
University of Alberta

Mining Software Quality Data from A Large-Scale
Open-Source Software System

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of Master o f Science

Department of Electrical & Computer Engineering

Edmonton, Alberta

Fall 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-09277-7
Our file Notre reference
ISBN: 0-494-09277-7

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

i * i

Ca nnrln

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedication

Dedicated to my husband Dr. Mansoor Khan for all his love & support

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Detection and correction of software faults is a difficult and complex issue. Mining

software repositories is one of the approaches to assess and improve software quality.

The objective of our research was to mine software quality data from a large-scale open-

source software system, Mozilla and its associated defect tracking database, Bugzilla.

The first contribution in this dissertation is the development of Entity Relationship

diagram of Bugzilla database by performing data reverse engineering.

The second and most important contribution in this research is the development of

Metrics-Delta data set, based on Mozilla source code and Bugzilla database. The data set

contains 22 attributes and 8349 data points.

The final contribution is development of predictive models using support vector machine,

neural networks and linear regression for Metrics-Delta data set. Predictive models can

be used to predict software quality, which in turn minimizes failure rate and could be

used as a management tool.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

I would like to express my deep emotions to my parents Mr. Anwer Rajper and Dr. Mrs

Rashida Anwer for all their love, care & support in every single moment of my life.

Great appreciation is due to my husband, Dr. Mansoor Alam, for all his support to make a

dream come true and for always being there to count on.

Sincere thanks to my supervisor, Dr. Scott H. Dick, for his encouragement and valuable

guidance while conducting this research.

Special thanks are due to my parents-in-law, Dr. Rahat Alam & Dr. Sabra Alam and my

sisters Anita, Amber & Sana for their encouragement and appreciation.

And finally lots of thanks to my adorable kids Sunny Alam & Linta Alam for all their

patience and understanding, during my research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS

CHAPTER 1
1. Introduction 1
2. Software Systems 5

2.1. Objefct-Oriented Design 7
3. Software Quality 9
3.1. Software Quality Attributes 10

4. Software Quality Assurance 11
4.1. Software Testing 13
4.2. Software Metrics 15

CHAPTER 2
1. Introduction 20
2. Knowledge Discovery in Databases 21
2.1. Data Mining Techniques 24

2.2.1. Neural Networks 25
2.2.2. Support Vector Machines 28

2.2.2.1. SMO Regression 30
3. Mining Software Repositories 33

3.1. Defect Tracking 31
3.2. Mining Defect Tracking Databases 35

CHAPTER 3
1. Introduction 38
2. Open Source Software 39
2.1. Advantages of Open Source Software 43
2.2. Disadvantages of Open Source Software 45

3. Mozilla- An Open Source Software 47

CHAPTER 4
1. Introduction 53
2. Data Reverse Engineering 53
3. Entity Relationship Diagram 55
4. Bugzilla Overview 56
5. Bugzilla Database 57
6. Entity Relationship Diagram of Bugzilla Database 59

CHAPTER 5
1. Introduction 67
2. Creation of Delta Data Set 70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1. Data Extraction 7 3
2.2. Data Transformation 74

3. Metrics Data Set 76
4. Metrics-Delta Data Set 79

4.1. Assignment of file-level defects to C++ classes 80
4.2. Joining Delta Data Set and Metrics Data Set 85

CHAPTER 6
1. Introduction 87
2. Data Mining 87
2.1. Variables and Description 89
2.2. Statistical Results 91
2.3. Experiments 96

CHAPTER 7
1. Summary 100
2. Future Directions 101

REFERENCES 104
APPENDIX A 114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table 6.1: Statistical Results of Metrics-Delta Data Set 92
Table 6.2: Correlation of Metrics to Delta 93
Table 6.3: Pearson’s Pair wise correlation 94
Table 6.4: Variable Abbreviations 95
Table 6.5: Regression Results 98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure 1.1: Relationship of Test documents to testing process [53] 14
Figure 2.1:Overview of steps constituting the KDD process [34] 24
Figure 2.2: A 3-3-2 Neural Network [25] 27
Figure 2.3: A Linear Support Vector Machine [152] 30
Figure 2.4: Bug Life Cycle [150] 33
Figure 2.5: A test incident Report [138] 35
Figure 4.1: ER diagram of Bugzilla database pp. 1 61
Figure 4.2: ER diagram of Bugzilla database pp.2 62
Figure 4.3: ER diagram of Bugzilla database pp.3 63
Figure 4.4: ER diagram of Bugzilla database pp.4 64
Figure 4.5: ER diagram of Bugzilla database pp.5 65
Figure 4.6: ER diagram of Bugzilla database pp.6 66
Figure 5.1: Sample Patch 72
Figure 5.2: Extracted Patched File Names 73
Figure5.3: Cleaned File Names 73
Figure 5.4: List of patched .h and .cpp Files 74
Figure 5.5: Mozilla Directory Sample 74
Figure 5.6: List of .h and .cpp files from Mozilla Directory 75
Figure 5.7: Delta Data Set 76
Figure 5.8: Joining Metrics-Delta Data Set 79
Figure 5.9: File Names, Class Names and SLOC-1 80
Figure 5.10: File Names, Class Names and SLOC-2 81
Figure 5.11: File Names, Class Names and TLOC 81
Figure 5.12: File Names, Class Names and Delta 82
Figure 5.13: File name, Class Name and Method Name-1 83
Figure 5.14: File name, Class Name and Method Name-2 84
Figure 5.15: File Name, Class Name and Contribution Factor 84
Figure 5.16: File Name, Class Name and Class-Level Delta 85
Figure 5.17: File Name, Class Name and Final Class-Level Delta 85
Figure 5.18: Metrics-Delta Data Set 86
Figure 6.1: Linear Regression Model 97
Figure 6.2: SMO Regression Model 98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

1. Introduction

Software systems have become an integral part of human life in 21st century. Their

application starts from our kitchen to our lives. The diversity of application encompasses

many areas, for example transaction systems, aircraft, real-time military operations,

nuclear reactors, space programs, banking transactions, automotive mechanical and safety

control to hospital patient monitoring systems and diagnosis services. The smooth

functionality of these systems is essential. In order to get high quality performance from

these systems; we need high quality software systems. In recent years the cost of

developing these systems and the penalty cost of software failures has become the major

expenses [35]. Some highlights of the consequences of software failures are:

• Failure of patriot missile in gulf war causing death of 28 American Soldiers [80].

• Ariane 501, a $500 million rocket self-destructs because of arithmetic overflow. The

rocket exploded in less than 40 seconds after lift-off on 4th June 1996 due to design

error and insufficient testing [106],

• Fifty thousands pieces of mail sent to the U.S Patent and Trademark Office was

returned due to the deletion of zip code caused by software failure [23] of telephone

systems for 10 million users.

These examples of software failures demonstrate the consequences caused by software

failures. Failure of these systems may result in loss of life, damage or total destruction of

a property, unachieved tasks, inconvenience and high cost maintenance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Due to the increasing level of human dependence on software systems for almost every

aspect of life, the problem of software quality is not just a luxury of research, but rather a

necessity of the time. In all these cases the systems failure occurred due to the presence

of faults in program source code [69]. In order to remove the faults, the basic requirement

is their correct identification. Sooner the fault identification takes place; the better the

chances are for higher level of quality product but there is an effort and cost of doing this.

The definition of fault, its propagation and consequences were described in fault-error-

failure model proposed by Vaos [38]. The model defines fault as a mistake introduced in

the source code. This mistake could be a mistake in program coding, a logical flaw or a

wrong interpretation of requirements.

Detection and correction of these faults is a difficult and complex issue. A study

performed by Microsoft demonstrated the severity and complexity of the problem. The

results of the study showed that it takes about 12 programming hours to locate and

correct a software defect. At this rate, it can take more than 24,000 hours (11.4 man-

years) to debug a program of 350,000 lines of code with a cost of US $ lmillion [105].

Large software systems like space shuttle programs or antiballistic missile system

contains at least 3 million and 10 million lines of code respectively [69]. The complexity

and size of the systems are the root cause of the problem.

In order to improve software quality, identification of individual modules containing

faults among thousands of source files is a difficult job. The amount of test required to

test the software system or to maintain the existing system have been a challenge for

project managers. Software maintenance consumes most of the resources in many

organizations.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are many approaches, which address to the problem of achieving high quality

software systems and many yet to explore. One of the approaches is knowledge discovery

in databases (KDD). KDD is the process of identification and extraction of useful

information from large amounts of data and one of the benefits offered by applying KDD

process is software quality prediction. Metric values collected from each code model

could be used as a data set for the KDD process [102]. The two main questions related to

the use of metrics for data mining process that offers point of interest are

• What metrics (features) are indicators of high quality system?

• What patterns of metrics indicate potentially high defect or high- risk modules?

Shin and Goel [120] performed KDD on a NASA database of software metrics.

Khoshgoftar [60] has also proposed the conduction of KDD process for software quality

prediction using software metrics. They conducted case study on large

telecommunication system and collected software metrics from its source code,

configuration management transactions and problem reporting transactions. Using CART

to develop predictive model, they predicted which modules are likely to have faults.

The recent work [23,121,127,2,137,39,125,132,24] of performing KDD on software

repositories is gaining interest. Software repositories hold valuable data and the

information extracted from them can help in defect analysis, software process control,

software reuse and system understanding. Defect tracking systems (one of the type of

software repositories) are of special interest for mining. Defect tracking systems allows

individual or group of users to keep track of the outstanding bugs (defects) in their

product [8]. They not only allow recording of the software faults but also keep track of

actions taken to repair them. Mining defect tracking databases can provide useful

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

information for assessing software quality, fault prediction and can also guide to develop

new tools for bug determination [121].

The objective of our research was to mine software quality data from a large-scale open

source software system Mozilla to predict software quality by conducting KDD process

proposed by Fayyad [34], The KDD process defined by Fayyad [34] is composed of nine

sequential activities: learning the, application domain, creating a target data set, data

cleaning and preprocessing, data reduction and projection, selection of data mining

function, selection of data mining algorithm, data mining, and evaluation and use of

discovered knowledge and we have followed them religiously. The KDD process is

performed on software metrics derived from Mozilla source code and its associated

defect tracking database-Bugzilla.

The first contribution in this dissertation is the development of Entity Relationship (ER)

diagram for providing the conceptual model of Bugzilla database. As discussed earlier

the KDD model proposed by Fayyad [34] is followed in this research and the first step

specified in that model is to understand problem domain. The ER diagram was required

since Bugzilla database belonged to an open source project and one of the problems

associated with open source projects is lack of documentation. The complex database was

hard to understand without any conceptual model. The process of data reverse

engineering is conducted to develop the ER diagram. The reverse engineering of

databases is opposite to forward engineering. While forward engineering starts from

developing conceptual model of system according to requirement specifications and

produces physical database as an end result, reverse engineering starts by examining

physical database and produces conceptual model as an end product. We examined

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bugzilla source code and developed the ER diagram by careful observation of data

definition statements. The details are provided in chapter 4.

The second and most important contribution in this research is the development of data

set named Metrics-Delta data set based on Mozilla source code and its associated defect

tracking Bugzilla database. The data set is created in three steps. First, using an instance

of Bugzilla database identification and extraction of number of defects (Delta) for C++

source code and header files for is performed. Secondly, software metrics are collected

from Mozilla source code using Krakatau for C++ classes and methods. And finally using

file name as a key defects are mapped from files to individual C++ classes. Chapter 5

contains all the relevant details of Metrics-Delta data set.

The third and last contribution is developing a predictive model using linear regression,

support vector machine and neural networks for Metrics-Delta data set. The algorithms

applied are SMO regression [110] and multilayer perceptron [54] using the data mining

tool WEKA. The experiments are conducted using ten-fold cross validation. Predictive

models and results are given in chapter 6. The predictive model can be used to predict

which modules in Mozilla are risky. Prediction of defect prone modules minimizes

failure rate and could be used as a management tool.

In the remainder of this chapter an overview of software systems, software design and

software quality assurance is given. Followed by the usefulness of software metrics and

details of object-oriented metrics.

2. Software Systems

Software systems are different from hardware systems. Hardware systems design is

guided and limited by natural laws of materials whereas software systems design do not

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have any natural limits and are flexible and malleable in nature. While there are errors in

many engineering products, experience has shown that errors are more common, more

pervasive, and more troublesome, in software then in other technology [63].

Software systems due to their logical nature inherit four problems that are complexity,

conformity, changeability & invisibility [14]. There are many contributors that make the

software systems complex like large number of possible states, hard to use functions,

program extensions and size of the software system and number of interfaces. Conformity

refers to the constraints placed by complex human institutions and systems (e.g., the tax

regulations of a state, pre-existing hardware, third party components and business rules)

on the software systems. Changeability is often introduced in software systems due the

need of additional features. Successful software systems could be subject to change to

enhance its capabilities, or even apply it beyond the original domain, as well as to enable

it to survive beyond the normal life of the machine it runs on and to be ported to other

machines and environments. Where as the invisibility is because of difficulty in software

visualization. It is hard to represent the conceptual picture of any part of the system

developed in one person’s mind, which often leads towards communication gap.

There is no geometric representation for complex software system as is available for any

mechanical, electronic or construction systems.

The design of software systems is a continuing evolutionary discipline that is making

software systems advance and complex day by day. The design of earlier software

systems was focussed on developing modular programs in a top down fashion, which was

then followed by procedural design. Procedural design evolved the concept of structured

programming. Structured programming offered a disciplined approach of writing

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

programs that could be easily test, debug and modify. However, the incapability of

structured approach to mirror real-world entities effectively raised the question that this

programming approach is not effective to produce a reusable code and incase of

modifications, the start from scratch problem arise [28], Object-Oriented design provided

the solution to many problems faced by its preceding design approaches. It has been

evolved over past three decades and its unique nature lies in its ability to support three

fundamental design concepts: abstraction, information hiding and modularity.

2.1 Object- Oriented Design

An Object-Oriented Design (OOD) is an approach to software development in which the

structure of the software is based on objects interacting with each other to accomplish a

task [21] where as the object is a component of real world mapped into the software

domain. These objects are created from classes, which are a self-contained description for

a set of related services and may be invoked by a message (a request to an object to

perform one of its operations). As discussed earlier the uniqueness of OOD is due to its

support for three basic design characteristics that are Encapsulation, Inheritance and

Polymorphism.

Encapsulation means that each object hides as much from the outside world as possible,

principally the data that describes it, and the internal processes that enable it to perform

the functions for which it is designed. It provides higher level of abstraction for a class by

encapsulating the object’s internal details (both behavior and attributes). Since the

implementation details of an object are hidden, the users of the object need to know only

how to use the object rather than knowing how object performs its operation. For

example, a file object will probably expose pieces of information via access methods

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

such as its name and size, and data can be passed to it, and retrieved from it using other

methods, but a programmer wishing to use the object need not know where or how the

data is stored . In object orientation, the application of the concept of encapsulation is not

only restricted to the composition of classes and objects but also includes higher level of

encapsulation like forming packaging and subsystems. It simplifies software development

and increases the potential for code reuse.

Inheritance is the form of reusability in which programmers create classes that absorb

existing class’s data and behaviors and enhance them with new capabilities. It allows the

class to build a hierarchy. The child class can inherit features from the parent class

thereby reducing an extra effort to build the feature, which already exists. The sub-class

can inherit both behavior and attributes from its super-class. Inheritance enables

designers to create many objects from the templates of actual objects just like the

architect can build many houses from the architectural map of one house identically or by

little modifications for example adding extra features. For example in geometry, a

rectangle is a quadrilateral. Thus, in C++, class Rectangle can be said to inherit from

class Quadrilateral. In this context class Quadrilateral is a parent class and class

Rectangle is a child class.

The property of an object to exhibit different behavior on different class or sub-class is

called Polymorphism. In particular, polymorphism enables us to write programs that

process objects of classes that are part of the same class hierarchy as if they are all

objects of the hierarchy’s base class. Polymorphic operations are mapped to the correct

method by the examination of the signature calling the operator [30.] Two methods

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

similar in nature logically may fall under same name, but due to the difference in

parameter value, they can create different objects.

The approach of software reuse was introduced by OOD and is now extended to

component-based design (CBD). A component can be defined as “a reusable part of

software, which is developed independently and can be combined with other components

to build larger units” [105] and can be accessed via interface. The interface is clearly

separated from a component. The most important feature of component is the separation

of its interfaces from its implementation there by causing the component as a black box

with explicit encapsulation boundary. Different component technologies currently

available in the industry are JavaBeans, COM+ and CCM.

The support of CBD to join two or more components easily in order to build a larger

component has lead towards the frameworks. A framework supports the software reuse

by providing a skeleton of an application, which can be modified within a certain domain.

This modification can be made during program design or execution and is referred as

instantiation of framework. Examples of component-based framework are .NET and

J2EE.

3. Software Quality

The meaning of word quality defined by Oxford English dictionary is “degree of

excellence”. This definition applies for defining quality of the physical systems but as far

as quality of software systems is concerned, it seems to be insufficient. A formal and

detailed definition of quality stated by International Standard Organization (ISO) is “ The

totality of features and characteristics of a product or service that bear on its ability to

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

satisfy specified or implied needs (ISO 1986)” [21]. This definition provides more details

about the term quality but if we observe carefully this statement is pointing towards two

features, which a quality product should posses. First the perfection of features (same as

word meaning) and second, fulfillment of desired user satisfaction.

USA Department of Defense (DoD 1985) has defined software quality as the degree to

which the attributes of the software enable it to perform its intended purpose. The major

hindrance in achieving an ideal quality product is the complexity of the software systems,

which makes software systems development and testing time consuming, expensive and

error-prone task.

3.1 Software Quality Attributes

Software quality can be measured by number of quality factors. Me Call, Richard and

Walter [21] proposed the software quality model named as Me Call’s quality model,

according to which software quality can be measured in terms of correctness, reliability,

efficiency, usability, maintainability, flexibility, reusability and portability. Me Call has

defined these attributes as quality factors.

• Correctness-The extent to which program fulfills its specification.

• Reliability- A measure of the rate of failure of the system.

• Efficiency- the amount of computing required performing the function.

• Usability-Effort required learning, operating, preparing input & interpreting output of

program.

• Maintainability- Effort required locating and fixing errors.

• Flexibility- Effort required modifying an operational program.

• Reusability- the extent to which the program is reusable.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Portability- Effort required for migrating the program.

Although every quality attributes posses its own importance but reliability is directly

related to safety and availability of the system. The lack of reliability can cause the

system failure, which in turn can cause the hazardous accidents or make the system

unavailable to its users. Availability of the system is the attribute that defines the

readiness of system usage and in many cases posses utmost importance whereas safety is

concerned with occurrences of mishaps. Quantifying every quality measure is a difficult

job. Every software system is built for some specific purpose and so the quality priorities

vary according to individual product specification. The particular quality measure (either

one or more than one) is related to the satisfaction of specific task while doing tradeoff

for some other quality measure. For example, it is possible that reliable software could

not be flexible that is reliability is achieved on the cost of flexibility.

4. Software Quality Assurance

Software Quality Assurance (SQA) is the planned and systematic set of activities that

ensure that software process and products conform to requirements, standards, and

procedures. "Processes" include all activities involved in designing, coding, testing and

maintaining; "products" include software, associated data, documentation, and all

supporting and reporting paperwork [57]. A typical quality assurance process includes

variety of tasks associated with seven major software quality assurance (SQA) activity

[108].

• Application o f technical methods: Quality is build into the system by applying quality

approaches in all phases of software life cycle. The first step in quality assurance

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

activity is selection and use of technical methods and tools that helps analyst to

measure the quality of the product.

• Conduction o f formal technical reviews: Technical reviews help in identifying quality

problems related to design and should be carried out by technical staff.

• Software testing-. Software testing is a series of testing activities required identifying

and removing the software faults. It is carried by developers and testers and is usually

composed of unit testing, integration testing and system testing.

• Enforcement o f standards: The formal standards and procedures of software

engineering process vary from company to company. The SQA activity is required to

measure the degree to which the standards are followed.

• Control o f change: Changes are required in almost every software system. There

could be number of reasons to that. The most common is due to the change of

requirements or for the request of additional features. The impact of these changes

needs to be monitored closely and the formal change control process is implemented.

During the change control process, the formal change requests are analyzed and

evaluated and the impact of change is controlled.

• Measurement: The measurement of the software is an integral part for software

quality assurance. Metrics are collected for technical and management support and

decisions.

• Record keeping and reporting: The results of performing reviews, audits, change

control, measures and testing must be properly documented to be refereed when

desired.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

All of these activities are addressed to ensure the quality of the product according to

quality standards. Along with the organizational internal standards, there are some

international standards too like IEEE standard and ISO 9000 standard for software quality

assurance. As discussed earlier in this section that software quality assurance is

composed of series of activities including software testing and measurement. Software

testing generates bug reports we use to count defects, while measurement provides

software metrics. Sections 4.1 and 4.2 describe the details of software testing and

software metrics respectively.

4.1. Software Testing

Software testing is a critical element of software quality assurance and presents an

ultimate review of specification, design and coding [108]. It is the process of establishing

confidence that a product satisfies its intended purpose or not [3]. During testing process

with the help of manual or automated means the actual output is compared with the

desired output. There are several techniques to assess the software quality. These include

structured walkthroughs, software inspections, static analysis, dynamic testing, symbolic

execution and proofs of correctness [36]. The selection of testing process varies from

organization to organization but it remains the unavoidable in any system. We cannot

actually predict how a program will behave without actually running it. If testing is

conducted successfully it will detect errors in the software, checks the fulfillment of

requirements and provides indication of software quality. The IEEE standard for software

test documentation 829-1998 [53], provides a flow chart [see fig 1.1] for the specification

of test documents and testing process. The following activities should be performed

sequentially to implement test standard.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Project
Doc

Item
Doc

Test
Plan

Test
Design
Spec

T est Case
Spec

Test Proc
Spec

Test
Execution

T est
Log

Test
Incident
R ennti.

Test
Summary
Report

Figure 1.1: Relationship of test documents to testing process [53]

Testing activities should be started by developing a test plan. Test plan is a document,

which defines the scope, approach, resources and schedule of the intended testing

activities. It provides all the details of targeted test items including what features to be

tested that will perform testing and outlines if there are any risk factors associated with

the testing process. Followed by test plan, Test design specification should be conducted.

Test describes the testing approach for a particular feature or features along with test

identification. The third activity in this sequence is development of test case

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

specification, which describes details of inputs, expected results and list of execution

conditions. Test procedure specifications specify sequence of actions to conduct a test.

The next step is the development of Test item transmittal report. This document identifies

the test items along with their current status and location information. The following

document that is test log gives the details of all the records about test execution in

chronological order. The last two document that are test incident report and Test

summary reports are used to specify the occurrence of an event (bug) during testing

process and the details of the occurred events respectively.

Once incident reports have been filled out and reported defects (bugs) have been

resolved, the history of defect tracking system can help in identification of types of

defects reported frequently and which modules are likely contain them.

4.2. Software Metrics

Software Metrics are used to identify modules in software systems that are potentially

error prone, so that the extra development, testing and maintenance effort can be directed

towards the faulty modules. Metrics are aspects of software development (either some

part of the software product itself such as code or the documentation, or the development

processes producing that product such as coding or testing phases) that can be measured.

These measurements can be used as variables (both dependent and independent) in

models for predicting or estimating some aspects of the development process or products

that are of interest such as effort, errors remaining in the system after testing, user

satisfaction, or system performance. Each software metric quantifies some characteristic

of a program. Different types of metrics are available to describe different characteristics.

Like number of lines in a source code, number of operands (Halstead’s number of

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

operators) or number of comments. Although these things appear to be simple but they

help to develop a picture of the program, like number of lines describes the length of the

program [45]; number of operands describes the amount of computation lies in the

program. Another important example is object-oriented metrics.

Object-oriented metrics are the measures of software objects. Shyam R. Chidamber and

Chris F. Kemerer [20] proposed a first set of six object-oriented metrics namely DIT,

NOC, WMC, CBO, RFC and LCOM. The Object-oriented metrics provides insight view

of the object-oriented software. They can be used for measuring complexity, class

semantics and relationship between classes. They can play useful role for software

management like measuring software process, identifying design flaws and effort

required for testing. Chidamber has defined object as a substantial individual and

collection of all of its finite properties.

• DIT-depth of inheritance: Depth of a class in a tree is the length of maximal path

from node to the root of the tree.

• NOC- number of children: Number of descendents of a class.

• WMC-weighted method per class: WMC is the sum of complexities of a method. If a

class has Mi,, Mn number of methods and complexities of the methods are given

by CL_ C n , then :

WMC- Y j ci
i=1

If all complexities are considered to be unity, then WMC = n, number of methods.

• CBO- coupling between objects: Two objects are coupled, if at least one of them is

dependent on other.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• RFC-response for class: Set of all methods that can be invoked by the object of a

class.

• LCOM-lack of cohesion in methods: LCOM is a count of the number of method pairs

whose similarity is zero. It is obtained by subtracting number of similarities between

methods from number of non-similarities between methods. Given n methods Mi,

M2,..., Mn contained in a class Cj, which also contains a set of instance variables {I,}

. Then for any method M, we can define the partitioned set of

P = I , n l j = 0 and Q = {(/„/,.) | /, n / , * 0

then, LCOM = |P |- |0 |, i f |P |> |0 |

=0 otherwise.

The value of DIT provides the picture of class complexity thereby suggesting the amount

of testing required for that class. In their case study [20], they observed the presence of a

class in their test data, which consisted only 4 methods but objects of that class inherited

132 methods from its hierarchy. The testing of that class is complicated rather than its

design. Another measure of inheritance is provided by NOC. A class with higher number

of children provides more chances of reuse but on the other hand reduces the abstraction

of base class. Thus providing an option to software designers to tradeoff according to

their own requirement. WMC measures complexity of a class. A class with large number

of methods might have no children and on the other hand a class with less number of

methods might have many children. In that case testing of a class with higher number of

methods will require less testing effort as compared to class with less number of methods

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

but higher children. CBO provides the measure of coupling. A class with higher value of

CBO might violate the concept of encapsulation and therefore should be minimized in

order to prevent integrity. RFC captures the level of communication between classes by

measuring the inter-class couples and methods external to the class. Its value is useful in

determining test resource allocation. The last metric described in that suite is LCOM.

LCOM is a measure of cohesiveness. The lower value of LCOM supports class’s

encapsulation and its higher value is the indication that a class is attempting to achieve

many goals and there is a chance error and requires careful testing.

The CK metrics suite provides a measure to check the integrity of any object-oriented

design. From management and designers point of view they are useful to measure

architectural and structural consistency of the application. The metrics can be used to

identify outlying classes for special attention by putting some threshold values for

comparison.

Software systems are complex artifacts and their complexity is increasing with the

innovation of technology. In order to make these systems dependable software quality

assurance is mandatory. Software quality assurance can be achieved by performing set of

activities and according to the scope of this dissertation software testing and software

metrics are described in this chapter. Since we have collected object-oriented metrics

from Mozilla source code, a description of classical CK metrics is also included in this

chapter

The objective conducting of this research is to mine software quality data from a large-

scale open source software system, which was achieved by following KDD model

proposed by Fayyad [34]. The contents of chapter 2 are therefore devoted to the

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

description of Fayyad’s KDD model along with the details of mining software

repositories and mining defect tracking systems. Chapter 3 is focused open source

software development. The advantages and disadvantages of open source software are

discussed along with detailed overview of Mozilla. Chapter 4 contains details of data

reverse engineering, overview of Bugzilla database and ER diagram of Bugzilla database.

Chapter 5 is devoted to the development details of data set. Finally, in chapter 6 the

results and details of predictive experiments are provided while chapter 7 is dedicated to

concluding summary and future directions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

CHAPTER 2

1. Introduction

Across the world, in almost every dimension of life, data is collected and stored either

manually or electronically. Electronic storage normally implies database systems, which

store these facts about the real world in structured and organized manner however, the

size and complexity of database depends on the volume and nature of data. Current

hardware and database technology allows efficient and inexpensive reliable data storage

and access [34]. For example if we consider the example of United States Internal

revenue agency and assume that there would be 100 million tax payers and each tax

payer fills five form with approximately 200 characters per form, we could get a database

of 100*106*200*5 characters of information. If we assume that the IRS keeps the past

three returns along with the current one, then we are looking at a database of 400

gigabytes [32]. Scientific instruments can easily generate terabytes and petabytes of data

at the rates as high as gigabytes per hour [35]. Due to this increased potential of

collecting and generating data, the size of databases has increased dramatically. They are

increasing in size in two ways: (1) the number N of objects or records and (2) the number

d of attributes [34]. Other examples of large databases are super markets store electronic

copies of million of receipts, bank and credit card companies maintain extensive

transaction histories government organizations store data about millions of citizens and

medical diagnostic applications.

The large databases or information repositories contain patterns and regularities in data,

which if explored provide rich and useful information. No matter what is the source of

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data whether it has come from science, business or government the data themselves (in

the raw form) are of little direct value. What is of value is the knowledge that can be

inferred from the data and put to use. The identification of knowledge to be extracted and

the transformation of data into desired information are the crux of conducting performing

any data mining project.

The extracted knowledge can be applied for vast variety of applications like information

management, decision-making, process control [77] and quality prediction. The

traditional method of turning data into knowledge relies on manual analysis and

interpretation, which is slow, expensive and highly subjective [124] particularly if we are

looking at large databases, the manual extraction becomes quite impractical. There is a

gap between data collection capabilities and data analyzing capabilities [34], The volume

and dimensionality of data are the root problem [35]. The need to scale up the process

with the help of automated or partially automated techniques lead towards KDD.

2. Knowledge Discovery in Databases (KDD)

The phrase knowledge discovery in databases was coined at the first KDD workshop in

1989 to emphasize that knowledge is the end product of data driven discovery [124]. A

more formal definition of KDD is “Knowledge discovery in databases (KDD) is the

process of identifying valid, novel and potentially useful information from data in the

context of large databases “ [120]. In other words the goal of knowledge discovery is to

find interesting patterns or models that exist in databases but hidden among volumes of

data with the help of particular data mining methods. The KDD process accomplishes this

task by using data mining algorithms to extract the hidden knowledge, using a database

along with pre-processing, sampling and transformation of that database. The basic

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem addressed by the KDD process is one of mapping low-level data into other forms

that might be more compact, more abstract and more useful [124].

The terms KDD and data mining are sometimes used interchangeably but data mining is

one step in the KDD process for recognition of patterns or modules [34]. KDD in general

and data mining in particular, is focused on finding patterns and models that can be

interrupted as useful knowledge. No matter what the technique is used, the unifying goal

is extraction of useful knowledge.

The KDD process is comprised of the following steps [34] (see Figure 2.1).

1. Learning the application domain: understanding application domain, relevant

prior knowledge and objectives of end -user.

2. Creating a target data set: selecting the variables and record on which knowledge

discovery is to be performed.

3. Data cleaning and preprocessing: Identification and removal of noise, consistency

checking, strategies for handling missing data fields and preprocessing.

4. Data reduction and projection: Finding useful feature to represent the data,

eliminating the irrelevant variables and appropriate transformations.

5. Choosing data mining function: making decision about the process goal that is

description or prediction. The major classes of data mining methods are predictive

modeling such as classification and regression; segmentation (clustering);

dependency modeling such as graphical models or density estimation;

summarization such as finding the relations between fields, associations,

visualization; and change and deviation detection/modeling in data and

knowledge.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Choosing data mining algorithm: selecting methods to be used for searching

patterns in data

7. Data mining: Searching of patterns in a particular representational form or in a set

of such representations, including classification rules or trees, regression,

clustering, sequence modeling, dependency and line analysis.

8. Interpretation or use of discovered knowledge: Interpreting mined patterns and

consolidated discovered knowledge.

9. Using discovered knowledge: Incorporating or using the extracted knowledge into

the system for which KDD process is carried out.

The data mining process can be accomplished by number of techniques like machine

learning, pattern recognition in databases, statistics, artificial intelligence, and knowledge

acquisition for expert systems and data visualization [77]. Data mining is thus a

multidisciplinary approach representing a catchall for a wide variety of techniques,

working together for a unifying goal of discovering useful and valuable information, in

the form of patterns and rules, from relationships between data elements. It’s

accomplished by a discovery-driven approach, whereby no a priori hypothesis is stated

for a particular problem under investigation [59].

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Drill

H Sfl« non

T.usetDin

|J Pie-Pio<«ssiu?

Piq>io<«is«lDiti

| Tiiirfoinnnon

Ti ul̂ ouomI D m

D i n I'lluini?

cap
PmeiuT

Evifcnnon

NU"

Figure 2.1: Overview Of Steps Constituting The KDD Process [34]

2.1 Data Mining Techniques

Data mining step of the KDD process refers to the process of applying discovery

algorithm to the data. The data mining process can be broadly categorized into two main

categories: predictive data mining and descriptive data mining. Prediction involves using

some variables or fields in the data set to predict unknown or future values of other

variables of interest. Description, on the other hand, focuses on finding patterns

describing the data that can be interpreted by humans. The goals of prediction and

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

description are achieved by using appropriate data-mining techniques. The most common

data mining goals are are [76, 34].

• Classification - discovery of a predictive learning function that classifies a data item

into one of several predefined classes.

• Regression - discovery of a predictive learning function, which maps a data item to

a real-value prediction variable.

• Clustering - a common descriptive task in which one seeks to identify a finite set

of categories or clusters to describe the data.

• Summarization - an additional descriptive task that involves methods for finding a

compact description for a set (or subset) of data.

• Dependency Modeling - a description for finding a local model that describes

significant dependencies between variables or between the values of a feature in a

data set or in a part of a data set.

Data mining can be performed by number of methodologies and techniques. The

consecutive section contains description of neural networks and support vector machines

because they are used in data mining step of the KDD process in this research.

2.2.1 Neural Networks

The idea of neural networks was inspired by modeling human brain at low level. The

objective for establishing an artificial neural network is learning to learn the real world

model (environment) in which it is embedded and to improve its performance through the

learning process [76].

It is a set of interconnected nodes each having a number of inputs, an output and a

transformation function. Each node possesses a processing unit, and the links between

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nodes specify their relationship. These nodes are adaptive in nature, which means that the

output of these nodes is dependent on modifiable input parameters. The adjustment of

parameters is determined by the learning rule (a mathematical expression), in order to

minimize the error rate.

The elementary component of every neural network is called a neuron. A neuron is an

information-processing unit that is composed of a set of input, an adder (for summing

input weight signals) and a nonlinear activation function that determines the output of a

neuron [76].

Rosenblatt [54] first applied single-layer perceptrons to pattern classification learning in

the late 1950s. During early development stage they were restricted to single layered

systems however they failed to gain any successful results because of their limited

learning capabilities [76]. Later on the research lead to the evaluation of multi-layered

systems followed by the use of back propagation learning algorithm in multi-layer

perceptrons by Rumelhart (1983) [54], Multiplayer perceptrons using Rumelharts back

propagation architecture are accepted as very powerful and flexible inductive learning

algorithms.

The architecture of a multilayer perceptrons can be described as one layer for the input,

one for output variables, and between these layers at least one hidden layer (see Figure

2.2). Each neuron in the input layer receives one input variable. The output of the input

layer later becomes input of the first hidden layer. Each and every input in the hidden

layers and output layers has an associated connection weight. The pattern of the

connection weights is the neural network model of the real world problem. Finally the

output layer neurons provide the output variable values. A network learns by finding a

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vector of interconnected weights that minimizes its error on the training data set, by

predicting the output for a given input, and comparing this prediction to the known

correct value.

Output Layer Hidden Lays'

Figure 2.2: A 3-3-2 Neural Network [54]

Due to adaptive nature of neural networks they are good at pattern recognition. Neural

networks have been used in software metric modeling [78]. Gray and Mac Donell [43]

described guidelines for model development of software metrics using various neural

network architectures, and Li [72] provides a good general introduction to neural network

applications. Neural networks have been used successfully in many software metric-

modeling studies, including Witing [131], where prediction accuracy was within 10%.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.2 Support Vector Machines

The support vector machine (SVM) was first invented by Vladimir Vapnik in 1979 [110].

It enables the learning machine to generalize unseen data by dividing a hyperplane into

positive and negative values. They are widely used these days for handwritten character

recognition, text categorization, image recognition and bioinformatics [18].

The linear form of SVM performs (see Figure 2.3) the generalization with maximum

margin where margin is the distance of hyperplane to the nearest positive or negative

point and is given by

u = w .x — b, (1)

Where w is the normal vector and x is the input vector in the hyperplane. The separating

hyperplane is the plane where w=0 and thus the nearest points are given by u= 1 and u= -1.

Therefore the margin m is thus given by

m = ij~—rr (2)
M l 2

The maximum margin can be expressed by the following optimization problem [117],

subject to y t (w.x, ~b)> 1,V(, (3)

Where x, is the ith training example and y t is the i* training output. This optimization

problem can be converted into dual form, which is a quadratic programming (QP) via

Lagrangian multipliers (ocj).

j I? » N

miny/{cc) = m in -]T X y ,y / (xJ • x ,)ata j - (4)
“ “ 2 ,=1 J=i ,=i

Where N is the number of training examples.

<*,> 0,V„ (5)

28

. 1 - 2mm—
w,b 2

w

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Y i y ia l = °- (6)
/= i

There is one to one mapping between Lagrangian multipliers and training examples.

Once lagrangian multipliers are determined, the normal vector w and the threshold b can

be derived from them.

N

W
i=l

= Y iy,a,xl, b = w.xk - y k (7)

for a k >0.

w can now be computed by equation (7). Equation (7) provides solution for linearly

separable data however not all the data is linearly separable. This equation will lead to

infinite solution for non-separable data. Cortes and Vapnik [126] proposed the

modification to solution equation [3] by introducing slack variables. Slack variable

allows margin failure and is given by

m inI|W f + subject to y i(w.xl -b)> 1 - V,. (8)
w ,b ,i 2 "

Where C is the parameter which tradeoff wide margin with small number of margin

failures. When the optimization problem is transformed into dual problem, the constraints

in (5) changes to

(9)

the slack variable ^ do not appear in dual formulation. The output of non-linear SVM can

be computed by Lagrange multipliers as

N

u = 'Yj y ja j K(xJ, x) -b , (10)
j =1

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Where K is the kernel function that computes distance between input vector x and

training vector x7. The Lagrange oq are still computed by quadratic form. Although the

non-linearities alter the quadratic form but the dual function remains quadratic.

j N N N

xaini//(a) - min—̂ £ ^ (x , ,x)«,.« - £ « , , (11)
“ 2 tf n . t f

0 < a , < C , V ; ,
(=1

The QP problem in equation (11) is solved by sequential minimal optimization algorithm

(SMO).

Positive Examples

Maximize distances to
nearest points

Negative
Examples

Figure 2.3: A Linear Support Vector Machine [12#]

£,2.2.1 SMO Regression

SMO was first proposed by John C. Platt [110]. It is a training algorithm, which solves

the quadratic programming problem of support vector machines by decomposing the

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

overall quadratic problem into small sub-problems. The SMO uses smallest possible

quadratic programming problems that helps in obtaining quick and simple analytical

solution. The SMO chooses to solve the smallest possible optimization problem at every

step, which involves two Lagrange multipliers. The Lagrange multipliers must obey the

linear equality constraint. At every step, SMO optimize two multipliers, find the optimal

value and update the SVM to reflect the new optimal value. The key point is that for

working set of 2 the optimization sub-problem can be solved analytically without

explicitly invoking a quadratic optimizer.

The memory required by SMO is linear in size and due to this linearity it allows

computation of large data sets.

3. Mining Software Repositories

The interest in mining software repositories for large long-lived projects is gaining

interest. Software repositories hold valuable data, which if transformed into information

can help in defect analysis, software process control, software reuse and system

understanding. Current approaches on mining software repositories consist of ad-hoc

scripts tailored to a particular data source. Those scripts manipulate the data source in the

file system and produce metrics [2]. Examples of software repositories are Concurrent

version control systems, Defect tracking systems and archived communications. Version

control and bug tracking systems contain large amounts of historical information that can

give deep insight into the evolution of software project [39]. Version control systems

such as CVS [122], ClearCase [111] and SourceSafe [86] hold information about

evolutionary changes of a software project and are valuable source for retrospective

analysis techniques which can explore for example change rates (number of changes

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

within certain amount of time and error proneness (number of errors) . Source code

management systems, along with error tracking and change repositories maintain a

comprehensive system history. They possess wealth of information regarding interactions

and relationships of components. Data mining methods convert data containing past

experience with a given process into knowledge about this process. Therefore source

code management systems are a fertile area of application of data mining [121].

CVS, Concurrent Version Control Systems, is arguably the most widely used version

control management system available in the market [23]. It distinguishes between version

numbers of files (revision numbers) and software products (release numbers). For each

working file in the repository CVS generates version control data and stores into log files

[39]. CVS logs are a rich source of software trails. Software trails are defined as

information left behind by the contributors to the development process such as mailing

lists, web sites, version control log, software releases, and documentation and source

code [23]. The information available in the logs can be very valuable for its developers,

management and researchers to provide a fine-grained view of software project evolution.

Frequency analysis of log messages identify the purpose of change, change size and time

between changes [127]. Data extraction from CVS is very well covered and many tools

are available for free for example SoftChange [122] is a tool that extracts and summarizes

information from CVS and bug tracking systems]. Since we have performed a KDD

process on defect tracking database the next section is designated to provide some

introduction to defect tracking system followed by overview of research conducting in

this domain.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1. Defect Tracking

Defect tracking is the activity of recording and tracking defects from the time they are

detected until the time they are resolved [84], Collection of defect information helps the

project team to create graphs and reports that are useful for tracking and assessing project

status as well as for developing a base of information that is useful on future projects.

Bust Asagued to Pi 021 wanei

Find? .ukI Lo2.?B«2

Tft?i« Contain.? Bn? 1? tired

Pi 021 .ataiitei Fires Bus

Tft?r« {loses »lte Bus

Bn? Assigned 10 Tesiei

Figure 2.4 -A Bug Life Cycle [99]

The life cycle of a bug (see Figure 2.4) starts from its identification by the tester. After its

identification it is defined as open and becomes available to the programmers to fix it. As

soon as the programmer fixes the bug, it is passed to the tester for the confirmation of its

fixing. Finally the tester has the authority to close the bug [116].

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When a defect is found, an incident report should be filled out. The IEEE template for

Test Incident Report 829-1998 [53] provides standards for the requirements of the

incident report. An incident report should posses the following structure

a) Test incident report identifier:

b) Summary

c) Incident description

d) Impact

A generic term for incident report is modification request (MR). Each MR should posses

a unique identifier, which can be a number or name. The incident summary should posses

all the details about test case including test procedure specification, test case specification

and test log [84], The information in summary is commonly used for bug searches and it

is important to be complete and concise [116]. The incident description describes details

about inputs, expected results and actual results associated with the incident. It must

contain the details of date and time of incident along with the details of testing

environment and names of testers and observers as well (see Figure 2.5). Based on

incident report and current development situation, the incidents are graded. The incidents

are then fixed according to their relevant grades. Those incidents whose grading is high

need to be fixed immediately while lower graded incidents are fixed with less priority

[84]., The Impact of incident on test plans, test design specifications and test procedure

specification is required to describe.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Defect ID (a number or other unique identifier)
Defect description
Steps taken to produce the defect
Platform information (CPU type, memory, disk space, video card, and so on)
Defect's current status (open or closed)
Person who detected the defect
Date the defect was detected
Severity (based on a numeric scale such as 1-4, or a verbal scale such as cosmetic,
serious, critical, and so on)
Phase in which the defect was created (requirements, architecture, design,
construction, defective test case, and so on)
Phase in which the defect was detected (requirements, architecture, design,
construction, and so on)
Date the defect was corrected
Person who corrected the defect
Effort (in staff hours) required to correct the defect
Work product or products corrected (requirements statement, design diagram, code
module, User Manual/Requirements Specification, test case, and so on)
Resolution (pending engineering fix, pending engineering review, pending quality
assurance verification, corrected, determined not to be a defect, unable to reproduce,
and so on)
Other notes__

Figure 2.5: A Test Incident Report [84]

3.2. Mining Defect Tracking Databases.

Defect tracking systems allows individual or groups of developers to keep track of

outstanding bugs (defects) in their product. They allow the development group not only

to record the software faults but also keeps track of actions taken to repair them.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mining Defect tracking databases can provide information, which could be used to assess

software quality, fault predication and also can guide to develop new tools for bug

determination.

In [96] the authors have developed a statistical model that uses fault information and file

characteristics to predict which files of the system are likely to contain large numbers of

faults. Testers can use this information to prioritize their testing and focus their efforts to

make the testing process more efficient and the resulting software is more dependable. A

tool is described and proposed in [125] to automate the prediction process. Mining past

bug history of a software project can be used as a guide in determining what types of

bugs should be expected in current snapshot and also can help in recommending which of

a group of bug reports are more likely to be true [132]. A review on Apache web server

[132] describes that bugs found in bugs database and by inspecting source code change

histories are different in types and abstraction. Bugs found in bugs database were

reported by outsider viewers and are reported against public release of the software rather

than a CVS snapshot. These bugs are higher in nature because they usually point towards

algorithmic flaws rather than simple coding problem. Based on types of bugs that are

commonly reported and fixed in the code, we can determine what type of bug finding

tools should be developed.

Another attempt on mining defect tracking database in conducted in [39]. The authors

have proposed mining defect tracking database along with version control and have

suggested that parsing the informal information contained in the modification report and

linking them with data from bug tracking system could be useful for detection of

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

logically coupled files, identification of error prone classes with affected components or

products, estimation of code maturity with respect to probability of remaining bugs and

discovery rate of bugs in earlier releases of the system [39]. Fault history also provides

valuable data for analysis of project trends and could be used to evaluate new projects

[125].

This chapter was focused to the overview of KDD process along with the details of

mining software repositories for extraction of software quality data. Mining software

repositories specially mining defect-tracking systems can be useful for analyzing quality

of the exiting system as well as for prediction of software quality. The next chapter is

devoted to the discussion of open source software systems. Since we have used source

code of an OSS system and its associated defect-tracking database to develop the data set,

the details of the chapter 3 will help in understanding the background of OSS software,

their associated advantages and disadvantages. Chapter 3 also includes the details of

Mozilla, its provided tools and some description of technologies used in Mozilla.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

CHAPTER 3

1. Introduction

Mining software repositories information can help in defect analysis, software quality

prediction, software processes control, software reuse and system understanding. Examples

of software repositories are concurrent version control systems, defect tracking systems and

archived communications. Along with mining software repositories of conventional closed-

source software, conducting KDD on open source software (OSS) system repositories has

also gained interest.

The use of open source software (OSS) is growing. The open source software is available

to download free of charge and its components may be integrated into other products. The

software repositories of OSS systems can provide rich information due to number of

reasons. Firstly, since OSS systems are released frequently, their CVS systems contain

good amount of historical data. Secondly, because they are downloaded freely, the

successful OSS systems have large number of potential users as well, which also take part

in defect reporting, thereby making the defect reporting systems databases contain large

amount of data. And finally, as the success of any OSS project depends on strong

community formation, their archived communications are also good candidates for

conducting KDD.

This chapter is focussed on providing the detailed overview of open source software, some

popular open source products along with the discussion of advantages and disadvantages

associated with it. Following by the details of OSS, the next section introduces Mozilla- an

open source product. The introduction to OSS systems is given because we have used

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mozilla source code and its associated defect tracking system to construct the data set in

order to conduct this research. Mozilla is a long-lived OSS system (more than eight years

of age at the time of writing this thesis) and also a very large software systems. The

Mozilla overview will provide the details of Mozilla including its development history,

tools and architecture.

2. Open Source Software

The open source development has gained enormous attention over past decade and as an

alternative to closed-source development is of particular interest to the software industry

today [103]. The most well known attempt to informally define an open source process is

Eric Raymond’s "the Cathedral and Bazaar’ paper [112]. The key ideas behind open

source development process are [112]:

• The core system is developed locally by a single or team of programmers

• A prototype system is released on Internet, which others can freely read, modify and

redistribute.

Open source developments typically have a central person or body that selects some

subset of the developed code for the official releases and makes it widely available for

the distribution. This is in contrast with traditional software development in several ways.

The OSS development process is conducted by geographically distributed developers, in

which work is not assigned to anybody but people undertake the assignments voluntary.

There is no system-level designed or detailed design and no project plan, schedule, or list

of deliverables [87]. Despite the lack of traditional approaches, open source software

development is staggering. 30,000 projects are registered on http://freshmeat.net, about

70,000 projects are hosted on http://sourceforge.net and 5400 Perl modules are on

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://freshmeat.net
http://sourceforge.net

Comprehensive Perl Archive Network (www.cpan.com) [123]. Some popular open

source projects are Linux, Perl, Apache, CVS, MySQL and Mozilla. Other open source

projects are Topologilinux, Project @ssistant, Frozen Bubble, Tux Typing and Junit [41].

A case study and review on OSS projects [66] has classified the OSS (Open Source

Software) into three main categories: Exploration-Oriented, Utility-Oriented, and

Service-Oriented.

Exploration-oriented F/OSS projects, represented by GNU software and the Jun library,

aim at pushing the frontier of software development collectively through the sharing of

innovations embedded in freely shared OSS systems [66]. Project leaders, who are

experienced programmers, are mainly responsible to develop and maintain the code.

Active developers can participate in coding if their ideas are consistent with the project

leader while the other community members acts as testers to provide the quality

feedback. Utility-oriented OSS projects, represented by the Linux system (excluding the

Linux kernel, which started as an exploration-oriented one and now is a service- oriented

one), aim at filling a void in functionality. The project grows in “bazaar” style, in which

peripheral developers modify the code or evolve new products from existing ones

according to their own requirements. Little centralized control exists and project

expansion is based on diversified needs and size of community. Service-oriented OSS

projects, represented by PostgreSQL and Apache, aim at providing stable and robust

services to all the stakeholders of OSS systems [66]. The population of stakeholders is

larger than community that’s why the version change is monitored very conservatively

without affecting the core requirements of the stakeholders. Projects are governed by a

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cpan.com

council of members rather than a single project leader. The members of the council are

core developers who are senior developers and contributors to the OSS community.

An open source project focuses on growing its self-organizing community aspect, in

order to get a significant success. The open source definition “ work produced by a

community of developers “ [112] highlights that open source development is based on

collaborative effort of group of developers. Usually it starts with a group of users, which

later become part of the development and debugging process. The significant community

is evolved using appropriate social and technical tools. Technical tools include mailing

lists, newsgroups and source code management systems. Examples of social tools are

differentiated roles and learning support.

One of the studies on understanding the motivations of people for involving themselves

in the OSS projects has also revealed that the open source projects have a strong sense of

community formation and adherence to norms of behavior [67]. The active open source

projects have a well-defined community that’s involved either in the development of the

product or using the product [41]. In an empirical examination of open source project

[65], the author has found that most of the open source products do not generate a lot of

discussion and those projects who could generate a group or community are viewed and

are downloaded more frequently. One of the important factors to be considered while

selecting an open source product is it must have strong OSS community [115]. The case

study on development process of Apache and Mozilla [87] pointed out that one of the key

success factors for both of these projects is development of large and well-balanced

communities. Mozilla also considers the effect of user participation as one of the key

factors for its success [83].

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The OSS community can be classified into two main categories [134] that are user group

and developer group. The user group is further classified into Active users and Passive

users.

• Active users are bug reporters and usually suggest new features and participate

actively in forums and mailing lists whereas

• Passive users just download and use the products and are part of the user

database.

The developer group can be categorized into four categories: Peripheral developer,

Central developer, core developer and project leader.

• The Peripheral developers occasionally contribute in fixing bugs or in adding new

features.

• Central developers actively contribute in fixing bugs, adding patches, writing

supportive documentation and sharing and exchanging information.

• Core developers work as communicators between peripheral developers and central

developers. They are council members, who extensively take part in the projects and

manage the CVS releases.

• Project leader is usually the initiator of the project and in charge of decision- making.

He accesses the feedback and directs the project with his own vision.

The OSS communities follow a life cycle and can be broadly specified into four main

stages [68] namely Introduction stage, Growth stage, Maturity stage and Decline or

Revival stage.

Introduction stage: The project is initiated by core developer or developers by launching

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a working version of the software on the internet. One-on-one communication based on

trust is conducted at this stage and the emphasis is on conveying the initial idea behind

the project in order to develop the community. The organizational structure is informal at

this stage.

Growth stage: As the project community increases, the needs for organizational

structure usually moves initial developers to be the part of the management team along

with their primary jobs. Project governance tools attract the bug reporters and fixers to be

the part of the community and get identified. Communication forums provide platform

for technical support, knowledge sharing and provide feeling of community.

Maturity stage: The number of members and downloads reaches to its maximum during

this stage. The initiators become managers and are not involved in the development any

more. They perform coordination within the organization, control the development

process and perform communications at corporate level. The entire product is divided

into modules and cooperating programs.

Decline or Revival stage: After reaching to the maturity stage a project might go to the

decline stage. During decline stage the number of downloads and the number of

community members decreases. In some cases there is a possibility of revival with the

use of appropriate implementation and adjustment of governance tools.

2.1 Advantages of Open Source Software

The open source community claims a number of advantages over traditional software

development. The first and most popular one (now a cliche in the open source

community) is Eric S. Raymond’s [112] “given enough eye balls, all bugs are shallow”

approach. Since the product is freely available for use and observation, defects are found

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and fixed quickly. Since this evolutionary process is based on the joint effort of a very

large number of programmers rather than a limited development team, the resultant

product is of better quality as compared to closed source products.

One of the open source projects is SAP, which is the primary downlink analysis and up­

link planning tool for NASA’s Mars Exploration Rover (MER) Mission. MER is a

mission critical application whose failure can cause the crash of entire operation. The

software was developed by using open source tools that are GNU Emacs editor,

Concurrent Version System (CVS), JUnit, JavaCC and Xalan-J and OSS components that

are Castor, Java Expression Parser (JEP), MySQL, MySQL Connector, HSQL Database

Engine, Virtual Reality Modeling Language and Skaringa. The development team’s

comments about the quality of components they used are “ The quality of open source

components we used was excellent. In fact, overall they were of better quality than two

commercial components we purchased for thousands of dollars”. In their experience

commercial companies take time to fix a bug, while open source developers do it

immediately and enthusiastically. In one case, they diagnosed the problem, fixed it, and

released a corrected version in less than a day [56].

The quick fixing issue puts the light on another open source issue, the motivation of the

developers. Most open source developers are not paid and their goal of participation is

personal satisfaction. A detailed study about motivation factors of open source software

developers is reported in [67]. The motivation factors are categorized in two categories

named as intrinsic motivation (the activity is valued for its own sake) and extrinsic

motivation (providing indirect rewards for doing the task at hand). The study has

concluded that the OSS contributors are motivated by a combination of intrinsic and

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

extrinsic factors with a personal sense of creativity being an important source of effort.

Code is written with more care and creativity, because developers are working only on

things for which they have real passion [87]. Another reason for the justification of better

quality is reusability, which not only helps improve quality but also provides three more

benefits. First, since the open source community provides rich base of reusable software

at the cost of downloading from the internet, the users can select the best of breed

components to reuse in their own system. Second, since the base components are freely

available, the project doesn’t need to be created from scratch; this supports faster system

growth. Third, software reuse reduces the development cost. There is no need to spend

money on the software, which is already available free of cost. Open source software

community claims that open source software possesses greater modularity than closed

source software [56]. The rationale is that since open source projects are built to be

extended, the modules are developed with minimal coupling else it would be difficult to

incorporate changes for system growth [95]. Because open source development is

globally distributed, well- defined interfaces and modularized source code are a

prerequisite for effective remote collaboration [41].

2.2 Disadvantages of Open Source Software

There have been many claims about quality of the open source software but quality varies

from product to product, and there is no standardized process and metrics in existence for

quality assessment [123]. No risk assessment is ever performed and no measurable goals

are set during open source development [124]. Having no contractual deadlines can be

the problem for organizations relying on open source projects as a platform for software

development [41].

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Open source contributors tend to be more interested in coding than documenting or

testing [41]. Some attempts to address the problem of documentation are Linux

Documentation Project (www.tldp.org] and Mozilla Developer Documentation Web page

(www.Mozilla.org/docs] but these solutions are for large established projects. For small

projects it is rare. Testing strategies are not defined, and if any exist they are implicit and

are not visible outside the project’s developer community. Adopting open source

development practices can make organizations pay less attention to strategic planning,

detailed requirement elicitation and organized support [41].

Visibility of software architecture is often neglected in open source projects. When the

core system is launched on the internet, the details of architecture are not usually

specified. It might be available or not. Unintentionally unavailable software architecture

suggests that the structure exist in some people’s mind only. As the project grows and

distributed developers take part in defect reporting and code development this problem

becomes more complicated. More emphasis is placed by central organization towards

adding new features and the architecture of the system becomes more complex to

document and in most of the cases it is not provided even in the mature OSS projects.

Another important issue is the software license associated with the product. If a product

is developed by incorporating or using open source product and its reproduced or sell the

product without the licensor’s permission, the licensor might claim for damages or force

you to end the product’s production, delivery and sale [115].

Open source software is frequently licensed under GNU GPL (General Public license),

which has a so-called “viral” effect: any application incorporating components licensed

under GNU GPL [97] must make its entire source code freely available [110]. Those

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.tldp.org
http://www.Mozilla.org/docs

organizations who want to incorporate OSS components in their product but don’t want

to make their own product to be OSS are forced to do so.

One of the charms of using open source components is to cut the costs but the

consequences of selecting the wrong component can erase these benefits [99]. A very

careful attention is required while choosing the OSS components. Factors like maturity,

flexibility and longevity are important to be taken into account. The statistics lfom

Sourceforge.net (one of the large platform for OSS) indicate that only five percent of the

OSS projects reach to the mature stage [65]. Again there is an issue that if people were

relying on OSS and the projects dies than the time and effort for those who were using

that product would be wasted. The evolution and stability of OSS communities and OSS

systems are mutually dependent [66]. Many open source products have no clear

community and are based on single user [41]. “Successful” projects are well-publicized

to gain the attraction of developers while practically the large amount of projects die

because they depend on one or few core developers and fail to get any sufficient

attention. Attracting users is a difficult task because open source developers work on

projects that they consider important and significant additions to the software universe.

They are not interested in products that would lead to a dead end or would make a small

or marginal impact [65]. Even the life of mature projects is at risk. There are number of

causes that can lead mature projects towards decline like loss of identifying personalities,

influence of profit-oriented companies and too many constraints on developers [68].

3. Mozilla- An Open Source Product

One of the projects running under the banner of open source development is Mozilla, a

web browser. Netscape announced Mozilla in January 1998. Both the browser and the

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

source code is available free of charge. During the early years of its release it did not

receive as much development effort from outside Netscape as the Mozilla founders were

expecting [87]. The reasons behind were large source code size, cumbersome

architecture, and absence of working product, poor management and license requirement

for the proprietary Motif library [87,88]. One of the project leaders, named Jamie

Zawinski resigned, during the second year of Mozilla’s launch and described the reasons

of quitting are poor management and missed opportunities. Mozilla failed to launch a

production-quality browser for two and a half years after the project was launched. This

situation began to improve by the end of 2000. The improved documentation on Mozilla

architecture and technology (how to build and test the product), tutorials, refined

processes and development tools became key elements. The interest in Mozilla is

growing and the use of Mozilla development tools in commercial products is exercised

by recognized companies (Hewlett Packard, Oracle, Red Hat, and Sun Microsystems),

which indicates high quality and scalability of Mozilla [87].

Mozilla is expanding and has announced a new web browser named Mozilla Firefox. At

the time of this writing FireFox has 44 million users and it provides the features like

popup blocking, tabbed browsing, built in google, live bookmarks and fast download.

Other products from Mozilla.org are Thunderbird, an email software, which provides

features like junk email filtering, high level security and option to customize toolbar; and

Camino, a web browser for the Mac OS X operating system. Mozilla offers a full suite of

integrated internet applications including a web browser, e-mail client, address book, web

page composer, and chat software and calendar application. Mozilla also provides set of

tools in order to manage and develop the projects. The tools provided by Mozilla are [88]

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Bugzilla: An automated bug tracking system, which provides a platform to report and

fix the bugs associated with Mozilla web browser.

• Bonsai: A web interface that maintains the log of checkins and is capable of

providing checkin information between certain dates, files or by certain developers.

• Tinderbox: A web tool that builds, tests and reports the Mozilla application suite on a

24/7 basis.

• LXR: LXR is a cross-referenced display of Mozilla source code and provide an up to

date look of modules from the main Mozilla.org CVS server.

Mozilla is currently operated by Mozilla.org staff, for coordinating and guiding the

project and perform some coding [88]. Their roles are in diversified areas like quality

assurance, development, product releases and maintenance. Mozilla community has

identified its community members into two different groups: Developer network and user

community. The Developer network includes Developer forums (mailing lists,

newsgroups and chat servers), mozdev.org (project hosting site related to Mozilla and is

currently hosting over 150 projects) and Mozilla-qumi (Japanese developer network).

User community provides support to English users and International users. Mozilla

English community site provides list of communities working for Mozilla (example:

MozillaZine, Mozilla Thunderbird help, Netscape DevEdge) and International

communities offer support for over 60 languages.

The current roadmap of Mozilla (which is third roadmap revision) specifies four key

elements [89].

• Focus development effort on new standalone applications (FireFox & thunderbird).

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Performing update (especially security update) on application suite's final stable

branch (1.7.x) for maintenance.

• Fix Gecko layout architectural bugs for improved performance and extension.

• Moving away from large ownership model to individual ownership of software

modules.

Most of the Mozilla source code is written in C++ and java script. Mozilla C++ source

code is intended to follow the rules of OOP that includes building modular components.

The Mozilla “platform” is composed of a set of technologies and components that can be

used to build cross-platform applications [119]. The description of the technologies and

components that constitutes core Mozilla architecture is listed on [64]

XPCOM: XPCOM (cross-platform component object model) allows Mozilla to export

interfaces and have them automatically available to Javascript scripts. In Mozilla,

components exist as singleton service or object instance. Singleton service is an instance

of object that is created only once where as object instances can be initiated more than

once. The components are written as classes that implement a clearly defined interface. It

strongly separate interfaces from implementation thus provides basis for modularity in

Mozilla source code. The details of implementation class are hidden and the client only

interacts with interface class. Due to the potential of XPCOM with dealing interfaces,

objects could be created in other languages too for example Javascript. The XPCOM uses

XPIDL (A cross-platform interface definition language) to generate C++ header files for

XPCOM objects.

XPConnect : It provides service for javascript objects to access XPCOM objects by

building a wrapper around objects or vica-versa. The main goal is to provide object

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transparency on either side of XPCOM interface. Mozilla source code is written in C++

and java script. C++ is a compiled language where as JavaScript is an interpreted

language. Components written in C++ starts at their own, where as to run JavaScript

scripts XPConnect is used. JavaScript is written mostly for user interface events. In order

to use XPConnect the XPCOM interface must be developed in XPIDL.

XUL: XUL is used to specify user interface appearance and application logic. The

combination of appearance and behavior is called “chrome”, which can be loaded from

.xul files and associated JavaScript and CSS files. The code in .xul files is capable of

changing browser behavior. The cross platform installations, packaging and software

update are performed by XPInstall technology.

XPInstall: XPInstall is a technology for performing cross-platform installations,

packaging, and software updates.

NSPR: Netscape Portable Runtime (NSPR) is a cross platform neutral API for operating

systems [88]. As discussed earlier most of the code is written in C++ and java script. C++

is a portable language but its portability is limited to program logic and data structures

only. For using Mozilla components across platforms NSPR provides a layer between the

OS and the Mozilla source code. This allows simpler coding in other areas of the Mozilla

source code.

The contents of this chapter were addressed to in general open source software systems

and specific to Mozilla. This discussion was desired because we have conducted the

research on Mozilla, which is large-scale open source software system. The advantages

and disadvantages of using OSS systems are described in detail. One of the disadvantages

associated with OSS systems is lack of documentation.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since we have conducted a KDD project and the first step in performing KDD process is

to understand application domain. In order to understand the defect-tracking database of

Mozilla web browser (Bugzilla), we have performed database reverse engineering to

develop the conceptual model of database using entity-relationship (ER) diagram. The

next chapter is addressed to the details of database reverse engineering along with the

description of Bugzilla database and development details of its ER diagram with ER

diagram itself.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

CHAPTER 4

1. Introduction

The detailed overview of open source software and its advantages and disadvantages

were discussed in chapter 3. One of the disadvantages associated with open source

projects is lack of documentation. In order to construct the data set based on Mozilla

source code along with its defect tracking system (Bugzilla); we needed to have an

abstract model of Bugzilla database, which was not available at that time from Mozilla.

We have performed data reverse engineering on Bugzilla database to develop the entity

relationship diagram.

This chapter provides the introduction of data reverse engineering and entity relationship

diagram and then a detailed overview of Bugzilla database. The last section of this

chapter is the entity relationship diagram of Bugzilla database, which is performed as a

part of conducting this research.

2. Data Reverse Engineering

Data Reverse Engineering (DRE) can be regards as adding value to existing data assets,

making it easier for organizations to use and more effective as a tool [92]. It is the

process of analyzing the stored data, identifying and extracting the desired information.

The increased use of data warehouses and data mining techniques for strategic decision

support systems have also motivated an interest in data reverse engineering technology.

Data reverse engineering process consists of two major activities that are data analysis

and abstraction respectively. Data analysis is a human intensive exploratory activity. It is

performed to obtain an up to date logical data model of the target database since in most

of the cases information about the logical model is missing in the physical schema. The

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

logical data model describes details about data structure. Conceptual abstraction maps

logical data model into conceptual design. Conceptual design is the formal specification

of user requirements presented in an abstract form and is usually represented either by

entity relationship diagram or object -oriented model.

A brief overview of data reverse engineering is given in [109]. By mid 80’s Nilson and

Davis, in two separate papers [93,49] proposed a translation algorithm for COBOL data

structures. By late 1980’s Davis and Arora [50] proposed the conversion of a relational

Database Model into an entity relationship model. Another attempt during that period

was by Boulanger and March [24] for analyzing the information content of existing

databases.

In early 1990’s the paper by Hainaut [55] provided the details of DRE techniques and

strategies. Winans and Davis [103] also addressed the issue of performing DRE. By mid

and late 1990’s DRE got a significant attention. P. Aiken’s [98], M. Blaha’s [9] and

Dayani-Fard and Jurisca [25] discussed DRE as knowledge retrieval technique.

The advantages offered by DRE are numerous. DRE techniques can be used to assess the

overall quality of the software systems [92], An implemented persistent data structure

with significant design flaws indicates a poorly implemented software system. It can also

be used to assess the quality of DBMS schema of vendor software, and thus it can

represent one of the evaluation criteria for a potential software product [9]. The increased

use of data warehouses and data mining techniques for strategic decision support systems

have also motivated an interest in data reverse engineering technology [92]. DRE is also

being used to extract business constraints that are unknown and hidden within hidden

legacy system [98]. This is proving to be very valuable in the area of system

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

maintenance. Data reverse engineering can also elucidate poorly documented existing

software, when developers are no longer available for advice. It also helps in upgrading

past hierarchical, network, and relational database to modem relational and object -

oriented databases [109].

3. Entity Relationship Diagram

The ER diagram is a semantic data-modeling tool, which is used to accomplish the goal

of abstractly describing or portraying data [3]. As the name implies ER diagram contains

entities (tables), which are related to each other via some relationships. These relations

are based on key attributes, which are actually data items that describe an entity. Primary

and foreign keys are the most basic components on which relational theory is based. The

Primary key uniquely identifies each instance of the entity while the foreign key is used

to refer to instances of other entities. Primary key is usually represented by a single

column however sometimes it is created on multiple columns too. To qualify as a primary

key for an entity, an attribute must have the following properties:

• It must have a non-null value for each instance of the entity

• The value must be unique for each instance of an entity

• The values must not change or become null during the life of each entity instance.

Whereas the criteria for qualifying foreign key are

• It must be a primary key for a different entity.

• It allows null and duplicate values.

Cardinality defines the numeric relationships between occurrences of the entities

participating in the relationship. They describe both directions of the relationship. The

appropriate mapping cardinality for a particular relationship set depends on the real world

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

being modeled. There are four basic relationships that can be used to describe the

relationship of one table to another. For example if we consider two entities A and B,

then the mapping cardinalities would be

One-to-one: An instance in A is associated with at most one instance in B, and an

instance in B is associated with at most one instance in A

One-to-many: An instance in A is associated with any number of instances in B. An

instance in B is associated with at most one instance in A.

Many-to-one: An instance in A is associated with at most one instance in B. An instance

in B is associated with any number of instances in A.

Many-to-many: Instances in A and B are associated with each other in any number.

There are few more subsets possible for the above general cases of cardinality. But we

have focused only on general ones.

4. Bugzilla Overview

Chapter 3 provided the overview of open source software and Mozilla organization.

Netscape launched Mozilla in January 1998. The browser and the associated code were

published on web free of charge. The group mozilla.org acts as a central point of contact.

It supports many technologies including development tools CVS, Bugzilla, Bonsani and

Tinderbox. These tools are not the part of the web browser [88].

The defects associated with the web browser are reported and tracked via the platform of

Bugzilla, which is a defect-tracking tool. Defect tracking tools are used for conducting

defect-tracking procedure. Defect tracking tools are based on databases so that the data

stored in databases about software bugs could be accessed and retrieved in almost any

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fashion, according to the criteria set by the user. Bugzilla allows individual or groups of

developers to keep track of outstanding bugs (defects) in their products. [16].

5. Bugzilla Database

We have used Bugzilla database instance and Mozilla source code to develop data set.

Since Mozilla is an open source product, one of the problem related to OSS is lack of

documentation .The Bugzilla database contains 34 tables and it was quite complex to

understand without having any conceptual model. To overcome this problem, we

performed data reverse engineering for developing entity relationship diagram of

Bugzilla database from its source code. The data definitions for each table were observed

for the identification of attribute name, type and cardinality. The description of attributes

and identification of their cardinal relationship is very important for understanding and

extracting data from any database. The development of entity relationship diagram is not

only useful for conducting this research but is also a contribution for users of Bugzilla.

Bugzilla was written by Terry Weissman in a programming language called TCL and

supported by a robust RDBMS at the backend. It was later ported on peri with a CGI web

GUI and MySQL is used to store the tables. Bugzilla is a MySQL relational database, and

is comprised of 34 tables.

The data types used in Bugzilla are:

• Char: A fixed-length string that is always right-padded with spaces to the

specified length when stored. The maximum range is 0 to 255 characters.

• Varchar: A variable-length string in which trailing spaces are removed when the

value is stored. The range is from 0 to 255 characters.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Text: A BLOB or TEXT column with a maximum length of 65535 (2A16 - 1)

characters.

• Mediumtext: A BLOB or TEXT column with a maximum length of 16777215

(2A24 -1) characters.

• Tinytext: A BLOB or TEXT column with a maximum length of 255 (2A8 - 1)

characters.

• Int: A normal-size integer. The signed range is -2147483648 to 2147483647. The

unsigned range is 0 to 4294967295.

• Mediumint: A medium-size integer. The signed range is -8388608 to 8388607.

The unsigned range is 0 to 16777215.

• Smallint: A small integer. The signed range is -32768 to 32767. The unsigned

range is 0 to 65535.

• Tinyint: A very small integer. The signed range is -128 to 127. The unsigned

range is 0 to 255.

• Datetime: A date and time combination. The supported range is '1000-01-01

00:00:00' to '9999-12-31 23:59:59'. MySQL displays DATETIME values in

'YYYY-MM-DD HH:MM:SS' format, but allows you to assign values to

DATETIME columns using either strings or numbers

• Timestamp: A timestamp. The range is '1970-01-01 00:00:00' to the year 2037.

• Decimal: An unpacked floating-point number. Behaves like a CHAR column.

• Enum: An enumeration. A string object that can have only one value, chosen from

the list of values 'valuel', 'value2', ..., NULL or the special "" error value. An

ENUM can have a maximum o f65535 distinct values.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The keys used in Bugzilla database are:

• P: Stands for Primary Key

• M: Represents that the field is a part of a multiple column index

• U: Describes Unique index

6. Entity Relationship Diagram of Bugzilla Database

As described earlier, the Bugzilla database is comprised of 34 tables. The referential

integrity maintained between these tables is via references. References serve the same

purpose as foreign keys, but they don’t appear in the structure of the database. The

rationale behind using references is, the time Bugzilla was developed MySQL didn't

support foreign keys. It does now (via the InnoDB table type), but Bugzilla still hasn't

been modified to use them. Another important feature to note is, none of the primary key

are based on multiple columns i.e. there are no composite primary keys.

The observation of ER diagram shows that most of the mapping cardinalities are one-to-

many or none however other types of mapping cardinalities also exist like many-to-one,

one-to-one, one-to-one or none and many-to-one or none. Figures [4.3, 4.4, 4.5,4.6, 4.7,

4.8] are the entity relationship diagrams of Bugzilla database.

The observation of figures 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 shows that there are eight attributes

(columns) responsible for establishing cardinality in the schema. They are userid

(profiles), bug id (bugs), id (groups), id (products), id (flagtypes), id (components),

attach id (attachments) and fieldid (fielddefs). The description of these attributes is given

below.

• userid.profiles :uniquely identifies a user via numeric value.

• bugs_id.bugs: unique identification of a bug.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• id.products: identify product type for which the bug is reported.

• id.groups : identifies the group of users.

• id.flagtypes: defines flagtypes.

• id.components : used for the identification of individual components.

• attachid.attachments : represents a patch.

• field id.fielddefs : uniquely identifies the fields.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bugs_actmiy

M Twig id
attach II

M bugs_when
M ’■

leraoved: :
adjled ■

I

K!-+-

™ attaEfcrraidS:

n in tu t te r H
M bug i i : ' . ; . ■

M cieatim ts :
description
nrirretype
ripatah
filename

: ihadata :
isprivafe

isdbsdlete
P attach id

[m-ifilw _activity ;

M lMwnlt
v h i

M p]ofiles_when
M f u n a

oldvalne
nev value

fielddefs

U naira™:..
P

description
madhead
sartkey

flagtypes

P id
name
description’
ce jiit ™

;targetjyi*
:i_a:ti*;e:: '
js_seques table
is iruKpfc iile
sarfkey

K

flags

M
frpe jd ■
tatns

M b y U
attach jd
iieation date
modification date

M fetter id
M xeouBsfee id

I : ; - : ; .

-<X

™ fhgexclBions :

M tw * id
oroduct id

coiraxjiient id

i
flagrra-iis inra

M ::P t a f i j d
p ro d u c t |d

Figure 4.1: Entity Relationship Diagram (page 1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hugs_ac tivity

M
attach i i
ftisrteact ̂ "

M hugs_when
M

■added :
vliO I.".'.:

I

■-0-+

: attachment ■ :

idnnitter 3
M hue id
M cieaton ts

description
iriirrietype
Bpatch
filename
thadafe
isprwafe

Bobsohte
P attach id

pmfihs _actimty

M lKWTllt
id u

M pmfiles_when
M fiddid

oHvalie
navvake

1

fWddefs

U name
P

description
.tmailheadi.:;'':
; sdrikey

flagtypas

P id
name :

dfiscnptbn
c c jis t
fcagetjype

;is_jB:tive .
is_iequ£s table
h_nu]iiplicdi]B
sartkey

K

M
type jd
tatus

M loiejd
a tto d u d
ireatian date
modification date

M fetter id
M ranieftte id
P id

-o<-

flagexclisions

M
nnxhict id

canrDoneitt id

flegirctisians

M i j p e j d
p n d n r t fd
canpan eiti id

Figure 4.2: Entity Relationship Diagram (page 2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

groups

group group map name bug group_map

P m em ber id ■ ■
description

■ ■
P grou p jd

P granstor id 1 1 isbuggroup 1 1 bug id
M is bless userregexp

is active
last changed

P

user_group_map

P user id
P eroup id
P is bless
P isderived

Figure 4.3: Entity Relationship Diagram (page 3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

flagexc lus ions Components

M tvpc id
product id

M name
initialowner

com ponent id initialqacontact

P

description
Droduct id

Lid

I

versions...

value
Droduct id

products

U name
description
miles toncurl
disallownew
votesperuser
maxvotesperbug
votcstoconfirm V
defaultmilestone

P id

A
milestones

P value ::
sortkey

P p roductjtf

naginclusions

M tvpc id
product id

I
I

■ bugs ■"

M com ponent id
: Mi'-’y./;!:! assiencd to

bug file loc
bug_sevcritv

M bugstatus
creation ts
delta ts
short dcsc

M op_s>s
rrM: priority

rep_platform
- M : reporter
M version
M ua contact

:M resolution
M targetmilestone

status whiteboard
M votes :

keywords
lastdiffed
evercon firmed
reporteraccessible
colist accessible " ,

M “y alias
estimated lime r
rcmainingtime

M p ro d u c tjd
P bug id

Figure 4.4: Entity Relationship Diagram (page 4)

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Components

M name
im tia lm m er

desorption
m A nt id
id

VOtSS
M d m
M b u s id

count

longdesc s

p b u r id
M uiig

thetext
U bugs_when

warktine
ispirtte

, }

watch

P m tfh p d
P w d d u d

laghcoakzs

P cookie
1H will

M hstused
piddr

bugs_ictirity

Id Twer id
attach id
thetext

M bug; _when
M b l d d

removed
added
u h i

flags
tvDe id

M status
Id lw id

tiiuh id
<T*«trin rtlt*
mo df ration date

M setter id
M reauestee id
P id

—1

qups

P qupii
userid
qup

cc

P
P

bug id
u iie

profiles

P

U
userid

logii_name
realism*
c iyptpis sw or d
disable dtext
mybueslhk
e m i if lags
refreshed when

profiles jartiviy

M userid
id u

M pbfiles_whan
Id

aldvfdue
newvtlte

attachments

a ih n ittn - id
M bug id
M credionjs

descrptim
mine type
ispttch
filename
the data
i p irate

iobsolete
P atiarli jd

I • H1

us er_gcoup_map
P u ser id
P group id
P isbless
P is derived

-0<

tokens

M userid
is sue date

P token
tokenlype
evattdata

-<X

nemedqueries

P userid
P n m t

query
Mkitfooter

bugs

Id m m m w n ijd
M assigned to

trug_file_bc
M bug_severiy
M bug_statns
M creation ts
M dala_ts

short desc
M qp.sys
M p in riy

repjpktfarm
M reporter
M version
M a i contact
M resobtim
M tor get_mik stone

status whieboard
M votes

keywords
hstdffed
everconfrmed
r«porter_ir c e ss hie
cclist access hie

M elks
estinated_tine
remarchg^tme

Id Uuclict j r l
P bug id

Figure 4.5: Entity Relationship Diagram (page 5)

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

keywords requests

P b u gjd
P keywordid

id
M :|t y p y d :;:::
M targetid

shadowlog

P E; : :V

ts
M reflected

command

backdoor

passwd

requesttypes

name
:: udes cription;:7

grantactions
denyactions f
product
component
targettype
targetproduct
targetcomponent
isactive
sortkey

Figure 4.6: Entity Relationship Diagram (page 6)

The ER diagram helped in understanding Bugzilla database and identifying the required

data. The description of desired data and data extraction process, which is used for the

development of data set are provided in the next chapter. Data preparation is the most

resource intensive stage of conducting any KDD project and consumes up to 60-70 % of

the total effort [59]. The following chapter is dedicated to the details of development of

Metrics-Delta data set developed from Mozilla source code and Bugzilla database.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

CHAPTER 5

1. Introduction

Data Preparation is the most resource intensive stage [59] of the data mining. The

research on analyzing the data mining process suggests that almost 60% to 70 % of the

total effort is dedicated to the data preparation. The rationale behind is quite logical. All

data mining projects are domain specific and every domain has its own specific

characteristics, which comes with its typical problems like noise, incompleteness,

complexity and volume. Along with these data specific problems, the important question

is among large volumes, what specific data is of point of interest. The extraction of data

depends on the objective of the data mining process, which illustrates what information is

required and what would be the use of that extracted information.

The main goal of our project is mining software quality data from a large-scale open

source product to develop predictive model. The data set used to conduct this project is

developed using source program of Mozilla web browser release 1.1 and an instance of

its associated defect-tracking database Bugzilla. Mozilla is an open source code product

that is its source code can be downloaded freely whereas the instance of Bugzilla was

generously provided by Mozilla organization for conducting this academic research.

We aimed to develop a data set by collecting 0 0 metrics for all C++ classes present in

Mozilla source code along with the defect density of each class. The presence of

defective modules posse considerable risk on software quality, however the effective risk

prediction models can improve software developer’s ability to identify defect-prone

modules and focus quality assurance activities on those modules. The defect density of

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

any module can be measured by “Delta”. The value of delta can be very useful for

predicting software quality. Audris M. [87], has defined delta as a defect density that is

the number of times changes are applied to the code due to reported problems. In [87], he

has used the value of delta to compare the software quality of two large scaled open

source software systems Apache web server and Mozilla web browser with commercial

software systems. Since we aimed to identify the value of delta for every C++ class

present in Mozilla source code and in order to do that it was required to find the value of

delta for each .cpp and .h file. After the determination of file level delta the next step was

to assign it to the class level according to source lines of code for each class and its

associated methods.

The measures of defect density along with software metrics are useful quality predictors.

The use of software metrics to predict software quality is a well-known approach.

Measures obtained from the source code such as complexity, coupling, and cohesion have

been associated with the risk factors such as defects and change. Khosguftar T.M, [132]

has proposed the use of object-oriented metrics along with defect counts to predict

software quality using a KDD process. The importance of object oriented metrics and

benefits provided by using these metrics are already discussed in detail in chapter 1.

Software metrics for all C++ classes in Mozilla source were collected using metric tool

“Krakatu Professional for C++ “. Krakatau provided “22” attributes for each class

including classical CK metrics. The final data set, which contains delta value and 22

metrics for each class is used for conducting prediction experiments (see chapter 6).

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The data set is called Metrics-Delta data set and is developed in three steps.

1. Creation of Delta Data set

2. Creation of Metrics Data set

3. Joining Delta data set with Metrics data set to obtain Metrics-Delta data set.

For the development of Delta data set and for joining Metrics data set with delta data set,

the programs are written in Perl. Perl is a free and powerful language. For our interest,

Perl offers a built-in support for pattern matching. A pattern could be searched among

large amounts of data by creating a regular expression for that particular pattern. Along

with the strong pattern matching capabilities another important feature of Perl is its broad

range of nested data structures like Arrays of Arrays, Hashes of Arrays, Arrays of

Hashes, Hashes of Hashes and Hashes of Functions. We have used both Perl’s pattern

matching capabilities and flexible data structures for the development of data set.

This chapter describes in detail the process of creating Delta data set and Metrics data set

followed by the details of creating the Metrics-Delta data set. Assignment of defects from

file-level to individual modules was a difficult task. In conventional C++ programming

approach one class is defined in one file (header file). But in Mozilla source code a file

may contain definitions of more than one class. The defect count of one file has to be

assigned according to number of classes in a file. Similarly, the methods of class are

defined in CPP files and conventionally methods of only one class are defined in one

CPP file. Again in Mozilla methods from more than one class were defined in one file.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It was necessary to map our file-level defect counts to the class-level metrics collected

and so we elected to divide our file-level defects according to the fraction of lines of

program devoted to a class in given file. This point will be further discussed in section 4

of this chapter.

2. Creation of Delta Data Set

As discussed earlier we aimed to identify the delta value for each C++ class present in

Mozilla source code using instance of Bugzilla database, the first step in accomplishing

this task was to calculate value of delta for file. In chapter 4, the details of performing

data reverse engineering on Bugzilla database is provided. The analysis of the entity

relationship diagram helped in identifying the desired attributes. For the population of

Bugzilla database, we have taken into account the following attributes from two tables

“bugs” & “attachments” (see Figure 4.3).

• bug id: a unique identification number associated with every reported bug in bugs

table.

• resolution: identifies the type of resolution (Fixed, Invalid, Wontfix , Duplicate,

moved & worksforme)

• ispatch: a binary attribute that identifies attachments as a patch

• thedata: the description of all the files that were patched along with the patch itself.

Once required attributes were identified, the next step was performing MySQL queries on

the database to extract the required data. The database instance contains 190722 reported

bugs. The “bugs” table has 28 attributes, which stores data related to the reported bugs.

One of the attributes among these 28 attributes in bugs table is the “resolution” of the

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bugs. The data type in the resolution field is predefined that is it should posses one of the

following value that are “Fixed”, “Invalid”, “Wontfix”, “Duplicate”, “Moved” &

“Worksforme”. Since we were interested in fixed bugs only, with the help of a SQL query

all the fixed bugs were extracted and it showed that out of 190722 reported bugs only

52252 were fixed.

The next question was to figure out among fixed bugs, which bugs were fixed using

patches? This question is answered by examining the “attachments” table [Figure 4.3].

The “attachments” table contains a field named “ispatch” [Figure 4.3]. This a binary

attribute and determines that whether a bug is fixed by applying a patch or not. Before

observing this variable, we assumed that every bug that is fixed by applying a patch on

the software module. However, we found this was not the case. We contacted Bugzilla

organization to resolve this problem. The answer provided by the bugzilla developer’s

forum was “ Every rule has an exception too”, occasionally, a bug will be fixed without a

patch because the solution was trivial or the module it was touching doesn’t require peer

review or it is also possible that somebody selected a wrong resolution [75]. There is also

no enforcement mechanism mandating that a patch exists in Bugzilla before it can be

checked-in into CVS.

The query results from attachments table showed that among 52252 fixed bugs only 4665

bugs were fixed using patches. The number of bugs fixed using patches is less than ten

percent of fixed bugs. The variable “thedata” in the “attachments” table contains

the description of all the files that were patched along with the patch itself. The path

information of the patched file is given by “RCS file: //path” in this attribute. With the

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

help of MySQL statements all the patches of software files were extracted in a new table

and were exported out of the database as a text file [see Figure 5.1].

RCS file: /cvsroot/mozilla/xpcom/threads/nsEventQueueService.h ,v\
re tr iev in g rev is ion 1.10\
d i f f -u -b -w - r l .1 0 nsEventQueueService.h\
 nsEventQueueService.h\ 2000/03/04 03:16:49\ 1.10\
+++ nsEventQueueService.h\ 2000/06/01 07:39:10\
@@ -29,18 +29,6 @0\
c lass nsIEventQueue;\
c lass EventQueueEntry;\

- / / because ava ilab le enumerators c a n ' t handle dele tions during
enumeration\
-class EventQueueEntryEnumerator {\
-p u b l ic : \

EventQueueEntryEnumerator() ; \
v i r t u a l -EventQueueEntryEnumerator() ; \

- void Reset(EventQueueEntry * a S ta r t) ; \
EventQueueEntry *Get(void); \
void Skip(EventQueueEntry *aSkip);\

- p r iv a te : \
- EventQueueEntry *mCurrent;\
—};\ —\ c lass nsEventQueueServicelmpl : public nsIEventQueueService\
00 -76,13 +64,12 00\ Addref the d escr ip to r in any case, parameter aNative
is \ignored i f the queue already e x is t s . */\NS_IMETHOD
CreateEventQueue(PRThread *aThread, PRBool aN ative);\
+ NS_IMETHOD MakeNewQueue(PRThread* thread, PRBool aNative, nsIEventQueue
* * aQueue) ; \

void AddEventQueueEntry(EventQueueEntry *aEntry);\
void RemoveEventQueueEntry(EventQueueEntry *aEntry);\

- nsHashtable *mEventQTable;\
EventQueueEntry *mBaseEntry;\

+ nsSupportsHashtable *mEventQTable; \
PRMonitor *mEventQMonitor;\
EventQueueEntryEnumerator mEnumerator; ___

Figure 5.1: Sample Patch

Figure 5.1 represents a typical patch used to remove the reported defect from Mozilla

source code. Each patch contains the name of the file along with its complete path, which

is used to extract the value of Delta.

From raw patches the file names were extracted and then were cleaned from undesired

characters. Since the objective was to find delta value of C++ classes, all the files with

extension .cpp and .h were identified. The file names were than compared against

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

directory of Mozilla source code to calculate value of delta. The section 2.1 and 2.2

describes in detail how the value of delta is determined.

2.1 Data Extraction

The text file (see Figure 5.1), contained raw text data, which were patches and file names

along with complete paths of the patched files. The detailed description of how the value

of “Delta” is extracted from data in the text file [Figure 5.1] is given below.

The program [Program 5.1] was executed on the text file [Figure 5.1] recognized all “

RCS file: ” patterns and wrote them to another text file [Figure 5.2].

RCSfile:/cvsroot/mozilla/xpcom/threads/nsEventQueueService.cpp,v\
RCS file:/cvsroot/mozilla/xpcom/threads/nsEventQueueService.h,v\
RCSfile: /cvsroot/mozilla/mailnews/imap/src/nsImapProxyEvent. cpp,v\
RCS f i l e : /cvsroot/mozilla/mailnews/imap/src/nsImapProxyEvent.h ,v \
RCS f ile :/cv sro o t /m o z il la /p ro f i le /A cc t /n sA cco u n t. cpp,v\
RCSfile: /cvsroot/mozilla/xpfe/appshell/src/nsWebShellW indow.cpp,v\

Figure 5.2: Extracted Patched File Names

The file names were cleaned from undesired characters by developing second program

[Program 5.2], Since the Perl program extracted complete line started with the patterns

RCS file:/cvsroot/mozilla/xpcom/threads/nsEventQueueService.cpp
RCS file:/cvsroot/mozilla/xpcom/threads/nsEventQueueService.h
RCS f i l e : /cvsroot/mozilla/mailnews/imap/src/nsImapProxyEvent. cpp
RCS file:/cvsroot/mozilla/mailnews/imap/src/nsIm apProxyEvent.h
RCS f i l e : /cvsroo t/m ozilla /p rofile /A cct/nsA ccount. cpp
RCS file:/cvsroot/mozilla/xpfe/appshell/src/nsW ebShellW indow.cpp
RCS f i l e : /cvsroot/mozilla/xpfe/appshell/src/nsXULWindow.cpp

Figure 5.3: Cleaned File Names

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“RCS file: “ the line had some additional undesired characters at the end of the path

[Figure 5.3]. Since we were only interested in “.cpp” and “.h” file , the next two

programs [Program 5.3, Program 5.4] identified .cpp and .h files respectively and send

the results to a text file [Figure 5.4],

RCS file:/cvsroot/mozilla/xpcom/threads/nsEventQueueService.cpp
RCS file:/cvsroot/mozilla/xpcom/threads/nsEventQueueService.h
RCS f i l e : / cvsroot/mozilla/mailnews/imap/src/nsImapProxyEvent. cpp
RCS f i l e : /cvsroot/mozilla/mailnews/imap/src/nsImapProxyEvent.h
RCS file :/cv sro o t /m o z il la /p ro f i le /A cc t /n sA cco u n t. cpp
RCS f i l e : / cvsroot/mozilla/xpfe/appshell/src/nsWebShellWindow.cpp
RCS f i l e : /cvsroot/mozilla/xpfe/appshell/src/nsXULWindow.cpp

Figure 5.4: List of patched .h and .cpp Files

2.2 Data Transformation

In our project the desired information was Defect counts per file, we call it “Delta”- the

number of atomic changes in a file. The details of obtaining the value of Delta for all .cpp

and .h files in a Mozilla source program are given below.

/mozilla /xpcom/threads/nsEventQueueService.cpp
/mozilla /xpcom/threads/nsEventQueueService.h
/m ozilla /xpcom/threads/nsEventQueueService. o
/m ozilla /xpcom/threads/nsEventQueueUtils.h
/m ozilla /xpcom/threads/nsIEventQueue.idl
/mozilla /xpcom/threads/nsIEventQueueService. id l
/m o z i l l a /x p c o m / th r e a d s /n s I P r o c e s s . i d l

Figure 5.5: Mozilla Directory Sample

First the names of all files of Mozilla source program along with their complete paths

were generated by writing and executing the program [Program 5.5] and saved in a text

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

file [Figure 5.5], The two following programs [Program 5.6, Program 5.7], extracted all

.cpp and .h files from a text file [Figure 5.6] and the list of final desired files was written

to the text file [Figure 5.6].

/mozilla /xpcom/threads/nsEventQueueService.h
/mozilla / xpcom/threads/ nsEventQueueUti1s .h
/mozi11a / xpcom/threads/ns PIEventQueueCha i n .h
/mozilla /xpcom/threads/nsProcess.h
/mozilla /xpcom/threads/nsEventQueueService.cpp
/m ozilla /xpcom/threads/nsProcessCommon.cpp
/mozilla /xpcom/threads/nsProcessMac. cpp

Figure 5.6: List of .h and .cpp Files in Mozilla Directory

We had now two text files. First [Figure 5.4], which contains names of CPP and header

patched files from Bugzilla database instance and second [Figure 5.6], whose contents are

names of all CPP and Header files of Mozilla source program. To obtain the value of Delta,

another Perl program was developed [Program 5.8], which compared two text files [Figure

5.4] and [Figure 5.6]. The Program performed this comparison by first reading the contents

of figure 5.6 sequentially in a loop. It read every file name in a nested loop, searched its

occurrence in figure 5.4. The default value for Delta was set as zero and was incremented by

one each time the search pattern matches. The execution of the program provided us the

defect counts for all the CPP and Header files for Mozilla source Program [Figure 5.7]. We

call it a Delta data set, which has two attributes File names and Delta.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/xpcom/threads/nsEventQueueService.h
8
/ xpcom/threads/nsEventQueueUtils. h

0
/xpcom/threads/nsPIEventQueueChain.h

6
/xpcom/threads/nsProcess.h

0
/xpcom/threads/nsThread.h

1
/xpcom/threads/nsEventQueueService.cpp
11

/xpcom/threads/nsProcessCommon. cpp
0

Figure 5.7: Delta Data Set

3. Metrics Data Set

The Metrics data set was developed using Krakatau Professional (C++) [64]. The Krakatau

Professional C++ is a software metrics tool designed for collecting software metrics for

C++ source Program. In order to create Metrics data set on Mozilla source Program, the

following activities using Krakatau Professional were performed.

1. Project creation for Mozilla source code.

2. Applying metrics on created project.

3. Creating Report.

The report named as “Mozmetrics report” contains a comprehensive set of metrics at the

level of Files, Classes and Methods. The Krakatau report shows that Mozilla source

Program contains 8349 C++ classes and the class-level metrics obtained from Krakatau:

• CBO-Coupling between objects: Calculated by totaling the number of unique types of

attributes with in each class. The count only includes user-defined object types. The

larger this number, the greater coupling between object classes.

• CSA-Class size Attributes: Number of attributes of a class.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• CSAO-Class size Attributes and Operations: The total number of attributes and

operations for a class.

• CSI-Class specialization Index: (NOOC * DIT) / Total Methods.

• CSO -Class size Operations: The number of operations for a class.

• DIT-Depth of Inheritance tree: From the current class traces up to entire inheritance

hierarchy counting longest route. The value of DIT is stored against the current class,

so for the root class DIT=1, first level subclass DIT=2 and so on.

• LCOM-Lack of cohesion methods: This metric quantifies how much intercourse the

methods of this class have with the member variables of that class. It is obtained by

subtracting number of similarities between methods from number of non-similarities

between methods.

• LOC-Lines of code: Number of lines in this class including source, white space and

comments.

• NAAC- Number of attributes added: Provides the count of number of new attributes

that a class has in respect to its immediate super-class. For a root class NAAC= CSA.

• NAIC-Number of attributes inheritance: NAIC is a count of number of attributes that a

class has inherited from its super-class. For a root class NAIC=0.

• NOAC- Number of Operations Added by a Class: It is a count of new operations that a

class has in respect to its immediate super-class. For root class NAOC=CSO.

• NOCC- Number of child classes: Number of sub classes of a root class.

• NOIC- Number of operations inherited by children: Counts of number of operations

that a class has inherited from its super-class. For a root class , NOIC=0.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• NOOC- Number of operations in a class: It is a count of number of operation that a

class has overridden. For a root class, NOOC=CSO.

• NpavgC-Average number of method parameters: Total parameters / number of

methods. This metric if over 10, would indicate that too much information is being

passed into methods and that more attributes should be added to the class.

• Osavg- Average operation size = Osavg is given by WMC/ number of methods. It

provides measure of the complexity of the class. Classes with Osavg greater than 10

should be perhaps redesigned.

• PA- Private attribute usage: It is sum of all references to distinct private attributes

within all methods of a class.

• PPPC-Percentage public/protected members: PPPC is simply the percentage of public

and protected members of a class in respect to all members of class.

• RFC-Response for class: It is the number of methods in a class plus number of distinct

methods called by those methods.

• SLOC-Source lines of code: SLOC is the number of source lines in a class excluding

white space and comments.

• TLOC-Total lines of code: It is the count of LOC for the class and its methods.

• WMC- Weighted methods in class: WMC provides the sum of cyclomatic complexity

for all methods in the class. This number reflects the complexity of a class and classes

with WMC larger than 100 should perhaps be redesigned.

The Mozmetrics report was converted to a table, in which each record contained a class

name (record key), File name and the values of all 22 class-level metrics.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Metrics-Delta Data Set

Since Delta data set holds defect counts for individual files and Metrics data set contains

metrics at the level of classes, the third step is to create a Metrics-Delta data set, that can

combine these two data sets using filename as a key and assign defect counts at the level

of classes. This final data set should obtain the form of Figure 5.8.

File mane, Defects

D elta D ata set

Class name. File name, M l, M2 M21

M etrics D ata set

Class name, File name, Defects, M l, M2

M etrics-D elta D ata set

M21

Figure 5.8: Joining Metrics-Delta Data Set

The creation Metrics-Delta data set was a two-step procedure.

1. Assignment of file defects to individual C++ classes

2. Joining the Delta and Metrics data sets to obtain Metrics-Delta data set.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 Assignment of file defects to individual C++ Classes:

Assignment of defects from files to classes requires defects to be assigned for both the

class definition and their respective method definitions. In order to achieve this task

series of Perl programs were developed for assigning the defects to C++ classes

according to their respective source lines of code (using .h files). Secondly, defects are

assigned to classes for their method definitions according to the summation of source

lines of code of all the methods that belong to an individual class (using .cpp files) and

finally to get the total defects for a class we added defects for class definition and its

respective methods definition.

The first program [Program 5.9] developed a text file from Mozmetrics report, which

contains the file names, class names and Sloe (source lines of code per class excluding

comment lines and white spaces).

c : /mozilla/xpcom/threads/nsEventQueueService.h
nsEventQueueServicelmpl,26

Figure 5.9: File Names, Class Names and SLOC-1

The second program [Program 5.10] extracted all the classes that belong to a particular

file along with their respective Sloe using Perl data structure hash of array and send the

results to another text file [see Figure 5.10]. Since the defects counts provided by delta

data set are at the level of files and we have to assign them to individual classes, it was

required to retrieve all the classes that belong to a particular File and divide defect counts

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

according to the value of SLOC (Source lines of code). This division was required

because 1) in Mozilla defect reporting system defects could only be reported against files

not for individual classes. 2) There is no clean mapping from files to classes that exist in

other 0 0 projects [1]. 3) We needed an approximation to count delta per class. With no

other information our options are i) uniform division of defects or ii) or a linear

approximation. Given the frequently reported correlation between defects and LOC, we

elected the linear approximation. Although this approximation breaks down for smaller

modules [30] but we do not have universal non-linear model for this breakdown.

c : /mozilla/xpcom/threads/ nsEventQueueService.h
nsEventQueueServicelmpl,26

Figure 5.10: File Names, Class Names and SLOC -2

Another Perl program [Program 5.11] was developed to add SLOC for all the classes in a

file named as TLOC (Total lines of code for all the classes) and then each class’s SLOC

was divided by TLOC. This division was performed in order to get the percentage of each

class in a file for the assignment of defects. We name this percentage as contribution

factor.

c:/mozilla/xpcom/threads/nsEventQueueService.h
nsEventQueueServicelmpl,1.0

Figure 5.11: File Names, Class Names and TLOC

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A class with higher value of SLOC will get higher portion of a defect since greater the

lines of code per class the greater the chances of errors are there. The new text file [see

Figure 5.11] contains file name, class name and contribution factor.

This next program [Program 5.12] was developed to assign the defect counts from files to

classes by reading class names and their respective file names from [Figure 5.11] and

then searching for that particular file in delta data set. Once the file name is matched the

defects of file are multiplied with contribution factor of each class. The output of this

final program is class name, file name and defect count for the class [Figure 5.12].

c : /m ozilla/xpcom /threads/nsEventQueueService.h
nsEventQueueServicelmpl,8

Figure 5.12: File Name,Class Name and Delta

After assigning the defects to class definitions according to their source lines of code, the

next step was to assign defects to all the methods that belong to the same class according

to the source lines of code for each method.

The next program [5.13] created a text file [see Figure 5.13] from Mozmetrics report and

provided method name, class name, file name and source lines of code per method [see

Figure 5.13].

Using Perl data structure hash of arrays in program [Program 5.14], all the methods that

belong to one file were extracted [see Figure 5.14].

File name =

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Class namel::Method namel, SLOC

Class name2:Method namel, SLOC

c:m ozilla/xpcom /threads/nsEventQueueService.cpp
=hash_enum_remove_queues,19

c:/m ozilla/xpcom /threads/nsEventQ ueueService. cpp
=NS_IMPL_THREADSAFE_ISUPPORTSl,9

c : /m ozilla/xpcom /threads/nsEventQueueService. cpp
=nsEventQueueServiceImpl: : CreateMonitoredThreadEventQueue, 5

c:/m ozilla/xpcom /threads/nsEventQ ueueService. cpp
=nsEventQueueServiceImpl: : CreateFromlThread,15

c:/m ozilia/xpcom /threads/nsEventQ ueueService. cpp
=nsEventQueueServiceImpl: : CreateEventQueue,23

c:/m ozilla/xpcom /threads/nsEventQ ueueService.c
=nsEventQueueServiceImpl: : DestroyThreadEventQueue, 21

c:/m ozilia/xpcom /threads/nsEventQueueService.cpp
=nsEventQueueServiceImpl: : CreateFromPLEventQueue,15

c : /m ozilla/xpcom /threads/nsEventQueueService. cpp
=nsEventQueueServiceImpl: : PushThreadEventQueue,52

c:/m ozilla/xpcom /threads/nsEventQ ueueService. cpp
=nsEventQueueServiceImpl: : PopThreadEventQueue, 35

c:/m ozilla/xpcom /threads/nsEventQ ueueService. cpp
=nsEventQueueServiceImpl: :GetThreadEventQueue,48

c : /m ozilla/xpcom /threads/nsEventQueueService.cpp
=nsEventQueueServiceImpl: :ResolveEventQueue,14

c : /m ozilla/xpcom /threads/ nsEventQueueService. cpp
=nsEventQueueService!mpl: :GetSpecialEventQueue,38

Figure 5.13: File Name, Class Name and Method Name-1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c : /m ozilla/xpcom /threads/nsEventQueueService. cpp=
hash_enum_remove_queues,19
NS_IMPL_THREADSAFE_ISUPP0RTS1,9
nsEventQueueServicelmpl::CreateMonitoredThreadEventQueue,5
nsEventQueueServicelmpl::CreateFromlThread,15
nsEventQueueServicelmpl::CreateEventQueue,23
nsEventQueueServicelmpl: : DestroyThreadEventQueue, 21
nsEventQueueServicelmpl: : CreateFromPLEventQueue, 15
nsEventQueueServicelmpl:: PushThreadEventQueue,52
nsEventQueueServicelmpl: : PopThreadEventQueue, 35
nsEventQueueServicelmpl: :GetThreadEventQueue,4 8
nsEventQueueServicelmpl::ResolveEventQueue,14
nsEventQueueServicelmpl::GetSpecialEventQueue, 38

Figure 5.14: File Name, Class Name and Method Name-2

Another Perl program [Program 5.15] was written to add TSLOC for all the classes in a

file and divide each class by TTSLOC where TTSLOC stands for total source lines of

code for all classes in a file. This division is performed to get the percentage for

assigning defects for each class in a file [see Figure 5.15].

c:/m ozilia/xpcom /threads/nsEventQ ueueService. cpp
nsEventQueueServicelmpl

0.90

Figure 5.15: File Name, Class Name and Contribution Factor

The program [Program 5.16] was then developed to assign defect count at the level of

classes. For this assignment the delta data set is reopened, each file name and its

respective defect count is read by the code and assigned to the class that belong to this

particular file by multiplying defects with contribution factor [see Figure 5.16].

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c : /m ozilla/xpcom /threads/ nsEventQueueService. cpp
nsEventQueueServicelmpl

9.9

Figure 5.16: File Name, Class Name and Class-Level Delta

C:/mozilla/xpcom/threads/nsEventQueueService.h ,
nsEventQueueServicelmpl, 18

Figure 5.17: File Name, Class Name and Final Class-Level Delta

The last program [program 5.17] in this sequence, added defects assigned to class

definitions and their respective methods [see Figure 5.17].

4.2 Joining the Delta and Metrics data sets to obtain Metrics-Delta

data set

The assignment of defects (obtained from delta data set) to individual classes was

performed in first step. The next and final step in the creation of Metrics-Delta data set

was to connect metric values for individual classes with their respective defect counts

[see Program 5.18]. To perform this connection file name and class name were used as

the key and metric values were tied with their respective defect count. This final data set,

which we name as Metrics-Delta data set [see Figure 5.18], is comprised of class name,

filename, defects and metrics obtained for C++ classes from Krakatau [64].

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c:/mozilla/xpcom/threads/nsEventQueueService.h,nsEventQueueServicelmpl,
0 ,2 ,7 ,0 ,5 ,0 ,1 ,2 6 ,2 ,0 ,5 ,0 ,0 ,0 ,1 .6 ,2 .2 ,2 ,1 0 0 ,5 ,1 6 ,8 6 ,1 1 ,1 8

Figure 5.18: Metrics-Delta Data Set

The number of points in the data set are 8349 where as the number of attributes are 25.

In order to develop the Metrics-Delta Data Set there were total of eighteen Perl programs

were developed. However after reviewing the codes , we recommend that Program 5.3

and Program 5.4 can be merged to reduce the I/O processing. Both of these programs are

used to extract .h and .cpp files respectively from Fig 5.3 and the regular expressions can

be merged into a single program. Same goes for programs 5.6 & 5.7. Both of these

programs again does the same function on Fig 5.5 and could be merged easily.

The details of statistical characterization of the data set along with preliminary regression

experiments are provided in the next chapter. Pearson’s correlation between dependent

and independent variables is computed as well as pair wise Pearson’s correlation is also

reported. The regression experiments are performed using linear regression, SMO

regression and multiplayer perceptrons.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

CHAPTER 6

1. Introduction

Software predictive modeling techniques predict the software quality by classifying the

software modules into high-risk modules (modules which are likely to contain most of

the faults) and low -risk modules (modules which are likely to contain less number of

faults). The techniques for developing predictive models can be categorized in two main

categories that are traditional classical statistical methods and data mining methods.

Linear regression, support vector machines least square regression and robust regression

all belong to classical statistical methods where as neural networks, fuzzy logic models,

case based reasoning and decision trees belong to data mining group. The detailed

comparison of techniques and their benefits, drawbacks and their suitability in particular

cases is discussed in [44],

The statistical report of the data set reporting minimum, maximum, mean, kurtosis and

skewness is also included in this chapter. Pearson’s correlation between all attributes and

delta is also computed. We have performed data mining using linear regression, SMO

regression and multilayer perceptrons. The details of the experiments and results are

given in this chapter.

2. Data Mining

The KDD process described by Fayyad [34] is composed of nine activities: learning the,

application domain, creating a target data set, data cleaning and preprocessing, data

reduction and projection, selection of data mining function, selection of data mining

algorithm, data mining, and evaluation and use of discovered knowledge (see Figure 2.1).

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The details of activities performed in each step for data mining on Mozilla source code

and Bugzilla database are given as:

• Learning the application domain: In order to understand the problem domain, we

developed ER diagram of Bugzilla database (see chapter 4) by performing data

reverse engineering. The analysis of the ER diagram helped in identifying the data

that was required to transform into desired information and also helped in

understanding Mozilla architecture.

• Creating a target data set: Metrics-Delta data set was developed for data mining

operation. The detail of development process is described in chapter 5. The data set

contains 21 attributes and 8349 records.

• Data cleaning and preprocessing: This step is usually required to remove noise from

the data and substituting missing values of the desired variables. Since the Metrics-

Delta data set was already in a very good shape, we were not required to perform this

step explicitly.

• Data reduction and projection: The original Metrics-Delta data set was composed of

25 attributes. Among these attributes, three attributes namely File name, Class name

and CBO (coupling between objects) were eliminated. The File name and Class name

were taken away because of they were not useful as inputs for data mining algorithms

where as the value of CBO was zero through out the data set and could not contribute

in providing any information. Our initial experiments then focus on creating

regression models for the full data set.

• Choosing the data mining function: The goal of conducting data mining for our

research project is to predict software quality. We decided to develop predictive

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model using Metrics-Delta data set. Since all of the attributes in the data set including

the value of Delta were continuous variables, we decided to run regression

experiments.

• Choosing the data mining algorithm: We choose linear, regression, SMO regression

and multilayer perceptrons for performing data mining. The details of these

algorithms are discussed in chapter 2.

• Data Mining-. In order to develop the predictive model for performing data mining on

Metrics-Delta Data set, the tool we have used is Weka. Weka developed at the

University of Waikato in New Zealand and it stands for the Waikato Environment for

Knowledge Analysis. The machine learning algorithms in Weka are written in Java. It

provides several learning methods to develop predictive models via regression and

classification. Since Metrics-Delta data set is continuous for all its attributes we

performed regression experiments to develop predictive models using simple linear

regression, multilayer perceptrons and SMO regression. The prediction error is

measured using root mean square error. The results of the experiments are provided in

this chapter.

• Interpretation and me o f discovered knowledge: The last chapter of the dissertation

[see chapter 7] is devoted to the summary of results we obtained, their proposed

usage and future directions for this particular data mining project.

2.1 Variables and Description

The variables in Metrics-Delta data set were

• File name-Source file

• Class name- C++ classes

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• CBO-Coupling between objects

• CSA-Class size (Attributes)

• CSAO-Class size (Attributes and Operations)

• CSI-Class specialization Index

• CSO -Class size (Operations)

• DIT-Depth of Inheritance tree

• LCOM-Lack of cohesion methods

• LOC-Lines of code

• NAAC- Number of attributes added

-• NAIC-Number of attributes inheritance

• NOAC- Number of Operations Added by a Class

NOCC- Number of child classes

• NOIC- Number of operations inherited by children

NpavgC-Average number of method parameters

• NOOC- Number of operations in a class

• Osavg- Average operation size

• PA- Private attribute usage

• PPPC-Percentage public/protected members

• RFC-Response for class

• SLOC-Source lines of code

• TLOC-Total lines of code

• WMC- Weighted methods in class

• Delta- Defect Count per class

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The first three variables Class name, File name and CBO were taken away before running

the experiments. Class name and File name were merely identifiers not predictive

attributes were not useful for running regression experiments where as CBO has the

uniform value of 0 in all instances and could not contribute to provide any useful

information. In order to check the rational behind getting uniform 0 value of CBO , we

picked up some random cases and checked manually. The manual observation was not in

conjunction with the value provided by the tool and coupling does exist between the

objects. There seemed to be some problem with the metric tool that failed to provide the

correct results.

2.2 Statistical Results

The statistical results are given in table 6.1. The results showed that maximum number of

defects reported for a class is 104 whereas minimum is 0. Such a high number of defects

reported can easily analyze that this class needs to be considered for extensive testing.

Another important aspect to be noted is the maximum value of DIT and NOCC that is 13

and 186 respectively. These metrics describes the complexity of the class. Those, classes

that are so deep in hierarchy and are providing its methods to 186 sub classes should be

taken into account for reducing complexity. The maximum value of LCOM is 4014 that

is also indicating higher complexity in the source code. The value of Kurtosis (measure

of peak-ness and flatness towards normal distribution) is also high for most of the

attributes and for NOCC is reached up to 45.149. Kurtosis for any normal distribution

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

should be close to 0. Very high value of kurtosis for any variable represents too tall

distribution and indicates the presence of problem.

The most important feature to be noted from the statistical report is the high skewness

value for most of the attributes. Skewness describes the degree of asymmetry of a

distribution around its mean. For all attributes except PPPC and NpavgC it is very high

and has reached up to the value of 2865 for NOCC. Normal distributions must have

skewness approximately 0. Highly skewed values indicate violation of normality.

Variable Min Max Mean Std. Dev. Kurtosis Skewness
CSA 0 108 2.580 6.500 6.050 55.067

CSAO 0 328 9.652 17.796 5.889 57.287

CSI 0 44 0.182 0.796 26.145 1411.309

CSO 0 274 7.068 13.151 6.106 59.884

DIT 0 13 0.504 1.117 3.314 1191.834

LCOM 0 4014 6.302 86.527 30.827 1191.834

LOC 0 10003 33.627 57.337 5.884 50.963

NAAC 0 108 2.589 6.555 6.090 55.492

NAIC 0 104 1.509 6.774 6.726 52.201

NOAC 0 226 5.917 10.982 6.844 76.558

NOCC 0 186 0.327 2.685 45.149 2865.077

NOIC 0 430 11.994 48.905 5.447 31.173

NOOC 0 89 1.161 5.129 8.443 91.378

NPavgC 0 10 0.762 0.961 1.859 6.426

OSavg 0 33 1.530 1.522 5.296 44.644

PA 0 279 2.391 10.997 9.515 131.698

PPPC 0 150 87.740 26.644 -2.193 3.748

RFC 0 675 10.247 26.842 9.735 153.224

SLOC 1 795 21.675 31.764 6.511 80.306
TLOC 0 10280 112.026 334.249 10.633 191.539
WMC 0 1472 15.746 48.945 11.432 214.463

Delta 0 104 0.140 1.49 44.139 2856.022

Table 6.1: Statistical Results of Metrics-Delta Data Set

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.2 reports the Pearson’s correlation coefficient between each metric value and the

Delta. Important point to be noted here is the presence of very weak correlation between

metrics values and defect counts (Delta).

Metric Correlation to Delta

CSA 0.071934

CSAO 0.112962

CSI 0.504449

CSO 0.09769

DIT 0.107877

LCOM 0.047869

LOC 0.103314

NAAC 0.175611

NAIC 0.048786

NOAC 0.072955

NOCC 0.049905

NOIC 0.020787

NOOC 0.098526

NPavgC 0.044162

OSavg 0.036324

PA 0.068462

PPPC -0.04419

RFC 0.118019

SLOC 0.129722

TLOC 0.106383

WMC 0.20005

Table 6.2: Correlation of Metrics to Delta

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

>
r»-o
©

no

0.
50

600

oro Tj-o
©

o
© 0.

17 o
© 0.

07 o
© 0.

02

600 0.
04

£00

900 o
di

no zvo

oro 0.
20

—

D 0.
45

0.
70

810 0.
73

910 0.
39

190 0.
46 r--o

© 0.
67

0.
04

0.
16

0.
42

0.
27

ISO

0.
54 o

o 00
d

VO
d 0.

94

-H

H 0.
46

690 0.
10

0.
71

910 0.
38

990 0.
45

900 0.
65 o

©

810 0.
44

620 0.
50

0.
56 o

di 0.
87

0.
73

1—1

in

190 0.
85

110 0.
84

910 0.
34 00OO

©

090

800 0.
78

£00

610

00Tt-
d 0.

36

0.
32

0.
45 o

d 0.
78

X 0.
49

0.
82

0.
15 t--00

© 0.
20

0.
48

0.
73

0.
49

no

0.
79

0.
04

0.
23

0.
53

0.
28

0.
31

0.
53 o

d

O d
o
©

o
©

o
o'

o
d

O
©

o
© © 0.

03 o
o1

o
d 0.

04

100 o
d

o
d 0.

07

cu 0.
51

0.
54

0.
07

0.
47

600 0.
35 oTt

d 0.
50 o

© 0.
37

0.
02

oro 0.
42

0.
14

0.
28

O

920 0.
28

110 0.
24

0.
15 o

©
s
d

920

-"to
© 0.

23 o
o

ZY0 0.
14

0.
28 —

N
A

610 0.
30

0.
21

0.
31

0.
27 rj-o

o 0.
36

0.
19

0.
12

0.
27

0.
04

610 0.
21

2 0.
27

0.
53

0.
35

0.
58

0.
35

0.
30

0.
41

0.
27

0.
23

0.
23

0.
04

0.
38

—

ino
d 0.

17

0.
56

0.
21

0.
77

0.
04

910 0.
05

0.
53

0.
07 o

d

o
©

680 o
©

rj-o
© 0.

02

000 0.
04

0.
00

100 0.
03

♦—a 0.
57

680 o
d 0.

92

0.
05

0.
38

0.
79

0.
57 ©

d

HH

200

010 0.
31

0.
12

0.
45

100

900

£00

X

860 0.
79

010 0.
58 r->o

d 0.
39

0.
48

o 0.
49 OOc-

© 0.
08

0.
82

0.
13

0.
27

0.
39

0.
47

0.
02

0.
44 mo

©

w
mO
© 0.

15

0.
67

0.
17

Q 0.
59

0.
95

ero

O

TOO

iro

i-H

CD

080

_ _

< r-.

< CD u Q w H h o X H-H 5 o CU O in E-* £ >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.3 (page 105). Along with the Pearson’s correlation between each metric and

Delta, we have also computed pair wise Pearson’s correlation and are reported in Table

6.3. These results indicate the presence of complex correlation that is a combination of

strong and weak correlation between attributes. Due to the size of table we have labeled

the variables as alphabetic characters. The description of labels is given in table 6.4

Variable Label
CSA A

CSAO B

CSI C

CSO D

DIT E

LCOM F

LOC G

NAAC H

NAIC I

NOAC J

NOCC K

NOIC L

NOOC M

NPavgC N

OSavg O

PA P

PPPC Q
RFC R

SLOC S

TLOC T

WMC U

Delta V

Table 6.4: Variable Abbreviations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Examining the results of Table 6.2 , it is observed that all three metrics associated with

class size that are LOC, SLOC & TLOC posses very small correlation with Delta. So the

impact of class size on defect density should be strictly minor. Based on correlation

results , we can conclude that there should be no impact of class size on the KDD

process.

2.3 Experiments

The experiments were performed using a 10-fold cross validation design. In 10-fold

cross-validation data is divided into 10 disjoint partitions. In each turn separate 9

partitions are used for training and the remaining 1 partition is used for testing. Model

performance was evaluated by calculating root mean square of error values. The root

mean square (RMS) value is given by

Where N is the total number of profiles. The smaller is the value of RMS, the better the

performance of model is. Since obtaining lowest error measures for a given data set is a

trial and error procedure in case of smo regression and mulitlayer perceptrons. The

parameter for tuning smo regression in order to minimize the error rate is C, which is a

complexity parameter. This parameter pays the penalty to obtain the minimum value of

error measure. We ran different experiments ranging the value of C from 1-100 and the

best results were obtained where C=5.

Again for multilayer perceptrons different combination of neurons per layer were tried.

Number of hidden layers varied from 1 to 3. Number of neurons tried in different

combinations between layers ranged between 1-100. The best results for this data set

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

were obtained for network with one hidden layer and one neuron in that layer. The root

mean square error values for these experiments are given in table 6.4.

The experimental results showed that linear regression and mulitilayer perceptrons

provided almost same results. SMO regression was a bit better as compared to linear

regression and multiplayer perceptrons.

DELTA =

0.0071 * CSA +

1.5314 k CSI +
-0.0131 k CSO +
-0.3179 k DIT +
0.0015 k LOC +
0.0108 k NAIC +

-0.0064 k NOAC +
0.0131 k NOCC +

-0.0072 k NOXC +
-0.0251 k NOOC +
-0.0651 k NPavgC +
-0.0829 k OSavg +
-0.002 k RFC +
0.0089 k SLOC +

-0.0013 k TLOC +
0.0143
0.1035

k WMC +

Figure 6.1: Linear Regression Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

DELTA =
-0.4284 k (normalized) CSA

+ 0.1252 k (normalized) CSAO
+ 0.0024 k (normalized) CSI
+ -0.1523 k (normalized) CSO
+ 0.0006 •k (normalized) DIT
+ -0.0008 k (normalized) LCOM
+ -0.0009 k (normalized) LOC
+ 0.3876 k (normalized) NAAC
+ 0.0002 k (normalized) NAIC
+ 0.0389 k (normalized) NOAC
+ -0.0018 k (normalized) NOCC
+ -0.001 k (normalized) NOIC
+ 0.0162 k (normalized) NOOC
+ -0.0002 k (normalized) NPavgC
+ -0.0002 k (normalized) OSavg
+ -0.0001 k (normalized) PA
+ -0.0004 k (normalized) PPPC
+ 0.0009 k (normalized) RFC
+ 0.0015 k (normalized) SLOC
+ -0.0007 k (normalized) TLOC
+ -0.0005 k (normalized) WMC
+ 0.0018

Figure 6.2: SMO Regression Model

For linear regression the value of weight assigned to CSI was high which dropped very

low for all other attributes. The assignment of weights for SMO regression didn’t showed

any drastic change among all variables

Average Standard Deviation

Linear Regression 1.3459 0.8572

Multilayer Perceptrons 1.3685 1.0870

SMO Regression 1.2001 0.9043

Table 6.5: Regression Results

The prediction results were not very good, however, the overall quality of the models was

reasonable. This was due to the fact that data set was highly skewed in nature. Skewness

causes the distortion in machine learning algorithm and the model fails to optimize global

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performance index. There are two main approaches, which deals with this problem. One

is data re-sampling and other is the assignment of penalty for the learner. In the area of

software metrics Khoshgoftar.,[61] has proposed to use differing misclassification

penalties in a decision tree algorithm. Dick., [10] has proposed the use of re-sampling

using SMOTE and then performing data mining using decision tree learner. To achieve

the better prediction results from highly skewed data set we would recommend the

classification of the data set. Discretization reduces the variance of dependent variable,

making it easier for learning algorithm.

The summary of achievements for conducting this research and their proposed usage

along with future directions are provided in chapter 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

CHAPTER 7

1. Summary

The objective of this research was an attempt towards improving software quality. We

have performed the KDD process for software quality prediction. The description of our

effort in mining software quality data from a large-scale open-source software system and

their proposed usage is given below.

Development o f ER diagram of Bugzilla database: By performing data reverse

engineering on Bugzilla database source code, we developed the complex ER diagram

composed of 34 entities and 150 attributes. Since Bugzilla is a defect tracking system of

Mozilla web browser and like most of the open source products doesn’t provide sufficient

amount of conceptual documentation. This diagram will help in understanding Bugzilla

database for those who are interested in conducting any research on Mozilla. Currently,

its been used for the laboratory manual of CMPE 440 at the department of Electrical and

Computer Engineering, University of Alberta, Canada.

Development of Metrics-Delta Data set: Based on Mozilla source code and Bugzilla

database the data set is developed. This data set contains twenty-two attributes among

which twenty-one are class-level metric values for C++ classes in Mozilla source code

and the final attribute Delta is the number of defects reported for each class. The data set

contains eight thousand, three hundred and forty nine points. Although there are twenty-

two metric attributes but for the discussion here, we are only considering defect counts

and classical CK metrics. The statistical report of the data set described the defect density

and complexity of classes in Mozilla source code. The maximum defects reported for a

class is one hundred and four. A class with such a high value of Delta needs to be

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

considered for careful testing. The maximum values of CK metrics clearly indicate

presence of very complex design. For example, the maximum values of DIT and NOCC

are thirteen and one hundred and eighty-six respectively. Both of these attributes

represent complexity of classes. The behavior of a class with high DIT value becomes

unpredictable and it is recommended that the design of class needs to reviewed where as

the higher value of NOCC is suggesting that the methods of the class are subjected to

extra testing effort. The value of WMC is one thousand, four hundred and seventy-two. A

class with high WMC value needs extra maintenance effort and its potential reuse is

decreased. The maximum value of LCOM is four thousand and fourteen. LCOM is a

measure of lack of cohesiveness and good object-oriented programming practice suggests

that classes should be cohesive in nature. A very high value of LCOM is indicating that

this class requires a breakdown. And finally, if we observe the maximum value of RFC

that is six hundred and seventy-five, there is a very clear indication of debugging and

extra testing effort required for this class.

Development o f Predictive Models: Predictive models using linear regression, SMO

regression and multilayer perceptrons are built. The results obtained from SMO

regression provided slightly better predictive model as compared to linear regression and

multilayer perceptrons. The overall quality of predictive models was reasonable however

they did not provided desirable lower error measures.

2. Future Directions

1. The values in the Metrics-Delta data set are continuous and could be used for

regression experiments only. Discretization of Delta value will allow performing

classification experiments as well. The classification experiments can divide the

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

classes into high and low-risk categories. Identification of high-risk modules would

be very helpful for approximating effort required to perform testing and can help

software managers in project management. Providing mining results in that format

makes their job easier,

2. Along with project managers it would also help software testers. Testers can use this

information to prioritize their testing and focus their efforts to make the testing

process more efficient and the resulting software is more dependable or, indicate

when re-factoring is required.

3. Executing the codes developed for creation of data set on another instance of

Bugzilla database (which we already got from Bugzilla organization) can compare the

quality of Mozilla web browser at different points in time. It will demonstrate the

evolution of software quality in a long-lived open-source project. This could

contribute to our understanding of the evolution of software quality in a long-lived

open-source project.

4. Mining past bug history of a software project can be used as a guide in determining

what types of bugs should be expected in current snapshot and also can help in

recommending which of a group of bug reports are more likely to be true. This would

address the issue of software quality assurance by focusing developer’s attention on

those modules, which are likely to contain defects.

5. Open-Source software projects may not always keep good historical records, even in

their bug-tracking databases. Maintaining bug history by identifying defect density at

different points in time may also help in improving software engineering practice .

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. 'One of the problems associated with open source product is presence of large number

of duplicate and redundant bugs posted by open source community. A study on

Apache [74], suggested that less than two percent of reported bugs were actually

those, which requires patches to get fixed. We also support that by our observation.

Out of 190722 reported bugs only 4665 bugs were fixed using patches.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

REFERENCES

1. Akif G. Korn and Liu H., "An Investigation of the Effect of Module Size on Defect
Prediction Using Static Measures", PROMISE - Predictive Models in Software
Engineering Workshop, ICSE 2005, May 15th 2005, Saint Louis, Missouri, US.

2. Alonso, O.; Premkumar, T. D.; Gertz, M., “Database Techniques for the analysis
and exploration of software repositories”, International Workshop on Mining
Software Repositories. 25th May 2004, Edinburgh, Scotland, UK.

3. Bagui, S.; Earn, R., ” Database Design Using Entity Relationship Diagrams”,
Auerbach Publications, 2003.

4. Baisch. E; Bleile. T.; Belschner.R “A neural fuzzy system to evaluate software
development productivity”, IEEE International Conference on Systems, Man, and
Cybernetics, Intelligent Systems for the 21st century , Vancover, BC, Canada, October
22-25,1995.

5. Baische. E; Liedtke. T, “Comparison of conventional approaches and soft computing
approaches for software quality prediction”, IEEE International Conference on
Systems, Man and Cybernetics, Orlando, Florida, U.S.A.,October 12-15 , 1997.

6. Bechtold, R ., “Essentials of software project management”., August, 1999,
Management Concepts, Incorporated.

7. Berry, D.M .; Lawrence, B. Software., ’’Requirements Engineering”. IEEE vol-15, no
2, March -April 1998, pp26-29

8. Bleile. T.; Baisch. E; Belschner. R, “ Neural fuzzy simulation to gain expert
knowledge for the improvement of software development productivity”, Proceedings
of the 1995 Summer Computer Simulation conference (27th) Ottawa, On, Canada,
July 24-25 1995.

9. Blaha, M., “On Reverse engineering of vendor databases”. In working conference
on Reverse Engineering (WCRE-1998), Honululu, Hawaii, USA, pages 183-190.
IEEE computer society press, October 1998.

10. http://bloof.sourceforge.net

11. Briand, C.V.; Basili. R; Thomas, W. M., “A pattern recognition approach for
software data analysis, IEEE Transactions on Software Engineering, vol. 18 , pp 931-
942, 1992.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://bloof.sourceforge.net

12. Briand. L; Thomas, W .M; Hetmanski, C.J. “ Modeling and managing risk early in
Software Development”, Proceedings of 15th Conference on Software Engineering ,
1993, pp. 55-65.

13. Brown, J. R., DeSalvio A. J., Heine, D. E. and Purdy, J. G. "Automatic Software
Quality Assurance," in Program Test Methods, W. C. Hetzel (Ed.), Prentice-Hall,
Englewood Cliffs, N.J., 1973, pp. 181-203.

14. Brooks, Jr., F. P., 1987 , "No Silver Bullet—Essence and Accidents of Software
Engineering," The Mythical Man Month, Essays on Software Engineering,
Anniversary Edition .Published by Addison Wesley 1995.

15. Boehm, B, W. ,“A Spiral model of software development and enhancement”, IEEE
Computer, vol.21 no 5,May 1988, pp 61-72.

16. http://www.bugzilla.org/

17. Buckle,G., “Static Analysis of Safety Critical Software”, Proceedings of the sixth
safety critical system symposium ,1998.

18. Christanini, N.; Shawe-Taylor, J., “An introduction to support vector machines and
other Kemal based learning methods”, Cambridge University Press, 2000.

19. Chaar, J.K.; Halliday, M.J.; Bhandari, I.S.; Chillarege, R., “In-process evaluation for
software inspection and test “, IEEE Transactions on Software Engineering, vol. 19 ,
no. 11 , Nov. 1993 ,pp. 1055 - 1070

20. Chidamber, S., R.; Kemerer, F., C., “A metrics suite for object oriented design “
IEEE transactions on Software Engineering,, June 1994 , vol. 6, no.20.

21. Clark, D “An Introduction to Object-Oriented Programming with Visual Basic .NET
“, Apress, 2002.

22. Curtis, B.; Kellner, M., I; Jim, O., “ Process Modeling Communications of the
ACM, Sep 1992, vol. 35, no. 9.

23. Daniel M. G., “Mining CVC repositories, the softChange experience” MSR 2004,
International Workshop on Mining Software Repositories. 25th May 2004,
Edinburgh, Scotland, UK.

24. Danielle, B.; March, S., ”An approach for analyzing the information content for
existing database”, Database 1989, pages 1-8.

25. Dayani-Fard, H. and I . Jurisica, “ Reverse Engineering by mining dynamic
repoitores”, Proceedings of the Fifth working conference on the reverse Engineering ,
October 1998, Honululu, Hawai, pp. 174-182.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.bugzilla.org/

26. De Almeida, M.A ; Lounis. H ; Melo, W. L ., “An investigation on the use of
machine learning models for estimating software correctibility”, International journal
of software engineering and Knowledge engineering, vol. 9,.no.5, pp. 565-593,
October 1999.

27. De Almeida, M. A; Lounis. H; Melo, W.L, “An investigation on the use of machine
learning models for estimating software correctibility “. International Journal of
Software Engineering and Knowledge Engineering, vol. 9, no.5, pp. 565-593, 1999.

28. Deitel., “C++ how to program “, Prentice Hall, Fourth Edition.

29. Draheim, D .; Pekaei, L., “ Process-Centric analytical processing of version control
data”, In IWPSE, Helsink, Finland, September 2003. IEEE press.

30. Dick. S., “Computational Intelligence in Software Quality”(PHD Dissertation 2002)

31. Ebert. C “Fuzzy classification for software criticality analysis”, Expert Systems with
applications, vol .11, no. 3, pp.3223-342,1996.

32. Elmasri, R.; Navathe, S.,B., ” Fundamentals of Database Systems “Addison Wesley,
Third Addition.

33. Fayyad; Shapiro.P; Smyth "From Data Mining to Knowledge Discovery: An
Overview", Advances in Knowledge Discovery and Data Mining, AAAI Press / The
MIT Press, Menlo Park, CA, pp. 1-34,1996.

34. Fayyad, U. M.; Piatetsky-Shapiro, G.; Smyth, P., “ The KDD process for extracting
useful knowledge from volumes of data”, Communication of the ACM, vol. 39, no.
11,1996, pp. 27-34.

35. Fayyad, U.; Haussler, D.; Stolorz, P.,” Mining Scientific Data”, Communications of
the ACM, vol. 39, no. 11, Nov 1996.

36. Fairley, R. E , ” Static analysis and dynamic testing of computer software(Tutorial)”.

37. France, R.B.; Kim, D.-K.; Sudipto Ghosh; Song, E., “A UML-based pattern
specification technique”, IEEE Transactions on Software Engineering, vol. 30 , no. 3
, March 2004, pp. 193 -196.

38. Friedman, M.A.; Voas, J., M., “Software Assessment: Reliability, Safety, Testability”
, New: John Wiley & Sons, Inc., 1995.

39. Fischer, M.; Pinzger, M.; Gall, H., “Populating a release history database from
version control and bug tracking systems”, Proceedings of the International
Conference on Software maintenance, Amesterdam, Netherlands, September 2003.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40. Gamma, E.; Helm, R.; Johnson, R; and Velissides, J.,” Design Patterns: Abstraction
and Reuse of Object-oriented design “, January 2002, Software Pioneers.

41. Gacek, C.; Arief, B.; “The many meanings of open source”, IEEE Computing
Society, Jan-Feb 2004.

42. German, D.; Mockus, A., “ Automating the measurement of open source projects”,
In proceedings of ICSE’03 . Workshop on open source software engineering,
Portland, Oregon, May 2003

43. Gray, A.R; MacDonell, Stephen G. (1996): “A comparison of techniques for
developing predictive models of software metrics”, Information and Software
technology vol. 39,425-437,1997.

44. Gray. A.R ”A simulation-based comparison of empirical modeling techniques for
software metric models of development effort”. Proceedings of 6th International
Conference on Neural Information Processing: Perth, Australia, 16-20 November
1999.

45. Halstead , M ., Elements of Software Science, New York: Elsevier, 1977.

46. Halpin, T., “Information Modeling and Relational Databases: From Conceptual
Analysis to Logical Design” , Morgan Kauftnann Publishers,2001

47. Hofmann, H.F.; Lehner, F.;Software , ’’Requirements Engineering as a success factor
in software projects”, IEEE ,vol 18 , no 4 , July-Aug. 2001 ,pp:58 - 66

48. Hofmann, M.; Tierney, B., “The involvement of Human Resources in large scale data
mining projects”, Proceedings of the 1st international symposium on Information and
communication technologies ,Dublin, Ireland, pp. 103 - 109, 2003.

49. Hogshead, D., K.; Adarsh K. A .,” A methodology for translating a convention al file
system into Entity-Relationship model”, Proceedings of the fourth International
conference on Entity relationship approach, 1987, pp.148-159.

50. Hogshead, D., K.; Adarsh K. A. “Converting a relational database model into entity-
relationship model”, Proceedings of the sixth International conference on Entity
relationship approach, 1989.

51. IEEE, Standard Glossary of Software Engineering Terminology (IEEE Std 610.12-
1990), Software Engineering Technical Committee, IEEE Computer Society, Los
Alamitos, CA.

52. IEEE standard for software maintenance 1219-1993.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53. IEEE standard for Software test documentation 829-1998.

54. Jang, S.R ; Sun, C.T; Mizutani.E , “Neuro-Fuzzy and Soft Computing , A
computational approach to learning and Machine Intelligence”.

55. Jean-Luc, H., “Database Reverse engineering: Models, techniques and strategies”,
Proceedings of the tenth International conference on Entity relationship approach,
1991.

56. Jeffery, S. N., “Mission-Critical Development with open source software: Lessons
learned” , IEEE software Jan / Feb 2004.

57. Johns, T.C., "Measuring Programming Quality and Productivity", IBM System
Journal, vol. 17, no. 1,1978

58. Jorgenson, M., “Experience with the accuracy of software maintenance task effort
prediction models”, IEEE TSE vol. 21, no. 8, pp. 674-68, 1995.

59. Karim, K.H., “ Exploring Data Mining Implementation “, Communications of the
ACM , vol. 44, no.7 , pp 87-93, July 2001.

60. Khoshgoftar, T.M; Allen, E.B; Jones, W.D, “ Data mining for predictors of software
Quality”, International Journal of software Engineering and Knowledge Engineering
vol. 9, no. 5,1999.

61. Khoshgoftar, T.M; Allen, E.B; Jones, W.D, Hudepohl P. John, “Classification-Tree
Models of Software-Quality Over Multiple Releases”, IEEE Transactions on
Reliability, vol. 49, no. 1, March 2000

62. Krakatu professional for C++.

63. Krishnamurthy, S., ” Cave or Community? An Empirical Examination of 100 mature
open source projects”, First Monday, vol. 7, no. 6 , June 2002.

64. Koch. S., “Free/Open Source Software Development “, Idea Group Publishing, 2005

65. Lakhani, K., R.; Wolf, R., “ Why hackers do what they do: Understanding motivation
and effort in free/open source software projects”, Perspectives on Free and Open
Source Software, 2005.

66. Lattemann, C.; Stieglitz, S., “Framework for Governance in open source communities
“ , Proceedings of the 38th Hawai International Conference on System Sciences ,
2005.

67. Lee, S.C .:Lee, E.T , “Fuzzy sets and neural networks”, Journal of Cybernetics, vol. 4
no.2, pp. 83-103,1974.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68. Len, B.; Clements, P.; Kazman, R., “Software Architecture in Practice (2nd edition),
; Addison-Wesley 2003.

69. Leveson, N.,G., “Stretching the limits of Software engineering” , Communications of
the ACM, Feb 1997, vol. 40, no. 2.

70. L i, Y.E , “Applications artificial neural networks and their business applications” ,
Information and Management, vol. 27, pp. 303-313, 1994.

71. Mary, S.; Garlan, D, “Software Architecture: Perspectives on an emerging discipline
”, Upper Saddle River, NJ Prentice Hall, 1996.

72. Mamie, L. H., “ Software Testing Fundamentals: Methods and Metrics”. John Willey
& Sons.2003

73. Majardomo- A Bugzilla discussion group.

74. Mehmud, K. “ Data Mining: Concepts, Models, Methods, and Algorithms” .
John Wiley & Sons, 2003.

75. Ming-Syan , C.; Han, J; Yu, P.S.,” Data mining: an overview from a database
perspective”, IEEE Transactions on Knowledge and Data Engineering, vol. 8 , no. 6
, Dec 1996, pp .866-883

76. Mertoguno, J.S; Paul.R; Bourbakis, N.G; Ramamoorthy, C.V “A Neuro-Expert
system for the prediction of software metrics”. Engineering Application. Artif. Intel,
vo l. 9, no. 2, pp. 153-161,1996.

77. Mendonca, M.G; Basili.V.R; Bhandari J.S; DawsonJ, “An approach for
improving existing measurement frameworks”. IBM Systems Journal, vol. 37, no .4.
1998.

78. McLellan.S; A1 Roesler; Fei.Z, Chandran.S; and Spinuzzi.C, “Experience using
web-based shotgun measures for large -system characterization and improvement”,
IEEE Transactions on Software Engineering, vol. 24, no.4 ,April 1998.

79. Mendonca, M.G; Basili, V.R., ” Validation of an approach for improving existing
measurement frameworks”, IEEE Transactions on Software Engineering, vol.26, no.
6, June 2000.

80. McCabe, T.J, “ A complexity Measure”, IEEE Transactions on Software
Engineering, vol. 2 no.4, pp . 308-320.,December 1976.

81. McLaughlin, L . / ‘Automated bug tracking system : the promise and pitfalls”, IEEE
Software, vol. 21, no. l,pp. 100- 103, Jan-Feb2004.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82. McConell, S., “Software Project survival guide”, Microsoft Press 1998.

83. Ministry of Defense “Requirements for safety related software in Defense
Equipment.” Part 1, Issue 2, Defense standard 00-55, August 1st 1997.

84. Microsoft Visual SourceSafe, http://www.microsoft .com/ssafe/.

85. Mockus, A.; Roy, T .; Herbsleb, J.,D., “Two case studies of Open source software
development: Apache and Mozilla”, ACM Transactions on software engineering
methodology, vol. 11, no. 3, July 2002, pp. 309-346.

86. http://www.mozilla.org/

87. http://www.mozilla.org/roadmap.html

88. http://www.mozilla.org/proiects/seamonkey/

89. http://www.Mozilla.org/docs/.

90. Muller, H., A.; Jahnke, J.H.; Smith, D.; Storey, M.; Tilley, S.; Wong, K., “Reverse
Engineering: A Roadmap”, Proceedings of the Conference on The Future of
Software Engineering, May, 2000

91. Nilson, E., G., “The translation of COBOL data structure to an Entity relationship
type conceptual schema”, Proceedings of the Fourth International conference on
Entity relationship approach, 1987, pp. 170-177.

92. Open Source Initiative. The Open Source definition, 1997.
http://www.opensource.org/osd.html.

93. O’Reilly, T ., ” lessons from open-source software development”, Communications
of the ACM, 1999, vol. 42 , no. 4 , pp. 32-37,

94. Ostrand . J.; Weyuker, E., J., Bell, R.,M., “Where the Bugs are”, Proceedings of
International Symposium on Software Testing and Analysis (ISSTA2004) ,Boston,
MA, July 2004.

95. http://www.openoffice.org/licenses/gpl license.html

96. P. Aiken., ” Data Reverse Engineering: Slaying the Legacy Dragon”, McGraw-Hill,
1995.

97. Patton, Ron, “Software Testing” , Indianapolis, Indiana: Sams publishing, 2001, ppl-
124,281-316

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.microsoft
http://www.mozilla.org/
http://www.mozilla.org/roadmap.html
http://www.mozilla.org/proiects/seamonkey/
http://www.Mozilla.org/docs/
http://www.opensource.org/osd.html
http://www.openoffice.org/licenses/gpl

98. Pamas, D.L.; Lawford, M., “The role of inspection in software quality assurance”,
IEEE Transactions on Software Engineering, vol. 29 , no. 8 , Aug.2003

99. Pamas, D.,L.; John. A.; Kwan, P., “Evaluation of Safety-Critical Software”,
Communications of the ACM, June 1990, vol. 33, no.6.

100. Paul, R.A; Tosiyasu L. Kunii, Yoshihisa Shinagawa, and Muhammad F.Khan
“Software metrics knowledge and databases for project management”, IEEE
Transactions of Knowledge and Data Engineering, vol. 11., no. 1,1999.

101. Paulson, J.,W.; Succi, G.; Eberlein, A., “An Empirical study of Open-Source and
Closed-Source software products”, IEEE transactions on Software Engineering, vol.
30, no. 4, April 2004.

102. Peters J.F.; Pedrycz W., “Software Engineering :An Engineering approach” , New
York : John Wiley & Sons,2000.

103. P. Fleeger, Shari Lawrence: “Software Engineering, Theory and Practice.”
Second Addition. Prentice Hall.

104. Pham.H, “Software Reliability”, New York 2000.

105. Porter. A . and Selby.R, “Empirically-guided software development using metric-
base classification trees”, IEEE Software vol. 7, no. 2 , pp.46-54, 1990.

106. Pressman, R., S., “Software engineering a practitioner’s approach “McGraw-Hill,
1996, Fourth Edition

107. Premerlani, W.,J.; Blaha, M.,R., “An approach for reverse engineering of
Relational Databases”, Communications of the ACM, vol. 35, no. 9 September
1992

108. Platt, J., “ Sequential Minimal Optimization: A fast training Algorithm for
training support vector machines “,Advances in Kernel Methods- Support Vector
Learning, pp. 185-208, Cambridge, M.A, MIT Press.

109. Rational ClearCase, http:// www.rational.com/products/clearcase/.

110. Raymond, E., “ The Cathedral and the Bazaar”, Linux Kongress, May 1997.

111. "Report on the NATO Software Engineering Conference, Garmisch, 1968" in
Software Engineering Concepts and Techniques, P. Naur and B. R. Randell (eds.),
Petrocelli/Charter, 1976.

112. Robert, B., “Transformational implementation: an example”, IEEE Transactions
on Software Engineering, SE, vol.7, no.l, p. 3-14, Jan. 1981.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.rational.com/products/clearcase/

113. Ruffin, M.; Ebert, C., “Using open source software in product development: A
primer IEEE Software Jan/Feb 2004.

114. Ruff, J., CMPE 440, Software Systems Design Project Lab manual, University of
Alberta, Canada.

115. Smola, J.,A; Scholkopf, B., “A tutorial on support vector regression “ Kluwer
Academic Publishers 2004.

116. Schenker, D.F; Khoshgoftar, T.M, “The application of fuzzy enhancement case-
based reasoning for identifying fault prone models”, Proceedings of Third IEEE

117. International High-Assurance Systems Engineering Symposium, pp. 90-97,
Washington, DC, USA, 13-14 Nov 1998 .

118. Shaver, M.; “Inside the Lizard A Look at mozilla technology and architecture”,
.www.mozilla.org/docs/ora-oss2000/ arch-overview/moz-arch-overview.pdf

119. Shin.M ; Goel, A.L, “Knowledge discovery and validation in software metrics
databases”, Part of the SPIE Conference on Data mining and Knowledge Discovery
Theory, Tools and Technology, 1991.

120. Shirabad, J.,S.; Timothly C. L.; Matwin, C.; “Mining the software repository of a
legacy telephone system”, MSR 2004, International Workshop on Mining Software
Repositories. 25th May 2004, Edinburgh, Scotland, UK.

121. http://sourcechange.sourceforge.net

122. Spinellis, D.; Szyperski, C., “ How is open source affecting software
development?”, IEEE Software published by IEEE computer society. Jan-Feb 2004.

123. Stamelos, I.; Angelis, L.; Oikonomou, A.; Bleris, G.,L., “Code quality analysis in
open source software development “ Information Systems Journal, 2000, vol. 12, pp.
43-60.

124. Thomas J.O.; Weyuker, E.,J., “A tool for mining Defect Tracking systems to predict
fault-prone files” ”, International Workshop on Mining Software Repositories. 25th
May 2004, Edinburgh, Scotland, UK.

125. Vapnik, V., “Statistical Learning Theory” New York: Wiley, 1998.

126. Van. F; Demeyer, S., “Mining version control systems for frequently applied
changes”, MSR 2004, International Workshop on Mining Software Repositories.
25th May 2004, Edinburgh, Scotland, UK.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.mozilla.org/docs/ora-oss2000/
http://sourcechange.sourceforge.net

127. Wang, J., “Data Mining: Opportunities and Challenges Idea Group Publishing
2003

128. Whittaker, J.A ; Jorgensen. A, ” Why Software Fails”, Software Engineering Notes,
vol. 24 no. 4,July 1999, pp. 81-83.

129. Waters, R.C., “The programmer’s apprentice: A session with KBEmacs”, IEEE
Transactions on Software Engineering , vol.l 1 no.l 1, ,pp. 1296-1320, November
1985.

130. Wittig. G, “Estimating Software Development effort with connectionist models
Working Paper Series “, Monash University, 1995.

131. Williams, C.,C.; Hollingsworth, J. K., “Bug driven Bug finders”, International
Workshop on Mining Software Repositories. 25th May 2004, Edinburgh, Scotland,
UK.

132. XU.Z; Khoshgoftar, T.M; Ellen, E.B, ” Prediction of software faults using fuzzy
linear regression modeling”, Proceedings of the Fifth IEEE Symposium on high
assurance, Albuquerque, New Mexico, November 15-17 2000.

133. Xu N., “ An Exploratory study of Open Source Software based on Public Project
Archives”, Thesis, the John Molson School of Business, Concordia University,
Canada, 2003

134. Yuan.X; Koshgoftar, T.M; Allen, E.B, ”An application of fuzzy clustering to
software quality prediction”, 3rd IEEE Symposium on Application -Specific
Software Engineering technology, Richardson, Texas, March 24-25,2000.

135. Yang, H; Ward, M., “ Successful Evaluation of Software Systems” Artech House
2003

136. Zimmermann, T.; Weibgerber, P., “Preprocessing CVS data for Fine-Grained
Analysis”, International Workshop on Mining Software Repositories. 25th May
2004, Edinburgh, Scotland, UK.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

Program 5.1

#!/usr/bin/perl

open (OUTF, " » C : /perl/bin/mybugs2 . txt") or die $
open (INF, "C:/perl/bin/mybugsl.txt") or die $!;
0datal=<INF>;

foreach $datal(Qdatal)

{

0datal= grep(/ARCS file:/,Qdatal);
}

print OUTF @datal;
close(INF);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Program 5.2

open (INF, "C:/perl/bin/mybugs2.txt") or die $!;
while ($line= <INF>)

{
$line =~ s/RCS file\://;

$line =~ s/\/cvsroot\/mozilla//;

$line=~s/\\//;

$line =~ s/\,v\\//;

$line =~ s/\,v//;

chomp($line);
print OUTF "$line \n";

close (INF);

close (OUTF);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Program 5.3
#!/usr/bin/perl

open (OUTF, " » C :/perl/bin/mybugs4 . txt") or die $!;

#This Program extracts all files with ".cp" or ".cpp
#extention.

! /usr/bin/perl

$count=0;

open (OUTF, " » C :/perl/bin/finalbugs. txt") or die $!
open (INF, "C:/perl/bin/mybugs4.txt") or die $!;
while ($line= <INF>)

{

if ($line =~ /\.cp/)

{

$count++;

chomp($1ine);
print OUTF "$line \n";
print " $count $line \n ";

}

}

close (INF);

close (OUTF);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Program 5.4

#This program extracts all ".h" files .

#!/usr/bin/perl

$count=0;

open (OUTF, ">>C:/perl/bin/finalbugs.txt") or die $

open (INF, "C:/perl/bin/mybugs4.txt") or die $!;

while ($line= <INF>)

{

if ($line =~ /\.h$/)

{

$count++;

chomp($line);

print " $count $line \n

print OUTF "$line \n";

}

}

close (INF);
close (OUTF);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Program 5.5
This program generates filenames along with their
complete paths.

#!/usr/bin/perl

print "Which file do you want to edit?\n";
$filename = <STDIN>;

open (line, $filename) || die("Could not open file\n");

open (fpw, '>dirl.txt') || die("Could not open file\n")

$text = <line>;

$i=0;

while($text)
{

if ($result=$text=~/.(\S+):/)
{
$path_name = $1;

}
elsif ($result=$text=~/A\w/)

{
chomp($text);
print fpw ".$path_name:$text\n";

}
else

{
print fpw "\n";

}

$ t e x t = < l i n e > ;

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Program 5.6

! /usr/bin/perl

$count=0;

open (OUTF, " » C :/perl/bin/finaldir. txt") or die $
open (INF, "C:/perl/bin/dirl.txt") or die $!;
while ($line= <INF>)

{

if ($line =~ /\.h$/)

{
$count++;

chomp($line);
print " $count $line \n
print OUTF "$line \n";

}
}

close (INF);
close (OUTF);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Program 5.7
#This program extracts all ".cpp" filenames from dirl.txt

#!/usr/bin/perl

$count=0;

open (OUTF, " » C :/perl/bin/f inaldir.txt") or die $!;
open (INF, "C:/perl/bin/dirl.txt") or die $!;
while ($line= <INF>)

{

if ($line =~ /\.cpp/)

{
$count++;

chomp($line);
print " $count $line \n
print OUTF "$line \n";

}
>

close (INF);
close (OUTF);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

Program 5.8

#This program reads the two text file named as finaldir.txt
#and finalbugs.txt and then writes the result of operation
#to the text file result.txt.

#!/usr/bin/perl

my $found;

open (OUTF, " » C :/perl/bin/result. txt") or die $!;
open (INF1," C :/perl/bin/finaldir.txt") or die $!;
open (INF2, "C:/perl/bin/finalbugs.txt") or die $!;
my Sdatal;

my @data2;

6datal=<INFl>;

@data2=<INF2>;

foreach $datal(Sdatal)

{
$found=0;

foreach $data2(0data2)

{
if ($datal=~m //s$data2$/)

{
$found++;

}
}

print OUTF " $datal $found \n ";

}
print "\n";

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Metrics-Delta Data set

Program-5.9

#This program reads the first text file generated from
#Mozmetrics report in, which data is given in the format
#of Filenames, Class names, Sloe and converts it as
#Filenames = Class names, Sloe. This conversion is done for
#the ease of creating data structure from a single text
#line

open (INF, "C:/perl/bin/ClassSloc.csv") or die $!;

open (OUTF, "»C: /perl/bin/classSlocl. txt") or die $!;

while ($line= <INF>)

{
0ary= split/,/,$line;

print OUTF "$ary[0]=$ary[1],$ary[2]\n”;

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

Program-5.10

#This Program is developed to read a text file in which
#data is in the format of Filename =Class name, Sloe and
#create a data structure named as Hash of Arrays and will
#convert data in the form of
#File name= Class namel, Sloe
Class name2, Sloe

open (I N F , "C:/perl/bin/classSlocl.txt") or die $!;

open (OUTF1, " » C : /perl/bin/classSloc2 . txt") or die $!;

%hashofclasses=();

while ($line= < IN F >)

{
($class,$defect)=split/=/,$line;

push (6{$hashofclasses{$class}},$defect);
}

for $class (keys %hashofclasses)

{
print 0UTF1 "$class=\n @{ $hashofclasses{$class}}\n"

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Program-5.11
#This program is written to add all the Sloe in one one
#file named as tloc (total lines of program for all classes
#in a file) and divide Sloe of individual class with tloc.
#This division was performed to get percentage of a class
#in a file so that the defects are assigned according to
#their specific percentage. A class with higher value of
#Sloc will get higher portion of a defect. Greater the
#lines of code per class the greater the chances of errors
#are there. The output is
#File name, Class name, Contribution factor

open (INF, "c:/perl/bin/classSloc2.txt") or die $!;

open (OUTF, " » c : /perl/bin/classSloc3 . txt") or die $!;

%hashofclasses=();

while ($line=<INF>)

{

if ($line =~m /A\s\w/)

{

@ary=split/,/,$line;

$aryclass[$n]=$ary[0];

$n++;

$aryclass[$n]=$ary[1];

$n++;
}

$tloc=0;

for $n(Saryclass)

{

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if ($n=~m/A\d/)

{ $tloc=$tloc+$n;}

}

if ($line =~m /Ac:\/mozilla/)

{ $filename=$line;

@aryclass=();

}

if ($line =~m /A\n/)

{

print OUTF "$filename\n";
for $n(0aryclass)

{
if ($n=~m/A\D/)

{ print OUTF "$n\n";

}

if ($n=~m/A\d/)

{

$b=$n;

$c=$b/$tloc;

$c=sprintf("%.3f",$c);

print OUTF "$c\n";
}

}

}

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Program-5.12

#This program reads each file name and its defects from
#delta data set, searches for that particular file from the
tresults of Program-5.11 and when it finds out the file it
#is searching for, it multiplies the defect value to all
#the classes that belong to a file. Since the execution of
#program will assign the defects to individual classes
#there is no need to keep the data structure hash of array
#instead the out put will be in the format
#File name, Class name, Defects.

open (INF1,"C:/perl/bin/class-h-cpp.txt") or die $!;

open (INF2, "C:/perl/bin/classSloc3.txt") or die $!;

open (OUTF,">>C:/perl/bin/classSloc4.txt") or die $!;

$count=0;

while ($linel= <INF1>)

{
$defects=0;

if ($line =~m /A\d$/)

{next;}

$defects = readline (INF1);

open (INF2, "C:/perl/bin/classSloc3.txt") or die $!;

while ($line2= <INF2>)

{
if ($linel=~m/A$line2$/)

{
$file=$line2;

while ($line2= <INF2>)

{

if ($line2=~m/Ac:/)

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{last;}

push @ary,$line2;

foreach $_(@ary)

{

if ($_=~m/A\s\D/)

{

print OUTF "$file,$_";

}

if ($_=~m/A\d/)

{

$_=$_*$defects;

print OUTF "$_\n";

}
}

}

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Program-5.13
#This program reads the first text file generated from
#Mozmetrics report in which the data is given in the format
#of Filenames, Class names :: Method name, Sloe and
#converts it as Filenames =Class names : : Method name,
#Sloc. This conversion is done for the ease of creating
#data structure from a single text line.
#File name =Class name : : Method name, Sloe

open (INF, "C:/perl/bin/methodSloc.csv") or die $!;

open (OUTF, " » C :/perl/bin/methodSlocl. txt") or die $!;

while ($line= <INF>)

{

@ary= split/,/,$line;

print OUTF "$ary[0]=$ary[1],$ary[2]\n";

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

Program-5.14
#This program will convert the given data File name = Class
iname:: Method name, Sloe into hash of arrays. The file name
#is a hash key and the array contains class names followed by
#the method name and Sloe per method. The execution of this
#program extracts all the classes (along with their methods
#and Sloe per method) that belong to #one file.
#File name =
#Class namel::Method namel, Sloe
#Class name2::Method namel, Sloe

open (I N F , "C:/perl/bin/methodSlocl.txt") or die $!;

open (0U T F 1 , " » C : /perl/bin/methodSloc2. txt") or die $!;

%hashofclasses=();

while ($line= <IN F>)

{

($class,$defect)=split/=/,$line;

push (@{$hashofclasses{$class}},$defect); }

for $class (keys %hashofclasses)

{

print 0UTF1 "$class=\n @{ $hashofclasses{$class}

}\n";

}

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Program-5.15

#This Program extracts all the methods that belong to a
#particular class in a file and then it sums up Sloe for
#all the methods that belong to a single class. The result
#would be File name, Class name, Tsloc.
#Where Tsloc stands for total source lines of program for
#all methods that belong to a particular class in a single
#file

open (INF, "c:/perl/bin/methodSloc2.txt") or die $!;

open (OUTF, "»c:/perl/bin/methodSloc3. txt") or die $!;

%hoh=();

while ($line= <INF>)

{

if ($line =~m /Ac:\//)

{

$filename=$line;

%hashofclasses=();

tloc=0;

$ttloc=0;

§defects=();

}

if ($line =~m /\:\:/)

{

($class,$defect)=split/\:\:/,$line;

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

push (0{$hashofclasses{$ciass}},$defect);

}

if ($line =~m /''An/)

{

print OUTF "\n";

print OUTF "$filename";

for $class (keys %hashofclasses)

{

@defects= 0{$hashofclasses{$class

$tloc=0;

foreach $defects (©defects)

{

01oc=split/,/,$defects;

$nloc=$loc[1];

$tloc=$tloc+$nloc;

}

print OUTF "$class,$tloc\n";
$ttloc=$ttloc+$tloc;

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Program-5.16

#This program adds Tsloc for all the classes in a file and
#divide each class by Ttsloc where Ttsloc stands for total
Isource lines of Program for all classes in a file. This
#division is performed to get the percentage for assigning
#defects (we call it contribution factor)for each class in
#a file. File name, Class name, Contribution factor.

open (INF, "c:/perl/bin/methodSloc3.txt") or die $!;

open (OUTF, ">>c:/perl/bin/methodSloc4.txt") or die $!;

%hashofclasses=();

while ($line=<INF>)

{

if ($line =~m /A\s\w/)

{

@ary=split/,/,$line;

$aryclass[$n]=$ary[0];

$n++;

$aryclass[$n]=$ary[1];

$n++;

}

if ($line =~m /Ac:\/mozilla/)

{

$filename=$line;

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%hashofclasses=();

@aryclass=();

}

if ($line =~m /A\n/)

{

print OUTF "$filename\n";

$tloc=0;

for $n(Saryclass)

{

if ($n=~m/A\d/)

{ $tloc=$tloc+$n;}

}

if ($tloc!=0)

{

for $n(Qaryclass)

{

if ($n=~m/A\D/)

{print OUTF "$n\n";}

if ($n=~m/A\d/)

{$c=$n/$tloc;

$c=sprintf("%.2f",$c);

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

print OUTF "$c\n";

}

}

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

Program-5.17
#This program will assign defects count at the level of
#classes. For this assignment the delta data set is
#reopened, each file name and its respective defect count
#is read by the Program and assigned to the class that
#belong to this particular file by multiplying defects with
#contribution factor to obtain File name, Class name,
#Defects per Class

open (INFl,"C:/perl/bin/class-h-cpp.txt") or die $!;

open (INF2, "C:/peri/bin/methodSloc4.txt") or die $!;

open (OUTF,">>C:/perl/bin/methodSloc5.txt") or die $!;

while ($linel= <INF1>)

{

$defects = 0;

if ($line =~m /A\d$/)

{next;}

$defects = readline (INFl);

open (INF2, "C:/perl/bin/method4.txt") or die $!;

while ($line2= <INF2>)

{

if ($linel=~m/A$line2$/)

{

$file =$line2;

while ($line2= <INF2>)

{

if ($line2=~m/Ac:/)

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{last;}

push 0ary,$line2;

}

foreach $_(6ary)

{

if ($_=~m/A\D/)

{

print OUTF "$file,

}

if ($_=~m/A\d/)

{

$cd=$_*$defects;

print OUTF "$cd\n";

}

}

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

Program 5.18

#This program is developed to add defects count obtained
#from both classes and methods and get the resultant file
#Input File: A.txt [Figure 5.12]
#Input File: B.txt [Figure 5.17]
#Output file: C.txt [Figure 5.19]

open (OUTF, "»C:/perl/bin/classSloc7 . txt") or die $!;

open (INFl,"C:/perl/bin/classSloc6.txt") or die $!;

open (INF2, "C:/perl/bin/methodSloc8.txt") or die $!;

while ($datal= <INF1>)

{

if ($datal=~m/c:/)

{

@aryl=();

0aryl=split/,/,$datal;

$filenamel=$aryl[0] ;

$classnamel=$aryl[1] ;

$defectsl=$aryl[2] ;

open (INF2, "C:/perl/bin/methodSloc8.txt") or die $

while ($data2= <INF2>)

{

if ($data2=~m/c:/)

{

0ary2=();

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

@ary2=split/,/,$data2;

$filename2=$ary2[0];

$classname2=$ary2[1] ;

$defects2=$ary2[2];

}

if ($filenamel=~m/A$filename2$/

$classnamel=~m/A$classname2$/)

{

$defeetsl=$defeetsl+$defeets2;

last;

}

}

chomp $filename1;chomp $classnamel;chomp $defects

print OUTF "$filenamel,$classnamel,$defectsl\n";

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Program 5.20

#This program joins the defects count at the level of
#classes with their respective metric values

open (INFl,"C:/perl/bin/class-metrics.csv") or die $!;

open (INF2, "C:/perl/bin/classSloc7.txt") or die $!;

open (OUTF, " » C :/perl/bin/classSloc8 . txt") or die $!;

Label A : while ($datal= <INF1>)

{

if ($datal=~m/c:/)

{

@aryl=();

@aryl=split/,/,$datal;

$filenamel=$aryl[0];

$classnamel=$aryl[1];

$defectsl=0;

open(INF2,"C:/perl/bin/classSloc7.txt") or die

$! ;

Label A : while ($data2= <INF2>)

{

if ($data2=~m/c:/)

{

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

@ary2=();

0ary2=split/,/,$data2;

$filename2=$ary2[0];

$classname2=$ary2[1];

$defects2=$ary2[2] ;

>

if ($filenamel=~m/A$filename2$/ &

$classnamel=~m/A$classname2$/)

{

chomp

$aryl[0],$aryl[0],$aryl[1] ,

$aryl[2],$aryl[3],$aryl[4] ,

$aryl[5],$aryl[6] , $aryl[7] ,

$aryl[8],$aryl[9],$aryl[10] ,

$aryl[11],$aryl[12] ,$aryl[13] ,

$aryl[14],$aryl[15],$aryl[16] ,

$aryl[17],$aryl[18],$aryl[19],

$aryl[20],$aryl[21],$aryl[22]

,$aryl[23],$defects2;

print OUTF
"$aryl[0],$aryl[1],$aryl[2],

$aryl[3],$aryl[4],$aryl[5],

$aryl[6],$aryl[7],$aryl[8],

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

$aryl[9],$aryl[10],$aryl[11],

$aryl[12],$aryl[13],$aryl[14] ,

$aryl[15],$aryl[16],$aryl[17] ,

$aryl[18],$aryl[19],$aryl[20] ,

$aryl[21],$aryl[22] , $aryl[23] ,

$defects2";

last;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

