
The only thing that will redeem mankind is cooperation.

– Bertrand Russell, 1954.
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Abstract

The importance of cooperative relaying communication in substituting for, or complement-

ing, multiantenna systems is described, and a brief literature review is presented.

Amplify-and-forward (AF) and decode-and-forward (DF) relayingare investigated and

compared for a dual-hop relay channel. The optimal strategy, source and relay optimal

power allocation, and maximum cooperative gain are determined for the relaychannel. It

is shown that while DF relaying is preferable to AF relaying for strong source-relay links,

AF relaying leads to more gain for strong source-destination or relay-destination links.

Superimposed and selection AF relaying are investigated for multirelay, dual-hop relay-

ing. Selection AF relaying is shown to be globally strictly outage suboptimal. A necessary

condition for the selection AF outage optimality, and an upper bound on the probability of

this optimality are obtained. A near-optimal power allocation scheme is derived for super-

imposed AF relaying.

The maximum instantaneous rates, outage probabilities, and average capacities of mul-

tirelay, dual-hop relaying schemes are obtained for superimposed, selection, and orthogonal

DF relaying, each with parallel channel cooperation (PCC) or repetition-based cooperation

(RC). It is observed that the PCC over RC gain can be as much as4 dB for the outage

probabilities and8.5 dB for the average capacities. Increasing the number of relays deteri-



orates the capacity performance of orthogonal relaying, but improves the performances of

the other schemes.

The application of rateless codes to DF relaying networks is studied by investigating

three single-relay protocols, one of which is new, and three novel, low complexity multire-

lay protocols for dual-hop networks. The maximum rate and minimum energy per bit and

per symbol are derived for the single-relay protocols under a peak power and an average

power constraint. The long-term average rate and energy per bit, and relay-to-source usage

ratio (RSUR), a new performance measure, are evaluated for the single-relay and multirelay

protocols. The new single-relay protocol is the most energy efficient single-relay scheme

in most cases. All the multirelay protocols exhibit near-optimal rate performances, but are

vastly different in the RSUR.

Several future research directions for fixed-rate and rateless coded cooperative systems,

and frameworks for comparing these systems, are suggested.
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Chapter 1

Introduction

1.1 Cooperative Communication

Multimedia services of seamless fourth-generation wireless communication networks re-

quire larger data rates and better sustainable qualities of service. This necessitates more

prudent economical use of network resources such as time, bandwidth,energy, and space.

On the other hand, the capacity of multiaccess wireless channels is mostly restricted by the

transmitter power, channel impairments, and interference. Utilizing multiple, almost inde-

pendent, receptions of a transmitted signal, widely known as diversity, is a recognized way

of overcoming these limitations.

Diversity is implemented in a variety of forms including time, frequency, and multipath

diversities. Spatial diversity in multiantenna or multi-input, multi-output (MIMO) systems

is possibly one of the most brilliant kinds of diversity ever devised. It makes use of different

independent paths in free space, which is abundantly available to communicating parties, to

provide multireception at the receiver.

Spatial diversity can be easily coupled with other kinds of diversity to enhance the

capacity without much additional complexity. However, while it offers spatialdiversity,

conventional MIMO communication contends with a number of deficiencies. First, it can-

not overcome severe shadowing between the transmitter and receiver asall the physical

antennas that make the communication feasible are concentrated at either the transmitter

or the receiver. Second, MIMO systems leave the everlasting crucial demand for light and

small mobile communicating equipment almost unanswered since they basically require

mobile devices to accommodate more than one transmitting/receiving antenna. Although
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the numerous advantages of MIMO systems may sometimes outweigh these deficiencies,

devising substitute methods for attaining nearly the same benefits, while also combating

shadowing and avoiding actual multiantenna equipment in a node, sounds promising. Co-

operative communication has been proposed to achieve this objective.

Relaying channels are the building blocks of cooperative communication. The classic

relay channel consists of a source, a destination, and a relay that assists the source, e.g.

by relaying its message to the destination. Depending on whether the relay amplifies and

forwards, decodes and forwards, or quantizes/compresses and forwards, the information

received, the relaying is called amplify-and-forward (AF), decode-and-forward (DF), or

compress-and-forward (CF) relaying, respectively. General relay channels are more com-

plex and exploit several relays to assist one or more sources by passing their messages.

Relays can also have their own messages to send, and become sources ofinformation.

What essentially happens in these situations is that several sources pooltheir resources to

reliably send each other’s messages to the corresponding destinations. In fact, two or more

nodes share their antennas to form a virtual array and imitate MIMO systems.

The important role of relaying in ad hoc networks is prevalent and undeniable since the

nodes themselves act as switches and routers for each other. Relays can be utilized equally

well in cellular networks and sensor networks where power consumption isa concern.

One of the main rationales behind relaying is to create a new form of diversity, called

distributed spatial diversity or user cooperative diversity. Cooperative diversity is the natural

result of benefiting from other users’ antennas, which can provide thedestination with fresh

replicas of the transmitting signal. Besides the inherent diversity gain, otherbenefits of

relaying, directly or indirectly brought about by cooperative diversity, include economical

power consumption by multihop routing, and combating shadowing effects in thechannel

between the transmitter and receiver.

Resilience against shadowing is a key difference between multinode cooperative sys-

tems and conventional MIMO communication, and represents one of the important motiva-

tions behind cooperation. As explained above, conventional MIMO systems are susceptible

to severe direct-link shadowing. Severe shadowing can hamper conventional single-hop

communication such that neither multiantenna transmission nor coding can improvedi-

rect transmission (DT) substantially. However in cooperation, if the directlink is blocked,

the communication may be still feasible through distributed relaying nodes. Indeed, if the
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quality of service has to be sustained under severe shadowing, collaborative transmission

appears to be an inevitable solution, rather than a mere substitute or complementto multi-

antenna systems.

Cooperative relaying communication also becomes more persuasive and appealing if

the use of multiple antennas in the system is prohibited by hardware physical limitation.

In contrast to MIMO schemes, one major challenge in cooperative networks is the noisy

fading channel among distributed shared antennas of different nodes. Therefore, MIMO

systems may be considered as ideal collaborative networks, whereas collaborative networks

can be regarded as distributed MIMO systems.

It may first seem on the surface that cooperation incurs increased power consumption

due to sources sending each other’s messages as well as their own. However, it has para-

doxically been demonstrated that energy can be considerably saved in thesystem owing

to the dominance of the cooperative diversity gain. In fact, it has been confirmed that two

major benefits brought about by cooperation in different channel scenarios include larger

data rates and less sensitivity to channel variations. Therefore, cooperative diversity has the

potential of being exploited in lieu of or along with MIMO spatial diversity. Onedrawback

of cooperation is its unavoidable signal processing delay. However, it may be argued that

for most practical purposes this delay is tolerable and outweighed by the cooperative gain.

1.2 Literature Review: Pioneering Research

While Meulen introduced the concept of relaying by analyzing a three-terminal network

and obtaining bounds on the mutual information (MI) flow among the nodes [1], [2], Cover

and El Gamal were first to introduce and comprehensively analyze the classic relay channel

[3]. The development in [3] embraced many ideas that appeared later in theliterature.

The authors analyzed their relay scheme in a static channel from an information-theoretic

viewpoint, and derived upper and lower bounds on the capacity of the relay channel, and in

some limited cases, found the exact capacity. It was assumed that the relay assistance takes

the form of facilitation, cooperation, or observation.

Some achievable rates for multirelay scenarios with DF and CF relaying were derived

in [4]. The authors also developed some DF and CF strategies for relay channels, multi-

access relay channels, and broadcast relay channels. In [5], a three-node relay channel in
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a Rayleigh fading environment was examined, and, partly by invoking the results in [3],

several upper and lower bounds on the outage and ergodic capacities were derived.

Cooperative networks were first considered and analyzed for cellular environments in

[6], [7], where the merit of cooperation was demonstrated in achieving significantly larger

rates than conventional DT, and less sensitivity to channel variations. The authors con-

sidered a generalized feedback model, introduced in [8], for a two-user cooperation and

obtained maximum achievable rates for the partners. They also proposed acode division

multiple access (CDMA) framework for collaboration. Cooperation in ad hocnetworks

was considered in [9], [10], where several novel cooperative protocols based on AF and DF

relaying were proposed, and their outage probabilities and diversity orders were obtained.

It was assumed that each node is allotted one of available orthogonal time or frequency

channels so that multiaccess interference (MAI) is avoided.

Coding techniques in relaying constitute another important part of advancement in the

theory of cooperative communication. In fact, collaboration gain on the onehand, and im-

mense coding gain on the other hand, motivated many researchers into devising efficient

schemes and strategies for applying coding to cooperation. Some of these techniques and

protocols include distributed space-time coding (DSTC) [9], [11]–[14],dynamic DF re-

laying [15], coded cooperation [12], [16]–[19], parity forwarding[20], and rateless coded

cooperation [21], [22].

Research in the area of cooperative communication has been very active, leading to

a myriad of results, insights, and novel designs in addition to the aforementioned. Other

literature reviews relevant to the topic of the thesis are presented in the introduction sections

of the subsequent chapters.

1.3 Subject and Scope

The topic of the dissertation is restricted in scope to the following:

• We only consider dual-hop AF or DF relaying, where there is a source of information,

a destination, and one or more relays that can assist the source by communicating its

message to the destination in dual-hop links using an AF or a DF operation. Notethat

cooperative networks can be considerably large and complex. Dual-hop networks

can be viewed as one of the building blocks of larger networks. They have cheaper
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and less complex network coordination, implementation, and routing, and provide

distributed spatial diversity, described in Section 1.1. Also, AF and DF relaying

have attracted major attention to date owing to their simplicity and/or performance

approaching the channel capacity in some cases.

• Only half-duplex relays are considered; i.e. relays that cannot simultaneously trans-

mit and receive on the same frequency band. The possibility of full-duplexoperation,

i.e. simultaneous transmission and reception on the same band, for small commu-

nication devices is implausible due to current practical radio limitations, including

insufficient isolation between the transmitting and receiving circuitries [6], [7], [23].

• Physical layer performance evaluation, protocol design, and network routing tech-

niques constitute the topics investigated in the dissertation. Other functionalities and

issues in other communication layers, such as the problem of cooperative partner se-

lection, network traffic management and scheduling, the network lifetime, andcross-

layer design, are not considered.

• We assume for simplicity that relays do not have or transmit messages of theirown.

In other words, multisource scenarios are not discussed. Nonetheless, many schemes

and protocols considered and proposed in the thesis can be straightforwardly ex-

tended to multisource cases.

1.4 Contributions and Outline

The thesis has seven chapters, where the last chapter is devoted to a summary of the results

and contributions in the thesis, as well as suggestions for future research. In Chapters 2–4,

relaying networks with so-calledfixed-ratecodes are considered, while Chapters 5 and 6

are devoted to DF relaying networks with so-calledratelesscodes. Fixed-rate coding refers

to conventional coding schemes in which the code rate is predetermined or preset at the

transmitter. In contrast, rateless codes, which represent a fairly new approach to the con-

cept of coding, do not have a preset rate at the transmitter. The realizedrate is automatically

adapted to the channel condition even if the transmitter does not have channel state infor-

mation (CSI). Rateless coding has been shown to have great potential forintegrating with

DF relaying. Note that the term “fixed-rate” used in the literature to contrastwith the term

5



“rateless” does not imply that the transmitter cannot or does not change thecode rate. It

only means that the transmitter presets and knows the code rate before transmission.

A summary of the material and contributions presented in Chapters 2–6 is outlined in

order as follows:

• In Chapter 2, a single-relay AF/DF relaying network is considered. It isshown that

AF relaying may outperform DF relaying under either an unreliable source-relay (SR)

link or a suboptimal power allocation between the source and relay. Otherwise, DF

relaying is superior. In DF relaying, a maximal ratio combining (MRC) receiver at

the destination, which is not a maximum likelihood (ML) structure in this applica-

tion, has an error floor at large signal-to-noise ratios (SNRs). True MLdetection at

the destination can remove this error floor, but cannot always make the performance

of DF relaying surpass that of AF relaying. The exact optimal power allocation (OPA)

is also obtained for dual-hop AF relaying. Conditions under which AF or DFrelay-

ing, under a short-term power constraint, increases the achievable MI between the

source and destination are derived. The optimal strategy, the OPA ratio between the

source and relay, and the maximum cooperative gain are determined for each case.

It is shown that DF relaying is preferable to AF relaying in the case of a strong SR

link, whereas the AF operation leads to more collaborative gain in the case ofstrong

source-destination or relay-destination links. The cooperative gain provides a quan-

titative measure for choosing the best relay among a set of available candidate relays.

• The problem of relay power optimization in superimposed AF relaying is investigated

in Chapter 3. In superimposed AF relaying, the source transmission is orthogonal to

the relay transmissions but the relay transmissions are nonorthogonal andsuperim-

posed. The power optimization problem is formulated as a nonconcave fractional

program. Selection AF relaying is a possible power allocation strategy, which al-

locates the whole available power to a single relay in each cooperation round. A

necessary condition for the optimality of the selection AF power allocation is derived

in terms of instantaneous channel coefficients, based on which, an upper bound on the

selection AF optimality probability is calculated. The upper bound approacheszero

exponentially as the number of relays increases, showing that selection AFrelaying is

asymptotically strictly suboptimal. Selection AF relaying has been previously shown
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to be optimal under the constraints of localized channel information at the relays and

a constant relay power allocation template. A suboptimal power allocation, which is

significantly superior to the selection AF algorithm in terms of outage performance,

is also proposed for superimposed AF relaying.

• In Chapter 4, the average achievable rate of multirelay, dual-hop, DF relaying net-

works is analyzed for block fading channels. Different cases of superimposed, se-

lection, and orthogonal DF relaying are investigated. Parallel channel cooperation

(PCC) and repetition-based cooperation (RC) are considered for each case. Closed-

form expressions for the instantaneous achievable rates in each case are obtained.

The outage probabilities and average rates of the different schemes arederived for

Rayleigh fading. Also, the PCC over RC gain and the effect of increasingthe number

of relays on the performances are investigated.

• In Chapter 5, rateless coded, dual-hop DF single-relay networks areexplored. Rate-

less codes do not have a preset rate at the transmitter, in contrast to fixed-rate codes,

and have great potential for integrating with DF relaying. Three single-relay schemes,

called P-1, P-2, and P-3, are introduced, where P-1 and P-2 are taken from prior

research, but P-3 is proposed here, based upon P-1 and P-2 and opportunistic com-

munication. The P-3 scheme is simpler and generally has better energy efficiency

compared to its predecessors. We derive the maximum instantaneous achievable rate

and minimum instantaneous energy per symbol of the protocols. It is observed that

greater rates are achieved at the cost of larger energy expenditure.To compare the

protocols fairly on a power basis, two new techniques are developed; 1)compari-

son between the minimum energies per bit of the protocols; and 2) comparisonof the

achievable rates under an average power constraint (APC). Both minimumenergy per

bit, and maximum rate under the APC are derived for the three protocols. Also, to

examine the long-term behavior of the protocols we consider the long-term average

rate and energy per bit, as well as a newly developed metric, relay-to-source usage

ratio (RSUR), showing the amount of relay usage relative to source usage. We de-

rive expressions for calculating the average rate and the RSUR. Our numerical results

show that P-3 exhibits superior energy efficiency compared to P-1 and P-2 in most

cases. We also study the optimal positioning of the relay in the different protocols

7



that yields the best rate or energy performances for a linear network topology.

• In Chapter 6, we extend P-3 of Chapter 5 to three novel, low complexity, multirelay

protocols, denoted P-n, P-γ, and P-t. The protocols, each having a single design pa-

rameter, rely on selection cooperation, and are differentiated based on their stopping

strategies for the source broadcasting period. They all become P-3 in thesingle-relay

case, if used with their optimal parameters which are trivially obtained. The protocols

are generally rate suboptimal, except for the single-relay case where they can reduce

to P-3. We derive a rate optimal protocol, P-o, from P-3, and use it as a baseline

for performance comparison. We also derive analytical expressions for the average

transmission time of the source and each of the relays, from which the average rate

and the RSUR of the protocols can be calculated. Based on the analysis developed,

large SNR approximations to the optimal parameters of the protocols that maximize

the average rate are obtained. The approximations are good for large SNR scenar-

ios, and satisfactory for small and medium values of SNR. The optimal parameters

are also numerically studied for a wide range of the numbers of relays and the link

qualities. We use the average rate and the RSUR to study the long-term behavior of

the protocols. It is observed that the rate performances of the suboptimalprotocols

are close to the optimal behavior, with P-γ performing slightly better than the others.

However, the RSUR performances vastly differ. We observe that P-o and P-n have

the largest and smallest source usage relative to relay usage, respectively. Also, in all

the protocols the source is less utilized for medium values of SNR.
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Chapter 2

Basic AF and DF Relaying

Strategies1

2.1 Introduction

Fig. 2.1 illustrates a dual-hop relaying scheme where the relay, Node R, assists the source,

Node S, in communicating its message to the destination, Node D. This scheme is con-

sidered a diversity relay channel as the destination utilizes both signals received from the

source and relay. In this chapter, we consider AF and repetition DF relaying [10] in which

the relay forwards the source’s whole message, either a noisy version or a regenerated one.

In recent years, much research has been devoted to devising efficient protocols capable

of best exploiting the inherent synergy and diversity gain of relaying [4], [6], [7], [9]–[11],

[16], [19], [24]–[29]. Several collaborative protocols based onAF relaying, DF relaying,

and DSTC were proposed in [9], [10]. It was shown that even with basic relaying op-

erations, considerable gain can be achieved. Also, various adaptive and hybrid relaying

protocols based on AF relaying, DF relaying, and code combining were proposed in [26],

and their capacity regions were derived and compared. In [11], based on varying the nodes

involved in the broadcast and multiple access portions of the relay channel,three coopera-

tive protocols employing an AF or DF relay were examined, and their performances were

compared in terms of the ergodic capacity, outage capacity, and spatial diversity.

Many researchers investigated and compared AF and DF relaying in various scenarios

1A version of this chapter has been published in the Proceedings of the IEEE Global Telecommunications
Conference (GLOBECOM), 2006.
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Fig. 2.1. A dual-hop diversity relay channel.

[27], [30]–[34]. Multihop relaying with and without diversity was investigated in [27]. It

was found that AF relaying excels in fading diversity relay channels. Moreover, in fad-

ing relay channels without diversity, power optimized AF relaying can outperform power-

suboptimal DF relaying [30]. Also, in fading nondiversity channels DF relaying is superior

to AF relaying in terms of the average bit error rate (BER) and outage probability at small

average values of SNR, but both exhibit similar performances at large average values of

SNR [31]. In [32], it was shown that AF relaying generally outperformsor performs as

well as repetition DF relaying in terms of network coding gain. In [33], the authors pointed

out that AF and DF relaying can offer similar benefits. They demonstrated their results in

a particular scenario. In [34], the impact of the relay location on the systemcapacity and

outage probability was examined for AF and DF relaying. It was found thateach of AF

and DF relaying can outperform the other depending on the relay location.Favorable relay

positionings for AF and DF relaying were also discussed.

Meanwhile, proper resource allocation in cooperative networks has been shown to sig-

nificantly improve gain, especially for resource constrained networks such as sensor net-

works, and has received considerable attention in the literature [30], [35]–[40]. A com-

prehensive survey of power optimization and its importance in cooperativenetworks was

presented in [35]. Optimal power allocation for Rayleigh fading multihop relay channels

was examined in [30] with the outage probability as the optimization criterion, and the enor-

mous gain of power optimization was established for highly asymmetric link strengths or a

large number of hops. In [36], based on an asymptotic analysis of the outage probability for

large values of SNR, OPA for the multirelay protocols introduced in [9] was derived in terms

of mean channel gains. Moreover, the importance of the direct link between the source and

destination in power allocation, and the significant asymptotic gain brought about by power

optimization were demonstrated [36]. The large SNR gain of OPA or near-optimal power

allocation over equal power allocation in dual-hop diversity relay networks was shown in
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[37], where SNR maximizing power allocation schemes were developed for AF and DF,

uncoded and coded, systems. In [38], a utility maximization framework for jointly opti-

mizing relay selection, relaying strategy, and the allocation of power, bandwidth, and rate

in a cellular network with AF or DF relaying was proposed. In the frameworkproposed, a

pricing structure was used to decompose the cross-layer optimization problem into appli-

cation layer and physical layer subproblems. In [39], a numerical power optimization for

AF and DF relaying for maximizing instantaneous equivalent SNR between thesource and

destination was performed. Also in [40], relay OPA and optimal bandwidth allocation for

maximizing the total system rate under a total network power budget were derived for AF

and DF multirelay scenarios and static channels. The two cases of shared bandwidth and

orthogonal channels for the relays were considered.

In this chapter, it is shown in Section 2.2 that guaranteeing the superiority ofDF relay-

ing over AF relaying in terms of the equivalent SNR requires both source-relay (SR) link

reliability and power optimization between the source and relay. Otherwise, AFrelaying

may outperform DF relaying. Moreover, it is shown for DF relaying and quadrature phase

shift keying (QPSK) modulation that ML detection can gracefully remove the error floor

experienced with MRC at the destination. It is well known that MRC is not an ML detec-

tion in this application [6], [7], [24], [41] and the cause of the error floor at large values of

SNR is shown to be the MRC detection at the destination. However, it is shown that with

an unreliable SR link, even ML detection may not make DF relaying surpass AFrelaying

in the error-floor region. The exact OPA for maximizing the instantaneous end-to-end SNR

in dual-hop AF relaying is also derived.

Subsequently, exact quantitative conditions under which AF or DF relaying is advan-

tageous are obtained in Section 2.3. The communication strategy and power allocation are

jointly optimized, and the maximum cooperative gain (CG), under a total power constraint

and under the condition that three options for communication are available, DT, AF relay-

ing, and DF relaying, is derived.

2.2 Dual-Hop AF and DF Relaying

Consider Fig. 2.1 where the source-destination (SD), SR, and relay-destination (RD) links

have complex gains ofg0, g1, andg2, respectively. We consider the case of fixed channel
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gains. This case is widely considered in the literature [5], [37], [40], and leads to tractable,

closed-form solutions.2

Motivated by the enormous potential of collaboration in energy-limited networks with

simple nodes such as sensor networks [4], [9], [25], [35], [42]–[46], we assume that the

source and relay have a total energy budget ofE0 per transmission, and that the relay is

half-duplex (see Section 1.3). We also assume that

ES = k E0 (2.1)

and

ER = (1 − k) E0 (2.2)

whereES andER are the energies per transmission at the source and relay, respectively, and

k ∈ (0, 1] is a power allocation ratio.

The transmission scheme is based on orthogonal relaying as in [10], in which the coop-

eration round (CR) is split into two consecutive equal time slots. During the first slot, the

source broadcasts its message to the relay and destination, and during the second slot, the

relay assists the source by relaying the source’s message using an AF orDF scheme.

Throughout, two-dimensional (2-D) symbols are assumed for transmission. In this sec-

tion, and only for illustration, we consider QPSK modulation at the source andrelay.3

Channel state information is only available to the corresponding receivers, and, therefore,

no beamforming is performed at the transmitters. Also, all transmissions are narrowband,

and distorted by flat fading and additive white Gaussian noise (AWGN). Now, the baseband

equivalent signals received at the relay and destination from the source can be written as

rSR = g1

√

ES

2
(b1 + j b2) + nSR (2.3)

and

rSD = g0

√

ES

2
(b1 + j b2) + nSD (2.4)

2It should be noted that all results excluding BER expressions can be directly applied to slowly fading
channels if instantaneous quantities per cooperation round (CR) are desirable and if the duration of one CR is
exceeded by the channel coherence time. For example, the OPA derived can be regarded as the power allocation
that maximizes the instantaneous SNR in a CR; or, the optimal relaying strategy obtained can be utilized as the
strategy yielding maximum instantaneous CG in a given CR. As for BER derivations in this chapter, numerical
averaging over channel fading statistics can be used to extend the resultsto the case of block fading channels.

3The results can also be applied to the case of binary phase shift keying (BPSK) modulation after appro-
priate replacement of parameters, as explained later in this section.
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respectively, whereb1 andb2 are the transmitted data bits of a symbol which are independent

uniform random variables (RVs) over{−1, +1}, and wherenSR andnSD are independent,

circularly symmetric complex Gaussian (CSCG) zero-mean RVs with variances

E
{

|nSR|2
}

, NSR (2.5)

and

E
{

|nSD|2
}

, NSD. (2.6)

2.2.1 The AF Relaying Case

In AF relaying, the relay amplifiesrSR with a gain equal to [24]

β ,

√

ER

|g1|2 ES + NSR

(2.7)

such that the received signal at the destination from the relay is given by

rRD = g2 β rSR + nRD (2.8)

wherenRD is a CSCG zero-mean RV with varianceNRD, and is independent ofnSD and

nSR. The destination combinesrSD andrRD to detectb1 andb2, the transmitted bits from

the source. It has been shown under the above model that the equivalent SNR per symbol

between the source and destination is [25]

γeq , γSD +
γSR γRD

γSR + γRD + 1
(2.9a)

where

γSD ,
ES |g0|2
NSD

(2.9b)

γSR ,
ES |g1|2
NSR

(2.9c)

and

γRD ,
ER |g2|2
NRD

(2.9d)

are the SD, SR, and RD SNRs per symbol. Eq. (2.9) can be used for any 2-D modulation.

However, for one-dimensional modulations, such as BPSK and pulse amplitude modulation,

the relay can perform noise reduction before amplification [47]. The result is that

γeq,b = γSD,b +
γSR,b γRD,b

γSR,b + γRD,b + 1
2

(2.10)
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where the subscript “b” denotes per-bit SNRs. Note that (2.9) becomes(2.10) after each

per-symbolγ is replaced with two times its corresponding per-bitγ, which shows that

BPSK modulation with noise reduction AF relaying and QPSK modulation exhibit thesame

equivalent SNR per bit. It can be shown that all of the results in this chapter also hold for the

case of BPSK modulation after changing per-symbol SNRs (or energies)to the equivalent

per-bit SNRs (or energies).

The BER minimizing power allocation ratiok(AF)
opt maximizesγeq in (2.9). After some

algebraic manipulations and defining

γ0 ,
E0 |g0|2
NSD

(2.11)

γ1 ,
E0 |g1|2
NSR

(2.12)

and

γ2 ,
E0 |g2|2
NRD

(2.13)

we obtain the novel result4

k
(AF)
opt =







(γ0 + γ1)γ2 + γ0

(γ0 + γ1)γ2 − γ0γ1 +
√

γ1γ2[(γ0 + γ1)γ2 − γ0γ1]
γ1+1
γ2+1

, γ0 <
γ1γ2

γ1 + 1

1, γ0 ≥ γ1γ2

γ1 + 1

. (2.14)

Note thatk(AF)
opt = 1 means that the relay should not be used. In this chapter, we refer toγ0,

γ1, andγ2 as the SD, SR, and RD full-power SNRs, respectively. In contrast toγSD, γSR,

andγRD, the parametersγ0, γ1, andγ2 principally represent the quality of the SD, SR, and

RD links independently of the power allocation ratio,k. Also, note that combining (2.1),

(2.2), (2.9b)–(2.9d), and (2.11)–(2.13), we can write

γSD = k γ0 (2.15)

γSR = k γ1 (2.16)

4The results [37, eqs. (21)–(29)] and [48, Theorem 5], which givethe OPA ratio for the same sce-
nario, are incomplete or incorrect. A counterexample for [37, eqs. (21)–(29)] is to setP |hsd|

2 /σ2
N = 40,

P |hsr,1|
2 /σ2

N = 45, andP |hrd,1|
2 /σ2

N = 10. The calculation in [37] fails and yields a complex-valued
ratio (neither the modulus, real part, or imaginary part is the correct answer). However, (2.2.1) gives the correct
answerk(AF)

opt = 1. A counterexample for [48, Theorem 5] is to setA0 = 10, Ai = 30, andBi = 20. Then,
[48, Theorem 5] gives an incorrect OPA ratioρ = 1 which leads to the end-to-end SNRγr = 10. However,
our formula gives the correct answerk

(AF)
opt ≈ 0.695 which yieldsγeq ≈ 11.5, greater than10.
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and

γRD = (1 − k) γ2. (2.17)

2.2.2 The DF Relaying Case

In DF relaying, the relay makes a decision aboutb1 andb2, denoted̂b1 andb̂2, respectively,

usingrSR, and sends it to the destination. Then, the baseband equivalent signal received at

the destination is

rRD = g2

√

ER

2

(

b̂1 + j b̂2

)

+ nRD (2.18)

wherenRD is the noise term as used in (2.8). The destination combinesrSD in (2.4) with

rRD in (2.18) in some manner to detect the data bitsb1 and b2. Unlike the case of AF

relaying, in this case MRC and ML detection at the destination are not the same and rep-

resent two different detectors at the destination. In the former, the destination assumes that

b̂1 = b1 andb̂2 = b2, whereas in the latter, the destination takes into account the probability

of erroneous detection at the relay,

P (SR)
e , Pr

{
b̂1 6= b1

}
. (2.19)

Note from the symmetry in (2.3) that

Pr
{
b̂1 6= b1

}
= Pr

{
b̂2 6= b2

}
. (2.20)

Let xSD andxRD be defined as

xSD ,

√
2ES

NSD
rSD g∗0 (2.21)

and

xRD ,

√
2ER

NRD
rRD g∗2 (2.22)

where “∗” denotes the complex conjugate. In MRC detection, the destination calculates

y = xSD + xRD (2.23)

and decides on the values ofb1 andb2 based ony. It can be verified from (2.4), (2.18),

(2.21), and (2.22) thatT1 andT2 defined as

T1 , Re{y} (2.24)
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and

T2 , Im{y} (2.25)

whereRe{·} and Im{·} denote the real and imaginary parts, are independent functions

of b1 and b2, and hence, are sufficient statistics ofy relative tob1 and b2, respectively.

Considering onlyb1, we have

T1 = γSD b1 + γRD b̂1 + nSRD (2.26a)

where

nSRD , Re

{
g∗0
√

2ES

NSD
nSD +

g∗2
√

2ER

NRD
nRD

}

(2.26b)

is a zero-mean Gaussian RV with varianceγSD + γRD. The destination comparesT1 with 0

to detectb1. Using (2.26) and considering the different cases thatb1 = b̂1 andb1 6= b̂1, the

BER is derived as5

Pe =
(

1 − P (SR)
e

)

Q
(√

γSD + γRD

)
+ P (SR)

e Q

(
γSD − γRD√
γSD + γRD

)

(2.27a)

where

P (SR)
e , Q(

√
γSR) (2.27b)

is the error probability at the relay and whereQ(·) is the standard Gaussian Q-function

[50, eq. (2.3–10)]. The same BER given in (2.27) is also obtained forb2.

Inspection of (2.27) reveals that if the SD and SR SNRs are fixed but the RD SNR

improves, an error floor in the performance is experienced, as expected. But more inter-

estingly, if the SR SNR is fixed but the SD and RD links improve such thatγSD − γRD is

almost unchanging, then another error floor is encountered atPe = P
(SR)
e /2. These two

observations imply that the performance of the relay channel with DF relaying and MRC

detection at the destination is limited by the SR link, as noted previously [6], [7].

In ML combining, the detection rule forb1 is obtained in Appendix A. The result is that

tanh(Re{xSD}) +
(

1 − 2P (SR)
e

)

tanh(Re{xRD})
+1
≷
−1

0 (2.28)

wherexSD and xRD are given by (2.21) and (2.22). Note that (2.28) can be rewritten

such that it agrees with the results given in [24], [41]. However, (2.28) is more amenable

5A similar expression for the BER was derived in [49].
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to obtaining the exact BER, which, after some manipulation detailed in Appendix A, is

obtained as

Pe = Q

(

p + γSD√
γSD

)

+
1

2
√

2πγSD

∫ p

−p
dx

[

(1 + tanh p)Q

(
tanh−1( tanh x

tanh p ) + γRD
√

γRD

)

+ (1 − tanh p)Q

(
tanh−1( tanh x

tanh p ) − γRD
√

γRD

)]

e−(x−γSD)2/(2γSD) (2.29a)

where

p , tanh−1
(

1 − 2P (SR)
e

)

(2.29b)

for 0 < P
(SR)
e < 0.5. Note from (2.27b) thatP (SR)

e is bounded by0 and0.5. The exact

BER given in (2.29) is a new result.6 The BER at the destination is an increasing function

of the BER at the relay. This implies thatPe can be bounded above by its value when

P
(SR)
e = 0.5, which is shown to equalQ(

√
γSD). Consequently, the BER in ML detection

is not subject to any error floor, in sharp contrast to the case experienced in MRC detection.

The BER minimizing power allocation ratio in the DF case with MRC and ML detection

cannot be obtained explicitly as in the AF case. Instead, we perform numerical optimization

for (2.27) and (2.29) (after applying the replacements (2.15)–(2.17)) with respect tok ∈
(0, 1] to obtain the OPA ratio. Nonetheless, in Section 2.3 the OPA ratio, leading to the

maximum MI between the source and destination, is explicitly given for each case.

2.2.3 Numerical Examples

Fig. 2.2 shows the importance of power optimization in DF relaying. In this figure, the

performances of several AF and DF relaying schemes are depicted versus the SD full-

power SNR per bit,γ0,b, which is half of the corresponding SNR per symbol,γ0. Power-

suboptimal systems in this figure usek = 0.5 as their power allocation ratio. As shown

in the figure, all of the relaying schemes perform better than DT. The power optimized

DF relaying with either MRC detection or ML combining at the destination surpasses the

power optimized AF relaying. However, even with ML detection at the destination, the

power-suboptimal DF relaying is inferior to the power optimized AF relaying. Also, the

performance of the power-suboptimal AF relaying appears to be slightly better than that

6Previously, only approximate expressions for the BER for noncoherent and coherent binary modulations
with ML demodulation were derived in [41] and [51], respectively, based on a piecewise-linear approximation
of the ML operation.
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Fig. 2.2. The effect of power optimization in AF and DF relaying.

of the power-suboptimal DF relaying with ML detection for medium values of SNR. Note

that the simple power optimized DF relaying with MRC detection outperforms the power

optimized AF relaying, the power-suboptimal AF relaying, and DT by as much as 0.5 dB,

1.5 dB, and2.5 dB, respectively. This figure indicates that DF relaying and ML detection

at the destination are not sufficient conditions to guarantee the best performance; the power

allocation ratio also plays a major role.

Fig. 2.3 indicates the impact of trusting the SR link in DF relaying with MRC detection

at the destination. All of the schemes in this figure are power optimized. As explained

before, an error floor is expected whenγSR is fixed. As shown in the figure, ML detection

at the destination removes the error floor since the cause of the error flooris suboptimal (i.e.

non-ML) detection. However, with an unreliable SR link even using ML detection may not

make DF relaying outperform AF relaying for large values of SNR.

2.3 Benefits of Relaying and CG

In this section, we derive joint optimization of the relaying strategy and powerallocation

ratio for maximizing the overall MI between the source and destination, and quantify the

maximum CG under a total power constraint, all in terms of the instantaneous channel

coefficients. The underlying assumption is the availability of only three communication
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Fig. 2.3. The error floor in DF relaying.

options (strategies), DT, AF relaying, and DF relaying.

Fig. 2.4 shows how a fair comparison on a power basis between the relayingand DT

schemes can be made. One 2-D symbol is transmitted in every degree of freedom (DoF).

In the relaying scheme,N DoFs, in time or frequency, are available for each of the source

and relay. In the DT case, the source takes up all available2N DoFs. Also, using the same

notations as in Section 2.2, we assume that in the relaying case, the source and relay have

a total energy budget ofE0 per DoF. Therefore, a total energy ofNE0 is available for the

period of cooperation. The source uses energyES given in (2.1), and the relay uses energy

ER defined in (2.2), per DoF. As shown in this figure, the SNRs of the SD, SR,and RD links

per DoF areγSD, γSR, andγRD, respectively, with the definitions given in (2.9b)–(2.9d). In

DT, the source uses energyE0/2 per DoF, and therefore, the SNR in the SD link becomes

γ0/2, whereγ0 is defined in (2.11).

If the maximum achievable MI between the source and destination in cooperative or DT

transmission isImax nats per 2-D symbol, then we define the CG as

CG , 10 log10

(

eImax − 1

eI
(DT)
max − 1

)

dB (2.30)

whereI
(DT)
max is the maximum achievable MI in DT. In fact, theCG shows the amount of

gain in the equivalent SNR from the source to the destination with respect to DT. Note that
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Fig. 2.4. Time-bandwidth dimensionality for cooperative transmission and DT, and the corresponding link
SNRs.

if the best option for the source is not to use the relay, then

CG = 0 dB. (2.31)

The results for the best strategy for the source to maximize the CG, the OPA ratio k,

and the maximum CG are summarized in Theorem 2.1. In this theorem, we employ the

definitions ofγ0, γ1, γ2, k
(AF)
opt , and CG given in (2.11)–(2.13), (2.2.1), and (2.30).

Theorem 2.1 (Best Strategy and CG in Dual-Hop AF/DF Relaying).Assume that the

only available options for the source are either not to use the relay (i.e. to use DT), or to

use AF or DF relaying at the relay, and that DF relaying is adopted if and only if the relay

is capable of successfully decoding. Successful decoding at a nodeoperating at a rateR

nats per 2-D symbol is considered to be attainable if and only if the receivedvalue of SNR

exceeds the limit,

10 log10

(

eR − 1
)

+ 10 log10 ρ dB (2.32)

for someρ ≥ 1. Define

L1 , 1 − γ2
0

4ρ(γ2 − γ0)
(2.33)

L2 ,
γ2

γ1 + γ2 − γ0
(2.34)

and

K ,

{

(γ0 + γ1)γ2 + γ0
√

[(γ0 + γ1)γ2 − γ0γ1] (γ2 + 1) +
√

γ1γ2(γ1 + 1)

}2

. (2.35)
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Then, if

γ2 ≤ γ0 +
γ2

0

4ρ
(2.36)

the relaying is not beneficial and

CG = 0 dB. (2.37)

Otherwise, we have the following possible cases with the best strategy given in each case:

i) L1 ≤ L2 andγ0 ≥ γ1γ2/(γ1 + 1): No cooperation;CG = 0 dB.

ii) L1 ≤ L2 andK ≤ γ0 + γ2
0/(4ρ): No cooperation;CG = 0 dB.

iii) L1 ≤ L2, γ0 < γ1γ2/(γ1 + 1), andK > γ0 + γ2
0/(4ρ): AF relaying.

iv) L1 > L2, γ0 < γ1γ2/(γ1 + 1), andK ≥ L2γ1: AF relaying.

v) L1 > L2 andK < L2γ1: DF relaying.

vi) L1 > L2 andγ0 ≥ γ1γ2/(γ1 + 1): DF relaying.

In the case of AF relaying, the OPA ratio isk
(AF)
opt , and one has

CG = 10 log10

[

2ρ

γ0

(√

1 +
K

ρ
− 1

)]

dB. (2.38)

In the case of DF relaying, the OPA ratio isL2, and one has

CG = 10 log10

[

2ρ

γ0

(√

1 +
L2γ1

ρ
− 1

)]

dB. (2.39)

Note that (2.32) is, in fact, the decoding threshold for a capacity-approaching code op-

erating at a rateR nats per 2-D symbol. Theorem 2.1 stipulates the decoding SNR threshold

at a node as a function of the transmission rate. The first term in (2.32) is theShannon limit,

and the second term is a margin depending on the code block length, the structure of the

code, and weakly on the rateR. This margin can be around1 dB for low density parity

check codes [52].

Proof. A proof is given in Appendix B. �

Figs. 2.5–2.7 show the CG and optimal strategies in collaborative transmission for

several scenarios. In all cases, the decoding margin,

10 log10 ρ (2.40)
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Fig. 2.5. Cooperative gain versus the SD full-power SNR, and the optimal relaying strategies.
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Fig. 2.6. Cooperative gain versus the SR full-power SNR, and the optimal relaying strategies.

has been set to1 dB. Observe in Fig. 2.5 that the CG is as much as19.2 dB when the SD

link is very weak. In fact, the CG increases when the SR and RD links improve or the SD

link deteriorates.

Note that in Figs. 2.6 and 2.7, there is a saturation effect asγ1 or γ2 increases. This

expected phenomenon is because an increase inγ1 effectively makes the relaying system
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Fig. 2.7. Cooperative gain versus the RD full-power SNR, and the optimal relaying strategies.

approach a two-transmitting-antenna scheme having a fixed gain over single-antenna DT.

Also, asγ2 improves, the relaying system imitates a two-receiving-antenna scheme.

Fig. 2.6 indicates that DF relaying is favorable at largeγ1. This is explained by the

relay’s higher chance of decoding successfully at larger rates as theSR link improves.7

A more interesting observation from Figs. 2.5 and 2.7 is that a strong SD or RDlink

persuades the relay to execute AF relaying. This persuasion is overshadowed by sufficient

improvement of the SR link.

7The superiority of DF relaying over AF relaying in the case of strong SR links has been reported in the
literature for other scenarios and other figures of merit [10], [25], [27], [34], [49].
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Chapter 3

Dual-Hop AF Relaying Networks1

3.1 Introduction

In a multirelay, dual-hop AF relaying network, such as the one depicted in Fig. 3.1, the

relays cooperate with the source by amplifying and forwarding its message tothe destina-

tion. In such a network, the source and relays can be assigned orthogonal channels. This

constitutesorthogonal AFrelaying. An alternate scheme is to have the source transmis-

sion be orthogonal to relay transmissions but to let relay transmissions overlap in time and

frequency, constitutingsuperimposed AFscheme. Yet another scheme, which can be sub-

sumed under superimposed relaying as will be explained in this section, isselection AF

relaying, where in each CR, a single relay is chosen for the cooperation.

Orthogonal relaying suffers from orthogonalization loss [9], which is avoided in super-

imposed relaying at the expense of greater receiver complexity [15]. Recall from Section

1.3 or 2.2 that half-duplex relaying, which is the common mode of operation compared to

the full-duplex mode, requires separation, similar to orthogonalization, between transmit-

ting and receiving signals. However, it was shown in [15] that the inefficacy of conventional

half-duplex schemes is due to the use of orthogonal subspaces, ratherthan the half-duplex

operation. In [53], the problems of minimizing the BER subject to a total energyconstraint,

and minimizing the energy consumption under a BER constraint were investigated as a

linear 0-1 knapsack problem for orthogonal AF relaying. In [48], it was shown that orthog-

onal AF relaying is always inferior to the selection AF scheme, and the source and relay

1A version of this chapter has been published in the Proceedings of the IEEE Global Telecommunications
Conference (GLOBECOM), 2008, and in part in the IEEE Transactions on Communications, vol. 57, no. 10,
pp. 2918–2922, Oct. 2009.
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OPA ratios for orthogonal and selection AF relaying were derived. In this chapter, we only

consider and study superimposed and selection AF relaying.

Superimposed AF relaying was first introduced and studied in [11], [40]. The superim-

posed AF scheme considered in this chapter is similar to the schemes in [40], [54], [55],

and comprises two phases of equal duration. In the first phase, the source broadcasts, and

in the second phase, relays amplify and simultaneously forward the sourcedata, received

from the first phase, to the destination, using the same frequency band.

The importance of proper power allocation in relaying was explained in Chapter 2,

and demonstrated for a simple network. Here, we formulate and examine the relay OPA

in superimposed AF relaying, and investigate the optimality of the selection AF power

allocation scheme. The selection AF power allocation [48], [54] can be considered a special

case of the superimposed AF scheme, in which the entire available aggregaterelay power

is allocated to a single relay in each CR. The single relay is selected such that the overall

outage probability is minimized. The selection is revised for each CR.

It was shown in [54] that selection AF relaying is optimal among all superimposed

AF schemes for Rayleigh fading channels under the conditions that the relays can only

access their local channel state information, and that the relay power allocation template is

constant. In [40], optimal relay power and bandwidth allocation for maximizingthe total

system rate under a total network power budget for orthogonal and superimposed AF and

DF schemes were derived for the case where the baseband link coefficients are real-valued,

i.e. where links only suffer path loss. This assumption leads to closed-formsolutions for the
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OPA, and is different from our more realistic assumption that the basebandlink coefficients

are generally complex-valued. In [55], source and relay OPA for superimposed relaying

was obtained when the relays use beamforming in each CR and when each relay has its

own power constraint. Here, we consider a similar superimposed AF relaying problem but

with a relay aggregate power constraint and without beamforming which canincrease the

overall complexity and implementation cost.

In [56], the authors considered a generalized selection AF relaying problem where re-

lays have knowledge of their local channels and use beamforming, and where in general,

more than one relay can transmit simultaneously to the destination. It was assumed in [56]

that each relay either does not transmit or transmit with its full power. The diversity order

of several AF single-relay selection schemes was derived, and several multirelay selection

schemes were proposed. In this chapter, we only consider best-relay (single-relay) selec-

tion schemes [48], [54], which do not need interrelay synchronization used in multirelay

selection protocols, and compare them with superimposed AF relaying for SNR optimality.

We show that the superimposed AF OPA can be formulated as a so-called nonconcave

fractional program, consisting of globally maximizing the ratio of two positive semidefi-

nite quadratic forms over the nonnegative orthant. We then proceed to derive a necessary

condition for the selection AF power allocation optimality in terms of instantaneous chan-

nel coefficients. We show that as the number of relays increases, the selection AF power

allocation is less likely to be outage optimal, such that the probability of optimality decays

exponentially with the number of relays. We then develop a closed-form, outage subopti-

mal power allocation solution whose outage performance closely follows thatof the optimal

scheme, and noticeably outperforms that of the selection AF scheme.

Throughout, upright boldface small letters represent vectors, while anupright boldface

capital letter denotes a matrix. Also, we use the following notations:

• Superscripts “T” and “H” denote the transpose and conjugate transpose, respectively.

• Operatordiag {·} maps a vectorw to a diagonal matrix whose diagonal vector isw.

• Vector|w|, where

w = (w1, · · ·, wM )T (3.1)

is defined as,
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(|w1|, · · ·, |wM |)T. (3.2)

• Vectorw+, wherew is a real-valued vector as in (3.1), is defined as,

(max{w1, 0}, · · ·, max{wM , 0})T. (3.3)

• Vectorei represents a vector having1 at theith component and zero elsewhere.

• The notations≻ and� for vectors represent componentwise inequalities, and for

matrices represent (non)positive or (non)negative definiteness.

The remainder of the chapter is organized as follows. The system model is described in

Section 3.2, and the problem is introduced and formulated. Section 3.3 provides a necessary

condition for the selection AF optimality, and demonstrates the selection AF asymptotically

strict suboptimality. Finally, a suboptimal superimposed AF relay power allocation scheme

is developed in Section 3.4.

3.2 System Model and Problem Formulation

Consider the relay channel depicted in Fig. 3.1 with a source (Node S), a destination (Node

D), andM AF half-duplex relaysR1, . . ., RM , where the destination can only receive

from the relays. In fact, we assume that the direct SD link is blocked, e.g. due to severe

shadowing [30], [57]–[59]. Collaboration is particularly appealing to such a scenario, as

conventional communication cannot help, and cooperation appears to be the only remedy.

One CR is split into two equal-length phases, in the first of which the source broadcasts

a number of symbols, and in the second of which the relays, each with a preassigned power,

simultaneously amplify and forward the source’s message from the first phase. Therefore,

the destination receives relay superimposed signals in the second phase.

All source and relay transmissions are oblivious to CSI, and occupy the same frequency

band of baseband widthW . Also, the transmissions are narrowband and distorted by qua-

sistatic flat fading and AWGN. The channel complex baseband coefficients of the source-

Rm (SRm), and Rm-destination (RmD) links are denotedgSm andgmD, respectively. The

channels are assumed to be independent and to remain constant during one CR, but to

change independently over consecutive CRs.

It is assumed that the source and Rm transmit with energies per 2-D symbolES and
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km ER, whereES andER are two constants and wherek1, . . . , kM represent relay power

allocation ratios, which are nonnegative and sum to1. Note that the output powers of

the source and Rm are obtained asW ES andkm W ER. It is also assumed for technical

considerations that each relay can sustain a maximum continuous power no less thanW ER.

The problem is to findk1, . . ., kM such that the outage probability is minimized. Out-

age is defined as the event that the maximum achievable rate between the source and des-

tination is exceeded by a fixed target rater. The ratiosk1, . . ., kM are allowed to be

functions of the link instantaneous coefficientsgSm andgmD. Therefore, irrespective ofr

and the link statistics, the relay power allocation ratios that minimize the outage probability

are the same as those that maximize the overall instantaneous achievable rate.Note that

km = 0 in a CR means that Rm is not utilized in the CR. Also,km = 1 (and therefore,

ki = 0 for i 6= m) indicates the solitary use of themth relay. Therefore, the selection

AF algorithm that allocates the entire aggregate powerPR to a single relay in each CR in

order to minimize the outage probability, amounts to finding anm, in a CR, for which the

instantaneous rate resulting fromkm = 1 equals or exceeds the rate resulting fromki = 1

for anyi 6= m.

Assume that the source transmits a 2-D symbolxS, where

E
{

|xS|2
}

= ES. (3.4)

This symbol is received at Node Rm as

ym , gSm xS + nm (3.5)

wherenm is the AWGN with one-sided power spectral density (PSD)Nm. Node Rm am-

plifiesym with the factor

βm ,

√

km ER

GSm ES + Nm
(3.6a)

where

GSm , |gSm|2 (3.6b)

or

GSm , E
{

|gSm|2
}

(3.6c)

depending on whether we need
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E
{

|βm ym|2
∣
∣
∣ gSm

}

= km ER (3.6d)

corresponding to an instantaneous or short-term power constraint forRm, or

E
{

|βm ym|2
}

= km ER (3.6e)

indicating an ergodic or long-term power constraint based on averagingover different real-

izations ofgSm.2 Now, the signal received at the destination in the second phase is

yD ,
M∑

m=1

gmD βm ym + nD =

(
M∑

m=1

βm gSm gmD

)

xS +
M∑

m=1

βm gmD nm + nD (3.7)

wherenD is the AWGN at the destination with one-sided PSDND. Conditioned on the

channel coefficients, the maximum MI in nats betweenxS andyD can then be written as,

ln (1 + γeq) (3.8a)

where

γeq ,
ES

∣
∣
∣
∑M

m=1 βm gSm gmD

∣
∣
∣

2

∑M
m=1 β2

m |gmD|2 Nm + ND

(3.8b)

is the equivalent SNR from the source to the destination. Eq. (3.8b) can berewritten, after

some manipulations using (3.6a), as

γeq =

∣
∣
∣d

T
a

∣
∣
∣

2

1 +
∥
∥dTdiag {b}

∥
∥
2 =

d
T
aa

H
d

1 + dTdiag {b}diag {b}H
d

(3.9a)

where

d , (
√

k1, · · ·,
√

kM )T (3.9b)

is the square-root power allocation ratio vector, and where

a , (a1, · · ·, aM )T (3.9c)

b , (b1, · · ·, bM )T (3.9d)

am ,

√

ES ER

ND

gSm gmD√
GSm ES + Nm

(3.9e)

and

bm ,

√

ER Nm

ND

gmD√
GSm ES + Nm

. (3.9f)

2Both approaches have been considered in the literature [9], [54].
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The optimization problem is to find(k1, · · ·, kM ) that maximizesγeq. Therefore, using

the definitions

A , aa
H (3.10)

and

D , diag {b} diag {b}H (3.11)

and from (3.9), one can rewrite the problem as,

argmax
d

d
T
Ad

1 + dT Dd
(3.12a)

subject to the constraints

d � 0 (3.12b)

and

d
T
d = 1 (3.12c)

(see the notations defined in Section 3.1). Any global solution to (3.12) is equivalent to

an OPA strategy. Based on the selection AF description in this section, the selection AF

algorithm solves (3.12) when,

d ∈ {e1, · · ·, eM} (3.13)

whereem has been defined in Section 3.1. This amounts to solving,

argmax
m

Amm

1 + Dmm
(3.14)

or

argmax
m

|am|2

1 + |bm|2
. (3.15)

Therefore, selection AF relaying is optimal whenever a global solution to (3.12) is one of

theM extreme vectorse1, · · ·, eM of the constraint set.

To further simplify the problem, one can show that (3.12) is equivalent to,

argmax
d

d
T
Ad

dT D́ d
(3.16a)

subject to the constraint

d � 0 (3.16b)
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where

D́ , D + IM (3.16c)

and whereIM is the identity matrix of orderM , in the sense that any global solution to

(3.12) is a global solution to (3.16), and for any global solutiond to (3.16),d/‖d‖ is a

global solution to (3.12). Problem (3.16) is advantageous over problem (3.12) in that it con-

sists of the ratio of two convex quadratic functions with a closed-set, convexity constraint.

Note that the constraint set in (3.12) is closed, but not convex. Such a global optimization

problem, a so-called nonconcave fractional programming, may arise in realistic applica-

tions [60]. The problem in general lacks a closed-form solution. Nonetheless, some global

optimization algorithms have been developed for its solution (e.g., see [61], [62], and the

references therein).

Observe from (3.9)–(3.12) and (3.16c) that the objective function in (3.16),

d
T
Ad

dT D́ d
(3.17)

actually equalsγeq when the square-root power allocation ratio vector is given by

(
√

k1, · · ·,
√

kM )T =
d

‖d‖ . (3.18)

This obviously shows that (3.17) is upper bounded, and, therefore, the global optimization

problem (3.16) has a solution.

The boundedness of (3.17) can be verified via another approach which also yields an

interesting upper bound onγeq. If

η ,
√

ES

(
gS1√
N1

, · · ·, gSM√
NM

)T

(3.19)

whereNm is the PSD ofnm (see (3.5)), we obtain

a = diag {b}η (3.20)

from (3.9). Meanwhile, one has

‖z‖2
IM � z z

H (3.21)

for any complexM -tuple vectorz. Combining these facts, we can show that

D́ ≻ A

‖η‖2
� 0 (3.22)

and consequently,
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0 ≤ d
T
Ad

dT D́ d
= γeq < ‖η‖2 = γS1 + · · · + γSM (3.23a)

where

γSm ,
ES |gSm|2

Nm
(3.23b)

is the SNR realized at Rm.

3.3 Selection AF Suboptimality

In this section, the deviation of the selection AF algorithm from optimality in relay power

allocation is examined. We start with a necessary condition for the selection AFoptimality.

Theorem 3.1 (Necessary Condition for Selection AF Optimality).If the selection AF

algorithm is optimal for relay power allocation, then we have

∃i, ∀j, j 6= i : Re
{

gSi giD g∗Sj g∗jD
}

≤ 0. (3.24)

Proof. A proof is given in Appendix C. �

Next, we prove that selection AF relaying is asymptotically strictly suboptimal.

Theorem 3.2 (Selection AF Asymptotically Strict Suboptimality).The probability of

the selection AF outage optimality approaches zero exponentially asM increases, inde-

pendently of the fading model except that different links suffer independent fading with

uniformly distributed phase distortion.

Proof. A proof is given in Appendix D. �

The upper bound (D-15) from the proof of Theorem 3.2 shows thatPr{E} < 10−2 for

M > 11; i.e. for more than11 available relays, selection AF relaying is suboptimal with

a probability greater than99%. Note that the independent fading and uniformly distributed

phase assumptions stipulated in the theorem are common in the literature.

The increasing divergence of the selection AF protocol from outage optimality is illus-

trated by numerical examples in Fig. 3.2, where the outage probabilities of the selection AF

and optimal schemes versus the number of relays are depicted for two ratesr in Rayleigh

fading channels. Recall that the outage probabilityPout at rater bits is given as

Pout = Pr{ln(1 + γeq) < r ln 2} (3.25)
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Fig. 3.2. The outage probability versus the number of relays for selection and optimal superimposed AF
relaying in Rayleigh fading channels, whenγSm = 7 dB andγmD = 15 dB for m = 1, · · ·, 6.

whereγeq is given by (3.8b). The outage probabilities in Fig. 3.2 have been obtained by

105-iteration Monte Carlo simulation. In this figure, a symmetrical case has been consid-

ered in whichγSm = 7 dB andγmD = 15 dB, whereγSm is defined by (3.23b) and where

γmD ,
ER |gmD|2

ND
(3.26)

is the SNR at the destination if only Rm transmits. One can observe that asM increases,

the selection AF scheme diverges more from optimality. For example, whenM = 6, Pout

for the selection AF scheme is almost5 times that of the optimal scheme for both ratesr.

Fig. 3.3 exhibitsPout versus fading severity, parameterm in a Nakagami-m distribu-

tion, for a typical example whenM = 5. It is observed that the selection AF deviation from

optimality is also susceptible to fading severity, intensified as the fading moderates.

3.4 Proposed Suboptimal Scheme

The optimal superimposed AF scheme is too complex to be implemented in practical net-

works. In fact, the branch and bound algorithms presented in [61], [62] for solving noncon-

cave fractional global optimization programs are general with indeterministic convergence

time and computational load. In this section, motivated by the exact optimal solutionfor the
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Fig. 3.3. The outage probability versus the fading severity for selection and optimal superimposed relaying
in the case of five relays for a Nakagami fading channel, whenr = 0.6 bits and(γS1, γ1D) = (8, 3) dB,
(γS2, γ2D) = (3, 7) dB, (γS3, γ3D) = (8, 6) dB, (γS4, γ4D) = (5, 3) dB, and(γS5, γ5D) = (5, 7) dB.

case ofM = 2 as will be explained, we propose a suboptimal power allocation scheme. We

develop a closed-form suboptimal solution to (3.16), which does not involve convergence

issues or indefinite search.

First, note that (3.16) can be converted to the equivalent problem,

argmax
u

u
T

D́
−1/2

AD́
−1/2

u

uT u
(3.27a)

subject to the constraint

u � 0 (3.27b)

where

u = D́
1/2

d (3.27c)

or

d = D́
−1/2

u. (3.27d)

It can be shown that,

D́
−1/2

AD́
−1/2 (3.28)

is Hermitian and nonnegative definite. However, (3.27) is not a typical quadratic form
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maximization problem due to the constraint (3.27b). Also, note that expression (3.28) is

complex-valued, whereas the optimization is performed over real values. While this is not

of concern in general, for the purposes of this section we equivalently convert (3.27) to,

argmax
u

u
T

Λu

uT u
(3.29a)

subject to the constraint

u � 0 (3.29b)

where

Λ , D́
−1/2 (

A + A
T)

D́
−1/2 (3.29c)

is a nonnegative definite, symmetric, real-valued matrix. Note that for a given u satisfying

(3.29b) and any positiveℓ, ℓu is componentwise nonnegative and leads to the same value

of the objective function in (3.29). Therefore, ifu is globally optimal, thenℓu is globally

optimal for anyℓ > 0. Also, note that based on quadratic form maximization results [63],

if corresponding to its maximum eigenvalue,Λ has an eigenvector

v , (v1, · · ·, vM )T (3.30)

such thatv � 0 or−v � 0, then a globally optimal solution to (3.29) is

uopt = |v| (3.31)

where the notation| · | for a vector has been defined in Section 3.1.

Our proposed suboptimal solution to (3.29),us-opt, is as follows, and can be proved

through differentiation to be optimal forM = 2 (and trivially for M = 1), and which in

fact, is the generalization of the optimal solution forM = 2 to the case of an arbitraryM .

Assume that the maximum eigenvalue ofΛ, λmax, has multiplicityt, and thatv1, · · ·, vt

are the eigenvectors corresponding toλmax. Now, if for anyj ∈ {1, · · ·, t} one hasvj � 0

or−vj � 0, then

us-opt , |vj |. (3.32)

Note that in this case,us-opt is globally optimal. Otherwise,

us-opt , argmax
u∈{v

+
1 ,(−v1)+, ···,v+

t ,(−vt)+,e1, ···, eM}
u

T
Λu

uT u
(3.33)

where we have used the notations defined in Section 3.1. Note that (3.33) only involves
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search over a finite set of size2t+M , and that foru = em, the objective function in (3.33)

simply reduces toΛmm.

To summarize the proposed suboptimal relay power allocation scheme, first, vectorsa

andb from (3.9e) and (3.9f) are calculated. Then, the expressions

A = aa
H (3.34)

D́ = diag {b} diag {b}H + IM (3.35)

and

Λ = D́
−1/2 (

A + A
T)

D́
−1/2 (3.36)

are evaluated. Finally, the suboptimal solution to (3.29),us-opt, is obtained from (3.32) or

(3.33), which then translates to the square-root power allocation ratio vector

ds-opt ,
D́

−1/2
us-opt

‖D́−1/2 us-opt‖
. (3.37)

Fig. 3.4 shows the superiority of the proposed scheme over the selection AFprotocol in

terms of the outage probability, and that the proposed suboptimal scheme performs almost

as well as the optimal scheme. The outage probabilities have been obtained byMonte-Carlo
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simulating and solving (3.12), for the selection AF and optimal superimposed AFschemes,

and (3.33), for the proposed scheme. The superiority of the optimal or proposed suboptimal

schemes over the selection AF scheme is increased asM is raised, and reaches about0.88

and0.76 decades smaller outage probabilities atM = 6 for r = 0.3 bits andr = 0.7 bits,

respectively. It can be argued that the proposed scheme can be implemented with almost

the same complexity requirements as those required for a centralized implementation of the

selection AF scheme.
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Chapter 4

Dual-Hop DF Relaying Networks1

As explained in Chapter 1, several ideas for basic relay operations were developed in [1],

[3], which were later termed AF [9], DF [4], [9], and CF [4] relaying. In Chapter 3, we

investigated superimposed and selection AF relaying. In this chapter, we consider fixed DF

relaying, in which relays, under constant time/frequency allocation, attemptto fully decode

the source’s message, prior to forwarding.

4.1 Introduction

The DF relaying protocol and its capacity evaluation have been the main topicsof a vast

body of research [4], [5], [9]–[11], [26], [57]–[59], [64]–[75]. In the seminal work [9],

[10], the diversity-multiplexing tradeoff and outage probability of different single-relay and

multirelay AF and DF protocols were derived. The capacity regions of various protocols

based on AF and DF relaying were derived and compared for static channels in [26]. The

ergodic capacity, outage capacity, and spatial diversity gain of three AFand DF relaying

protocols for a three-node relay channel were derived in [11]. In [5], lower and upper

bounds on the instantaneous, outage, and ergodic capacities of a three-node relay channel

with perfect CSI at the transmitters were derived for Rayleigh fading andfull-duplex/time

division and synchronized/asynchronous transceiver models [5].

In another major progress, capacity bounds were derived for several multirelay DF and

CF strategies [4]. It was shown that the DF strategy achieves the ergodiccapacity with some

1A version of this chapter has been published in part in the Proceedings ofthe IEEE Global Telecommuni-
cations Conference (GLOBECOM), 2009.
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topological and fading phase assumptions. The development in [66] optimized multirelay

selection and power allocation for the best capacity in a dual-hop multisourcenetwork

with full CSI at the nodes. In a similar system setup, bounds on the ergodic capacity of

a multisource, dual-hop, orthogonal DF relaying network with global CSI were derived

assuming Rayleigh fading, random relay positionings, and a short-term power constraint

[67]. In [70], the ergodic capacity of a three-node relaying network was studied for AF

and DF relaying with adaptive modulation. In [73], closed-form expressions were derived

for the symbol error rate and average capacity for a DF relay selection scheme without

the SD link in the Rayleigh fading and dissimilar links case. In [71], [72], closed-form

expressions for the error probability and average capacity of dual-hop selection relaying,

based on choosing the relay with the strongest link to the destination among a decoding set,

were derived. In [59], the ergodic capacities of multirelay, dual-hop, reactive and proactive

selection DF relaying were derived for Rayleigh fading. Also, the ergodic capacities of

single-relay, multihop AF and DF relaying were studied for Rayleigh fading in[57]. It was

shown that DF relaying is superior to AF relaying in this scenario.

In this chapter, we consider the multirelay, dual-hop DF relaying network depicted in

Fig. 4.1, and answer the question of what the maximum possible average rateof commu-

nication from the source to the destination, referred to as the average capacity, is, under

the assumptions detailed in Section 4.2. In contrast to single-relay, multihop DF relaying

networks where the maximum achievable rate is simply determined by the capacity of the

poorest hop [57], a multibranch, dual-hop scheme has more complex achievable rate ex-

pressions as will be observed in Sections 4.3 and 4.4. The average rate iscalculated here

as the expectation of the maximum instantaneous, nonoutage rate of the system.This max-

imum rate is independent of any given operating rate, and, therefore, isdifferent from the

realized MI evaluated at an operating rate, such as the rates given in [9], [10], [68], [76].

We consider three protocols, called superimposed, selection, and orthogonal relaying,

respectively referring to the strategies where different relay transmissions are superimposed

[9], [40], [64], [77], where only the best relay is utilized [58], [68], [74], and where the re-

lays transmit in their dedicated orthogonal channels [9], [40], [69], [77], [78]. We also

consider two cooperation strategies in each case, called parallel channel cooperation (PCC)

and repetition-based cooperation (RC) [9], [75]. These protocols and cooperation strategies

have been frequently employed in the literature (with slight variations in some cases). How-
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Fig. 4.1. The system model, and the corresponding SNRs of the links.

ever, no result has been reported for the capacity performance of thegeneral network in Fig.

4.1 under the above mentioned protocols and strategies. In the analysis performed here, the

average capacity is calculated through the outage probability. Therefore, the outage proba-

bility of the different schemes is also derived as a side result of our analysis. Although the

outage performance of DF relaying schemes has received more attention with more results

in the literature compared to the capacity performance, our analysis revealsnew results for

outage probabilities. We mention both new and overlapping results for completeness and

cite the relevant references.

The remainder of the chapter is organized as follows. Section 4.2 details the system

model and assumptions, and complexity issues. Maximum achievable instantaneous rates

are derived in Section 4.3, and an average capacity analysis is executedin Section 4.4.

Finally in Section 4.5, several numerical examples are studied.

4.2 System Model

Consider the system depicted in Fig. 4.1, including a source node S, a destination node D,

andM half-duplex DF relaysR1, . . ., RM . Feasible communication links and the direction

of transmissions are shown by arrows in Fig. 4.1.

It is assumed that the transmissions are narrowband, and suffer AWGN and quasistatic

flat fading. The channel complex gains are assumed to remain constant during one CR,

defined as the duration needed for communicating a message from the source to the des-

tination, but to change independently from one CR to another. Amplitude and phase in-
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formation of a link AB is perfectly estimated by, and available to, receiver B for coherent

detection. The instantaneous SNRs associated with the links SD, SRm, and RmD are de-

notedγSD, γSm, andγmD, respectively, as shown in Fig. 4.1. It is assumed that the SNRs

of the different links are independent [9], [11], [30], [58], [68], [69], [74]–[76].

No optimization for resource (power, time, bandwidth) allocation is considered; the

nodes are assumed to transmit with constant power and bandwidth in fixed durations of

time during a CR. This assumption is for simplicity as the optimization of resource alloca-

tion in cooperative networks, e.g. explored in [5], [30], [64], [67],[69], [75], is generally

computationally demanding and least amenable to closed-form solutions, especially when

there are more than one relay in the network.

We consider three relaying protocols, superimposed, selection, and orthogonal relaying,

and two cooperation strategies, PCC and RC [9], [75]. The two cooperation strategies are

opposite extremes in the sense that in PCC, all transmissions from differentnodes in a CR

utilize different, independent codebooks, while in RC, the same codebookis used for all

the transmissions. In fact, in PCC, transmissions from the source to a relay and from a

relay to the destination contain fresh MI. Consequently, the resulting MI accumulated at

the destination equals the sum of the MI received from orthogonal subspaces [9], [10],

[22], viz. parallel subchannels [79, Section 9.4]. In contrast, in the RCcase, transmissions

convey repeated information such that the destinationaccumulates energy, rather than MI,

from different transmissions [22] and that the resulting SNR at the destination equals the

sum of the SNRs from source and relay transmissions [9], [10].

One CR is divided into two phases as depicted in Fig. 4.2a. In phase I, whichlasts

T0 seconds, in any relaying protocol, the source broadcasts its message to the destination

and the relays, which attempt to decode the message fully at the end of PhaseI. A relay

successful in decoding is called a decoding relay. The three protocols are distinguished in

Phase II, where only the source and the decoding relays participate, asillustrated in Figs.

4.2b–4.2d and described in the following.

In superimposed relaying, the source and decoding relays, simultaneously transmit to

the destination forT0 seconds. The destination can execute serial interference cancellation

[80] or space-time decoding [9], [11]–[14] for detection if the transmissions are simply

superimposed [80] or if the transmissions are distributed-space-time-coded [9], [11]–[14],

respectively. The latter is only for the RC case, and needs stringent internode synchroniza-
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(a) Different phases of the protocols. The protocols differ in Phase II.
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(b) Phase II for superimposed relaying.

Best of S & R1 & · · · & RM → D
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(c) Phase II for selection relaying.

R1 → D RM → D

T0 sT0 s
t

(d) Phase II for orthogonal relaying.

Fig. 4.2. The relaying protocols. A right arrow shows the direction of transmission. A relay transmits only if
it has decoded the message. Otherwise, it remains silent.

tion at the symbol level. In selection relaying [58], [68], [74], only the best of the source

and decoding relays (i.e. the one with the strongest link to the destination) transmits to the

destination in Phase II, which again, lastsT0 seconds. In orthogonal relaying [9], all relays

are assigned orthogonal (time or frequency) channels, each containing as many degrees of

freedom as the channel devoted to the source in Phase I.2 In Fig. 4.2d, only the case of time

division multiplexing for the relays has been depicted. The message is retransmitted only

by decoding relays in their dedicated channels.

As stipulated earlier, a CR experiences one channel fading block. This assumption

best suits delay-sensitive applications.3 In this chapter, we focus on determiningImax, the

maximum instantaneous end-to-end MI rate per CR, andImax, the expectation ofImax with

2A channel of baseband bandwidthW Hz and durationT0 seconds containsW T0 2-D DoFs [79].
3In contrast, in delay-unlimited applications, the CR and codewords can span a large number of indepen-

dent fading blocks [4], [5], [11], [64] such that the source can benefit from larger ergodic rates.
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respect to the channel state

γ , (γSD, γS1, . . ., γSM , γ1D, . . ., γMD). (4.1)

We refer toImax as theaverage capacity. Using [81, eq. (5-53)], we calculateImax as

Imax =

∫ ∞

0
dr [1 − Pr{Imax < r}]. (4.2)

To rigorously defineImax, first letIDL(R) be defined as the maximum downlink MI that

the destination can gather from Phases I and II when the source’s rate isR. A given rate

R determines which relays can decode, from whichIDL(R) can be obtained. For example,

in selection relaying with PCC, if for a source rateR only Relays 1 and 2 can decode, then

IDL(R) becomes,

1

2
ln(1 + γSD) +

1

2
ln(1 + max{γSD, γ1D, γ2D}) (4.3)

where the first and second summands are the amounts of MI received at the destination

from Phases I and II, respectively. The rateR is realizable and does not cause outage if

R ≤ IDL(R). Many examples of downlink ratesIDL(R) can be found in [9], [10], [68],

[76], where MI is typically used to evaluate outage. Now, we defineImax as

Imax = max
R≤IDL(R)

R. (4.4)

Therefore,Imax is the maximum instantaneous, sustainable (nonoutage) rate, or the in-

stantaneous capacity of the system, and thus, important to evaluate. Note thatthe outage

probability at rateR considered in the literature [9], [10], [68], [76], is actually given by

Pout(R) , Pr{IDL(R) < R} (4.5)

rather than byPr{Imax < R}.4 AlthoughPr{Imax < R} is equal toPout(R) for all cases

that we consider, the equality does not hold in general, as will be explainedin Section

4.4. While the outage performance of relaying networks has received much attention, only

limited results are available onImax andImax for dual-hop DF relaying networks in the

literature, e.g. in [59], [70]. Existing results relate to different or simpler networks, and will

be compared to our results in Sections 4.3 and 4.4.

4Note thatImax is independent of, and can be smaller than, equal to, or greater than, agivensource rateR.
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4.2.1 Complexity Issues

The valueImax, defined in Section 4.2, has different interpretations for, and implications

on the CSI available at the different nodes as follows. The interpretation of Imax, which is

a function of only the channel stateγ, as will be observed in Section 4.4, depends on the

source’s knowledge ofImax in a CR. If the source is oblivious toImax, outage is always a

possibility.5 In this case,Imax is not realizable, but still can serve to compare two systems.

However, if the source can obtainγ in each CR via feedback links almost instantly,

it can calculate, and adaptively transmit with rateImax such that no outage occurs. In

this case,Imax equals the (long-term) average rate. The rateImax can also be calculated

at another node and quickly fed back to the source. For example, it may bepractically

easier for the destination to obtainγ and calculateImax, because the componentsγSD,

γ1D, . . ., γMD of γ are estimated at the destination anyway for coherent detection.

Also, independently of the source lacking or obtaining knowledge ofImax for adaptive

transmission, the different schemes introduced in Section 4.2 demand different amounts of

signaling feedback for their operation, as follows. In superimposed relaying, the decoding

relays should declare their successful decoding and participation in Phase II to the desti-

nation. In selection relaying, again these success feedbacks from the relays are needed.

Additionally, the destination needs to broadcast a designating feedback to determine which

node is best to transmit next. In orthogonal relaying, no success or designating feedbacks

are required given that the destination can realize which relay is or is not transmitting, by

monitoring their dedicated channels.

Note that all the above mentioned CSI and signaling feedbacks entail additional over-

head usage and need dedicated time slots or frequency channels, which cause some loss of

spectral efficiency. Nevertheless, the assumption of having CSI or feedback at the transmit-

ters is common in the literature of cooperation. Previous research has shown that feedback

information can significantly enhance the performance of cooperative networks and is more

critical to relaying than DT [3], [10], [23], [58], [68]. The impact of imperfect CSI feedback

or feedback delay on the rate performance is worth investigating, but beyond the scope of

the investigation here.

5Note that in delay-limited scenarios, the source cannot encode over more than one channel fading block.
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4.3 Maximum Achievable Instantaneous Rates

In this section, evaluatingR andIDL(R), defined in Section 4.2, and using (4.4) in each

case, we deriveImax for the different protocols described in Section 4.2. We assume that

bothR andIDL(R) are normalized by the entire period of the CR. We utilize the following

notations in our derivations. Assume that the SR SNRsγS1, . . ., γSM are sorted in decreas-

ing order asγS(1), . . ., γS(M). Let the RD SNR corresponding toγS(m) be denotedγ(m)D.

Note thatγ(1)D, . . ., γ(M)D are generally unordered. We also define

γS(0) , γ(0)D , γSD (4.6)

and

γS(M+1) , γ(M+1)D , 0 (4.7)

for convenience, by misuse of notation, asγS(0) is out of order withγS(1), . . ., γS(M).

All the achievable rates derived in the following are new and summarized in Table

4.1. The corresponding results for the achievable rates in the single-relay case with fixed

resource allocation can be found in [3], [11], [23], [26].

4.3.1 Superimposed Relaying

If the source transmits with rateRS nats per channel use such that

ln
(
1 + γS(i+1)

)
< RS ≤ ln

(
1 + γS(i)

)
(4.8)

for an i ∈ {1, . . ., M}, then onlyi relays can decode. In this case, denotingIDL(R) for

the PCC and RC cases byI
(sup, PCC)
DL (R) andI

(sup, RC)
DL (R), respectively, we obtain

R =
RS

2
(4.9)

I
(sup, PCC)
DL (R) =

1

2

[

ln(1 + γSD) + ln

(

1 +
i∑

m=0

γ(m)D

)]

(4.10)

and

I
(sup, RC)
DL (R) =

1

2
ln

(

1 + γSD +
i∑

m=0

γ(m)D

)

(4.11)

where all the divisions by2 are for normalization. This normalization is similar to that em-

ployed in [10], [11], [26] due to the CR comprising two equal-size phases. The derivation of
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TABLE 4.1
MAXIMUM INSTANTANEOUSRATES IN NATS

ACHIEVABLE IN MULTIRELAY, DUAL -HOP, DF RELAYING NETWORKS

Superimposed
relaying
with PCC

1

2
max

{

2 ln(1 + γSD), min

{

ln
(
1 + γS(1)

)
,

ln(1 + γSD) + ln

(

1 +
1∑

m=0
γ(m)D

)}

, . . .,

min

{

ln
(
1 + γS(M)

)
, ln(1 + γSD) + ln

(

1 +
M∑

m=0
γ(m)D

)}}

Superimposed
relaying
with RC

1

2
max

{

ln(1 + 2γSD), min

{

ln
(
1 + γS(1)

)
,

ln

(

1 + γSD +
1∑

m=0
γ(m)D

)}

, . . .,

min

{

ln
(
1 + γS(M)

)
, ln

(

1 + γSD +
M∑

m=0
γ(m)D

)}}

Selection
relaying
with PCC

1

2
max

{

2 ln(1 + γSD), min
{

ln(1 + γS1),

ln(1 + γSD) + ln(1 + γ1D)
}
, . . .,

min
{

ln(1 + γSM ), ln(1 + γSD) + ln(1 + γMD)
}}

Selection
relaying
with RC

1

2
max

{

ln(1 + 2γSD), min
{

ln(1 + γS1), ln(1 + γSD + γ1D)
}
, . . .,

min
{

ln(1 + γSM ), ln(1 + γSD + γMD)
}}

Orthogonal
relaying
with PCC

1

M + 1
max

{

ln(1 + γSD), min

{

ln
(
1 + γS(1)

)
,

1∑

m=0
ln(1 + γ(m)D)

}

, . . .,

min

{

ln
(
1 + γS(M)

)
,

M∑

m=0
ln(1 + γ(m)D)

}}

Orthogonal
relaying
with RC

1

M + 1
max

{

ln(1 + γSD), min

{

ln
(
1 + γS(1)

)
,

ln

(

1 +
1∑

m=0
γ(m)D

)}

, . . .,

min

{

ln
(
1 + γS(M)

)
, ln

(

1 +
M∑

m=0
γ(m)D

)}}
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(4.10) and (4.11) relies on the facts that the channels from the source to the destination and

from the decoding relays to the destination are two independent parallel Gaussian channels

[79, Section 9.4], [9], [10], and that the channel from the decoding relays to the destination

is a multiaccess channel [79, Section 15.3], [50, Section 16.2].

In PCC, the MI terms from the first and second phases are added, because the transmis-

sion in the first phase is orthogonal to the transmissions in the second phase, and because

the codebooks used in the different transmissions are independent. However, in the sec-

ond phase, although different transmissions use independent codebooks, the SNRs, rather

than the MI terms, are added because the transmissions are not orthogonal and are sim-

ply superimposed. Indeed, in the second phase, the sum-rate capacity according to the

multiaccess-channel rate region [79, Section 15.3] is achieved.

In RC, as the codebooks used for all the transmissions in both phases areidentical, all

the SNRs from Phases I and II are added to give the resulting SNR at the destination.

However, if the source transmits with rateRS nats such thatRS ≥ ln(1 + γS(1)), no

relays can decode. In this case, one has

R =
RS

2
(4.12)

I
(sup, PCC)
DL (R) = ln(1 + γSD) (4.13)

and

I
(sup, RC)
DL (R) =

1

2
ln(1 + 2γSD). (4.14)

Combining (4.4)–(4.14), we obtain

I(sup, PCC)
max =

1

2
max

{

2 ln(1+γSD), min

{

ln
(
1+γS(1)

)
, ln(1+γSD)+ln

(

1+
1∑

m=0

γ(m)D

)}

,

· · ·, min

{

ln
(
1 + γS(M)

)
, ln(1 + γSD) + ln

(

1 +
M∑

m=0

γ(m)D

)}}

(4.15)

and

I(sup, RC)
max =

1

2
max

{

ln(1 + 2γSD), min

{

ln
(
1 + γS(1)

)
, ln

(

1 + γSD +
1∑

m=0

γ(m)D

)}

,

· · ·, min

{

ln
(
1 + γS(M)

)
, ln

(

1 + γSD +
M∑

m=0

γ(m)D

)}}

(4.16)

where superscripts “sup”, “PCC”, and “RC” denote superimposed relaying, PCC, and RC.
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4.3.2 Selection Relaying

In this case, it can be observed that all expressions given in Section 4.3.1 hold after every
∑i

m=0{·} is replaced withmaxm=0, ..., i{·}, as the only difference here is that in Phase II;

only the best of the source and decoding relays, rather than all of them, transmits to the

destination. Therefore, one can write, in a manner similar to (4.15) and (4.16),

I(sel, PCC)
max =

1

2
max

{

2 ln(1+γSD), min
{

ln
(
1+γS(1)

)
, ln(1+γSD)+ ln

(

1+ max
m=0,1

γ(m)D

)}

,

· · ·, min
{

ln
(
1 + γS(M)

)
, ln(1 + γSD) + ln

(

1 + max
m=0, ..., M

γ(m)D

)}}

(4.17)

and

I(sel, RC)
max =

1

2
max

{

ln(1+2γSD), min
{

ln
(
1+γS(1)

)
, ln
(

1+γSD + max
m=0,1

γ(m)D

)}

, . . .,

min
{

ln
(
1 + γS(M)

)
, ln
(

1 + γSD + max
m=0, ..., M

γ(m)D

)}}

(4.18)

where superscript “sel” represents selection relaying. However, wecan obtain expressions

simpler than (4.17) and (4.18) forI(sel, PCC)
max andI

(sel, RC)
max by taking an alternate approach

as follows.

In selection relaying, only one node leading to the largest rate transmits in Phase II.

Therefore, the rates resulting from the different nodes transmitting in Phase II can be ob-

tained and compared to see which one is the largest. If the source transmits in Phase II, the

resulting rates for PCC and RC are given as,

ln(1 + γSD) (4.19)

and

1

2
ln(1 + 2γSD) (4.20)

respectively. Also, if Ri transmits in the downlink, the rates,

min
{

ln(1 + γSi), ln(1 + γSD) + ln(1 + γiD)
}

(4.21)

and

min
{

ln(1 + γSi), ln(1 + γSD + γiD)
}

(4.22)

are realizable for PCC and RC, respectively. Therefore, we can write
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I(sel, PCC)
max =

1

2
max

{

2 ln(1 + γSD), min
{

ln(1 + γS1), ln(1 + γSD) + ln(1 + γ1D)
}
, . . .,

min
{

ln(1 + γSM ), ln(1 + γSD) + ln(1 + γMD)
}}

(4.23)

and

I(sel, RC)
max =

1

2
max

{

ln(1 + 2γSD), min
{

ln(1 + γS1), ln(1 + γSD + γ1D)
}
, . . .,

min
{

ln(1 + γSM ), ln(1 + γSD + γMD)
}}

. (4.24)

Note that (4.23) and (4.24) can be directly shown to be equivalent to (4.17) and (4.18),

respectively. In fact, if one has

max
m=0, ..., j

γ(m)D = γ(i)D (4.25)

for given integersi andj satisfying0 ≤ i < j ≤ M , then

min
{

ln
(
1 + γS(j)

)
, ln(1 + γSD) + ln

(

1 + max
m=0, ..., j

γ(m)D

)}

≤






2 ln(1 + γSD), i = 0

min
{

ln
(
1 + γS(i)

)
, ln(1 + γSD) + ln

(
1 + γ(i)D

)}
, i > 0

(4.26)

and

min
{

ln
(
1 + γS(j)

)
, ln
(

1 + γSD + max
m=0, ..., j

γ(m)D

)}

≤






ln(1 + 2γSD), i = 0

min
{

ln
(
1 + γS(i)

)
, ln
(
1 + γSD + γ(i)D

)}
, i > 0

. (4.27)

This obviously shows that in (4.17) and (4.18), we can safely replace,

max
m=0, ..., j

γ(m)D (4.28)

with γ(j)D for anyj ranging from1 to M . Making these replacements in (4.17) and (4.18),

one can readily reach (4.23) and (4.24).

4.3.3 Orthogonal Relaying

First assume that the source transmits with rateRS satisfying (4.8). Then, onlyi relays

decode, and one has, like (4.9),

R =
RS

M + 1
(4.29)
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where the division byM + 1 is because the CR comprisesM + 1 equal-size orthogonal

channels. Also, we can write

I
(ort, PCC)
DL (R) =

1

M + 1

i∑

m=0

ln
(
1 + γ(m)D

)
(4.30)

and

I
(ort, RC)
DL (R) =

1

M + 1
ln

(

1 +
i∑

m=0

γ(m)D

)

(4.31)

where superscript “ort” denotes orthogonal relaying, using the factthat the destination can

accumulate MI in the PCC case, and energy in the RC case from theM + 1 orthogonal

channels. Note that in (4.30), contrary to (4.10), we have sums of SNR logarithms, i.e.

sums of MI terms, rather than logarithms of SNR sums, for the MI created in Phase II. This

is because orthogonal relaying constitutes independent parallel Gaussian channels for the

downlink [79, Section 9.4], while superimposed relaying employs an interference-limited

multiaccess channel [79, Section 15.3].

If RS is greater thanln(1 + γS(1)) (i.e. if (4.8) is not satisfied), no relays can decode.

This leads to the same PCC and RC schemes with the realized MI rate

I
(ort, PCC)
DL (R) = I

(ort, RC)
DL (R) =

1

M + 1
ln(1 + γSD). (4.32)

Now, combining (4.4) and (4.29)–(4.32) yields

I(ort, PCC)
max =

1

M + 1
max

{

ln(1 + γSD), min

{

ln
(
1 + γS(1)

)
,

1∑

m=0

ln
(
1 + γ(m)D

)
}

, . . .,

min

{

ln
(
1 + γS(M)

)
,

M∑

m=0

ln
(
1 + γ(m)D

)
}}

(4.33)

and

I(ort, RC)
max =

1

M + 1
max

{

ln(1 + γSD), min

{

ln
(
1 + γS(1)

)
, ln

(

1 +
1∑

m=0

γ(m)D

)

, . . .,

min

{

ln
(
1 + γS(M)

)
, ln

(

1 +
M∑

m=0

γ(m)D

)}}

. (4.34)

4.4 Capacity Analysis

As shown in (4.2), to obtain the average capacity, we first calculatePr{Imax < r} at any

r. However, deriving this probability directly from theImax expressions given in Table 4.1
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is intricate. Instead, note from (4.4) that for a positiver satisfyingr ≤ IDL(r), one has

r ≤ Imax. Therefore, we have

Pr{Imax < r} ≤ Pr{IDL(r) < r}. (4.35)

Also, IDL(r) is a decreasing function ofr for all the protocols considered, a result obtain-

able by intuition or by inspecting the rate expressions listed in Table 4.1. Combining this

fact with (4.4), we conclude that for a positiver satisfyingr ≤ Imax, we can write

r ≤ Imax ≤ IDL(Imax) ≤ IDL(r) (4.36)

and, therefore,

Pr{Imax < r} ≥ Pr{IDL(r) < r}. (4.37)

Combining (4.35) and (4.37) yields

Pr{Imax < r} = Pr{IDL(r) < r} (4.38)

for all the protocols considered here.6 The probabilityPr{IDL(r) < r} (which equals

Pout(r) from (4.5)) is easier to calculate thanPr{Imax < r} asIDL(r) can be written as a

sum of RVs using the cascaded link technique introduced in [76]. In the sequel, we utilize

(4.38) and the cascaded link methodology [76] to calculatePr{Imax < r}.

4.4.1 General Fading Case

Let

Ym ,







γmD, γSm ≥ eν r − 1

0, γSm < eν r − 1
(4.39a)

where

ν ,







2, superimposed or selection relaying

M + 1, orthogonal relaying
. (4.39b)

In fact,Ym is the effective cascaded link SNR of themth branch at the normalized operating

rater. Now, from the description of the protocols in Section 4.2 and the results derived in

6An example whereIDL(r) is not a decreasing function ofr and where (4.38) does not hold is as follows.
Imagine the orthogonal relaying scheme in this paper, with only one difference that in Phase II, whenever a
relay has not decoded, the source substitutes for the relay. In this new scheme, it can be verified that if the SD
SNR is larger than at least one RD SNR,IDL(r) is no more a decreasing function ofr, and that (4.37) and
(4.38) fail to hold (but (4.35) is still valid).
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Section 4.3, one obtains

I
(sup, PCC)
DL (r) =

1

2

[

ln(1 + γSD) + ln

(

1 + γSD +
M∑

m=1

Ym

)]

(4.40)

I
(sup, RC)
DL (r) =

1

2
ln

(

1 + 2γSD +
M∑

m=1

Ym

)

(4.41)

I
(sel, PCC)
DL (r) =

1

2

[
ln(1 + γSD) + ln

(
1 + max{γSD, Y1, . . ., YM}

)]
(4.42)

I
(sel, RC)
DL (r) =

1

2
ln
(
1 + γSD + max{γSD, Y1, . . ., YM}

)
(4.43)

I
(ort, PCC)
DL (r) =

1

M + 1

[

ln(1 + γSD) +
M∑

m=1

ln(1 + Ym)

]

(4.44)

and

I
(ort, RC)
DL (r) =

1

M + 1
ln

(

1 + γSD +
M∑

m=1

Ym

)

(4.45)

where superscripts “sup”, “sel”, and “ort” respectively denote superimposed, selection, and

orthogonal relaying.

Then, using (4.38), (4.40), and the theorem of total probability [81, p. 103] we obtain

Pr
{
I(sup, PCC)
max <r

}
=

∫ ∞

0
dγ FY-sum

(
e2r

1 + γ
− 1 − γ

)

fSD(γ)

=

∫ er−1

0
dγ FY-sum

(
e2r

1 + γ
− 1 − γ

)

fSD(γ) (4.46)

and

Pr
{
I(sup, RC)
max < r

}
=

∫ ∞

0
dγ FY-sum

(
e2r − 1 − 2γ

)]
fSD(γ)

=

∫ e2r−1
2

0
dγ FY-sum

(
e2r − 1 − 2γ

)
fSD(γ) (4.47)

whereFY-sum(·) is the the cumulative distribution function (CDF) of,

M∑

m=1

Ym (4.48)

and wherefSD(·) is the probability density function (PDF) ofγSD. The second equalities

in (4.46) and (4.47) are obtained using the fact that forγ greater than a limit,FY-sum(·)
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vanishes as its argument becomes negative. Similarly, we have

Pr
{
I(sel, PCC)
max < r

}
=

∫ ∞

0
dγ Pr

{

max{γ, Y1, . . ., YM} <
e2r

1 + γ
− 1

}

fSD(γ)

=

∫ er−1

0
dγ Pr

{

max{Y1, . . ., YM} <
e2r

1 + γ
− 1

}

fSD(γ)

=

∫ er−1

0
dγ

M∏

m=1

FYm

(
e2r

1 + γ
− 1

)

fSD(γ) (4.49)

and

Pr
{
I(sel, RC)
max < r

}
=

∫ ∞

0
dγ Pr

{
max{γ, Y1, . . ., YM} < e2r − 1 − γ

}
fSD(γ)

=

∫ e2r−1
2

0
dγ Pr

{
max{Y1, . . ., YM} < e2r − 1 − γ

}
fSD(γ)

=

∫ e2r−1
2

0
dγ

M∏

m=1

FYm

(
e2r − 1 − γ

)
fSD(γ) (4.50)

whereFYm(·) is the CDF ofYm and where the fact that theYm’s are independent has been

used (cf. (4.39) and the channel assumptions made in Section 4.2). The second equalities

in (4.49) and (4.50) are obtained using the facts that the max terms exceede2 r/(1 + γ)− 1

ande2 r − 1 − γ for γ greater thaner − 1 and(e2 r − 1)/2, respectively. We also obtain

Pr
{
I(ort, PCC)
max < r

}
=

∫ ∞

0
dγ Fln1+Y-sum

(
(M + 1)r − ln(1 + γ)

)
fSD(γ)

=

∫ e(M+1)r−1

0
dγ Fln1+Y-sum

(
(M + 1)r − ln(1 + γ)

)
fSD(γ)

(4.51)

and

Pr
{
I(ort, RC)
max < r

}
=

∫ ∞

0
dγ FY-sum

(

e(M+1)r − 1 − γ
)

fSD(γ)

=

∫ e(M+1)r−1

0
dγ FY-sum

(

e(M+1)r − 1 − γ
)

fSD(γ) (4.52)

whereFln1+Y-sum(·) is the CDF of,

M∑

m=1

ln(1 + Ym). (4.53)

The second equalities in (4.51) and (4.52) are obtained by considering thevalues ofγ at

which the arguments ofFln1+Y-sum(·) andFY-sum(·) become zero.

To calculate the probabilities (4.46)–(4.52), we first need to calculateFYm(·), FY-sum(·),
and Fln1+Y-sum(·). A general approach to meet this objective, applicable to any fading
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model7 and number of relays, is as follows. The CDFFYm(·) can be written from (4.39) as

FYm(y) = FSm

(
eν r − 1

)
+
[
1 − FSm

(
eν r − 1

)]
FmD(y) (4.54)

whereFSm(·) andFmD(·) are the CDFs ofγSm andγmD, respectively, and whereν is

defined by (4.39b). Also,FY-sum(·) andFln1+Y-sum(·) can be directly represented by the

approximate Fourier series in [82] in terms of the moment generating functions(MGFs)

of
∑M

m=1 Ym and
∑M

m=1 ln(1 + Ym), denotedMY-sum(·) andMln1+Y-sum(·), respectively.

These MGFs can be written from (4.39) as

MY-sum(s) =
M∏

m=1

E{esYm} =
M∏

m=1

{
FSm

(
eν r−1

)
+
[
1−FSm

(
eν r−1

)]
MmD(s)

}
(4.55)

whereMmD(·) is the MGF ofγmD, and

Mln1+Y-sum(s) =
M∏

m=1

E{(1 + Ym)s}

=
M∏

m=1

{
FSm

(
eν r − 1

)
+
[
1 − FSm

(
eν r − 1

)]
E{(1 + γmD)s}

}
. (4.56)

Now, (4.2) can be calculated by evaluating the expressions (4.46)–(4.52) using (4.54)–

(4.56). However, note that this general method is involved with double integrals over infi-

nite series, that lack a closed-form solution and are difficult to compute with high precision.

Next, we specialize the analysis to the Rayleigh fading case.

4.4.2 Rayleigh Fading Case

In this case, not using the MGF approach explained in Section 4.4.1, we candirectly evalu-

ate the outage probabilities (4.46)–(4.52) and apply the results to (4.2). Thefinal results for

the outage probabilities and average capacities of the different schemes with PCC and RC

for Rayleigh fading and any number of relays have been listed in Tables 4.2–4.9. Note that

for Rayleigh fading,γSD, γSm, andγmD are exponentially distributed with mean values de-

notedµSD, µSm, andµmD, and CDFs denotedFSD(·), FSm(·), andFmD(·). The derivation

steps have been summarized in Appendix E. All the results obtained are exact except for or-

thogonal relaying with PCC andM > 1 where only lower and upper bounds are presented

due to mathematical intractability. The bounds presented become the corresponding exact

values whenM = 1. In the derivations for any of the schemes, we have considered two

7The channel gains are always assumed to be independent in any fading model.
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cases of asymmetric and symmetric links, each with and without considering the SD link.

These cases and the notations and functions used in the tables are explained next.8

The case of asymmetric links for superimposed and orthogonal relaying refers to the

situation whereµSD, theµSm’s, and theµmD’s can take any value except that theµmD’s

must be unequal. However, this case for selection relaying refers to the most general sce-

nario whereµSD, theµSm’s, and theµmD’s can have any value. The analysis of the most

general scenario for superimposed and orthogonal relaying is very intricate; one can use the

general MGF approach, mentioned in Section 4.4.1, in such a scenario instead.

In the symmetric case, considered for analytical simplicity and practical insight [9],

[59], we assume that

µS1 = · · · = µSM , µSR (4.57)

and

µ1D = · · · = µMD , µRD. (4.58)

We also denote the CDFs of the SR and RD SNRs byFSR(·) andFRD(·). Note that in

selection relaying the results for the symmetric case are simply a special case of those in

the asymmetric case. However, in superimposed and orthogonal relaying,the symmetric

case is not subsumed under the case of asymmetric links, as in the latter, we assume that the

µmD’s are unequal. Also, note that the cases of asymmetric and symmetric links fora given

scheme coincide whenM = 1, i.e. when only one relay is available. The single-relay case

has been the focus of much research owing to its combined simplicity and offerof diversity

[3], [5], [10], [11], [26], [65], [75].

The no SD-link case corresponds to the scenario considered in Chapter3 and depicted

in Fig. 3.1, where the SD link is blocked [30], [57]–[59] such thatγSD can be approximated

by zero, or equivalently, the PDF ofγSD can be assumed to be

fSD(γ) = δ(γ) (4.59)

whereδ(·) is the Dirac delta function. The expressions given in Tables 4.2–4.5, 4.8, and

4.9 for the no SD-link case are not always readily obtainable from those for the cases with

8The results given in Tables 4.2, 4.4, 4.6, and 4.8 for the outage probabilities in the RC case can be found
in the literature in equivalent forms; e.g. see [9], [68], [72], [74],[83]–[85]. Also, the results for the average
capacity of selection relaying with no SD link given in Table 4.5 can be foundin [59], [73]. All other results in
Tables 4.2–4.9 are new. Here, we list all results for coherence and completeness.
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the SD link, which is why we have also presented the results for the no SD-linkcase in

these tables. Inspection of the results in Table 4.1 or Tables 4.2–4.9 revealsthat in the no

SD-link case, the PCC and RC schemes are identical under either superimposed or selection

relaying, but not under orthogonal relaying. Moreover, the rate achievable in the orthogonal

relaying scheme with RC is exactly2/(M + 1) times that achievable in superimposed

relaying with PCC or RC.

There are a number of notations and functions used in Tables 4.2–4.9 as follows. The

valuesµSA andµAD, whereA is a subset of{1, · · ·, M} are defined as

µSA ,

(
∑

m∈A
µ−1

Sm

)−1

(4.60)

and

µAD ,

(
∑

m∈A
µ−1

mD

)−1

. (4.61)

WhenA is empty,µ−1
SA andµ−1

AD are defined as zero. The operator| · | is the cardinality

operator for a set. The setAc represents the complement ofA with respect to{1, · · ·, M}.

The functionsP (·, ·) andΓ(·, ·) are the regularized lower incomplete gamma [86, eq. 6.5.3]

and the upper incomplete gamma [86, eq. 6.5.1] functions, respectively. The former can be

written in terms of the latter as

P (a, x) = 1 − Γ(a, x)

Γ(a)
(4.62)

whereΓ(·) is the gamma function [86, eq. 6.1.1]. We also use the definite integrals

Im(k, a, b, c, d) ,
∫ d

1
dx

xk−1

b c x + 1
e−(axm+bx) (4.63)

Im(k, a, b, c) , Im(k, a, b, c,∞) (4.64)

R(k, ℓ, η, a, b) ,
∫ ∞

1
dx

xk

(ax + b)ℓ
e−η x Γ(ℓ, ax2 + bx) (4.65)

R(η, a, b) , R(0, 0, η, a, b)
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=







−Γ(0, b) + e−b/b, η = 0, a = 0, b > 0

−Γ(0, a + b) + 2 I2(1, a, b, 0)

− b
a I2

(

0,
(a + b)2

a ,−b(a + b)
a , 0

)

, η = 0, a > max{−b, 0}

1
η
[
e−η Γ(0, b) − Γ(0, η + b)

]
, η 6= 0, a = 0,

b > max{−η, 0}
1
η

[

e−η Γ(0, a + b) − I2(0, a, η + b, 0)

−e η b/a I2

(

0,
(a + b)2

a ,
(η − b)(a + b)

a , 0

)]

, η 6= 0, a > max{−b, 0}

(4.66)

h(x; ℓ, a) ,
1

(ℓ − 1)!

∫ a

0
dt tℓ−1 e−x t =







P (ℓ, ax)/xℓ, x 6= 0

aℓ/ℓ!, x = 0
(4.67)

and

g(x; ℓ, w, α) ,
∫ ∞

0
dt (t + 1)w−1 e−α t h(x; ℓ, t)

=







eα

xℓ

[
Γ(w, α)

αw
− 1

(x + α)w

×
ℓ−1∑

k=0

( x

x + α

)k Γ(k + w, x + α) Γ(ℓ − k,−x)

k! (ℓ − k − 1)!

]

, x 6= 0

(−1)ℓ eα

αw

ℓ∑

k=0

(−1/α)k

k! (ℓ − k)!
Γ(k + w, α), x = 0

. (4.68)

The integrals (4.63)–(4.65) lack a closed-form solution in general in termsof standard math-

ematical functions, but are efficiently numerically computable using standardintegration

techniques, e.g. presented in [86, Section 25.4]. The integrals (4.66)–(4.68) have been

solved using common integration methods, such as change of variables and integration by

parts. Further, we define and use the functions

S(x) , ex Γ(0, x) (4.69)

and

T (α, β) ,







S(β) − S(α)

α − β
, α 6= β

1
α − S(α), α = β

(4.70)

whereS(·) is given by (4.69), for convenience.
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TABLE 4.2
OUTAGE PROBABILITY AT RATE r NATS FORSUPERIMPOSEDRELAYING

IN THE RAYLEIGH FADING CASE

Asymmetric case
with the SD link
with PCC 1−e(1−er)/µSD− e1/µSD

µSD

M∑

m=1

e(1−e2r)/µSm

M∏

k=1
k 6=m

(

1+
e(1−e2r)/µSk

µmD/µkD − 1

)

× I−1

(

1,
e2r

µmD
,

1

µSD
− 1

µmD
, 0, er

)

Asymmetric case
with the SD link
with RC 1 − e(1−e2r)/(2 µSD) − 1

2 µSD

M∑

m=1

e(1/µSm+1/µmD)(1−e2r)

×
M∏

k=1
k 6=m

(

1 +
e(1−e2r)/µSk

µmD/µkD − 1

)

h

(
1

2 µSD
− 1

µmD
; 1, e2r − 1

)

Asymmetric case
with no SD link
with PCC or RC 1 −

M∑

m=1

e(1/µSm+1/µmD)(1−e2r)
M∏

k=1
k 6=m

(

1 +
e(1−e2r)/µSk

µmD/µkD − 1

)

Symmetric case
with the SD link
with PCC 1 − e(1−er)/µSD − e1/µSD

µSD

M∑

m=1

m−1∑

k=0

k∑

p=0

(

M

m

)

(−1)k−p e2 p r

(k − p)! p! µk
RD

× em(1−e2r)/µSR
[
1 − e(1−e2r)/µSR

]M−m

× I−1

(

k − 2p + 1,
e2r

µRD
,

1

µSD
− 1

µRD
, 0, er

)

Symmetric case
with the SD link
with RC 1 − e(1−e2r)/(2 µSD) − µRD e(1−e2r)/(2 µSD)

2 µSD

M∑

m=1

m∑

k=1

(

M

m

)

× em(1−e2r)/µSR
[
1− e(1−e2r)/µSR

]M−m
h

(

1− µRD

2 µSD
; k,

e2r − 1

µRD

)

Symmetric case
with no SD link
with PCC or RC

M∑

m=0

(

M

m

)

em(1−e2r)/µSR
[
1 − e(1−e2r)/µSR

]M−m
P

(

m,
e2r − 1

µRD

)
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TABLE 4.3
AVERAGE CAPACITY IN NATS FORSUPERIMPOSEDRELAYING IN THE RAYLEIGH FADING CASE

Asymmetric case
with the SD link
with PCC S

(
1

µSD

)

+
e1/µSD

2 µSD

M∑

m=1

∑

A⊂{1, ···, M}−{m}

e1/µSm+1/µSA

∏

k∈A
(

µmD
µkD

− 1
)

×R
(

1

µSD
− 1

µmD
,

1

µSm
+

1

µSA
,

1

µmD

)

Asymmetric case
with the SD link
with RC

1

2
S
(

1

2 µSD

)

+
1

4 µSD

M∑

m=1

∑

A⊂{1, ···, M}−{m}

1
∏

k∈A
(

µmD
µkD

− 1
)

× T
(

1

2 µSD
+

1

µSm
+

1

µSA
,

1

µSm
+

1

µSA
+

1

µmD

)

Asymmetric case
with no SD link
with PCC or RC 1

2

M∑

m=1

∑

A⊂{1, ···, M}−{m}

S
(

1
µSm

+ 1
µSA

+ 1
µmD

)

∏

k∈A
(

µmD
µkD

− 1
)

Symmetric case
with the SD link
with PCC S

(
1

µSD

)

+
e1/µSD

2 µSD

M∑

m=1

M∑

k=m

m−1∑

p=0

p
∑

q=0

(−1)q+k−m M !

(M − k)! (k − m)! m!

× ek/µSR

(p − q)! q! µp
RD

R
(

q, p − q,
1

µSD
− 1

µRD
,

k

µSR
,

1

µRD

)

Symmetric case
with the SD link
with RC

1

2
S
(

1

2 µSD

)

+
M !

4 µSD

M∑

m=1

m∑

k=1

M∑

p=m

(−1)p−m

(M − p)! (p − m)! m! µk−1
RD

× g

(
1

µRD
− 1

2 µSD
; k, 0,

1

2 µSD
+

p

µSR

)

Symmetric case
with no SD link
with PCC or RC

M∑

m=1

M∑

k=m

m−1∑

p=0

(−1)k−m (M !/2) ek/µSR

(M − k)! (k − m)! m! (m − p − 1)! p!
(

k µRD
µSR

+ 1
)p

× Γ

(

m − p,− 1

µRD

)

Γ

(

p,
k

µSR
+

1

µRD

)
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TABLE 4.4
OUTAGE PROBABILITY AT RATE r NATS FORSELECTION RELAYING

IN THE RAYLEIGH FADING CASE

Asymmetric case
with the SD link
with PCC

e1/µSD

µSD

∑

A⊂{1, ···, M}
(−1)|A| e(1−e2r)/µSA+1/µAD I−1

(

1,
e2r

µAD
,

1

µSD
, 0, er

)

Asymmetric case
with the SD link
with RC

1

µSD

∑

A⊂{1, ···, M}
(−1)|A| e(1/µSA+1/µAD)(1−e2r)

× h

(
1

µSD
− 1

µAD
; 1,

e2r − 1

2

)

Asymmetric case
with no SD link
with PCC or RC

M∏

m=1

[

1 − e(1/µSm+1/µmD)(1−e2r)
]

Symmetric case
with the SD link
with PCC e1/µSD

µSD

M∑

m=0

(

M

m

)

(−1)m em(1−e2r)/µSR+m/µRD

× I−1

(

1,
m e2r

µRD
,

1

µSD
, 0, er

)

Symmetric case
with the SD link
with RC 1

µSD

M∑

m=0

(

M

m

)

(−1)m em(1/µSR+1/µRD)(1−e2r)

× h

(
1

µSD
− m

µRD
; 1,

e2r − 1

2

)

Symmetric case
with no SD link
with PCC or RC

[

1 − e(1/µSR+1/µRD)(1−e2r)
]M
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TABLE 4.5
AVERAGE CAPACITY IN NATS FORSELECTION RELAYING IN THE RAYLEIGH FADING CASE

Asymmetric case
with the SD link
with PCC S

(
1

µSD

)

+
1

2 µSD

∑

A⊂{1, ···, M}
A6=∅

(−1)|A|−1

× e1/µSD+1/µSA+1/µAD R
(

1

µSD
,

1

µSA
,

1

µAD

)

Asymmetric case
with the SD link
with RC

1

2
S
(

1

2 µSD

)

+
1

4 µSD

∑

A⊂{1, ···, M}
A6=∅

(−1)|A|−1

× T
(

1

2 µSD
+

1

µSA
+

1

2 µAD
,

1

µSA
+

1

µAD

)

Asymmetric case
with no SD link
with PCC or RC

1

2

∑

A⊂{1, ···, M}
A6=∅

(−1)|A|−1 S
(

1

µSA
+

1

µAD

)

Symmetric case
with the SD link
with PCC S

(
1

µSD

)

+
1

2 µSD

M∑

m=1

(

M

m

)

(−1)m−1

× e1/µSD+m/µSR+m/µRD R
(

1

µSD
,

m

µSR
,

m

µRD

)

Symmetric case
with the SD link
with RC 1

2
S
(

1

2 µSD

)

+
1

4 µSD

M∑

m=1

(

M

m

)

(−1)m−1

× T
(

1

2 µSD
+

m

µSR
+

m

2 µRD
,

m

µSR
+

m

µRD

)

Symmetric case
with no SD link
with PCC or RC 1

2

M∑

m=1

(

M

m

)

(−1)m−1 S
(

m

µSR
+

m

µRD

)
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TABLE 4.6
OUTAGE PROBABILITY AT RATE r NATS FORORTHOGONAL RELAYING

WITH THE SD LINK IN THE RAYLEIGH FADING CASE

(The bounds become the exact values forM = 1)

Asymmetric case
with PCC, lower
bound

1 − e(1−e(M+1)r)/µSD − e1/µSD

µSD

∑

A⊂{1, ···, M}
A6=∅

e(1−e(M+1)r)/µSA

×
∏

m∈Ac

[

1 − e(1−e(M+1)r)/µSm

] ∑

m∈A

e|A|/µmD

∏

k∈A
k 6=m

(

1 − µkD

µmD

)

× I−1/|A|

(

1,
|A| e(M+1)r/|A|

µmD
,

1

µSD
, 0, e(M+1)r

)

Asymmetric case
with PCC, upper
bound

1 − e(1−e(M+1)r)/µSD − e1/µSD

µSD

∑

A⊂{1, ···, M}
A6=∅

e(1−e(M+1)r)/µSA+1/µAD

×
∏

m∈Ac

[

1−e(1−e(M+1)r)/µSm

]

I−1/|A|

(

1,
e(M+1)r/|A|

µAD
,

1

µSD
, 0, e(M+1)r

)

Asymmetric case
with RC, exact
value

1 − e(1−e(M+1)r)/µSD −
M∑

m=1

e(1/µSm+1/µmD)(1−e(M+1)r)

×
M∏

k=1
k 6=m

[

1 +
e(1−e(M+1)r)/µSk

µmD

µkD
− 1

]

h

(

1 − µSD

µmD
; 1,

e(M+1)r − 1

µSD

)

Symmetric case
with PCC, lower
bound

1 − e(1−e(M+1)r)/µSD − e1/µSD

µSD

M∑

m=1

m−1∑

k=0

k∑

p=0

(
M

m

)
(−1)k−p(m/µRD)k

(k − p)! p!

× em(1−e(M+1)r)/µSR+m/µRD+(M+1)r p/m
[

1 − e(1−e(M+1)r)/µSR

]M−m

× I−1/m

(

1 − p

m
,
m e(M+1)r/m

µRD
,

1

µSD
, 0, e(M+1)r

)

Symmetric case
with PCC, upper
bound

1 − e(1−e(M+1)r)/µSD − e1/µSD

µSD

M∑

m=1

(
M

m

)

em(1−e(M+1)r)/µSR+m/µRD

×
[

1 − e(1−e(M+1)r)/µSR

]M−m

I−1/m

(

1,
m e(M+1)r/m

µRD
,

1

µSD
, 0, e(M+1)r

)

Symmetric case
with RC, exact
value

1 − e(1−e(M+1)r)/µSD − µRD e(1−e(M+1)r)/µSD

µSD

×
M∑

m=1

m∑

k=1

(
M

m

)

em(1−e(M+1)r)/µSR

[

1 − e(1−e(M+1)r)/µSR

]M−m

× h

(

1 − µRD

µSD
; k,

e(M+1)r − 1

µRD

)
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TABLE 4.7
AVERAGE CAPACITY IN NATS FORORTHOGONAL RELAYING

WITH THE SD LINK IN THE RAYLEIGH FADING CASE

(The bounds become the exact values forM = 1)

Asymmetric case
with PCC, lower
bound

1

M + 1
S
(

1

µSD

)

+
1

M + 1

∑

A⊂{1, ···, M}
A6=∅

∑

B⊂Ac

(−1)|B|

× e1/µSA+1/µSB+1/µAD I1/|A|

(

0,
1

µAD
,

1

µSA
+

1

µSB
, µSD

)

Asymmetric case
with PCC, upper
bound

1

M + 1
S
(

1

µSD

)

+
1

M + 1

∑

A⊂{1, ···, M}
A6=∅

∑

B⊂Ac

∑

m∈A

(−1)|B|

∏

k∈A
k 6=m

(

1 − µkD

µmD

)

× e1/µSA+1/µSB+|A|/µmD I1/|A|

(

0,
|A|
µmD

,
1

µSA
+

1

µSB
, µSD

)

Asymmetric case
with RC, exact
value

1

M + 1
S
(

1

µSD

)

+
1

(M + 1)µSD

M∑

m=1

∑

A⊂{1, ···, M}−{m}

T
(

1
µSD

+ 1
µSm

+ 1
µSA

, 1
µSm

+ 1
µSA

+ 1
µmD

)

∏

k∈A

(
µmD

µkD
− 1
)

Symmetric case
with PCC, lower
bound

1

M + 1
S
(

1

µSD

)

+
M !

M + 1

M∑

m=1

M∑

k=m

(−1)k−m em/µRD+k/µSR

(M − k)! (k − m)!m!

× I1/m

(

0,
m

µRD
,

k

µSR
, µSD

)

Symmetric case
with PCC, upper
bound

1

M + 1
S
(

1

µSD

)

+
M !

M + 1

M∑

m=1

M∑

k=m

m−1∑

p=0

(−1)k−m (m/µRD)p

(M − k)! (k − m)!m!

× ek/µSR

(m − p − 1)! p!
Γ

(

m − p,− m

µRD

)

I1/m

(
p

m
,

m

µRD
,

k

µSR
, µSD

)

Symmetric case
with RC, exact
value

1

M + 1
S
(

1

µSD

)

+
M !

(M + 1)µSD

M∑

m=1

m∑

k=1

M∑

p=m

(−1)p−m

(M − p)! (p − m)!m!µk−1
RD

g

(
1

µRD
− 1

µSD
; k, 0,

1

µSD
+

p

µSR

)
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TABLE 4.8
OUTAGE PROBABILITY AT RATE r NATS FORORTHOGONAL RELAYING

WITH NO SD LINK IN THE RAYLEIGH FADING CASE

(The bounds become the exact values forM = 1)

Asymmetric case
with PCC, lower
bound

1 −
∑

A⊂{1, ···, M}
A6=∅

e(1−e(M+1)r)/µSA
∏

m∈Ac

[

1 − e(1−e(M+1)r)/µSm

]

×
∑

m∈A

e(1−e(M+1)r/|A|)|A|/µmD

∏

k∈A
k 6=m

(

1 − µkD
µmD

)

Asymmetric case
with PCC, upper
bound

1 −
∑

A⊂{1, ···, M}
A6=∅

e(1−e(M+1)r)/µSA+(1−e(M+1)r/|A|)/µAD

×
∏

m∈Ac

[

1 − e(1−e(M+1)r)/µSm

]

Asymmetric case
with RC, exact
value 1 −

M∑

m=1

e(1/µSm+1/µmD)(1−e(M+1)r)
M∏

k=1
k 6=m

[

1 +
e(1−e(M+1)r)/µSk

µmD
µkD

− 1

]

Symmetric case
with PCC, lower
bound

M∑

m=0

(

M

m

)

e(1−e(M+1)r)m/µSR

[

1 − e(1−e(M+1)r)/µSR

]M−m

× P

(

m,
m

µRD

[

e(M+1)r/m − 1
])

Symmetric case
with PCC, upper
bound 1 −

M∑

m=1

(

M

m

)

em(1−e(M+1)r)/µSR+m(1−e(M+1)r/m)/µRD

×
[

1 − e(1−e(M+1)r)/µSR

]M−m

Symmetric case
with RC, exact
value

M∑

m=0

(

M

m

)

em(1−e(M+1)r)/µSR

[

1 − e(1−e(M+1)r)/µSR

]M−m

× P

(

m,
e(M+1)r − 1

µRD

)
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TABLE 4.9
AVERAGE CAPACITY IN NATS FORORTHOGONAL RELAYING

WITH NO SD LINK IN THE RAYLEIGH FADING CASE

(The bounds become the exact values forM = 1)

Asymmetric case
with PCC, lower
bound

1

M + 1

∑

A⊂{1, ···, M}
A6=∅

∑

B⊂Ac

(−1)|B| e1/µSA+1/µSB+1/µAD

× I1/|A|

(

0,
1

µAD
,

1

µSA
+

1

µSB
, 0

)

Asymmetric case
with PCC, upper
bound 1

M + 1

∑

A⊂{1, ···, M}
A6=∅

∑

B⊂Ac

∑

m∈A

(−1)|B| e1/µSA+1/µSB+|A|/µmD

∏

k∈A
k 6=m

(

1 − µkD
µmD

)

× I1/|A|

(

0,
|A|
µmD

,
1

µSA
+

1

µSB
, 0

)

Asymmetric case
with RC, exact
value 1

M + 1

M∑

m=1

∑

A⊂{1, ···, M}−{m}

S
(

1
µSm

+ 1
µSA

+ 1
µmD

)

∏

k∈A
(

µmD
µkD

− 1
)

Symmetric case
with PCC, lower
bound

M !

M + 1

M∑

m=1

M∑

k=m

(−1)k−m ek/µSR+m/µRD

(M − k)! (k − m)! (m − 1)!
Im

(

0,
k

µSR
,

m

µRD
, 0

)

Symmetric case
with PCC, upper
bound

M !

M + 1

M∑

m=1

M∑

k=m

m−1∑

p=0

(−1)k−m (m/µRD)p ek/µSR

(M − k)! (k − m)! (m − 1)! (m − p − 1)! p!

× Γ

(

m − p,− m

µRD

)

Im

(

p,
k

µSR
,

m

µRD
, 0

)

Symmetric case
with RC, exact
value

M∑

m=1

M∑

k=m

m−1∑

p=0

(−1)k−m [M !/(M + 1)] ek/µSR

(M − k)! (k − m)! m! (m − p − 1)! p!
(

k µRD
µSR

+ 1
)p

× Γ

(

m − p,− 1

µRD

)

Γ

(

p,
k

µSR
+

1

µRD

)
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4.5 Numerical Results

In this section, some numerical examples are given to verify the analysis performed and to

evaluate the performance of the relaying schemes for Rayleigh fading, where the SNRs of

the different links are exponentially distributed.

Figs. 4.3 and 4.4 verify the analytical results given in Tables 4.2–4.9, respectively for

the outage probability and average capacity, by Monte Carlo simulation for two-relay, asym-

metric and symmetric cases. The outage probability has been calculated for thenormalized

rater = 2 bits, and the average capacity has been expressed in bits. In the asymmetric

case, we assume thatµS1 = µSD + 25 dB, µ1D = µSD + 12 dB, µS2 = µSD + 22 dB, and

µ2D = µSD + 15 dB. This scenario corresponds to a situation whereR1 andR2 are closer

to the source than to the destination, which is appropriate for DF relaying, and whereR1 is

slightly closer to the source thanR2 is. In the symmetric case, we haveµSR = µSD + 27

dB andµRD = µSD + 18 dB which corresponds to the case where both relays are located

in a similar position closer to the source than to the destination.

Note that in all cases, the simulation and analytical results are in excellent agreement. In

addition, Figs. 4.3e, 4.3f, 4.4e, and 4.4f show that the lower bound on the outage probability

and upper bound on the average capacity of orthogonal relaying with PCC are very tight.

In fact, this situation exists for many other examples not included here for brevity, such

that we only exhibit the outage probability lower and average capacity upper bounds for the

performance of orthogonal relaying with PCC in the subsequent figures.In contrast to the

lower bound, the upper bound on the outage probability is not satisfactoryand degrades as

the average SNRs improve. Also, the lower bound on the average capacityis not as tight

as the upper bound for small values of SNR, but improves for large SNR regimes. Note

from Appendix E that both the lower bound on the outage probability and upper bound on

the average capacity of orthogonal relaying with PCC are obtained from asingle bound on

CDF Fln1+Y-sum(·). Also, the outage probability upper and average capacity lower bounds

originate from another bound onFln1+Y-sum(·).
There are other important observations from Figs. 4.3 and 4.4 as follows.Fig. 4.3

shows that a diversity order of3 is obtainable from all the schemes in large SNR regimes;

i.e., the outage probability is approximately proportional to1/µ3
SD for large values ofµSD.

Also, the PCC over RC gain in superimposed, selection, and orthogonal relaying, in terms
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(a) Superimposed relaying, the asymmetric case.
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(b) Superimposed relaying, the symmetric case.
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(d) Selection relaying, the symmetric case.
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(e) Orthogonal relaying, the asymmetric case.
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(f) Orthogonal relaying, the symmetric case.

Fig. 4.3. The outage probability atr = 2 bits versus the average SD SNR for the different protocols, for
asymmetric and symmetric cases when there are two relays available.
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(b) Superimposed relaying, the symmetric case.
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(c) Selection relaying, the asymmetric case.
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(d) Selection relaying, the symmetric case.
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(f) Orthogonal relaying, the symmetric case.

Fig. 4.4. The average capacity in bits versus the average SD SNR for thedifferent protocols, for asymmetric
and symmetric cases when there are two relays available.
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of the outage performance, can be as much as2.0 dB, 2.5 dB, and3.9 dB, respectively.

Fig. 4.4 shows that this gain, for the capacity performance, can be largerand up to8 dB for

superimposed relaying,8.4 dB for selection relaying, and7.9 dB for orthogonal relaying.

Figs. 4.5 and 4.6 respectively show the outage probability atr = 1 bit and average

capacity of the different schemes versus the normalized distance of the relays from the

source for a linear network topology in the symmetric case whenM = 3. We assume in

this topology that

dSD = dSR + dRD (4.71)

wheredSD, dSR, anddRD are the SD, SR, and RD distances. We also assume thatµSD = 7

dB, and that, using a simplified path loss model [50, p. 843], [87, Section 2.6],

µSR = µSD

(
dSD

dSR

)α

(4.72)

and

µRD = µSD

(
dSD

dRD

)α

(4.73)

whereα is the path loss exponent set to4 here.9

In Figs. 4.5 and 4.6, we have also included the performance of DT as a baseline for

comparison. The maximum instantaneous rate for DT is given as [79, Chapter 9]

I(DT)
max , ln(1 + γSD) (4.74)

nats per 2-D DoF. Therefore, the corresponding outage probability atrater nats and average

capacity in nats for Rayleigh fading are obtained as

Pr{I(DT)
max < r} = Pr

{
Imax < er − 1

}
= 1 − e(1−er)/µSD (4.75)

and

I
(DT)
max ,

∫ ∞

0
dγ ln(1+γ) fSD(γ) =

1

µSD

∫ ∞

0
dγ ln(1+γ) e−γ/µSD = S

(
1

µSD

)

(4.76)

whereS(·) is defined by (4.69). Note that despite the relaying schemes for which achiev-

ability of the average capacity needs adaptive transmission from the source (as explained in

Section 4.2), in DT,I(DT)
max is achievable even without CSI at the transmitter [88].

Fig. 4.5 shows that all the relaying schemes significantly outperform DT in terms of

9The path loss exponent normally ranges from1.6 to 6.5 [87, Section 2.6]. A smaller value corresponds to
less average signal attenuation in the channel.
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Fig. 4.5. The outage probability atr = 1 bit versus the SR distance normalized by the SD distance, for the
different protocols and a linear network topology in the symmetric case whenM = 3 andµSD = 7 dB.
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Fig. 4.6. The average capacity in bits versus the SR distance normalized by the SD distance, for the different
protocols and a linear network topology in the symmetric case whenM = 3 andµSD = 7 dB.

the outage probability, except for orthogonal relaying whendSR/dSD is large. In fact, when

dSR/dSD is increased, fewer relays decode the message and the performance degrades in

all schemes. However, orthogonal relaying is more susceptible in this regard as in this

scheme, the time or frequency slot given to a relay is left unused if the relaycannot decode.

70



Also, note from the figure that superimposed and orthogonal relaying respectively have

the best and poorest outage performance for the same cooperation strategy (PCC or RC).

Further, it is observed that the relaying schemes have an optimal point of operation in terms

of dSR/dSD. This is expected as when the relays move farther from the source, on the

one hand, fewer relays can decode the message, but on the other, theirRD links become

stronger. The optimal performance occurs at the optimal point of this tradeoff.

Fig. 4.6 presents results with explanations similar to those given for Fig. 4.6, for the

average capacity performance of the schemes. However, one major difference here is that

except for small values ofdSR/dSD and its PCC scheme, orthogonal relaying is inferior to

DT. Such a poor capacity performance is generally explained by orthogonalization loss, first

noted and explained in [9] for the outage performance of an orthogonalrelaying system.

This loss essentially refers to the diminution of the achievable rate when averaged over

several orthogonal channels.

Figs. 4.7 and 4.8 depict the outage and capacity performances of the schemes versus the

number of relays in a symmetric case. Fig. 4.7 shows that while the outage performances

of superimposed and selection relaying improve asM increases, the outage performance

of orthogonal relaying deteriorates for more than3 relays. Also, Fig. 4.8 shows that in

contrast to the average capacity of superimposed and selection relaying which improves
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Fig. 4.7. The outage probability atr = 1 bit versus the number of relays for the different protocols in the
symmetric case whenµSD = 3 dB, µSR = 24 dB, andµRD = 15 dB.
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Fig. 4.8. The average capacity in bits versus the number of relays for the different protocols in the symmetric
case whenµSD = 3 dB, µSR = 24 dB, andµRD = 15 dB.

with increasingM , the average capacity of orthogonal relaying is diminished asM is in-

creased. These deteriorating effects of increasingM on the performance of orthogonal

relaying is explained again by orthogonalization loss [9]. Another importantobservation is

that in terms of the outage probability, superimposed relaying benefits more from increas-

ing M than selection relaying does, in the sense that its outage probability decreases more

rapidly asM increases. This is in contrast to their capacity performances where the average

capacity of both schemes has similar trends and increases withM with diminishing returns.
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Chapter 5

Rateless Coded Relaying:

Single-Relay Case1

5.1 Introduction

Rateless codes, including fountain codes, have garnered considerable interest among coding

and communication theorists [22], [89]–[96], since their introduction in [97], [98] and their

prevalent use in industrial products as a universal coding solution forerasure channels [99,

Chapter 50]. Two common examples of fountain codes include Luby-transform (LT) codes

[98] and Raptor codes [100], an improved version of LT codes. In thischapter, it is assumed

that transmitters take advantage of rateless coding.

Their value mostly lies in the fact that rateless codes do not have a fixed or prede-

termined rate at the transmitter, and the source, oblivious to CSI, can generate as many

encoding symbols as needed to enable the destination to decode its message. Thus, rateless

codes are said to adapt to and follow the channel condition. A one-bit feedback from the

receiver can be used to mark the success of the decoding and to signal the transmitter to

stop sending more codeletters. Therefore, outage, meaning failure in decoding at the re-

ceiver, virtually is not experienced in systems exploiting rateless codes. In fact, the receiver

in rateless schemes keeps accumulating MI, rather than energy, from the source until the

receiver can decode [22]. These properties best suit DF relaying schemes by having relays

1A version of this chapter has been published in part in the Proceedings ofthe IEEE International Confer-
ence ion Communications (ICC), 2008, pp. 3701–3707, and in the IEEETransactions on Wireless Communi-
cations, vol. 7, no. 11, pp. 4439–4444, Nov. 2008.
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monitor the sourceindefinitely, and having the relay(s) successful in decoding assist the

source. Such schemes have been addressed recently in the literature [22], [91], [94]–[96].

Rateless codes are different from fixed-rate codes in several aspects. The authors in

[90], [91] were first to propose the use of rateless codes in fading channels, and to show

that rateless schemes are capable of simultaneously achieving reliability and efficiency over

fading channels. In contrast, fixed-rate systems experience an unavoidable tradeoff between

reliability and efficiency [90]. Moreover, to maximize reliability and efficiencyat the same

time in fixed-rate systems, the transmitter needs full knowledge of the CSI to setthe code

rate accordingly, provided that it has access to a variable-rate code. However, what is

required in a rateless scheme to bring about both reliability and efficiency is at most knowl-

edge of the channel statistics at the transmitter side.

The use of rateless codes in relay networks has been proposed in the literature [22], [91],

[94]–[96] as a means to approach the capacity promised for the relaying protocols under

study without knowing fully the CSI at the transmitter. We consider using rateless coding

and assume that transmitters know the statistics of the channel fading, but are otherwise

oblivious to the CSI. Note that if rateless codes are universal over a class of channels, such

as erasure channels and AWGN channels, which means that a single codedesign can be

utilized to approach the Shannon capacity of any channel in the class,2 then the transmitter

is relieved of even knowing the channel statistics.

In this chapter, the achievable rates of three single-relay, rateless coded, DF protocols,

one of which is proposed here, are investigated under a peak power constraint (PPC) and

an average power constraint (APC). The APC provides fair groundsfor comparing the pro-

tocols in terms of their achievable rates under constant average energy consumption per

channel use. In fact, in contrast to DT, cooperative transmission involves transmission from

other nodes, i.e. relays. In rateless coded relaying transmission, in one protocol, relays may

contribute more time and energy resulting in greater MI between the source and destina-

tion, while in another, less energy is spent by the relays and the resulting rate is smaller.

Therefore, it is essential to determine which protocol yields larger rates for constant en-

ergy consumption. These considerations have been ignored in some previous research [91],

2Luby-transform and Raptor codes are universal over erasure channels [99, Chapter 50]. However, the
codes lack universality over binary symmetric channels and AWGN channels though exhibiting acceptable
performance [92], [93]. No result in the literature precludes the possibility of designing universal rateless
codes over non-erasure channels.
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[95],3 leading to unfair comparisons. Along with the maximum rate under the APC, we

calculate and use the minimum energy per bit under the PPC for the differentprotocols, as

another performance measure to compare the protocols fairly on the basis of energy con-

sumption. Also, to study and compare the long-term average behaviors of the protocols,

we calculate the long-term average rate, the long-term average energy per bit, and a newly

defined metric, the relay-to-source usage ratio showing the average amount of relay usage

relative to source usage in a protocol. The protocol proposed in this chapter is built upon

opportunistic communication [80, Chapter 6] such that although inferior to its predecessors

under the PPC, it outperforms them in most cases in energy constrained scenarios.

As is common practice in the literature, it is assumed here that rateless codes, wherever

used, can closely approach the Shannon capacity without requiring instantaneous CSI at the

transmitter [22], [91], [95]. However, the design of capacity-approaching rateless codes is

beyond the scope of this chapter. The accuracy of this assumption has been explained in

[22], and demonstrated by numerical examples in [91]. Also, it has been shown that the

fountain capacity is the same as the Shannon capacity for memoryless channels [89], and

that capacity-approaching rateless codes with low-complexity decoding algorithms exist for

AWGN channels [101].

The remainder of the chapter is outlined as follows. In Section 5.2, the systemmodel

and definitions are given. In Section 5.3, the different rateless coded protocols are intro-

duced, and the short-term average rate and energy of each scheme are derived. In Section

5.4, the issues and implications of feedback in the protocols are investigated.A discussion

on power fairness for the protocols is presented in Section 5.5. In section5.6, different

measures for comparing the protocols fairly on a power basis are examined. The long-term

average behavior of the schemes is characterized in Section 5.7. Finally, the chapter is

concluded by several numerical examples in Section 5.8.

5.2 Channel Model and Definitions

As depicted in Fig. 2.1, we consider a source, a destination, and an available relay assisting

the source in relaying its messages, each of constant entropyH, to the destination. Each

3In [9], power normalization is used to take power fairness into account for comparison purposes. However,
the model that was considered utilized fixed time or frequency channels.When the amount of network resources
used is variable and channel-dependent, as in the case of rateless schemes, a slightly different approach is
needed to take account of power fairness.
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node has a single transmitting/receiving antenna. A CR is the period over which a message

of the source is fully communicated to the destination, and has two phases. In Phase I,

the source ratelessly encodes its message and broadcasts the encoding symbols or packets.

As soon as the relay successfully decodes the message, Phase II begins where the relay

cooperates with the source. It is the method of this collaboration that createsthe different

cooperation protocols introduced in Section 5.3. Obviously, if in a given CR, the destination

can decode the message before the relay can, the CR reduces to DT, i.e. Phase II does not

exist and the relay is not used in the CR. Note that the success in decoding at the relay or

destination can be assured using an external cyclic redundancy checkcode [102].

We use system model assumptions similar to those in [22]. We assume that all channels

are contaminated with AWGN, and experience independent path loss and flat fading. A

block fading model is considered where the SNRs remain constant over a CR [21], [22],

[96]. Also, it is assumed that transmissions occupy baseband bandwidthW Hz. Therefore,

there areW 2-D DoFs per second available for transmission [9]. In fact, assuming that the

duration of a CR isT , one obtains the rate per 2-D DoF realized in the CR, as

R =
H

W T
. (5.1)

It is assumed that any node has a continuous-time powerP . Therefore, the energy per

2-D DoF is obtained from [9] as

E ,
P

W
. (5.2)

Moreover, we can write the SD, SR, and RD SNRs, respectively as

γ0 , γ |g0|2 (5.3)

γ1 , γ |g1|2 (5.4)

and

γ2 , γ |g2|2 (5.5)

whereg0, g1, andg2 are the SD, SR, and RD complex channel coefficients, respectively,

and where

γ ,
E
N

=
P

WN0
(5.6)
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whereN0 is the one-sided PSD of the AWGN.4 The average values ofγ0, γ1, andγ2 with

respect to channel fading are denotedµ0, µ1, andµ2.

The capacities of the SD, SR, and RD links are denotedC0, C1, andC2, respectively.

Also, the sum-rate capacity of the multiaccess channel from the source andrelay to the

destination is denotedCm. In the case of Gaussian-input or average-power-constrained-

input channels, one has [79, Chapter 15]

C0 = C(γ0) (5.7a)

C1 = C(γ1) (5.7b)

C2 = C(γ2) (5.7c)

and

Cm = C(γ0 + γ2) (5.7d)

in nats, where

C(x) , ln(1 + x). (5.7e)

In Sections 5.3 and 5.6, general-input channels are considered, except for Subsection 5.6.2

where only Gaussian-input channels are studied. Also, the numerical examples in Section

5.8 are given for Rayleigh fading, Gaussian-input channels

Note that in general-input channels, we naturally assume thatC0, C1, C2, andCm are

increasing functions of the corresponding SNRs. Also, we have [79, Section 15.3]

max{C0, C2} < Cm < C0 + C2. (5.8)

Throughout, we make use of the following terminology:

• Theshort-term average rate, R, refers to the MI communicated to the destination per

2-D DoF in a given CR. The maximum possibleR in a CR is denotedRmax.

• The long-term average rate, Ravg, refers to the maximum MI communicated to the

destination per 2-D DoF averaged over infinitely many CRs.

• The short-term average energy per symbol, E, refers to the average total energy

expended by the whole system for wireless transmission per 2-D DoF in a given CR.
4We assume without loss of generality that AWGN has the same PSD in all channels.
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For example, if in a CR, lastingn 2-D symbols, the source and relay respectively

transmitnS andnR symbols with energiesES andER per symbol, then

E =
nS ES + nR ER

n
. (5.9)

Note that

nS + nR ≥ n (5.10)

considering the possibility of an overlap between the source and relay transmissions

in some protocols.

• Theshort-term average energy per bit, EB, in a CR refers to the ratioE/R whenR

is expressed in bits. The minimum possibleEB in a CR is denotedEBmin.

• The long-term average energy per bit, EBavg refers to the minimum ratio of the total

energy expended by the whole system for wireless transmission to the total MI in bits

communicated to the destination in durationt, whent approaches infinity.

• ThePPCrefers to the constraint that the source and relay operate at their peak power

P or peak energy per 2-D DoFE .

• TheAPCrefers to the constraint that the source and relay virtually scale their powers

(respectively, energies per 2-D DoF) such that the average total power in a CR isP ,

or equivalently,E = E .

In the next section, the protocols are introduced and theirRmax’s andE’s under the

PPC, are derived. Then in Section 5.6, to draw a fair comparison on a power basis be-

tween the achievable rates of the protocols, first we study and compare theEBmin’s of the

protocols under the PPC. Second, we examine theRmax’s of the protocols under the APC.

In the following, the rates and energies in the different protocols are distinguished by

superscripts “(DT)”, “(P-1)”, “(P-2)”, and “(P-3)”. For example,R(P-1) andE(P-1) represent

the short-term average rate and energy per symbol in P-1.

5.3 Rateless Coded Protocols

All the schemes in this section with their rates, and energies under the PPC, are summarized

in Table 5.1. In this table, Bi refers to both the source’sith message and the rateless encoded
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TABLE 5.1
DIFFERENTTRANSMISSIONSCHEMESWITH THEIR MAXIMUM SHORT-TERM AVERAGE RATES

AND CORRESPONDINGSHORT-TERM AVERAGE ENERGIES PERSYMBOL

DT

Source B1 B2 B3 B4 B5 t

Rmax = C0

E = E

P-1

Source

Relay

B1

B1

B2

B2

t

t

0

n1

n

C0 < C1

Rmax =

{
C0, C1 ≤ C0

CmC1
Cm+C1−C0

, C1 > C0

E =

{
E , C1 ≤ C0

E
(
1 + C1−C0

Cm+C1−C0

)
, C1 > C0

P-2

Source

Relay

B1

B1

B2 B2B3

B3

B4 t

t

0 n1 n

C0 < C1

Rmax =

{
C0, C1 ≤ C0

CmC1−C2
0

Cm+C1−2C0
, C1 > C0

E =

{
E , C1 ≤ C0

E
(
1 + C1−C0

Cm+C1−2C0

)
, C1 > C0

P-3

Source

Relay

B1

B1

B2

B2

B3

B3

t

t

0 n1 n

C0 < min{C1, C2}

Rmax =

{
C0, min{C1, C2} ≤ C0

C1C2
C1+C2−C0

, min{C1, C2} > C0

E = E

block for theith message. Also, Table 5.2 presents a summary of the requirements and/or

favorable situations of each protocol. We commence with DT as the baseline and introduce

the other protocols in sequence.

5.3.1 The DT Scheme

In this case, no relay is used and the source is the only transmitter in the available band-

width, W . In a fixed-rate coded system, the Shannon capacity of DT for a flat fading

channel with no CSI at the transmitter is the ergodic capacityE{C0} [87, Section 4.2.3],

which is bounded above zero. The rateE{C0} is approached if the codeword of the trans-
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TABLE 5.2
FEATURES OF THEDIFFERENTTRANSMISSIONSCHEMES

(ACK = acknowledgment signal, MUD = multiuser detection)

DT
• Best whenγ1 ≤ γ0.

P-1
• Requiresγ1 > γ0.

• Stringent synchronization at the relay.

• No ACK between the source and relay.

• No MUD at the destination.

P-2
• Requiresγ1 > γ0.

• No stringent synchronization between the source and relay.

• Requires ACKs from the relay or destination to the source.

• Requires MUD at the destination.

P-3
• Requiresmin{γ1, γ2} > γ0.

• No stringent synchronization between the source and relay.

• Requires ACKs from the relay or destination to the source.

• No MUD at the destination.

mitter is long enough that is affected by all fading channel states. In a rateless system, the

same rate can be achieved, as the indefinitely long, ratelessly encoded stream of symbols is

capacity-approaching and can experience virtually all fading channelstates. Therefore, the

long-term average rate for DT,R
(DT)
avg , is

R(DT)
avg = E{C0} (5.11)

which, in the case of a Rayleigh fading, Gaussian-input channel, becomes, like (4.76),

R(DT)
avg =

1

µ0

∫ ∞

0
e−γ/µ0 ln(1 + γ) dγ = S

(
1

µ0

)

(5.12)

whereS(·) is given by (4.69). We can also derive the long-term average energy per bit,

introduced in Section 5.2, for DT as follows. We know that the energy per symbol is

constant for DT atE , whereE is defined in (5.2). Therefore, assuming that the value ofC0

in bits at Symboli is denotedC0[i], we obtain

EB(DT)
avg = lim

m→∞
m E

C0[1] + · · · + C0[m]
=

E
E{C0}

=
E

R
(DT)
avg

. (5.13)
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5.3.2 The P-1 Scheme

The P-1 protocol is taken from the rateless DF relaying protocol suggested in [91], which

itself was built upon a commensurate block-coded fixed-rate system in [103]. In P-1, the

source broadcasts rateless encoding symbols to the relay and destination inPhase I. When

the relay is capable of decoding the source message, Phase II begins where the relay forms

an Alamouti transmission scheme [104] with the source, to send new rateless symbols to

the destination until the destination decodes. An advantage of P-1 is that the source does

not need to be aware of the relay or when the relay decodes. However,a drawback is the

greater complexity in the relay for synchronization with the source at the symbol level.

To deriveR(P-1)
max , we first note that if the SR link is not stronger than the SD link, i.e. if

C0 ≥ C1, the relay is not used and the system reverts to DT. Now, assume thatC0 < C1

and that the relay and destination decode the message after receivingn1 andn symbols in

total, respectively, as depicted in Table 5.1. On the one hand, we can write

H = n1C1 (5.14)

whereH is the entropy of the message. On the other, the source communicatesn1C0 units

of MI to the destination during Phase I, and the source and relay together communicate

(n − n1)Cm units of MI to the destination during Phase II. Therefore, we have

H = n1C0 + (n − n1)Cm. (5.15)

Based on the definition ofRmax and from (5.14) and (5.15), one obtains

R(P-1)
max =

H

n
=

Cm C1

Cm + C1 − C0
(5.16)

consistent with the result [21, Corollary 1].

To deriveE(P-1) under the PPC assuming thatC0 < C1, we note that the total energy

expended per DoF equalsE when only the source transmits, and equals2E when both the

source and relay transmit. Therefore, we have

E(P-1) =
n1E + 2(n − n1)E

n
=

(

1 +
C1 − C0

Cm + C1 − C0

)

E (5.17)

where the second equality is obtained by applying (5.14) and (5.15).
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5.3.3 The P-2 Scheme

The P-2 protocol is based on the rateless DF relaying protocol proposed in [95]. The dif-

ference between P-1 and P-2 lies in the second phase of a CR. In P-1 during Phase II, the

source, unaware of the relay cooperation, continues to transmit the same message to the

destination. However in P-2, the source transmits a new message in Phase II, where the

destination attempts to jointly decode the source and relay transmissions. As the relay is

half-duplex, it cannot monitor the new message. For example, in the P-2 scheme depicted

in Table 5.1, the source is not assisted by the relay in the transmission of B2 and B4.

The method of coordination between the source and relay transmissions in P-2 has been

explained in [95], and is based on ACKs. An achievable rate under P-2 has been given

in [95] in terms of MI functions without derivation details. Here, we derivethe result in

[95], and find the maximum rate under P-2 by obtaining the optimal operating rates in the

multiaccess channel from the source and relay to the destination (i.e. the rates realized

in Phase II). If we assume that the destination uses serial interference cancellation which

is an optimal MUD in multiaccess channels [80, Section 6.1.1], then the rate is shown to

be maximized when the destination first decodes and cancels the relay message and then

decodes the source message.

Here again, ifC0 ≥ C1, the relay is not used and one hasR(P-2)
max = C0 andE(P-2) = E .

Therefore, assume thatC0 < C1, and consider the example shown in Table 5.1 where the

relay and destination decode B1 aftern1 andn 2-D DoFs are exhausted, respectively.

To deriveR(P-2)
max in P-2, first, note that as the relay decodes B1 at n1, (5.14) holds.

Second, assume thatXS andXR are the source and relay rates when the source and relay

simultaneously transmit B2 and B1, respectively. The shaded area in Fig. 5.1 represents all

achievable rates(XS, XR).5 Now, as the destination decodes B1 by receivingn1 symbols

from the source at rateC0 andn − n1 symbols from the relay at rateXR, we can write

H = n1C0 + (n − n1)XR. (5.18)

Meanwhile, during the period when the destination is receiving for B1, it also receives

n − n1 symbols for B2 from the source at rateXS. Therefore, an achievable short-term

average rate can be written as

5The reader is referred to [79, Section 15.3.6] or [50, Section 16.2]for the capacity of Gaussian multiaccess
channels.
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Source

Relay

0

Cm

Cm

C2

C0

Cm−C0

Cm−C2

A

B

Fig. 5.1. The rate region for the multiaccess channel from the source and relay to the destination.

R(P-2) =
H + (n − n1)XS

n
=

(C1 − C0)XS + C1XR

C1 − C0 + XR
(5.19)

where the second equality comes from (5.14) and (5.18). Note that (5.19)is in agreement

with the result [95, eq. (4)].

As the energy per DoF during Phase I isE , and during phase II is2E , the short-term

average energy per DoF corresponding to the rate (5.19) is obtained as,

n1E + 2(n − n1)E
n

=
XR + 2C1 − 2 C0

XR + C1 − C0
E (5.20)

where the equality again results from (5.14) and (5.18).

The maximum rateR(P-2)
max is obtained by maximizing the rate (5.19) over all achievable

(XS, XR). It can be verified thatXS = C0 andXR = Cm − C0, corresponding to point A

in Fig. 5.1, lead to the maximum rate which is

R(P-2)
max =

Cm C1 − C2
0

Cm + C1 − 2 C0
. (5.21)

If we assume that the destination performs serial interference cancellationin Phase II, point

A is achieved if the destination first decodes the relay signal treating the source signal as

interference, and then, eliminates the relay signal and decodes the source message. The

PPC short-term average energy per symbol corresponding to (5.21) isobtained from (5.20)

after replacingXR with Cm − C0, as

E(P-2) =

(

1 +
C1 − C0

Cm + C1 − 2 C0

)

E . (5.22)
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5.3.4 The P-3 Scheme

Protocol P-3 is the scheme proposed here. It is built upon P-1 and P-2 and opportunistic

communication. The general idea is that after the relay decodes the message, the system

imitates a two-transmitting, one-receiving antenna scheme. In such a scheme,if the qual-

ities of the channels are known at the transmitters, the OPA between the source and relay,

based on opportunistic communication [80, Chapter 6], is to devote all powerto the an-

tenna observing the stronger channel. This translates to the idea, depictedin Table 5.1,

that if γ2 ≤ γ0 or C2 ≤ C0, the relay must not be used. Otherwise, the source must back

off, clearing the channel for the relay transmission. This reasoning suggests that P-3 offers

a larger rate than P-1 and P-2 for the same energy expenditure. The numerical results in

Section 5.8 confirm this intuition in most cases.

Note that in P-3, relaying is not used when the SD link is stronger than either of the SR

or RD links, i.e. ifC0 ≥ min{C1, C2}. This is in contrast to P-1 and P-2 where the relay

is (automatically) utilized wheneverC0 < C1. The method of coordinating the source and

relay transmissions in P-3 is similar to, yet simpler than, that used in [95] basedon ACKs.

In fact and in contrast to P-2, in P-3 the destination does not monitor any ACK from the

relay, and can also decode the source’s messages in order of transmission. Also, note that

in P-3 the destination is relieved of MUD needed in P-2.

Now to deriveR(P-3)
max whenC0 < min{C1, C2}, consider the example shown in Ta-

ble 5.1 and note that (5.14) still holds. Also, as the destination decodes the message by

receivingn1 andn − n1 symbols from the source and relay, respectively, we can write

H = n1C0 + (n − n1)C2. (5.23)

Combining (5.14) and (5.23), one obtains

R(P-3)
max =

H

n
=

C1 C2

C1 + C2 − C0
. (5.24)

Also, it is clear from the description of P-3 that similar to DT, we have

E(P-3) = E (5.25)

under the PPC.
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5.4 Feedback Requirements and Effects

The rateless coded schemes have different feedback requirements asfollows. These re-

quirements are based on the ACKs needed for each protocol as indicatedin Table 5.2.

The conventional DT scheme needs only a single feedback bit per CR from the des-

tination to inform the source of the successful decoding. This one-bit feedback from the

destination, referred to as theSTOP feedbackhere, is needed in any rateless coded system.

The feedback requirement in P-1 is similar to that in DT, i.e. only the STOP feedback

is needed. In fact, in P-1 the source can be unaware of the existence ofthe relay [105].

In P-2, other than the STOP feedback, a one-bit feedback from the relay broadcast to

the source and destination is needed when the relay decodes. This feedback has the source

resume the transmission of an unfinished message from the previous CR if there is any, or

start the transmission of a new message. It also has the destination switch from single user

detection to MUD and detect the source and relay messages (see Section 5.3.3).

The P-3 scheme needs3 one-bit feedbacks per CR, and, therefore, its feedback require-

ment is more than that of DT, P-1, and P-2. In addition to the STOP feedbackand a one-bit

decoding-success feedback from the relay, P-3 needs a one-bit feedback from the destina-

tion to indicate which node, the source or relay, shall transmit after the relaydecodes.

It is also worth considering feedback implications in the protocols. First, anyfeedback

is possibly included in a packet containing header and other signaling information as well.

If the packet carrying a one-bit feedback containsf bits data, then a scheme needingm

separate one-bit feedbacks in a CR needs transmission ofmf bits per CR for feedback.

Second, assume that a low-rate, narrowband channel is dedicated to feedback. Then,

on the one hand, feedback transmission can take a non-negligible durationcompared to the

duration of a CR, and on the other, the nodes need to receive feedbackdata before setting

their subsequent transmission strategies. This delay in receiving feedback has a negative

impact on the rate performance. Even if we increase the feedback bandwidth to hasten

feedback communication, we lose spectrum, and the spectral efficiency diminishes again.

Here, we do not consider the effects of feedback in the protocols considered and assume

that the feedback is instantaneous for simplicity [22].
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5.5 Power Fairness

All the protocols revert to DT withRmax = C0 andE = E whenC0 ≥ C1. However when

C0 < C1, inspection of the achievable rates in DT, P-1, P-2, and P-3 reveals that

R(P-2)
max − R(P-1)

max =
C0(C1 − C0)(Cm − C0)

(C1 + Cm − 2 C0)(C1 + Cm − C0)
(5.26)

R(P-1)
max − R(P-3)

max =
C1(C1 − C0)(Cm − max{C2, C0})

(C1 + max{C2, C0} − C0)(C1 + Cm − C0)
(5.27)

and

R(P-3)
max − R(DT)

max =
(C1 − C0)(max{C2, C0} − C0)

C1 + max{C2, C0} − C0
(5.28)

and therefore, one has

R(P-2)
max > R(P-1)

max > R(P-3)
max ≥ R(DT)

max . (5.29)

Moreover, inspecting the average energies under the PPC whenC0 < C1 gives

E(P-2) − E(P-1) =
C0(C1 − C0)

(C1 + Cm − 2 C0)(C1 + Cm − C0)
E (5.30)

and

E(P-1) − E(P-3) =
C1 − C0

C1 + Cm − C0
E (5.31)

which show that

E(P-2) > E(P-1) > E(P-3) = E(DT). (5.32)

Therefore, although P-2 surpasses P-1, and P-1 outperforms P-3 interms of the achievable

rates, these superiorities come at the expense of expending more energy. In other words,

achieving larger rates does not necessarily translate into larger energyefficiency.

5.6 Energy Efficiency

As observed in Section 5.5, the different schemes, in general, use different amounts of

energy in a CR to achieve different rates, making it difficult to evaluate the merit of the

protocols in terms of energy efficiency. To address this issue and to drawa fair comparison

between the protocols on a power basis, we propose the following two methods.
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5.6.1 Minimum Energy per Bit Under the PPC

The study ofEB, defined in Section 5.2, allows us to determine how much energy on

average a relaying strategy requires to communicate1 bit of information to the destination

in a CR. Obviously, a smallerEB translates into larger energy efficiency. In the following,

we derive the minimumEBs of the P-1, P-2, and P-3 protocols under the PPC, assuming

that all rates are expressed in bits. Note that whenC0 ≥ C1, we have

EBmin =
E
C0

(5.33)

for all the protocols. Therefore, we only consider the caseC0 < C1.

In P-1, it can be observed from (5.16) and (5.17) that

EB(P-1)
min =

Cm + 2(C1 − C0)

Cm C1
E . (5.34)

In P-2, from (5.19) and (5.20), a general expression for theEB in terms of the source and

relay rates in Phase II,XS andXR, is obtained as

EB(P-2) =
2(C1 − C0) + XR

(C1 − C0)XS + C1XR
E . (5.35)

Note that the shaded area in Fig. 5.1 designate all achievable(XS, XR). It can be verified

that (5.35) is minimized with(XS, XR) = (C0, Cm − C0) (point A in Fig. 5.1) when

2 C0 ≤ Cm, and with(XS, XR) = (Cm − C2, C2) (point B in Fig. 5.1) when2 C0 > Cm.

Therefore, we obtain

EB(P-2)
min =







Cm+2 C1−3 C0

Cm C1−C2
0

E , 2 C0 ≤ Cm

C2+2(C1−C0)
C0 C2+Cm(C1−C0) E , 2 C0 > Cm

. (5.36)

Note that although the maximum rate (5.21) always corresponds to point A in Fig.

5.1, the minimumEB corresponds to point A or point B depending onC0 andCm. In

other words, while to achieve the maximum rate the destination always needs to decode the

relay message first, to achieve the minimumEB, sometimes the source message has to be

decoded first. It can be observed that the condition2 C0 ≤ Cm or 2 C0 > Cm is satisfied

in Gaussian-input channels (where we have (5.7)) whenγ0 in dB is smaller or greater than

almost halfγ2 in dB, respectively.

Finally, the minimumEB in P-3 whenC0 < C1 is obtained from (5.24) and (5.25) as
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EB(P-3)
min =







C1+C2−C0
C1C2

E , C0 < C2

E
C0

, C0 ≥ C2

. (5.37)

Theorem 5.1 provides a comparison between theEBmin’s under the PPC.

Theorem 5.1 (Comparison of the EBmin’s in P-1, P-2, and P-3).Considering P-1, P-2,

and P-3 under the PPC in a given CR whereC0 < C1, one of the following three cases with

the corresponding relationships between theEBmin’s given in each case, can happen:

i) 2 C0 > Cm: EB(P-3)
min < EB(P-1)

min < EB(P-2)
min .

ii) 2 C0 ≤ Cm andC0(C2 − C0) < C1(2C2 − Cm): EB(P-3)
min < EB(P-2)

min ≤ EB(P-1)
min .

iii) 2 C0 < Cm andC0(C2 − C0) ≥ C1(2C2 − Cm): EB(P-2)
min ≤ EB(P-3)

min < EB(P-1)
min .

Proof. The theorem can be proved by comparing theEBmin’s of the different protocols

given in (5.34), (5.36), and (5.37), and performing algebraic manipulations. It should only

be noted that when considering the different possible cases, the caseCm ≥ 2 max{C0, C2}
never happens as from (5.8) we always have

Cm < 2 max{C0, C2}. (5.38)

Also, to deriveEB(P-1)
min < EB(P-2)

min in Case i, we use the fact thatC2 < Cm from (5.8). �

Note that based on Theorem 5.1, P-3, the proposed protocol, has the best situation

among all the protocols in terms ofEBmin; it is never the worst protocol; and, it is the best

protocol in the two of the three cases. This is in sharp contrast with the result obtained for

the maximum achievable rates under the PPC that P-3 is the poorest. In fact, although P-3

leads to smaller rates in PPC regimes, it consumes less energy such that it often offers the

best energy efficiency among all the protocols.

5.6.2 Maximum Rate Under the APC

Another technique proposed here to make a fair comparison of the protocols based on en-

ergy expenditure, is to calculate the maximum rate per 2-D DoF of each protocol under the

APC, defined as the constraint that the short-term average energy persymbol is fixed. Rig-

orously speaking, we assume that the source and relay transmit with powersPS = p P and
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PR = q P , or with energies per 2-D symbol equal toES = p E andER = q E , respectively,

for somep > 0 andq ≥ 0, such thatE = E . 6

As the APC analysis needs explicit formulas of the capacity in terms of SNR, and as

the Gaussian-input channel has the simple capacity expression (5.7e), we restrict our inves-

tigation here to Gaussian-input channels and use (5.7e) as the capacity formula. Gaussian-

input channels are suitable for this study also because they have the largest capacity among

AWGN channels with average-power-constrained input [79, Chapter 9], thus providing up-

per bounds on achievable APC rates.

It is not trivial that how many pairs(p, q), in general, can satisfy the APC. It is observed

in Appendix F that for anyE and instantaneous channel conditions provided thatγ0 < γ1,

infinitely many pairs(p, q) exist that satisfy the APC, and one has to find the optimal(p, q)

resulting in the maximum rate in each case. Also, whenγ0 ≥ γ1, the systems revert to DT

and become independent ofq such that the APC is trivially satisfied byp = 1 and anyq.

The maximum rates under the APC for the different protocols whenγ0 < γ1 are derived

in Appendix F with the following results. In P-1, we have

R(P-1)
max = max

0<p≤1

C(p γ0 + q γ2) C(p γ1)

C(p γ0 + q γ2) + C(p γ1) − C(p γ0)
(5.39a)

where

q =







− 1
γ2

{
1
ξ W−1

(

−ξ e−[1+p γ0+(1−p)γ2] ξ
)

+ 1 + p γ0

}

, 0 < p < 1

0, p = 1

(5.39b)

whereWk(·) is thekth branch of the LambertW-function [106], and where

ξ ,
C(p γ1) − C(p γ0)

(1 − p)γ2
. (5.39c)

We obtain, for P-2,

R(P-2)
max = max

0<p≤1

C (p γ0 + q γ2) C(p γ1) − C2(p γ0)

C (p γ0 + q γ2) + C(p γ1) − 2 C(p γ0)
(5.40a)

where

q =







− 1
γ2

{
1
ξ W−1

(

−(1 + p γ0) ξ e−[1+p γ0+(1−p)γ2] ξ
)

+ 1 + p γ0

}

, 0 < p < 1

0, p = 1

.

(5.40b)

6Note that scaling the powers of the source and relay is conceptual and not generally followed in practice,
as the transmitters are assumed to be oblivious to CSI. The power scaling isperformed here only for analytical
purposes and for making the schemes comparable on a power basis.
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Finally, the result for P-3 is

R(P-3)
max =







max0<p<p0

C(p γ1) C(q γ2)
C(p γ1)+C(q γ2)−C(p γ0) , γ0 < γ2

C(γ0), γ0 ≥ γ2

(5.41a)

wherep0 is the only root of,

p

[(

1 − γ0

γ2

) C(p γ0)

C(p γ1)
+

γ0

γ2

]

− 1 (5.41b)

as a function ofp, and where

q =







− 1
γ2

{
1
ξ Wk

(

−ξ e−(1+γ2) ξ
)

+ 1
}

, p 6= 1

1, p = 1

(5.41c)

wherek = −1 if p < 1 andk = 0 if p > 1. Section F.3 provides insight into the value of,

and the method of calculating,p0.

5.7 Long-Term Average Behavior

The short-term average performance measures,Rmax, E, andEBmin, studied in Sections

5.3 and 5.6 are not suitable to judge the merit of the protocols, as the figures represent in-

stantaneous behaviors which are functions of fading gains. Instead, we can compare the

performances when averaged over a period long enough to let the system experience virtu-

ally all fading channel states. The long-term average rate,Ravg, and the long-term average

energy per bit,EBavg, introduced in Section 5.2, are appropriate performance measures for

this purpose.

In addition to the long-term average rate and energy per bit, we introduce and study the

relay-to-source usage ratio (RSUR), as an indicator of the average amount of relay usage

relative to source usage in a protocol. In some applications, it may be desirable that a

larger transmission burden be imposed on the source or relay. The RSUR isdefined as the

ratio of the total relay transmission time to the total source transmission time, over a long

observation period. Rigorously speaking, assume that the durations of the source and relay

transmissions in theith CR are denotedTS[i] andTR[i], respectively. Note that in P-1 and

P-2, we haveTS[i] = T [i] andTR[i] < T [i], whereT [i] is the duration of theith CR, while

in P-3, we haveTS[i] + TR[i] = T [i]. Now, the RSUR is defined as

RSUR = lim
m→∞

∑m
i=1 TR[i]

∑m
i=1 TS[i]

=
E{TR}
E{TS}

. (5.42)
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The RSUR is obviously zero in DT. Note that if the source and relay transmit with energies

per symbolES andER, respectively, the amount of energy expended by the relay to that

expended by the source in the long term is obtained as the RSUR multiplied byER/ES.

In the following, we derive general formulas for evaluatingRavg under the PPC or APC,

andEBavg and the RSUR under the PPC in P-1, P-2, and P-3. Note thatRavg andEBavg

for DT have been derived in (5.11)–(5.13). In DT, the PPC and APC coincide as the only

transmitter has a constant energy per symbolE .

We do not considerEBavg and the RSUR under the APC for the following reasons.

The energy per bit defined and studied in Sections 5.2 and 5.6.1 in the PPC case, can be

identically defined in the APC case. However,EBmin andEBavg under the APC simply

equalE/Rmax andE/Ravg for all protocols, respectively, whereRmax andRavg are the

APC rates. This is because the energy per symbol in the APC case is always constant at

E . This argument shows thatEBavg in the APC case is uninteresting, and does not convey

any more information on the energy efficiency of the protocols than that provided byRavg.

Regarding the RSUR, it is only considered under the PPC, as the APC is conceptual, not

necessarily imposed in practice, and is only proposed here to make a fair comparison of the

energy efficiencies of the protocols.

5.7.1 Long-Term Average Rate

Assume thatT [i] represents the duration of theith CR. Also, letRmax in the ith CR be

denotedRmax[i]. Then, we can write, from (5.1) for the PPC or APC,

Ravg = lim
m→∞

mH

W (T [1] + · · · + T [m])

= lim
m→∞

mH

W
(

H
W Rmax[1] + · · · + H

W Rmax[m]

)

=

(

E

{
1

Rmax

})−1

. (5.43)

The expressions ofRmax needed for evaluating (5.43) in the PPC case have been given

in Table 5.1, which reduce to the case of Gaussian-input channels underthe substitutions

given in (5.7). The expressions ofRmax in the APC case for Gaussian-input channels are

obtained from (5.39)–(5.41).
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5.7.2 Long-Term Average Energy per Bit

To deriveEBavg, consider the PPC and assume that theEBmin realized in theith CR is

denotedEBmin[i]. Therefore, the total energy expended by the system in theith CR equals

H EBmin[i] as the amount of MI communicated to the destination during any CR isH.

Now, we can write

EBavg = lim
m→∞

H EBmin[1] + · · · + H EBmin[m]

mH
= E{EBmin}. (5.44)

The RV EBmin in (5.44) is given by (5.33) for all the protocols whenC0 ≥ C1, and by

(5.34), (5.36), and (5.37), whenC0 < C1. Again, the substitutions given in (5.7) lead to the

corresponding results for Gaussian-input channels.

5.7.3 The RSUR

Assume thatTS, TR, andT in the relaying protocols respectively denote the durations of

the source transmission, relay transmission and CR, and thatnS, nR, andn represent the

corresponding numbers of the DoFs. Note that we can writenS = W TS, nR = W TR,

andn = W T . Also note from (5.1) thatT = H/(W R), whereR denotes the realized

short-term average rate. Now, we have, from (5.42),

RSUR =
E
{

TR
T T

}

E
{

TS
T T

} =
E
{

nR
n

H
W R

}

E
{

nS
n

H
W R

} =
E
{

nR
n

1
R

}

E
{

nS
n

1
R

} . (5.45)

Let n1, as used in Table 5.1 and Sections 5.3.2–5.3.4, denote the number of symbols re-

quired by the relay to decode the message. Then, assuming that reversionto DT does not

occur in a given CR, we havenS = n andnR = n − n1 for P-1 and P-2, whereas we have

nS = n1 andnR = n − n1 for P-3. We definen1 as being equal ton in a CR where the

system reduces to DT. Using these definitions and relations, we obtain, from(5.45),

RSUR =







1 −
(
E
{

1
R

})−1
E
{ n1

n R

}
, P-1 and P-2

E
{

1
R

} (
E
{ n1

n R

})−1 − 1, P-3
. (5.46)

The result (5.46) is general, and gives the RSUR for any realized rateR and the correspond-

ing values ofn1 andn as RVs. However, we are normally interested in the cases where the

maximum value ofR is achieved, i.e. whenR = Rmax, or the cases where the minimum

energy per bit is reached. Recall from Section 5.6.1 that in P-1 and P-3 the maximum rate

corresponds to the minimum energy per bit. However in P-2, while the maximum rate is
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achieved by operating at point A of the multiaccess rate region depicted in Fig. 5.1, the

minimum energy per bit is obtained by operating at point A or B depending on the values

of the SD and RD SNRs. Next, we derive expressions for1/R andn1/(n R) in (5.46) in

terms of the capacitiesC0, C1, C2, andCm for P-1 and P-3 whenR = Rmax, and for P-2

when the rate is maximized and when the energy per bit is minimized. In the derivations,

we use the fact that in a CR, the system reduces to DT in P-1 and P-2 whenC0 ≥ C1, and

in P-3 whenC0 ≥ min{C1, C2}.

In P-1, using (5.14)–(5.16) we obtain

1

R
=







1
Cm

+ 1
C1

− C0
Cm C1

, C0 < C1

1
C0

, C0 ≥ C1

(5.47)

and

n1

n R
=

1

max{C0, C1}
(5.48)

for the case whereR is maximized or the energy per bit is minimized.

In P-2, assuming thatXS andXR are the source and relay rates in Phase II, respectively,

we obtain, from (5.14), (5.18), and (5.19),

1

R
=







C1−C0+XR
(C1−C0)XS+C1XR

, C0 < C1

1
C0

, C0 ≥ C1

(5.49)

and

n1

n R
=







XR
(C1−C0)XS+C1XR

, C0 < C1

1
C0

, C0 ≥ C1

. (5.50)

Now, the substitution(XS, XR) = (C0, Cm − C0) in (5.49) and (5.50) leads to the results

related to the rate maximization case (see Section 5.3.3). Also, based on the results derived

in Section 5.6.1,(XS, XR) = (C0, Cm − C0) when2 C0 ≤ Cm and(XS, XR) = (Cm −
C2, C2) when2 C0 > Cm convert (5.49) and (5.50) to the relations corresponding to the

energy-per-bit minimization case. Combining these facts, we obtain

1

R
=







Cm+C1−2C0

Cm C1−C2
0

, C0 < C1

1
C0

, C0 ≥ C1

(5.51)

and
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n1

n R
=







Cm−C0

Cm C1−C2
0
, C0 < C1

1
C0

, C0 ≥ C1

(5.52)

corresponding to the case where the rate maximization is desired. Also, we obtain

1

R
=







Cm+C1−2C0

Cm C1−C2
0

, C0 < C1, 2 C0 ≤ Cm

C1+C2−C0
C0 C2+Cm(C1−C0)

, Cm/2 < C0 < C1

1
C0

, C0 ≥ C1

(5.53)

and

n1

n R
=







Cm−C0

Cm C1−C2
0
, C0 < C1, 2 C0 ≤ Cm

C2
C0 C2+Cm(C1−C0) , Cm/2 < C0 < C1

1
C0

, C0 ≥ C1

(5.54)

corresponding to the case where the energy per bit is minimized.

In P-3, using (5.14), (5.23), and (5.24) one obtains

1

R
=







1
C1

+ 1
C2

− C0
C1 C2

, C0 < min{C1, C2}

1
C0

, C0 ≥ min{C1, C2}
(5.55)

and

n1

n R
=







1
C1

, C0 < min{C1, C2}

1
C0

, C0 ≥ min{C1, C2}
. (5.56)

corresponding to the rate maximization or energy-per-bit minimization case. Now, apply-

ing (5.47), (5.48), and (5.51)–(5.56) to (5.46) gives the corresponding expressions for the

RSURs.

5.8 Numerical Examples

In this section, we consider Gaussian-input channels and studyRavg under the PPC,EBavg

under the PPC, the RSUR under the PPC, andRavg under the APC for the different schemes.

It is assumed thatγ0, γ1, andγ2 are exponentially distributed (corresponding to Rayleigh

fading) with mean valuesµ0, µ1, andµ2. To obtain the long-term average performances,

we use (5.12) and (5.13) for DT, and Monte Carlo simulation of (5.43), (5.44), (5.46)–
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(5.48), and (5.51)–(5.56) with105 iterations for the relaying systems.7 Note that the long-

term average rate under the PPC does not lead to a fair comparison in terms of energy

expenditure, as explained in Section 5.5. However, it serves as a figureof merit for the rate

performances of the protocols in energy unconstrained scenarios.

Figs. 5.2–5.5 respectively show the PPC long-term average rate in bits, thePPC nor-

malized long-term average energy per bit, the APC long-term average ratein bits, and the

RSUR under the PPC versusµ0, for the different protocols. In these figures, it is assumed

that the average channel gains are constant, butP , and henceγ (see (5.2)–(5.6)), changes

such that we haveµ1 = µ0 + 25 dB andµ2 = µ0 + 10 dB. This scenario normally corre-

sponds to the case where the relay is closer to the source than to the destination.

Fig. 5.2 shows that P-1, P-2, and P-3 outperform DT with a difference inperformance

on the order of1 to 1.5 bits. Also, P-1 and P-3 have a similar PPC rate performance, which

is inferior to that of P-2. The superiority of P-2 over P-1 and P-3 increases withµ0.

Fig. 5.3 indicates that P-3 has the bestEBavg performance. In fact, under the PPC, al-

though P-3 leads to smaller rates, it uses less energy per bit compared to theother schemes.
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Fig. 5.2. The long-term average rate under the PPC versus the average SD SNR for the different schemes.

7In the case of Gaussian-input channels (where (5.7) holds) under the PPC, it is possible to calculate the
expectations and derive more explicit analytical expressions for the long-term performance measures. However,
we postpone such analyses to Chapter 6, where only generalizations of P-3 are investigated. In fact, we observe
in Section 5.8 that P-3 is the most appealing relaying protocol of the three relaying strategies considering
combination of performance and complexity.
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Fig. 5.3. The long-term average energy per bit, normalized byE , under the PPC versus the average SD SNR
for the different schemes.
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Fig. 5.4. The long-term average rate under the APC versus the average SD SNR for the different schemes.

The superiority of P-3 diminishes as the SD link improves. This figure also shows that the

energy per bit in DT becomes smaller than that in P-1 and P-2 asµ0 becomes greater than

a certain value.

The other measure of energy efficiency, the APC rate, is studied in Fig. 5.4. It is ob-

96



Average SD SNR,µ0 (dB)

R
el

ay
-t

o-
so

ur
ce

us
ag

e
ra

tio
,R

S
U

R

µ1 = µ0 + 25 dB

µ2 = µ0 + 10 dB

P-1

P-2, rate maximization

P-2, EB minimization

P-3

0 5 10 15 20 25 30
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fig. 5.5. The RSUR versus the average SD SNR for the different relaying schemes.

served that all the relaying schemes have larger APC rates on the order of one bit compared

to DT. Also, the relaying schemes exhibit close performances. The P-1 scheme has the

poorest performance. The P-3 scheme surpasses P-2 at small to mediumvalues ofµ0, but

becomes inferior to P-2 in a large SNR regime.

Fig. 5.5 depicts the RSUR versusµ0 for P-1, P-2 in the rate maximization and energy

per bit minimization cases (see Section 5.7.3), and P-3. Observe from this figure that while

P-1 has the smallest RSUR for all the SNR range shown, P-3 has the largest RSUR for small

to medium SNR values. One reason why the relay usage ratio is normally largerin P-3 than

the other protocols is that in P-3 the source does not transmit in the second phase. Fig.

5.5 also shows that asµ0 increases the RSUR in the schemes decreases, which is roughly

because reversion to DT (and hence, not using the relay) happens more frequently as the SD

link improves. Additionally note that there is a significant difference in the RSURs of the

rate maximizing and energy per bit minimizing P-2 schemes; the former utilizes the relay

much more than the latter does for medium to large values ofµ0.

The numerical results in the remaining figures are given for a linear network topology,

similar to that used in Section 4.5, for which (4.71)–(4.73) hold. Recall thatdSD, dSR, and

dRD are the SD, SR, and RD distances in the model. Here, we assume for the network

topology thatµ0 = 5 dB and the path loss exponentα is 3.
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Figs. 5.6–5.9 respectively showRavg under the PPC,EBavg under the PPC,Ravg under

the APC, and the RSUR under the PPC versusdSR/dSD, for the different schemes. The ratio

dSR/dSD ranges from0.1 to 0.9, representing the situation where starting from the vicinity

of the source, the relay approaches the destination. The performance of DT is obviously

unchanging withdSR/dSD.

Fig. 5.6 clearly shows that

R(P-2)
avg > R(P-1)

avg > R(P-3)
avg > R(DT)

avg (5.57)

under the PPC, as expected (see Section 5.5). Fig. 5.6 also shows that thefavorable position

of the relay for achieving larger PPC rates in P-1 and P-2 is closer to the source, while in

P-3 it is around the middle of the line connecting the source and destination.

Figs. 5.7 and 5.8 verify the superiority of P-3 compared to the other schemesin terms of

energy efficiency. The performance superiority ranges approximatelyfrom 0.03 to 0.45 and

from 0.008 bits to0.49 bits in terms ofEBavg/E andRavg, respectively. The figures also

show that the favorable position of the relay in P-3 for achieving larger energy efficiency is

always around the midpoint between the source and destination. However, in P-1 and P-2,

this position is closer to the destination forEBavg, but around the midpoint forRavg.

Fig. 5.9 shows that all the RSURs decrease asdSR/dSD increases. In fact, as the relay
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Fig. 5.6. The long-term average rate under the PPC versus the SR distance normalized by the SD distance, for
the different schemes and a linear network topology.
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Fig. 5.7. The long-term average energy per bit, normalized byE , under the PPC versus the SR distance
normalized by the SD distance, for the different schemes and a linear network topology.
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Fig. 5.8. The long-term average rate under the APC versus the SR distance normalized by the SD distance,
for the different schemes and a linear network topology.

moves farther from the source, the SR link weakens and the relay usage ratio decreases.

Another result obtained is that here again, like what observed in Fig. 5.5,P-1 achieves the

least use of the relay among the protocols, and P-3 in almost all cases benefits from the
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Fig. 5.9. The RSUR versus the SR distance normalized by the SD distance,for the different relaying schemes
and a linear network topology.

relay most. Also, the rate maximization in P-2 demands the relaying operation more than

the energy per bit minimization does.

5.8.1 Discussion on Rate and Energy Efficiency

As shown in Section 5.5 and confirmed by numerical examples in Section 5.8, P-2, P-1, and

P-3 rank first to third in rate efficiency under the PPC. However, as suggested by the results

in Sections 5.6.1 and 5.8, P-3, P-2, and P-1 rank first to third in energy efficiency in most

cases. Here, we show that it is possible to roughly explain these relationships by intuition.

In a PPC regime, P-2 outperforms P-1 as it opportunistically uses the SD link totransmit

some of the messages without using the relay. In P-1, all messages are transmitted cooper-

atively. Also, P-1 and P-2 achieve larger rates than P-3 as they benefitfrom simultaneous

source and relay transmissions. The larger rates are achieved at the cost of more energy per

bit and higher complexity.

However in a fair comparison on a power basis, e.g. in an APC regime, P-3 excels in the

achievable rate, as at any given time, only a single best node transmits. Thisparadigm can

use energy more efficiently compared to the multinode transmission paradigms ofP-1 and

P-2, as explained in Section 5.3.4. Also, P-2 performs better than P-1 for reasons similar to

those in the PPC case.
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Chapter 6

Rateless Coded Relaying:

Multirelay Case1

6.1 Introduction

Rateless codes were introduced and their application to single-relay cooperative networks

was examined in Chapter 5. As mentioned in Chapter 5, in rateless coding, the transmitter

produces an indefinitely long stream of encoding packets/symbols. The receiver accumu-

lates information from the packets/symbols already received, and periodically attempts to

decode the message. The receiver can decode successfully as soonas the received MI

marginally exceeds the entropy of the message [99, Chapter 50], [21], [22]. The main bene-

fits of rateless codes are summarized as adapting to the channel condition and approaching

the capacity with a transmitter oblivious to instantaneous CSI [99, Chapter 50], [21]. In ad-

dition, fountain codes, an important category of rateless codes, have simple, almost linear

time encoding/decoding algorithms [99, Chapter 50].

The applicability and excellent fit of rateless coding to DF relaying networkswere first

noted and demonstrated in [91]. A protocol in which a decoding relay formsa DSTC

scheme with the source was introduced in [21], [91]. In [94], severalrateless coded co-

operation methods which yield large outage capacity gains in low power regimeswere

proposed. In [95], different single-relay schemes based on ACKs were introduced, and

1A version of this chapter has been published in part in the Proceedings ofthe IEEE Global Telecom-
munications Conference (GLOBECOM), 2008, and has been submitted to the IEEE Transactions on Wireless
Communications.
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their achievable rates were obtained. Moreover, several novel multirelay, quasisynchronous

and asynchronous, rateless coded schemes were proposed in [22].In the quasisynchronous

case, when the number of decoding relays reaches a preset value, alldecoding relays col-

laborate to communicate the message to the destination. In the asynchronous case, as soon

as a relay decodes, it starts broadcasting the message for the other relays and destination.

Note that such schemes need either CDMA, interrelay synchronizations atthe symbol level,

or MUD at the destination and/or relays, entailing complexity and/or performance loss. In

addition, knowledge of the qualities of the SD and RD links is not used in the cooperation.

Three protocols, analogous to those proposed in [21], [22], were also investigated in [96]

for single-relay cases. Achievable rates using practical rateless codes and modulation were

examined, considering deeply interleaved data streaming and block fading,respectively for

delay unlimited and delay constrained scenarios.

In Chapter 5, we studied several rateless coded protocols, namely P-1,P-2, and P-3,

for single-relay collaborative networks. We observed that P-3 is veryefficient in terms of

implementation complexity and energy consumption as compared to P-1 and P-2. In this

chapter, we propose and investigate the application of rateless codes to multirelay, dual-hop

networks by developing and analyzing three novel, low-complexity protocols, which can be

viewed as generalizations of P-3 to the multirelay case.

The proposed protocols have simple single-parameter strategies that employtwo-phase

selection cooperation, previously proposed and investigated for fixed-rate systems [58],

[68], [107]. In contrast to fixed-rate schemes, where the duration ofthe source broadcasting

is fixed, in rateless schemes, this duration can last until the destination decodes successfully

or a system timeout occurs. Here, we assume for simplicity of illustration that thea CR

does not have a timeout. In the proposed protocols, different stopping criteria for the first

phase are introduced. As soon as the criteria are met, the second phase starts in which only

the best of the source and decoding relays transmits to the destination until it decodes. All

the protocols amount to P-3 in the single-relay case when their parameters are optimally

chosen. Recall from Section 5.3.4 that P-3 is also based on selection cooperation. The se-

lection techniques in the proposed protocols, much like the selection method in P-3, obviate

the need for CDMA, stringent synchronization, and MUD, and make all SD, SR, and RD

channel gains matter in the selection process. Also, they can be readily implemented in a

distributed fashion [68], [107].
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The remainder of the chapter is organized as follows. Section 6.2 describes the sys-

tem model and assumptions. The rateless coded protocols are introduced and analyzed in

Sections 6.3 and 6.4, respectively. Finally, Sections 6.5 and 6.6 provide some numerical ex-

amples and results, and discusses the design and performance implications of the proposed

protocols, respectively.

6.2 System Model

We use a system model similar to that in [22]. Consider the dual-hop relaying network

depicted in Fig. 4.1, consisting of a source, a destination, andM relays. All nodes are

single-antenna and share the same frequency band of baseband widthW . The source and

relays are assumed to use rateless coding for transmitting data. The ratelesscoded protocols

introduced in Section 6.3 allow half-duplex operation for the relays [9] by not having them

simultaneously transmit and receive.

As in Chapter 5, a CR refers to the period over which a message of the source is fully

communicated to the destination. Every message of the source has a constantentropyH.

Hence, given a CR, ifR andT are the average rate per channel use in the CR and the

duration of the CR, respectively, we have, in the same manner as (5.1),

R =
H

W T
. (6.1)

The channel model and assumptions are similar to those in Chapter 5. We assume that

the SD, SRm, and RmD links undergo independent flat fading, and suffer AWGN. Channel

state information is assumed to be estimated by, and only available to the receivers for

coherent reception. The instantaneous SNRs associated with the SD, SRm, and RmD links

are denotedγSD, γSm, andγmD.

As CSI is not available at the transmitters, no power optimization is assumed to be

executed. We additionally assume that the source and relays transmit with the same power

P , or energy per symbolE (note that in this case (5.2) holds). In other words, we consider

the PPC introduced and used in Chapter 5. This assumption is for analytical simplicity

and also for making the schemes easy to compare in terms of energy efficiency, as will be

observed in Section 6.4. We explain in Section 6.4 that the PPC suffices to provide a fair

comparison between the protocols on a power basis and that the APC, introduced in Chapter
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5 for fairly comparing the achievable rates of P-1, P-2, and P-3, is not needed here.

Assume thatC(γsub) is the capacity per 2-D DoF of a single-hop AWGN link with SNR

γsub, where “sub” is any descriptive string, such as “SD”, “th”, “Sm”, “ mD”. For example,

C(x) = ln(1 + x) (6.2)

nats for Gaussian-input or average-power-constrained-input AWGN channels, and

C(x) = 2 ln 2 −
√

2

π

∫ ∞

−∞
dt e−t2/2 ln

(

1 + e−2
√

x t−2 x
)

(6.3)

nats for binary-input AWGN channels [108]. Now, we define the convenient notation

τsub ,
H

W C(γsub)
(6.4)

utilized throughout. The valueτsub is the time required for transmitting a message of en-

tropy H using a capacity-approaching code over an AWGN channel with baseband band-

width W and the received value of SNRγsub. We assume here that as in Chapter 5, the

rateless codes considered are capacity-approaching [21], [22], [95]. Therefore, we can ex-

ploit (6.4) to obtain the transmission time using the rateless coding.2 It is assumed that in

general,C(x) is a strictly increasing function ofx, such that based on (6.4), there is a one-

to-one correspondence betweenτsub andγsub. Employingτsub instead ofγsub simplifies

the description and analysis of the protocols in Sections 6.3 and 6.4.

6.3 Rateless Coded Selection Strategies

6.3.1 General Description

Three rateless coded selection protocols, called P-n, P-γ, and P-t, are introduced in this

section, each being a generalization of the P-3 protocol proposed in Chapter 5. A summary

of the three schemes is enumerated as follows:

1. The source splits its message into a number of packets, and performs rateless coding

to generate an indefinitely long stream of encoded packets.

2. A CR consists of uplink and downlink phases. In the uplink, the source broadcasts

its message.

2More precisely, we can omit the assumption of being capacity-approaching by replacingH in (6.4) with
(1 + ε)H, whereε is the code inefficiency, independent ofγsub [21], [99]. Settingε = 0 is for simplicity and
does not incur loss of generality in subsequent analysis.
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3. The relays and destination accumulate information and periodically attempt to decode

the message.

4. If the destination can decode in the uplink, the CR ends without the downlinkphase.

5. In P-n, the uplink continues until a preset number of relays decode the message.In

P-γ, the uplink stopping criterion is the source or a decoding relay has a link to the

destination with SNR greater than a threshold. In P-t, the uplink ends whenever the

destination can decode in less than a preset time using the best of the sourceand

already decoding relays.

6. In P-γ and P-t, the uplink ends also if all relays decode.

7. In the downlink, the best of the source and decoding relays transmits to the destination

until it decodes.

Note that the scheme P-n can also be viewed as the selection version of the quasisyn-

chronous protocols in [22]. In Section 6.6, we expound more on the rationales behind our

ad hoc schemes and their design and performance implications.

6.3.2 Mathematical Description

Let the set of the indices of all decoding relays at timet be denotedD(t). Note thatD(t) is

time varying and grows as time elapses. It is assumed that when Rm decodes, for anym, it

broadcasts an ACK, which is received and used to estimateγmD by the destination. Also,

the destination is capable of estimatingγSD using direct reception from the source.

6.3.2.1 The P-n Scheme

In P-n, the uplink lasts until the destination decodes orL relays decode, whereL is a

parameter ranging from1 to M . In the latter case, the downlink starts where the node

corresponding to SNR,

max
X∈{S}∪D(TUL)

γXD (6.5)

whereTUL is the uplink duration, is signaled by the destination and transmits rateless en-

coded packets until the destination decodes. Note that based on the description, TUL in this

protocol can be written as
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TUL = min{τS(L), τSD} (6.6)

whereτS(m) for anym is defined as the time at which themth relay can decode, and where

τSD, defined by (6.4), is the DT time.

6.3.2.2 The P-γ Scheme

In P-γ, the downlink starts when anabove-threshold (AT) nodeis found or all relays decode

before the destination decodes. An AT node is the source or a decoding relay which has a

link to the destination with SNR greater than a parametric threshold SNR,γth. The AT node

found becomes the solitary downlink transmitter of fountain packets until the destination

decodes. If all relays decode before an AT node is found, the node corresponding to SNR,

max
X∈{S}∪ {1, ···, M}

γXD (6.7)

is selected to transmit in the downlink. Note that ifγSD > γth in a CR, the source becomes

the AT node such that the system amounts to DT in the CR. It can be observedthatTUL,

the uplink time, in P-γ can be written as

TUL = min
{

Θ(γ), τS(M)

}

(6.8a)

where

Θ(γ) , min t (6.8b)

subject to

max
X∈{S}∪D(t)

γXD ≥ γth (6.8c)

and whereτS(M) is the time that the last relay decodes.

6.3.2.3 The P-t Scheme

In P-t, the uplink continues until timeTUL at which one of the following cases occurs. 1)

The destination decodes, in which case the CR ends. 2) All relays decode, in which case

XDL, defined as the node corresponding to the SNR given in (6.5), transmits in the downlink

until the destination decodes. 3) The destination calculates that it is capable of decoding

by the nextt0 seconds provided that XDL transmits in the downlink, wheret0 is a system

parameter. In this case, XDL is signaled by the destination to be the downlink transmitter.
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Protocol P-t essentially relies on the fact that at any given timet during the source

broadcasting, the destination can determine how much more information it requires to ac-

cumulate by receiving rateless encoded packets for successful decoding. In fact, the desti-

nation receivest W C(γSD) units of MI from the source’s transmission up to timet, where

the capacity functionC(·) has been defined in Section 6.2. The destination needs additional,

H − t W C(γSD) (6.9)

units of MI to decode the message. Given that the destination knows the constantsH and

W , and can measureγSD, it can calculate (6.9).

Lemma 6.1. The uplink time in P-t is given by

TUL = min
{

Θ, τS(M)

}

(6.10a)

where

Θ , min t (6.10b)

subject to
(

1 − t

τSD

)

min
X∈{S}∪D(t)

τXD ≤ t0 (6.10c)

whereτSD andτXD are defined by (6.4).

Proof. First, if τSD ≤ t0, the Lemma results inTUL = 0 (note thatD(0) = ∅), which is

correct because, utilizing only the source, the destination can decode inτSD seconds, i.e. by

the nextt0 seconds. Therefore, based on the protocol description,TUL = 0 and the system

behaves as DT.

Next, assume thatτSD > t0. If the source broadcasts fort seconds, wheret < τSD, the

destination accumulatest W C(γSD) units of information, and requiresH − t W C(γSD)

units more information to decode. If the remaining amount is provided by NodeX, where

X ∈ {S} ∪ D(t), it takes time

ΘX(t) ,
H − t W C(γSD)

W C(γXD)
=

(

1 − t

τSD

)

τXD (6.11)

until the destination decodes, where the second equality is obtained by invoking (6.4).

Therefore, the smallest possible decoding time is given as

Θb(t) , min
X∈{S}∪D(t)

ΘX(t) =

(

1 − t

τSD

)

min
X∈{S}∪D(t)

τXD (6.12)
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and the first instantt at whichΘb(t) is exceeded byt0 is given byΘ (6.10b), (6.10c). The

time Θ gives the uplink time if not all relays decode withinΘ seconds. Otherwise,TUL is

the time at which the last relay decodes, i.e.TUL = τS(M). This concludes the proof. �

In Lemma 6.1,Θb(t) is a decreasing function oft. This lemma states that in P-t, the

uplink continues until either all relays decode orΘb(t) falls belowt0.

Observe that in all the protocols, the downlink transmitter is always XDL, the node

corresponding to the SNR given in (6.5). It is the uplink stopping criterion that differentiates

the protocols. In the downlink, the optimal strategy is rather clear, i.e. havingthe best node

knowing the message transmit to the destination. In fact, in a fashion similar to (6.12), the

downlink duration,TDL, can be obtained for all protocols as

TDL =

(

1 − TUL

τSD

)

min
X∈{S}∪D(TUL)

τXD (6.13)

whereTUL is the uplink time in the different protocols given by (6.6), (6.8), and (6.10).

6.4 Performance Analysis

In this section, the long-term average performances of P-n, P-γ, and P-t are analyzed. We

also propose and examine a rate optimal selection protocol, denoted P-o, asa baseline for

performance comparison.

Recall from Section 6.2 that we impose the PPC, i.e. the energy per symbol is consid-

ered to be constant atE for all nodes. Since in all schemes, there is only one transmitter

at any time, the short-term average energy per symbol (see Section 5.2) isE in all the pro-

tocols, analogous to DT and P-3 (see Sections 5.3.1 and 5.3.4). This obviates the need for

examining the energy per bit or imposing the APC, as in Chapter 5, to compare the schemes

fairly on a power basis; the schemes are already comparable as all of themuse the same

amount of energy per symbol. Therefore, here we only consider the PPC long-term average

rate and RSUR, studied in Section 5.7, to evaluate the long-term performances.

In contrast to the single-relay case studied in Chapter 5, where the only relay in the

system cooperates with the source, in the multirelay case, there are more than one candidate

relay for the downlink transmission. This makes it difficult to use the approaches taken in

Chapter 5 for the performance evaluation here, i.e. to derive expressions for the short-term

average rates and use (5.43) and (5.45) to calculate the long-term average rate and RSUR.
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In the sequel, we explain how these long-term average quantities can be obtained in the case

of P-n, P-γ, and P-t.

Assuming that the duration of themth CR is denotedT [m], we obtain, in a manner

similar to (5.43),

Ravg = lim
m→∞

mH

W (T [1] + · · · + T [m])
=

H

W E{T} . (6.14)

Also, regarding the RSUR, assume thatTS andTRm are the durations of the source and Rm

transmissions. Note that in any CR for each of the protocols,TS > 0 and at most one of

TR1 , . . ., TRM
is nonzero. Also, we have

T = TS + TR1 + · · · + TRM
= TUL + TDL (6.15)

whereTUL andTDL are the uplink and downlink times. Now, using the definition of the

RSUR in Section 5.7, one obtains, much like (5.42),

RSUR =
E{TR1} + · · · + E{TRM

}
E{TS}

. (6.16)

Note thatE{TX} shows how active on average NodeX is.

Based on (6.14) and (6.16), we need to calculateE{T}, E{TS}, E{TR1}, · · · , and

E{TRM
} for evaluatingRavg and the RSUR. We know that ifZ is a nonnegative RV, we

have [81, eq. (5-53)] (cf. (4.2))

E{Z} =

∫ ∞

0
Pr{Z > t}dt (6.17)

whenZ has finite mean and variance. We utilize (6.17) to calculateE{TS}, E{TR1}, · · · ,
andE{TRM

}; then, we use (6.15) to obtainE{T}. This approach to derivingE{T} for the

protocols is less intricate than a direct derivation approach, e.g. directly based on (6.17).

Next, we provide the results for each protocol and relegate the derivation details to

Appendix G. We consider a general fading model for the SNRs. However, only Rayleigh

fading is considered for the examples in Section 6.5. The integrals involved inthe results are

computable efficiently for Rayleigh fading using standard numerical integration techniques.

6.4.1 The P-n Scheme

Let uSD(·), uSm(·), umD(·), USD(·), USm(·), andUmD(·) denote the PDF ofτSD, PDF of

τSm, PDF ofτmD, CDF of τSD, CDF of τSm, and CDF ofτmD, respectively, whereτSD,

τSm, andτmD are defined by (6.4). Recall thatM is the number of relays andL is the
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system parameter. Then, we can show that

E{TS} =
∑

A⊂{1, ···, M}
|A|≤L−1

∫ ∞

0
dt [1 − USD(t)]

∏

m∈A
USm(t)

∏

m∈Ac

[1 − USm(t)]

+
∑

A⊂{1, ···, M}
|A|=L

∑

k∈A

∫ ∞

0
dx

∫ x

0
dy (x − y)uSD(x)uSk(y)

×
∏

m∈A
[1 − UmD(x)]

∏

m∈A
m6=k

USm(y)
∏

m∈Ac

[1 − USm(y)] (6.18)

and that

E{TRm} =
∑

A⊂{1, ···, M}−{m}
|A|=L−1

∑

k∈A∪{m}

∫ ∞

0
dx

∫ ∞

0
dy

∫ x

0
dt umD(x)uSk(y)

×
[

1 − USD

(

max

{

x,
x y

x − t

})]
∏

i∈A
[1 − UiD(x)]

×
∏

i∈A∪{m}
i6=k

USi(y)
∏

i∈Ac

i6=m

[1 − USi(y)] (6.19)

for m = 1, . . ., M .

6.4.2 The P-γ Scheme

Recall thatγth, a threshold SNR, is the P-γ parameter. Letτth be defined by (6.4) using

γth. Then, it can be shown that

E{TS} =

∫ τth

0
dt t uSD(t) +

∫ ∞

0
dt [1 − USD(max{t, τth})]

×
{

M∏

m=1

[1 − USm(t)UmD(τth)] −
M∏

m=1

USm(t)[1 − UmD(τth)]

}

+

∫ ∞

τth

dx

∫ x

0
dt uSD(x)

M∏

m=1

USm(t)[1 − UmD(x)] (6.20)

and that

E{TRm} =

∫ ∞

0
dx

∫ τth

0
dy

∫ 1

0
dt y uSm(x)umD(y)

[

1 − USD

(

max

{
x

t
, τth

})]

×
M∏

k=1
k 6=m

[1 − USk(x)UkD(τth)] +

∫ ∞

τth

dx

∫ x

τth

dy

∫ 1

0
dt y uSD(x)umD(y)

×
M∏

k=1

USk(x t)
M∏

k=1
k 6=m

[1 − UkD(y)] (6.21)
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for m = 1, . . ., M .

6.4.3 The P-t Scheme

Recall thatt0 is the P-γ parameter. We obtain for this protocol

E{TS} =

∫ t0

0
dt t uSD(t) + t0

∫ ∞

t0
dx uSD(x)

M∏

m=1

[1 − USm(x − t0)UmD(x)]

+

∫ ∞

t0
dx

∫ x−t0

0
dt uSD(x)

{
M∏

m=1

[

1 − USm(t)UmD

(
t0 x

x − t

)]

−
M∏

m=1

USm(t)

[

UmD(x) − UmD

(
t0 x

x − t

)]}

(6.22)

and

E{TRm} =

∫ ∞

t0
dx

∫ x−t0

0
dy

∫ t0

0
dt

x t

x − y
uSD(x)uSm(y)umD

(
x t

x − y

)

×
M∏

k=1
k 6=m

[

1 − USk(y)UkD

(
x t0

x − y

)]

+ t0

∫ ∞

t0
dx

∫ x

t0
dy uSD(x)umD(y)USm

(

x

(

1 − t0
y

))

×
M∏

k=1
k 6=m

[

1 − USk

(

x

(

1 − t0
y

))

UkD(y)

]

+

∫ ∞

t0
dx

∫ x

t0
dy

∫ 1−t0/y

0
dt y uSD(x)umD(y)

× USm(x t)
M∏

k=1
k 6=m

USk(x t)[1 − UkD(y)] (6.23)

for m = 1, . . ., M .

6.4.4 The P-o Scheme

This protocol is optimal in the sense that it minimizes the instantaneous CR duration, T ,

as follows. First, assume that only one relay R monitors, and cooperates with, the source.

We show that in this case the optimal protocol is the same as P-3 proposed in Chapter 5.

The time that relay R requires to decode the message isτSR (see (6.4)). IfτSR ≥ τSD, the

destination decodes no later than relay R, and we haveT = τSD. Otherwise, relay R can

decode sooner, and provide the destination with encoding packets in the downlink until it

decodes. Following steps similar to those leading to (6.11) and using the definition of Θ·(·)
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given in (6.11) , we obtain

T = τSR + ΘR(τSR) = τSR +

(

1 − τSR

τSD

)

τRD = τSR + τRD − τSR τRD

τSD
. (6.24)

Note that (6.24) is obtained given thatτSR < τSD. Meanwhile, it can be shown that if

τRD ≥ τSD in (6.24), thenT ≥ τSD such that the system should not use the relay, as it

can perform better without it. In summary, R cannot be or is not utilized if andonly if

max{τSR, τRD} ≥ τSD. Thus, the protocol obtained is the same as P-3.

Now, combining all the facts, we can propose P-o as a generalization of P-3 as follows.

If in a CR for anym, max{τSm, τmD} ≥ τSD, no relay is used in that CR and DT is

employed. Otherwise, at the beginning of the CR, Relay Rk, where

k = argmin
m∈{1, ..., M}

max{τSm,τmD}<τSD

τSm + τmD − τSm τmD

τSD
(6.25)

is signaled by the destination to be the only relay that monitors the source and decodes its

message, and then transmits in the downlink. It can be verified that in P-o, wealways have

T = min
m∈{1, ..., M}

{

min{τSm, τSD} + min{τmD, τSD}

− min{τSm, τSD} min{τmD, τSD}
τSD

}

. (6.26)

Compared to the other protocols, P-o needs global channel power gain information

(only whenM > 1, as explained in Section 6.4.5), and, the cooperating relay is chosen

at the outset of the CR, rather than at the end of the uplink phase. Althoughthe P-o per-

formance analysis is mathematically solvable, we do not present the analyticalresults due

to large computational complexity, and only provide simulation results as a comparison

baseline in Section 6.5.

6.4.5 Single-Relay Case

In the important single-relay case (i.e. whenM = 1), it can be verified that all the protocols

P-n, P-γ, and P-t coincide with the optimal protocol, P-3 (i.e. P-o in the single-relay case),

if their parameters are chosen to beL = 1, γth = ∞, andt0 = 0. Note that in P-n, L can

only be1 whenM = 1.

The P-3 protocol was proposed in Chapter 5, but its long-term averagebehavior was

not analytically investigated. As in P-1 and P-2 from Chapter 5 and P-n, P-γ, and P-t, no

global channel information is required for the P-3 implementation.
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It can be observed from (6.6) and (6.13) that the uplink and downlink timesin P-3 are

given as

TUL = min{τSD, τS1} (6.27)

and

TDL =

(

1 − min{τSD, τS1}
τSD

)

min{τSD, τ1D}. (6.28)

Also, E{TS} andE{TR1} can be derived from (6.22) and (6.23) witht0 = 0 as

E{TS} =

∫ ∞

0
dx

∫ x

0
dt uSD(x) {1 − US1(t)U1D(x)} (6.29)

and

E{TR1} =

∫ ∞

0
dx

∫ x

0
dy

∫ 1

0
dt y uSD(x)u1D(y)US1(x t). (6.30)

6.4.6 Optimal Parameters

To obtain the optimal or near-optimal values of the P-n, P-γ, and P-t parameters that lead

to the greatestRavg or smallestE{T} (see (6.14)), we can exploit numerical integration

and optimization of (6.18)–(6.23), or employ experimental optimization based onsteep-

est descent or analytical optimization, as explained in the subsequent sections. While the

experimental method obviates the need for global channel information, the numerical and

analytical methods require that the channel gain statistics of all links be estimatedat the

destination, i.e. by acquiring SR channel gain information (note that SD and RD channel

information is locally estimated at the destination).3

6.4.6.1 Experimental Steepest-Descent Optimization

An experimental steepest-descent method can be executed by starting at an appropriate ini-

tial value for the parameter and adding adaptively changing positive or negative increments

until the best rate performance is obtained.4 The destination evaluates the rate performance

for any given value of the parameter, by averaging the realized rate over a limited number

3Such statistics can also be acquired at a central controller, which calculates the optimal value and feed-
backs it to the destination.

4The symmetry of the problem suggests thatRavg in P-n, P-γ, and P-t is concave inL, γth, and t0,
respectively. No proof is provided here. The concavity assures thatthe optimal point obtained by the method
of steepest descent is globally optimal as well. Note that standard convexoptimization methods are not used in
the experimental method, as all of them need access to global power gaininformation at the destination.
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of CRs. Note that this method can be used only when the system has no more than one pa-

rameter to optimize, as is the case for the suboptimal protocols; the effort required increases

exponentially with the number of parameters.

6.4.6.2 Analytical Optimization: Large SNR Approximations

Exact analytical derivation of the optimal parameters is in general mathematically intracta-

ble. Here, we develop large SNR approximations to the optimal values, which are also

satisfactory for other SNR regimes. We consider Rayleigh fading where the SNRs are

exponentially distributed. Assuming that allT , τ , andt variables are normalized byH/W ,

we obtain, from (6.4), the CDF ofτsub, denotedUsub(·), as

Usub(t) = e(1−e1/t)/µsub (6.31)

whereµsub is the average value ofγsub. Recall that “sub” can be “SD”, “th”, “Sm”, “ mD”,

etc. Whenµsub is large enough,Usub(t) can be well approximated as

Usub(t) ≈ H(t − ǫsub) (6.32)

whereH(·) is the Heaviside step function, and whereǫsub is the pointx at whichusub(x),

the PDF ofγsub, reaches its maximum. We obtain, from (6.31), thatǫsub is the unique

positive root of

e1/x

2x + 1
= µsub (6.33)

which can be accurately obtained by the fixed point iterationxn+1 = 1/ ln[µsub (2xn + 1)]

for n = 0, 1, · · · andx0 = 1, andµsub > 0.6. The approximation (6.32) shows that

usub(x) ≈ δ(x − ǫsub) (6.34)

for large SNR, whereδ(·) is the Dirac delta function.

Applying approximations (6.32) and (6.34) to (6.18)–(6.23), and after simplification,

we obtain the following algorithm for calculatingLopt, γth,opt or τth,opt (see (6.4)), and

t0,opt, the optimal values of the P-n, P-γ, and P-t parameters. Assume thatǫSD, ǫSm, and

ǫmD are obtained by solving (6.33) forµsub = µSD, µSm, µmD. Also, we sortǫSm in

increasing order asǫS(1), . . ., ǫS(M), and represent the correspondingǫmD’s (which are out

of order in general) asǫ(1)D, . . ., ǫ(M)D. Now, if ǫSD < ǫS(1), thenLopt = 1, γth,opt = 0,

and t0,opt = ǫSD/2. However, ifǫSD > ǫS(1), assume thatK is the largestk for which
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ǫSD > ǫS(k). Obviously,K can range from1 to M .

If ǫSD < min{ǫ(1)D, . . ., ǫ(K)D}, then againLopt = 1, γth,opt = 0, and t0,opt =

ǫSD/2. Otherwise, assume thatN of ǫ(1)D, . . ., ǫ(K)D are less thanǫSD, and ordered as

ǫ(i1)D < · · · < ǫ(iN )D < ǫSD. Also, assume that the sequencem1, . . ., mP is recursively

obtained fromi1, . . ., iN as follows. We havem1 = i1, and forℓ > 1, if mℓ−1 = ij

for somej, mℓ is the first term in the sequenceij+1, . . ., iN less thanij . For example, if

i1, . . ., iN = 4, 2, 6, 1, 3 (i.e. N = 5), thenm1, . . ., mP = 4, 2, 1 (i.e. P = 3). Now, we

have

Lopt = argmin
L=m1, ..., mP

ǫS(L) +

(

1 −
ǫS(L)

ǫSD

)

ǫ(L)D (6.35)

and, ifc is such thatLopt = mc,

τth,opt =
1

2







ǫ(mc)D + ǫ(mc+1)D, c < P

ǫ(mP )D + ǫSD, c = P
(6.36)

and

t0,opt =

(

1 −
ǫS(mc)

ǫSD

)

τth,opt. (6.37)

Figs. 6.1a and 6.1b show the exact and approximate values ofγth,opt andt0,opt for two

relays and different average SR and RD SNRs. The exact values have been obtained by nu-

merical optimization. As expected, and also suggested by both figures, the approximations

for any single scenario become more accurate as the SD, SR, and RD SNRsincrease. The

approximate values in the case of P-γ differ from the exact values by about1 dB to about

3 dB. In the case of P-t, the difference ranges from0.007 H/W to 0.062 H/W . Also, both

the exact and approximate values ofLopt, the optimal P-n parameter, are always1 for the

scenarios in Fig. 6.1.

6.5 Numerical Examples

In this section, we assume for simplicity that all time variables, including theτ ’s andT ’s,

are normalized byH/W . Also, we consider Gaussian-input, Rayleigh fading channels

where the different SNRs are exponentially distributed and where (6.2) isused as the ca-

pacity function. Moreover, for ease of illustration, symmetric cases are considered where

all SR SNRs are identically distributed, as are also all RD SNRs. We denote theaverage

SD, SR, and RD SNRs byµSD, µSR, andµRD.
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(a) The optimal value ofγth versusµSD.
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Fig. 6.1. The optimal parameters of P-γ and P-t versus the average SD SNR forM = 2. In the figure,
“Rm : (a, b)” denotes that for Relay Rm, we have(µSm, µmD) = µSD + (a, b) dB.

In Section 6.5.1, the tradeoffs between the optimal parameters of the rate suboptimal

schemes, obtained numerically, and the link qualities and number of relays arestudied. In

Section 6.5.2, the different optimal and suboptimal schemes are compared in terms ofRavg

and the RSUR (see Section 6.4). The suboptimal schemes are considered tooperate with
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their optimal parameters.

6.5.1 Numerical Optimization of the Parameters

Figs. 6.2–6.7 show the optimal parameters of the suboptimal schemes for a widerange of

scenarios. The optimal values in these figures have been obtained numerically using the

analytical results (6.18)–(6.23), which are verified via simulation in Section 6.5.2.

Figs. 6.2 and 6.3 depictLopt, the optimal value ofL, in a P-n scheme versusµSR

andµRD and versusµSD andM , respectively. Fig. 6.2 suggests thatLopt increases as

µSR increases andµRD decreases. In fact, largerµSR allows for increasingL without

appreciably increasing the uplink time, while smallerµRD warrants having a largerL to

partially compensate for the poor RD links that may lengthen the downlink time.

Fig. 6.3 shows that for a givenµSR andµRD, Lopt decreases withµSD, but increases

with M . The former is because the destination needs a smaller number of cooperative

decoding relays when the SD link itself improves. In fact, a largeL in the presence of

a sufficiently largeµSD or smallτSD can almost block the use of relays. The latter (the

increase withM ) is natural as whenM increases, the number of candidate relays increases,

allowing the system to take advantage of more decoding relays for the downlink.

Figs. 6.4 and 6.5 show results forγth,opt, the optimal value ofγth, in P-γ schemes.

These figures show thatγth,opt increases with an increase inM , µSD, µSR, or µRD. In fact,

increasingM , µSR, or µRD improves the quality of the downlink for a givenγth. In this

case, the downlink time can be decreased further by toughening the qualification criterion,

i.e. by increasingγth. Also, γth,opt is an increasing function ofµSD because increasing

µSD while γth is fixed, makes it more likely that the source becomes AT, i.e. DT occurs. To

avoid this and to better utilize relaying, one should increaseγth.

Fig. 6.4 shows that for a givenµSD andM , γth,opt can change broadly with, and is

almost planar in,µSR andµRD. In contrast, Fig. 6.5 suggests that for a givenµSR and

µRD, γth,opt does not change as widely withµSD, particularly asM increases. Also,γth,opt

exhibits a gentler increase withM at larger values ofµSD.

Similarly, Figs. 6.6 and 6.7 depict the behavior oft0,opt, the optimal value oft0, in

P-t, with respect toµSR, µRD, µSD, andM . Recall thatt0,opt is considered normalized by

H/W . These figures suggest thatt0,opt is a decreasing function ofµSD, µSR, or µRD, but

a decreasing or increasing function ofM , which can be justified by the uplink-downlink
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Fig. 6.2. The optimal parameterL in a P-n scheme versus the average SR and RD SNRs, whenM = 3 and
µSD = 7 dB.
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Fig. 6.3. The optimal parameterL in a P-n scheme versus the number of relays and average SD SNR, when
µSR = µRD = 20 dB.

tradeoff whent0 changes, as follows. Recall from Section 6.3 that the downlink time in P-t

is bounded byt0. Decreasingt0 diminishesTDL on average, but at the possible expense

of increasingTUL. This is because at a smallert0, more time on average is needed until

a qualifying downlink node can be found, i.e. one with a RD link strong enough to help
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Fig. 6.4. The optimal parameterγth in a P-γ scheme versus the average SR and RD SNRs, whenM = 3 and
µSD = 7 dB.
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Fig. 6.5. The optimal parameterγth in a P-γ scheme versus the number of relays and average SD SNR, when
µSR = µRD = 20 dB. The optimalγth is ∞ whenM = 1.

the destination decode within timet0. Increasingt0 causes the opposite behavior to occur.

Now, increasing the average system SNRs orM helps the qualifying downlink node emerge

sooner on average, thus decreasingE{TUL}. However, it appears from the figures that it is

only in the former case (increasingµSD, µSR, or µRD) that decreasingt0 to some extent,
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average SD SNR, whenµSR = µRD = 20 dB. The optimalt0 is 0 whenM = 1.

which adds toE{TUL} but takes fromE{TDL}, can shrink the whole transmission time. In

the latter case (increasingM ) for some scenarios, the decrease ofE{TUL} is not great such

that increasingt0, which additionally reducesE{TUL}, can diminish the whole transmission

time despite an increase inE{TDL}.
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6.5.2 Performance Comparison

Figs. 6.8 and 6.9 show theRavg and RSUR (see (6.14) and (6.16)) of the optimal and

suboptimal schemes versusµSD, for M = 1 andM = 5, when there is a fixed difference in

dB amongµSD, µSR, andµRD. The DT average rate, obtained from (5.12), is also depicted

as a baseline for performance comparison. Both analytical and simulation results are shown,

except for DT where no simulation for (5.12) is required, and for P-o withM = 5 where

only simulation results are available. In all cases, the simulation and analytical results are

in good agreement. Recall that whenM = 1, all the suboptimal protocols coincide with

P-o when their parameters are chosen to be optimal (see Section 6.4.5).

It is observed from Fig. 6.8 that there is not much difference between theaverage

rate performances of the schemes whenM = 5, with P-t exhibiting a slightly inferior

performance for larger values ofµSD. In other words, P-n and P-γ perform near-optimally.

The difference in performance betweenM = 1 andM = 5 is not significant and diminishes

from around1 bit to around0.5 bits as the SD link improves. This suggests that adding more

relays is not necessarily efficient in terms of the achievable rate. Note thatin the single-

relay case, the schemes outperform DT by an amount ranging from around0.5 bits for small

SNR values to a steady-state difference of around1.34 bits for large SNR values.

Fig. 6.9 shows that the schemes are largely different in terms of the transmission bur-

den imposed on relays, in contrast to Fig. 6.8 where the schemes are similar in the rate

performance. Recall that the RSUR shows how much on average relays are used compared

to the source. The optimal scheme, P-o, and the scheme P-n respectively make the least and

most use of relays in transmission. Also, there is a peak in the RSUR for all theschemes.

This peak can be explained by noting that all the systems utilize the relays less frequently

if the SNR values are small or large enough. In a small SNR regime, relays are less likely

to decode soon and to be used on a longer period. In a large SNR regime, the destination

is more likely to decode soon, decreasing relay usage. Hence, the maximum relay usage

occurs in a medium SNR regime.

Figs. 6.10 and 6.11 depictRavg and the RSUR versusM for a fixed average SNR sce-

nario. Again, simulation and analytical results are in excellent agreement. Fig. 6.10 shows

that P-t and P-γ have the worst and best performances among the suboptimal schemes,

respectively. Nevertheless, the difference in the rate performances of the schemes is not
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Fig. 6.8. The average transmission rate in bits versus the average SD SNR in dB, forM = 1 andM = 5 and
the different optimal and suboptimal schemes.
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Fig. 6.9. The RSUR versus the average SD SNR in dB, forM = 1 andM = 5 and the different optimal and
suboptimal schemes.

significant and does not exceed0.25 bits. Also, this figure suggests that the schemes ex-

hibit quickly diminishing returns asM increases. Note that in Fig. 6.10, the long-term

average DT rate, obtainable from (5.12), is almost2.91 bits (obviously independent ofM ),

appreciably smaller than the rates achieved by the relaying schemes.
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Fig. 6.11. The RSUR versus the number of relays for the different optimal and suboptimal schemes.

Fig. 6.11 indicates, much like Fig. 6.9, that the schemes largely differ in the RSUR

performance, with P-o and P-n having the smallest and largest RSUR. Also, increasing

the number of relays generally increases the chance that the relays are utilized, hence the

increase in the RSUR with the number of relays. However, there is a seeming irregularity

observed in the case of P-o whenM increases from1 to 2. This irregularity is explained
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by the fact that adding more relays can also strengthen the average qualityof the RD links.

Then, a stronger relay may help the destination decode more quickly, reducing the amount

of the time that the relay is employed. This effect appears to be dominant in P-owhen

raisingM from 1 to 2, leading to a reduction in the RSUR.

6.6 Design and Performance Implications

The rate suboptimal selection protocols proposed are natural selection strategies for dual-

hop relaying based on rateless coding. In fact, the optimal downlink strategy for rateless

dual-hop relaying based on reactive selection (i.e. when the cooperative relay is selected

after the source broadcasting) is rather clear, and is the same for all the proposed schemes as

mentioned in Section 6.3.1. It is the uplink stopping criteria that differentiate these schemes.

There can be many other alternatives, not necessarily as efficient andsimple as the

schemes proposed. For example, it is generally possible for rateless selection techniques

that the expected transmission time of a message approaches infinity in Rayleighfading.

The protocols proposed avoid this problem. Also, although suboptimal selection techniques

may involve the use of multiple parameters, each of the protocols proposed here is charac-

terized by a single parameter, yet exhibiting near-optimal rate performances. Additionally,

the system complexity is independent of the system parameter.5

The protocols have low complexity also in terms of feedback. The only feedbacks re-

quired are limited to those from the decoding relays to the destination for declaring success-

ful decoding, and the two feedbacks broadcast by the destination, a message oflog2(M +1)

bits to indicate which node shall transmit next, and a one-bit message to declare successful

decoding.

It is not obvious which one of the P-n, P-γ, and P-t protocols is worse or better in terms

of the average rate. However, the numerical results in Section 6.5 suggest that P-γ is always

the best, and that the P-n rate is larger than the P-t rate; the differences are small though.

5However, a restriction is that the destination should be able to find or estimate the optimal or near-optimal
values of the parameters, as examined in Section 6.4.6.
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Chapter 7

Conclusions and Future Research

Directions

In this chapter, first we present a summary of the contributions in the thesis and the conclu-

sions obtained. Then, we proceed to suggest avenues and directions for future research.

7.1 Conclusions

The thesis essentially focused on the performance evaluation and comparison in fixed-rate

and rateless coded dual-hop relaying networks, and on creating new concepts and protocols

for these networks.

We commenced by analyzing a three-node (the simplest) relay channel in Chapter 2

with static links and basic AF and DF operations. The exact OPA ratio for maximizing the

end-to-end SNR in the AF case, and the MRC and ML detection rules and BERs in the

DF case were derived. The cause of the error floor in the performance of DF relaying was

shown to be suboptimal MRC detection at the destination. Power optimization between the

source and relay, and successful decoding at the relay were shownto be required to assure

the superiority of DF relaying over AF relaying. The best relaying strategy and OPA ratio

was determined under a total power constraint assuming that the transmissionoptions are

DT, AF relaying, and DF relaying. Additionally, the maximum CG was derived for each

case. It was found that the CG has an inverse relationship with the quality ofthe SD link,

but a direct relationship with the qualities of SR and RD links. Furthermore, while stronger

SR links favor DF relaying, AF relaying yields larger CG as compared to DF relaying for
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stronger SD and RD links. The value CG can be used as a criterion for relay selection

among a set of candidate relays.

In Chapter 3, a multirelay, dual-hop AF relaying network was considered.Three com-

mon AF schemes include superimposed, selection, and orthogonal AF relaying, out of

which we only considered superimposed and selection relaying. In fact, orthogonal AF

relaying has been well investigated in the literature, and shown to be inferiorto selection

AF relaying. We viewed selection AF relaying as a special power allocation scheme for

superimposed AF relaying, in which the whole relaying power is given to a single relay in

every CR. This relay is selected such that it maximizes the largest instantaneous equivalent

SNR from the source to the destination, or minimizes the outage probability at anyrate.

The problem of OPA in superimposed AF relaying under an aggregate relay power was

formulated as a nonconcave fractional global optimization program, which generally lacks a

closed-form solution. The selection power allocation scheme can be optimal or suboptimal

for superimposed relaying, depending on the instantaneous link coefficients. A necessary

condition for the selection AF optimality in terms of the instantaneous link coefficients was

derived. It was shown that the selection AF power allocation is asymptoticallystrictly sub-

optimal in the sense that the selection AF outage optimality approaches zero exponentially

as the number of relays increases. This result was obtained independently of the individual

link fading model provided only that different links suffer independentfading and that the

phase distortion is uniformly distributed. For example, the selection AF suboptimality is

almost certain for more than11 available relays. It was also observed that the selection AF

protocol deviates noticeably more from optimality as the fading moderates.

A closed-form, suboptimal relay power allocation solution was also developed for su-

perimposed AF relaying, which performs almost as well as the optimal scheme for differ-

ent numbers of relays. The proposed suboptimal scheme does not contend with indefinite

search and convergence issues, which generally arise in global optimization algorithms.

However, while the selection AF protocol can be implemented in centralized [48] or dis-

tributed [107] manners with comparable advantages and drawbacks, the proposed subopti-

mal scheme is only amenable to centralized implementation in which the destination needs

to calculate the power allocation ratios and feeds them back to the relays. Nonetheless, the

complexity requirements of the proposed scheme can be shown not to exceed those needed

for a centralized selection AF scheme.
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In Chapter 4, we considered multirelay, dual-hop DF relaying networks withthree com-

mon, fixed-rate DF relaying operations, called superimposed, selection, and orthogonal DF

relaying, each with PCC or RC. The PCC and RC techniques are two extreme cooperation

methods, allowing to study the limiting behavior of the relaying systems. We discussed the

complexity issues related to CSI acquisition, feedback, and overhead, in the different proto-

cols. Next, the maximum instantaneous achievable rates of the schemes were determined.

A general methodology to derive the rate-adaptive, power-nonadaptive average capacity of

the schemes via the calculation of their outage probabilities was presented, and the out-

age probabilities were derived for a general fading model. The results were specialized to

Rayleigh fading, and the outage probabilities and average capacities of allthe schemes in

the different cases of asymmetric and symmetric links, each with and without theeffect

of the SD link, were calculated. All the results were exact, except for orthogonal relaying

with PCC, where only lower and upper bounds were derived. It was observed that the lower

bound on the outage probability and the upper bound on the average capacity are very tight,

but the other two bounds are not. The analytical results obtained were verified for two

asymmetric and symmetric scenarios by Monte Carlo simulation. Full diversity in the size

of the network was observed from the outage probability graphs for all the schemes. Also,

the PCC over RC gain was observed to be about2 ∼ 4 dB for the outage probabilities and

8 ∼ 8.5 dB for the average capacities, for the different relaying systems.

The outage and capacity performances of the schemes were compared to each other and

to those of DT by two numerical examples. In one example, we considered a symmetric

case with a linear network topology and a simplified path loss model, and showed the

performances versus the normalized distance of the relays from the source. It was observed

that superimposed relaying has the best and orthogonal relaying has theworst performance

for the same cooperation strategy (PCC or RC), and that all the relaying schemes, except

for orthogonal relaying in some cases, outperform DT significantly. Also, the schemes

benefit from the best performance for an optimal distance of the relays from the source.

This optimal distance is different for the different schemes.

In another example, the changes in the outage and capacity performanceswith an in-

crease in the number of relays were studied for a symmetric case. It was observed that

the outage performance of orthogonal relaying improve up to3 relays, and then deterio-

rate. Also, the capacity performance of orthogonal relaying deteriorates with the number
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of relays, and become worse than the DT performance for more than3 or 4 relays. The

deteriorations are generally attributed to orthogonalization loss. The performances of the

other relaying schemes improve with an increase in the number of relays. Theimprovement

rate is continuous and almost constant for the outage performance, but exhibits diminishing

returns for the capacity performance. Also, the improvement rate is largerfor superimposed

relaying than selection relaying for the outage performance, but is similar for superimposed

and selection relaying for the capacity performance.

Chapters 5 and 6 were devoted to examining rateless coded dual-hop relaying networks.

Rateless codes are an excellent match for DF relaying schemes, making possible less com-

plex, more energy efficient implementation of collaborative systems. In Chapter 5, single-

relay systems were considered and the performances of three rateless coded DF schemes,

called P-1, P-2, and P-3, were investigated. The P-1 and P-2 schemes were taken from

previous research, whereas P-3 was proposed here. It was built upon P-1 and P-2 and

opportunistic communication, aiming at larger energy efficiency and less complexity com-

pared to P-1 and P-2. The salient implementation and complexity features of theprotocols

were also addressed.

The maximum achievable rate and minimum energy per symbol and per bit of the pro-

tocols were derived under two power constraints, called the PPC and APC. The PPC is

suitable for energy unconstrained scenarios, while the APC was considered to draw a fair

comparison of the protocols on a power basis. In fact, it was observed that the relay-

ing systems consume different amounts of energy and achieve differentrates in different

CRs, making it almost impossible to compare their energy efficiency directly based on their

achievable rates in a PPC regime. More specifically, P-1, P-2, and P-3 rank second, first,

and third either in order of achieving larger rates or in order of expending more energy per

symbol. This means, inter alia, that larger rates may be the result of more energy expen-

diture. Indeed, this is a general issue in analyzing rateless coded systems. In Chapter 5,

two methods were proposed and investigated for comparing the protocols fairly in terms of

power, the minimum energy per bit under the PPC and the maximum rate under theAPC.

To characterize and study the long-term behavior of the protocols, we considered the

long-term average rate and energy per bit, and also introduced the RSURwhich indicates

how much the relay is utilized compared to the source in the long term. We derivedgeneral

expressions for these quantities, and utilized the results obtained to comparethe protocols
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in several numerical examples. The numerical results attested the superiority of P-3 over

the other schemes in energy efficiency in most cases. Also, the optimal position of the relay

in P-3 leading to the largest rate or energy efficiency was almost the midpointbetween the

source and destination for a linear network topology. The corresponding position in P-1 and

P-2 was closer to the source, around the midpoint, or closer to the destination, depending

on the desired figure of merit.

Regarding the relay usage, it was observed that in all schemes the RSUR decreases

as the SD link improves or the SR link deteriorates, as expected. Also, P-1 realizes the

least use of relaying, while P-3 in almost all cases is the most relay utilizing protocol.

Therefore, P-3 may not be attractive in the situations where it is not desirable, due to energy

considerations, that a significant portion of the entire transmission burdenin the system be

placed on the relay. It was also observed that the rate maximizing version ofP-2 uses the

relay appreciably more compared to the EB minimizing version of P-2.

Overall, we observe that the P-3 protocol proposed is a promising, easy-to-implement,

and energy efficient relaying strategy for rateless coded, single-relay networks. Although

it is inferior to P-1 and P-2 in energy unconstrained regimes, and slightly inferior to P-

2 in certain energy constrained scenarios, P-3 can be most appealing owing to its lowest

complexity and implementation costs. It can also be extended with minimum complexity

to the case of multiple parallel relays, as executed in Chapter 6.

In Chapter 6, three protocols, denoted P-n, P-γ, and P-t, based on rateless coding and

selection cooperation for multirelay, dual-hop relaying networks were introduced. Each

protocol has only one design parameter and does not rely on global channel gain informa-

tion at any node. The protocols are distinguished via their uplink stopping criteria, but are

essentially the same in the downlink phase, where the uplink and downlink respectively

refer to the source broadcasting, and relaying transmission phases. The design of the pro-

tocols focuses on simplicity and avoidance of unbounded average transmission time for

block Rayleigh fading. All the protocols in the single-relay case, if used withtheir optimal

parameters, convert to the P-3 scheme introduced in Chapter 5.

An analysis of the long-term average rate and RSUR of the protocols was presented.

The protocols are not generally rate optimal, but become rate optimal in the single-relay

case (M = 1) with their parameters optimally chosen, i.e. when they become equivalent

to P-3. The optimal values of the parameters were trivially determined forM = 1, and
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numerically investigated forM > 1 for different average SNR scenarios and a Rayleigh

fading environment. A large SNR approximation to the optimal parameters forM > 1

was also obtained, which is satisfactory for a wide range of SNR values. Acomparison

of the average rates achieved by DT and the proposed protocols showed that the proposed

schemes are capable of outperforming DT significantly.

As in Chapter 5, we used the RSUR to study how energy consuming the relaysare,

compared to the source, in the different protocols. The average rate and RSUR perfor-

mances were compared against those of the rate optimal protocol, P-o. It was observed that

all the suboptimal protocols, especially P-γ, exhibit near-optimal rate performances if their

parameters are optimized. However, they exhibit diverse RSUR performances, with P-n

making the most, and P-o making the least, use of relay energy. Also, the systems utilize

more relay energy when the average SNRs are middle ranged.

7.2 Possibilities for Future Research

In the following, several directions for future research are suggested, including multisource

cooperation, small and large SNR characterization of the behavior of relaying networks,

opportunistic rateless coded relaying, comparison between fixed-rate and rateless coded

cooperation, optimal power allocation, and protocol design and an analysis of the capacity

and resource allocation for rateless coded multihop relaying networks.

7.2.1 Multisource Cooperation

In the multirelay systems investigated in the thesis, several relays, not havingor transmitting

messages of their own, assist a source to communicate its messages. In practice, there

are situations where a group of independent sources cooperate to send their data to their

respective destinations. We refer to this type of cooperation, where morethan one node

have independent messages to send, asmultisource cooperation.

One possible direction for research is to explore multisource versions of the protocols

examined in Chapters 3, 4, and 6. For example, consider a scenario in which N nodes,

S0, . . ., SN−1, cooperate to pass their messages. Such a scenario can happen in a clus-

tered sensor network, where each cluster of sensors has a cluster head that receives data

from any other sensor in the cluster. Assume that the transmitting nodes haveorthogonal
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channels facilitating half-duplex operation, and that in a CR, Sn monitors, and is moni-

tored by, exactlyJ other nodes, forn = 0, · · ·, N − 1, whereJ is a design parameter.

Such a partner assignment policy is viable in different ways. For example,let π be an ar-

bitrary permutation of{0, · · ·, N − 1}. It can be shown that if for anyn, Sn monitors

Sπ(mod(π−1(n)+1,N)), . . ., Sπ(mod(π−1(n)+J,N)), wheremod(·, ·) is the modulus operator,

then for anyn, Sn is monitored by Sπ(mod(π−1(n)−1,N)), . . ., Sπ(mod(π−1(n)−J,N)). Also,

assume that each node transmits its own data with power(1 − α)P , and if selected to as-

sist any other node, transmits the data of the other node with powerαP/J , whereP is the

maximum sustainable power of any node, and whereα is a design parameter representing

the level of cooperation. Altogether, the analysis of the whole system is decomposed into

the analyses ofN independentmodels of the type depicted in Fig. 4.1, where the power of

Node S is(1 − α)P , but the power of each relay isαP/J .

It is interesting to determine optimal or near-optimal values ofJ andα for optimizing

different rate or energy performances in the setup just described. Note that asJ is increased,

the number of cooperative relays for a node increases, but the relay power diminishes. A

similar tradeoff exists forα. Whenα is decreased, the source power increases, but the relay

power decreases.

7.2.2 Small and Large SNR Characterization

The limiting behavior of relaying systems in terms of small or large values of SNR isworth

analyzing for two main reasons. First, such an analysis usually leads to simpler, tractable,

and closed-form results which give insight on how the system generally operates. Second,

there are many practical scenarios that fit into small or large SNR regimes. Alarge body of

research on the diversity order and diversity-multiplexing tradeoff in relaying networks is

an example of such studies on limiting behaviors.

It is suggested that research is made to characterize the long-term average rate of the

fixed-rate and rateless coded networks of Chapters 4 and 6 in small and large SNR regimes.

If the capacity can roughly be written asm log(p SNR + 1) or m log(p SNR) for small

or large SNR scenarios, respectively, thenm and p can be respectively regarded as the

multiplexing order and coding power gain of the system.
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7.2.3 Opportunistic Rateless Coded Relaying

Recent research has proposed selecting the best available relay amonga set of candidates

proactively, i.e. before cooperation takes place. This scheme, referred to as opportunistic

relaying [107], [109], contrasts withreactiveselection, where the cooperative relay is deter-

mined after a source broadcasting phase. Opportunistic relaying has benefits over and above

reactive selection relaying, such as saving processing energy at the relays and minimizing

overhead information for CSI acquisition [107], [109]. In dual-hop opportunistic relaying,

the merit of a relay is assessed by a metric which is only a function of the instantaneous

local SNRs at the relay,γSR andγRD. For example,min{γSR, γRD} is a metric proposed

for fixed-rate DF relaying networks.

Opportunistic relaying has been only utilized and investigated for fixed-raterelaying

schemes to date, where outage is the major concern. We suggest to apply thistype of

relaying to fountain-based dual-hop relaying networks. In fact, retaining its benefits, op-

portunistic relaying can be easily integrated with rateless coded relaying systems. Then,

the long-term average rate and RSUR performances of opportunistic rateless coded relay-

ing can be evaluated, and compared to those of the schemes proposed in Chapter 6. Also,

an interesting research problem arises here that what metric function is more appropriate

for rateless coded relaying.

7.2.4 Comparing Fixed-Rate and Rateless Coded Relaying Networks

The focus of attention in the realms of cooperative communication has been devoted mostly

to the system design and performance analysis of fixed-rate or rateless schemes to date,

without any comparison made between these schemes. As explained earlier,rateless coded

schemes provide great potential for relaying systems and avoid some drawbacks of fixed-

rate schemes [105]. Therefore, it is informative and insightful to draw afair comparison

between the achievable rates in fixed-rate and rateless relaying systems, and to quantify the

energy efficiencies of these systems.

To draw the comparisons, we propose to use thethroughputand RSUR as suitable

performance measures, where the throughput, in the case of fixed-ratesystems, can refer to

the average capacity considered in Chapter 4, or to the rater for which r multiplied by the

nonoutage probability at rater is maximized. In rateless systems, the throughput is taken
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to equal the long-term average rate, as used in Chapters 5 and 6.

We also need two general commensurate fixed-rate and rateless relaying schemes to

compare their achievable expected throughputs. To retain both generality and simplicity and

to achieve large energy efficiency, we consider any of the schemes proposed in Chapter 6 as

the rateless scheme required. The fixed-rate relaying system selected for comparison should

be commensurate with the rateless scheme in terms of bandwidth and energy expenditure, as

well as complexity. A novel fixed-rate scheme, called fixed-rate coded selection cooperation

(FISC), is proposed for this purpose, which is essentially taken from thecoded cooperation

scheme of [16], but avoids some of its drawbacks in multiuser cases. The FISC protocol

from fixed-rate systems has a duality relationship with the rateless protocols from Chapter

6. Next, we introduce the FISC protocol.

Consider the multirelay system in Fig. 4. All nodes transmit with the same power

and on the same frequency band. Node S splits its codeword of lengthN symbols to two

parts; the first is a codeword of lengthN1 = (1 − β)N which can be decoded on its own,

and the second contains parities and is of lengthN2 = βN symbols. The parameterβ

represents the level of cooperation [16], and we have0 ≤ β < 1. Node S broadcasts the

first part of its codeword in the first phase. The relays monitor Node S’stransmissions

and attempt to decode its message. At the end of the first phase, each decoding relay

declares its decoding success to Node D via feedback. Subsequently, Node D signals Node

argmaxX∈{S}∪D{γXD} to be the transmitter of theN2-symbol part of the codeword in the

second phase, whereD denotes the set of the decoding relays and whereγXD is the SNR

associated with the link from Node X to Node D. The multisource version of FISC can also

be obtained via the same technique introduced in Section 7.2.1. It can be shown that FISC

avoids the DSTC or MUD needed in the multiuser coded cooperation of [17],[42], and has

a tractable outage analysis.

7.2.5 Optimal Power Allocation

The use of optimal or near-optimal power allocation, instead of equal power allocation, has

been shown to significantly improve the performance of cooperative systems, especially

when the number of nodes in the system and/or imbalances between the strengths of the dif-

ferent links increase. However, one major challenge is to find low complexitycentralized or

distributed solutions that do not entail much signaling overhead or a heavy use of feedback,
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and that do not cause intolerable delays. The investigation in Chapter 2 considered power

allocation in multirelay, dual-hop AF relaying networks, and led to a near-optimal solution.

Similar studies can be performed for the DF relaying networks considered inChapters 4–6.

7.2.6 Rateless Coded Multihop Relaying Networks

Multihop relaying networks become important when it is needed to inexpensively extend

the coverage area or nodes’ battery lives. Although much progress has been made in the

performance evaluation and protocol design of fixed-rate coded multihopnetworks to date,

rateless coded multihop networks remain to be sufficiently explored. The rateless coded

multihop protocol, proposed in [22] based on asynchronous transmissions from the decod-

ing relays, and the low complexity routing algorithms introduced in [110] for rateless coded

multirelay networks, are examples of research in this area.

As a future research direction, the possibility of extending the rateless coded schemes

of Chapter 6 to the multihop case can be examined. Also, in a multirelay network, assum-

ing that a multihop route has been found (e.g. by the methods proposed in [110]) from the

source to the destination, one interesting research problem is to find the maximum long-term

average rate between the source and destination, given that the power,time, and bandwidth

allocated to each relay in the route are known. Importantly, note that when a relay is for-

warding information, the preceding relays are allowed to receive and pass new data from

the source. Another similar problem is to find optimal resource allocation for the relays in

a given route such that the achievable long-term average rate using the route is maximized.

134



References

[1] E. C. van der Meulen, “Three-terminal communication channels,”Adv. Appl. Prob., vol. 3, pp. 120–154,
1971.

[2] E. C. van der Meulen, “A survey of multi-way channels in informationtheory: 1961–1976,”IEEE Trans.
Inf. Theory, vol. 23, no. 1, pp. 1–37, Jan. 1977.

[3] T. M. Cover and A. A. El Gamal, “Capacity theorems for the relay channel,” IEEE Trans. Inf. Theory,
vol. 25, no. 5, pp. 572–584, Sep. 1979.

[4] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity theorems for relay networks,”
IEEE Trans. Inf. Theory, vol. 51, no. 9, pp. 3037–3063, Sep. 2005.

[5] A. Høst-Madsen and J. Zhang, “Capacity bounds and power allocation for wireless relay channels,”
IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 2020–2040, Jun. 2005.

[6] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity—part I: System description,”
IEEE Trans. Commun., vol. 51, no. 11, pp. 1927–1938, Nov. 2003.

[7] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity—part II: Implementation aspects
and performance analysis,”IEEE Trans. Commun., vol. 51, no. 11, pp. 1939–1948, Nov. 2003.

[8] F. M. J. Willems, E. C. van der Meulen, and J. P. M. Schalkwijk, “An achievable rate region for the
multiple access channel with generalized feedback,” inProc. Allerton Conf. Commun., Contr., Comput.,
Monticello, IL, Oct. 5–7, 1983, pp. 284–292.

[9] J. N. Laneman and G. W. Wornell, “Distributed space-time-coded protocols for exploiting cooperative
diversity in wireless networks,”IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2415–2425, Oct. 2003.

[10] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient
protocols and outage behavior,”IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.

[11] R. U. Nabar, H. Bölcskei, and F. W. Kneubühler, “Fading relay channels: Performance limits and space-
time signal design,”IEEE J. Sel. Areas Commun., vol. 22, no. 6, pp. 1099–1109, Aug. 2004.

[12] A. Stefanov and E. Erkip, “Cooperative space-time coding for wireless networks,”IEEE Trans. Com-
mun., vol. 53, no. 11, pp. 1804–1809, Nov. 2005.

[13] P. A. Anghel and M. Kaveh, “On the performance of distributed space-time coding systems with one and
two non-regenerative relays,”IEEE Trans. Wireless Commun., vol. 5, no. 3, pp. 682–692, Mar. 2006.

[14] Y. Jing and B. Hassibi, “Distributed space-time coding in wireless relay networks,”IEEE Trans. Wireless
Commun., vol. 5, no. 12, pp. 3524–3536, Dec. 2006.

[15] K. Azarian, H. El Gamal, and P. Schniter, “On the achievable diversity-multiplexing tradeoff in half-
duplex cooperative channels,”IEEE Trans. Inf. Theory, vol. 51, no. 12, pp. 4152–4172, Dec. 2005.

[16] T. E. Hunter and A. Nosratinia, “Diversity through coded cooperation,” IEEE Trans. Wireless Commun.,
vol. 5, no. 2, pp. 283–289, Feb. 2006.

[17] T. E. Hunter, S. Sanayei, and A. Nosratinia, “Outage analysis of coded cooperation,”IEEE Trans. Inf.
Theory, vol. 52, no. 2, pp. 375–391, Feb. 2006.

[18] M. Janani, A. Hedayat, T. E. Hunter, and A. Nosratinia, “Coded cooperation in wireless communica-
tions: Space-time transmission and iterative decoding,”IEEE Trans. Signal Process., vol. 52, no. 2, pp.
362–371, Feb. 2004.

[19] A. Stefanov and E. Erkip, “Cooperative coding for wireless networks,” IEEE Trans. Commun., vol. 52,
no. 9, pp. 1470–1476, Sep. 2004.

135



[20] P. Razaghi and W. Yu, “Parity forwarding for multiple-relay networks,” IEEE Trans. Inf. Theory, vol. 55,
no. 1, pp. 158–173, Jan. 2009.

[21] J. Castura and Y. Mao, “Rateless coding for wireless relay channels,” IEEE Trans. Wireless Commun.,
vol. 6, no. 5, pp. 1638–1642, May 2007.

[22] A. F. Molisch, N. B. Mehta, J. S. Yedidia, and J. Zhang, “Performance of fountain codes in collaborative
relay networks,”IEEE Trans. Wireless Commun., vol. 6, no. 11, pp. 4108–4119, Nov. 2007.

[23] A. Chakrabarti, A. Sabharwal, and B. Aazhang, “Cooperativecommunications: Fundamental limits and
practical implementation,” inCooperation in Wireless Networks: Principles and Applications, F. H. P.
Fitzek and M. D. Katz, Eds. Springer, 2006, ch. 2, pp. 29–68.

[24] J. N. Laneman and G. W. Wornell, “Energy-efficient antenna sharing and relaying for wireless networks,”
in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), vol. 1, Chicago, IL, Sep. 23–28, 2000, pp. 7–12.

[25] J. N. Laneman and G. W. Wornell, “Exploiting distributed spatial diversity in wireless networks,” in
Proc. Allerton Conf. Commun., Contr., Comput., Monticello, IL, Oct. 3–6, 2000, pp. 1–10.

[26] B. Zhao and M. C. Valenti, “Some new adaptive protocols for the wireless relay channel,” inProc.
Allerton Conf. Commun., Contr., Comput., vol. 41, part 3, Monticello, IL, Oct. 1–3, 2003, pp. 1588–
1589.

[27] J. Boyer, D. D. Falconer, and H. Yanikomeroglu, “Multihop diversity in wireless relaying channels,”
IEEE Trans. Commun., vol. 52, no. 10, pp. 1820–1830, Oct. 2004.

[28] A. Nosratinia, T. E. Hunter, and A. Hedayat, “Cooperative communication in wireless networks,”IEEE
Commun. Mag., vol. 42, no. 10, pp. 74–80, Oct. 2004.

[29] X. Bao and J. Li, “Efficient message relaying for wireless user cooperation: Decode-amplify-forward
(DAF) and hybrid DAF and coded-cooperation,”IEEE Trans. Wireless Commun., vol. 6, no. 11, pp.
3975–3984, Nov. 2007.

[30] M. O. Hasna and M.-S. Alouini, “Optimal power allocation for relayed transmissions over Rayleigh-
fading channels,”IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 1999–2004, Nov. 2004.

[31] M. O. Hasna and M.-S. Alouini, “Harmonic mean and end-to-end performance of transmission systems
with relays,”IEEE Trans. Commun., vol. 52, no. 1, pp. 130–135, Jan. 2004.

[32] J. N. Laneman, “Network coding gain of cooperative diversity,” in Proc. IEEE Military Commun. Conf.
(MILCOM), Monterey, CA, Oct. 31–Nov. 3, 2004, pp. 106–112.

[33] M. Yu and J. Li, “Is amplify-and-forward practically better than decode-and-forward or vice versa?” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), vol. 3, Philadelphia, PA, Mar. 18–23,
2005, pp. 365–368.

[34] M. Yu, J. Li, and H. Sadjadpour, “Amplify-forward and decode-forward: The impact of location and
capacity contour,” inProc. IEEE Military Commun. Conf. (MILCOM), vol. 3, Atlantic City, NJ, Oct.
17–20, 2005, pp. 1609–1615.

[35] Y.-W. Hong, W.-J. Huang, F.-H. Chiu, and C.-C. J. Kuo, “Cooperative communications in resource-
constrained wireless networks,”IEEE Signal Process. Mag., vol. 24, no. 3, pp. 47–57, May 2007.

[36] R. Annavajjala, P. C. Cosman, and L. B. Milstein, “Statistical channel knowledge-based optimum power
allocation for relaying protocols in the high SNR regime,”IEEE J. Sel. Areas Commun., vol. 25, no. 2,
pp. 292–305, Feb. 2007.

[37] Y. Li, B. Vucetic, Z. Zhou, and M. Dohler, “Distributed adaptive power allocation for wireless relay
networks,”IEEE Trans. Wireless Commun., vol. 6, no. 3, pp. 948–958, Mar. 2007.

[38] T. C.-Y. Ng and W. Yu, “Joint optimization of relay strategies and resource allocations in cooperative
cellular networks,”IEEE J. Sel. Areas Commun., vol. 25, no. 2, pp. 328–339, Feb. 2007.

[39] S. D. Gupta and D. Reynolds, “Position dependent power allocationstrategies in cooperative relay net-
works,” in Proc. IEEE Military Commun. Conf. (MILCOM), Washington, D.C., Oct. 23–25, 2006, pp.
1–7.
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Appendix A

Maximum Likelihood Detection in

Dual-Hop DF Relaying

In this appendix, the ML detection rule for single-relay DF relaying and the BER under ML

detection at the destination are derived. Recall thatrSD andrRD, given in (2.4) and (2.18),

are the baseband equivalent received signals at the destination from the source and relay,

respectively. Also, recall the definitions ofxSD andxRD given in (2.21) and (2.22). It is

verifiable thatRe{(xSD, xRD)} andIm{(xSD, xRD)} are independent functions ofb1 and

b2, and in fact, are sufficient statistics for(rSD, rRD) relative tob1 andb2, respectively. In

the sequel, we determine the ML detection rule forb1. Thus, we concern ourselves here

only with Re{xSD} andRe{xRD} which are given by

TSD , Re{xSD} = γSD b1 + n̂SD (A-1a)

and

TRD , Re{xRD} = γRD b̂1 + n̂RD (A-1b)

whereγSD andγRD are defined in (2.9), and where

n̂SD , Re

{

g∗0
√

2ES

NSD
nSD

}

(A-1c)

and

n̂RD , Re

{

g∗2
√

2ER

NRD
nRD

}

(A-1d)
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are two independent zero-mean Gaussian RVs with variancesγSD andγRD, respectively.

Therefore,TSD andTRD are conditionally independent, givenb1, and one can write

fTSD,TRD|b1 (tSD, tRD) = fTSD|b1 (tSD)
[ (

1 − P (SR)
e

)

fTRD|b̂1=b1
(tRD)

+ P (SR)
e fTRD|b̂1 6=b1

(tRD)
]

(A-2)

wherefTSD,TRD|·(·, ·), fTSD|·(·), andfTRD|·(·) are respectively the conditional joint PDF of

TSD andTRD, conditional PDF ofTSD, and conditional PDF ofTRD, and whereP (SR)
e is

given by (2.19) or (2.27b). Also, the ML detection rule can be written as

fTSD,TRD|b1=+1 (tSD, tRD)
+1
≷
−1

fTSD,TRD|b1=−1 (tSD, tRD) . (A-3)

Using (A-1)–(A-3) and the mathematical form of the PDF of a real Gaussian RV [50, eq.

(2.1–92)] yields the ML detection rule after algebraic simplification as

eTSD

[(

1 − P (SR)
e

)

eTRD + P (SR)
e e−TRD

] +1
≷
−1

e−TSD

[(

1 − P (SR)
e

)

e−TRD + P (SR)
e eTRD

]

(A-4)

which can be rewritten as

(

1 − P (SR)
e

)

sinh (TSD + TRD) + P (SR)
e sinh (TSD − TRD)

+1
≷
−1

0. (A-5)

Expanding the hyperbolic sines in (A-5) and dividing both sides by,

cosh(TSD) cosh(TRD) (A-6)

gives the ML detection rule (2.28), which is more tractable than (A-5) for BER calculation.

Note that if the real parts in (2.28) are replaced with the corresponding imaginary parts, the

ML detection rule for the bitb2 is obtained.

The BER can be written from (2.28) as

Pe =
(

1 − P (SR)
e

)

Pr
{

tanh(TSD) +
(

1 − 2P (SR)
e

)

tanh(TRD) < 0
∣
∣ b1 = +1, b̂1 = +1

}

+P (SR)
e Pr

{

tanh(TSD) +
(

1 − 2P (SR)
e

)

tanh(TRD) < 0
∣
∣ b1 = +1, b̂1 = −1

}

(A-7)

whereTSD andTRD are defined by (A-1). Assuming that (cf. (2.27b))

0 < P (SR)
e < 0.5 (A-8)
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and defining

p = tanh−1
(

1 − 2P (SR)
e

)

(A-9)

we can show that

Pr
{

tanh(TSD) +
(

1 − 2P (SR)
e

)

tanh(TRD) < 0
∣
∣ b1 = +1, b̂1

}

=

FTSD|b1=+1(−p) +

∫ p

−p
FTRD|b̂1

(

− tanh−1
(

tanh x

tanh p

))

fTSD|b1=+1(x) dx (A-10)

whereFTSD|·(·) denote the conditional CDF ofTSD. Combining (A-1), (A-7), and (A-10)

yields the final result (2.29) for0 < P
(SR)
e < 0.5. Eq. (A-7) can be directly invoked for

P
(SR)
e = 0 andP

(SR)
e = 0.5 to give the respective error probabilities

Pe = Pr
{

TSD + TRD < 0
∣
∣
∣ b1 = +1, b̂1 = +1

}

= Q
(√

γSD + γRD

)
(A-11)

and

Pe = Pr {TSD < 0 | b1 = +1} = Q (
√

γSD) . (A-12)
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Appendix B

Proof of Theorem 2.1

As the communication under study occurs in2N DoFs (see Fig. 2.4), all MI rates are

considered to be normalized by2N . In other words, the different schemes are compared

based on their achievable rates or equivalent SNRs per 2-D symbol or DoF.

Recall that in the DT case, the SD SNR isγ0/2. Therefore, based on the decoding

margin (2.32), the maximum MI in nats per DoF in this case is given by,

ln

(

1 +
1

ρ

γ0

2

)

. (B-1)

In AF relaying, the maximum MI between the source and destination is obtained as,

1

2
ln

(

1 +
1

ρ
γeq

)

(B-2)

whereγeq has been given in (2.9). The coefficient1/2 in this expression appears because the

source uses only half of the available DoFs in the cooperative cases. Inthe DF relaying case,

the relay is required to be capable of successful decoding, which is attainable only if the

received value of SNR at the relay exceeds the threshold (2.32). Therefore, the maximum

MI between the source and destination in this case is given by,

1

2
ln

(

1 +
1

ρ
min{γSR, γSD + γRD}

)

. (B-3)

Now, invoking (2.15)–(2.17) one can write the maximum MI per DoF for DT, AF relaying,

and DF relaying cases in the common form

I =
1

2
ln

(

1 +
Λ

ρ

)

(B-4a)
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where

Λ ,







Λ0 , γ0 + γ2
0/(4ρ), DT

Λ1 , γeq(k), AF relaying

Λ2 , min {kγ1, kγ0 + (1 − k)γ2} , DF relaying

. (B-4b)

The remainder of the proof involves solving

Λmax = max
k∈(0,1]

i∈{0,1,2}

Λi(k) (B-5)

and

argmax
k∈(0,1]

i∈{0,1,2}

Λi(k) (B-6)

by scrutinizing different intricate cases, and also obtaining the maximum CG, which, from

(2.30) and (B-4), equals

CG = 10 log10

[

2ρ

γ0

(√

1 +
Λmax

ρ
− 1

)]

. (B-7)

First, we establish the first part of the theorem that ifγ2 ≤ Λ0, then relaying is not

beneficial; i.e.Λmax = Λ0. Note that we can write

γeq = γSD +
γSRγRD

γSR + γRD + 1
≤ γSD + γRD (B-8)

or

Λ1 ≤ kγ0 + (1 − k)γ2 (B-9)

for any power allocation ratio,k. Furthermore, we have

Λ2 ≤ kγ0 + (1 − k)γ2. (B-10)

Also, we have obviously thatγ0 ≤ Λ0, which, with the fact thatγ2 ≤ Λ0, gives

kγ0 + (1 − k)γ2 ≤ Λ0 (B-11)

for any 0 ≤ k ≤ 1. Subsequently, (B-9)–(B-11) yieldΛi ≤ Λ0 for i = 1, 2 and any

k ∈ [0, 1], which implies thatΛmax = Λ0. Henceforth, we will assume that

γ2 > Λ0. (B-12)
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The parameterL1 in (2.33) is the uniquek for whichkγ0 + (1 − k)γ2 = Λ0; i.e.,

L1γ0 + (1 − L1)γ2 = Λ0. (B-13)

It can be observed that given (B-12), we have

0 < L1 < 1 (B-14)

and

k ≤ L1 ⇐⇒ kγ0 + (1 − k)γ2 ≥ Λ0. (B-15)

Also, L2 in (2.34) is the uniquek for whichkγ1 = kγ0 + (1 − k)γ2; i.e.,

L2γ1 = L2γ0 + (1 − L2)γ2. (B-16)

It can be verified that based on (B-12)L2 is positive but not necessarily less than one. In

addition,kγ1 is a strictly increasing function ofk. However, based on (B-12) we know that

γ2 > γ0, and therefore,kγ0 + (1 − k)γ2 is a strictly decreasing function ofk. Now, from

(B-16) one has

Λ2 =







kγ1, k ≤ L2

kγ0 + (1 − k)γ2, k > L2

(B-17)

and therefore, we obtain

max
k

Λ2 =







L2γ1, L2 ≤ 1

γ1, L2 > 1
. (B-18)

Consequently, we have

max
k

Λ2 = Λ2

(

k
(DF)
opt

)

= k
(DF)
opt γ1 ≤ k

(DF)
opt γ0 +

(

1 − k
(DF)
opt

)

γ2 (B-19a)

where

k
(DF)
opt , min{L2, 1} (B-19b)

is the OPA ratio in the DF relaying case. Note that the inequality in (B-19a) becomes an

equality whenL2 ≤ 1, and a strict inequality otherwise. Meanwhile, making use of (2.2.1)

in (2.9), we obtain, after some algebraic manipulations,

max
k

Λ1 = max
k

γeq(k) = γeq

(

k
(AF)
opt

)

=







γ0, γ0 ≥ γ1γ2/(γ1 + 1)

K, otherwise
(B-20)
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wherek
(AF)
opt , given in (2.2.1), is the OPA ratio in AF relaying, andK is defined by (2.35).

Now, if L1 ≤ L2, we have, from (B-14) and (B-19b),

k
(DF)
opt ≥ L1. (B-21)

Therefore, using (B-19a) we can write

max
k

Λ2 ≤ k
(DF)
opt γ0 +

(

1 − k
(DF)
opt

)

γ2 ≤ Λ0 (B-22)

where the second inequality follows after (B-21) is applied to (B-15). Eq.(B-22) clearly

shows that for the caseL1 ≤ L2, DF relaying is not the best option and only AF relaying is

compared against DT. In this case, if

γ0 ≥ γ1 γ2

γ1 + 1
(B-23)

then one obtains, from (B-20),

max
k

Λ1 = γ0 ≤ Λ0 (B-24)

and Case i in the theorem follows. However, if (B-23) does not hold, wehavemaxk Λ1 = K

from (B-20). Now, ifK ≤ Λ0, then DT excels. Otherwise, AF relaying is the best option.

Also, note that ifK ≤ Λ0, AF relaying is inferior to DT, whether (B-23) holds or not. This

concludes the proof for Cases ii and iii.

Now, consider the caseL1 > L2. Recall that (B-12) yields0 < L1 < 1 andL2 > 0.

Therefore, in this case the inequalities0 < L2 < L1 < 1 hold. Then, from (B-19) we

obtaink
(DF)
opt = L2 and

max
k

Λ2 = k
(DF)
opt γ1 = L2γ1. (B-25)

Now, using (B-16) and (B-25) one can concluded that

max
k

Λ2 = L2γ0 + (1 − L2)γ2. (B-26)

Meanwhile,L2 < L1 yields

L2γ0 + (1 − L2)γ2 > Λ0 (B-27)

after utilizing (B-13) and (B-15). Consequently, we havemaxk Λ2 > Λ0, which implies

that in the caseL1 > L2, DT must be avoided; the best option is either AF or DF relaying,

to be determined next.

If (B-23) does not hold, then we havemaxk Λ1 = K from (B-20). Therefore, from
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(B-25), if K ≥ L2γ1, AF relaying outperforms DF relaying, and Case iv is obtained.

However, ifK < L2γ1, AF relaying is inferior. Next, we show that when (B-23) holds, DF

relaying is the best option independently of whetherK < L2γ1 or not. This completes the

proof for Cases v and vi.

If (B-23) holds, we have, from (B-20),

max
k

Λ1 = γ0. (B-28)

Recall that under (B-12),kγ0 + (1 − k)γ2 is a strictly decreasing function ofk such that

L2γ0 + (1 − L2)γ2 > γ0 (B-29)

where we have made use of the fact thatL2 < 1. Combining (B-26)–(B-29) gives

max
k

Λ2 > max
k

Λ1 (B-30)

which means that DF relaying surpasses AF relaying for this case.

Throughout the proof we observed that whenever AF relaying is superior, maxk Λ1

equalsK and the OPA ratio isk(AF)
opt . Also, if DF relaying is the best option,maxk Λ2 =

L2γ1 and the OPA ratio isk(DF)
opt = L2. Applying Λmax = K andΛmax = L2γ1 to (B-7)

gives (2.38) and (2.39), respectively, and the proof of the theorem isconcluded.
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Appendix C

Proof of Theorem 3.1

If selection AF relaying is optimal, there exists ani for which ei is a global solution to

(3.16). Then,ei is also a local solution, and must satisfy the Karush-Kuhn-Tucker (KKT)

conditions [111, Section 12.2]; i.e. we have

∇f(ei) + λ = 0 (C-1a)

wheref(d) is the objective function in (3.16) and where

λ , (λ1, · · ·, λM )T (C-1b)

λi = 0 (C-1c)

and

λm ≥ 0, m 6= i. (C-1d)

Note thatλ is a Lagrange vector multiplier for the inequality constraint in the problem.

Now, one can observe that

∇f(d) =
1

dT D́ d
(A + A

T)d − 2 d
T
Ad

(dT D́ d)2
D́ d (C-2)

and therefore,

2

1 + |bi|2
Re{ai a

∗} − 2 |ai|2

1 + |bi|2
ei + [λ1, · · ·, λi−1, 0, λi+1, · · ·, λM ]T = 0 (C-3)

whereλm ≥ 0. Eq. (C-3) shows that for anyj 6= i, we have

Re{ai a
∗
j} = −λj

(
1 + |bi|2

)/
2 ≤ 0. (C-4)

Substituting forai andaj from (3.9e) concludes the proof.
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Appendix D

Proof of Theorem 3.2

First, we introduce the following terminology and prove a lemma.

Definition. Let

X , {x1, · · ·, xM} (D-1)

be a set of nonzero vectors in a 2-D plane. The angle betweenxi andxj , belonging to[0, π]

by convention, is denoted∠(xi,xj). Also, in the setX, the vectorxi is calledisolatedif

there is no other vector in the set making an acute angle withxi, i.e. if

∀j, j 6= i : ∠(xi,xj) ≥ π/2. (D-2)

Lemma. If the phases of the vectorsx1, . . ., xM in a 2-D plane are independent, each

having a uniform distribution over[0, 2π),1 then the probability that none of the vectors is

isolated is given by

p(M) =







0, M = 1

3
8 , M = 3

1 − M 21−M + M 22−2M , M = 2, M ≥ 4

. (D-3)

Proof of the Lemma.Let θi denote the phase ofxi, andAi represent the event thatxi is

isolated. One can write

p(M) = 1 − Pr

{
M⋃

i=1

Ai

}

= 1 +
M∑

i=1

(−1)i Si (D-4a)

1Here, the phase ofxi is the directed angle thatxi makes with a fixed reference vector that is coplanar
with x1, . . ., xM .

149



where

Si ,
∑

1≤j1<···<ji≤M

Pr

{
i⋂

m=1

Ajm

}

. (D-4b)

Subsequently, we calculate the termsPr
{⋂i

m=1 Ajm

}
for different values ofi. First, we

note that

Pr
{
Ap
}

= Pr







M⋂

m=1
m6=p

(

∠(xm,xp) ≥
π

2

)







(D-5)

= Eθp







M∏

m=1
m6=p

Pr

{

∠(xm,xp) ≥
π

2

∣
∣
∣ θp

}







(D-6)

= Eθp







M∏

m=1
m6=p

π

2π







= 21−M (D-7)

for p = 1, . . ., M , whereEθp{·} denotes expectation overθp, and where (D-6) and (D-7)

come from the independence and distribution ofθ1, . . ., θM , respectively. Also, for any

unequalp andq in {1, . . ., M}, one can write

Pr
{
Ap ∩ Aq

}

= Pr







M⋂

m=1
m6=p,q

[(

∠(xm,xp)≥
π

2

)⋂(

∠(xm,xq)≥
π

2

)]⋂(

∠(xp,xq)≥
π

2

)







(D-8a)

= Eθp,θq







I

(

∠(xp,xq)≥
π

2

) M∏

m=1
m6=p,q

Pr
{(

∠(xm,xp)≥
π

2

)⋂(

∠(xm,xq)≥
π

2

)∣
∣
∣ θp, θq

}







(D-8b)

= Eθp,θq

{

I

(

∠(xp,xq) ≥
π

2

)(π − ∠(xp,xq)

2 π

)M−2 ∣
∣
∣θp, θq

}

(D-8c)

=

∫ 3π/2

π/2

dθ

2π

( |π − θ|
2π

)M−2

(D-8d)

=
1

2(2M−3) (M − 1)
(D-8e)

whereEθp,θq{·} denotes expectation overθp andθq, and whereI(·) is an indicator function

such that for eventE, I(E) equals1 if E occurs, and0 otherwise. The equalities (D-8b) and

(D-8c) result from the independence and uniform distribution ofθ1, . . ., θM , respectively.

Also, (D-8d) is obtained by conditioning onθp and taking the expectation overθq.

It can be graphically verified that whenM = 3, all three vectors are isolated if any two
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of them are isolated. Therefore, from (D-8), we obtain, for the case of M = 3,

Pr{A1 ∩ A2 ∩ A3} = Pr{A1 ∩ A2} =
1

23 × 2
=

1

16
. (D-9)

Furthermore, whenM ≥ 4, no more than two vectors can be simultaneously isolated; i.e.,

Si = 0, i ≥ 3, M ≥ 4. (D-10)

Combining (D-4)–(D-10) yields the desired result (D-3) after simplification. �

Now, let the event that selection AF relaying is outage optimal be denotedE, and the

event that

∀i, ∃j, j 6= i : Re
{

gSi giD g∗Sj g∗jD
}

> 0 (D-11)

be denotedF . Then, according to Theorem 3.1 we have

Pr{E} ≤ 1 − Pr{F}. (D-12)

Let

wm , gSm gmD (D-13)

for m = 1, . . ., M , and assume thatwm is the vector representation ofwm in the complex

plane. We know that the elements of{gS1, . . ., gSM , g1D, . . ., gMD} are independent,

each having a uniformly distributed phase over[0, 2π). Then, it can be verified that the

random vectorsw1, . . ., wM are independent, each having a uniformly distributed phase

over[0, 2π). Furthermore, the eventF is equivalent to the event that

∀i, ∃j, j 6= i : ∠(wi,wj) < π/2 (D-14)

i.e. nowi is isolated. Using the result (D-3) of the Lemma and from (D-12), we obtain

Pr{E} ≤







1, M = 1

5
8 , M = 3

M21−M (1 − 21−M ), otherwise

. (D-15)

Therefore, asM increases,Pr{E} approaches0 exponentially, and the proof is concluded.
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Appendix E

Average Capacities of DF Relaying

Networks for Rayleigh Fading

In this appendix, the derivation steps for the results given in Tables 4.2–4.9 are explained.

We assume that in the cases with the SD link,γSD is exponentially distributed with mean

valueµSD, PDFfSD(·), and CDFFSD(·). Note that ifX is an exponentially distributed RV

with meanX, its PDF, CDF, and MGF are respectively written as

fX(x) =
e−x/X

X
, x ≥ 0 (E-1)

FX(x) = 1 − e−x/X , x ≥ 0 (E-2)

and

MX(s) =
1

1 − X s
, Re{s} < 1/X. (E-3)

In the no SD-link case,γSD is assumed to equal0 with probability1 such that (4.59)

holds. Also, in the asymmetric case,γSm and γmD are exponentially distributed with

mean valuesµSm andµmD, and CDFsFSm(·) andFmD(·), respectively. In the symmetric

case,µSm, µmD, FSm(·), andFmD(·) are denotedµSR, µRD, FSR(·), andFRD(·), re-

spectively. We also consider the notations and functionsµSA, µAD, P (·, ·), Γ(·, ·), Γ(·),
Im(k, a, b, c, d), Im(k, a, b, c), R(k, ℓ, η, a, b), R(η, a, b), h(x; ℓ, a), g(x; ℓ, w, α), S(x),

andT (α, β), defined in Section 4.4.2. Next, we investigate the schemes one by one.
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E.1 Superimposed Relaying

Observe that the outage probabilities in superimposed relaying with PCC and RC for gen-

eral fading are given from (4.46) and (4.47) as

Pr
{

I(sup, PCC)
max < r

}

=

∫ er−1

0
dγ FY-sum

(
e2r

1 + γ
− 1 − γ

)

fSD(γ) (E-4)

and

Pr
{

I(sup, RC)
max < r

}

=

∫ e2r−1
2

0
dγ FY−sum

(
e2r − 1 − 2γ

)
fSD(γ) (E-5)

whereFY-sum(·) is the CDF of the summation (4.48). The corresponding average capacities

can be obtained from (4.2), (E-4) and (E-5) as

I
(sup, PCC)
max =

∫ ∞

0

du

u + 1

[
1 − FSD(u)

]

+

∫ ∞

0
dr

∫ er−1

0
dγ

[

1 − FY-sum

(
e2r

1 + γ
− 1 − γ

)]

fSD(γ) (E-6)

and

I
(sup, RC)
max =

∫ ∞

0

du

2u + 1

[
1 − FSD(u)

]

+

∫ ∞

0
dr

∫ e2r−1
2

0
dγ
[
1 − FY-sum

(
e2r − 1 − 2γ

)]
fSD(γ). (E-7)

Also, in the no SD-link case, applying (4.59) to (E-4)–(E-7), one obtains, for both PCC and

RC cases,

Pr
{

I(sup, no SD)
max < r

}

= FY-sum

(
e2r − 1

)
(E-8)

and

I
(sup, no SD)
max =

∫ ∞

0
dr
[
1 − FY-sum

(
e2r − 1

)]
. (E-9)

In fact, in the no SD-link case, the superimposed relaying schemes with PCC and RC coin-

cide. This fact can also be verified by inspecting the instantaneous rates achievable in the

different schemes given in Table 4.1.

The results (E-4)–(E-9) indicate that to calculate the outage probability andaverage

capacity in superimposed relaying, we need to obtainFY-sum(·) first. In the asymmetric

case, whereµSD, theµSm’s, and theµmD’s can have any value except that theµmD’s are
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unequal, we can write the MGF of the summation (4.48) from (4.55) and (E-3)as

MY-sum(s) =
M∏

m=1

{

FSm

(
e2r − 1

)
+
[
1 − FSm

(
e2r − 1

)]
MmD(s)

}

=
M∏

m=1

{

1 − e(1−e2r)/µSm +
e(1−e2r)/µSm

1 − µmD s

}

=
M∏

m=1

{

1 +
µmD e(1−e2r)/µSm s

1 − µmD s

}

= A0 +
M∑

m=1

Am

1 − µmD s
(E-10a)

using partial fraction expansion, where

A0 , lim
s→∞MY-sum(s) =

M∏

m=1

[

1 − e(1−e2r)/µSm

]

(E-10b)

and

Am , lim
s→1/µmD

(1−µmD s)MY-sum(s) = e(1−e2r)/µSm

M∏

k=1
k 6=m

[

1+
e(1−e2r)/µSk

µmD/µkD − 1

]

(E-10c)

for m = 1, . . ., M . Taking the inverse Laplace transform of (E-10a), we obtainfY-sum(y),

the PDF of the summation (4.48), as

fY-sum(y) = A0 δ(y) +

[
M∑

m=1

Am
e−y/µmD

µmD

]

H(y) (E-11)

whereδ(·) andH(·) are the Dirac delta and Heaviside step functions, respectively. There-

fore,FY-sum(y) for y ≥ 0 can be written, from (E-10) and (E-11), as (FY-sum(y) is zero for

negativey)

FY-sum(y) =
M∑

m=0

Am −
M∑

m=1

Ame−y/µmD (E-12a)

= 1 −
M∑

m=1

e(1−e2r)/µSm

M∏

k=1
k 6=m

[

1 +
e(1−e2r)/µSk

µmD/µkD − 1

]

e−y/µmD (E-12b)

where we obtain (E-12b) using the fact that

MY-sum(0) =
M∑

m=0

Am = 1. (E-13)

In the symmetric case, we directly use the definition ofYm given in (4.39) and write

FY-sum(y) =
M∑

m=0

(

M

m

)

FM−m
SR

(
e2r − 1

)[
1 − FSR

(
e2r − 1

)]m
Fm-RD(y) (E-14)

whereFm-RD(·) is the CDF of the sum ofm differentγiD’s. We defineF0-RD(y) as unity
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for any nonnegativey. It is known that the sum ofm independent, exponentially distributed

RVs with the same mean value has a chi-square distribution with2m degrees of freedom

[50, p. 45]. Therefore, we can write

Fm-RD(y) = P

(

m,
y

µRD

)

= 1 − e−y/µRD

m−1∑

k=0

(y/µRD)k

k!
(E-15)

whereP (·, ·) is the regularized lower incomplete gamma function [86, eq. 6.5.3].

Now, applying the results (E-12)–(E-15) to (E-4)–(E-9), and using (E-1) and (E-2) for

expressingfSD(·) andFSD(·), yields the outage probabilities and average capacities in Ta-

bles 4.2 and 4.3 after simplification.

E.2 Selection Relaying

The outage probabilities in selection relaying for general fading are given from (4.49) and

(4.50) as

Pr
{

I(sel, PCC)
max < r

}

=

∫ er−1

0
dγ

M∏

m=1

FYm

(
e2r

1 + γ
− 1

)

fSD(γ) (E-16)

and

Pr
{

I(sel, RC)
max < r

}

=

∫ e2r−1
2

0
dγ

M∏

m=1

FYm

(
e2r − 1 − γ

)
fSD(γ) (E-17)

which give the corresponding average capacities, after being applied to(4.2), as

I
(sel, PCC)
max =

∫ ∞

0

du

u + 1

[
1 − FSD(u)

]

+

∫ ∞

0
dr

∫ er−1

0
dγ

[

1 −
M∏

m=1

FYm

(
e2r

1 + γ
− 1

)]

fSD(γ) (E-18)

and

I
(sel, RC)
max =

∫ ∞

0

du

2u + 1

[
1 − FSD(u)

]

+

∫ ∞

0
dr

∫ e2r−1
2

0
dγ

[

1 −
M∏

m=1

FYm

(
e2r − 1 − γ

)

]

fSD(γ). (E-19)

Also, note that in the no SD-link case, after invoking (4.59), (E-16)–(E-19) reduce to

Pr
{

I(sel, no SD)
max < r

}

=
M∏

m=1

FYm

(
e2r − 1

)
(E-20)
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and

I
(sel, no SD)
max =

∫ ∞

0
dr

[

1 −
M∏

m=1

FYm

(
e2r − 1

)

]

(E-21)

for both PCC and RC strategies. This means that here again, like superimposed relaying,

the PCC and RC strategies coincide when the SD link is blocked.

All the results (E-16)–(E-21) involve the product
∏M

m=1 FYm(y) which can be simplified

as follows. In the asymmetric case,1 we have, from (4.39b) and (4.54),

M∏

m=1

FYm(y) =
M∏

m=1

{

1 −
[
1 − FSm

(
e2r − 1

)][
1 − FmD(y)

]}

=
∑

A⊂{1, ···, M}
(−1)|A| ∏

m∈A

[
1 − FSm

(
e2r − 1

)][
1 − FmD(y)

]

=
∑

A⊂{1, ···, M}
(−1)|A| ∏

m∈A
e(1−e2r)/µSm−y/µmD

=
∑

A⊂{1, ···, M}
(−1)|A| e(1−e2r)/µSA−y/µAD (E-22)

where|A| is the cardinality ofA, and whereµSA andµAD are defined by (4.60) and (4.61).

In the symmetric case, (E-22) simply becomes

M∏

m=1

FYm(y) =
M∑

m=0

(

M

m

)

(−1)m em(1−e2r)/µSR−m y/µRD . (E-23)

Now, the results for selection relaying given in Tables 4.4 and 4.5 can be derived by

applying (E-22) and (E-23) to (E-16)–(E-21) and substituting forfSD(·) andFSD(·) from

(E-1) and (E-2), and then, simplifying the expressions obtained.

E.3 Orthogonal Relaying

In orthogonal relaying, the outage probabilities for the general fading case can be written

from (4.51) and (4.52) as

Pr
{

I(ort, PCC)
max < r

}

=

∫ e(M+1)r−1

0
dγ F1+Y-prod

(

e(M+1)r

1 + γ

)

fSD(γ) (E-24)

and

Pr
{

I(ort, RC)
max < r

}

=

∫ e(M+1)r−1

0
dγ FY-sum

(

e(M+1)r − 1 − γ
)

fSD(γ) (E-25)

1Recall that this case for selection relaying represents the most generalscenario, in whichµSD, theµSm’s,
and theµmD’s can independently take any value.
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whereF1+Y-prod(·) is the CDF of,

M∏

m=1

(1 + Ym).

Note that we have convertedFln1+Y-sum(·) in (4.51) (which is the CDF of the summation

(4.53)) toF1+Y-prod(·) in (E-24) using the relation

Fln1+Y-sum(y) = F1+Y-prod(e
y)

for subsequent analytical convenience.

We also write the average capacities in the PCC and RC cases from (4.2), (E-24), and

(E-25) as

I
(ort, PCC)
max =

1

M + 1

∫ ∞

0

du

u + 1

[
1 − FSD(u)

]

+

∫ ∞

0
dr

∫ e(M+1)r−1

0
dγ

[

1 − F1+Y-prod

(

e(M+1)r

1 + γ

)]

fSD(γ) (E-26)

and

I
(ort, RC)
max =

1

M + 1

∫ ∞

0

du

u + 1

[
1 − FSD(u)

]

+

∫ ∞

0
dr

∫ e(M+1)r−1

0
dγ
[

1 − FY-sum

(

e(M+1)r − 1 − γ
)]

fSD(γ). (E-27)

Further, the corresponding no SD-link expressions for (E-24)–(E-27) are derived, using

(4.59), as

Pr
{

I(ort, no SD, PCC)
max < r

}

= F1+Y-prod

(

e(M+1)r
)

(E-28)

Pr
{

I(ort, no SD, RC)
max < r

}

= FY-sum

(

e(M+1)r − 1
)

(E-29)

I
(ort, no SD, PCC)
max =

∫ ∞

0
dr

[

1 − F1+Y-prod

(

e(M+1)r
)]

(E-30)

and

I
(ort, no SD, RC)
max =

∫ ∞

0
dr
[

1 − FY-sum

(

e(M+1)r − 1
)]

. (E-31)

Eqs. (E-24)–(E-31) show that calculating the outage probability and average capacity in

orthogonal relaying requires knowledge ofF1+Y-prod(·) for the PCC andFY-sum(·) for the

RC case. In orthogonal relaying, the CDFFY-sum(·) for Rayleigh fading is given by (E-12)–

(E-15) for the different cases of asymmetric and symmetric links, after2r is replaced with
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(M + 1)r everywhere (cf. (4.39b)). All the expressions for the RC case given in Tables

4.6–4.9 are derived by applying (E-12)–(E-15) to (E-25), (E-27),(E-29), and (E-31), and

simplifying the results. Therefore, we only considerF1+Y-prod(·) for orthogonal relaying

with PCC in the sequel.

It can be observed that no exact closed-form or mathematically tractable solution exists

for F1+Y-prod(·) in the Rayleigh fading case whenM > 1. However, we can derive tight

lower and upper bounds onF1+Y-prod(·), which, as observed from (E-24), (E-26), (E-28),

and (E-30), lead to lower and upper bounds on the outage probability andaverage capacity

of orthogonal relaying with PCC.

Considerk independent, arbitrary, positive RVsXi. We can write

(

1 + min
i=1, ..., k

Xi

)k
≤

k∏

i=1

(1 + Xi) ≤
(

1 +
1

k

k∑

i=1

Xi

)k

(E-32)

where the second inequality in (E-32) follows from the arithmetic mean, geometric mean

inequality [79, p. 669]. Note that the inequalities (E-32) become equalities whenk = 1.2

Then, (E-32) gives the result

Pr

{
k∑

i=1

Xi < k x1/k − k

}

≤ Pr

{
k∏

i=1

(1 + Xi) < x

}

≤ 1 −
k∏

i=1

(

1 − Pr
{

Xi < x1/k − 1
})

(E-33)

for x ≥ 0. Now, using the definition ofYm given in (4.39), we can condition on the values

of m for whichYm is nonzero, and apply (E-33) to the nonzeroYm’s. The result is

1 −
∑

A⊂{1, ···, M}
A6=∅

ε(A)
[

1 − FA-RD

(

|A| y1/|A| − |A|
)]

≤

F1+Y-prod(y)

≤ 1 −
∑

A⊂{1, ···, M}
A6=∅

ε(A)
∏

m∈A

[

1 − FmD

(

y1/|A| − 1
)]

(E-34a)

whereAc and|A| are the complement ofA with respect to{1, · · ·, M} and cardinality of

A, respectively, and where

ε(A) ,
∏

m∈Ac

FSm

(

e(M+1)r − 1
) ∏

m∈A

[

1 − FSm

(

e(M+1)r − 1
)]

(E-34b)

2The tightness of the bounds (E-32) is examined for the final resulting lower and upper bounds on the
outage probability and average capacity by several numerical examples in Section 4.5.
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is the probability thatYm is nonzero only form ∈ A, and whereFA-RD(·) is the CDF of,

∑

m∈A
γmD. (E-34c)

Again, note that the bounds (E-34a) become the exact values whenM = 1. The bounds are

simply specialized to the Rayleigh fading case by substituting forFSm(·) andFmD(·) from

(E-2). The only remaining unknown isFA-RD(·) which can be determined as follows.

In the case of asymmetric links,FA-RD(·) can be obtained in a manner very similar to

(E-12), by calculating the MGF of the summation (E-34c). The procedure isstraightforward

with the final result

FA-RD(y) = 1 −
∑

m∈A

e−y/µmD

∏

k∈A
k 6=m

(

1 − µkD
µmD

) . (E-35)

In the symmetric case,FA-RD(·) becomes the CDF of the sum of|A| differentγmD’s.

Therefore, we can write, directly from (E-15),

FA-RD(y) = P

(

|A|, y

µRD

)

. (E-36)

Now, we have the bounds (E-34a) onF1+Y-prod(·) with FA-RD(·) given by (E-35) or

(E-36). Applying these bounds to (E-24), (E-26), (E-28), and (E-30), one obtains the results

given in Tables 4.6–4.9 for PCC after performing the integrations and simplification.
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Appendix F

Maximum Rates in P-1, P-2, and P-3

Under the APC

In this appendix, the derivation details for (5.39)–(5.41) are given. Consider the system

model of Section 5.2. As explained in Section 5.6.2, only Gaussian-input channels are

considered here for which (5.7e) gives the capacity.

Assume that for a given positiveE , the source and relay energies per 2-D DoF are

ES = p E andER = q E , respectively, wherep > 0 andq ≥ 0. Note that based on (5.3)–

(5.5) and (5.6), the SD, SR, and RD SNRs becomep γ0, p γ1, andq γ2, respectively. Also,

using (5.7e), the capacities realized in the SD channel, SR channel, RD channel, and the

multiaccess channel from the source and relay to the destination equalC(p γ0), C(p γ1),

C(q γ2), andC(p γ0 + q γ2), respectively. Therefore, based on the description of P-1, P-2,

and P-3 in Section 5.3, whenC(p γ0) ≥ C(p γ1) or equivalentlyγ0 ≥ γ1, all the schemes

reduce to DT where the maximum rate isC(p γ0). Henceforth, we assume that

γ0 < γ1. (F-1)

In the sequel, the protocols are investigated each in turn.

F.1 The P-1 Scheme

Taking steps similar to those leading to (5.14)–(5.17), we obtain

H = n1 C(p γ1) (F-2)
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H = n1 C(p γ0) + (n − n1) C(p γ0 + q γ2) (F-3)

R(P-1) =
H

n
=

C(p γ0 + q γ2) C(p γ1)

C(p γ0 + q γ2) + C(p γ1) − C(p γ0)
(F-4)

and

E(P-1) =
n1ES + (n − n1)(ES + ER)

n
=

[

p + q
C(p γ1) − C(p γ0)

C(p γ0 + q γ2) + C(p γ1) − C(p γ0)

]

E .

(F-5)

Therefore, the maximum rate can be written as

R(P-1)
max = max

p, q
p>0, q≥0

R(P-1) (F-6a)

subject to the APC (E(P-1) = E)

p + q
C(p γ1) − C(p γ0)

C(p γ0 + q γ2) + C(p γ1) − C(p γ0)
= 1. (F-6b)

It is clear from (F-6b) and the facts thatp > 0 andq ≥ 0, that we should havep ≤ 1.

Next, we show that for anyp in (0, 1], there is a unique nonnegativeq for which (F-6b) is

satisfied. Ifp = 1, thenq = 0 is trivially the only solution, which corresponds to DT where

the relay is not used. Therefore, assume thatp ∈ (0, 1), and consider the expression,

[C(p γ1) − C(p γ0)] q

C(p γ0 + q γ2) + C(p γ1) − C(p γ0)
(F-7)

for q ≥ 0. Note that from (F-1), (F-7) is nonnegative. Also, (F-7) is zero atq = 0 and

approaches∞ asq → ∞. Also, the derivative of (F-7) with respect toq can be written as,

U

[

V + ln(1 + p γ0 + q γ2) −
γ2 q

1 + p γ0 + q γ2

]

(F-8)

whereU andV are two positive values. Invoking the inequality [86, eq. 4.1.33]

(1 + x) ln(1 + x) ≥ x (F-9)

which holds forx > −1, one can observe that (F-8) is positive forq ≥ 0. These observa-

tions show that (F-7) strictly increases from0 to ∞ with q. Therefore, a uniqueq can be

obtained for which (F-7) equals1 − p and (F-6b) is satisfied. Now, we proceed to solve

(F-6b) for (the unique)q in terms ofp when0 < p < 1.

After some algebraic manipulations, (F-6b) can be rearranged as

−(1 + p γ0 + q γ2) ξ e−(1+p γ0+q γ2) ξ = −ξ e−[1+p γ0+(1−p)γ2] ξ (F-10)

whereξ has been given in (5.39c). Now, consider the LambertW-function [106], defined
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asW (z) for a complex-valuedz such that

W (z) eW (z) = z. (F-11)

The LambertW-function, like the logarithm function, is a multivalued function that has

infinitely many branches. Branchk is denotedWk(·) for integerk. The principle branch is

the zeroth branch, also denotedW (·). The ranges of different branches have been shown in

the “W-plane” in Fig. F.1. The range of a branch is the region onto which the branch maps

the complex plane. In Fig. F.1, the branch boundaries are represented by heavy solid lines.

Each boundary line belongs to the region below it.

Now, note that in (F-10), the negative real-valued expression−(1 + p γ0 + q γ2) ξ be-

comes a LambertW-function of the right-hand side expression of the equality. Referring to

Fig. F.1, we observe that only Branch−1 and Branch0 can return negative real-valued num-

bers, respectively no greater and no smaller than−1. To determine which branch should be

employed to solve (F-10), we should examine(p γ0 + q γ2 + 1) ξ to see if it is smaller or

greater than1.

Re{W}

Im{W}

Branch0
(the principle branch)

Branch1

Branch1

Branch2

Branch2

Branch3
Branch3

Branch−1

Branch−1

Branch−2
Branch−2

Branch−3
Branch−3

−π

π

−2π

2π

−3π

3π

−4π

4π

−5π

5π

−6π

6π

−7π

7π

−1 0

Fig. F.1. The ranges of branches of the LambertW-function (after [106]).

162



Substituting forξ from (5.39c), we can write

(1 + p γ0 + q γ2) ξ =
C(pγ1) − C(pγ0)

(1 − p)γ2
(1 + p γ0 + q γ2) (F-12a)

=
(1 + p γ0 + q γ2) ln(1 + p γ0 + q γ2)

(p + q − 1)γ2
(F-12b)

>
(1 + q γ2) ln(1 + q γ2)

q γ2
(F-12c)

≥ 1 (F-12d)

where (F-12b) is obtained by rearranging (F-6b), and where (F-12c) comes from the facts

that0 < p < 1 andq > 0. Finally, (F-12d) follows from (F-9). Therefore, we have

−(1 + p γ0 + q γ2) ξ < −1. (F-13)

Thus, the functionW−1(·) is employed to solve (F-10), which yields

q = − 1

γ2

{
1

ξ
W−1

(

−ξ e−[1+p γ0+(1−p)γ2] ξ
)

+ 1 + p γ0

}

. (F-14)

Combining (F-4), (F-6a), (F-14), and the fact that whenp = 1 we haveq = 0, yields the

final result (5.39).

F.2 The P-2 Scheme

Following the analysis in Section 5.3.3 while havingC0, C1, C2, andCm replaced with

C(p γ0), C(p γ1), C(q γ2), andC(p γ0 + q γ2), respectively, we observe that again point A in

Fig. 5.1 is the optimal operating point in Phase II for any given(p, q), and that

R(P-2)
max = max

p, q
p>0, q≥0

C(p γ0 + q γ2) C(p γ1) − C2(p γ0)

C(p γ0 + q γ2) + C(p γ1) − 2 C(p γ0)
(F-15a)

subject to the APC

p + q
C(p γ1) − C(p γ0)

C(p γ0 + q γ2) + C(p γ1) − 2 C(p γ0)
= 1. (F-15b)

It can be seen from (F-15) that0 < p ≤ 1. We first show that for anyp in (0, 1], there

is a unique nonnegativeq satisfying (F-15b). Ifp = 1, thenq = 0 is the only solution. Now

assume thatp ∈ (0, 1), and consider the expression,

[C(p γ1) − C(p γ0)] q

C(p γ0 + q γ2) + C(p γ1) − 2 C(p γ0)
(F-16)

which is 0 and approaches∞ as q = 0 and q → ∞, respectively (recall the condition
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(F-1)). Also, we can write the derivative of (F-16) with respect toq as

D , U

[

ln(1 + p γ0 + q γ2) + ln(1 + p γ1) − 2 ln(1 + p γ0) −
γ2 q

1 + p γ0 + q γ2

]

(F-17)

whereU is a positive value. Now, we have

D = U

[

ln

(

1 +
q γ2

1 + p γ0

)

+ ln

(
1 + p γ1

1 + p γ0

)

− q γ2

1 + p γ0 + q γ2

]

(F-18a)

> U

[

ln

(

1 +
q γ2

1 + p γ0

)

− q γ2

1 + p γ0 + q γ2

]

(F-18b)

≥ 0 (F-18c)

where (F-18b) results from (F-1), and where (F-18c) follows directly from (F-9). The results

obtained indicate that (F-16) strictly increases from0 to ∞ with q. Hence, for anyp ∈
(0, 1), there is a positiveq for which (F-16) equals1 − p and (F-15b) is satisfied. Next, we

deriveq from (F-15b) in terms ofp.

Rearranging (F-15b) one obtains an equation similar to (F-10), as

−(1 + p γ0 + q γ2) ξ e−(1+p γ0+q γ2) ξ = −(1 + p γ0) ξ e−[1+p γ0+(1−p)γ2] ξ (F-19)

whereξ has been given in (5.39c). Eq. (F-19) can be solved like (F-10) usingthe Lambert

W-function. We should only determine that(1 + p γ0 + q γ2) ξ is smaller or greater than1.

To meet this objective, we write

(1 + p γ0 + q γ2) ξ =
(1 + p γ0 + q γ2)[ln(1 + p γ0 + q γ2) − ln(1 + p γ0)]

(p + q − 1)γ2
(F-20a)

=
(1 + p γ0)

(

1 + q γ2

1+p γ0

)

ln
(

1 + q γ2

1+p γ0

)

(p + q − 1)γ2
(F-20b)

≥ q

p + q − 1
(F-20c)

> 1 (F-20d)

where (F-20a) is obtained from (5.39c) and by manipulating (F-19), andwhere (F-20c)

follows from (F-9). Based on (F-20), we useW−1(·) to deriveq from (F-19). The result is

q = − 1

γ2

{
1

ξ
W−1

(

−(1 + p γ0) ξ e−[1+p γ0+(1−p)γ2] ξ
)

+ 1 + p γ0

}

(F-21)

which completes the derivation of (5.40).
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F.3 The P-3 Scheme

In P-3, like P-1 and P-2, if (F-1) (which is independent ofp andq) does not hold, the system

reduces to DT. However, unlike P-1 and P-2, even if (F-1) holds, the system reduces to DT if

the RD SNR is not larger than the SD SNR (see Section 5.3.4). In fact, underthe condition

(F-1) we can write, for P-3,

p γ0 ≥ q γ2 ⇐⇒ reversion to DT. (F-22)

First, we show that ifγ0 ≥ γ2, the best P-3 rate under the APC is obtained whenp = 1

and reversion to DT (based on (F-22)) occurs. Assume thatγ0 ≥ γ2, and consider three

schemes S-A, S-B, and S-C, and two positive valuesp andq. Scheme S-A is a P-3 system

with ES = p E andER = q E wherep γ0 < q γ2. In S-A, assume that a message of entropy

HA is communicated to the destination in Phases I and II withn1 andn2 symbols, respec-

tively, and that the short-term average energy equalsE . In S-B, the source communicates its

message with entropyHB by first transmittingn1 symbols with energy per symbolp E , and

then transmittingn2 symbols with energy per symbolq E . It is obvious that the short-term

average energy in S-B equalsE , the same as that in S-A. Scheme S-C is similar to S-B, with

the difference that the source communicates its message with entropyHC by transmitting

all n symbols with the same energy per symbolE . Now, it is clear thatHA ≤ HB, as in S-A,

n2 symbols are transmitted with SNRq γ2, while in S-B, the corresponding SNR isq γ0.

Also, HB < HC as in S-C, all symbols are transmitted with the same energyE . Therefore,

HA < HC, which shows that P-3 cannot be superior to DT under the APC whenγ0 ≥ γ2.

In other words, whenγ0 ≥ γ2, the maximum APC rate of P-3 equals the DT rate, i.e.C(γ0).

In the following, we assume that not only (F-1) holds, but also we have

γ0 < γ2. (F-23)

However,p γ0 may exceed or be exceeded byq γ2, depending on the values ofp andq.

Considering the P-3 scheme depicted in Table 5.1 and performing an analysissimilar to

that yielding (5.24), we obtain

R(P-3)
max = max

p, q
p>0, q≥0

C(p γ1) C (max{p γ0, q γ2})
C(p γ1) + C (max{p γ0, q γ2}) − C(p γ0)

. (F-24)

wheremax{·} in the argument ofC(·) is for taking (F-22) into account. The maximization
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(F-24) is subject to the APC that the short-term average energy,E(P-3), equalsE . Next, we

derive an expression forE(P-3) and evaluate the APC.

Consider the example shown in Table 5.1. We obtain, like (5.14) and (5.23),

H = n1 C(p γ1) (F-25)

and

H = n1 C(p γ0) + (n − n1) C(q γ2). (F-26)

Meanwhile, one has

E(P-3) =
n1 ES + (n − n1) ER

n
=

n1 p + (n − n1) q

n
E . (F-27)

Now, combining (F-25)–(F-27), and applying (F-22) yields

E(P-3) =







p C(q γ2)+q[C(p γ1)−C(p γ0)]
C(q γ2)+C(p γ1)−C(p γ0) E , p γ0 < q γ2

p E , p γ0 ≥ q γ2

. (F-28)

Therefore, the APCE(P-3) = E becomes,

X or Y (F-29a)

whereX andY are two sets of constraints as,

X :
p C(q γ2) + q[C(p γ1) − C(p γ0)]

C(q γ2) + C(p γ1) − C(p γ0)
= 1 and p γ0 < q γ2 (F-29b)

and

Y : p = 1 and q ≤ γ0

γ2
. (F-29c)

Note that under (F-23),p = q = 1 satisfiesX and makes the objective function of (F-24)

exceedC(γ0). Using this observation and the fact that if (F-23) does not hold,R(P-3)
max equals

C(γ0), one obtains, from applying (F-29) to (F-24),

R(P-3)
max =







maxsubject toX
C(p γ1) C(q γ2)

C(p γ1)+C(q γ2)−C(p γ0) , γ0 < γ2

C(γ0), γ0 ≥ γ2

(F-30)

Next, we investigate the pairs(p, q) for whichX is satisfied.

Consider the expression,

p C(q γ2) + q[C(p γ1) − C(p γ0)]

C(q γ2) + C(p γ1) − C(p γ0)
. (F-31)
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It is straightforward to verify by differentiation and using (F-1) and (F-9) that like (F-7) and

(F-16), the expression (F-31) for a givenp strictly increases from0 to∞ with q. Therefore,

for a givenp, if (F-31) evaluated atq = p γ0/γ2 is smaller than1, then a uniqueq can be

found for whichX holds. Otherwise, noq can satisfyX. The expression (F-31) evaluated

at q = p γ0/γ2 becomes

L(p) , p

[(

1 − γ0

γ2

) C(p γ0)

C(p γ1)
+

γ0

γ2

]

. (F-32)

Now, consider Lemma F.1 which reveals a key fact aboutL(p).

Lemma F.1. The function

f(x) = x

[

(1 − c)
ln(1 + ax)

ln(1 + bx)
+ c

]

(F-33)

for 0 < a < b, 0 < c < 1, andx > 0, is an unbounded, strictly increasing function ofx.

Proof. We know thatln(1 + ax)/ ln(1 + bx) → 1 asx → ∞, by l’Hôpital’s rule [86,

eq. 3.4.1]. Therefore,f(x) approaches∞ asx → ∞, which proves part of the lemma.

To prove the remainder, first note that the function(1 + x) ln(1 + x)/x for x > 0, is a

strictly increasing function. This can be proved by differentiation and using the inequality

ln(1 + x) < x for x > 0 [86, eq. 4.1.33]. Using this result and by differentiation, we can

show that the functionln(1+ax)/ ln(1+bx) for 0 < a < b andx > 0 is a strictly increasing

function ofx. As 1 − c andc are both positive, the proof of the lemma is completed.�

Lemma F.1 indicates that under (F-1),L(p) is a strictly increasing function which in-

creases from0 to∞ with p. Therefore, if we assume thatp0 is the (unique) positive root of

L(p) − 1, then only forp < p0 we haveL(p) < 1 and can find(p, q) that satisfiesX.

Before proceeding to deriveq in terms ofp for p < p0, we examine the value ofp0.

First, note that

γ0

γ1
<

ln(1 + p γ0)

ln(1 + p γ1)
< 1 (F-34)

where the left inequality is obtained by the fact thatln(1 + x)/x is a strictly decreasing

function ofx, verifiable by differentiation and using (F-9), and where the right inequality

comes from (F-1). Now, combining (F-23), (F-32), and (F-34), andusing the fact thatL(p)

is an increasing function, yields

1 < p0 <

[(

1 − γ0

γ2

)
γ0

γ1
+

γ0

γ2

]−1

. (F-35)
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Employing the bounds in (F-35) and an iterative numerical method such as thebisection

method, fixed-point iteration, and Newton’s method [112, Chapter 2], onecan findp0 with

great accuracy using a few iterations.

Now assume that0 < p < p0. We desire to calculateq in terms ofp when

p C(q γ2) + q[C(p γ1) − C(p γ0)]

C(q γ2) + C(p γ1) − C(p γ0)
= 1. (F-36)

Rearranging (F-36), we obtain, assuming thatp 6= 1,

−(1 + γ2 q) ξ e−(1+γ2 q) ξ = −ξ e−(1+γ2) ξ (F-37)

whereξ is defined by (5.39c). It can be verified from (F-23) and (F-29b) that whenp = 1,

q equal to1 is the (only) solution satisfyingX. Subsequently, we assume thatp 6= 1.

Using a branch of the LambertW-function, we can solve (F-37) to findq like (F-10)

and (F-19). We only need to determine which branch is used. We know from the definition

of ξ thatξ > 0 if p < 1 andξ < 0 if p > 1. It is observed from the ranges of the branches

shown in Fig. F.1 that whenξ < 0, the zeroth branch has to be used. However, whenξ > 0,

it is not readily known if Branch0 or Branch−1 is the response. To determine that, we

should examine(1 + γ2 q) ξ to see if it is smaller or greater than1. We can write

(1 + γ2 q) ξ =
ln(1 + p γ1) − ln(1 + p γ0)

(1 − p)γ2
(1 + γ2 q) (F-38a)

=
ln(1 + γ2 q)

(q − 1)γ2
(1 + γ2 q) (F-38b)

>
ln(1 + γ2 q)

γ2 q
(1 + γ2 q) (F-38c)

> 1 (F-38d)

where (F-38a) comes from (5.39c), and where (F-38b) is obtained bymanipulating (F-36),

and where (F-38d) follows from (F-9). Therefore, Branch−1 has to be used whenp <

1. Summarizing the results obtained, pairs(p, q) satisfyingX, the constraint set given in

(F-29b), are characterized by

0 < p < p0 (F-39a)

and

q =







− 1
γ2

{
1
ξ Wk

(

−ξ e−(1+γ2) ξ
)

+ 1
}

, p 6= 1

1, p = 1

(F-39b)

wherek = −1 andk = 0 for p < 1 andp > 1, respectively. Combining (F-30) and (F-39)

gives the final result (5.41).
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Appendix G

Expected Values of the Transmission

Times in P-n, P-γ, and P-t

In this appendix, the derivation details for (6.18)–(6.23) are given. Weinvestigate the pro-

tocols each in turn and obtain the complementary CDFsPr{TS > t} andPr{TRm > t} for

anyt andm. The final results (6.18)–(6.23) can be obtained by applying these complemen-

tary CDFs to (6.17). We do not mention the details of the integration (6.17) whichleads

to (6.18)–(6.23) for conciseness, as this only involves basic change ofthe order of integra-

tion or integration by parts. In the following,uSD(·), uSm(·), umD(·), USD(·), USm(·), and

UmD(·) are as defined in Section 6.4.1.

G.1 The P-n Scheme

Recall the definitions ofTUL, the uplink time,D(t), the set of the indices of decoding relays

at timet, and theτ ’s (6.4), and thatL is the parameter of P-n. Based on the protocol, we

have, for a givent,

Pr{TS > t} = Pr{TS > t, TUL > t} + Pr{TS > t, TUL ≤ t}

= Pr{τSD > t, |D(t)| < L}

+ Pr{τSD > t, |D(t)| ≥ L,∀m ∈ D(t) : τSD < τmD}. (G-1)

Now, using the theorem of total probability [81, p. 103], one obtains

Pr{TS > t} = [1 − USD(t)]
∑

A⊂{1, ···, M}
|A|≤L−1

∏

m∈A
USm(t)

∏

m∈Ac

[1 − USm(t)]
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+
∑

A⊂{1, ···, M}
|A|=L

∑

k∈A

∫ ∞

t
dx

∫ t

0
dy uSD(x)uSk(y)

×
∏

m∈A
[1 − UmD(x)]

∏

m∈A
m6=k

USm(y)
∏

m∈Ac

[1 − USm(y)]. (G-2)

Variablesx andy in (G-2) respectively representτSD andτS(L), defined as the time at which

theLth relay decodes.

Next for TRm , wherem ∈ {1, . . ., M}, we need to determinePr{TRm > t} for any

given t. First, assume that relay Rm has been selected to transmit in the downlink. Then,

from (6.13) we haveTRm > t, or equivalentlyTDL > t, whenever

TUL

τSD
+

t

τmD
< 1. (G-3)

Meanwhile, Rm transmits in the downlink only if it excels among the source andL first

decoding relays and ifτSD is greater thanτS(L), the decoding time of theL first relays.

Combining all these facts, we can write

Pr{TRm > t} = Pr

{

m ∈ D(τS(L)),
τS(L)

τSD
+

t

τmD
< 1, τmD < τSD,

∀ i ∈ D(τS(L)), i 6= m : τmD < τiD

}

=
∑

A⊂{1, ···, M}−{m}
|A|=L−1

∑

k∈A∪{m}

∫ ∞

t
dx

∫ ∞

0
dy umD(x)uSk(y)

×
[

1 − USD

(

max

{

x,
x y

x − t

})]
∏

i∈A
[1 − UiD(x)]

×
∏

i∈A∪{m}
i6=k

USi(y)
∏

i∈Ac∪{m}
[1 − USi(y)] (G-4)

where variablesx andy representτmD andτS(L), respectively.

G.2 The P-γ Scheme

Recall that the system parameter here is a threshold SNR denotedγth. Also, τth is defined

by (6.4) andγth, such that for example,τSD < τth or τmD < τth means thatγSD > γth or

γmD > γth, i.e. Node S or Node Rm is AT.

The condition that Node S transmits more thant seconds is that no AT node, except
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Node S itself, emerges beforet, and that if all relays decode beforet while no AT node has

been found, Node S has the best link to Node D. Therefore, we have

Pr{TS > t} = Pr{t < τSD < τth} + Pr

{

τSD > t, τSD ≥ τth,

M⋂

m=1

(τSm > t ∪ τmD ≥ τth) ,

[(
M⋃

m=1

τSm > t

)

∪
(

M⋂

m=1

τmD > τSD

)]}

= max{USD(τth) − USD(t), 0} + [1 − USD(max{t, τth})]

×
{

M∏

m=1

[1 − USm(t)UmD(τth)] −
M∏

m=1

USm(t) [1 − UmD(τth)]

}

+
M∏

m=1

USm(t)

∫ ∞

max{t,τth}
dx uSD(x)

M∏

m=1

[1 − UmD(x)] (G-5)

where∩ and∪ denote the intersection and union operations and where the integral in (G-5)

has been derived by conditioning onτSD.

To determinePr{TRm > t}, observe that Node Rm transmits more thant seconds in

either of these two cases; 1) it is AT and

τSm

τSD
+

t

τmD
< 1 (G-6)

(see (G-3)); 2) all relays decode while no AT node has been found, and Rm has the best link

to Node D, and

τS(M)

τSD
+

t

τmD
< 1 (G-7)

whereτS(M) is the time when all relays decode. Based on these facts, one can write

Pr{TRm > t} = Pr

{

τSD ≥ τth, τmD < τth,
τSm

τSD
+

t

τmD
< 1,

M⋂

i=1
i6=m

(τSi > τSm ∪ τiD ≥ τth)

}

(G-8a)

+ Pr

{

τth≤τmD <τSD,
τS(M)

τSD
+

t

τmD
< 1, min

i=1, ···, M
i6=m

τiD > τmD

}

(G-8b)
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=

∫ ∞

0
dx

∫ max{t,τth}

t
dy uSm(x)umD(y)

[

1−USD

(

max

{

τth,
x y

y − t

})]

×
M∏

i=1
i6=m

[1 − USi(x)UiD(τth)] (G-8c)

+

∫ ∞

max{t,τth}
dx

∫ x

max{t,τth}
dy uSD(x)umD(y)

×
M∏

i=1

USi

(

x

(

1 − t

y

)) M∏

i=1
i6=m

[1 − UiD(y)] (G-8d)

where the summands (G-8c) and (G-8d) are respectively obtained from(G-8a) and (G-8b)

by conditioning onτSm andτmD, and onτSD andτmD.

G.3 The P-t Scheme

In P-t, Node S transmits more thant seconds, for a givent, if one of the following cases

happens. 1) We haveτSD ≤ t0, which means that the protocol reduces to DT (see the

proof of Lemma 6.1), and we haveτSD > t, which means that Node D needs to receive

more thant seconds from Node S to decode. 2) We havemax{t, t0} < τSD ≤ t + t0.

In this case, Node S transmits to Node D more thant seconds only if no relay qualifies as

the downlink node untilτSD − t0. Recalling (6.11), one observes that this happens when

Θm(τSD − t0) > t0, whereΘ·(·) is given by (6.11), or equivalentlyτmD > τSD, for anym.

3) The conditionmax{t, t0} > t+ t0 holds. In this case, for anym ∈ D(t) we should have

Θm(t) > t0. This means that no decoding relay qualifies for the downlink transmission

prior to t. Also, if D(t) = {1, . . ., M}, Node S should have the best link to Node D. Now,

we can write, from these three cases,

Pr{TS > t} = Pr{t < τSD ≤ t0}

+ Pr

{

max{t, t0} < τSD ≤ t + t0,
M⋂

m=1

(τSm > τSD − t0 ∪ τmD > τSD)

}

+ Pr

{

τSD > t + t0,
M⋂

m=1

(

τSm > t ∪
(

1 − t

τSD

)

τmD > t0

)

,

(

τS(M) > t ∪ min
m∈{1, ···, M}

τmD > τSD

)}
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= max{USD(t0) − USD(t), 0}

+

∫ t+t0

max{t,t0}
dx uSD(x)

M∏

m=1

[1 − USm(x − t0)UmD(x)]

+

∫ ∞

t+t0
dx uSD(x)

{
M∏

m=1

[

1 − USm(t)UmD

(
t0 x

x − t

)]

−
M∏

m=1

USm(t)

[

UmD(x) − UmD

(
t0 x

x − t

)]}

. (G-9)

Regarding relay transmissions and to calculateE{TRm > t}, first recall from (6.11)

that if Node S transmitst seconds and then Node Rm substitutes for Node S, it takes

Θm(t) =

(

1 − t

τSD

)

τmD (G-10)

seconds more until Node D decodes. Lettm be defined as the timet at whichΘm(t) = t0;

i.e.,

tm ,
(

1 − t0
τmD

)

τSD. (G-11)

Also, note thatτSm is the time at which Rm can decode. Therefore, based on the protocol

description in Section 6.3,

T
(Rm)
UL , max{τSm, tm} (G-12)

is the time at which Rm qualifies as a candidate for the downlink transmission. Meanwhile,

T
(S)
UL , max{0, τSD − t0} (G-13)

is the time at which Node S becomes qualified.

Combining all these facts, Node Rm becomes the downlink transmitter in either of

these following two cases. 1) The timeT (Rm)
UL is the smallest among all theT (X)

UL ’s where

X ∈ {S, R1, · · · , RM}, and not all relays decode beforeT
(Rm)
UL . In this case, the uplink time

equalsT (Rm)
UL and the downlink time isΘm

(

T
(Rm)
UL

)

. 2) All relays decode beforeT (Rm)
UL ,

and we have thatT (Rm)
UL < T

(S)
UL and that Rm has the best link to Node D among the relays.

In this case, the uplink and downlink times are given byτS(M) andΘm
(
τS(M)

)
, respectively,

whereτS(M) is the time that the last relay decodes. Now, based on these observations and

using (6.11), (G-13), and (G-12), we can write

Pr{TRm > t} = Pr

{

T
(Rm)
UL < τSD − t0, T

(Rm)
UL ≤ τS(M), Θm

(

T
(Rm)
UL

)

> t,
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M⋂

i=1
i6=m

(

τSi > T
(Rm)
UL ∪ Θi

(

T
(Rm)
UL

)

> t0
)
}

+ Pr

{

τS(M) < T
(Rm)
UL < τSD − t0, Θm

(

τS(M)

)

> t, min
m∈{1, ···, M}

τmD = τmD

}

= Pr

{

τSm > τSD

(

1 − t0
τmD

)

, τSm < τSD − t0,
τSm

τSD
+

t

τmD
< 1,

M⋂

i=1
i6=m

(

τSi > τSm ∪ τiD >
t0

1 − τSm
τSD

)}

+ Pr

{

τSm ≤ τSD

(

1 − t0
τmD

)

≤ τS(M), τMD < τSD, t < t0,

M⋂

i=1
i6=m

(

τSi > τSD

(

1 − t0
τmD

)

∪ τiD > τmD

)}

+ Pr

{

τSD

(

1 − max{t, t0}
τmD

)

> τS(M), τmD = min
i∈{1, ···, M}

τiD < τSD

}

=

∫ ∞

t0
dx

∫ x−t0

0
dy uSD(x)uSm(y) max

{

UmD

(
t0 x

x − y

)

− UmD

(
t x

x − y

)

, 0

}

×
M∏

i=1
i6=m

[

1 − USi(y)UiD

(
t0 x

x − y

)]

+

∫ ∞

t0
dx

∫ x

t0
dy uSD(x)umD(y)USm

(

x

(

1 − t0
y

))

×
{

M∏

i=1
i6=m

[

1 − USi

(

x

(

1 − t0
y

))

UiD(y)

]

−
M∏

i=1
i6=m

USi

(

x

(

1 − t0
y

))

[1 − UiD(y)]

}

+

∫ ∞

max{t,t0}
dx

∫ x

max{t,t0}
dy uSD(x)umD(y)

×
M∏

i=1

USi

(

x

(

1 − max{t, t0}
y

)) M∏

i=1
i6=m

[1 − UiD(y)] (G-14)

where the second equality is obtained after separately considering the two cases ofτSm >

tm andτSm ≤ tm (see (G-13) and (G-12)), and where the third equality is obtained by

conditioning onτSD, τSm, andτmD.
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