Molecular Modeling: Optimizing a System to Detect Heavy Metal Ions

ALBERTA

Introduction

00

- Exposure to heavy metal compounds causes various detrimental health effects¹
 - □ Effects of mercury exposure include:
 - Minamata Disease²
 - Impaired Neurological Development^{3,4}
- **C** Research involving a BODIPY crown ether (Kim et al., 2009) has demonstrated that substituting oxygen with sulfur atoms makes the crown more selective to 'soft' heavy metals such as mercury (II)⁵
- **Crown ether**: a molecule known for its ability to capture cations
- **BODIPY**: a fluorophore dye that emits fluorescence

Purpose

To find the optimal oxygen-sulfur substitution that would allow for the crown to have a higher affinity to mercury over other heavy metals.

The Cost of Computational Research

- □ Calculations require memory, processors and time
- □ Programs: Gaussian⁶ or GAMESS⁷ Gaussian is faster, but it is licensed.
- □ Methods: RHF(Restricted Hartree-Fock) or
- DFT(Density Functional Theory)
- □ RHF is faster but DFT gives more accurate results

Background Information

Canada-wide supercomputer, Grex

Figure 3: Exchange reaction which occurs during calculation. Each side of the equation is evaluated for lowest energy and affinity of metal to crown; which is used to determine the preferred side of the equation.

Geometry Optimization:

• coordinates of the local minima; where the molecule has the lowest energy.

Figure 4: Energy of a molecule. While there may be multiple local minimas(A,B,C); geometry optimization finds the global minima(A).

Methods

• Computational chemistry involves running theoretical calculations on molecules

Create Input File

Input files specify:

- Computational requirements
- **Type of calculation**
- Method and basis sets
- Molecular Geometry
- \rightarrow Run calculations on file

 $Zn(H_2O)_6^{2^+}$

Geometry

- %NProcShared=2 %mem=10GB
- #p test RHF/gen 6d Pseudo=read opt=(calcAll, cartesian) freq SCF=Tight GFinput Iop(6/7=3)
- 18-crown-2-S4-PBE1PBE/6-31G(d) ... Coord built 18c2s4_para_rhf_631d_gh.xyzopt;2 isolated pairs

1			
d	0.00000	0.00000	0.00000
2	-0.558867	-3.536197	-0.007998
2	-3.416093	2.352157	-0.186902
C	2.179250	-3.106588	-0.273262

Rebecca Ferrao, Shakiba Azimi, Mariusz Klobukowski

Department of Chemistry, University of Alberta

Figure 1: Optimized crown ether

Figure 2: Large files are run on the

lfurs

		ľ
-0		
20		

Calculations:	Geon	netry Optimizat	tion I	Frequ
**** EQUILIBR	IUM GEOMETRY L	OCATED *****		Ca
TOTAL ENER	GY = -225!	5.9482633776		
				Cr
ORDINATES OF AI ATOM CHARGE	L ATOMS ARE (A X	NGS) Y Z		co
				_
80.0	0.0012627227	-0.0286989352	0.0026295802	
6.0	0.7186587702	-3.6113830812	-0.2406186463	_
6.0	-4.0421696694	1.1107662966	-0.3180589728	
6.0	3.0807844719	-2.2385754298	-0.7211853317	
6.0	-4.0694176638	-1.1829128151	0.2876247438	

Visualize Molecule

Negative values indicate Hg is the preferred metal in the crown during exchange reaction.

- 10. Järup, L. British Medical Bulletin 2003, 68: 167–182

