minute, 2186 

and injector temperature of 170ºC. 2187 

2.2.4 DNA extraction  2188 

Total DNA was extracted from the ruminal content samples using the bead beating 2189 

method as described by Yu and Morrison (2004). Briefly, frozen rumen content was 2190 

thawed on ice and 1g of sample was added to 15 mL falcon tubes, washed in 4 mL of 2191 

TN150 buffer (10 mM Tris-HCl [pH 8.0], 150 mM NaCl), and centrifuged at 14,600  g for 2192 

5 min at 4C. Thereafter, samples were physically disrupted in a BioSpec Mini Beads 2193 

https://www.dropbox.com/s/brb227z4bg0cj1c/FEMS%2C%20Neves%20et%20al_SupportingInformation.docx?dl=0
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beater 8 (BioSpec, Bartlesville, OK, USA) at 4800 rpm for 3 min, and subjected to a 2194 

phenol/chloroform/isoamyl alcohol (25: 24: 1) extraction protocol. The DNA was 2195 

precipitated with cold ethanol and dissolved in nuclease-free water (30 μl). Lastly, the 2196 

concentration and quality of DNA were measured using Nanodrop® ND-1000 2197 

spectrophotometer (Thermo Scientific, Waltham, MA, US). Quantitative real-time PCR 2198 

(qPCR) was performed only on DNA samples with a ratio of absorbance at 260nm to 2199 

280nm higher than 1.8 and a ratio of 260 nm wavelength absorbance to 230 nm between 2200 

2.0 and 2.2. 2201 

2.2.5 Quantitative real-time PCR analysis  2202 

qPCR was performed using SYBR Green chemistry (Fast SYBR® Green Master Mix; 2203 

Applied Biosystems) on a StepOnePlusTM Real-Time PCR System (Applied Biosystems). 2204 

The partial bacterial and archaeal 16S rRNA genes (V3-V4 regions) were amplified using 2205 

U2F/U2R (5’-ACTCCTACGGGAGGCAG-3’; 5’-GACTACCAGGGTATCTAATCC-3’) 2206 

(Stevenson and Weimer 2007) and uniMet1-F/uniMet1-R primer pairs (5'- 2207 

CCGGAGATGGAACCTGAGAC-3'; 5’-CGGTCTTGCCCAGCTCTTATTC-3') (Zhou et al. 2208 

2009). Protozoa and fungi were amplified using P-SSU-316F/P-SSU-539R (5’- 2209 

GCTTTCGWTGGTAGTGTATT-3’; 5’-CTTGCCCTCYAATCGT WCT-3') (Romero-Perez 2210 

et al. 2014) and Fungi-F1/Fungi-R1 (5’-GAGGAAGTAAAAGTCGTAACAAGGTTTC-3’; 2211 

5’-CAAATTCACAAAGGGTAGGATGATT-3’) (Denman and McSweeney 2006) to target 2212 

18S rRNA genes and internal transcribed spacer (ITS), respectively. qPCR experiments 2213 

were performed using the following program: 95 °C for 10 min, followed by 40 cycles of 2214 

95 °C for 20 s and 62 °C for 1 min for bacteria, and 95 °C for 20 s, followed by 40 cycles 2215 

of 95 °C for 3 s and 60 °C for 30s for archaea, protozoa and fungi. A standard curve was 2216 

constructed using serial dilutions of plasmid DNA containing the 16S rRNA gene 2217 

sequence for bacteria and methanogens, ITS for fungi and 18S rRNA gene for protozoa. 2218 

Copy numbers for each standard curve were calculated based on the following equation: 2219 

(NL × A × 10-9) / (660 × n), where NL was the Avogadro constant (6.02 × 1023), A was the 2220 

molecular weight of DNA molecules (ηg), and n was the length of amplicon (bp) 2221 

(Malmuthuge et al. 2012). The copy number of 16S rRNA genes for total bacteria, total 2222 

methanogens, and 18S rRNA gene for protozoa and ITS for fungi per sample was 2223 
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calculated using the equation of Li et al. (2009): (QM × C × DV) / (S × W), where QM was 2224 

the quantitative mean of the copy number, C was the DNA concentration of each sample 2225 

(ηg/μL), DV was the dilution volume of extracted DNA (μL), S was the DNA amount 2226 

subjected to analysis (ηg), and W was the sample weight subjected to DNA extraction (g). 2227 

qPCR assay efficiency (E) was determined for each primer by running a set of serial 2228 

dilutions of the target species along with the unknowns, all in triplicates. A plot of Ct vs. 2229 

Log DNA dilution allowed the efficiency to be calculated as the antilog of the negative 2230 

reciprocal of the line slope: E = (10-1/slope - 1) × 100. The data generated from the reactions 2231 

were used for further analysis only if the qPCR assay efficiency was within the range of 2232 

90% ≤ E ≤ 105%. 2233 

2.2.6 Stratification of animals according to shifts in microbial abundances 2234 

The total abundance of each microbial group (measured by average copy number without 2235 

log transformation) was determined for each bull according to the dietary regimen, as 2236 

described previously (see Table S1 and Fig. S6). Groups of animals were created from 2237 

the magnitude of change in the microbial abundance based on the microorganisms copy 2238 

numbers recorded for each bull at the end of Period 1 (baselines; D80) compared with 2239 

the copy numbers recorded at the end of Period 2 (D180) for each sequence of dietary 2240 

treatment (Fig. S6). Thus, the formation of the groups was obtained by ranking the 2241 

animals according to the change in the microbial population in response to each dietary 2242 

treatment (Fig. S6). Log2 fold change (fc) in microbial copy numbers higher than +1 2243 

represented the High group and lower than –1 represented the Low group. The log2fc in 2244 

the copy numbers between +1 and –1 cut-offs were considered as the Stable group (Fig. 2245 

S6). 2246 

2.2.7 Statistical analysis 2247 

2.2.7.1 Exploring the effect of the diet on the rumen microbes and phenotypic traits 2248 

Principal component analysis (Rohart et al. 2017) was initially used to assess the 2249 

relationship between rumen microbial abundances (bacteria, protozoa, fungi and archaea) 2250 

and eight phenotypic traits (DMI, NDF intake, starch intake, CH4 production, CH4/kg DMI, 2251 

FCR, Feeding Time in minutes - DUR, and ADG) according to the dietary regimens 2252 

https://www.dropbox.com/s/brb227z4bg0cj1c/FEMS%2C%20Neves%20et%20al_SupportingInformation.docx?dl=0
https://www.dropbox.com/s/brb227z4bg0cj1c/FEMS%2C%20Neves%20et%20al_SupportingInformation.docx?dl=0
https://www.dropbox.com/s/brb227z4bg0cj1c/FEMS%2C%20Neves%20et%20al_SupportingInformation.docx?dl=0
https://www.dropbox.com/s/brb227z4bg0cj1c/FEMS%2C%20Neves%20et%20al_SupportingInformation.docx?dl=0
https://www.dropbox.com/s/brb227z4bg0cj1c/FEMS%2C%20Neves%20et%20al_SupportingInformation.docx?dl=0
https://www.dropbox.com/s/brb227z4bg0cj1c/FEMS%2C%20Neves%20et%20al_SupportingInformation.docx?dl=0
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(forage vs. grain). Then, we implemented the PC-corr (Principal Component-Correlation) 2253 

algorithm (Ciucci et al. 2017) to generate discriminative functional modules associated 2254 

with the diets using p-values of Mann-Whitney tests as evaluators, with each module 2255 

displaying a correlation structure between features (e.g., microbes, phenotypic traits) and 2256 

the diets. Features were normalized through z-score (centered to have mean 0 and 2257 

scaled to have standard deviation 1) or log (logarithm base 10 plus 1 applied to each data 2258 

element to avoid problems with 0 values) before building PC-corr networks in Cytoscape 2259 

3.6.0 (Shannon et al. 2003). 2260 

2.2.7.2 Investigating the relationship between the phenotypic traits and the 2261 

microbial population  2262 

Two linear mixed effects models (LMMs) were set up using the package lme4 (‘lmer’ 2263 

function) (Bates et al. 2015) to investigate the effect of the phenotypic traits on both the 2264 

microbial populations (Model 1) and the stratification groups obtained from the shifts in 2265 

the microbial abundances as described above (Model 2). The rumen microbial abundance 2266 

was log10 – transformed to meet the assumptions of normality, and the phenotypic traits 2267 

were scaled (centered to have mean 0 and scaled to have standard deviation 1) to 2268 

facilitate model convergence when required.  2269 

In the Model 1, the following parameters were used: 2270 

𝒴𝑖𝑗𝑘𝑙 =  µ + 𝜓𝑖 + 𝜋𝑘 + 𝜏𝑙 + 𝑠𝑖𝑗 + 𝜀𝑖𝑗𝑘𝑙  2271 

 Where, 𝒴𝑖𝑗𝑘𝑙 is the rumen microbial abundance for the jth subject (j = 1, 2, …ni) in 2272 

the ith sequence (i =1, 2, 3, 4) during kth period (j = 1, 2) receiving treatment l (phenotypic 2273 

traits measured according to the diets); µ is the overall mean; 𝜓𝑖  is the sequence effect 2274 

or carryover effect;  𝜋𝑘 is the effect of the kth period (k = 1, 2);  𝜏𝑙 is the effect of the lth 2275 

treatment; 𝑠𝑖𝑗 is the effect of the jth subject in the ith sequence (j = 1, 2, …ni ; i =1, 2, 3, 2276 

4); 𝜀𝑖𝑗𝑘𝑙 is the within-subject error for the jth subject in the ith sequence and the kth period 2277 

receiving treatment l. Here, it was assumed that  𝜓 , 𝜋 , and 𝜏  are fixed effects, 𝑠𝑖𝑗  is 2278 

random effect with mean zero and variance 𝜎s
2 (between-subject variance), and 𝜀𝑖𝑗𝑘𝑙 is 2279 

the random error with means zero and variances 𝜎2 (within-subject variance). 2280 
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 In Model 2, the following parametrization was implemented: 2281 

𝒴𝑖𝑗 =  µ + 𝒳𝑖𝑗 + 𝒲𝑖𝑗 + 𝒳𝑖𝑗 ×  𝒲𝑖𝑗 + 𝛼𝑖 + 𝜀𝑖𝑗 2282 

 Where, 𝒴𝑖𝑗 is the phenotypic traits (CH4 production, CH4/kg DMI, FCR, DUR, DMI 2283 

and ADG) for the jth observation in the subject/bull i, and i = 1, 2, …ni; µ is the overall 2284 

mean; 𝒳𝑖𝑗 is the fixed effect of starch and NDF intake measured when bulls were fed 2285 

forage/grain diets;  𝒲𝑖𝑗  represents the fixed effect of the groups determined from the 2286 

magnitude of change in the host microbial population (high, stable and low); 𝒳𝑖𝑗 ×  𝒲𝑖𝑗 is 2287 

the interaction term (fixed effect); 𝛼𝑖  is the random effect of bull i;  𝜀𝑖𝑗  is the residual 2288 

random error. Here, it was assumed that 𝛼𝑖  is normally distributed with mean 0 and 2289 

variance 𝜎s
2 (between-subject variance), and 𝜀𝑖𝑗  has mean 0 and variance 𝜎2 (within- 2290 

subject variance). 2291 

The best models were selected using a backward stepwise approach based on 2292 

Akaike information criteria (‘drop1’ function) (Burnham et al. 2002), with significance of 2293 

fixed effects and their interactions being tested by comparing the models with a likelihood- 2294 

ratio test (i.e., chi-squared test) (Romain et al. 2009). Modeling assumptions were also 2295 

checked by visually inspecting residual patterns (Zuur et al. 2009). All the statistical 2296 

analysis described in this study were performed using R 3.4.2.  2297 

2.3 Results 2298 

2.3.1 Effect of diet on the rumen microbes and phenotypic traits 2299 

Total bacterial abundance ranged from 0.32 ± 0.282 to 5.9 ± 6.80 × 1011 copy numbers 2300 

of 16S rRNA genes/mL rumen fluid (Table 2.1). Total methanogen abundance varied from 2301 

2.5 ± 1.38 to 7.5 ± 5.97 × 108 copy numbers of 16S rRNA genes/mL rumen fluid, while 2302 

the abundances of fungi and protozoa ranged from 0.05 ± 0.062 to 1.1 ± 0.89 × 105 and 2303 

from 1.9 ± 3.83 to 10.0 ± 11.2 × 107 copy numbers of ITS/18S rRNA genes/mL rumen 2304 

fluid, respectively (Table 2.1).  2305 

 Then, it was evaluated if a relationship could be established between the 2306 

abundances of the four microbial populations and eight phenotypic traits according to the 2307 
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dietary regimens (forage vs. grain) (Fig. S1). Application of the PC-Corr algorithm showed 2308 

that all four (bacteria, methanogens, protozoa, and fungi) were clearly separated across 2309 

diets (P <0.01) and emerged as an interconnected module positively correlated to each 2310 

other and with a higher abundance in cattle fed forage diets (Figure 2.1). PC-Corr also 2311 

differentiated (P <0.01) phenotypic traits (NDF intake, starch intake, ADG, DMI, CH4/kg 2312 

DMI, and FCR) depending on the dietary treatments (Figure 2.1). This result showed that 2313 

grain diets resulted in a higher DMI, starch intake, and ADG than forage diets (Figure 2.1). 2314 

In the network structure, those three phenotypic traits arose as a module that was 2315 

negatively correlated with NDF intake, FCR, and CH4/kg DMI, which were features 2316 

displaying higher values in cattle fed forage diets (Figure 2.1).  2317 

2.3.2 Effect of the phenotypic traits on the microbial populations 2318 

2.3.2.1 Response to the intake of DM and starch, and animal performance (ADG) 2319 

Our results revealed that the intake of DM and starch affected (P < 0.05) the abundance 2320 

of bacteria, reducing it by about 0.2 (±0.06) log10
 (Figure 2.2). It should be noted that the 2321 

diets influenced (P < 0.05) DMI, with bulls consuming grain diets exhibiting a greater DMI 2322 

(9.6 ± 0.19 kg/day) than those fed forage diets (7.4 ± 0.35 kg/day) (Fig. S5). In a similar 2323 

fashion, the diets affected (P < 0.05) starch intake, with bulls fed grain diets consuming 2324 

more starch (3.2 ± 0.05 kg/day) than those fed forage diets (1.5 ± 0.10 kg/day) (Fig. S5). 2325 

It is worth mentioning that DMI influenced (P < 0.05) the host production of CH4, 2326 

increasing it by about 8.7 L/day ± 4.52 (Fig. S2). Although starch intake did not influence 2327 

the host production of CH4, it affected (P < 0.05) the host production of CH4/kg DMI, 2328 

reducing it by about 1.8 L ± 0.34 CH4/kg DMI (Fig. S2).  2329 

As to the animal performance, our findings showed that the increase in ADG 2330 

influenced (P < 0.05) the abundance of bacteria, lowering it by about 0.1 (±0.05) log10 2331 

(Figure 2.2).  The diets also affected (P < 0.05) ADG, with bulls fed grain diets gaining 2332 

more weight (1.6 ± 0.05 kg/day) than bulls fed forage diets (1.2 ± 0.08 kg/day) (Fig S5).  2333 

2.3.2.2 Response to NDF intake, CH4/kg DMI and VFA concentrations 2334 

NDF intake and CH4/kg DMI influenced (P < 0.05) the abundance of bacteria, increasing 2335 

it by about 0.1 (±0.05) log10
 (Figure 2.3). It is important to note that bulls fed forage diets 2336 

https://www.dropbox.com/s/brb227z4bg0cj1c/FEMS%2C%20Neves%20et%20al_SupportingInformation.docx?dl=0
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https://www.dropbox.com/s/brb227z4bg0cj1c/FEMS%2C%20Neves%20et%20al_SupportingInformation.docx?dl=0
https://www.dropbox.com/s/brb227z4bg0cj1c/FEMS%2C%20Neves%20et%20al_SupportingInformation.docx?dl=0
https://www.dropbox.com/s/brb227z4bg0cj1c/FEMS%2C%20Neves%20et%20al_SupportingInformation.docx?dl=0
https://www.dropbox.com/s/brb227z4bg0cj1c/FEMS%2C%20Neves%20et%20al_SupportingInformation.docx?dl=0
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consumed more (P < 0.05) NDF (3.3 ± 0.10 vs. 1.4 ± 0.06 kg/day) and produced more (P 2337 

< 0.05) CH4/kg DMI (23.0 ± 1.01 vs. 19.3 ± 0.7 L CH4/ kg DMI) than bulls fed grain diets 2338 

(Fig. S5). NDF intake also affected (P < 0.05) the host production of CH4 and CH4/kg DMI, 2339 

increasing them by about 9.3 ± 4.2 L/day and 1.4 ± 0.37 L CH4/kg DMI, respectively (Fig.  2340 

S2). As expected, NDF intake affected (P < 0.05) the total VFA and acetic acid 2341 

concentrations, increasing them by about 9.0 ± 2.67 and 7.0 ± 1.78 µmol/mL, respectively 2342 

(Fig. S4). However, the increase in the total VFA concentrations reduced (P < 0.05) the 2343 

abundance of bacteria in about 0.02 (±0.00) log10 (Fig. S4). Similarly, a reduction trend 2344 

(P < 0.1) of 0.01 (±0.01) log10 in the bacterial abundance was detected with the increase 2345 

in acetic acid concentrations (Fig. S4). Although we did not find any relationship between 2346 

NDF intake and propionic acid, bacterial abundance reduced in 0.09 (±0.04) log10 when 2347 

rumen concentrations of propionic acid increased (Fig. S4).  2348 

2.3.3 Rumen microbial dynamics in response to the interactions of phenotypic 2349 

traits and the magnitude of change in host individual microbial population 2350 

Since the abundances of methanogens and protozoa did not change significantly with the 2351 

dietary treatments, they were not considered during stratification of animals according to 2352 

the shift in microbial abundances. Thus, groups of animals were only created according 2353 

to the magnitude of change in bacterial and fungal abundances to assess individual 2354 

variability driven by the diets, and to identify feed efficient animals within the created 2355 

groups (Fig.  S6). Our results showed that shifts from forage to grain resulted in a more 2356 

pronounced animal-to-animal variation than in individuals that began on grain and then 2357 

switched to the forage diets (See Figs. S6B and C).  2358 

The magnitude of change values from baseline (D80) to D180 revealed three 2359 

distinct groups of animals based on the grouping cutoffs (Low, log2-fc < -1; Stable, -1 < 2360 

log2-fc < 1; and High, log2-fc > 1), and the data showed that the interaction between the 2361 

stratification of these groups and NDF intake influenced (P<0.05) FCR (Figure 2.4). Yet, 2362 

our analysis showed that both NDF and starch intake influenced (P < 0.05) FCR, with 2363 

NDF intake increasing FCR by about 0.3 (± 0.08) kg DMI/kg gain, and starch intake 2364 

lowering it (P < 0.05) by about 0.2 (± 0.08) kg DMI/kg gain (Fig. S3). 2365 

https://www.dropbox.com/s/brb227z4bg0cj1c/FEMS%2C%20Neves%20et%20al_SupportingInformation.docx?dl=0
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Based on the inter-dependence detected between the stratification of those groups 2366 

and NDF intake, the bulls classified in the high and low groups determined from the 2367 

change in the bacterial abundance were more (P < 0.05) feed efficient (increase in 0.2 ± 2368 

0.09 and 0.1 ± 0.20 kg DMI/kg gain, respectively) than bulls ranked in the stable group 2369 

(increase in 0.6 ± 0.14 kg DMI/kg gain) (Figure 2.4). To confirm these findings, the feeding 2370 

time was measured in each group and the results indicated that the bulls of the high/low 2371 

groups spent less (P < 0.05) time feeding than those of the stable group (Figs. 2.4B). A 2372 

trend (P < 0.1) towards an improved feed efficiency in bulls belonging to the high/low 2373 

groups compared to the stable group was detected in animals ranked according to the 2374 

fungal abundance change (Figure 2.4C). Finally, animals ranked in the high/low groups 2375 

according to the fungal abundance change spent less time (P < 0.05) in the feed bunker 2376 

than those of the stable group (Figure 2.4D). 2377 

2.4 Discussion  2378 

Previous studies have demonstrated that microbial community composition and 2379 

metabolic potentials in the rumen are remarkably different with respect to nutrient 2380 

utilization, even in animals raised under the same diet and management regimens  (Brulc 2381 

et al. 2009, Z. P. Li et al. 2016). Thus, a better understanding of interactions between the 2382 

host and its individualized microbiota is crucial for predicting microbial shifts and 2383 

identifying individuals that are either responsive (positive and negative responders) or 2384 

resilient to dietary changes (Bashiardes et al. 2018). Despite being widely investigated 2385 

using molecular-based approaches, most studies examining diet-driven microbial shifts 2386 

in the rumen have generated results that are usually qualitative (presence or absence of 2387 

particular microbial taxa) (Belanche et al. 2011) or semi-quantitative (relative abundance 2388 

of each microbial taxa) (Comtet-Marre et al. 2017), but not quantitative. To overcome 2389 

such limitations, it was defined the “baseline” of the quantified rumen microbiota (detected 2390 

by qPCR) in cattle experiencing dietary changes and developed a strategy to identify feed 2391 

efficient cattle from the dynamic shift of microbial population abundance. It was also 2392 

explored the potential to use this approach to assess differences in cattle phenotypes 2393 

(e.g., FCR, CH4 emissions).  2394 
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To our knowledge, this is the first study that quantified the four groups of rumen 2395 

microbes (bacteria, fungi, protozoa, and methanogens) simultaneously and integrated the 2396 

microbial data obtained in vivo with environmental factors (e.g., diet components). 2397 

Although previous investigations have focused on those microbial groups and their 2398 

response to dietary supplementation under in vitro conditions (Wang et al. 2017), most in 2399 

vivo studies have concentrated efforts on those microbial groups separately (Tajima et al. 2400 

2001, Rico et al. 2015). In the current work, it was monitored the shift in microbial 2401 

population abundance within the same animal in response to the diet, as well as the 2402 

response of phenotypic traits to the interactions between the groups of microbial 2403 

population change (high, low, stable) and the dietary components. Our approach is 2404 

analogous to that used by biomedical researchers in which individuals are grouped 2405 

according to the magnitude of microbial change to analyze the effect of dietary factors on 2406 

microbial composition within the groups of individuals (Martínez et al. 2010, Salonen et 2407 

al. 2014, Tap et al. 2015). Here, our results clearly showed that shifts from forage to grain 2408 

(Fig. S6B) resulted in a more pronounced animal-to-animal variation in individuals fed the 2409 

latter diet, suggesting that differences in microbial abundance drive the resulting variation 2410 

in microbial baselines between and within diets, and not necessarily by the presence or 2411 

absence of taxa (Wolff et al. 2017).  2412 

The decline in the bacterial population density as starch intake increased (Figure 2413 

2.2) did not corroborate past studies that suggested that adding more available energy 2414 

(starch) to the diet in the form of non-fiber carbohydrates usually favors microbial growth 2415 

(Grubb and Dehority 1975, Hackmann and Firkins 2015). This study speculated that 2416 

secondary factors (e.g., individual variability in feed passage rate) in addition to the diet 2417 

composition might have affected the microbial density. Grain diets usually increase feed 2418 

passage rate through the gastrointestinal tract, which can lower bacterial abundance in 2419 

the rumen by decreasing the residence time of feed particles and the subsequent 2420 

bacterial attachment to the digesta (McAllister et al. 1994a). On the other hand, the 2421 

models predicted an increase in the bacterial abundance as NDF intake increased (Figure 2422 

2.3A), suggesting that bacteria and likely fungi acted in concert to stimulate fiber digestion 2423 

in those animals. It has been reported that fungi can penetrate and physically disrupt the 2424 

plant cell wall using an appressorium-like structure (Ho et al. 1988) to increase the surface 2425 
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area for subsequent bacterial colonization (Lee et al. 2000). However, it is worth 2426 

mentioning that the differences in the bacterial abundance response to the intake of NDF 2427 

could have been caused by the type of fiber (alfalfa hay, corn silage, alfalfa silage) present 2428 

in the feed studied and on their variation (Table S2). Although this study did not 2429 

investigate the influence of those different types of fiber on the microbial abundance, it 2430 

has been demonstrated that the rate and extent to which fiber components are degraded 2431 

depend on the microbial accessibility to feed substrates, which is affected by the physical 2432 

and chemical nature of the forage (Varga and Kolver 1997). Another prerequisite to be 2433 

considered is the level of NDF in the diet, as it can influence the time of rumination and 2434 

consequently the microbial colonization of feed particles (NRC 2016). Therefore, 2435 

variations in the content of other diet components that no NDF can affect the time of 2436 

rumination and the microbial fermentation of the feed, and consequently the results found 2437 

in this study. 2438 

Although the bacterial density had a significant influence on CH4 production per kg 2439 

DMI (Figure 2.3), PC-Corr revealed a functional module constituted by the four groups of 2440 

rumen microbes in cattle fed forage diets (Figure 2.1B), indicating that CH4 production 2441 

may depend on the interactions of methanogens (H2-consumer) with bacteria, protozoa, 2442 

and fungi (H2-producers) to lower the partial pressure of H2 during the ruminal 2443 

fermentation (Morgavi et al. 2012a, Janssen 2010, Morgavi et al. 2010). Surprisingly, this 2444 

study did not find any relationship between methanogens/protozoa and starch/NDF intake, 2445 

suggesting that protozoa-methanogens associations may have served to protect 2446 

methanogens from being washed out of the rumen, as protozoa pass the rumen at a 2447 

slower rate than bacteria and fungi (McAllister et al. 1994a). The lack of effect of total 2448 

methanogen abundance on CH4 emissions confirms the findings of Zhou et al. (2011) 2449 

who reported that the total methanogen numbers did not influence CH4 production, but 2450 

rather only the abundance of particular species (e.g., Methanobrevibacter gottschalkii) 2451 

were linked to CH4 output. However, our models predicted that the ability of NDF to 2452 

increase CH4 (Fig. S2) may be related to the increase in total bacteria abundance when 2453 

NDF consumption and CH4/kg DMI increased (Figure 2.3), indicating that increased 2454 

bacterial abundance leads to greater H2 production which is subsequently used for 2455 

methanogenesis (Janssen 2010, Leahy et al. 2010, Vanwonterghem et al. 2016). It is 2456 

https://www.dropbox.com/s/brb227z4bg0cj1c/FEMS%2C%20Neves%20et%20al_SupportingInformation.docx?dl=0
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important to note that specific genera/species may be critical for feed digestion, even 2457 

though in low numbers, which may affect the microbial response to the NDF consumption, 2458 

CH4/kg DMI, and consequently the host feed efficiency. 2459 

The changes at a single taxa level can be challenging to assess, and it may not 2460 

directly contribute to the overall rumen fermentation outcomes (such as VFA production) 2461 

due to the fuctional redundancy of the rumen microbiome. It has been reported that 2462 

among host-adapted microbes, DNA and RNA abundances would be correlated if many 2463 

microbial genes were not differentially regulated and were transcribed at the same 2464 

constant rate (Franzosa et al. 2014). Consequently, variation in microbial composition 2465 

may not correlate with their metagenomic content (Franzosa et al. 2014) since different 2466 

taxa may have the same functions. Although in the past a direct relationship between the 2467 

total densities of bacteria and methanogens with feed efficiency traits was not observed 2468 

(Zhou et al. 2011, Zhou et al. 2010, Zhou et al. 2009), it is possible that this could be due 2469 

to the comparatively poor understanding of the roles of protozoa and fungi in the rumen. 2470 

Results of the current study showed that the dynamics of the four groups of microbes is 2471 

associated with the variation in the VFA production which is directly linked with host 2472 

energy metabolism, feed efficiency and methane emissions. 2473 

     The approach used to create groups of animals based on the variation in the 2474 

abundance of microbial populations revealed that a relationship could be established 2475 

between feed conversion efficiency and the groups of microbial change (Figure 2.4). This 2476 

approach may be implemented in livestock systems as it reflects how individual hosts 2477 

utilize the diet and how each of them responds to the diet based on the microbial shift. 2478 

First, it was found that an improved FCR was linked to a higher abundance of bacteria 2479 

(log2fc in bacteria > 1), and this result is in line with previous studies showing that bacterial 2480 

growth is associated with a better animal performance when followed by the increase in 2481 

bacterial N flow and microbial protein synthesis in the rumen (Sniffen and Robinson 1987, 2482 

NRC 2016). Second, this study advances current knowledge in this field by demonstrating 2483 

that a lower bacterial abundance can also be associated with feed efficient cattle as 2484 

observed in bulls exhibiting a lower bacterial abundance (log2fc in bacteria < -1) (Figure 2485 

2.4). These results suggest that those animals utilized efficiently the energy from the diet 2486 
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in order to optimize microbial protein synthesis (Turnbaugh et al. 2009) despite the 2487 

decline in their bacterial abundance. In this case, the reduction in bacterial density may 2488 

have been accompanied by a decrease in richness as shown by the metatranscriptomic 2489 

analysis of cattle with lower feed efficiency (Fuyong Li and Le Luo Guan 2017, Neves et 2490 

al. 2017) and a higher dominance in taxonomic composition (e.g., lactate utilizing bacteria) 2491 

that favors simpler metabolic networks (e.g. acrylate pathway) (40).  2492 

 Our interest in the stratification of animals via their magnitude of change in 2493 

baseline microbiota following dietary changes is driven by previous observations of 2494 

substantial variation in performance across individuals, even when maintained on the 2495 

same diet (Z. P. Li et al. 2016, Brulc et al. 2009, Zhou et al. 2018). This research 2496 

speculated that such variation could be due to differences in rumen microbial function 2497 

and cattle genetic makeup. In this study, we used cattle with extremely similar background 2498 

(Red and Black Angus) and aimed to find out at what extent the rumen microbiota 2499 

abundance differed when environmental traits (such as diet components) were taken into 2500 

consideration. The findings of this study could benefit animal husbandry in two aspects. 2501 

First, by understanding the dynamics of the ruminal microbial population in response to 2502 

dietary changes, researchers will be able to design better feeding strategies to improve 2503 

the rumen function and host performance, since the microbial community plays an 2504 

important role in the digestion of feedstuffs (Belanche et al. 2012, Fernando et al. 2010). 2505 

Second, our approach could serve as a inexpensive strategy to quickly assess rumen 2506 

microbial shifts in cattle populations experiencing dietary changes under field situations 2507 

(e. g., feedlots), and to identify feed efficient animals since a relationship between 2508 

microorganisms abundance and FCR was found in this study. 2509 

2.5 Conclusions 2510 

This study showed that the individual responses of the rumen microbiota to the dietary 2511 

treatments reflected the interactions between host and the examined phenotypic traits. 2512 

The key finding is that the dynamics of the rumen microbial population is intimately 2513 

associated with inter-individual variability in the baseline microbiota, confirming that the 2514 

host microbiome individuality may play a more pronounced role in gut response than the 2515 

dietary change itself. It was also found that bacterial abundance may serve as a useful 2516 
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proxy measurement to predict changes in feed conversion efficiency and CH4/kg DMI in 2517 

cattle. Even though this experiment used simple and inexpensive methods (e.g., ranking 2518 

animals based on their microbial population shift using qPCR), the results obtained here 2519 

could be used to design better feeding strategies to enhance the rumen function and to 2520 

identify cattle with improved feed efficiency based on an individualized microbiota- 2521 

targeted feeding approach. By ranking animals according to their microbial response to 2522 

the diet, it was showed that individual hosts exhibiting variability in bacterial abundance 2523 

(log2fc < -1 or > 1) were more efficient in terms of feed conversion ratio than bulls 2524 

presenting a stable variability (-1 > log2fc < 1) in bacterial abundance.  2525 
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2.7 Tables and figures 2770 

Table 2.1 Quantification of the copy numbers of microbial populations in the rumen of beef cattle fed forage or grain diets 2771 

                               Sequence of dietary treatments4 

 Microorganisms  

         Forage     -     Forage 

 

 

    Forage      -     Grain 

 

 

       Grain     -     Forage 

 

 

      Grain       -      Grain 

 

Bacteria1 5.9 ± 6.80 

× 1011 

2.5 ± 1.67 

× 1011 

6.0 ± 4.24 

× 1010  

3.2 ± 2.82 

× 1010  

5.8 ± 4.39 

× 1010  

1.9 ± 1.46 

× 1011  

5.0 ± 3.08 

× 1011 

5.7 ± 3.44 

× 1011 

Fungi2 1.2 ± 1.03 

× 104 

9.1± 7.06 

× 103 

1.1 ± 0.89 

× 105 

8.8 ± 8.6 

× 104 

5.0 ± 6.28 

× 103 

2.4 ± 4.59 

× 104 

2.1 ± 3.89 

× 104 

2.6 ± 2.79 

× 104 

Methanogens1 3.7 ± 1.71 

× 108 

3.1± 0.93 

× 108 

2.9 ± 1.29 

× 108 

2.5 ± 1.38 

× 108 

3.0 ± 1.68 

× 108 

4.4 ± 2.91 

× 108 

5.4 ± 3.95 

× 108 

7.5 ± 5.97 

× 108 

Protozoa3 4.8 ± 7.73 

× 107 

2.9 ± 4.10 

× 107 

7.6 ± 0.10 

× 107 

6.4 ± 0.11 

× 107 

2.6 ± 3.06 

× 107 

1.9 ± 3.83 

× 107 

1.0 ± 1.12 

× 108 

6.8 ± 6.14 

× 107 

1Copy number of 16S rRNA (Mean ± SD) ⁄ mL of rumen fluid; 2772 

2Copy number of ITS (Mean ± SD) ⁄ mL of rumen fluid; 2773 

3Copy number of 18S rRNA (Mean ± SD) ⁄ mL of rumen fluid; 2774 

4The hyphen (-) means diet change. 2775 



  

 

Figure 2.1 Rumen microbial population and phenotypic traits in response to diet changes. 

Linear dimensionality reduction by PC-Corr separated rumen microbes (A) and phenotypic 

traits (C) recorded in cattle fed forage (black) or grain diets (red). PC-Corr detected 

differences (Mann-Whitney test, P <0.01) in rumen microbes between forage and grain diets 

along principal component 6 (PC6), whose loadings were used to build a microbial network 

at a cut-off (Pearson correlation) of 0.27 (B). Differences (Mann-Whitney test, P <0.01) in 

phenotypic traits were also observed for forage and grain diets along PC1 and PC6, whose 

loadings were used for the construction of a network at a cut-off of 0.50 (D).  
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Figure 2.2 Dynamics of rumen bacteria and fungi in response to DMI, starch intake, and 

average daily gain (ADG). Effect of DMI (A and B), starch intake (C) (kg/day), and ADG 

(kg/day) on the copy numbers of bacteria and fungi (Log10).  
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Figure 2.3 Dynamics of rumen bacteria in response to NDF intake and CH4/kg DMI. Effect 

of NDF intake (A) and CH4/kg DMI (B) (kg/day) on the copy numbers of bacteria (Log10).  
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Figure 2.4 Feed conversion ratio (FCR) and Feeding Time (in minutes) in response to the 

interactions of NDF intake and the magnitude of change in host microbial population. 

Interactive effects of NDF intake (kg/day) and the magnitude of microbial shift (High, Stable, 

Low) on FCR and Feeding Time when groups of bulls were created from the magnitude of 

change in bacteria (A and B) and fungi (C and D).  
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Chapter 3 

Enhancing the resolution of rumen microbial classification from metatranscriptomic 

data using Kraken and Mothur 

3.1 Introduction 

The success of microbiome studies (composition, structure, diversity, and function) is 

primarily ascribable to the development of bioinformatics tools specially tailored to overcome 

the technical challenges posed by the analysis of massively paralleled, high-throughput 

sequencing data (Simon and Daniel, 2011; Siegwald et al., 2017). These bioinformatics tools 

make use of several techniques (e.g., read mapping, k-mer alignment, and composition 

analysis) (Piro et al., 2017) and can be categorized into two distinct groups: 1) programs that 

use all available genome sequences (Lindgreen et al., 2016), also called assignment-first 

approaches (Siegwald et al., 2017) (e.g., CLARK - Ounit et al., 2015; GOTTCHA - Freitas et 

al., 2015; KRAKEN - Wood and Salzberg, 2014; MG-RAST - Meyer et al., 2008), and 2) 

programs that target a set of marker genes (Lindgreen et al., 2016), also known as clustering-

first approaches (Siegwald et al., 2017) (e.g., QIIME - Caporaso et al., 2010; MOTHUR - 

Schloss et al., 2009; MetaPhlAn - Segata et al., 2012; mOTU - Sunagawa et al., 2013). In the 

assignment-first tools, all reads are assigned to the lowest taxonomy unit (lower common 

ancestor-LCA) within a reference database based on their annotations, while in the clustering-

first approaches the reads are grouped into Operational Taxonomic Units (OTUs) using 

different OTU picking strategies (closed or open reference) to assign reads to a taxonomic 

group based on their sequence similarities (Siegwald et al., 2017).  

However, most of the above studies are focused on demonstrating how single 

analytical steps (e.g., sequence pre-processing, OTU clustering or taxonomic assignment) 

generated by the existing tools impact the microbial classification in real or simulated datasets 

derived from the Human Microbiome Project (Siegwald et al., 2017). Comparison of 

methodologies to comprehensively classify the rumen microbiome is lacking which may be in 

part due to its complexity, as the rumen microbial community consists of bacteria, archaea, 

protozoa and fungi (Russell and Rychlik, 2001). A recent study by Li et al. (2016a) developed 

a Mothur (Schloss et al., 2009) based pipeline to assess active rumen microbiota from data 

generated from total RNA sequencing. Later, the same researchers applied this pipeline to 
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investigate linkages between the active rumen microbiome (structure and function) and feed 

efficiency in beef cattle using metatranscriptomics (Li and Guan, 2017). Using the developed 

mothur-based pipeline for taxonomic assignment, the authors identified that the active 

microbial taxa differed in the rumen of cattle with differing feed efficiency and suggested that 

the active rumen microbiome is one of the biological factors that may contribute to variations 

in feed efficiency of beef cattle (Li and Guan, 2017). There were two steps employed in 

taxonomic classification by Li et al. (2016a):  bacterial sequences belonging to V1-V3 regions 

were extracted from the aligned Greengenes database, and archaeal sequences belonging 

to the V6-V8 regions were aligned with a rumen-specific archaeal 16S rRNA gene database 

(Janssen and Kirs, 2008). Despite the efficacy of this pipeline, it still remains a challenge for 

researchers to determine which approach (assignment- or clustering-first methods) of 

taxonomic classification delivers the most realistic representation of rumen microbial ecology.  

In the current study, we propose a comparative analysis of the outcomes of Kraken 

(Wood and Salzberg, 2014) and the pipeline of Li et al. (2016a) with a focus on the biological 

interpretation of the rumen microbial classification from the perspective of two conceptually 

different software packages. Unlike the pipeline developed by Li et al. (2016a), Kraken 

algorithms can make multiple comparisons of single or assembled k-mers against any 

hypervariable region, providing useful information regarding a particular species detected in 

a region of the 16S rRNA gene that is different from the targeted internal conserved region 

initially sequenced (Wood and Salzberg, 2014; Valenzuela-González et al., 2016). Although 

Kraken algorithms have been originally designed to assign taxonomic identity to short DNA 

reads (Wood and Salzberg, 2014), studies have shown that Kraken is also useful to provide 

taxonomic classification for long (up to 1352.1 ± 153.72 bp) metagenomic DNA sequences 

(Valenzuela-González et al., 2016). Therefore, the objectives of this study were (i) to compare 

and contrast the pipeline of Li et al. (2016a) and Kraken to assess the taxonomic profiles of 

rumen bacteria and archaea and (ii) to investigate the impact of the comparative analysis of 

both analytical approaches on the biological interpretation of the rumen microbial 

classification obtained from cattle exhibiting different feed efficiencies.  

 

3.2 Materials and methods 

3.2.1 Animal study and sampling 
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The experimental procedures described in this study were approved by the Veterinary 

Services and the Animal Care Committee, University of Manitoba, Canada, to ensure that 

animals were cared for in compliance with those ethics. Rumen contents were collected from 

12 purebred Angus bulls (mean age of 249 ± 22 days and average body weight of 313.9 ± 32 

kg) raised in confinement at the Glenlea Research Station located at the University of 

Manitoba according to the guidelines of the Canadian Council on Animal Care (CCAC) (Olfert 

et al., 1993), with bulls being fed a forage diet over two 80-day feeding periods (with a 20-day 

adaptation in between) as described by Thompson (2015). In the current study, 250 ml of 

rumen contents (liquid and solid fractions) were collected at the end of the second feeding 

period using a Geishauser oral probe (Duffield et al., 2004), immediately snap frozen in liquid 

nitrogen, and stored at -80°C for later processing. The feed intake of individual bulls was 

recorded using the GrowSafe® feeding system (GrowSafe Systems Ltd., Airdrie, Alberta, CA) 

and the feed conversion rate (FCR) was calculated as a ratio of dry matter intake to average 

daily gain (computed on a biweekly basis; Montanholi et al., 2010). The bulls were ranked 

into two groups: high (n=6) and low (n=6) FCR, with high (H-FCR) and low (L-FCR) standing 

for inefficient and efficient cattle in terms of diet utilization, respectively. 

3.2.2 RNA extraction and sequencing  

Total RNA was extracted from rumen samples using the TRIzol protocol based on the acid 

guanidinium-phenol-chloroform method (Chomczynski and Sacchi, 2006; Béra-Maillet et al., 

2009) with the modified procedures described by Li et al. (2016a). Briefly, ~200 mg of rumen 

sample was subjected to RNA extraction with the addition of 1.5 ml of TRIzol reagent 

(Invitrogen, Carlsbad, CA, USA), followed by 0.4 ml of chloroform, 0.3 ml of isopropanol, and 

0.3 ml of high salt solution (1.2 M sodium acetate, 0.8 M NaCl) for the extraction protocol (Li 

et al., 2016a). The yield and integrity of the RNA samples were determined using a Qubit 2.0 

fluorimeter (Invitrogen, Carlsbad, CA, USA) and Agilent 2100 Bioanalyzer (Agilent 

Technologies, Santa Clara, CA, USA). RNA samples were subjected to downstream RNA-

sequencing only if they exhibited RNA with integrity number (RIN) higher than 7.0. Briefly, 

total RNA (100 ng) of each sample was used for library construction using the TruSeq RNA 

sample prep v2 LS kit (Illumina, San Diego, CA, USA) without the mRNA enrichment step (Li 

et al., 2016a). The quality of libraries was assessed using Agilent 2200 TapeStation (Agilent 

Technologies) and Qubit 2.0 fluorimeter (Invitrogen). Finally, cDNA fragments (∼140 bp) were 
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paired-end (2 X 100 bp) sequenced using an Illumina HiSeq 2000 system at the McGill 

University and Génome Québec Innovation Centre (Montréal, QC, Canada). 

3.2.3 Pipeline settings 

A flow chart is shown in Figure 3.1 to present the software parameters used to obtain the 

microbial classification from either Mothur (Schloss et al., 2009) or Kraken (Wood and 

Salzberg, 2014) taxonomic assignment strategies. In the pre-processing steps, all fastq-

formatted sequences were firstly uploaded into FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ for quality control and removal of 

ambiguous sequences, and then the software Trimmomatic (version 0.32; Bolger et al., 2014) 

was used to trim residual artificial sequences, cut bases with quality scores below 20, and 

remove reads shorter than 50 bp (Li et al., 2016a). After pre-processing, SortMeRNA (version 

1.9; Kopylova et al., 2012) was used to sort the filtered reads into fragments of 16S rRNA (for 

taxonomic identification using Mothur) based on the rRNA reference databases SILVA_SSU 

(release 119; Quast et al., 2013) and mRNA (for microbial classification using Kraken). In the 

pipeline developed by Li et al. (2016a), sorted paired-end reads belonging to bacterial and 

archaeal 16S rRNA were joined to increase the read length by combining the forward and 

reverse sequences. After the 16S rRNA sequences were enriched, downstream analyses 

were performed using Mothur (version 1.31.2; Schloss et al., 2009) as described by Kozich 

et al. (2013) (Figure 3.1). For taxonomic classification, bacterial and archaeal 16S rRNA 

sequences were aligned with the V1-V3 region-enriched Greengenes database (DeSantis et 

al., 2006) and the V6-V8 region-enriched rumen-specific archaea database (Janssen and Kirs, 

2008, which was updated from Kittelmann et al., 2013), respectively. De novo chimera 

detection was then conducted using UCHIME (Edgar et al., 2011), and non-chimeric 

sequences were taxonomically assessed using a naive Bayesian method (Wang et al., 2007). 

The pipeline developed by Li et al. (2016a) will be referred as Mothur through the rest of the 

paper. 

As for the Kraken pipeline (Wood and Salzberg, 2014), newly developed Perl scripts 

were used to retrieve all complete genomes of bacteria (5,294) and archaea (209) from NCBI 

(RefSeq) (May 2016), to build a Kraken standard database (June 2016) based on their 

annotations at the lowest taxonomic level (Figure 3.1). Ninety-one complete genomes from 

organisms isolated from the rumen or from ruminant feces or saliva deposited in the 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916217/#B38
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Hungate1000 project were also retrieved from JGI's IMG database (using NCBI Taxon IDs). 

After downloading the genomes, the script kraken-build (option --build) was used to set the 

lowest common ancestors (LCAs) in a bacteria-archaea joint database (size: 115G; number 

of sequences mapped to profiles: 10,174; and time for database construction: 

6h33m35s).  Thereafter, each pair of mRNA sequences was assembled by MEGAHIT (Li et 

al., 2015), with the resulting contigs (with average extension of 472.31 ± 31.10 bp) being 

assigned by Kraken (through k-mer discrimination) to the LCA in the customized standard 

database for microbial classification (Figure 3.1). Full taxonomic names associated with each 

classified sequence (separated from unclassified reads using kraken option --preload) and 

standard ranks (from domain to species) for each taxon were provided by kraken-translate 

and kraken-mpa-report (Figure 3.1). 

3.2.4 Statistical analysis 

In this study, a phylotype was considered as classified by both methods if it had at least one 

count detected in the 12 samples. For comparisons between H-FCR and L-FCR groups, we 

investigated only bacterial and archaeal profiles with a relative abundance > 0.1% prevalent 

in at least three samples (3 out 6) to avoid sparsely observed counts, which tend to introduce 

noise in the analysis (Chen and Li, 2013). The ANCOM procedure (Mandal et al., 2015), 

which uses an alternative normalization approach called Aitchison’s log-ratio transformation 

(Aitchison, 1982), was then used to normalize the sequence data and to compare the 

normalized log ratio of the abundance of each taxon to the abundance of all remaining taxa 

(Weiss et al., 2017). To deal with zero counts in the datasets, ANCOM used an arbitrary 

pseudo count value of 0.001 (Mandal et al., 2015). Thereafter, Wilcoxon rank sum tests were 

calculated on each log ratio to find differences between feed efficiency groups (H-FCR vs. L-

FCR) as provided by each classification method (Mothur or Kraken) (Figure 3.1). The p-value 

of each test were adjusted into false discovery rate (FDR) using the Benjamini-Hochberg 

algorithm (Benjamini and Hochberg, 1995), and a threshold of FDR lower than 0.15 (Korpela 

et al., 2016) was applied to determine the significance due to the small sample size of this 

study. Correlation circle plots and relevance networks for core bacterial genera and archaeal 

species (with a relative abundance > 0.1% detected in all rumen samples; Li and Guan, 2017) 

were generated from the output of regularized canonical correlation (rCC) analysis as 

implemented in the R package mixOmics (Gonzalez et al., 2008) and Cytoscape 3.4.0 

(Shannon et al., 2003). Before running rCC analysis, the data was normalized by total sum 



 

 

90 

scaling (TSS) (dividing each taxon count by the total number of counts in each individual 

sample to account for uneven sequencing depths across samples) and then transformed by 

centered log ratio to project the data from a simplex to a Euclidian space (Aitchison, 1982; 

Mandal et al., 2015; Cao et al., 2016). Then, estimation of regularization parameters (λ1 and 

λ2) and canonical correlations were calculated using the cross-validation procedure 

(Gonzalez et al., 2008). Finally, alpha-diversity indexes were calculated using the R package 

vegan (as provided by each classification method) and compared between FCR groups (H-

FCR vs. L-FCR) using paired Wilcoxon signed rank test. All statistical procedures were 

performed using R 3.3.2 (R Core Team, 2016).  

3.2.5 Data submission 

The datasets analyzed in this study were submitted to NCBI Sequence Read Archive (SRA) 

under the accession number PRJNA403833. 

3.3 Results 

3.3.1 Taxonomic distribution of the microbial profiles performed by Mothur or Kraken 

In this study, two bioinformatics approaches, Kraken and a Mothur-based pipeline developed 

in-house by Li et al. (2016a), were used to obtain taxonomic classifications (bacteria and 

archaea) of the ruminal microbiota in bulls exhibiting different (P < 0.05) feed efficiencies 

(average FCR for H-FCR group= 7.64 kg dry matter intake (DMI)/kg gain; average FCR for 

L-FCR group= 5.71 kg DMI/kg gain; P = 0.008). Taking into consideration the total number of 

microbial taxa in the samples, Kraken identified a higher number of bacterial and archaeal 

phylotypes at all taxonomic ranks than Mothur (Table 3.1). At the phylum level, the results of 

bacterial profiles revealed a similar taxa distribution of the most abundant taxa classified by 

both methods (Tables 3.1 and 3.2), with Bacteroidetes, Firmicutes, and Proteobacteria being 

highly abundant and accounting for approximately 80% of the total bacterial community. 

However, Spirochaetes (4.9%) were the fourth-most abundant taxon identified by Kraken, 

followed by Verrucomicrobia (2.3%), Actinobacteria (2.1%), Tenericutes (1.9%), and 

Fibrobacteres (1.2%). In contrast, Fibrobacteres (3.4%) was found to be the fourth-most 

abundant taxon detected by Mothur, followed by Spirochaetes (2.2%), Verrucomicrobia 

(1.7%), Tenericutes (0.8%), and Cyanobacteria (0.6%). Although there was some congruency 

(69 commonly detected taxa) at the most resolvable level (up to genus) of bacteria in between 

the two pipelines, an additional 159 genera were exclusively identified by Kraken. Genera 
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such as Ruminiclostridium, Lachnoclostridium, and Acholeplasma were uniquely identified by 

Kraken, whereas Ruminobacter, Coprococcus, YRC22, and Oscillospira were exclusively 

detected by Mothur. As for the most abundant genera, Kraken revealed Prevotella (33.5%), 

Treponema (4.1%), Ruminoccocus (4.1%), Ruminiclostridium (3.2%), Bacteroides (3.0%), 

Butyrivibrio (2.4%) and Clostridium (2.2%) at relatively high abundances, while Mothur 

identified Prevotella (22.6%), Ruminoccocus (14.6%), Ruminobacter (4.9%), Fibrobacter 

(4.3%), Treponema (2.4%), and Butyrivibrio (1.2%) as more abundant. It is worth noting that 

although Mothur could theoretically classify sequences at the species level, it was not able to 

assign bacterial contigs further than the genus level in the current study. Conversely, Kraken 

detected 423 species (Tables 3.1 and 3.2) such as Prevotella ruminicola (27.6%), Butyrivibrio 

proteoclasticus (2.8%), Treponema succinifaciens (2.6%), Ruminiclostridium sp KB18 (2.2%), 

and Fibrobacter succinogenes (1.8%). A complete list of all bacteria phylotypes (in all 

taxonomic ranks) classified by Mothur or Kraken is provided in Supplementary Tables 1 and 

2, respectively. In addition, the direct comparisons of the bacterial taxonomic assignments 

obtained from both methods across all samples are included in Supplementary Table 3.  

In terms of archaea identification, both methods exhibited similar results on the 

abundance of Methanomassiliicoccaceae (previously referred to as RCC), which comprised 

more than 65% of the total archaeal families (Table 3.3). However, the two methods 

generated significantly different archaeal profiles at the species level, with 7 species being 

exclusively identified by Kraken and 4 taxa being exclusively detected by Mothur (Tables 3.1 

and 3.3). Only Methanobrevibacter ruminantium was commonly detected by the two methods, 

being the second-most abundant species classified by Mothur and the seventh-most 

abundant identified by Kraken. A detailed list of archaeal classification (in all taxonomic ranks) 

for Mothur or Kraken can be found in the Supplementary Tables 1 and 2, respectively, 

together with the information on the direct comparison of the archaeal taxonomic assignments 

obtained from both methods across all samples included in Supplementary Table 4. 

3.3.2 Differences in relative abundances of taxa in H- vs. L-FCR rumen samples 

To evaluate how the above two approaches affect the biological interpretation of bacteria and 

archaea diversity and community structure, comparisons of rumen microbiota between H- 

and L-FCR cattle were performed. Differences in microbial abundance between H- and L-

FCR datasets were found to be minimal (making up less than 1% of the total microbial 

https://www.frontiersin.org/articles/10.3389/fmicb.2017.02445/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02445/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02445/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02445/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02445/full#supplementary-material
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community), regardless of the classification method (Tables 3.2 and 3.3). In this regard, only 

the family R4-41B (exclusively detected by Mothur) were more (FDR < 0.15) abundant in the 

rumen of L-FCR bulls, while the family Actinomycetaceae was more (FDR < 0.15) abundant 

in L-FCR samples classified by Kraken (Table 3.2). Methanococcaceae and Xenorhabdus 

exhibited a higher (FDR < 0.15) abundance in the rumen of H-FCR bulls when sequences 

were exclusively classified by Kraken (Tables 3.2 and 3.3). 

In addition, alpha-diversity indexes of bacteria (genus level) and archaea (species level) 

were compared between H- and L-FCR groups to determine how the two pipelines differed 

in microbial biodiversity estimates. Shannon, Inverse Simpson and Simpson (with rarefy) 

indexes were higher (P < 0.05, paired Wilcoxon signed rank test) in H-FCR than in L-FCR 

bulls as shown by both pipelines (Table 3.4). On the other hand, a higher (P < 0.05, paired 

Wilcoxon signed rank test) archaeal diversity in the H-FCR group was observed only by the 

Kraken pipeline (Table 3.4). 

3.3.3 Potential interactions between bacteria and archaea detected by Mothur or 

Kraken 

To investigate interactions among different taxa classified by Kraken or Mothur, rCC analysis 

was implemented to identify relationships within and between bacteria and archaea 

communities. Our results revealed that bacteria and archaea interactions were quite 

contrasting between the two methods, with the microbial groups exhibiting different 

correlation outcomes as shown in Figure 3.2. Within bacterial communities, negative 

correlations between Prevotella, Treponema, Fibrobacter and Ruminobacter, Butyrivibrio, 

and Ruminoccocus were observed using the Mothur pipeline (Figure 3.2a), while Prevotella 

and Bacteroides were negatively correlated with Treponema, Fibrobacter and Ruminoccocus 

when Kraken was used (Figure 3.2c). Associations within archaeal species were also different 

between the two methods, with Methanobrevibacter gottschalkii and Methanobrevibacter 

ruminantium being negatively correlated with each other from the Mothur pipeline, and 

Candidatus Methanoplasma termitum and Candidatus Methanomethylophilus alvus 

exhibiting negative correlations with each other in the Kraken pipeline (Figures 3.2a and 3.2c). 

Relevance networks of the associations between bacteria and archaea revealed a positive 

correlation between Methanobrevibacter ruminantium and Fibrobacter, RFN20, Treponema, 

and BF311, and a positive correlation between Methanobrevibacter gottschalkii and 
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Ruminococcus, Butyrivibrio and Succiniclasticum based on the microbial classification by 

Mothur (Figure 3.2b). On the other hand, the positive correlations were detected between 

Candidatus Methanoplasma termitum and Prevotella, Porphyromonas, Bacillus, 

Sphingobacterium, and Moraxella, as well as between Candidatus Methanomethylophilus 

alvus and Fibrobacter, Eubacterium, and Mageeibacillus in the classification provided by 

Kraken (Figure 3.2d).  

3.4 Discussion 

In this study, the comparison of taxonomic outcomes of two pipelines, Mothur (developed by 

Li et al., 2016) and Kraken (developed by Wood and Salzberg, 2014, and adapted to the 

conditions of this study), was performed to determine which is a better approach in rumen 

microbial classification when total RNA-seq data were used. The advent of high-throughput 

sequencing has greatly advanced our knowledge of the ecology and functional capacity of 

rumen microbes and their role in converting low-quality and unusable feedstuffs into energy 

sources for host productivity (McCann et al., 2017). As a result, an assiduous effort has been 

made to unveil the linkage between the rumen microbiota and phenotypic traits of interest 

such as feed efficiency (Li and Guan, 2017), enzyme discovery (Qi et al., 2011) and methane 

emissions (Kittelmann et al., 2014; Shi et al., 2014; Kamke et al., 2016). Metagenomic studies 

have shown that the host may regulate the microbiota and its metabolic activity in relation to 

feed efficiency (FCR) through host-microbiome cross talk genes such as TSTA3 (GDP-L-

fucose synthetase) and Fucl (L-fucose isomerase), suggesting that the relative abundance of 

these genes could be used as a predictor for host feed efficiency (Roehe et al., 2016). 

Although the number of rumen metagenomics and metatranscriptomics studies has grown 

enormously over the last couple of years (McCann et al., 2017), the functional outcomes and 

biological interpretation of omics data strongly depend on the computational methods used 

(Simon and Daniel, 2011; Siegwald et al., 2017). In this study, both Mothur and Kraken 

pipelines showed the rumen of the bulls to be dominated by Prevotella, Treponema, 

Ruminoccocus, Fibrobacter, and Butyrivibrio, which are considered as part of a “core bacterial 

microbiome” (Henderson et al., 2015). In addition to the mutual “core microbiome” shared by 

the two pipelines at the genus level, Kraken detected a relatively high abundance of 1) 

Prevotella ruminicola (Supplementary Table 2), which is involved in the ruminal digestion of 

hemicellulose and pectin (Marounek and Duskova, 1999); 2) Fibrobacter succinogenes 

(Supplementary Table 2), a gram-negative, fiber degrader species (Suen et al., 2011); and 3) 
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non-motile species within the Ruminoccocus genus (Supplementary Table 2) that share 

different niches (La Reau et al., 2016): R. bicirculans, which selectively utilizes hemicelluloses 

but not cellulose or arabinoxylan (Wegmann et al., 2014), and R. albus, which is capable of 

digesting cellulose and xylan (Christopherson et al., 2014).    

Interestingly, both methods identified about 1% of Cyanobacteria (Supplementary 

Tables 1 and 2), corroborating the findings of previous studies that have reported low 

abundances of these oxygenic phototrophic bacteria in the rumen of dairy (Scharen et al., 

2017) and beef cattle (Li and Guan, 2017), and of camels (Gharechahi et al., 2015). 

Cyanobacteria are aerobic bacteria that can perform carbohydrate fermentation in a deficient 

N2 concentration (heterocystous) or in a combination of N2 deficiency and anoxic conditions 

(nonheterocystous) (Nandi and Sengupta, 1998). Although the ruminal environment is widely 

considered to be anaerobic, significant concentrations of O2 (60 and 100 nmol/min per mL) 

can be detected in the rumen fluid (Newbold et al., 1996), indicating that the presence of 

Cyanobacteria in the rumen may be related to O2 scavenging and sugar fermentation 

performed under restrict aerobic conditions. It is important to mention that although 

Cyanobacteria has been widely detected in aqueous and soil environments (Williams et al., 

2004; Cruz-Martinez et al., 2009), the identification of this phylum in the mammals’ gut has 

raised critical questions on what roles these organisms may play in aphotic and anaerobic 

habitats (Soo et al., 2014) like the rumen. Recent researches have reported that gut 

Cyanobacteria are highly conserved but their 16S rRNA gene phylogenetic tree differed from 

the photosynthetic Cyanobacteria, which led to the designation of a new candidate class 

called Melainabacteria (Soo et al., 2014) whose members are capable of fermenting a range 

of sugars (e.g., glucose, fructose, sorbitol) into acetate and butyrate in the gut (Di Rienzi et 

al., 2013). Neither Kraken nor Mothur identified Melainabacteria in the samples, 

demonstrating that further studies are needed to disentangling its role in the rumen. 

However, the two methods (Kraken and Mothur) generated microbial classification at 

different taxonomic levels for rumen bacteria. To completely understand the function of the 

rumen microbiota, it is essential to identify organisms at the species level since different 

species, within the same genus, can have varied functions and niches. The Mothur based 

method was useful to identify a diverse bacterial microbiota from the RNA-seq datasets, but 

it was not able to classify any of the bacterial sequences further than the genus level (Tables 

3.1 and 3.2). Microbial classification to the species level is a major challenge for clustering-

https://www.frontiersin.org/articles/10.3389/fmicb.2017.02445/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02445/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02445/full#supplementary-material
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first approaches based on targeted regional 16S rRNA when short (up to 250 bp) or even 

longer reads generated from total RNA-seq are used to identify environmental microbes 

(Xiang et al., 2017). Most existing tools (for bacteria and archaea) lack solid probabilistic-

based criteria to evaluate the accuracy of taxonomic assignments to determine the best-

matched database hits to distinguish multiple species from the targeted sequence region of 

the 16S rRNA gene (Xiang et al., 2017). To identify bacteria at the species level, sequencing 

of full length of 16S rRNA is desired and thus future studies need to increase the sequence 

length to enhance the resolution for microbial identification. For the Kraken based approach, 

the reference database was built based on all known microbial genomes and as a result it 

generated a higher resolution (to the species level) of the rumen microbiota, enabling the 

program to annotate each microbial sequence to the LCAs (Wood and Salzberg, 2014). In 

this process, k-mer paths formed by Kraken assign a specific weight to each node (equal to 

the number of sequences associated with the node's taxon) while increasing the sensitivity of 

the species classification even if regions (for example, V3-V5) of the 16S rRNA gene were 

analyzed (Wood and Salzberg, 2014; Valenzuela-González et al., 2016). Consequently, the 

generation of chimeric trees using short or long input sequences is improbable with Kraken 

as unlike other programs (such as Ribosomal Database Project classifier and Mothur), it 

leaves out specific sequences if there is insufficient evidence for classification and they are 

designated as unclassified (Valenzuela-González et al., 2016). Therefore, inputting short or 

long environmental sequences (containing most of the 16S hypervariable regions or mRNA 

sequences) into Kraken may generate a more representative profile of complex microbiomes 

(Valenzuela-González et al., 2016) like the rumen.  However, the lack of reference genomes 

for rumen microorganisms also limits Kraken. For example, the classification of Xenorhabdus 

(Table 2) and Xenorhabdus doucetiae (data not shown; relative abundance (%): H-FCR, 0.1 

± 0.10 found in 6 samples; L-FCR, 0%), a motile, gram-negative soil bacterium usually 

described as being part of entomopathogenic nematode/bacterium symbiotic complex 

(Furgani et al., 2008) has not been previously reported in amplicon based sequencing (Li et 

al, 2016a) or metagenomic/metatranscriptome sequencing (Li and Guan, 2017) of rumen 

contents. The classification of this bacterial species may indicate that Kraken did not properly 

identify the microbe since the reference genome information was built mostly from all 

microbial genomes annotated in the NCBI database. However, these organisms may have 

been actually detected in the rumen since cattle can consume soil, raising the possibility that 

their detection was transitory.   
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It is noteworthy that Methanobrevibacter (family Methanobacteriaceae) was identified 

in both databases (Supplementary Tables 1, 2, and 4). This genus has been reported to be 

the most abundant archaeal population in the rumen based on DNA datasets  (Kittelmann et 

al., 2013; Henderson et al., 2015), but it had a lower abundance than 

Methanomassiliicoccaceae at the RNA level in this study. This result is consistent with the 

research conducted by Li et al. (2016a), who reported a predominance of 

Methanomassiliicoccaceae over Methanobrevibacter in RNA-based datasets when 

compared to DNA Amplicon-seq outcomes, suggesting that Methanomassiliicoccaceae may 

be more active in the rumen than Methanobacteriaceae. However, further studies are needed 

to determine whether the differences in abundance between those two archaeal populations 

have a methodological influence or are controlled by diet, host animal or management 

strategies. Unlike bacterial classification, Kraken and Mothur generated contrasting results 

on archaea identification (Table 3.3), which reflects the divergent taxonomic profiles at the 

species level. For example, certain archaeal genomes, such as Methanobrevibacter wolinii 

and Methanobrevibacter woesei, were only found in the rumen-specific archaea database, as 

the Kraken standard database lacked these complete genomes. However, Kraken was able 

to detect Candidatus Methanoplasma termitum and Candidatus Methanomethylophilus alvus, 

which were not identified by Mothur pipeline. Li et al. (2016b) isolated the archaeon ISO4-H5 

(member of the order Methanomassiliicoccales) from the sheep rumen and discovered that 

this archaeal taxon exhibited genome size (1.9 Mb) and GC content (54%) similar to 

Candidatus Methanoplasma termitum (enriched from the termite gut) and Candidatus 

Methanomethylophilus alvus (enriched from human feces). These two species 

encode pathways required for hydrogen-dependent methylotrophic methanogenesis by 

reduction of methyl substrates, without the ability to oxidize methyl substrates to carbon 

dioxide (Li et al., 2016b).  Thus, it is possible that these microbes reside in the rumen. Future 

analysis with archaeon ISO4-H5 sequences included in the databases of both pipelines as 

well as its isolation, culture and characterization may provide further evidence of this 

possibility. 

To further verify how these two methods affected data interpretation, the rumen 

microbiota of H-FCR and L-FCR bulls were compared based on the taxonomic outcomes 

generated by the two software packages.  Both computational pipelines revealed differences 

in microbial abundance between H- and L-FCR groups at all taxonomic ranks, with Mothur 

https://www.frontiersin.org/articles/10.3389/fmicb.2017.02445/full#supplementary-material
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916217/#B38
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916217/#B23
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exclusively identifying a higher abundance of poorly characterized bacterial phylotypes (e.g., 

R4-41B) in L-FCR bulls (Table 3.2). It has been reported that the abundance of R4-41B was 

negatively correlated with production traits over the first 12 weeks postpartum in dairy cows 

(Lima et al., 2015), suggesting that it may have undesirable impacts on the function of the 

rumen microbiome of L-FCR cattle. Although Kraken identified a relatively higher abundance 

of Xenorhabdus in H-FCR bulls (Table 2), this result could be erroneous with further validation 

needed as described above. However, researchers have enumerated and identified a high 

number (15.7 x 104 Most Probable Number/g) of chlortetracycline resistant Enterobacteriacea 

in cattle feces that largely consisted of Xenorhabdus doucetiae (Watanabe et al., 2016). Since 

antimicrobial agents (e. g., chlortetracycline) are typically administered subtherapeutically to 

beef cattle (Inglis et al., 2005), our results suggest that H-FCR animals may be more 

susceptible to harbor chlortetracycline resistant bacteria than L-FCR animals in the event of 

a therapeutic administration of this antibiotic. Further investigations aiming to evaluate the 

effects of antimicrobial agents (e. g., chlortetracycline) on the development of antimicrobial 

resistance in Xenorhabdus recovered from less efficient cattle (H-FCR) are warranted.  

Kraken also detected a higher (P = 0.09) abundance of Methanococcaceae (relative 

abundance (%): H-FCR, 13.6 ± 8.96; L-FCR, 4.1 ± 4.85) in the rumen of H-FCR bulls, 

indicating that Methanococcaceae may play a potential role in the linkages between 

methanogenesis and reduced feed efficiency in cattle. Although RNA-targeted DNA probes 

and genomic DNA sequencing have revealed a significant population of this archaeal family 

residing in the rumen (Janssen and Kirs, 2008) and exhibiting a positive correlation with 

increased forage content in the diet (Pitta et al., 2016), members of this methanogenic 

archaea family still need to be cultured from the rumen to test our findings.  

Finally, our study demonstrated that both pipelines (Mothur and Kraken) were effective 

in detecting a lower bacterial diversity in efficient (L-FCR) cattle (Table 3.4), corroborating the 

recent findings by Li and Guan et al. (2017) and (Shabat et al., 2016) that the rumen 

microbiota of efficient cattle is less complex and more specialized in harvesting energy from 

the diet through simpler metabolic networks (e.g., acrylate pathway) than inefficient cattle. 

However, only Kraken identified a significantly lower diversity in the archaeal community in L-

FCR bulls, but this result should be carefully interpreted as many archaea phylotypes 

classified by Kraken are environmental organisms that have not yet been described in the 

rumen. For example, the methane-producing archaeon Methanothermococcus okinawensis 
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(the third-most abundant archaea taxon classified by Kraken, Supplementary Table 2) was 

first isolated from a deep-sea hydrothermal vent system (Takai et al., 2002), Picrophilus 

torridus and Acidilobus saccharovorans (the fourth and fifth-most abundant archaea taxa 

detected by Kraken, Supplementary Table 2) were isolated from a dry solfataric field (Fütterer 

et al., 2004) and a terrestrial acidic hot spring (Mardanov et al., 2010), respectively. Thus, it 

is worth mentioning that, in spite of the Kraken’s promising results, this pipeline is severely 

limited when studying a microbiome that is not well described in its standard database (like 

the rumen), indicating that Mothur (using a specific archaea database described by Li et al., 

2016a) could be more suited for identifying archaeal taxonomic profiles.  

3.5 Conclusion 

The current study was the first to compare the molecular-phylogenetic outcomes of Mothur 

and Kraken using transcriptomic sequence data (~140 bp in length) of rumen samples. The 

Kraken pipeline has been adapted to include reference genomes for rumen specific 

organisms, which has led to the identification of rumen bacteria at species level and more 

bacterial phylotypes.  However, the results of the archaeal classification as well as some of 

the bacterial species identified by Kraken should be carefully interpreted as many detected 

phylotypes have not yet been described in the rumen, highlighting the importance of 

strengthening the Kraken database through the inclusion of more genomes annotated by 

single cell sequencing of rumen cultures/isolates to enable a more accurate classification. As 

to the future directions, new sequenced genomes (410 draft bacterial and archaeal genomes) 

by Hungate1000 project (JGI database) will be included in the Kraken standard database and 

the recently developed Rumen and Intestinal Methanogen Database will be used for archaea 

classification (Seedorf et al., 2014), with the goal of improving the accuracy of the results. It 

is also proposed the configuration of a joint pipeline using both Kraken and Mothur 

simultaneously to improve the resolution of taxonomic profiling of the rumen microbiome. This 

joint pipeline will produce a final rumen microbial profile obtained from the combination of 

multiple results generated from different bioinformatics tools as outlined by Piro et al. (2017), 

who published a computational method called MetaMeta that executes and integrates results 

from six metagenomic analysis tools (CLARK - Ounit et al., 2015; DUDes - Piro et al., 2016; 

GOTTCHA - Freitas et al., 2015; KRAKEN - Wood and Salzberg, 2014; KAIJU - Menzel et 

al., 2016; and mOTUs - Sunagawa et al., 2013). If the rumen microbiome datasets are 

strengthened to the same level as the human databases, the joint pipeline will generate more 

https://www.frontiersin.org/articles/10.3389/fmicb.2017.02445/full#supplementary-material
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sensitive and reliable results than those of the best single profile (generated separately by 

each tool) (Piro et al. 2017). It is believed that a joint pipeline supported by a collection of 

tools will be useful to control sources of variation present in any 

metagenomics/metatranscriptomic analysis (e.g., analytical pipelines, related databases and 

software parameters), which will ultimately lead to standardized results and more reliable 

biological interpretations. In addition, although Kraken has improved the taxonomic 

assessment at species level, the high number of unclassified sequences (65%) suggests a 

need for identifying the rumen microbes with a more resolved taxonomy assignment. 

Regardless of the approach undertaken, the only way for improvement is through a continued 

strengthening of the databases by including additional information of whole genome 

sequencing of rumen isolates as well as single cell sequencing of unculturable rumen 

microbes, as the ability to culture rumen microorganisms is still limited.  
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3.7 Tables and figures 

Table 3.1 Quantification of taxonomic phylotypes identified by each method 

 

Phylotypes 

                     Mothur1 

 

Classified (N°) Unclassified (N°) 

      Kraken2 

 

Classified (N°) 

Commonly 

Detected 

Phylotypes 

(N°) 

Bacteria     

Phyla 23 1 26 16 

Families 121 66 204 78 

Genera 189 135 348 69 

Species - - 423 0 

Archaea     

Phyla 1 1 2 1 

Families 3 3 7 2 

Genera 4 5 8 1 

Species 5 6 8 1 

1Pipeline to assess the rumen microbiota developed by Li et al. (2016) based on Mothur 

(Schloss et al., 2009). Clustering-first approaches (such as Mothur) allow the discrimination 

of unclassified reads (Siegwald et al., 2017). 

2Metagenomic sequence classification method developed by Wood and Salzberg (2014). 

Unlike clustering-first approaches, assignment-first tools (such as Kraken) do not allow the 

discrimination of unclassified reads (Siegwald et al., 2017).  
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Table 3.2 Differentially abundant bacteria in efficient (low FCR) and inefficient (high FCR) 

cattle according to the two classification methods1,2,3 

Phylotypes Mothur 

      High (%)                Low (%) 

Kraken 

     High (%)               Low (%) 

Phyla     

Bacteroidetes 35.0 ± 8.52 43.2 ± 6.98 37.7 ± 9.75 46.1 ± 11.35 

Firmicutes 24.8 ± 9.53 19.2 ± 6.71 28.1 ± 7.01 22.6 ± 6.98 

Proteobacteria 20.0 ± 4.88 14.6 ± 3.12 15.7 ± 2.59 12.8 ± 2.63 

Fibrobacteres 2.50 ± 0.80 4.4 ± 1.28 1.1 ± 0.42 1.3 ± 0.31 

Spirochaetes 2.0 ± 0.50 2.5 ± 0.33 4.6 ± 0.60 5.1 ± 1.02 

Verrucomicrobia 1.4 ± 0.19 2.1 ± 0.82 2.1 ± 0.42 2.4 ± 0.62 

     

Families     

Prevotellaceae 18.4 ± 6.73 23.7 ± 6.17 26.9 ± 

10.48 

35.3 ± 13.63 

Ruminococcacea 10.2 ± 4.38 7.73 ± 3.89 8.4 ± 3.01 5.7 ± 3.33 

Lachnopiraceae 7.1 ± 3.62 5.5 ± 2.23 7.1 ± 1.65 6.1 ± 1.95 

Fibrobacteriacea 2.6 ± 0.83 4.6 ± 1.34 1.8 ± 0.37 1.67 ±0.51 

Spirochaetaceae 1.8 ± 0.56 2.3 ± 0.34 4.8 ±0.73 5.3 ±1.21 

R4 – 41B 0.02 ± 0.037a 0.13 ± 0.118b - - 

Actinomycetaceae - - 0.1± 0.03 b 0.2 ±0.04 a 

Genera     

Prevotella 20.0 ± 8.28 25.2 ± 7.10 28.8 ± 

10.75 

37.5 ± 14.15 

Ruminococcus 5.9 ± 2.88 4.4 ± 2.56 3.9 ± 1.70 2.7 ± 1.83 

Fibrobacter 3.2 ± 1.12 5.5 ± 1.56 1.4 ± 0.56 1.6 ± 0.34 

Butyrivibrio 1.0 ± 0.19 1.3 ± 0.68 2.2 ± 0.29 2.5 ± 1.31 

Xenorhabdus - - 0.29 ± 

0.246a 

0.04 ± 0.036b 



 

 

107 

 

1Statistical comparisons were obtained by the application of ANCOM (Mandal et al., 2015) on 

taxa counts determined by Mothur (OUTs) or Kraken (K-mers), and thus estimators are 

comparable only between High (n=6) and Low (n=6) FCR cattle as provided by each 

classification method. 

2P values were obtained using Wilcoxon exact test (calculated on the log-ratio matrix; Mandal 

et al., 2015), and then adjusted to FDR using Benjamini-Hochberg algorithm (Benjamini and 

Hochberg, 1995). A threshold of FDR < 0.15 was applied to determine significance. Within a 

row, means with different superscript are statistically different between High and Low FCR 

cattle for each method (separately). 

3Blank spaces indicate that the phylotypes were not detected in the dataset either by Mothur 

or Kraken. 

 

 

 

 

 

 

 

 

 

 

Species     

Prevotella 

ruminicola 

- - 23.0 ± 9.99 31.6 ± 13.15 

Butyrivibrio 

proteoclasticus 

- - 2.6 ± 0.33 2.9 ± 1.44 

Ruminiclostridium 

sp KB18 

- - 2.8 ± 0.98 1.6 ± 1.14 

Fibrobacter 

succinogens 

- - 1.6 ± 0.66 1.8 ± 0.37 

Ruminococcus 

albus 

- - 1.7 ± 0.89 1.0 ± 0.77 
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Table 3.3 Differentially abundant archaea in efficient (low FCR) and inefficient (high FCR) 

cattle according to the two classification methods1,2,3 

Phylotypes                     Mothur 

   High (%)        Low (%) 

                     Kraken 

   High (%)                Low (%) 

Families     

RCC and relatives 73.2 ± 

3.77 

71.9 ± 

13.12 

- - 

Methanomassiliicoccaceae - - 65.5 ± 9.92 67.1 ± 11.29 

Methanococcaceae - - 13.6 ± 8.96a 4.1 ± 4.85b 

Methanobacteriaceae 23.9 ± 

4.19 

24.8 ± 

13.75 

6.0 ± 6.42 7.0 ± 7.52 

Methanosarcinaceae 0.3 ± 0.35 0.6 ± 0.72 5.6 ± 8.51 10.7 ± 5.32 

Genera     

Candidatus 

Methanoplasma 

- - 49.0 ± 13.61 55.4 ± 9.51 

Candidatus 

Methanomethylophilus 

- - 19.0 ± 7.92 12.8 ± 6.78 

Methanosarcina - - 5.1 ± 9.20 11.0 ± 5.81 

Methanobrevibacter 21.8 ± 

3.85 

21.8 ± 

10.53 

4.7 ± 5.01 5.3 ± 5.35 

Methanosphaera 0.8 ± 0.47 1.2 ± 1.57 - - 

Methanimicrococcus 0.3 ± 0.33 0.6 ± 0.70 - - 

Species     

Candidatus 

Methanoplasma termitum 

- - 51.0 ± 14.27 62.8 ± 11.23 

Candidatus 

Methanomethylophilus 

alvus 

- - 19.7 ± 8.28 14.6 ± 8.09 

Methanobrevibacter 

gottschalkii and relatives 

14.8 ± 

3.60 

14.7 ± 6.11 - - 

Methanobrevibacter 

ruminantium 

3.8 ± 1.70 4.0 ± 4.19 2.4 ± 4.05 1.2 ± 3.14 
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1Statistical comparisons were obtained by the application of ANCOM (Mandal et al., 2015) on 

taxa counts determined by Mothur (OUTs) or Kraken (K-mer), and thus estimators are 

comparable only between High (n=6) and Low (n=6) FCR cattle as provided by each 

classification method. 

2P values were obtained using Wilcoxon exact test (calculated on the log-ratio matrix; Mandal 

et al., 2015), and then adjusted to FDR using Benjamini-Hochberg algorithm (Benjamini and 

Hochberg, 1995). A threshold of FDR < 0.15 was applied to determine significance. Within a 

row, means with different superscript are statistically different only between High and Low 

FCR cattle for each method (separately). 

3Blank spaces indicate that the phylotypes were not detected in the dataset either by Mothur 

or Kraken.

Methanobrevibacter wolinii 

and relatives 

0.1 ± 0.14 0.2 ± 0.32 - - 

Methanobrevibacter 

woesei 

0.1 ± 0.10 0.05 ± 0.06 - - 

Methanobrevibacter smithii 0.03 ± 

0.07 

0.10 ± 0.14 - - 



  

Table 3.4 Comparison of bacterial and archaeal alpha-diversity indexes between efficient (low FCR) and inefficient (high 

FCR) cattle according to the two microbial classification methods1 

  Bacteria     Archaea   

Indexes Mothur Kraken   Mothur  Kraken 

 High Low High Low  High Low High Low 

Number of 

observed 

phylotypes 

244.1 ± 

23.88 

239.3 ± 

19.98 

241.1 ± 

28.29 

224.5 ± 

28.37 

 8.8 ± 1.33 8.8 ± 

0.75 

5.0 ± 

0.89 

4.5 ± 

1.05 

Shannon2 2.78 ± 

0.12a 

2.73 ± 

0.14b 

3.93 ± 

0.42a 

3.51 ± 

0.62b 

 0.90 ± 0.08 0.91 ± 

0.28 

1.27 ± 

0.19a 

1.06 ± 

0.25b 

Inverse 

Simpson 

9.8 ± 

1.93a 

8.7±1.82b 12.7 ± 

5.75a 

8.8 ± 

5.60b 

 1.74 ± 0.13 1.85 ± 

0.61 

2.95 ± 

0.89a 

2.30 ± 

0.64b 

Simpson 

(with 

rarefy) 

0.89 ± 

0.03a 

0.88 ± 

0.03b 

0.90 ± 

0.07a 

0.83 ± 

0.11b 

 0.42 ± 0.05 0.42 ± 

0.15 

0.64 ± 

0.04a 

0.54 ± 

0.05b 

1Within a row, means with different superscript were different at P < 0.05. Comparison was conducted using paired Wilcoxon 

signed rank test for bacteria (genus level) and archaea (species level) separately for High and Low FCR cattle as provided by 

each classification method, and thus estimators between bacterial and archaeal groups are comparable only within each 

method and between High and Low FCR animals. 

2Shannon indices showed in the table are the raw values, and the comparison of Shannon indices between High and Low 

FCR cattle was based on the exponentially transformed values (Jost, 2007) using paired Wilcoxon signed rank test. 
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 1 

 2 

Figure 3.1 Flow chart of the pipelines (Mothur and Kraken) presenting software 3 

parameters used to analyze the rumen microbiota. Part of this figure was adapted from 4 

the pipeline published by Li et al. (2016a). 5 

 6 

 7 
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 1 

 2 

 3 

Figure 3.2 Correlation circle plots and relevance networks generated from the output of 4 

regularized canonical correlation (rCC) method (Total Sum Scaling + Centered Log Ratio) 5 

applied to rumen bacteria (genera) and archaea (species) classified by Mothur or Kraken. 6 

(a) and (b) show the correlation and network plots of the first two rCC components for 7 

Mothur. (c) and (d) represent the correlation and network plots of the first two rCC 8 

components for Kraken. In the correlation circle plots, bacteria (X) and archaea (Y) are 9 

shown inside a circle of radius 1 centered at the origin, with strongly associated (or 10 

correlated) variables being projected in the same direction from the origin. The greater 11 

the distance from the origin indicates stronger association. Two circumferences of radius 12 

1 and 0.5 are plotted to reveal the correlation structure of the variables (Gonzalez et al., 13 

2008). In the relevance networks, red and green edges indicate positive and negative 14 
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correlations respectively, and the sizes of the nodes indicate the mean average 1 

abundance. Only bacterial genera and archaeal species with a relative abundance > 0.1% 2 

detected in all rumen samples were included in the rCC analysis (Li and Guan, 2017).  3 

 4 
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Chapter 4 1 

Taxonomic and functional assessment reveals the effect of Angus breed genetics 2 

on rumen microbial signatures 3 

 4 

4.1 Introduction  5 

The rumen is a complex anaerobic ecosystem inhabited by a symbiotic array of bacterial, 6 

archaeal, protozoal, and fungal species that work together to supply protein, vitamins and 7 

short-chain organic acids to the ruminant host (Russell and Rychlik 2001). Compared to 8 

other groups of microbes, bacteria represent the most genetically diverse and abundant 9 

organisms of the rumen microbiome (density of 1010-1011
 
cells/ml rumen fluid), making 10 

up more than 50% of the cell mass (Opdahl et al. 2018, Creevey et al. 2014). Many 11 

bacteria species (e.g., Prevotella ruminicola, Ruminococcus albus, and Fibrobacter 12 

succinogenes) have been isolated and cultured from the rumen microbial community 13 

(Russell and Rychlik 2001), and efforts have been made to reveal functional activities 14 

of rumen bacteria with the purpose of enhancing feed efficiency of the host (Fuyong Li 15 

and Le Luo Guan 2017). The most important functional activity performed by rumen 16 

bacteria involves the digestion and metabolism of plant structural carbohydrates to aid 17 

in the breakdown of lignocellulose, as the ruminant host does not produce enzymes 18 

involved in plant cell wall digestion (Wang and McAllister 2002). Additionally, rumen 19 

bacteria have been associated with rumen fermentation parameters (e.g., volatile fatty 20 

acids - VFAs, NH3-N, pH) and host performance (dry matter intake, average daily gain, 21 

and feed conversion ratio - FCR) (Zhou et al. 2018),  suggesting that the identification 22 

of host-specific bacteria can contribute to improve our knowledge of microbial signatures 23 

associated with feed efficiency, and this may offer opportunities to enhance the 24 

efficiency of digestion in the rumen. 25 

Long-standing efforts to increase the efficient use of feedstuffs to enhance 26 

ruminant growth have moved producers to adopt feed efficiency indicators like feed 27 

conversion ratio (FCR, feed/gain) to monitor phenotypic and genetic variations in host 28 

productivity (Crews 2005). More recently, a study showed that the host may regulate the 29 

rumen microbiota and its function in relation to FCR through microbial genes such 30 
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as TSTA3 (GDP-l-fucose synthetase) and Fucl (l-fucose isomerase), demonstrating that 1 

the relative abundance of these genes could serve as a predictor for host feed efficiency 2 

(Roehe et al. 2016). Roehe et al. (2016) also highlighted the effect of genetically distant 3 

crossbred breeds (Aberdeen Angus and Limousin) on the rumen microbiota and its 4 

microbial genes, suggesting that the host genetics plays a significant role in shaping the 5 

composition of the rumen microbiota. Studies have revealed that twins exhibited a 6 

different fecal microbial signature despite their genetic similarity (Lee et al. 2011) and 7 

variations in animal gain to feed ratios were observed in cattle fed and managed under 8 

the same environment although they had a similar genetic background (Wolfger et al. 9 

2016). Based on these assumptions, this chapter speculated that variations in the rumen 10 

microbiota associated with the genetic makeup of the host could exist in genetically 11 

similar breeds. 12 

Here, dimensionality reduction techniques (Cao et al. 2016) and 13 

metatranscriptomics were used to identify the subtle differences in the active rumen 14 

bacterial and functional signatures that characterize the closely related breeds of Black 15 

and Red Angus cattle. The genomic differences between these two beef breeds are 16 

minimal and attributable to genes (e.g., MC1-R – melanocortin 1 receptor) encoding 17 

proteins involved in biological functions of pigmentation (coat color) (Wolfger et al. 2016, 18 

McLean and Schmutz 2009). However, Black and Red Angus in terms of genetic 19 

diversity and population structure are described as separate breeds in North America 20 

(Márquez et al. 2010). Thus, comparisons between them with respect to the taxonomic 21 

and functional profiles of their bacterial population can ultimately help uncover microbial 22 

signatures that differentiate phenotypes of the Angus breed. Therefore, the objectives 23 

of this study were to (a) characterize active bacterial and microbial functional signatures 24 

discriminating two breeds of beef cattle (Black vs. Red Angus) fed forage-based diets, 25 

and (b) identify specific bacterial groups and functions associated with feed efficiency. 26 

 27 

4.2 Materials and methods  28 

4.2.1 Animal trial and sampling 29 



 

 116 

The experimental procedures described here were reviewed and approved by the 1 

University of Manitoba animal care committee. Briefly, rumen contents were collected 2 

from 6 (Black Angus= 3; Red Angus= 3) purebred bulls (mean age of 249 ± 22 days and 3 

average body weight of 313.9 ± 32 kg) raised in confinement at the Glenlea Research 4 

Station (University of Manitoba) according to the guidelines of the Canadian Council on 5 

Animal Care. In the current trial, which lasted 180 days, bulls were fed a forage based 6 

diet (alfalfa hay, 17.9%; corn silage, 81.7%; limestone, 0.2%; salt, 0.1%; mineral, 0.1%) 7 

throughout the experimental period. Then, representative samples (250 ml) of rumen 8 

contents were collected over four-time points (0, 80, 100, 180 d) (24 samples in total) 9 

using a Geishauser oral probe (Geishauser 1993), immediately snap frozen in liquid 10 

nitrogen, and stored at -80°C for three months before RNA extraction. The feed intake of 11 

individual bulls was recorded using the GrowSafe® feeding system (GrowSafe Systems 12 

Ltd., Airdrie, Alberta, CA), and the FCR was calculated biweekly as a ratio of dry matter 13 

intake to average daily gain. 14 

4.2.2 VFA analysis  15 

Supernatants from rumen fluid samples were obtained after centrifugation at 3,000 × g   16 

for 15 min at 4˚C and mixed with 25% phosphoric acid (4:1; v/v) for the subsequent gas 17 

chromatography (GC) analysis.  After adding the internal standard to the samples and 18 

incubating them at -20˚C overnight, they were centrifuged at 19,000 × g for 5 min at 4˚C 19 

and the supernatant was transferred to the GC vials (1.8 mL). Next, 0.8 mL of the sample 20 

was combined with 0.2 mL of 25% phosphoric acid and 0.2 mL of internal standard 21 

solution. Standards (for acetic, propionic, isobutyric, butyric, isovaleric, valeric, and 22 

caproic acids) were prepared by combining 1 mL of standard solution and 0.2 mL of 23 

internal standard solution. The GC analysis was performed using the column Stabilwax- 24 

DA 30 meter (Restek Corp), the head pressure of 7.5 psi, split vent flow of 20 mL/minute, 25 

and injector temperature of 170ºC. 26 

4.2.3 RNA extraction and sequencing  27 

Total RNA was extracted from rumen samples using the TRIzol protocol based on the 28 

acid guanidinium-phenol-chloroform method with modifications reported previously 29 
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(Fuyong Li and Le Luo Guan 2017). Approximately 200 mg of rumen sample was 1 

subjected to RNA extraction with the addition of 1.5 ml of TRIzol reagent (pH: 4.6; 2 

Invitrogen, Carlsbad, CA, USA), followed by 0.4 ml of chloroform (pH: 7.0), 0.3 ml of 3 

isopropanol (pH: 7.0), and 0.3 ml of high salt solution (pH: 8.0) (1.2 M sodium acetate, 4 

0.8 M NaCl) for the extraction protocol. The yield and integrity of the RNA samples were 5 

determined using a Qubit 2.0 fluorimeter (Invitrogen, Carlsbad, CA, USA) and Agilent 6 

2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA samples were 7 

subjected to downstream RNA-sequencing only if they exhibited RNA with integrity 8 

number (RIN) higher than 7.0. Total RNA (100 ng) of each sample was used for library 9 

construction using the TruSeq RNA sample prep v2 LS kit (Illumina, San Diego, CA, USA) 10 

without the mRNA enrichment step. The quality of libraries was assessed using Agilent 11 

2200 TapeStation (Agilent Technologies) and Qubit 2.0 fluorimeter (Invitrogen). Finally, 12 

cDNA fragments (∼140 bp) were paired-end (2 X 100 bp) sequenced using an Illumina 13 

HiSeq 2000 system at the McGill University and Génome Québec Innovation Centre 14 

(Montréal, QC, Canada). 15 

4.2.4 Bioinformatics analysis 16 

Taxonomic annotation of metatranscriptomes was obtained through the software Kraken 17 

(Wood and Salzberg 2014) as implemented in a pipeline developed by Neves et al. (2017). 18 

Metatranscriptome functional annotations were identified using ShotMAP as described by 19 

Nayfach et al. (2015). In summary, all fastq-formatted sequences were firstly analyzed 20 

through FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) for quality 21 

control, and then the software Trimmomatic (version 0.32) (Bolger et al. 2014) was used 22 

to trim residual artificial sequences, cut bases with quality scores below 20, and remove 23 

reads shorter than 50 bp. After the pre-processing steps described previously, 24 

SortMeRNA (version 1.9) (Kopylova et al. 2012)  was used to sort the filtered reads into 25 

fragments of mRNA for microbial classification. Prior to performing the microbial 26 

classification, a Kraken standard database was built based on all complete genomes of 27 

bacteria downloaded from NCBI (RefSeq) plus complete genomes from organisms 28 

isolated from the rumen or from ruminant feces or saliva deposited in the Hungate1000 29 

project (JGI's IMG database) ) (Neves et al. 2017). Then, each pair of mRNA sequences 30 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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was assembled by MEGAHIT (Li et al. 2015), with the resulting contigs being assigned 1 

by Kraken (through k-mer discrimination) to the lowest common ancestor in the 2 

customized standard database for bacterial classification. Full taxonomic names 3 

associated with each classified sequence (kraken option --preload) and standard ranks 4 

(from domain to species) for each taxon were provided by the options kraken-translate 5 

and kraken-mpa-report (Neves et al. 2017). 6 

Finally, the functions (microbial gene families) were obtained by mapping the 7 

assembled reads to the KEGG (Kanehisa et al. 2004) Orthology database using ShotMAP 8 

(Nayfach et al., 2015), which is an algorithm based on the aligner RAPSearch2. Bit-score 9 

cutoffs (option --class-score 200) for matching contigs to the protein families were 10 

selected based on the average read length of each sample as described by Nayfach et 11 

al. (2015). The KEGG Orthology (KO) database was chosen because it annotates a large 12 

number of bacteria, including many species observed in the rumen microbiome, and 13 

covers a wide range of gene families, including metabolic enzymes, and signaling 14 

proteins. Average genome size (ags) was not estimated in this study (option --ags-method 15 

none) because we used mRNA data to annotate the microbial genes (Nayfach et al., 16 

2015). 17 

4.2.5 Statistical analysis 18 

To avoid sparsely observed counts, which tend to introduce noise in the analysis, we 19 

considered bacterial profiles and microbial functions with a relative abundance > 0.05% 20 

prevalent in at least 50% of the samples (12 out 24). Next, the filtered datasets were 21 

normalized by total sum scaling (TSS) (dividing each taxon/function count by the total 22 

number of counts in each individual sample to account for uneven sequencing depths 23 

across samples) and then transformed by centered log ratio (CLR) to project the data 24 

from a simplex to a Euclidean space (Aitchison 1982) as described in the mixMC 25 

multivariate statistical framework (Cao et al. 2016) (R package mixOmics) (Rohart et al., 26 

2017). Then, sparse partial least square discriminant analysis (sPLS-DA) (Cao et al. 2016) 27 

was applied to identify microbial signatures in Black Angus and Red Angus cattle while 28 

handling the sparsity of microbiome datasets and the sampling repeatedly performed on 29 

the same subjects (0, 80, 100, and 180 days). sPLS-DA includes a multilevel 30 
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decomposition approach that enables the detection of subtle differences in the signatures 1 

when high inter-subject variability is present due to sampling performed repeatedly on the 2 

same subjects, and the samples collected from four-time points in each breed were 3 

combined for sPLS-DA analysis. The ANCOM procedure (Mandal et al., 2015), which 4 

also uses log-ratio transformations (Aitchison 1982), was performed to test whether the 5 

features of the filtered datasets were associated with FCR. The zero counts were 6 

replaced by ANCOM for an arbitrary pseudo count value of 0.001 and the normalized log- 7 

ratio of the abundance of each taxon/function was compared to the abundance of all 8 

remaining taxa/functions one at a time. Thereafter, ANOVA was calculated on the log- 9 

ratio matrix to find differentially abundant bacterial species and microbial functions 10 

between Black and Red Angus, adjusted for FCR and the time points. In ANCOM, the p- 11 

values were corrected for false discovery rate (FDR) using the Benjamini-Hochberg 12 

algorithm, and a threshold of FDR lower than 0.05 was applied to determine statistical 13 

significance. Finally, regularized canonical correlation (rCC) analysis (Gonzalez et al. 14 

2008) was used to investigate the relationship between the VFA and bacterial species. 15 

Before running rCC analysis, the microbial data were normalized by TSS and then 16 

transformed by CLR, as described previously. The estimation of regularization 17 

parameters (λ1 and λ2) and canonical correlations were calculated using cross-validation 18 

procedures (Gonzalez et al. 2008). All statistical procedures and figures were done in R 19 

3.4.2 (R Core Team, 2017) and Python 3.6.0. 20 

4.2.6 Data repository resources  21 

The datasets analyzed in this study were submitted to NCBI Sequence Read Archive 22 

(SRA) under the accession number PRJNA496209. 23 

4.3 Results  24 

4.3.1 Overview of the classification of active bacterial taxa  25 

Assembly of mRNA reads resulting from total RNA sequencing of rumen samples 26 

generated a total of 7,330 contigs (with an average extension of 473.31 ± 30.34 bp and 27 

N50 of 434 ± 31.04 bp), which were further classified using a taxonomic assignment 28 

approach developed by our group. Approximately 53% of the mRNA reads were mapped 29 

to the contigs, indicating that they represented a significant proportion of the examined 30 
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rumen metatranscriptome. From the total number of phyla (n = 19) identified in the rumen 1 

of both breeds, Bacteroidetes (46.3%), Firmicutes (22.7%), Proteobacteria (14%), 2 

Spirochaetes (5%), Verrucomicrobia (2.3%), Tenericutes (2.2%), Actinobacteria (2%), 3 

and Fibrobacteres (1.4%) were the most abundant taxa, accounting for approximately 96% 4 

of the bacterial population in the rumen of all bulls (Figure 4.1A). A total of 109 families 5 

were detected and the most abundant phylotypes were assigned to Prevotellaceae 6 

(36.2%), Lachnospiraceae (6.0%), Ruminococcaceae (5.7%), Spirochaetaceae (5.3%), 7 

Bacteroidaceae (3.0%), Porphyromonadaceae (2.6%), Enterobacteriaceae (2.1%), 8 

Clostridiaceae (2.0%), and Fibrobacteraceae (1.7%) (Figure 4.1A). Our analysis also 9 

revealed a total of 114 genera, with Prevotella (41.5%), Treponema (4.6%), Bacteroides 10 

(3.5%), Ruminoccocus (3.5%), Ruminiclostridium (2.7%), Butyrivibrio (2.4%), Clostridium 11 

(2.2%), and Fibrobacteres (2.0%) being the most abundant in the rumen of all bulls 12 

(Figure 4.1A). Moreover, 114 bacterial species were classified in all samples, including 13 

Prevotella ruminicola (35.8%), Butyrivibrio proteoclasticus (3.3%), Treponema 14 

succinifaciens (2.9%), Fibrobacter succinogenes (1.8%), Ruminiclostridium sp KB18 15 

(2.0%) and Ruminococcus albus (1.1%) (Figure 4.1A).  A complete list of all bacterial 16 

phylotypes is provided in Supplementary Table S1. 17 

4.3.2 Overview of the active microbial functions 18 

To investigate the functional potential of the rumen microbiota, ShotMAP was used to 19 

survey which microbial functions (microbial gene families) were encoded in the 20 

microbiome by mapping the mRNA reads to the KEGG Orthology (KO) database. It was 21 

identified 109 active microbial functions in the rumen microbiome of the bulls and most of 22 

them were associated with ribosome, Calvin cycle, reductive citrate cycle, 23 

gluconeogenesis, glycolysis, and citrate cycle modules (Figure 4.1B). Among the various 24 

functions encoded by the bacteriome, pyruvate - orthophosphate dikinase (K01006, 25 

6.8%), pyruvate-ferredoxin/flavodoxin oxidoreductase (K03737, 3.3%), DNA-directed 26 

RNA polymerase subunit beta (KO3046, 3.2%), glyceraldehyde 3-phosphate 27 

dehydrogenase (K00134, 2.7%), small subunit ribosomal protein S1 (K02945, 1.7%), 28 

phosphoenolpyruvate carboxykinase (ATP) (K01610, 1.4%), succinate dehydrogenase / 29 

fumarate reductase, flavoprotein subunit (K00239, 1.4%), and large subunit ribosomal 30 

https://www.dropbox.com/s/ywxl27mfdyz4y0l/SupplementaryTable%20S1_Bacteria.xlsx?dl=0
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protein L1 (K02863, 1.2%) were the most abundant pathways within their respective 1 

modules (Figure 4.1B). A complete list of all microbial functions identified in this study is 2 

provided in Supplementary Table S2. 3 

4.3.3 Identification of active microbial and functional signatures across breeds 4 

To gain insight into the bacterial and functional signatures characterizing the rumen 5 

microbiome in Black and Red Angus, sPLS-DA was used to identify bacteria species and 6 

functions characterizing each breed. Based on the best classification error rate 7 

determined through cross-validation approaches two components were selected for the 8 

bacterial signature and only one component for the functional signature (Figures S1 and 9 

S2). Additionally, comparisons between CLR transformations of counts data with relative 10 

abundance data were performed. The results showed the relative abundance data 11 

generated only one component as the classification error rate increased after the addition 12 

of a second component (Figures S3 and S4). It was evident that some rumen bacterial 13 

species of the Black Angus signature overlapped in component 1 in both datasets (CLR 14 

vs. Relative Abundance) (Figure 4.2B and Figure S4). However, the CLR transformed 15 

data allowed the addition of a second component, improving the outcomes considerably 16 

by providing further information for the bacterial signature of Red Angus cattle (Figure 17 

4.2B). 18 

 Following the CLR transformation procedures, a clear separation in bacteria 19 

species and functions differentiating the rumen microbiome of Black Angus from Red 20 

Angus cattle was identified (Figures 4.2A and 4.3A). Overall, 80% of the bacterial 21 

signature selected in component 1 of the sPLS-DA characterized the rumen microbiome 22 

of Black Angus (Figures 4.2B and 4.2C), and this bacterial signature included members 23 

of the families Chitinophagaceae (Chitinophaga pinensis), Clostridiaceae (Clostridium 24 

stercorarium, Clostridium cellulosi, and Clostridium clariflavum), Ruminococcaceae 25 

(Ruminoccocus albus and Ruminococcus bicirculans), Bacteroidaceae (Bacteroides 26 

salanitronis), Porphyromonadaceae (Parabacteroides distasonis), and 27 

Paludibacteraceae (Paludibacter propionicigenes). On the other hand, the component 2 28 

of the sPLS-DA revealed that 60% of the bacterial signature was associated with Red 29 

Angus, and this bacterial signature was comprised of the following species: Oscillibacter 30 

https://www.dropbox.com/s/elh4xxy0b6mjvr8/SupplementaryTable%20S2_GeneFamilies.xlsx?dl=0
https://www.dropbox.com/s/doo75fwwhvox4pz/Supplementary%20File%20%E2%80%93%20for%20Online%20Publication%20Only_Clean.docx?dl=0
https://www.dropbox.com/s/doo75fwwhvox4pz/Supplementary%20File%20%E2%80%93%20for%20Online%20Publication%20Only_Clean.docx?dl=0
https://www.dropbox.com/s/doo75fwwhvox4pz/Supplementary%20File%20%E2%80%93%20for%20Online%20Publication%20Only_Clean.docx?dl=0
https://www.dropbox.com/s/doo75fwwhvox4pz/Supplementary%20File%20%E2%80%93%20for%20Online%20Publication%20Only_Clean.docx?dl=0
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valericigenes (Oscillospiraceae), Flavonifractor plautii (Clostridiales), Acidaminococcus 1 

fermentans (Acidaminococcaceae), Paenibacillus graminis (Paenibacillaceae), and 2 

Prevotella ruminicola (Prevotellaceae) (Figures 4.2B and 4.2C).  3 

 For the microbial functional signature, the rumen microbiome of Black Angus 4 

displayed a diverse set of pathways including genetic information processing (e.g., 5 

K02878, K02992), environmental information processing/membrane transport (e.g., 6 

K10108), elongation factors for protein biosynthesis (e.g., K02355) and amino acid 7 

metabolism (e.g., K01740) (Figure 4.3B and 4.3C). However, the rumen microbiome of 8 

Red bulls was mostly enriched with pathways related to carbohydrate metabolism (e.g., 9 

K00895, K01785) (Figure 4.3B and 4.3C). A complete list of bacterial species and 10 

functions characterizing the rumen microbiome of Black and Red Angus (per component 11 

of the sPLS-DA) is presented in Supplementary Table S3. 12 

4.3.4 Relationship between active bacteria and volatile fatty acids 13 

rCC analysis was implemented to investigate interactions between bacterial taxa and 14 

VFAs (Figure 4.4A), as well as to identify interactions among different bacterial species 15 

(Figure 4.4B). Associations between bacteria and VFAs revealed a positive correlation 16 

between R. albus and total VFA, acetic and propionic acids (Figure 4.4A). Additionally, a 17 

positive correlation was observed between P. ruminicola and S. ruminantium and 18 

propionic, butyric and valeric acids, as well as between O. valericigenes and propionic, 19 

butyric, and valeric acids (Figure 4.4A). On the other hand, negative correlations were 20 

detected between C. pinensis and A. fermentans and total VFA, acetic, propionic, butyric 21 

and valeric acids, as well as between C. stercorarium and propionic, butyric and valeric 22 

acids (Figure 4.4A). Within the bacterial communities, P. ruminicola, S. ruminantium and 23 

R. albus were negatively correlated with A. fermentans (Figures 4.4B), while C. 24 

stercorarium and C. pinensis were positively correlated with each other and with R. 25 

bicirculans, Ruminiclostridium sp KB18 and C. cellulosi (Figure 4.4B). 26 

4.3.5 Relationship between active bacteria and feed efficiency 27 

To evaluate the linkage among bacteria, functions and feed efficiency (measured as 28 

FCR), ANCOM was used to identify taxa and functions differentially (P < 0.05) abundant 29 

https://www.dropbox.com/s/u689p0652en2xy8/SupplementaryTable%20S3_sPLS_DA.xlsx?dl=0
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between breeds, adjusted for FCR and the time points. Of the 114 bacteria species 1 

classified in all samples, it was found that only two species were associated (P < 0.05) 2 

with FCR according to the breeds (Figure 4.5). Chitinophaga pinensis showed a relative 3 

abundance 2.5 times higher (P < 0.05) in the rumen of Black Angus compared to Red 4 

Angus associated with FCR and the four-time points (Figure 4.5A). Clostridium 5 

stercorarium also exhibited a higher (P < 0.05) relative abundance in the rumen of Black 6 

Angus compared to Red Angus associated with FCR, but only on the days 0 and 180 of 7 

the experimental period (Figures 4.5B). No link between the functional signatures 8 

detected by ShotMAP and FCR was found in the rumen of Black and Red Angus cattle. 9 

 10 

4.4 Discussion  11 

Until now only a few studies have addressed the question of the breed effect on the rumen 12 

microbiome in beef cattle (Roehe et al. 2016, Guan et al. 2008, Z. P. Li et al. 2016). First, 13 

PCR-denaturating gradient gel electrophoresis revealed that the rumen microbiome of 14 

beef steers exhibiting different feed efficiencies (measured as residual feed intake) 15 

clustered according to their breeds (Angus, Charolais, and Hereford-Angus), suggesting 16 

that host breed may play a role in shaping the structure of the rumen microbiota (Guan et 17 

al. 2008). Second, a metagenomic analysis of the rumen microbiome in Limousin- and 18 

Aberdeen Angus-sired cattle showed that the abundance of microbial genes involved in 19 

methanogenesis and feed efficiency (measured as FCR) could be used to predict host 20 

metabolism, performance, and behavior (Roehe et al. 2016). Third, a metagenomic 21 

analysis of the rumen microbiome in crosses between sika deer and elk reported that the 22 

rumen microbiota in the hybrids differed from their parents, suggesting a significant effect 23 

of host genetics on the rumen microbiome likely caused by vertical transmission of the 24 

maternal microbiota (Z. P. Li et al. 2016). Although those three investigations suggested 25 

a connection of the host genetics with the rumen microbiome, those studies used DNA- 26 

based methods, which do not give a clear assessment of gene expression within the 27 

rumen microbiota (Franzosa et al. 2014). More recently, Li et al. (2019a) compared rumen 28 

metagenomic and metatranscriptomic datasets of three breeds of beef cattle (Angus, 29 

Charolais, and Kinsella composite hybrid) and revealed that the rumen 30 

metatranscriptome represents the functional activities of microbes and is more useful than 31 
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metagenomics to show the associations between rumen microbes and host phenotypical 1 

traits. 2 

However, previous studies using rumen-based metagenomics or 3 

metatranscriptomics (Roehe et al. 2016, Guan et al. 2008, Z. P. Li et al. 2016) have 4 

ignored that sequencing data hold a compositional structure because of necessary 5 

relative proportion transformation (Cao et al. 2016, Mandal et al. 2015, Gloor et al. 2016, 6 

Aitchison 1982). Thus, the traditional statistical methods (including Pearson correlations, 7 

PCA, PCoA, GLM, partial least square analysis, ANOVA, linear regression) cannot be 8 

applied directly in the analysis of relative abundance data because the independence 9 

assumption between predictor variables is not met, which may result in spurious results 10 

(Cao et al. 2016, Aitchison 1982, Lovell et al. 2015, Ban et al. 2015, Kurtz et al. 2014). A 11 

recent study (Weiss et al. 2017) evaluating seven statistical methods for differential 12 

abundance testing suggested that a novel methodology (ANCOM) based on log-ratio 13 

transformations of count data, as defined by Aitchison (1982), was the most effective 14 

approach to control false discovery rates. Similarly, Lê Cao and colleagues developed 15 

sPLS-DA based on centered log ratio transformations of count data to identify microbial 16 

signatures from diverse microbiomes (Rohart et al. 2017). Here, the transformations of 17 

counts data implemented in these statistical methods provided more reliable outcomes 18 

for the bacterial signatures than the relative abundance data and enabled a further 19 

understanding of the relationships that exist between breed-specific bacterial signatures, 20 

host phenotype (Black vs. Red Angus) and feed efficiency at the RNA-level.  21 

Microbial signatures (or biomarkers) reflect correspondences between microbial 22 

taxa and functions and are widely used to predict host phenotypes in human disease 23 

states and forensic diagnostics (Knights et al. 2011, San-Juan-Vergara et al. 2018).  In 24 

general, it is unlikely that taxa that comprise the core rumen microbiome (including 25 

Prevotella, Treponema, Ruminoccocus, Fibrobacter, and Butyrivibrio) will constitute 26 

breed-specific bacterial signatures, since these taxa are prevalent in all ruminants 27 

(bovines, camelids, caprids, cervids) regardless of sex, age, and breed (Henderson et al. 28 

2015). Nonetheless, our results showed a breed effect on the core rumen microbiome for 29 

Prevotella ruminicola, since this bacterium exhibited unexpectedly a higher abundance in 30 
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the rumen of Red Angus compared to Black Angus fed the same diet. As both breeds 1 

were raised under the same nutritional regimen, it is probable that P. ruminicola was more 2 

active in Red Angus to occupy specific ecological niches within the rumen, like the 3 

degradation of hemicellulose and pectin (Russell and Rychlik 2001). Thus, we speculate 4 

that if P. ruminicola is part of the microbial signature predicting the Red Angus phenotype, 5 

then this biological signature may be used as a target for rumen manipulation purposes 6 

in that specific breed. However, further investigations on a larger set of animals should 7 

be conducted to differentiate the rumen microbiome of Red from Black Angus raised in 8 

the same or in different geographical/environmental conditions to assess the robustness 9 

of P. ruminicola as a differentiator of these two closely related breeds. 10 

 Moreover, we observed that Red Angus showed a microbial signature comprised 11 

of bacterial phylotypes (e.g., Oscillibacter valericigenes and Flavonifractor plautii) that 12 

were not yet described in the rumen microbiota from previous studies. In the gut of pigs, 13 

O. valericigenes presented a positive correlation with valerate and butyrate production 14 

(Pajarillo et al. 2015), which are short-chain fatty acids associated with improved feed 15 

efficiency in beef cattle (Guan et al. 2008). In this study, O. valericigenes also showed a 16 

positive correlation with valeric and butyric acids, suggesting that these microbes played 17 

a role in the ruminal kinetics of Red Angus cattle, especially in the metabolism of valerate 18 

and butyrate. Another microbe we detected in the bacterial signature of Red Angus was 19 

Acidaminococcus fermentans. At the metagenomic level, a recent study recovered and 20 

assembled the genome of A. fermentans from rumen samples collected from Aberdeen 21 

Angus, Limousin, Charolais, and Luing (Stewart et al. 2018), confirming that this 22 

bacterium is a ubiquitous inhabitant of the rumen microbiota in beef cattle. Possible 23 

activities that A. fermentans perform in the rumen include the utilization of citrate as an 24 

energy source to produce hydrogen and hydrogen sulfide and the decrease in the 25 

accumulation of tricarballylate (a toxic end-product of ruminal fermentation) by oxidizing 26 

trans-aconitate (Cook et al. 1994, Wallace et al. 2015, Stewart et al. 2018), 27 

demonstrating that A. fermentans plays important roles in the Red Angus bacterial 28 

signature.  29 
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In contrast, the Black Angus bacterial signature exhibited a larger number of 1 

bacteria species responsible for the degradation of lignocellulosic biomass. One 2 

example is Chitinophaga pinensis, which has been reported to encode a diverse array 3 

of glycoside hydrolases (e.g., the GH27 enzyme CpArap27) capable of utilizing plant 4 

biomass-derived carbohydrates (Larsbrink et al. 2017a, Larsbrink et al. 2017b). Other 5 

instances of lignocellulose-degrading microbes we found in Black Angus bacterial 6 

signature included Ruminoccocus albus and Clostridium stercorarium, which are fibrolytic 7 

species actively involved in the digestion of cellulose/xylan (Christopherson et al. 2014) 8 

and hemicellulose (Schellenberg et al. 2014), respectively. In addition to showing a higher 9 

abundance in the rumen of Black Angus compared to Red Angus, C. pinensis and C. 10 

stercorarium were the only species directly connected with feed efficiency measurements 11 

(FCR) taken across the feeding period, confirming the beneficial effects of these two 12 

species on the deconstruction of plant cell wall fibers in forage-fed cattle (Christopherson 13 

et al. 2014, Larsbrink et al. 2017a). With its limited sample size, however, our study lacked 14 

the power necessary to find differences in feed efficiency (FCR) between Black and Red 15 

Angus (Figure S5). Although FCR measurements did not differ significantly between the 16 

two breeds, evidence for superior performance of Black Angus compared to Red Angus 17 

has been described previously (McLean and Schmutz 2009). However, other studies 18 

showed that Red Angus had a better gain to feed ratios than Black Angus, demonstrating 19 

that differences in feeding behavior exist between these two genetically similar breeds 20 

(Wolfger et al. 2016). Thus, it is necessary to further investigate whether C. pinensis and 21 

C. stercorarium would contribute to growth performance in Angus cattle exhibiting 22 

different feed efficiencies (e.g., high vs. low FCR) under various feeding regimens to 23 

validate our findings. Although three animals per breed may not confer the necessary 24 

power to detect differences in FCR with four-time points per animal in the current study, 25 

the variations in those two rumen bacteria associated with FCR are valid. However, more 26 

animals should be included in the future to support our findings (Figure S5). 27 

Understanding the functions of the rumen microbiome is crucial to the 28 

development of technologies and practices that support efficient global food production 29 

from ruminants (Seshadri et al. 2018). The identification of functional signatures in the 30 

current study provided evidence that the functions performed by the rumen microbiota 31 

https://www.dropbox.com/s/doo75fwwhvox4pz/Supplementary%20File%20%E2%80%93%20for%20Online%20Publication%20Only_Clean.docx?dl=0
https://www.dropbox.com/s/doo75fwwhvox4pz/Supplementary%20File%20%E2%80%93%20for%20Online%20Publication%20Only_Clean.docx?dl=0
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depend on breed. The rumen functional signature found in Red Angus was to a large 1 

extent related to carbohydrate metabolism, corroborating the findings reported in 2 

previous metagenomic studies that showed a high abundance of carbohydrate-related 3 

functions in cattle fed forage diets (Wang et al. 2013). In this context, it was not a 4 

surprise to detect active pathways involved mainly in the fermentation of glucose to 5 

acetate from Acetyl-CoA via the Embden-Meyerhof-Parnas (EMP) pathway (Russell 6 

and Rychlik 2001, Gottschalk 1986). However, it was found an enzyme in Red Angus 7 

called phosphofructokinase [EC:2.7.1.90, K00895] that can form acetate through an 8 

atypical (incomplete) EMP pathway. A recent study has provided evidence that atypical 9 

EMP pathways are encoded in the genome of four rumen bacterial species (including P. 10 

ruminicola) (Hackmann et al. 2017), which showed a higher abundance in the Red Angus 11 

rumen microbiome as discussed previously. According to Hackmann et al. (2017), those 12 

bacteria could convert glucose into pyruvate through the supply of phosphofructokinases 13 

[EC:2.7.1.90, K00895] rather than from Acetyl-CoA.  14 

Unlike Red Angus cattle, the functional signature in Black Angus exhibited an 15 

increase in microbial functions associated with protein synthesis during the assembly of 16 

the bacterial ribosome (e.g., ribosomal protein L16 [K02878] and ribosomal protein S7 17 

[K02992]). The mechanisms of action of proteins L16 have been described in Escherichia 18 

coli and Thermus thermophilus HB8 (Anikaev et al. 2016). These studies have shown 19 

that mutations in those proteins lead to a significant reduction in cell growth and a 20 

decrease in their translation apparatus.  Mutations in the protein L16, which participates 21 

in the formation of functional sites of the 50S ribosomal subunit (Anikaev et al. 2016), can 22 

activate the binding sites for antibiotics in the internal cavity of the bacterial ribosome. In 23 

a similar fashion, mutations in the binding sites of conserved regions (30S subunit) of the 24 

bacterial RNA in protein S7 can destabilize the correct three-dimensional structure of the 25 

assembled ribosome (Wimberly et al. 1997). Although our findings showed that the 26 

proteins L16/S7 were more relevant to Black Angus than to Red Angus, further studies 27 

exploring relationships between proteins L16/S7 and bacterial growth dynamics in other 28 

beef cattle breeds are needed to validate our results. Future directions may also include 29 

studying the interactions between proteins L16/S7 and RNA-biding sites with the goal of 30 



 

 128 

designing antibiotics with novel structures and modes of action to lower the increasing 1 

bacterial resistance to commonly used antimicrobials in the beef cattle industry. 2 

4.5 Conclusions 3 

This study described the active microbial and functional signatures of the rumen 4 

microbiome in two closely related breeds using total RNA-seq-based metatranscriptomics. 5 

Our results showed that Black and Red Angus exhibited differences in microbial 6 

signatures at the functional and compositional levels, indicating that the breed influences 7 

the structure of the rumen microbiome and its function. It is noticeable that the bacterial 8 

signature in Black Angus was characterized by an increase in fibrolytic species such as 9 

Chitinophaga pinensis, Clostridium stercorarium, and Ruminococcus albus, whereas the 10 

bacterial signature in Red Angus was composed of poorly characterized species (e.g., 11 

Oscillibacter valericigenes and Flavonifractor plautii). Interestingly, FCR was associated 12 

with a specific bacterial signature depending on the breed type, suggesting that there is 13 

a connection among feed efficiency, active rumen microbiota, and the genetic makeup of 14 

the host. In this context, C. pinensis and C. stercorarium were the only species associated 15 

with FCR, and this result emphasizes the important role of these species in the feed 16 

conversion efficiency of forage-fed bulls. Moreover, our results showed specific functional 17 

signatures characterizing each breed (separately), demonstrating that different strategies 18 

to modify the rumen microbial pathways need to be designed for Red Angus as compared 19 

to Black Angus. While the first showed microbial functions enriched mainly from 20 

carbohydrate metabolism, the latter exhibited a more diverse set of pathways, with 21 

emphasis on the ribosomal proteins L16 and S7. It is important to mention that the 22 

statistical methods employed in this study can also be applied to investigate rumen 23 

archaea, fungi, and protozoa in addition to bacteria as reported in the current study. 24 

However, the lack of genome sequences representatives of rumen archaeal, fungal, and 25 

protozoal populations (especially in the publicly available database - e.g., NCBI) does not 26 

allow accurate taxonomic assessment at species level for these organisms by Kraken. 27 

Thus, future studies involving the rumen microbiome as a whole are warranted to 28 

enhance our knowledge of the symbiotic relationship that exists among rumen 29 

microorganisms and how they may differ between these two genetically similar breeds. 30 
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Regardless, our findings highlight how we can use signatures of bacterial taxa and their 1 

functions to harness the full potential of the rumen microbiome in Angus cattle. 2 

Furthermore, the results of our study can be used as a reference for future investigations 3 

related to the manipulation of the ruminal function and selection of beef cattle with high 4 

feed efficiency based on specific microbial signatures. 5 
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4.7 Tables and figures 2 

 3 

 4 

Figure 4.1 Taxonomic composition and microbial gene families obtained from 5 

metatranscriptome data in beef cattle. (A) Taxonomic cladogram showing the most 6 
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abundant detected taxa (relative abundance ≥ 0.05% in at least half of the samples). The 1 

six rings of the cladogram stand for phylum (innermost), class, order, family, genus, and 2 

species (outermost), respectively. The sizes of the circles indicate the mean average 3 

abundance of each taxon. (B) Cladogram showing the most abundant microbial functions 4 

(relative abundance 0.05% ≥ in at least half of the samples). Two rings of the cladogram 5 

stand for module (innermost) and microbial functions obtained from the KEEG database 6 

(outermost), respectively. The sizes of the circles indicate the mean average abundance 7 

of each function (microbial gene family). Cladograms were built using GraPhlan (Asnicar 8 

et al. 2015). 9 
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 1 

 2 

Figure 4.2 sPLS-DA results on rumen bacterial species in Black and Red Angus. (A) 3 

shows a sample plot on the first two sPLS-DA components with 95% confidence level 4 
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ellipse plots and (B) represents the contribution of each species selected on the first and 1 

second components, with length of the bar representing the importance of each species 2 

to the component (importance from bottom to top). Colors indicate the breed (Black vs. 3 

Red Angus) in which the species is most abundant. (C) represents a hierarchical 4 

clustering (Euclidean distance, Ward linkage) of the selected species from sPLS-DA 5 

results. In the heatmap legend, the red and blue colors indicate strong positive and 6 

negative correlations respectively, whereas yellow or green indicate weaker correlation 7 

values. On the left-hand side of the heatmap, clusters of the biological samples collected 8 

according to time are colored in orange, blue, dark green and violet to signify the time 9 

points 0, 80, 100 and 180 days, respectively. 10 
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Figure 4.3 sPLS-DA results on rumen microbial gene families in Black and Red Angus. 1 

(A) shows a sample plot on the first sPLS-DA component with 95% confidence level 2 

ellipse plots and (B) represents the contribution of each function (microbial gene family) 3 

selected on the first component, with length of the bar representing importance of each 4 

microbial gene family to the component (importance from bottom to top). Colors indicate 5 

the breed (Black vs. Red Angus) in which the gene family is most abundant. (C) 6 

represents the hierarchical clustering (Euclidean distance, Ward linkage) of the selected 7 

gene families from sPLS-DA results. In the heatmap legend, the red and blue colors 8 

indicate strong positive and negative correlations respectively, whereas yellow or green 9 

indicate weaker correlation values. On the left-hand side of the heatmap, clusters of the 10 

biological samples collected according to time are colored in orange, blue, dark green 11 

and violet to signify the time points 0, 80, 100 and 180 days, respectively. 12 
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Figure 4.4. Heatmap and correlation circle plot generated from the output of regularized 1 

canonical correlation (rCC) method. (A) shows the correlations between VFAs (total VFA, 2 

acetic, butyric, propionic, and valeric acids) and rumen bacterial species in the first two 3 

rCC components. The color key indicates the correlation values among variables. (B) 4 

shows the correlation circle plot, where VFAs and bacteria are shown inside a circle of 5 

radius 1 centered at the origin, with strongly associated (or correlated) variables being 6 

projected in the same direction from the origin. Two circumferences of radius 1 and 0.5 7 

were plotted to reveal the correlation structure of the variables.  8 

 9 

 10 
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 16 

 17 

 18 
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 1 

 2 

Figure 4.5 Differentially abundant bacterial species detected in Black and Red Angus 3 

when FCR (Feed consumed kg/Gain kg) was adjusted to time (in days). Unadjusted raw 4 

average relative abundance and standard errors of (A) Chitinophaga pinensis, (B) 5 

Clostridium stercorarium, and (C) Ruminococcus albus detected when FCR (kg/day) was 6 

adjusted to time (in days). Statistical procedures were performed by ANCOM (calculated 7 

on the log-ratio matrix; FDR, q < 0.1).  8 
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 1 

Chapter 5 2 

Discovery and targeted functional profiling of novel glycoside hydrolases 3 

through selective pressure on the native rumen microbial community 4 

 5 

 6 

5.1 Introduction 7 

Comprised mainly of cellulose, hemicellulose, and lignin, lignocellulose is a major 8 

constituent of plant cell walls and is the most abundant organic polymer on Earth (McNeil 9 

et al. 1984). However, the suitability of lignocellulose as a substrate for the synthesis of 10 

biobased products is limited by its resilience to enzymatic digestion (Chafe 1969, McNeil 11 

et al. 1984). A specialized group of enzymes, known as carbohydrate-active enzymes 12 

(CAZymes), are required for the efficient degradation of lignocellulosic biomass in order 13 

to access the carbon sources within the lignocellulosic matrix (Cantarel et al. 2009, 14 

Lombard et al. 2014). CAZymes are a widespread and structurally diverse set of enzymes 15 

involved in the breakdown, biosynthesis or modification of lignocellulose and can be 16 

produced by microorganisms that inhabit various microbiomes including the mammalian 17 

gut (Lombard et al. 2014). The potent lignocellulolytic capability of CAZymes is conferred 18 

by an array of enzymatic catalysts, usually grouped into families according to amino acid 19 

sequence similarity (Lombard et al. 2014), which facilitate the degradation of complex 20 

polymers into simple sugars. The major CAZymes that degrade carbohydrate polymers 21 

are glycoside hydrolases - GHs, polysaccharide lyases - PL  and polysaccharide 22 

monooxygenases (Munoz-Munoz et al. 2017). GHs are the most abundant CAZymes and 23 

are widely employed in biotechnological and biomedical settings (Cantarel et al. 2009). 24 

Yet, the discovery of novel GHs from microbial communities has been a challenging task 25 

due to the complexity and diversity of CAZyme families present in microbial habitats, 26 

which result in many as-yet-uncharacterized members in these families. 27 

Microbial communities are dynamic and can evolve novel CAZymes according to 28 

the external environment and the nature of substrates available for metabolism (Wilkens 29 
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et al. 2017). This attribute enables us to use selective pressure to enrich the microbial 1 

environment with substrates that favor the growth of microbes that express the desired 2 

biocatalyst. One fascinating microbial community that has garnered much interest due to 3 

its phylogenetic diversity is the one residing in the forestomach of ungulates, termed 4 

rumen microbiome (Shaani et al. 2018, Russell and Rychlik 2001). This microbial 5 

ecosystem is an ideal model for the discovery of novel enzymes as it is contained within 6 

a unique animal host and can be easily manipulated through dietary interventions to gain 7 

insight into the dynamics and functions of the microbiota (Weimer 2015). Rapid advances 8 

in omics technologies has facilitated the discovery of thousands of genes encoding 9 

novel CAZymes in the rumen microbiome during the past two decades (Brulc et al. 2009, 10 

Hess et al. 2011, Wang et al. 2013, Svartström et al. 2017, Gharechahi and Salekdeh 11 

2018, Meng Qi et al. 2011, Comtet-Marre et al. 2017, Fuyong Li and Le Luo Guan 2017). 12 

However, only a handful of these candidate enzymes have entered industrial application, 13 

mainly due to annotation mistakes (sequence/activity incoherence) in publicly databases 14 

(Fernández-Arrojo et al. 2010, Ferrer et al. 2016). This technical issue is further 15 

exacerbated by the fact that individual proteins within a protein family can have vastly 16 

diverse functions (Franzosa et al. 2015, Schnoes et al. 2009, Levin et al. 2017). 17 

Targeted functional profiling of a microbial community (Kaminski et al. 2015) 18 

following metatranscriptomic sequencing may overcome these limitations as it allows the 19 

compilation of a de novo database of marker peptides derived from reference proteins of 20 

interest. This was recently demonstrated in the discovery of a novel biomarker of host- 21 

microbial symbiosis in the human gut (Levin et al. 2017). However, the complexity and 22 

diversity of CAZymes in microbial habitats has made targeted functional profiling of 23 

CAZymes extremely difficult, and consequently there remains substantial gaps in our 24 

knowledge of the functions of uncharacterized members of the CAZyme families. 25 

Here, we adopted a selective pressure approach to enrich the rumen ecosystem 26 

of Angus bulls fed a forage-rich diet for microbes capable of degrading lignocellulose, in 27 

order to facilitate mining of the rumen metatranscriptome for metabolically active CAZyme 28 

families. Next, we employed the targeted functional profiling of these families to capture 29 

ecological information (abundance and distribution) of functionally distinct members of 30 
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enriched CAZyme families to guide the discovery of unknown enzymes. By screening 775 1 

uncharacterized members of the GH11 family and 409 of the GH45 family, we identified 2 

18 putative xylanases (GH11) and three putative endoglucanases (GH45). These 3 

outcomes highlight the usefulness of this strategy for uncovering novel rumen enzymes 4 

for the breakdown, biosynthesis or modification of lignocellulosic biomass. 5 

5.2 Materials and methods 6 

5.2.1 Animal trial and sampling 7 

The experimental procedures described here were reported previously (Thompson 2015), 8 

with the study protocol being reviewed and approved by the University of Manitoba animal 9 

care committee. Briefly, rumen contents were collected from 12 purebred bulls (mean age 10 

of 249 ± 22 days and average body weight of 313.9 ± 32 kg) raised in confinement at the 11 

Glenlea Research Station (University of Manitoba) according to the guidelines of the 12 

Canadian Council on Animal Care (CCAC) (CCAC 1993). In the current trial, bulls were 13 

fed a forage based diet (Supplementary Table 1) throughout the experimental period (180 14 

days). Then, representative samples (250 ml) of rumen contents (liquid and solid fractions) 15 

were collected over four-time points (0, 80, 100, 180 d) (48 samples in total) using a 16 

Geishauser oral probe (Duffield et al. 2004), immediately snap frozen in liquid nitrogen, 17 

and stored at -80°C for further processing. The feed intake of individual bulls was 18 

recorded using the GrowSafe® feeding system (GrowSafe Systems Ltd., Airdrie, Alberta, 19 

CA) to calculate feed conversion rate (FCR), which is a ratio of dry matter intake to 20 

average daily gain (computed on a biweekly basis (Montanholi et al. 2010)). The bulls 21 

were then ranked into two groups: high and low FCR, with high (H-FCR) and low (L-FCR) 22 

standing for inefficient and efficient cattle in terms of diet utilization, respectively. 23 

5.2.2 RNA extraction and sequencing  24 

Total RNA extraction and sequencing protocols were described by Fuyong Li and Le Luo 25 

Guan (2017). In summary, total RNA was extracted from rumen samples using the TRIzol 26 

protocol based on the acid guanidinium-phenol-chloroform method (Chomczynski and 27 

Sacchi 2006, Béra-Maillet et al. 2009) with modifications reported previously (Fuyong Li 28 

and Le Luo Guan 2017). Approximately 200 mg of rumen sample was subjected to RNA 29 

https://www.dropbox.com/s/ukb87q78brzzap2/SupplementaryInformation.docx?dl=0
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extraction with the addition of 1.5 ml of TRIzol reagent (Invitrogen, Carlsbad, CA, USA), 1 

followed by 0.4 ml of chloroform, 0.3 ml of isopropanol, and 0.3 ml of high salt solution 2 

(1.2 M sodium acetate, 0.8 M NaCl) for the extraction protocol. Total RNA (100 ng) of 3 

each sample was used for library construction using the TruSeq RNA sample prep v2 LS 4 

kit (Illumina, San Diego, CA, USA) without the mRNA enrichment step. Finally, cDNA 5 

fragments (∼140 bp) were paired-end (2 X 100 bp) sequenced using an Illumina HiSeq 6 

2000 system. 7 

5.2.3 Bioinformatic and statistical analysis 8 

After checking the quality of fastq-formatted sequences using FastQC 9 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), the software Trimmomatic 10 

(version 0.32; 58) was used to trim residual artificial sequences, cut bases with quality 11 

scores below 20, and remove reads shorter than 50 bp (Bolger et al. 2014).  Then, 12 

SortMeRNA (Kopylova et al. 2012) (version 1.9) was used to sort the filtered reads into 13 

fragments of mRNA for microbial classification. Prior to performing the taxonomic 14 

classification, a Kraken (Wood and Salzberg 2014) standard database was built based 15 

on all complete genomes of bacteria downloaded from NCBI plus complete genomes from 16 

organisms isolated from the rumen or from ruminant feces or saliva deposited in the 17 

Hungate1000 project (JGI's IMG database) (Neves et al. 2017). Then, each pair of mRNA 18 

sequences was assembled by MEGAHIT (Li et al. 2015), with the resulting contigs being 19 

assigned by Kraken (through k-mer discrimination) to the lowest common ancestor in a 20 

customized standard database for microbial classification. For gene annotation, the 21 

contigs were submitted to MG-RAST (Meyer et al. 2008a) where they were de-replicated 22 

and quality checked using the methods described by Gomez-Alvarez et al. (Gomez- 23 

Alvarez et al. 2009) and Cox et al. (Cox et al. 2010). The per-base coverage depth across 24 

all contigs was calculated by mapping raw reads from each sample against the 25 

assembled contigs using BBMap v35.92 with the parameters ‘kfilter=22, subfilter=15 and 26 

maxindel=80’ (https://sourceforge.net/projects/bbmap/). Within MG-RAST, the contigs 27 

were annotated using subsystems technology (Aziz et al. 2008) with maximum e-value of 28 

10-5, minimum percent identity of 60, and minimum alignment length of 30 as the 29 

parameter settings (Xu et al. 2015). Translated non-rRNA sequences from the mRNA- 30 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://sourceforge.net/projects/bbmap/
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enriched RNA sample were submitted to a local version of dbCAN (Yin et al. 2012) to 1 

annotate sequences for the presence of CAZymes with a cutoff e-value < 10-5. 2 

ShortBRED was then used to determine the abundance of distinct members of CAZymes 3 

of interest in the metatranscriptomic dataset, with the sequences being grouped at a 4 

specified amino acid similarity threshold of 85% identity to detect non-redundant 5 

representative matches (Kaminski et al. 2015). UniRef90 (downloaded on March 2017) 6 

was used as the comprehensive protein reference catalog to annotate the representative 7 

short peptides (markers) within the CAZyme family (Suzek et al. 2015). The theoretical 8 

atomic models of the markers quantified in the previous step were constructed using I- 9 

TASSER (Zhang 2008, Yang et al. 2014). Multiple threading alignments of the markers 10 

were generated by the meta-server LOMETS (Wu and Zhang 2007) to identify template 11 

structures from the Protein Data Bank (PDB) library, followed by structural assembly and 12 

refinement steps, with subsequent reconstruction of the atomic models (Li and Zhang 13 

2009). Protein-ligand binding sites of the homology models were verified with the I- 14 

TASSER associated COACH package (Yang et al. 2013). Read counts classified by 15 

kraken (microbial taxonomic assignment), MG-RAST (functions) and dbCAN (CAZyme 16 

families) were subjected to differential abundance analysis (L-FCR vs. H-FCR) using 17 

edgeR (functions: glmFit to fit the negative binomial generalized log-linear models and 18 

glmLRT to conduct likelihood ratio tests for coefficient contrasts) (Robinson et al. 2010, 19 

Robinson and Smyth 2008, McCarthy et al. 2012). The trimmed mean of M-values (TMM) 20 

method was used to normalize the data and minimize the log-fold change between 21 

samples (Bullard et al. 2010). All P values were corrected for a false discovery rate (FDR) 22 

of 0.05 using the Benjamin-Hochberg algorithm (Benjamini and Hochberg 1995), and 23 

FDR-corrected P values <0.05 were considered as significant. Cladograms were 24 

generated by GraPhlAn (Asnicar et al. 2015) and the heat trees were built using the 25 

package metacodeR (Foster et al. 2017). All statistical procedures were done in R 3.4.2 26 

(R Core Team, 2017) and Python 3.6.0. 27 

5.2.4 Cloning, protein expression and purification 28 

The sequence of the gene of putative xylanase 1 selected from candidates obtained in 29 

the previous bioinformatic analysis was cloned in pET43.1a (ligation at Xho1 and BamH1 30 
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sites) using commercial services (Genscript, NJ, USA). The protein expression vector 1 

was then transformed into chemically competent E. coli Rosetta-gami™ 2 DE3 cells 2 

(Millipore, Ontario, Canada), with single colonies being grown in Luria broth medium 3 

supplemented with 100 μg/μL of ampicillin (Amresco, Solon, OH) at 37°C until reaching 4 

OD600 of 0.5-0.6. Overexpression was induced with 0.4 mM IPTG, and the cultures were 5 

grown for 8 h at 24°C. Cells were then harvested by centrifugation at 6000 × g for 15 min 6 

at 4°C. The cell pellets were resuspended in phosphate-buffer (pH 7.4), containing 1mM 7 

PMSF (phenylmethylsulfonyl fluoride) and lysed using Emulsiflex (Avestin, Ottawa, 8 

Canada) at a pressure of 206.8 MPa. The unbroken cells and cell debris were pelleted 9 

by centrifugation at 17,000 × g for 30 min.  The supernatant was then incubated with 10 

subtilisin resin (Profinity exact Expression Technology, Bio-RAD, USA) for 1 h at 4oC, and 11 

unbound proteins were washed away with phosphate buffer. The protein of interest was 12 

eluted by incubating the resin overnight with elution buffer (pH 7.2, 0.1M Sodium 13 

phosphate and 0.1M Sodium fluoride) at 4°C, and then dialyzed  (Spectra/Por membrane 14 

tubing, Vol/Length: 1 ml/cm)  against  McDougall’s buffer, pH 7.0 (McDougall 1948)  and 15 

concentrated using 10,000 MWCO concentrators (Millipore, USA) to 0.4-1 mg/ml. The 16 

concentrated protein samples were aliquoted, flash‐frozen and stored at −80°C. Protein 17 

concentration was determined by colorimetric detection and quantification of total protein 18 

using the Pierce BCA protein assay kit (Thermo-Fisher Scientific) with the bovine serum 19 

albumin as standard. The purified protein was then visualized by SDS-PAGE gel.  20 

5.2.5 Differential scanning fluorimetry (DSF)  21 

To investigate the effect of pH on protein stability, DFS assay of Xylanase 1 in different 22 

buffers (100 mM Sodium acetate buffer: pH 5.0, 6.0; 100 mM Tricine buffer: pH 7.0, 8.0, 23 

and 9.0; McDougall’s buffer: pH 6.0, 7.0, and 8.0) spanning the interval of pH 3–8 was 24 

performed. Xylanase 1 in a final concentration of 5 µM was mixed with SyproOrange dye 25 

(Thermo Fisher Scientific, USA). Prior to use, the dye stock was diluted 1:50 (100X) in 26 

water and used immediately while protecting from light to reduce photobleaching. The 27 

optimal dilution of dye in the assay was determined empirically with a 5X dilution for the 28 

final assay. The thermal denaturation assay was performed in a total volume of 40 µl. All 29 

samples were run in duplicates. The thermal scan was conducted from 25 to 95°C, at 30 
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0.5 °C/min (ViiA 7 Real-Time PCR System, ThermoFisher). The melting point (Tm) was 1 

calculated by fitting the raw fluorescence data over the temperature using the Boltzmann 2 

equation in GraphPad Prism program (GraphPadPrizm 7 for Windows, GraphPad 3 

Software, USA).  4 

5.2.6 Size-exclusion chromatography  5 

The oligomeric state and homogeneity of Xylanase 1 was determined by size-exclusion 6 

chromatography on Superdex 75 (10/30) column (GE Healthcare, Canada), equilibrated 7 

with McDougall’s buffer, pH 6. Molar mass of the protein peak was calculated using a 8 

logarithmic interpolation of elution volumes (Ve) using a gel filtration LMW calibration kit 9 

(GE Healthcare, Pittsburgh,USA) containing 1) blue dextran 2000 (V0), 2) thyroglobulin 10 

(670 kDa), 3) g-globulin (158 kDa), 4) ovalbumin (44 kDa), 5) myoglobulin (17 kDa), and 11 

6) vitamin B12 (1.3 kDa). 12 

5.2.7 Kinetic measurements  13 

Xylanase 1 activity was determined by measuring the quantity of reducing sugars (xylose, 14 

molecular weight: 150 g/mol) released from xylan (Beachwood xylan, Megazyme) by the 15 

dinitrosalicylic acid (DNS) method (Miller 1959). Before kinetic calculations, all the 16 

parameters for the assay were optimized. The minimal concentration of the enzyme that 17 

produced a linear dependence of generated product with the time was chosen, as well as 18 

the minimal time of reaction within the linear part of the curve. For kinetic measurements 19 

Xylan was incubated at 40°C with activity buffer - McDougall’s buffer (McDougall 1948), 20 

pH 6) for 10 min for equilibration and then the purified Xylanase was added and the 21 

reaction was performed for 10min. The final concentration of enzyme was fixed at 0.05 22 

μM, and the final concentration of Xylan varied (0, 0.88, 1.75, 3.5, 7.0, 15.0, and 30.0 23 

mg/ml). The total volume of reaction was 200 μl. The samples with the same 24 

concentrations of substrate but without enzyme addition were treated the same way 25 

and were used as negative controls. After adding 300 μl of DNS reagent to stop the 26 

reaction, the samples were boiled for 5 minutes, and then put on ice, following the 27 

measurement under absorbance at 540 nm using a plate reader (SpectraMax M3). All 28 

reactions were performed in duplicates. The plots of the reaction velocity against the 29 
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corresponding substrate concentration were fitted with Michaelis–Menten equation 1 

(v0 = kcat[E]0[S]0/([S]0 + KM)) using GraphPad Prism program (GraphPadPrizm 7 for 2 

Windows, GraphPad Software, USA).  3 

5.2.8 Thermal inactivation of Xalanase 1 and thermodynamic analysis 4 

Thermal inactivation assay was performed at 25, 40, 50 and 60oC. The samples, 5 

containing 0.5µM of Xalanase1 in McDougall’s buffer (pH 6.0) were incubated at the 6 

specified temperatures. Then, 20µl aliquot was taken out at each time point and stored 7 

on ice until the activity measurements were performed as described above, using 0.05µM 8 

of Xalanase 1 and 30 mg/ml of xylan. A non-heated enzyme was used as positive control 9 

and its activity was taken as 100%.          10 

Enzyme inactivation over time was described as a first-order reaction: 11 

                                                               ln A/A0 = -kt                                                           (1) 12 

where A – activity at time t, A0 – initial activity at time zero, k is inactivation rate constant 13 

at the tested temperature (min-1) and t is time (min). k values were calculated from linear 14 

regression analysis of the natural logarithm of residual activity versus incubation time and 15 

replotted in Arrhenius plot. Activation energy (Ea) was calculated using the slope of 16 

Arrhenius plot according to Eq. 2  17 

                                                       ln(k) = -Ea/RT+c                                                     (2) 18 

where R is the gas constant (8.314 J mol-1 K-1) and T is the absolute temperature.  19 

The half-life of Xalanase 1 (t1/2 in min), defined as time after which activity is reduced to 20 

one-half of its initial value was determined according to  21 

                                                        t1/2 = ln (2)/k                                                             (3) 22 

 The D-value is the time (min) needed to reduce the initial activity to 90%. It is inversely 23 

related to k-values and mathematically expressed as 24 

                                                        D = ln(10)/k                                                               (4) 25 

The values of Gibbs free energy (ΔGo, kJ mol-1), enthalpy (ΔHo, kJ mol-1), and entropy 26 

ΔSo (J mol-1K-1) were determined as  27 
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                                                      ΔGo = -RTln(kh/kbT)                                                    (5) 1 

                                                          ΔHo  = Ea-RT                                                          (6) 2 

                                                      ΔSo = (ΔHo- ΔGo)/T                                                      (7) 3 

 4 

Where h is the Plank constant (6.626 x 10-34 Js) and kb is the Boltzmann constant (1.38 5 

x 10-23 JK-1). All experiments were performed in duplicates. 6 

5.3 Results 7 

5.3.1 Taxonomic composition of the rumen microbiota revealed by 8 

metatranscriptomic sequencing 9 

Assembly of mRNA reads resulting from total RNA sequencing of rumen contents yielded 10 

on average 7,627 contigs per sample (with an average extension of 474.3 ± 26.67 bp and 11 

N50 of 462.6 ± 27.99 bp), which were further classified using a taxonomic assignment 12 

strategy as described in chapter 3 (Neves et al. 2017). Approximately 51% of the quality 13 

filtered mRNA reads were mapped to the assembled contigs, indicating that they 14 

represented a significant proportion of the metatranscriptome (Supplementary Data 1). 15 

Of the 20 phyla identified in the dataset, the majority of sequences were assigned to 16 

Bacteroidetes (45%), followed by Firmicutes (23%), Proteobacteria (14%), Spirochaetes 17 

(5.0%), Verrucomicrobia (2.3%), Actinobacteria (2.2%), Tenericutes (2.1%), and 18 

Fibrobacteres (1.4%) (Figure 5.1a; Supplementary Data 2; and Supplementary Figure 1).  19 

5.3.2 Functional capability of the rumen microbiota  20 

To examine the functional potential of the microbial community associated with the 21 

degradation of lignocellulose, mRNA transcripts (assembled reads) were mapped against 22 

the publicly available Subsystems database using MG-RAST (Meyer et al. 2008b), which 23 

resulted in the detection of 1205 functions (ranging from the most detailed, level 4, to the 24 

least detailed category, level 1) (Supplementary Data 3). Central carbohydrate 25 

metabolism (including glycolysis/gluconeogenesis, glyoxylate cycle, pyruvate metabolism 26 

and pentose phosphate pathway) and protein biosynthesis were the most abundant 27 

functional categories, representing 10% and 33% of the annotated reads, respectively 28 

https://www.dropbox.com/s/4k61ng82edlu7n6/Supplementary%20Data%201.xlsx?dl=0
https://www.dropbox.com/s/oqu1rnn2n0syvks/Supplementary%20Data%202.xlsx?dl=0
https://www.dropbox.com/s/ukb87q78brzzap2/SupplementaryInformation.docx?dl=0
https://www.dropbox.com/s/jos5e21f66shtxy/Supplementary%20Data%203.xlsx?dl=0
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(Supplementary Figure 2). In the polysaccharides- and monosaccharides-related 1 

categories (level 3), the cellulosome and xylose utilization systems comprised 0.39% and 2 

0.72% of the total annotated reads, respectively (Figure 5.1b).  3 

Assembled metatranscriptomic contigs were also aligned against the CAZyme 4 

database (Yin et al. 2012) to obtain more in-depth information regarding the carbohydrate 5 

enzymes in the dataset. A total of 6904 unique alignments were recovered, dominated by 6 

GHs (42.8% of the total CAZyme matches) and carbohydrate-binding modules - CBMs 7 

(33.2%), followed by glycosyltransferases- GTs (9.5%), carbohydrate esterases - CEs 8 

(6.5%), Dockerin (2.7%), S-layer homology domains - SLHs (2.6%), PL (2.0%), Cohesin 9 

(0.5%), and auxiliary activities – AA6 (0.2%) (Figure 5.1c). 10 

The rumen metatranscriptome of forage-fed bulls was notably enriched with GH 11 

catalytic modules that provided 2914 hits belonging to 61 families (Supplementary Data 12 

4). Cellulases (GH5, GH9, GH45, and GH48) and hemicellulases (GH8, GH10, GH11, 13 

GH26, GH28, GH53) exhibited a high representation (25% of the total CAZyme matches) 14 

in the metatranscriptome, indicating that they were actively involved in the degradation of 15 

plant cell wall components contained in the forage diets. A wide variety of non-catalytic 16 

proteins known as CBMs were highly represented (2297 hits) and were predicted to 17 

partake in interactions with various substrates such as cellulose (e.g., CBM1, CBM2, 18 

CBM3, CBM6, CBM13, CBM16, CBM44), xylan (e.g., CBM4, CBM22, CBM37), starch 19 

(e.g., CBM20, CBM26), and chitin (e.g., CBM50) (Supplementary Data 4). Other 20 

important classes of CAZymes frequently encountered in our dataset were CEs (e.g., 21 

CE1, CE2, CE3, CE4, CE7, CE12) and PLs (e.g., PL1, PL9, PL11). The presence of 22 

accessory modules (>400 hits in this study) commonly found in bacterial cellulosome- 23 

associated structures (AAs, dockerins, and cohesins) and the SLH domain, provided 24 

additional evidence of active cellulosome-mediated plant cell-wall degradation employed 25 

by rumen microorganisms  (Supplementary Data 4). 26 

5.3.3 Fibrolytic bacteria and glycoside hydrolases are abundant in the rumen of 27 

feed efficient animals 28 

To facilitate the mining of active CAZyme families in the rumen metatranscriptome, we 29 

compared the rumen microbial population in feed efficient cattle with those that were less 30 

https://www.dropbox.com/s/ukb87q78brzzap2/SupplementaryInformation.docx?dl=0
https://www.dropbox.com/s/1f0ke5l0oep3b56/Supplementary%20Data%204.xlsx?dl=0
https://www.dropbox.com/s/1f0ke5l0oep3b56/Supplementary%20Data%204.xlsx?dl=0
https://www.dropbox.com/s/1f0ke5l0oep3b56/Supplementary%20Data%204.xlsx?dl=0
https://www.dropbox.com/s/1f0ke5l0oep3b56/Supplementary%20Data%204.xlsx?dl=0
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effective at digesting the same diet. To achieve this, we divided our experimental bulls 1 

into two groups based on feed efficiency ranking (measured by feed conversion ratio, 2 

FCR): 1) efficient or low feed conversion rate (L-FCR) and 2) inefficient or high-FCR (H- 3 

FCR). The FCR of the two groups of animals was statistically divergent (P < 0.01), with 4 

L-FCR bulls exhibiting a feed conversion efficiency 22% lower than H-FCR bulls 5 

(Supplementary Figure 3).  6 

 Although there was no difference in the bacterial diversity between the feed 7 

efficiency groups (Supplementary Figure 4), the data showed that fibrolytic bacteria and 8 

GHs were abundant in the rumen of feed efficient animals. Of the 115 species analyzed 9 

in all samples (Supplementary Data 2), Fibrobacter succinogens (a cellulose degrader 10 

species (Suen et al. 2011)) was the only species affected by feed efficiency, showing  a 11 

nearly 0.5-log2-fold change increase (P < 0.05) in L-FCR relative to H-FCR (Figure 5.2a). 12 

Our results also showed that the relative abundance of Fibrobacter succinogens and 13 

other common plant cell wall degraders (Butyrivibrio proteoclasticus and 14 

Ruminiclostridium sp KB18) exhibited > 4-log2-fold change increase on the 180th day 15 

relative to day 0 in L-FCR compared to H-FCR (Figure 2b). Prevotella ruminicola exhibited 16 

a 0.6-log2-fold change increase on the 180th day relative to day 0 in L-FCR compared to 17 

H-FCR (Figure 5.2b).  18 

 Next, we examined whether the functional potential of the microbial community 19 

could be linked to the feed efficiency groups, with the aim of finding genes involved in the 20 

degradation of lignocellulosic biomass (Figures 5.1d-e). Of the 1205 features analyzed in 21 

all samples (Supplementary Data 3), we could not confirm genes for lignocellulosic 22 

biomass degradation differentiating the rumen microbiome of L-FCR from H-FCR. Instead, 23 

we found ammonia assimilation functions mediated by aspartate-ammonia ligases (EC: 24 

6.3.1.1) (Ricard et al. 2006) and motor organelles, which propel the rotating flagella to 25 

enable bacteria to move towards favorable environments (Sowa and Berry 2008), at a 26 

higher abundance in the rumen of L-FCR compared to H-FCR (Figure 5.3d). However, 27 

genes involved in degradation of di- and oligosaccharides, which includes cellulose (e.g., 28 

Cellobiose phosphorylase - EC: 2.4.1.20) and xylose utilization (e.g., Endo-1,4-𝛽- 29 

https://www.dropbox.com/s/ukb87q78brzzap2/SupplementaryInformation.docx?dl=0
https://www.dropbox.com/s/ukb87q78brzzap2/SupplementaryInformation.docx?dl=0
https://www.dropbox.com/s/oqu1rnn2n0syvks/Supplementary%20Data%202.xlsx?dl=0
https://www.dropbox.com/s/jos5e21f66shtxy/Supplementary%20Data%203.xlsx?dl=0
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xylanase), exhibited a >5-log2-fold change increase in their abundance on the 180th day 1 

relative to day 0 in L-FCR compared to H-FCR (Figure 5.2e; Supplementary Data 5). 2 

 To further investigate whether feed efficiency affected CAZymes, we then 3 

analyzed all CAZymes families in our dataset in relation to the FCR groups (Figure 5.2c; 4 

Supplementary Data 4). As observed in the results of the functional profiles, we did not 5 

detect CAZymes differences between L-FCR and H-FCR; however, we found a consistent 6 

1.9-log2-fold change increase in the relative abundance of GH13 on the 180th day relative 7 

to day 0 in L-FCR compared to H-FCR (Figure 5.2c). GH13, the most abundant CAZyme 8 

family in the present study with 6.8% of the total matches, is a well-represented CAZyme 9 

family in the rumen (Hess et al. 2011) and the largest glycoside hydrolase family, acting 10 

mainly on the catalysis of  𝛼-glucoside linkages encapsulated in starch and glycogen. 11 

More importantly, we found that GH11 (endo-𝛽-1,4-xylanase - EC 3.2.1.8), GH45 12 

(endoglucanase:  EC 3.2.1.4), and CBMs connected to cellulose degradation (CBM79) 13 

exhibited >2.5-log2-fold change increase in their relative abundance in L-FCR compared 14 

to H-FCR on day 180 relative to day 0 (Figure 5.2c).  15 

5.3.4 Targeted functional profiling of GH11 and GH45 families 16 

To gain insight into functionally distinct members of GH11 (xylanases) and GH45 17 

(endoglucanases), we applied ShortBRED (Kaminski et al. 2015) to screen those families 18 

against a de novo protein reference database built from UniProt, and then profile their 19 

abundance and distribution in the rumen metatranscriptome. By screening 775 20 

uncharacterized members of the family GH11 and 409 of the family GH45, we identified 21 

18 putative xylanases (GH11) and three putative endoglucanases (GH45) 22 

(Supplementary Data 6).  23 

In this study, bacteria and eukaryotic organisms represented the major sources 24 

of the identified xylanases and endoglucanases (Figure 5.3b). While only two genes 25 

were sourced by known rumen microbes such as Fibrobacter succinogens (100% 26 

identity; UniProt IDs: C9RR38 and D9SBI1) and uncultured rumen ciliates (UniProt ID: 27 

G5DDC1; 70.5% identity with Epidinium caudatum, Supplementary Figure 5), the vast 28 

majority of enzymes matched bacteria and fungi strains found in other environments 29 

(e.g., soil), indicating that they are unknown in the rumen microbiome (Figure 3b).  30 

https://www.dropbox.com/s/ze60cy12cajpqip/Supplementary%20Data%205.xlsx?dl=0
https://www.dropbox.com/s/1f0ke5l0oep3b56/Supplementary%20Data%204.xlsx?dl=0
https://www.dropbox.com/s/9rj4tet81qoguqf/Supplementary%20Data%206.xlsx?dl=0
https://www.dropbox.com/s/ukb87q78brzzap2/SupplementaryInformation.docx?dl=0
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5.3.5 Structural analysis of Xylanase 1 through homology modelling 1 

To further investigate key active sites and the tertiary conformation of xylanase 1 (the 2 

most broadly distributed and abundant xylanase in our rumen metatranscriptome dataset), 3 

we constructed and compared a homology model of xylanase 1 with crystal structures 4 

deposited on the Protein Data Bank (PDB) using I-TASSER (Zhang 2008, Yang et al. 5 

2014). Of the 33 crystal structures reported for the family GH11 in PDB and CAZyme 6 

databases, the top homology model of xylanase 1 showed 57% sequence identity with 7 

the crystal structure of a xylanase family 11 (PDB ID: 1h4hB) encoded by Bacillus 8 

agaradhaerens (Supplementary Figure 6; Supplementary Table 2). The confidence score 9 

(C-scores) of the top model for xylanase 1 was 1.67, indicating good quality of the 10 

predicted homology model (C-score is typically in the range [-5, 2], where scores of higher 11 

values signify a model with high confidence). Superimposing the homology model of 12 

xylanase 1 onto the crystal structure of Bacillus agaradhaerens xylanase resulted in 13 

global structural alignment scores (TM-scores) of 0.95 (TM-score >0.5 indicates a model 14 

of correct topology) and root-mean-square deviation (RMSD) of the TM-aligned residues 15 

of 0.47 Å (Supplementary Figure 6; Supplementary Table 2), confirming that the model 16 

was in agreement with the crystal structure of Bacillus agaradhaerens xylanase. 17 

Xylanase 1 exhibited the 𝛽 jelly-roll fold typical of GH xylanases, with the concave 18 

antiparallel 𝛽 sheet being constituted of nine 𝛽 strands (𝛽2, 𝛽3, 𝛽6, 𝛽8, 𝛽9, 𝛽10, 𝛽11, 𝛽12, 19 

𝛽14) and the antiparallel convex sheet comprising six 𝛽 strands (𝛽1, 𝛽4, 𝛽5, 𝛽7, 𝛽13, 20 

𝛽15).  The 𝛼 – helixes were found in the loops connecting 𝛽 strands 6 and 7 and 𝛽 strands 21 

13 and 14 (Figure 5.3c). The structure of xylanase 1 resembles the shape of a right hand 22 

(Törrönen et al. 1994) with the “fingers” at the top of the palm, comprising the loops 23 

connecting 𝛽1 to 𝛽2, 𝛽3 to 𝛽4, 𝛽5 to 𝛽6, 𝛽14 to 𝛽15 and 𝛽7 to 𝛽8 and the “thumb”, 24 

consisting of the loop connecting 𝛽11 to 𝛽12, at the right-hand side of the molecule 25 

(Vardakou et al. 2008). Multiple functional annotations of xylanase 1 was investigated 26 

with the I-TASSER associated COACH package (Yang et al. 2013), which showed the 27 

ligand 1,2-Deoxy-2-Fluoro-Xylopyranose (DFX) (PDB ID: 1c5iA) (Joshi et al. 2000) 28 

docked in the predicted substrate-binding cleft (Figure 5.3d). 29 

https://www.dropbox.com/s/ukb87q78brzzap2/SupplementaryInformation.docx?dl=0
https://www.dropbox.com/s/ukb87q78brzzap2/SupplementaryInformation.docx?dl=0
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  Following the procedures described above, we also constructed homology models 1 

(TM scores ≥ 0.7) for other xylanases and endoglucanases found in the rumen 2 

metatranscriptome (Supplementary Figures 6 and 7; Supplementary Table 2), which 3 

provides a basis for understanding the molecular functions of these enzymes and guide 4 

future structure determination. 5 

5.3.6 Purification and characterization of oligomeric state of Xylanase 1 6 

The purification resulted in a highly pure enzyme with an expected molecular weight of 7 

23 kDa (Figure 5.4a). Gel-filtration analysis revealed that Xylanase 1 was eluted as a 8 

single homogeneous peak with a calculated molecular weight of 25 kDa, suggesting that 9 

Xylanase 1 exists in a monomeric state in solution (Figure 5.4b).            10 

5.3.7 Kinetic analysis of Xylanase 1 11 

The pH curve exhibited a standard bell-shaped curve with an optimum pH of 6.0, with the 12 

enzymatic activity being still high at pH 7.0 and decreasing only at pH 8.0 (Figure 5.4c). 13 

The catalytic parameters for the activity of Xylanase 1 towards xylan determined by the 14 

Michaelis-Menten equation were as follows: a) cleavage rate and catalytic efficiency of 15 

480s-1 and 872 M-1s-1, respectively, and b) Km of 8.7 ± 0.9 mg/ml (Figure 5.4d).  16 

5.3.8 Thermal stability of Xylanase 1 17 

To assess favorable conditions for the thermal stability of Xylanase 1, a range of pHs and 18 

different buffers were screened. As observed in Figure 5D, the melting temperatures (Tm 19 

values) at pHs 6.0 and 7.0 in all buffer systems provided the most stable environment for 20 

Xylanase 1 (Figure 5.5a). Additionally, the residual activity of Xylanase 1 was evaluated 21 

at 25, 40, 50, and 60oC by thermal inactivation assays in a time- and temperature- 22 

dependent manner (Table 1; Figures 5.5 b-c). The semi-log plots of the residual activity 23 

versus heating time were linear at all temperatures studied (Figures 5.5 b-c), 24 

demonstrating that inactivation of Xylanase 1 is a simple first-order monophasic process.  25 

Inactivation rate constants (Kd) for each temperature were obtained from the 26 

slopes of the Arrhenius equation (Figure 5.5c), with Kd values increasing ~10-fold per 27 

10oC, suggesting a high degree of irreversible denaturation (Table 1). Additionally, the 28 

https://www.dropbox.com/s/ukb87q78brzzap2/SupplementaryInformation.docx?dl=0
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results showed that Xylanase 1 was stable at 25 oC and had activity loss of only 10% after 1 

1 hour of incubation (D value of 1354 min) (Table 1). At 40 oC, 35% of activity remained 2 

after 1 hour of incubation, and the D value was of 127 min. The loss of activity with a D 3 

value of 2.5 min was observed after incubating the enzyme at 60 oC (Table 1).  4 

The thermodynamic parameters of inactivation including the Gibbs free energy 5 

change (ΔG), the enthalpy change (ΔH), and the entropy change (ΔS) were also 6 

assessed to understand the enzyme’s behavior at each step of the heat-induced 7 

denaturation process (Table 1).  The value of ΔH was 150.52 kJ mol-1 (25 oC), and this 8 

result was independent of temperature, assuming that there is no change in the enzyme 9 

heating capacity. The fact that ΔH values were positive indicates that enzyme inactivation 10 

is an endothermic process. The results also showed that ΔG value reduced significantly 11 

from 78.64 to 70.75 kJ mol-1 when the incubation temperature increased from 25 to 60 12 

oC, showing that protein destabilization followed the rise in the temperature. Moreover, 13 

the values of ΔS were positive meaning that there is an increase in the molecule disorder 14 

during the exposure to higher temperatures and that unfolding is a rate-limiting step for 15 

thermal inactivation (Table 1).     16 

5.4 Discussion 17 

The rumen microbiome has proven to be a valuable reservoir of microbial proteins with 18 

application in the biotechnological industry, most notably those involved in the hydrolysis 19 

of lignocellulosic biomass (CAZymes) (Seshadri et al. 2018). Identifying novel candidate 20 

proteins from the rumen microbiome (and other host sites) has typically been performed 21 

via comparison to sequence data, but this does not capture the nuanced differences in 22 

the functions of individual proteins within each family of CAZymes, due to vast structural 23 

diversity among members (e.g., GHs). In addition, such an approach to identify novel 24 

enzymes is also time-consuming. To circumvent these limitations, the present study 25 

employed and adapted existing bioinformatic tools to detect novel glycoside hydrolase 26 

enzyme sequences in the rumen metatranscriptome of Angus bulls fed a forage diet. 27 

Targeted functional profiling (Kaminski et al. 2015) using predictive computational 28 

analyses was used to discover a broadly distributed novel ruminal GH, xylanase 1. 29 

Application of this approach on a larger scale may be a critical tool for further discovery 30 
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of novel CAZymes within the rumen and other host-associated microbiomes, which may 1 

have critical functions in feed digestion and host health, as well as applications in the 2 

biotechnology industry.  3 

While the targeted functional profiling (Kaminski et al. 2015) has been used to 4 

examine uncharacterized enzymes found in the human microbiome (Levin et al. 2017), 5 

these studies have not profiled CAZymes in microbial communities. Similarly, although 6 

metagenomic and metatranscriptomic screening have been widely applied to discover 7 

CAZymes in various microbiomes (Ferrer et al. 2005, Ferrer et al. 2016, Hess et al. 2011, 8 

Comtet-Marre et al. 2017), to our knowledge the combination of selective pressure on the 9 

native microbial community with the targeted functional profiling has not been applied to 10 

quantitative metatranscriptomic analysis in order to accelerate the discovery of new 11 

enzymes. To facilitate the identification of metabolically active CAZymes in the rumen 12 

metatranscriptome, we adopted a selective pressure approach to enrich the rumen 13 

ecosystem of bulls fed a forage diet for microbes capable of degrading lignocellulose. The 14 

selective advantage to a microbe in the ruminal ecosystem arises in one of two ways: 1) 15 

increased dietary abundance of a specific substrate (selective pressure), favoured by the 16 

microbe or 2) niche specialization by a microbe (the lack of competition for the substrate 17 

of choice) (Weimer 1998). In the present study, the bulls were fed with a forage (and thus 18 

lignocellulose-rich) diet, and their rumens were dominated by microbes (e.g., 19 

Bacteroidetes, Firmicutes, Spirochaetes, and Fibrobacteres) and CAZymes (e.g., GH5, 20 

GH9, GH45, GH11) known to be responsible for digesting complex and recalcitrant plant 21 

polymers. These findings reflect those of previous studies investigating the rumen 22 

microbiome of forage-fed animals (Comtet-Marre et al. 2017, Dai et al. 2015, Gharechahi 23 

and Salekdeh 2018, Svartström et al. 2017), and confirm that offering animals a forage- 24 

rich diet selectively enriches the rumen microbiome for microbes and enzymes involved 25 

in plant cell wall hydrolysis. As well as the GH families listed above, we also noted the 26 

abundance of the SLH domain in our data, which is to the best of our knowledge the first 27 

time its existence has been documented in the rumen metatranscriptome of cattle, having 28 

been previously characterized in the camel rumen (Gharechahi and Salekdeh 2018). The 29 

SLH domain is part of a large multi-enzyme complex known as cellulosome (Artzi et al. 30 

2016, Bayer et al. 1998), and its presence in the bovine rumen lends further credence to 31 
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the hypothesis that feeding animals high-forage diets over a prolonged period of time 1 

selectively enriches the rumen with specialized fiber-degrading enzymes.  2 

In comparing the rumen microbiome among cattle divergent for feed efficiency, we 3 

found that cellulose- and hemicellulose-degrading species (Fibrobacter succinogenes, 4 

Butyrivibrio proteoclasticus and Ruminiclostridium sp KB18) and specific CAZymes 5 

(GH13, GH11, GH45, CBM79) were more abundant in the metatranscriptome of efficient 6 

cattle. This suggests that the rumen microbiome of efficient cattle can harbor increased 7 

numbers of fibrolytic species and enzymes when undergoing a long-term forage feeding. 8 

This is an important finding and provides more robust evidence of a causal relationship 9 

between the rumen microbes and feed efficiency than has previously been reported 10 

(Fuyong Li and Le Luo Guan 2017). 11 

 Having characterized the presence of enzyme families which we expected to be 12 

enriched in the forage-fed rumen, we then applied this strategy to identify enzymes of 13 

unknown functions in the GH11 and GH45 families, which were one of the most enriched 14 

CAZyme families in the rumen microbiome of the feed efficient cattle. Although the 15 

activities of certain GHs have been investigated in the rumen (Vardakou et al. 2008, Jones 16 

et al. 2017),  a large number of GH11 and GH45 members are as yet uncharacterized, 17 

and are typically excluded in analyses of the rumen proteome.  GH11, unlike other 18 

xylanase families (e.g., GH10), represents only endo-𝛽-1,4-xylanases whose function is 19 

to cleave 𝛽-1,4-xylosidic bonds between xylose monomers, whereas endo-1,4-𝛽- 20 

glucanases of the family GH45 play a role in the hydrolysis of the 1,4-𝛽-D-glucan chain. 21 

Although these enzymes act on lignocellulosic substrates (xylose and cellulose), they 22 

exhibited different abundances and distributions in the rumen, suggesting that they may 23 

perform distinct activities within the GH11 and GH45 families (Figure 5.3a). Taking this 24 

ecological context into consideration, 18 previously uncharacterized xylanases (GH11) 25 

and three uncharacterized endoglucanases (Gh45) were found in the rumen, especially 26 

Xylanase 1 that was the most broadly distributed, widespread and abundant enzyme 27 

(Figure 5.3a). Crucially, Xylanase 1 was detected in the metatranscriptome of all animals, 28 

indicating that it has a core function or functions within the rumen. Kinetic analysis and 29 

thermodynamic experiments confirmed that the abundant, uncharacterized GH11 is an 30 
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active and stable enzyme capable of degrading xylan, which is the most common 1 

hemicellulose and considered the second most abundant biopolymer in the plant kingdom 2 

(Ebringerová and Heinze 2000, Stephen 1983).   3 

The homology model of xylanase 1 revealed a similar structural fold and catalytic 4 

residues as reported for 1h4hB, but it showed different rearrangements in the loops that 5 

sculpture the active site, which can impact substrate binding and consequently enzyme 6 

activity and function. Further investigations showed that Xylanase 1 had two predicted 7 

catalytic residues, E92 (catalytic nucleophile) and E182 (catalytic acid-base), located on 8 

𝛽 strands 9 and 14 (Figures 5.3c-d). The location of these residues adopts a similar 9 

conformation in GH11 xylanases and is entirely consistent with the catalytic apparatus of 10 

a retaining glycoside hydrolase, which hydrolyzes glycosidic bonds by a double 11 

displacement mechanism (Davies and Henrissat 1995). In Xylanase 1, the residue in 12 

close spatial proximity to E182 (the catalytic acid-base) is N180, which characterize 13 

enzymes that display non-acidic  pH optimum (Joshi et al. 2000). Our experiments 14 

confirmed that Xylanase 1 possessed a pH optimum similar to the rumen pH of forage- 15 

fed cattle (~pH 6.0) (Holtshausen et al. 2013), and thus it is likely that this enzyme plays 16 

a key role in the digestion of xylan in the rumen. 17 

 The discovery of new enzymes to break down lignocellulose into simple sugars is 18 

urgently needed, as market demands for enzymes with applications in industrial 19 

processes and animal feed are quickly increasing as a result of the cumulative impacts 20 

of feedstocks on the environment. Unfortunately, a considerable amount of agricultural 21 

residuals are underutilized due to the lack of an effective enzymatic system to degrade 22 

lignocellulose and release its constituent sugars for fermentation. The current study 23 

highlights the usefulness of combining selective pressure on the native rumen microbial 24 

community with the targeted functional profiling performed by well-established algorithms 25 

(Kaminski et al. 2015, Neves et al. 2017, Wood and Salzberg 2014, Meyer et al. 2008a, 26 

Yin et al. 2012). This approach revealed not only the diversity of bacteria and genes 27 

associated with efficient plant cell wall digestion but also facilitated the characterization 28 

of novel CAZyme family members, which may be critical in feed degradation. Applying 29 

this strategy and its underlying concepts in microbial ecology, nutrition, and bioinformatics, 30 
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we discovered previously uncharacterized hemicellulases and endoglucanases. The 1 

demonstration of the xylanolytic capacity of the most abundant and conserved member 2 

of the GH11 family (xylanase 1) present in the rumen metatranscriptome validates the 3 

power of this strategy in discovering lignocellulolytic enzymes from microbial 4 

environments. However, like any other enzyme, the structural basis of these new 5 

enzymes must be investigated in more details to consolidate their status as suitable 6 

candidates for the industrial enzyme market. 7 

5.5 Conclusions 8 

In summary, this study has demonstrated a robust pipeline for the discovery and 9 

characterization of novel CAZymes in the rumen microbiome. Furthermore, we provide 10 

evidence that the host feed efficiency phenotype may be mediated though evolution of 11 

the rumen microbiome in response to dietary pressure.  This proof-of-concept approach 12 

may have many applications outside of animal agriculture, particularly in the recovery of 13 

novel microbial enzymes for use in the biotechnology sector. It may be adapted to any 14 

microbial environment for the discovery of CAZymes of interest, provided that the targeted 15 

microbiome is easy to manipulate and facilitates enrichment for the microbes of interest. 16 

It is likely that in the future, many more lignocellulolytic enzymes with high efficiency will 17 

be discovered through this strategy as knowledge of the precise factors which drive 18 

microbial community shifts increases.  19 
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5.7 Tables and figures 1 

 2 

Table 5.1. Kinetic parameters characterizing the thermal inactivation of Xylanase 1 3 

Temperature 

(oC) 
Kd (min-1) t1/2 (min) D (min) 

ΔHo 

(kJ∙mol-1) 

ΔGo 

(kJ∙mol-1) 

ΔSo 

(J∙mol-

1∙K-1) 

25 0.0017 407.73 1354.46 150.52 78.64 0.24 

40 0.0180 38.51 127.92 150.40 76.58 0.24 

50 0.2400 2.89 9.59 150.31 72.16 0.24 

60 0.92 0.75 2.50 150.23 70.75 0.24 

 4 

Kd, inactivation rate constant; t1/2, half-time (i.e., the time after which activity is reduced to 5 

one-half of the initial value); D, the time required to reduce enzymatic activity to 10% of 6 

its orginal value; ΔHo, activation enthalpy; ΔGo, activation free-energy barrier; ΔSo, 7 

activation entropy of thermal denaturation. 8 

  9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 
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 1 

 2 

Figure 5.1. Taxonomic composition and microbial gene families obtained from 3 

metatranscriptome data in beef cattle. a Taxonomic cladogram showing the most 4 

abundant detected taxa (relative abundance ≥ 0.1% in at least half of the samples). The 5 

six rings of the cladogram stand for phylum (innermost), class, order, family, genus, and 6 

species (outermost), respectively. The sizes of the circles indicate the mean average 7 

abundance of each taxon. b Heat tree displaying the functional capability of the rumen 8 
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microbiota. Each node represents the functional categories (up to three levels) and the 1 

edges determine where each node fits in the functional hierarchy. Node diameter (and 2 

colors) indicate the relative abundance of the functions at level 3. c Cladogram showing 3 

the most abundant CAZymes. The sizes of the circles indicate the mean average 4 

abundance of each CAZyme family.  5 
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 4 

Figure 5.2. Differentially abundant bacterial species (a-b), CAZymes (c), and microbial 5 

functions (d-e) detected in the rumen microbiome of feed efficient cattle. Features were 6 

significant (P < 0.05) between L-FCR and H-FCR by the trimmed mean of M-values 7 

method implemented in edgeR. In the heat tree, node diameter (and colors) indicate the 8 

log2fc in the functional categories at level 4. 9 
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Figure 5.3. Abundance of CAZyme members in the rumen microbiome. a Heatmap 4 

showing the abundance and distribution of the 13 most abundant members of the GH11 5 

and GH45 families quantified according to ShortBRED (Kaminski et al. 2015). b 6 

Phylogenetic tree of xylanases and endoglucanases detected in the rumen 7 

metatranscriptome generated by the neighbor-joining method. c Sequence alignment of 8 

xylanase 1 with 1h4hB, with the residues involved in substrate-binding labeled with a red 9 

star as shown by ESPript (Stuart et al. 1999). d Theoretical 3D structure of xylanase 1 10 

bound to 1,2-Deoxy-2-Fluoro-Xylopyranose (DFX) (PDB ID: 1c5iA) generated by I- 11 

TASSER (Zhang 2008, Yang et al. 2014). 12 
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 1 

Figure 5.4. Purification and characterization of oligomeric state, and kinetic analysis of 2 

Xylanase 1. SDS-PAGE analysis (a), oligomeric state characterization (b), pH curve (c) 3 

and Michaelis-Menten plot (d) of Xylanase 1. 4 
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 6 
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c d
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Figure 5.5. Thermal stability of Xylanase 1. Tm determined by differential scanning 3 

fluorimetry in different buffers (a) and residual activity (%) of Xylanase 1 at different 4 

temperatures (b) with the respective Arrhenius plot (c).   5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

a McDougall’s buffer

b c



 

 174 

 1 

Chapter 6 2 

            General Discussion 3 

6.1 Significance of the research 4 

The advance in omics technologies has led to tremendous progress in our understanding 5 

of the rumen microbiome and its influence on host feed efficiency. However, significant 6 

gaps remain in the literature concerning the interactions between host variation in feed 7 

efficiency and the dynamics of rumen microbial populations. Channeling efforts towards 8 

investigating these interactions offers an opportunity to enhance cattle productivity, since 9 

the rumen microbiota plays a significant role in the host feed efficiency. While steps 10 

forward have been made in this regard (Belanche et al. 2012, Fernando et al. 2010, 11 

Roehe et al. 2016), little is known about the driving forces that influence the relationship 12 

between the rumen microbiota and host individual variation, and how their interactive 13 

effects on animal productivity contribute to the identification of cattle with improved feed 14 

efficiency. To address this, Chapter 2 of this thesis examined the interactions between 15 

host variation in feed efficiency and the dynamics of the rumen microbial population, 16 

contributing to a broader effort to enhance the rumen function and improve cattle feed 17 

efficiency.  18 

An intrinsic relationship exists between feed efficiency and microbial functions in 19 

the rumen, as revealed by total RNA-based techniques recently developed to investigate 20 

the rumen metatranscriptome (Fuyong Li and Le Luo Guan 2017). However, this 21 

methodology may be limited as total rRNA-based metatranscriptomics may 22 

underestimate the abundance of lowly expressed transcripts (Li et al. 2019a). Thus, in- 23 

depth analysis of the associations between rumen taxonomic profiles and feed efficiency 24 

using other approaches (such as mRNA-based methods) are urgently needed in order to 25 

enhance the resolution of the rumen microbial classification. Chapter 3 filled this 26 

knowledge gap and assessed the rumen microbial classification from metatranscriptomic 27 

data using mRNA-based methods, improving our understanding of the linkage between 28 

rumen taxonomic profiles and feed efficiency.  29 
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Although the role of the rumen microbiome in the host feed efficiency has been 1 

widely investigated using metatranscriptomic analysis (Fuyong Li and Le Luo Guan 2017, 2 

Comtet-Marre et al. 2017), little is known regarding variations in microbial signatures that 3 

could be targeted to improve feed efficiency. Chapter 4 employed statistical approaches 4 

that allowed the identification of breed-specific microbial signatures by capturing within- 5 

and between-individual variation observed in closely related breeds. The findings 6 

presented in Chapter 4 suggested that the identification of rumen microbial signatures in 7 

genetically similar breeds may benefit cattle production by providing further possibilities 8 

to target specific taxa and functions and to discover enzymes that can be used to 9 

maximize feed digestion in the rumen.  10 

The rumen is a potent reservoir of microbial enzymes and the role of these 11 

biocatalysts (CAZymes) in the feed digestion has been extensively studied using omics 12 

technologies in order to discover new enzymes with applications in the biotechnology 13 

industry (Hess et al. 2011, Meng Qi et al. 2011, Seshadri et al. 2018). However, the data 14 

described in the literature are limited to describe CAZyme family classifications and their 15 

relative abundance in the rumen, and albeit this information is necessary, it does not give 16 

details on the functions of distinct members of these families and their association with 17 

host feed efficiency. To address this gap, Chapter 5 used a targeted functional profiling 18 

approach to identify distinct members of CAZyme families of interest and pinpointed 19 

enzymes of unknown functions from their abundance, enzymatic activity, and distribution 20 

in the rumen of feed efficient cattle. Overall, the data presented in this thesis contribute 21 

to our fundamental understanding concerning the role of the rumen microbiome in cattle 22 

feed efficiency (Chapters 2, 3 and 4) and provide opportunities to further explore the 23 

potential of the rumen as a reservoir for novel enzyme discovery (Chapter 5). 24 

6.2 Understanding the interactions between host variation in feed efficiency and 25 

the dynamics of the rumen microbial population 26 

Understanding the interactions between the host and the microbiota is crucial for 27 

predicting microbial shifts and identifying individuals that are either responsive or resilient 28 

to dietary changes (Bashiardes et al. 2018). Most rumen studies to date have generated 29 

results that are usually qualitative (Belanche et al. 2011) or semi-quantitative (Comtet- 30 
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Marre et al. 2017), but not quantitative, which may not be sufficient to capture the dynamic 1 

changes of the rumen microbiota according to the host responsiveness to the diet. 2 

Defining the “baseline” of the quantified rumen microbiota in cattle undergoing dietary 3 

changes (Chapter 2) revealed that animals grouped according to the magnitude of rumen 4 

microbial changes reflected the individual responses to the dietary interventions. To our 5 

knowledge, this is the first study that validated the relationship between feed efficiency 6 

and host individual variation in the rumen microbial abundance following the dietary 7 

switches. 8 

 The interest in the stratification of animals via the magnitude of change in baseline 9 

microbiota following dietary changes is driven by previous observations of variations in 10 

performance across individuals, even when maintained on the same diet (Z. P. Li et al. 11 

2016, Brulc et al. 2009, Zhou et al. 2018). The approach used in Chapter 2 to group 12 

animals based on the individual variation in the abundance of microbial populations 13 

showed a relationship with feed efficiency (measured as FCR). The outcomes of Chapter 14 

2 suggested that individual hosts exhibiting variability in bacterial abundance above or 15 

below a certain cut-off (log2fc < -1 or > 1) were more efficient in terms of FCR than those 16 

presenting a stable variability in the bacterial abundance. In practice, this approach is 17 

likely to be more effective when the diets shift from forage to grain than from grain to 18 

forage, as the former sequence of dietary treatments caused a larger variation in microbial 19 

baselines between the diets.  20 

Yet, the results presented in Chapter 2 are further limited by the absence of 21 

microbial diversity data characterizing each group of log2fc in rumen microbes, and this 22 

should be prioritized in future studies in order to get insight into changes in specific 23 

genera/species that may be critical for feed digestion. Moreover, samples were only 24 

available at two-time points prior to the determination of the baseline rumen microbiota, 25 

and thus future investigations should include more sampling points to clearly define the 26 

precise baseline rumen microbiota that is necessary to obtain the stratification of animals 27 

undergoing dietary changes. One might also argue that variations in the content of dietary 28 

components (e.g., NDF) could influence the effectiveness of microbial fermentation of the 29 

feed, and consequently the results found in Chapter 2. In this case, it might be beneficial 30 
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to focus future research efforts towards analyzing the effects of different types of dietary 1 

fibers on the inter-individual variability of the rumen microbiota in terms of feed 2 

degradation, as the type of fibers affects the time of rumination and the microbial 3 

fermentation of the feed (NRC 2016). Whatever the limitations might be, these data 4 

showed that the dynamics of the rumen microbial population is intimately associated with 5 

inter-individual variability in the baseline microbiota, and these findings could be used to 6 

design better feeding strategies to enhance the rumen function and to identify cattle with 7 

improved feed efficiency. 8 

6.3 Understanding the rumen microbiota using mRNA-based metatranscriptomics 9 

A recent study by Fuyong Li et al. (2016) developed a Mothur (Schloss et al. 2009) based 10 

pipeline to assess active rumen microbiota in total RNA sequencing datasets. Despite the 11 

efficacy of this pipeline to investigate linkages between the active rumen microbiome 12 

(structure and function) and feed efficiency in beef cattle (Fuyong Li and Le Luo Guan 13 

2017), it still remained a challenge for researchers to determine which approach (total 14 

RNA or mRNA-based methods) of taxonomic classification delivered the most realistic 15 

representation of the rumen microbial community. In chapter 3, we adapted the Kraken 16 

pipeline (Wood and Salzberg 2014) to analyze mRNA sequences via reference genomes 17 

of rumen microorganisms. The comparative analysis of Mothur and Kraken revealed that 18 

both pipelines showed the rumen being dominated by Prevotella, Treponema, 19 

Ruminoccocus, Fibrobacter, and Butyrivibrio, which are considered as part of a “core 20 

bacterial microbiome” (Henderson et al. 2015). However, the Kraken pipeline classified 21 

rumen microbes beyond the genus level when compared with Mothur, and this resulted 22 

in additional information of the species and their functions in the rumen.  23 

Overall, the Kraken based approach generated a higher resolution of the rumen 24 

microbiota because the reference database used to annotate each microbial sequence 25 

to the lowest common ancestral (Wood and Salzberg 2014) was built based on all known 26 

microbial genomes present in the NCBI database (Neves et al. 2017). Although Kraken 27 

enhanced the microbial classification at the species level, identification of archaea in the 28 

rumen was challenging due to a lack of archaeal reference genomes for the rumen 29 

microbiome. These issues highlight the importance of further strengthening the Kraken 30 
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database through the inclusion of more genomes to enable a more accurate classification. 1 

Another issue the needs to be addressed is the high number of sequences unclassified 2 

(65%) by Kraken, which points to a need for further research on poorly studied microbial 3 

groups. Two possible causes for the high percentage of unclassified sequences were a) 4 

the limited number of rumen species deposited in JGI at the time of the data analysis and 5 

b) the lack of sequencing depth of the total RNA approach used in the study. Thus, there 6 

is a need to include new genomes and/or metagenome assembled genomes from the 7 

rumen microbiome in the customized Kraken database as well as a deeper sequence 8 

depth if we use mRNA to improve the results of the data analysis in future studies.. 9 

Regardless of the approach undertaken in the future, the only way for improvement is 10 

through continued strengthening of the databases by including additional information of 11 

whole-genome sequencing of rumen isolates, as the ability to culture rumen 12 

microorganisms is still limited. 13 

6.4 Associations between microbial signatures, feed efficiency and host genetics 14 

Chapter 4 built on the bioinformatic pipeline developed as part of Chapter 3. Taking 15 

advantage of the analytical capabilities outlined in that previous work, we determined the 16 

taxonomic profiles of the rumen microbiome of Angus cattle, which are known for their 17 

superior performance and beef quality (McLean and Schmutz 2009, Wolfger et al. 2016). 18 

The animal effects that can impact feed efficiency include feeding behavior, energy 19 

metabolism, the rumen microbiota, and the genetic background of the host 20 

(Cantalapiedra-Hijar et al. 2018). Although these factors are usually interconnected with 21 

each other, research questions regarding the associations between the genetic 22 

background of the host with the rumen microbiota as well as with feed efficiency have 23 

raised much interest in recent years  (Roehe et al. 2016). One of these questions is to 24 

address the current lack of information regarding the contributions of the genetic makeup 25 

of the host (e.g., genetically similar breeds of Black and Red Angus) to variations in 26 

specific microbial signatures that could be targeted to improve ruminal function and feed 27 

efficiency. Black and Red Angus cattle were the chosen candidates to study variations in 28 

microbial signatures in Chapter 4 because they are genetically similar and comparisons 29 

between them with respect to the taxonomic and functional profiles could help uncover 30 
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microbial signatures related to feed efficiency of the Angus breed, which comprises a 1 

large proportion of the beef cattle population in North America. 2 

In Chapter 4, the functional potential of the rumen microbiota was investigated 3 

through innovative statistical models (sPLS-DA and ANCOM) to account for the 4 

compositional aspect of the microbiome data and to discover microbial signatures that 5 

characterized the closely related breeds of Black and Red Angus. To the best of our 6 

knowledge, these are the first data to provide a further understanding of the relationships 7 

that exist between breed-specific microbial signatures (bacterial species and microbial 8 

functions) and host phenotype (Black vs. Red Angus) at the RNA-level. Despite the close 9 

genetic similarities between Red and Black Angus, Chapter 4 revealed unique bacterial 10 

phylotypes and functions that differentiated the rumen microbiome of each breed. It was 11 

found that rumen fibrolytic species and a diverse set of microbial gene families were more 12 

abundant in Black Angus, whereas poorly-characterized bacterial species and specific 13 

microbial genes (e.g., carbohydrate pathways) were more predominant in the rumen of 14 

Red Angus.  15 

With its limited sample size, however, this study lacked the power necessary to 16 

find differences in feed efficiency (FCR) between Black and Red Angus. Thus, care 17 

should be taken while interpreting the data outlined in Chapter 4 as the power of this study 18 

may not support the relatively strong statement of ‘genetic effects/influences on the rumen 19 

microbiome’. Power analysis showed that the minimal sample size to detect a FCR effect 20 

size of 1.5 in samples collected from Black and Red Angus over four-time points, with a 21 

power of 0.9 and p-value <0.5 is of 9 animals per breed (Figure S5), indicating that this 22 

number of replicates needs to be included in future experiments to get more accurate 23 

results. Despite these issues, it was revealed associations between microbial signatures 24 

(Chitinophaga pinensis and Clostridium stercorarium) and FCR adjusted to the sampling 25 

time across breeds, suggesting that these bacterial species may play a key role in the 26 

feed conversion efficiency of forage-fed bulls. Further studies with the sample size 27 

mentioned previously might offer a deeper insight into the microbial signatures that are 28 

related to host genetics and feed efficiency. Moreover, the inclusion of other breeds might 29 

be beneficial to elucidate the host genetic influence on the rumen microbiome. Finally, 30 

https://www.dropbox.com/s/doo75fwwhvox4pz/Supplementary%20File%20%E2%80%93%20for%20Online%20Publication%20Only_Clean.docx?dl=0
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the microbial signatures identified in Chapter 3 should be validated using other 1 

technologies (such as qPCR) to confirm their contribution to growth performance in Angus 2 

cattle reared in other geographical locations and exhibiting different feed efficiencies. In 3 

this context, it was attempted to design primers to target the microbial signatures 4 

identified in this study (e.g., Chitinophaga pinensis and Clostridium stercorarium). 5 

However, the primers were not successful in amplifying the targeted species due to the 6 

lack of representative isolates of the rumen microbiota that could be used as templates 7 

to test the specificity of the primer pairs for those species. 8 

6.5 Discovery of novel CAZymes in the rumen through selective pressure on the 9 

native microbial population and targeted functional profiling 10 

The idea of discovering CAZymes through selective pressure on the rumen native 11 

microbial population and targeted functional profiling (Chapter 5) was conceptualized 12 

from the relationship that exists between the rumen microbiota and host feed efficiency 13 

(Chapters 2 and 4). The starting point for the development of this strategy was based on 14 

the hypothesis that lignocellulolytic microbes (and their encoded enzymes) are more 15 

abundant in the rumen of feed efficient cattle compared to inefficient animals fed the same 16 

diet. Previous research supported that hypothesis by showing that selective pressure to 17 

enrich the rumen microbial environment for the desired biocatalyst could be achieved 18 

when specific substrates are included in the diet in order to favor the growth of microbes 19 

specialized at expressing the enzymes of interest (Weimer 1998). This concept was 20 

incorporated in Chapter 5, and the data showed that the relative abundance of bacterial 21 

species was altered after the long-term forage feeding used to enrich the rumen 22 

microbiome for lignocellulolytic microbes according to the groups of feed efficiency (L- 23 

FCR and H-FCR). Of the 115 species analyzed, Fibrobacter succinogens, a cellulose 24 

degrader species (Suen et al. 2011), was the only species affected by the feed efficiency 25 

groups; it showed a nearly 0.5-log2-fold change increase (P < 0.05) in L-FCR relative to 26 

H-FCR. Our results also showed that the relative abundance of Fibrobacter succinogens 27 

and other common plant cell wall degraders (Butyrivibrio proteoclasticus and 28 

Ruminiclostridium sp KB18) exhibited > 4-log2-fold change increase on the 180th day 29 

relative to day 0 in L-FCR compared to H-FCR, confirming the enrichment of the rumen 30 
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microbiome for lignocellulolytic microbes after the long-term forage feeding. To further 1 

investigate whether feed efficiency affects CAZymes, we then analyzed all CAZymes 2 

families in our dataset in relation to the FCR groups. Chapter 5 showed that GH11 (endo- 3 

𝛽-1,4-xylanase - EC 3.2.1.8), GH45 (endoglucanase:  EC 3.2.1.4), and CBMs connected 4 

to cellulose degradation (CBM79) exhibited >2.5-log2-fold change increase in their relative 5 

abundance in L-FCR compared to H-FCR after the long-term feeding. Taken together, 6 

our results indicated that the use of a single type of fibrous diets promotes the increase 7 

in the relative abundance of fibrolytic microbes and lignocellulolytic enzymes in the rumen 8 

of feed efficient cattle over time.  9 

An exciting aspect of the findings outlined in Chapter 5 is that they are not limited 10 

in classifying CAZyme families and determining their abundance in the rumen as 11 

observed in previous research (Fuyong Li and Le Luo Guan 2017, Hess et al. 2011, Meng 12 

Qi et al. 2011). Instead, it showed the importance of assessing individual members of 13 

CAZyme families to guide the discovery of new enzymes and get a comprehensive picture 14 

of their ecological distribution in the rumen microbiome. This is particularly relevant by the 15 

fact that individual proteins within a protein family can have vastly diverse functions 16 

(Franzosa et al. 2015, Schnoes et al. 2009, Levin et al. 2017), and this information may 17 

be ignored when the focus is only on the identification of the protein families in the 18 

microbiome. I recognize that the identification of CAZyme families followed by the 19 

screening of genes encoding novel CAZymes has led to the discovery of thousands of 20 

putative enzymes in metagenomic or metatranscriptomic datasets (Brulc et al. 2009, 21 

Hess et al. 2011, Wang et al. 2013, Svartström et al. 2017, Gharechahi and Salekdeh 22 

2018, Meng Qi et al. 2011, Comtet-Marre et al. 2017, Fuyong Li and Le Luo Guan 2017), 23 

but then a question arises: “why only a handful of these candidate enzymes have entered 24 

industrial application?”. This is a serious issue that needs to be carefully considered by 25 

the researchers interested in exploring the potential of microbiomes for enzyme discovery. 26 

I came to the conclusion that the problem stems from annotation mistakes 27 

(sequence/activity incoherence) in publicly databases (Fernández-Arrojo et al. 2010, 28 

Ferrer et al. 2016). Actually, the literature cites many of these examples like the one 29 

reported by Jiménez et al. (2012) who discovered a novel cold-tolerant esterase using 30 

metagenomics approaches, but this protein was annotated in the database as a MarR 31 
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family transcriptional regulator! These outcomes indicate that database entries are not 1 

sufficiently reliable.  2 

In Chapter 5, the targeted functional profiling method (Kaminski et al. 2015) was 3 

applied to screen members of CAZyme families against a de novo protein reference 4 

database and profile their abundance and distribution in the rumen microbiome without 5 

relying on the annotations of external databases. By screening 775 uncharacterized 6 

members of the family GH11 and 409 of the family GH45, Chapter 5 identified 18 putative 7 

xylanases (GH11) and three putative endoglucanases (GH45). Although these enzymes 8 

act on lignocellulosic substrates (xylose and cellulose), they exhibited different 9 

abundances and distributions in the rumen metatranscriptome, suggesting that they 10 

may perform distinct activities within the GH11 and GH45 families. Later, it was 11 

investigated key active sites and the tertiary conformation of GH11 and GH45 enzymes 12 

and prioritized the enzymatic characterization of xylanase 1 (the most broadly distributed 13 

and abundant xylanase in our rumen metatranscriptome dataset). Several experiments 14 

involving cloning and protein expression and purification of xylanase 1, as well as 15 

differential scanning fluorimetry, size-exclusion chromatography, kinetic measurements, 16 

and thermodynamic calculations were performed to characterize that enzyme. The 17 

biochemical proof of the xylanolytic activity of the most locally abundant and widespread 18 

member of GH11 family using homology modeling and enzymatic assays have 19 

demonstrated the usefulness of the strategy outlined in Chapter 5 and strengthened our 20 

knowledge of the role played by this previously uncharacterized enzyme. However, 21 

further studies are needed to elucidate the crystal structure of xylanase 1 and test the 22 

enzymatic activity of all putative xylanases and endoglucanases identified in Chapter 5.  23 

6.6 Implications and future directions 24 

Despite the limitations described above, this thesis provides fundamental knowledge 25 

concerning the role of the rumen microbiome in cattle feed efficiency and offers 26 

opportunities to further explore the potential of the rumen as a source for novel enzyme 27 

discovery. Chapter 2 demonstrated how the interactions between the diet and host 28 

variation in the abundance of rumen microbes could be used to assess feed efficiency in 29 

ruminants, and these data could be beneficial to animal husbandry in two ways. First, by 30 
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understanding the dynamics of the ruminal microbial population in response to dietary 1 

changes, researchers will be able to design better feeding strategies to improve the 2 

rumen function and host performance, since the microbial community plays an important 3 

role in the digestion of feedstuffs (Belanche et al. 2012, Fernando et al. 2010, Roehe et 4 

al. 2016). Second, our approach could serve as a cheap strategy to quickly assess rumen 5 

microbial shifts in cattle populations undergoing dietary changes under field situations (e. 6 

g., feedlots), and to identify feed efficient or inefficient animals under the same dietary 7 

management since we found a relationship between FCR and the abundance of rumen 8 

microorganisms. The animals could then be managed differently for the most profitable 9 

way to the farmers. However, the data presented in Chapter 2 are limited by the lack of 10 

microbial diversity information for each group of log2fc in rumen microbes, and this should 11 

be prioritized in future experiments as discussed previously. 12 

 The studies outlined in Chapters 3 and 4 developed a pipeline to explore the 13 

taxonomic and functional characteristics of the rumen microbiome and applied novel 14 

statistical approaches as alternatives to the traditional analytical methods discussed in 15 

Chapter 1. The pipeline described in Chapter 3 will offer opportunities to analyze 16 

metatranscriptomic sequence data (~140 bp in length) of rumen samples by providing 17 

further possibilities to enhance the resolution of the rumen microbial classification. 18 

Chapter 4, in turn, showed results on the link between the rumen microbiome, breed 19 

differences, and FCR and is of interest for the scientific community because of the 20 

statistical methodologies that were applied in combination with metatranscriptomics. The 21 

future directions for Chapter 3 include the inclusion of 913 bacterial and archaeal 22 

genomes (Stewart et al. 2018) in the Kraken database and the development of a pipeline 23 

combining the approaches of Fuyong Li et al. (2016) and Neves et al. (2017) for a more 24 

inclusive and representative classification of the rumen microbiome. For Chapter 4, the 25 

main point to be considered in future experiments includes improvements in the design 26 

of the study to enhance the power of the analysis and the reproducibility of the results. 27 

Chapter 5 developed a strategy to discover new enzymes through the application 28 

of selective pressure on the rumen native population and the targeted functional profiling 29 

of CAZyme families. This strategy can uncover previously unappreciated enzymes and 30 
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this might offer further possibilities for meeting increasing market demands for novel 1 

biocatalysts with applications in animal feed industries. An interesting aspect to be 2 

explored in the future using the strategy outlined in Chapter 5 is the implementation of a 3 

feeding intervention that includes recalcitrant diets (e.g., sugar cane bagasse) at a rate 4 

as high as possible without compromising the animal health. This approach will 5 

encourage the evolution of microbes specialized at digesting lignocellulose, and it is likely 6 

that many other lignocellulolytic enzymes with high efficiency will be discovered through 7 

this strategy. In addition, such an approach may also be applied to discover new enzymes 8 

with biotechnology implications such as biofuels. 9 
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