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Abstract 

Vertical track stiffness (or track modulus) is generally accepted as one of the key structural 

properties of track which impacts the bearing capacity, dynamic response of passing trains, quality 

of track geometry, and track components’ life. Although it is known that track stiffness parameters 

can potentially provide useful information for track condition assessment, there is a lack of 

understanding of factors affecting the track stiffness measurements such as the effects of track 

geometry variations. For this reason, attempts to establish an automatic framework for track 

condition assessment using a track stiffness measurement system are limited. In this context, this 

thesis develops methods for assessing the track stiffness using vertical track deflection (VTD) 

measurements. 

First, the effectiveness of using measured data from a continuous track stiffness measurement 

system for estimating track modulus and rail bending moments is investigated. Developed finite 

element models are employed to study the impacts of applied loads and track modulus on the 

resulting VTDs and rail bending moments. The relationship between the VTDs and track modulus 

and bending moments are established using artificial neural networks and wavelet-based 

techniques. Specifically, local variations of track modulus for different track section lengths are 

estimated from VTD measurements while the local extremum values of bending moments are also 

quantified.  

Second, the effects of track geometry and other factors on the VTD measurements are investigated 

in detail. To understand the relationship between track modulus and track geometry in the 

measured VTD data, dynamic simulations are conducted to simulate the stochastic variations of 

track modulus and track geometry. A novel blind source separation technique is developed to 

reveal the track geometry and track modulus information separately using the numerical VTD 

measurements. Subsequently, the methodology is further improved and validated with field data 

collected from a study site. The track geometry variations and VTD collected at the study site 

support the proposal of using a continuous track stiffness measurement system for both track 

stiffness and track geometry quality evaluations. The investigation of the field VTD data also 

reveals the impact of motions of the vehicle carrying the track stiffness measurement system on 
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the reading of VTD values. Finally, conclusions and recommendations for future research are 

included in the thesis. 
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Chapter 1: Introduction  

1.1. Description of problem 

With the total length of more than 48,000 kilometers, the Canadian railway network stands out as 

the fifth-longest network in the world, which reflects its vital role in the Canadian infrastructure 

system. In fact, 70% of the country’s goods are transported by the heavy haul railway [1]. As the 

economy has been rapidly growing, the demand for higher transport volume and speeds is expected. 

As a result, timely inspections of the railway infrastructure for a proactive maintenance approach 

is especially required to prevent potential risks, ensure the safety of the railway networks, and 

minimize the life-cycle costs. 

One of the most challenging tasks in management of the civil infrastructure system (CIS) is the 

maintenance of existing structures. Among different components of CIS, railway systems are 

essential parts and they are considered as “the blood lines” of almost every country. In addition to 

the aging material, railway lines are exposed to a harsh environment that contributes to their 

structural degradations. In the USA, broken rails or welds and track geometry defects have been 

reported as the leading causes of derailments [2,3]. In 2016, specifically, the Federal Railroad 

Administration (FRA), Office of Safety Analysis indicated 26.9% of train accidents are due to 

track related causes (e.g. track geometry defects, broken rails and welds) [4]. In Canada, 1,091 rail 

accidents were reported in 2017, where 55% of the accidents were related to main-track and non-

main-track derailments. In terms of potential risks to the public and financial loss, main-track 

collisions and derailments are among the most serious categories although these problems make 

up 7.3% of the total number of occurrences. Also, track-related factors constituted 35% percent of 

the main-track problems (ten-year average from 2007 to 2017) [5]. Therefore, it is necessary to 

develop an automatic railway structural health monitoring framework for assessment of rail and 

track performance. 

Evaluation of track performance by means of vertical track deflections (VTD) is one of the 

commonly used methods for track assessment. Soft subgrades or low track modulus (defined as 

the vertical stiffness of the subgrade components that form the track’s foundation) result in large 

rail deflections and contribute to the degradations of track’s components and rail failures. Recently, 

continuous track stiffness measurement systems have been developed in Europe, North America, 
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and Asia for VTD measurements  [6-9]. The difference among the systems is either relative or 

absolute deflections are recorded over long distances, from which subgrade conditions along the 

rail can be assessed globally. Although one of the first VTD systems was developed around two 

decades ago [9], mathematical relations between track modulus and vertical rail defections are 

simplified and require further investigations. Given the fact that rail deflections are greatly affected 

by loading conditions, track geometry, and other factors, one of the main objectives of this study 

is to develop a methodology for estimating the track modulus and its spatial variation over long 

distances considering track geometry effects. The outcome of this research is expected to facilitate 

a better understanding of the root causes of track-related problems by providing useful information 

about track stiffness as well as track geometry. 

In addition, rail bending moments and the corresponding stresses are key parameters to assess the 

structural behaviour of rail under train loads [10]. Bending stresses are magnified by operational 

and environmental conditions. For instance, various stresses such as residual, thermal, and wheel-

rail contact are induced during manufacturing and operating processes [11-14]. Under 

environmental effects, rail stress along thousands of kilometers of track may vary unfavorably. 

Even though different studies were conducted to quantify the variations of rail stress using 

numerical models, analytical approaches, and track-side measurement techniques [15-18], there 

are limited methods that can evaluate operational rail stresses over long distance. The development 

of VTD systems have opened new opportunities for investigating rail bending stress [19-22]. Even 

so, estimations of rail bending stress from moving cars presented in the literature require more 

sophisticated analysis so that uncertainties associated with track stiffness variations and other 

factors related to the measurement system are considered.  

As mentioned above and detailed in the next chapter, there are considerable efforts devoted to the 

developments of train-mounted systems for track modulus and stiffness measurements. However, 

there are major concerns regarding the implementations of these systems in existing railway 

structures:  

• Further investigations for interpreting VTD measurements are required. For instance, the 

track stiffness measurement system MRail [23] was developed mainly based on the 

numerical Winkler model that relates the vertical track modulus to the corresponding 
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deflection under known wheel loads. However, the Winkler model assumes rails as 

continuous beams on elastic foundation with constant track modulus, which is not 

necessarily true;  

• Moreover, most processing techniques for relating measured data to track stiffness mainly 

rely on statistical analysis, i.e. mean and standard deviation [22,24-26]. It is widely known 

that vertical rail deflection measurements are highly non-stationary due to the variations of 

track stiffness, track geometry, and superstructure’s structural properties. Therefore, other 

techniques are required to extract meaningful features from the data;  

• Track geometry variations are considered as the primary factors coinciding with the 

degradation of track performance. In fact, track irregularities have been utilized to define 

track quality in different manuals and studies. However, most available continuous track 

stiffness measurement systems ignore or simplify the effects of track geometry on the 

recorded deflection data. Due to the presence of these effects in the measured data, track 

stiffness cannot be accurately evaluated; 

• Measured vertical track deflections are a combination of void, seating, and contact 

deflections together with the influence of track roughness (or track geometry). As these 

types of information are usually prominent in the raw VTD data, further validations of the 

usefulness of using track stiffness measurement systems for providing information about 

substructure conditions are required.  

1.2. Objectives and Scope 

The main objective of this PhD study is to develop different methodologies to quantitatively 

evaluate track modulus, track geometry variations, and rail bending moments through a continuous 

track stiffness measurement system. The specific research objectives of this doctoral research are 

outlined below: 

Objective 1: Evaluate the track modulus and its variation using vertical track deflection data 

• Utilize available finite element models (FEMs) to examine the relationship between the 

numerical VTD and the corresponding varying track modulus;  

• Propose an artificial neural network (ANN)-based method to estimate the varying track 

modulus from the VTD data; 
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• Propose an ANN-based method to estimate the track modulus’ variations from the VTD 

data. 

Objective 2: Quantify the maximum positive and negative rail bending moments using continuous 

track stiffness measurement data 

• Utilize extracted VTD measurements from the developed FEMs to investigate the impacts 

of varying track modulus on rail bending moments; 

• Propose two methods to estimate the local extrema of positive and negative bending 

moments from VTD data using ANN and Wavelet Multiresolution analysis (WMRA).  

Objective 3: Propose a blind source separation method to separate the track geometry information 

from VTD measurements for accurate vertical track stiffness evaluations. 

• Dynamic models of flexible track with moving wheelsets are developed to simulate the 

effects of track geometry variations and varying track modulus on the track response under 

moving loads; 

• Investigate the effects of individual track geometry parameters on the simulated VTD 

measurements; 

• Propose a blind source separation method to separate the track geometry information from 

VTD measurements so that the processed data can reveal information about the vertical 

track stiffness. 

Objective 4: Develop an improved methodology for separating track geometry and track modulus 

information using real-life continuous track stiffness measurement data 

• Analyze the track geometry and VTD measurements to validate the proposed blind source 

separation technique for evaluating track quality and subgrade conditions using VTD 

measurements only; 

• Further investigate the effects of individual track geometry parameters and other factors on 

VTD data and propose solutions to minimize these effects. 

In this study, VTD data measured using a continuous track stiffness measurement system 

developed at the University of Nebraska – Lincoln (commonly known as the MRail system) was 

selected for analysis and validations primarily due to its application on Canadian railway lines. 
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Although the current methodologies are proposed based on the MRail VTD data, other VTD data 

measured by similar continuous track stiffness measurement system are still applicable. However, 

minor changes in the computational steps would be needed as VTD data from different systems 

are different due to the unique measurement method in each system.  

1.3. Research contribution 

Several continuous track stiffness measurement systems have been developed for track stiffness 

evaluations. However, investigating the effects of track geometry on the recorded VTD data is 

limited or only longitudinal track geometry (i.e. profile) is considered as the primary effect. The 

main contribution of this thesis is the development of a detailed methodology for evaluating track 

modulus variations and track quality from VTD measurements. The methodology facilitates better 

track quality evaluations by accurately estimating track modulus as well as high track geometry 

variations. A detailed investigation is conducted to confirm the substantial effects of track 

geometry parameters other than the profile on the VTD measurements. To the best of the author’s 

knowledge, this is the first study that introduces the concept of blind source separation to VTD 

measurements. Additionally, the study proposes different methodologies for continuously 

estimating track modulus and rail bending stresses using VTD measurements putting a forward 

step to the structural integrity assessments of rail component.  

1.4. Organization of the thesis 

This thesis is presented in a paper-based format. The thesis consists of seven chapters, including 

this first introductory chapter: 

Chapter 2 covers necessary literature review for this study. First, different types of loads and rail 

stresses are reviewed. Then, damage mechanisms in rail steel and the impacts of track quality on 

the rail life are presented. The chapter includes an introduction about track geometry 

measurements followed by a review of methods for track quality assessments. This chapter also 

presents the important role of track modulus in track performance. A detailed review of continuous 

track stiffness measurement systems is also presented. 

Chapter 3 presents the study conducted to estimate track modulus and its variation from VTD data 

measured by a continuous track stiffness measurement system (i.e. MRail). Track stiffness 
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measurement techniques are reviewed followed by the details about the MRail system. The chapter 

includes two methodologies that employ ANNs, statistical, and frequency analysis for estimating 

track modulus average and standard deviation from simulated VTD data. Comparisons with the 

related studies are also presented to show the effectiveness of the current methods. 

Chapter 4 presents the study about the impacts of VTD on rail bending moments. A methodology 

that utilizes Radial basis function neural networks and Wavelet resolution analysis for estimating 

the local extrema of positive bending moments from the corresponding VTD measurements is 

presented. The local minima of negative bending moments are also estimated. The effectiveness 

of the methods is validated using the developed FEM with stochastic track modulus.  

Chapter 5 presents a methodology that utilizes a new single channel blind source separation 

technique to separate the track geometry effects from the VTD for evaluating track modulus. 

Background and mathematical development of the proposed method are first introduced. The 

effectiveness of the proposed method is first evaluated by its performance in separating a single 

mixed synthetic signal into originally separated signals. The method is subsequently used to 

analyze the VTD signals which are extracted from a dynamic model developed by using a 

multibody dynamic simulation package and ABAQUS. The effects of random track geometry and 

varying track modulus are also simulated in the model. Finally, the results, effectiveness and 

limitations of the proposed method are discussed.  

Chapter 6 presents a modified blind source separation technique for evaluating track quality and 

track modulus variations using field VTD data. The track geometry and the MRail VTD data 

measured along a revenue track are analyzed. The estimated variations of the track profile are 

compared with the actual measurements. The proposed flexibility index for track modulus 

evaluations is validated with specific site’s assessments. Furthermore, the chapter presents the 

finding about the significant impact of superelevataion on the VTD measurements. 

Chapter 7 provides conclusions and recommendations for future research.  
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Chapter 2: Background and Literature Review 

2.1. Rail stresses 

A typical structure of a ballasted railway track (Figure 2-1) consists of two main components, i.e. 

superstructure and substructure. Rails, fasteners, and ties make up the superstructure, whereas the 

substructure known as the track’s foundation comprises typically three layers, i.e. ballast, sub-

ballast, and subgrade. The main duty of the rail track is to maintain a smooth surface for trains to 

ride on and to convert the concentrated wheel loads to a low pressure on the subgrades [14,27]. 

Further functions of the substructure can be found in the literature and it is beyond the scope of 

this study [27-30]. 

 

Figure 2-1. Typical layouts of a ballasted railway track 

Rails undergo various stresses due to operational loading conditions and environmental factors. 

Generally, rail stresses are categorized and studied according to these effects individually. Besides 

the bending and shear stresses, contact stresses, thermal and residual stresses are the main stresses 

that rails are subjected to.  

2.1.1. Operational bending and shear stresses 

Moving wheel loads create vertical and lateral bending stresses on rails. Although vertical bending 

stresses are dominant, lateral bending stresses, longitudinal stresses are present in the rail. There 

are static, dynamic, and impact components that constitute a vertical wheel load [31]. The static 

load (which is the vehicle’s gross weight) is magnified by the dynamic component that varies 

depending on the vehicle’s speed and dynamic response of bogies to track geometries. Due to 

irregularities in the rail surface (dipped welds, joints) and wheel material (such as wheel flats, out 



 

8 

 

of round), the impact load occurs and causes increases in static and dynamic components [11,31]. 

In addition to causing bending stresses, the vertical wheel load generates shear stresses which is 

the leading cause of rail web failure at bolt holes [32]. The lateral load, on the other hand, usually 

occurs at curves due to centrifugal forces, or even at a tangent track as a result of the vehicle’s 

lateral dynamic behaviour such as hunting [12,33]. While lateral bending stresses mainly arise 

from the lateral loads, vertical tensile stresses along the rail web are also caused by these lateral 

loads [31]. In addition to causing bending stresses in rails, the movements of vertical and lateral 

wheel loads cause a reversal of these stresses from tension to compression in the rail head and 

from compression to tension in the rail base and vice versa [34]. 

Eccentrical wheel loads applied vertically at a distance from the shear centre of the rail create a 

torque about the centre of twist that contributes to the longitudinal stress in the rail head and base. 

In addition, the torsion in rail influences stresses in the web especially when the torque is 

accompanied by high lateral flanging forces [35]. 

2.1.2. Wheel-rail contract stresses 

The magnitudes of contact stresses between the wheel and rail are significantly higher than other 

stresses in the rail. Generally, the normal contact stress can reach 1500 MPa in normal operation 

conditions [34]. These stresses can be predicted by Hertzian analysis whose theory is based on the 

assumption that the contact surface is continuous. When Hertzian analysis is used, the contact 

surface is modeled as an ellipsoid [12,33].  

Together with wheel loads, maneuver forces due to traction, steering, and braking cause high 

contact stresses and increases in temperature within the small contact surface. Although having 

high magnitudes, contact stresses do not propagate significantly down the rail’s depth. For this 

reason, their influence on crack propagations from the depth greater than 8-15 mm is negligible 

[36-38]. 

2.1.3. Thermal stresses 

The rail/sleeper system is generally considered as a slender column whose buckling can occur 

under compression. Due to the varying temperature condition, a rail is subject to thermal loads as 

the constraints in the longitudinal direction prevent the rail from expansion and compression when 
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the environmental temperature is different from the rail neutral temperature (RNT) [39]. RNT is a 

temperature at which the rail does not undergo any thermal stresses.   

In modern railways, the risks associated with thermal stresses are a particular concern due to the 

use of continuous welded rail (CWR) track where rails are connected by welds rather than bolt 

connections. In a CWR track, the variations of thermal stresses can be high as there are no gaps 

that allow thermal expansions. However, a lower maintenance cost better ride quality are the main 

reasons CWT track is a better option compared to a conventional track whose rail joints and gaps 

are available to reduce the risks of thermal stresses [10]. 

As a CWR track’s behaviour is somewhat similar to a long slender column, the structure is 

susceptible to buckling under compression [10].  High longitudinal compression in rails creates 

high pressure on the ballast until a buckling phenomenon occurs when the ballast’s lateral 

resistance is exceeded [40]. Rail buckling can potentially lead to derailments, one of the leading 

concerns in railway transportation safety. Practically, it is recommended to install rails at a 

relatively high ambient temperature so that they are mostly in tension throughout the year [40-42]. 

While compressions in rails under hot ambient temperature are worrisome issues in railway safety, 

negative effects of tensile thermal stresses in extremely cold conditions on rail failures should not 

be ignored. Under cold temperatures, rails undergo excessive thermal-induced tensile stresses, and 

brittle failures can occur [10,12,42,43].  

2.1.4. Residual stresses 

Residual stress in a rail is formed by manufacturing and straightening processes such as rolling 

and non-uniform cooling [44]. The axial residual stresses are initially tensile in the rail head and 

base which are subsequently modified by service loads. These variations of the residual stresses 

affect rail fatigue. It is evidenced that tensile residual stress near the rail surface has direct 

relevance to crack growth and rail fracture [45]. Moreover, there is a significant difference in the 

residual stress in naturally hard and head hardened rails. Specifically, the values of residual stresses 

are higher in the head hardened rails [42,46]. Different methods for measuring the residual stresses 

include Moire interferometry, saw cut, ultrasonic testing, neutron scattering, etc. [47-49]. As the 

residual stresses vary under operational effects, measurements of their values generally give mixed 

results [10]. 
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2.1.5. Contact shear stresses due to creep forces  

The passage of wheels on rails also generates creep forces at the wheel/rail contact patch. The 

longitudinal creep forces are produced by the traction between rail and wheel. The traction changes 

when braking/accelerating are engaged or when the wheels approach a sharp curve. Transverse 

creep forces are also generated when the wheels are swaying on rails.  Generally, the maximum 

shear stress due to the traction (creep) forces can occur within 2 to 4 mm below the contact surface 

[11,31,33]. 

2.2.  Damage in rail steels and effects of track geometry 

Under the effects of the above-mentioned stresses and environmental conditions, rail steels suffer 

from wear and rolling contact fatigue, the two common types of damage in rail steels [50,51]. 

Wear is described as the loss of steel material from the wheel-rail contact surface and is categorized 

according to factors causing the problem, e.g. abrasive wear, corrosive wear, and adhesive wear 

[51]. The load capacity of rail is significantly reduced due to wear as it reduces the cross-sectional 

area and moment of inertia of the rail. Fatigue refers to the strength of material being weakened 

due to extensive loading cycles. As a result of repeated overstressing of rail’s surface and 

subsurface, cracks are initiated and propagate which leads to rolling contact fatigue (RCF) damage 

[52]. It was shown that a rail material with a higher wear rate has a lower rate of rolling contact 

fatigue damage [53]. It is because increasing wear volume also removes microcracks which 

reduces fatigue failures. Wear together with RCF defects poses a direct threat to rails [54].  

It is not uncommon that railway lines, especially heavy haul lines are subjected to excessive 

loadings that cause plastic deformations in the rail material. By definition, plastic flows (or plastic 

deformations) occur when wheel/rail contact stresses exceed the material strength of the rail steel. 

Surface plastic deformations cause form changes on a rail (which directly impacts the service life 

of a track), whereas sub-surface plastic deformations contribute to the formations of wear flakes 

and fatigue cracks [55]. Moreover, the presence of track geometry defects increases dynamic 

wheel/rail loads, which in turn accelerates rail fatigue defects and thus reduces the rail’s service 

life [56]. Comprehensive studies on effects of track geometry variations on dynamic wheel/rail 

loads and rail defects can be found in [27,57,58]. In the next section, definitions of track geometry 
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parameters and their measuring methods are presented, which is followed by an overview of track 

quality assessments using track geometry parameters.  

2.3. Track geometry measurements  

Track geometry is the geometric layouts of a track in three dimensions in space.  The 

measurements of track geometry are generally taken by locating the rails in the vertical and 

horizontal planes which are standardized in different standards and manuals to ensure safe passage 

of trains [28,59,60]. These parameters typically include gauge, crosslevel, superelevation, warp, 

alignment, and profile. Gauge is the distance between the gauge sides measured at 1.59 cm below 

the top of the two rails of a single railway line. Crosslevel is the difference in elevation between 

the two rails measured at top surfaces. Zero crosslevel is the intended design of a tangent track 

whereas the designated crosslevel is equivalent to the designated superelevation on a curved track.  

Superelevation is the designed vertical distance of the outer (high) rail above the inside (low) rail 

on a curved track. Warp is the difference in crosslevels at two points that are less than or equal to 

62’ (18.9 m) apart. Alignment is the relative deviation of the rail’s position measured in the 

horizontal plane. The measurement of alignment can be taken as the maximum mid-offset of the 

rail from a 62’ (18.9 m) or 31’ (9.4 m) chord measured at the gauge side. Profile is the mid-offset 

of a 62’ (18.9 m) chord to the top surface of the rail measured on the longitudinal plane. 

2.4. Track quality assessments  

Generally, track performance is assessed by interpreting the track geometry data. Although the 

assessments can be detailed differently in different standards, two types of assessments, i.e. track 

defects and Track Quality Index (TQI) are generally followed [28,59-62]. 

Track geometry defects and TQI have a direct implication in track safety. It was found that track 

geometry defects are one of the main causes of derailments in the USA and Canada [2]. Out of 

5146 freight train derailments from 2000 to 2014 in the USA, 394 cases are due to track geometry 

defects [3].  In Canada, 27% of main-track derailments in 2018 were due to track-related factors. 

This percentage is 38% considering the 10-year average from 2008 to 2018 [63]. Therefore 

monitoring the variations of track geometry at specific time intervals through the year is mandatory 

so that critical track geometry defects can be timely addressed and repaired to minimize any 

possibility of derailments due to track-related factors [59,60]. In addition, maintaining the margins 
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of track geometry variations also helps to reduce the deteriorations of track components as the 

train-track dynamic interactions are greatly correlated to track geometry [64].  

2.4.1. Track defects 

Track geometry parameters are usually associated with their nominal values to represent ideal track 

conditions. However, track geometry measurements of a revenue track are most likely not equal 

to the nominal values. Therefore, the track geometry parameters are allowed to vary within a 

specific range while maintaining track safety. For instance, Transport Canada’s rules respecting 

track safety (TC TSR) suggests any variations in the track geometry outside the allowable nominal 

ranges are consider defects [60]. According to TC TSR, there are five classes of track that are 

limited by the operating speeds (Table 2-1). The track geometry variations of each class of track 

are specifically regulated. For instance, Table 2-2 shows the lower and upper limits in gauge values 

for different classes. Moreover, TC TSR also recommends railway companies to adopt and 

customize these rules with more stringent requirements.  

Table 2-1. Classes of track and maximum allowable operating speeds [60] 

Class of track 

The maximum allowable operating 

speed for freight trains is  

(mph) 

The maximum allowable operating 

speed for passenger trains is 

(mph) 

Class 1  10 15 

Class 2  25 30 

Class 3  40 60 

Class 4  60 80 

Class 5  80 95* 

* For LRC Trains, 100  

Table 2-2. Gauge’ allowable limits [60] 

Class of track The gauge must be at least (inch) But not more than (inch) 

Class 1  55 3/4"  58"  

Class 2  55 3/4"  57 3/4" 

Class 3  56" 57 3/4" 

Class 4 and 5 56" 57 1/2" 
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2.4.2. Track quality indexes 

Overall, the term Track quality index (TQI) has been widely used in railway engineering and 

standards [28,62]. The most common types of TQI include Standard deviation (SD) of track 

geometry, combined standard deviation, and power spectral density (PSD) of track geometry.  

Individual SD of track geometry is calculated for each parameter (such as gauge, alignment, etc.) 

defined over a track section, typically 200 m long. Individual TQI over track segments (or running 

standard deviation) significantly helps to refine the amount of track geometry measurements and 

facilitate simple assessments and comparisons between track segments. Besides the SD of track 

geometry, developments of new track quality indexes have been an objective of many related 

studies [65]. However, the newly developed TQIs are generally originated from the standard 

deviation of track geometry over a specific distance such as the Gauge Roughness Index, 

Superelevation Index, Surface Index [65]. 

Due to the stringent processing of assessing individual parameters of track geometry, TQI 

computed from combining the SD of different measurements of track geometry (such as alignment, 

cant, gauge, crosslevel, etc.) provides an overall assessment of track quality by a single parameter. 

In this regard, Sadeghi and his colleagues are well-known for their extensive work in developing 

different types of TQI for track quality assessments [66-69]. Another reason for a combined 

different values SD is to emphasize the effects of simultaneous track irregularities on vehicle 

behaviour. For instance, the same level of alignment at curved and tangent tracks is associated 

with different responses in the vehicle and lead to different potential hazards. In this case, 

evaluating track quality by assessing individual track geometry measurements would not be 

accurate [70]; 

2.4.3. Power spectral density (PSD)  

PSD of a track geometry parameter provides the energy of the measured signal with respect to its 

frequency, which can be used for track quality assessment. Specifically, the features of a track 

system that cause an increase in the PSD at a specific frequency can be observed easily in the PSD 

plot. For instance, irregularities and defects such as welds, joints that recurrently present in the 

track data can be easily tracked by PSD plots. The use of PSD for track quality evaluations is 

widely acknowledged and standardized in many countries such as the USA, China, Germany, 
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Britain, and France [71-74]. the following sections provide details formulation of the four 

commonly used PSD standards.  

2.4.3.1. The FRA PSD standard [71] 

The US Federal Railroad Administration (FRA) classifies railway tracks into Class 1 to 6 for 

normal tracks and Class 7 to 9 for high speed tracks. The single-sided PSD functions for random 

track irregularities associated with different classes are described as below: 

PSD of vertical profile: 

 𝑆𝑣(Ω) =
0.25 ⋅ 𝐴𝑣 ⋅ Ω𝑐

2

Ω2 ⋅ (Ω2 + Ω𝑐2)
  (2-1) 

 

PSD of lateral alignment: 

 𝑆𝑎𝑙(Ω) =
0.25 ⋅ 𝐴𝑎 ⋅ Ω𝑐

2

Ω2 ⋅ (Ω2 + Ω𝑐2)
  (2-2) 

PSD of gauge and superelevation: 

 𝑆𝑔𝑎𝑢𝑔𝑒/𝑠𝑢𝑝(Ω) =
𝐴𝑎 ⋅ Ω𝑐

2

(Ω2 + Ω𝑐2) ⋅ (Ω2 + Ω𝑠2)
  (2-3) 

where, 

𝑆𝑣(Ω): PSD of track vertical profile, cm2/(rad/m) 

𝑆𝑎𝑙(Ω): PSD of track alignment, cm2/(rad/m) 

𝑆𝑔𝑎𝑢𝑔𝑒/𝑠𝑢𝑝(Ω): PSD of track gauge and superelevation, cm2/(rad/m) 

Ω: Spatial wavenumber, rad/m 

Ω𝑐, Ω𝑠: Critical wavenumbers, rad/m 

𝐴𝑣, 𝐴𝑎: Roughness coefficients, cm2 ⋅ rad/m 

 



 

15 

 

The spatial wavenumber is the number of wavelengths per unit distance, which means Ω = 1/λ. It 

is recommended that the FRA’s PSD functions are valid within the wavelength from 1.524 m to 

304.8 m. The parameters in equations (2-1) to (2-3) are defined in Table 2-3 

Table 2-3. Coefficients for the FRA’s power spectrum density function  [71] 

Class of track 𝐴𝑣 (cm2⋅rad/m) 𝐴𝑐 (cm2⋅rad/m) Ω𝑐 (rad/m) Ω𝑠 (rad/m) 

Class 1 1.2107 3.3634 0.8245 0.6046 

Class 2 1.0181 1.2107 0.8245 0.9308 

Class 3 0.6816 0.4128 0.8245 0.852 

Class 4 0.5376 0.3027 0.8245 1.1312 

Class 5 0.2095 0.0762 0.8245 0.8209 

Class 6 0.0339 0.0339 0.8245 0.438 

2.4.3.2. German PSD standards  

The German PSD of track geometry is commonly used in European countries and it can generate 

track irregularities with the wavelength varying from 2.5 m to 100 m [73]. 

PSD of vertical profile: 

 𝑆𝑣(Ω) =
𝐴𝑝 ⋅ Ω𝑐

2

(Ω2 + Ω𝛾2) ⋅ (Ω2 +Ω𝑐2)
  (2-4) 

PSD of lateral alignment: 

 𝑆𝑎𝑙(Ω) =
𝐴𝑎 ⋅ Ω𝑐

2

(Ω2 + Ω𝛾2) ⋅ (Ω2 + Ω𝑐2)
  (2-5) 

PSD of gauge and superelevation: 



 

16 

 

 𝑆𝑔𝑎𝑢𝑔𝑒/𝑠𝑢𝑝(Ω) =
𝐴𝑝 ⋅ Ω𝑐

2 ⋅ 𝑎−2 ⋅ Ω2

(Ω2 + Ω𝛾2) ⋅ (Ω2 + Ω𝑐2) ⋅ (Ω2 + Ω𝑠2)
  (2-6) 

where: 

𝑆𝑣(Ω): PSD of track vertical profile, cm2/(rad/m) 

𝑆𝑎𝑙(Ω): PSD of track alignment, cm2/(rad/m) 

𝑆𝑔𝑎𝑢𝑔𝑒/𝑠𝑢𝑝(Ω): PSD of track gauge and superelevation, cm2/(rad/m) 

Ω: Spatial wavenumber, rad/m 

Ω𝛾, Ω𝑐, Ω𝑠: The cut-off wavenumbers, rad/m 

𝐴𝑣, 𝐴𝑎: Roughness constants, m2 ⋅ rad/m 

a: the half-distance of the wheel rolling circle (≅ 0.75 m) 

The parameters in equations (2-4) to (2-6) are given in Table 2-4. 

Table 2-4. The German track PSD parameters  

Parameters 
𝐴𝑎  

(10-7 m2⋅rad/m) 

𝐴𝑝  

(10-7 m2⋅rad/m) 
Ω𝑐 (rad/m) Ω𝛾(rad/m) Ω𝑠(rad/m) 

Low 

irregularities 
2.119 4.032 0.820 0.0206 0.438 

High 

irregularities 
6.125 10.80 0.820 0.0206 0.438 

2.4.3.3. The Chinese PSD standard 

The Chinese Academy of Railway Science (CARS) provides one of the most detailed standards of 

track geometry spectra. Track quality is evaluated based on the lower and higher limits of 

individual PSDs of track geometry parameters. In addition, the PSDs are different for each class 

of track which is defined based on the operational speed, i.e. 200 km/h, 160 km/h, and 120 km/h 

[72]. When evaluating the spectra of a track segment, the closer the spectrum to the lower limit, 

the better quality the track has and vice versa.  

The CARS’s single-sided spectrum of track geometry is defined based on six parameters as below: 

 𝑆(𝑓) =
𝑎𝑓2 + 𝑏

𝑐𝑓2 + 𝑑𝑓4 + 𝑒𝑓2 + 𝑘
  (2-7) 
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where 𝑆(𝑓) is the track irregularity PSD (mm2/(1/m)), f is the spatial frequency in 1/m. The 

spectral coefficients a, b, c, d, f, k for different speed limits can be found in [72]. 

2.4.3.4. The French PSD standards 

The National Society of French railways (SNCF) provides the reference for PSD functions of track 

profiles that vary within the range from 2 m to 40 m. The PSD model is given below: 

 
𝐺𝑟𝑟(𝑛) =

𝐴

(1 +
𝑛
𝑛0
)
3  (2-8) 

where, A is the surface roughness coefficient, which is 308×0.509×10-6 for low roughness and 

308×1.790×10-6 for high roughness; n0 = 0.0489 1/m; n is the spatial frequency (1/m).  

Figure 2-2 demonstrates the PSDs of vertical profiles generated by different standards. It should 

be noted that although the PSD functions are different in these standards, the wavelengths within 

2 to 40 m is always the focus as they are directly related to the safety and reliability issues of a 

track system [62]. 

 

Figure 2-2. Comparison of different PSD’s specifications (vertical profile)  
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2.5. Track modulus 

Track foundation modulus (generally known as track modulus) describes the vertical stiffness of 

the track foundation. It is defined as the vertical supporting force per unit length of rail per unit 

deflection [75]. In other words, it is the coefficient of proportionality between vertical contact 

pressure (at the surface between the rail base and the track foundation) and rail deflection [76]. 

Track modulus is related to fastening systems, ties, and substructure conditions, and is not affected 

by the properties of the rail component [76-79]. The variation of track modulus depends on the 

formation of track foundation such as soil properties and characteristics of subgrade layers. It can 

rapidly change at transition locations along the track such as switches, turnouts, crossing, locations 

between embankments and bridges, transitions between ballasted and slab tracks [80-84]. 

Track modulus is an important parameter for evaluating track performance. It is advised that a 

desirable track modulus should be within a range that is not too low or high [75,81]. A stiff track 

would cause excessive vibrations and increase dynamic effects on the wheel/rail contact surface, 

where rolling contact fatigue (RCF) and wear can further develop [11,26,85]. On the other hand, 

soft track results in excessive deflections under wheel loads, which leads to unstable conditions. 

The quality of the track’s foundation is categorized based on different ranges of track modulus 

whose variations should be small to prevent large deformations (Table 2-5). According to AREMA 

manual, to avoid rail fatigue in bending and unstable ballasts due to excessive deflection, vertical 

rail deflection should be smaller than 6.35 mm (1/4 in). To prevent wheel-rail contact fatigue due 

to hard supports, wear of ties, and ballast, vertical rail deflection should be desirably greater than 

3.175 mm (1/8 in) [86]. 

Table 2-5. Recommended ranges of track modulus 

Track modulus, MPa (psi) Quality References  

< 14 (2,000) Poor (not recommended) [11,75] 

14 (2,000) to 28 (4,000) Average [11,75] 

28 (4,000) to 34 (5,000) Good [11,75] 

34 (5,000) to 69 (10,000) Optimum [11,75,87,88] 

> 69 (10,000) Not recommended [11,75,87,88] 
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2.6. The role of track stiffness measurements for track maintenance decisions 

Understanding the vertical stiffness of the track foundation (track modulus), or the vertical 

stiffness of the entire track structure (global track stiffness) is important for track maintenance 

purposes [75]. Global track stiffness varies in both spatial and frequency domain and depends 

greatly on the applied load and track’s location [14]. The variations of global track stiffness directly 

affect wheel/rail interactions and degradations of the track structure. Therefore, continuous 

measurement of vertical track deflections (or stiffness) together with an appropriate data 

interpretation method enables engineers to optimize the maintenance activities [77]. There are 

three main purposes for the use of vertical track stiffness measurement systems: 1 – Indicate the 

root causes of track performance issues; 2 – Facilitate the decision for upgrading a railway line 

(e.g. increasing speed and axle load); 3 – Monitor revenue and newly built tracks. 

Generally, track performance is assessed by the quality of track geometry. However, when 

concerns associated with track geometry irregularities, ballast, and sub-ballast problems are not 

adequately addressed, the track deflection measurements can be an additional tool to detect the 

root causes of the problems [85]. Typical applications of track stiffness measurement systems 

include identifying foundation-related causes and environmental effects on track performance.  

One of the main goals of using vertical track stiffness measurement systems is to assess the 

capability of a railway line to sustain a higher axle load and speed. This task is challenging as 

knowledge about track performance’s history is limited especially considering the high mileage of 

railway network levels. Although track geometry measurements and visual inspections are 

available, the subgrade conditions are often unknown or can be only partially assessed by standstill 

methods [79,89]. As continuous measurements of track deflections are available, it is possible to 

continuously measure the track stiffness to locate the track sites that required substructure 

enhancement or further investigations. 

One of the concerns during the design and operations of a track is the desired track deflection and 

the allowable variations of track stiffness for an optimal condition [90]. In the literature, different 

studies were conducted on the contribution of track stiffness on track deteriorations. For instance, 

Lopez Pita et al. [91] concluded that track sections suffering from rapid deteriorations are 

corresponding to short rigid structures such as culverts, bridges, and the transition zones between 
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bridges and embankments. With the availability of continuous track stiffness measurement 

systems, it is possible to evaluate the track stiffness values and variations so that not only newly 

built tracks can be verified but also in-service tracks can be well monitored.  

2.7. Continuous track stiffness measurement systems and their applications 

Recently, track-side (or standstill) and on-board systems are the two common types of 

measurement systems for railway monitoring. In track-side monitoring systems, measurement 

devices are installed at specific locations on the track’s sides for wheel-rail contact loads evaluation, 

bogie performance, rail’s deflection, and track performance [77,88,92]. A major disadvantage of 

track-side systems is only specific locations along the track are measured and thus it is impossible 

for long-distance measurements. On-board monitoring systems, on the other hand, have been 

introduced around two decades ago [9]. The main objective of such systems is to detect wagon, 

wheel, rail local defects, and failures in suspension systems. Measuring sensors are generally 

installed on axle boxes, bogies, and car bodies to primarily acquire vibration signals for fault 

detections [93-95]. Although axle box sensors have been widely used for track irregularities and 

RCF defects, their service life is limited due to the direct impacts of wheel-rail impact loads [96].  

In addition, railway structural health monitoring systems can be divided into systems for railway 

vehicle monitoring and track performance monitoring. In the context of this Ph.D. study, 

continuous track stiffness measurement systems for track performance monitoring are of interest. 

There are two main approaches to the development of those systems. One system collects the 

vertical track deflection using dynamic measurements on a single axle, the other outputs relative 

vertical track defection using indirect methods such as image and laser-based techniques. 

Available systems include those developed in China, the USA, and European countries 

[7,9,20,26,97], which are discussed in the following sections. 

2.7.1. China academy of railway sciences (CARS) system 

China Academy of Railway Sciences (CARS) is one of the first institutes introducing the concept 

of continuous track stiffness measurements. In 1997, Wangqing et al. [9] proposed the design of a 

vehicle for track elasticity measurements. As shown in Figure 2-3, the chord measurement method 

is used to measure the deflections at the measurement wheels in the heavy car and the light car at 

the rear. The total load exerted by the heavy car can be adjusted from 150 to 250 kN to simulate 
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the influence of different loads on the measured deflections. The light car applied a load of 40 kN 

to the track to close void deflections due to the clearance between the rail and sleeper, and between 

sleeper and ballast as well (Figure 2-3 (a)).  

As shown in Figure 2-3 (b-c), the wheel deflection under either light or heavy car is a combination 

of the contact deflections (yKH, yKH) and y2, i.e. the deflection due to rail surface irregularities (y1) 

and hidden gaps between rail, sleeper, and ballast (y0).  The elastic stiffness is measured as:  

 𝐾 =
Δ𝑃

Δ𝑦
=
𝑃𝐻 − 𝑃𝐿
𝑦𝐾𝐻 − 𝑦𝐾𝐿

=
𝑃𝐻 − 𝑃𝐿
𝑦𝐻 − 𝑦𝐿

 (2-9) 

where PH, PL are the wheel loads due to the heavy and light cars; yKH, yKL are the deflections due 

to the track stiffness only; yH, yL, are the total measured deflections under PH, PL loads. 
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Figure 2-3. Measurement principle of the CARS system: (a) the measurement system; (b-d) 

the magnified deflections of the measurement wheels under no load, light car, heavy car (adapted 

from [98]) 
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2.7.2. SBB track deflection measurement wagon  

A deflection measurement wagon was developed by the Swiss Federal Railways (SSB) [99] to 

continuously measure track deflections at 10-15 km/h speed. The system consists of an unloaded 

wagon and a heavy wagon with the axle load being 20 tonnes (Figure 2-4). An incremental sensor 

(Heidenhain LS 220) and a digital display unit are the main instrumentation of the SSB system. 

To obtain the deflection due to the load only, the unloaded deflection under the unloaded wagon 

is subtracted from the loaded deflection under the heavy wagon. It is also recommended to filter 

the measured deflections by a low pass filter with the cut-off wavelength from 10 m to 20 m. With 

this configuration, the system can collect data every 5 cm with the accuracy levels varying around 

± 0.2 mm. 

It was shown that the SSB system can be used to identify the stiffness variations in long 

wavelengths corresponding to variations of soil properties, bridges, and the influence of USP 

(under sleeper pad) [99] 

 

Figure 2-4. The SBB track deflection measurement wagon (adapted from Reference [99]) 
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2.7.3. Track loading vehicle by Transportation Technology Center, Inc. (TTCI) in Pueblo, 

Colorado (TTCI) 

The Transportation Technology Center  Inc. (TTCI) developed a track loading vehicle to measure 

vertical track deflections under standstill loads as well as moving loads with a speed up to 16 km/h 

[7]. As shown in Figure 2-5, the system consists of a heavy car (i.e. the track loading vehicle), an 

empty tank car. The track loading vehicle (TLV) is equipped with a fifth wheelset that can 

hydraulically exert a range of loads (lateral and vertical) from 4 to 267 kN.  In order to eliminate 

the effects of track geometry on the final readings, two sets of track deflections are measured 

simultaneously, e.g. a loaded profile due to the wheel loads of the TLV and an unloaded profile 

under the empty tank car weighting at 62 kN. Finally, the unloaded profile is subtracted from the 

loaded profile to get the track deflection due to the applied loads only. It should be noted that 

noncontact laser camera sensors are used to record the vertical track deflections. 

 

Figure 2-5. The TTCI system: (a) the track loading vehicle: (b)  A closer look at the fifth 

wheelset at the center of the vehicle (http://www.drgw.net/trips/report.php?tr=TTCI.3 [100]) 

The TLV was extensively tested on revenue tracks to verify its capability of monitoring 

substructure conditions [101,102]. It was shown that the system is able to quantify the vertical 

track supports such as identifying the locations with abrupt changes in track stiffness (e.g. bridge 

approaches and soft subgrades). It was recommended that the system can be used for two main 

tasks one of which is assessing existing tracks for upgrading the operating speeds and axle loads. 

The second task is to provide a tool for investigating the degradations of track strength which helps 

to develop an optimized maintenance strategy.  

http://www.drgw.net/trips/report.php?tr=TTCI.3
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One of the first applications of TLV was conducted on revenue service extensively [7]. The 

variations of the deflection profiles clearly indicated the difference between strong and weak tracks. 

In order to obtain the dynamic track modulus and minimize the effects of track geometry, two runs 

were acquired at different loads. The difference between the two deflection profiles was used to 

compute the dynamic track modulus. However, it should be noted that the train speed must be kept 

relatively the same between the two runs which may be difficult to maintain in real-life conditions.  

The data measured by TLV was further verified by the use of cone penetration tests (CPT) [101]. 

It was shown that the sublayer conditions identified by the CPT further explained the large 

variations of the TLV stiffness profile. This evaluation further addressed the usefulness of 

continuous track stiffness measurement systems locating problematic areas where detailed tests 

such as CPT can be employed to investigate the substructure conditions. Similar to the previous 

study, the effects of track geometry were not clearly addressed. For instance, the difference 

between the two deflection profiles was expected to remove the effect of track profile whereas the 

effects of other types of track geometry were not verified.   

2.7.4. The Swedish rolling stiffness measurement vehicle (RSMV) 

Swedish Railways Administration (Banverket) and Royal Institute of Technology (KTH) 

developed a new rolling stiffness measurement vehicle (RSMV) to measure quasi-static and 

dynamic vertical track stiffness that is subsequently used for evaluating the track’s degradation 

[103].  

 

Figure 2-6. The RMSV system: (a) the system’s setup; (b) the schematic side view (adapted 

from Reference [103]) 

(a) (b)
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As shown in Figure 2-6, the RMSV system is built on a two-axle freight wagon whose main 

components are two oscillating masses above the wheel axle, an accelerometer, and a force 

transducer installed at the axle box for recording the vibration. The oscillating masses (4,000 kg) 

are used to dynamically excite the track via the wheel axle. The system can apply a static axle load 

of 180 kN or higher, a dynamic axle load up to 60 kN. With the configuration, the system can 

measure track dynamic stiffness up to 50 Hz. The measurement can be taken at high speeds (up to 

50 km/h) during which the track is excited by 1 to 3 simultaneous sinusoidal sources of excitations. 

Detailed investigations about the track stiffness can also be performed at a slower speed (≤ 10 

km/h) with the source of excitation being artificial noise.  

The RMSV has been deployed in revenue tracks to validate its effectiveness in identifying the 

global track stiffness [26,97,103,104]. For instance, Berggren et al. [104] conducted numerical 

simulations and field measurements to verify the effectiveness of the RMSV in measuring the 

dynamic properties of railway tracks below 50 Hz. The results showed that the thickness of 

embankment and soil could be estimated from the dynamic stiffness measurements. It was also 

shown that the information given by the dynamic stiffness measurements agrees well with that 

from the Ground Penetration Radar (GPR) data.  

Statistical properties of track stiffness were examined by means of statistical properties of dynamic 

track stiffness values measured by the MRSV [26]. Three typical kinds of Swedish track were 

examined by cumulative distribution functions (CDF) of the corresponding dynamic track stiffness 

measurements. It was shown that the difference in the three types of track and the stiffness 

variations can be observed from the CDFs. However, the accuracy of displacements computed by 

double integrating the axle acceleration, effects of other factors such as track geometry and wheel 

out-of-roundness remain the major concern in the use of MRSV. For instance, track geometry 

variations can cause a significant impact on the acceleration response which can lead to inaccurate 

displacements. Without, a sound understanding of the impacts of these factors on the recorded 

signals, any conclusions about the vertical track stiffness cannot be fully justified.  

2.7.5. Portancemetre vehicle 

The Portancemetre vehicle was developed by the Centre d'Expérimentation et de Recherche and 

the Engineering Department of SNCF (National Society of French railways) to measure the 
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dynamic track stiffness [6,105]. Having a similar measurement concept as the RMSV, the 

Portancemetre vehicle includes an oscillating wheel axle with a suspension mass (Figure 2-7). The 

system is instrumented with two accelerometers, a phase sensor for synchronization, and an 

incremental distance encoder for traveling distance measurements.  The vehicle can apply a static 

load varying between 70 and 120 kN and a dynamic load that can reach 70 kN.  The Portancemetre 

vehicle was validated with in-service tracks and it was shown that the system is able to measure 

the dynamic stiffness with frequencies up to 35 Hz [106]. However, it was not mentioned how 

track geometry and irregularities of the rail surface influence the recorded force and displacements 

although the system applies a similar concept as that of RMSV.  

 

Figure 2-7. The Portancemetre system (inside the red square) (adopted from Reference 

[106]) 

2.7.6. The MRail system 

Under the sponsorship of the Federal Railroad Administration (FRA), a continuous track stiffness 

measurement system that is commercially known as MRail system was developed at the University 

of Nebraska-Lincoln [8,21,107]. The system consists of two laser lines and a camera system that 

measures the relative deflection (Yrel) at 1.22 m from the nearest wheel. Yrel is the distance between 

the rail surface and the rail-wheel contact plane. Further details about the system’s specifications 

are discussed in Chapter 3. One of the practical advantages of using the MRail system is that it can 

measure the vertical track deflections at normal to full train speeds.  
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One of the first applications of the system on a real-life track showed that the preliminary analysis 

of Yrel clearly indicates the track issues such as muddy crossings, crushed rail heads, broken rails, 

etc. In addition, statistical properties of Yrel i.e. mean and standard deviation were computed for 

track assessments [108,109].  Moreover, by using the Winkler model that assumes a rail as a beam 

on continuously constant supports, the relationship between Yrel and rail bending stresses was 

established and subsequently tested with measured data [19]. It was shown that the differences 

between the estimated rail bending strain (from Yrel) and the actual values at two locations were 

only 13.7% and 12.2%. An early study about the effects of track geometry on the measured Yrel 

was first conducted by Lu et al. [21]. In the study, the applicability of using Yrel for locating track 

segments with problematic stiffness and the evolution of Yrel measurements taken on the same 

track at different time intervals were first presented. In addition, the effects of track geometry on 

the measured Yrel were examined by considering vertical track profile only. From the numerical 

simulations, it was concluded that only “extreme track geometry variations” can cause errors in 

the Yrel measurements.  

In Canada, the MRail system has been employed for track performance evaluations. Both 

numerical and experimental studies were conducted to verify its effectiveness. Fallah Nafari et al. 

utilized different finite element models (FEM) to examine the track modulus variations using 

numerical Yrel signals [110]. As the MRail system was originally developed based on the concept 

of Winkler model that assumes a track on continuous supports with constant track modulus, the 

study considered the fact that track modulus varies along the track. By using statistical properties 

of the simulated Yrel data and curve-fitting approaches, the track modulus average was estimated. 

However, the variation of track modulus was not effectively estimated from Yrel especially the 

variation over a relatively long track section. Another application of using Yrel for rail bending 

moment estimations was also studied from the FEM models [25,111]. The relative track deflection 

(or Yrel) and the corresponding maximum positive and negative rail bending moments were first 

extracted from numerical simulations. The study showed that there was a strong correlation 

between Yrel and positive bending moments. However, the negative bending moments were not 

estimated successfully from Yrel using statistical analysis and curve-fitting approaches. The 

methodology was also validated with field data [22]. Measured Yrel was used to estimate the tensile 

strain using a regression function that was built from a numerical study. Subsequently, the 
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estimation accuracy was evaluated by comparing the estimated values with those measured by 

strain gauges. The results showed that Yrel can be used to assess rail bending stresses.  

MRail system was also used for quantitatively evaluating Canadian track subgrade conditions. 

Roghani et al. [112] investigated the MRail measurements (i.e. Yrel) to map their variations to the 

properties of soft foundations under the railway line. Yrel data collected over 12,000 km of track 

was first processed by moving average filters to remove short-wavelength components (which 

corresponds to the surface irregularities) and used to assess the subgrade conditions (which occurs 

at long wavelengths). It was concluded that filtered Yrel is a representation of subgrade conditions. 

In another study, two indices were derived from Yrel to represent the subgrade stiffness and its 

variations for track condition assessments. Historical records of the track roughness show strong 

correlations with the derived indices whose high variations correspond to locations with geometry 

defects [113]. A different study was conducted to examine the changes of Yrel measurements that 

were taken before and after major maintenance to improve track performance [24]. The track 

upgrades included replacing 49.6-kg/m (100-lb/yd) bolted rail to 57-kg/m (115-lb/yd) continuous 

welded rail (CWR), embankment reconstruction, and geogrid placement. The moving average of 

Yrel and its first-order difference are capable of quantifying the changes in track modulus due to 

the maintenance activity. In the next section, a brief review of blind source separation is introduced 

as it is a potential tool for analyzing MRail data. 

2.8. Blind source separation techniques 

Obtaining separated source signals from their mixed observations without a priori knowledge of 

the mixing mechanism and sources is referred as blind source separation (BSS). The principle of 

BSS is demonstrated in Figure 2-8. In general, depending on the physical meaning of the 

observations (e.g. speech signals or vibrational signals), the mixing mechanism can be: (1) 

instantaneous mixing and (b) dynamic or convolutive mixing. In both cases, the aim of BSS is to 

define the de-mixing matrix and recover the original sources using the information from the 

observations only.  
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Figure 2-8. Demonstration of BSS 

Instantaneous mixing is a common aspect of BSS where all sources are recorded instantly with no 

time lag and different intensities. The problem can be mathematically expressed as:  

 
𝐱 = 𝐀𝐬 

𝐬 = 𝐖𝐱 
 

(2-1) 

where 

• s = {si} i = 1, 2, …, ns the number of sources 

• x = {xj} j = 1, 2, …, nm the number of sensor measurements (observations) 

• 𝐀 ∈ 𝑅𝑛𝑚×𝑛𝑠 is the instantaneous mixing matrix, and 𝐖 ∈ 𝑅𝑛𝑠×𝑛𝑚 is the de-mixing matrix. 

Depending on the number of sources and observations, BSS can be categorized as determined case 

(nm = ns); underdetermined case (nm < ns); or overdetermined case (nm > ns). These cases can be 

solved by a variety of BSS algorithms which follow three main categories: (1) second order or 

higher order statistics of signals; (2) sparse blind source separation; (3) tensor-based 

decomposition for BSS. The first category is common for determined and overdetermined case (nm 

≥ ns) where second order statistics blind source identification (SOBI), and higher order statistics 

independent component analysis (ICA) are mainly used for BSS [114-116]. On the other hand, 

spare blind source separation is based on transformations of the observations in time, frequency, 

and time-frequency domain [117,118]. The third algorithm refers to multi-linear algebra methods 

to solve BSS problem such as parallel factor (PARAFAC) decomposition. PARAFAC algorithms 

are valid for both underdetermined and overdetermined BSS problems [119-122]. 

A special variant of BSS, i.e. single channel blind source separation (SCBSS), is formed when 

only one observed mixture is available. Its applications include speech processing, 

communications, etc. In general, the source signals are randomly mixed by a mixing matrix (with 

different weights), and the summed mixture is recorded by a sensor or receiver. Vertical track 
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deflection data is essentially a single mixture and SCBSS techniques can be a potential tool to 

analyze the data for track evaluations. Several methods were proposed to solve the SCBSS problem 

by converting a single channel problem to a pseudo multi input multi output (MIMO) problem. 

Ma et al. [123] employed Singular spectrum analysis (SSA) to decompose a single mixture to 

multiple signals which were then inputted to a fast BSS algorithm to recover the source signals. 

Wavelet decomposition and FastICA have been combined to recover up to 3 original sources from 

a single mixture [124]. Another method using ensemble empirical mode decomposition (EEMD) 

and ICA was presented by Guo et al. [125]. First the single channel observation was decomposed 

into a number of intrinsic mode functions (IMFs). Principal component analysis was subsequently 

used to extract several components of IMFs for the inputs of ICA algorithm. Other techniques such 

as slope EEMD, variational mode decomposition, shift-invariant spare coding, and non-negative 

matrix factorization were also employed in different studies to solve the SCBSS problem [126-

131]. 

2.9. Summary and discussion 

A review of the related literature was presented in this chapter. First, dominant stresses in rail such 

as bending, contact, thermal and residual stresses were reviewed which was followed by damage 

mechanism of rail materials. The impact of track geometry on rail stresses was also presented. 

Then, assessments of track quality using track geometry measurements were presented. The 

assessment methods that use standard deviation and power spectrum density function of track 

geometry measurements were described. Next, an overview of track modulus and its effects on rail 

deflections, stresses, and track structure degradations was discussed. It was followed by detailed 

review of continuous track stiffness measurement systems. Finally, a brief introduction about BSS 

and SCBSS algorithms were given and an idea of how track stiffness evaluations would be a 

potential application of SCBSS was discussed. According to the literature review, there are 

concerns about the systems’ effectiveness and the effects of track geometry variations the 

measurements which partially defines the purpose of this doctoral research: 

1. The effects of track geometry on measured data were not fully investigated. As most 

continuous track stiffness measurement systems are at their early deployment stage, there 

are limited efforts for considering track geometry effects on the measured data. For 
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instance, the numerical study conducted by researchers at the University of Nebraska 

Lincoln concluded that only large vertical track geometry variations can affect the 

measurements [21]. This was contrary to what has been found by Mehrali et al. [132] where 

the authors showed that track alignment has more effects on the measured data. However, 

a sound explanation for this relationship was not given as the findings were found based 

on data mining techniques. Therefore, an in-depth investigation of track geometry effects 

on a continuous track stiffness measurement system is worth conducting so that their 

effectiveness of track stiffness measurement systems is verified. 

2. Most techniques utilized to analyze measured VTD data are based on its statistical 

properties. Cumulative distribution functions of VTD collected by different systems have 

been mainly used for assessing track conditions [7,26,133]. However, there are limited 

efforts in refining the raw measurements before they are used for this purpose. This study 

aims to employ blind source separation and other advanced techniques to facilitate better 

methodologies for track stiffness evaluations so that more accurate and more detailed 

information can be extracted from the measurements. It is arguably the first time that blind 

source separation techniques are investigated for analyzing VTD measurements. 

3. Lack of clear demonstrations of how continuous track stiffness measurement systems are 

more superior than other systems. For instance, Read and Plotkin questioned the novelty 

of the track stiffness measurement systems over track geometry vehicles and ground 

penetrating radar systems [134]. Although many studies have been conducted to justify the 

effectiveness of continuous track stiffness measurement systems, further investigations are 

worth conducting to validate the applicability of these systems. For instance, it is promising 

that these systems can potentially reveal track geometry variations in addition to the track 

stiffness. The current doctoral research intends to establish new methodologies that employ 

measurements of a specific track stiffness measurement system to effectively assess track 

stiffness variations and rail bending moments while giving useful information about track 

geometry.  
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Chapter 3: Continuous Evaluation of Track Modulus from a Moving Railcar Using ANN-

Based Techniques1 

3.1. Overview 

Track foundation stiffness (also referred to the track modulus) is one of the main parameters that 

affect the track performance, and thus, quantifying its magnitudes and variations along the track is 

widely accepted as a method for evaluating the track condition. Over the past decades, the train-

mounted vertical track deflection measurement system developed at the University of Nebraska – 

Lincoln (known as MRail system) appears as a promising tool to assess the track structures over 

long distances. Numerical methods with different levels of complexity have been proposed to 

simulate MRail deflection measurements. These simulations facilitated the investigation and 

quantification of the relationship between vertical deflections and track modulus. In this study, 

finite element models (FEMs) with stochastically varying track modulus have been used for the 

simulation of the deflection measurements, the relationship between the measured deflection and 

track modulus averages and standard deviations are quantified using artificial neural networks 

(ANNs). Different approaches available for training the ANNs using FEMs data sets are discussed. 

It is shown that the estimation accuracy can be significantly increased by using ANNs. Especially, 

when the estimations of track modulus and its variations are required over short track section 

lengths, ANNs result in more accurate estimations compared to the use of equations from curve 

fitting approaches. Results also show that ANNs are effective for the estimations of track modulus 

even when the noisy datasets are used for training the ANNs. 

3.2. Introduction 

It is widely accepted that track modulus and its variations are indicators of subgrade conditions 

[75,77,80,82]. Track modulus is a measure of the vertical stiffness of the rail foundation and is 

defined as the ratio of the vertical supporting force per unit length of rail to the vertical deflection 

[75]. A practical way to assess track modulus is to measure rail deflection under specified loads 

 

1 A version of this chapter has been published in Vibration, Special Issue: Inverse Dynamics Problems as N.T. Do, M. 

Gül, S.F. Nafari, Continuous Evaluation of Track Modulus from a Moving Railcar Using ANN-Based Techniques. 

Vibration 3 (2020). doi:10.3390/vibration3020012. 
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[20,23,135]. Measured deflections can be correlated to the track modulus using mathematical 

equations. Two methods are available to measure rail deflections: trackside measurement 

techniques and on-train approaches. Trackside measurement techniques are used to measure the 

rail deflection at specific locations under specified static loads or moving loads [98]. Although 

these techniques provide accurate estimations of track stiffness, they are laborious, time-

consuming especially when multi-point measurements are required. On the other hand, on-train 

measurement systems allow the measurement of rail deflections over long distances and thus 

provide an overall evaluation of the entire railway network [7,8,107,136-138]. Comprehensive 

analysis is typically needed to investigate the relationship between deflection measurements from 

on-train systems and track modulus [104,139]. 

The Real-time Vertical Track Deflection Measurement System (known as MRail System) 

developed at the University of Nebraska – Lincoln under the sponsorship of the Federal Railroad 

Administration (FRA) has become more popular over the last decades [8,107,136]. The system 

computes relative vertical deflection (Yrel) between the rail/wheel contact plane and rail surface at 

a distance of 1.22 m from the nearest wheel to the sensor system. The MRail system has been 

tested over different railway lines in the USA and Canada for evaluating track conditions [110,140-

142]. Results from the MRail field tests show that the system not only has the potential to identify 

the local track problems, i.e. muddy ballast, degraded joints, crushed rail head, broken ties, but 

also provides an opportunity to map the subgrade condition and assess the track performance along 

the railway line [109,112,132,143].  

In addition to the experimental studies, different numerical models have been used to investigate 

the relationship between track modulus and Yrel data where numerical approaches have been 

proposed to estimate track modulus from Yrel [25,110]. The current study aims to propose a new 

and advanced approach for estimating track modulus statistical properties from Yrel data more 

accurately compared to previous studies. First, details of the MRail system are briefly presented 

and numerical models developed by others and their shortcomings are discussed. Then, artificial 

neural networks (ANNs) are explained as the main tool to investigate the relationship between 

track modulus and Yrel data in this chapter. Different methods for training the ANNs are used and 

the effectiveness of the trained ANNs are investigated using error measurement parameters such 

as the coefficient of determination (R2), the root mean square error (RMSE), and mean absolute 
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percentage error (MAPE). Suitable signatures of Yrel data are identified by conducting both 

statistical and frequency analysis. Feedforward neural networks are proposed as a function 

approximation technique to estimate the track modulus average (UAve) and standard deviation (USD) 

from Yrel data. To further investigate the effectiveness of the ANNs for estimating the track 

modulus, noisy FEMs datasets are employed for training the ANNs. The accuracy of the track 

modulus estimations using these ANNs is also investigated using R2, RMSE, and MAPE.  

3.3. The stiffness measurement system and numerical simulations 

3.3.1. MRail measurement system 

The MRail system was originally developed at the University of Nebraska – Lincoln under the 

sponsorship of the Federal Railroad Administration (FRA) [8,107,136]. The system measures the 

relative vertical deflection (Yrel) between the rail surface and the rail/wheel contact plane at a 

distance of 1.22 m from the nearest wheel to the acquisition system (Figure 3-1(a)). The sensors 

consist of two laser lines, a digital camera mounted on the side frame of the rail car (Figure 3-1(b)). 

The laser system projects two curves on the rail surface, whose minimum distance (d) is captured 

by the camera (Figure 3-1(c)). Subsequently, the distance between the camera and the rail surface 

(h) is computed by converting d. Finally, the relative deflection Yrel is calculated by subtracting h 

from (Yrel + h), the fixed distance between the rail/wheel contact plane and the camera.  
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Figure 3-1. Demonstration of MRail system for Yrel measurements: (a) the measurement system 

on rigid frame; (b) the sensor system; (c) projections of the laser lines on the railhead 

The MRail system can measure the deflection at different sampling rates with the speed up to 96 

km/h (60 mph). Winkler model and Finite element models have been used to estimate track 

modulus from Yrel [143]. 

3.3.2. Winkler model 

Rail deformation and bending stress under specific loads are typically estimated using Winkler 

model, which considers the track as an infinite beam on a continuous elastic foundation 

[14,144,145]. Using Winkler model (equation (3-1)), the vertical rail deflection (y) at a distance x 

from the applied load (P) is computed as follows: 

 𝑦(𝑥) =
𝑃𝛽𝑒−𝛽𝑥(cos 𝛽𝑥 + sin 𝛽𝑥)

2𝑈
  (3-1) 

where β is the stiffness ratio, which is equal to (U/(4EI))0.25, U is the track modulus, E is the 

modulus of elasticity of the rail, and I is the second moment of area of the rail. 

From Winkler model, the vertical deflection profile of a rail is only dependent on track modulus 

value when rail size and vertical loads are known. Once a value is assumed for track modulus, the 

rail vertical deflection profile can be estimated using equation (3-1), and from the rail vertical 
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deflection profile, Yrel can be calculated as the relative vertical deflection between the rail surface 

and the rail/wheel contact plane at a distance of 1.22 m from the nearest wheel (Figure 3-1(a)) 

[107,111]. The main shortcoming in this method is that Winkler model assumes track modulus is 

constant along the track while field data shows track modulus stochastically varies along the track 

[7,146,147]. Therefore, the estimation of track modulus from Yrel measurements needs more 

advanced numerical models.  

3.3.3. Finite element model (FEMs) 

FEMs allow the simulation of stochastically varying track modulus, and therefore, more accurate 

simulation of Yrel measurements. Fallah Nafari et al. developed 90 FEMs with stochastically 

varying track modulus to facilitate a more detailed investigation of the relationship between Yrel 

and track modulus [110]. Datasets from the 90 FEMs are used for the study in this chapter. Hence, 

details of the models are discussed briefly. The models are developed using CSiBridge software, 

where each model includes a 180.8-meter track structure with two rails, crossties, and spring 

supports [148]. To develop each model, a normal track modulus distribution is assumed and 

randomly selected numbers from this distribution are assigned to the spring supports along the 

track. Statistical properties of the assumed normal distributions are summarized in Table 3-1 and 

the applied loads are depicted in Figure 3-2. RE136 rail size and 0.508-meter tie spacings are used 

in the models.  

Table 3-1. Statistical properties of the track modulus in the FEMs 

Track modulus average 

(MPa) 

Coefficient of variation 

(COV) 
No. of simulations 

41.4 0.25; 0.5; 0.75 
30 (10 simulations for each 

COV) 

27.6 0.25; 0.5; 0.75 
30 (10 simulations for each 

COV) 

12.8 0.25; 0.5; 0.75 
30 (10 simulations for each 

COV) 
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Figure 3-2. The loading condition in the FEMs 

Individual Yrel values are calculated from the vertical deflection profile at every 0.3048 m (≈ 1 ft) 

interval while the moving loads pass the track model. The dynamic effects of track-train 

interactions are not considered during the simulations due to the software’s limitation. This is 

acceptable within the scope of this study which mostly focuses on the Canadian freight lines where 

speeds are most likely lower than 65 km/h.  

Figure 3-3 shows an example of the inputted track modulus to the model and corresponding Yrel 

output. Fallah Nafari et al. used basic statistical analysis and curve fitting approaches to study the 

relationship between statistical properties of track modulus (U) and Yrel [110]. The results showed 

that the average and standard deviation of track modulus over a track section length can be 

estimated from the average and standard deviation of Yrel over the same track section length. 

However, the estimation accuracy becomes lower by decreasing the track section length [110]. To 

overcome this shortcoming and increase the estimation accuracy of track modulus, ANNs are 

proposed for the track modulus estimations in this study.  

 
Figure 3-3. (a) Track modulus inputted to the FEM (Mean = 41.4 MPa, COV = 0.25); (b)The 

extracted Yrel  

3 x 173.5 kN 2 x169.5 kN
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3.4. Estimation of track modulus average 

3.4.1. Multilayer perceptron artificial neural networks 

Multilayer perceptron neural networks (MLPNN) are typically useful for classification and 

function approximation problems [149-153]. The implementation of MLPNN is operated with two 

stages of performance, i.e. training and testing procedures. Once the training process is 

successfully performed in a self-adaptive manner with all defined parameters (such as learning 

algorithm and network architecture including several layers and neurons in each layer), the 

network can effectively approximate the input-output mapping function. 

MLPNN is a network containing two or more neurons distributed in different layers such as input 

layers, output layers, and hidden layers that connect input and output layers (Figure 3-4(a)). Each 

neuron has a nonlinear differentiable activation function that creates real values and is highly 

connected to other neurons based on synaptic weights wij(n) (Figure 3-4(b)) as the level of 

connectivity.  

 

 
Figure 3-4. (a) Example of a two-hidden layer perceptron; (b) Typical operation at neuron j 

One of the most complicated tasks before executing an MLPNN is that all required parameters 

should be well defined to approximate the input-output relationship, which is called the learning 

process that contains two phases. In the forward phase, the inputs are fed into the network from 

left to right and layer by layer with the fixed values of synaptic weights. In the backward phase, 

(a) 
 

 
 

(b) 
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the error vector is first computed by subtracting the output of the network from the expected target. 

The error is then propagated backward from the output to the input layer. In this phase, the synaptic 

weights are adjusted to minimize the network error by solving the credit-assignment problems in 

the operation of each hidden unit. Each synaptic weight will be updated differently based upon the 

contribution of the corresponding hidden unit to the overall error. More information about training 

the network using backpropagation and gradient descent is given by Haykin [149].  

3.4.2. Estimation procedure and results  

 The inputted track modulus and the corresponding Yrel data from 180-m track models are divided 

into equivalent groups based on a track section length (e.g. 5 m, 10 m, etc.). Once the subgroups 

are defined, the average and standard deviation of Yrel in each subgroup are used as the networks’ 

inputs whereas the track modulus averages in the corresponding track segments are defined as the 

network’s outputs.  

Yrel data extracted from eighty-one FEMs (out of ninety FEMs) are used to train the neural network. 

The accuracy of the trained network is then tested using the remaining nine (unseen) FEMs. These 

nine FEMs are called "unseen models" hereafter as they are not used in training the network. To 

test the trained network, track modulus average is estimated from Yrel average and standard 

deviation for the nine unseen models. The estimated track modulus average is then compared with 

the track modulus inputted initially into the FEMs to generate Yrel data. The effectiveness of the 

proposed network is measured based on three parameters: the coefficient of determination (R2), 

the root mean square error (RMSE), and mean absolute percentage error (MAPE) [154]. These 

measures are described as follows: 

 𝑅2 = (

1
𝑁
∑ [(𝑜𝑖 − �̅�𝑖) ⋅ (𝑦𝑖 − �̅�𝑖)]
𝑁
𝑖=1

𝜎𝑜 ⋅ 𝜎𝑦
)

2

 (3-2) 

  RMSE = √∑
(𝑦𝑖 − 𝑜𝑖)2

𝑁

𝑁

𝑖=1

  (3-3) 

 MAPE =
1

𝑁
∑100

|𝑦𝑖 − 𝑜𝑖|

𝑦𝑖

𝑁

𝑖=1

  (3-4) 
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where �̅�𝑖 , �̅�𝑖 , 𝜎𝑜 , and 𝜎𝑦  are the average and standard deviation of the estimated, and targeted 

values; N is the number of testing samples. 

When a network is trained, 5-fold cross validation is employed to minimize any potential over-

fitting problem and increase the network’s generalization. Regarding the network architecture, a 

network with two hidden layers (each contains 15 hidden nodes) is used in this study. This network 

ensures an acceptable error range, avoids over-fitting, and optimizes the computational efficiency. 

From different tests, it is noted that increasing the number of hidden nodes and hidden layers does 

not necessarily mean the network’s performance is improved. In fact, the input configuration is 

the most important factor that controls the network performance.  

Five networks for five different track section lengths have been fully trained to perform this study. 

The track modulus average over five section lengths is then estimated for the nine new models 

using the trained networks. Table 3-2 presents the accuracy level of these estimations. From the 

table, the network performs better when the track section length increases although the error is 

numerically small even with the case of 10-meter section length. R2 is 0.95 for the case of 10-meter 

section length, which means the estimated and inputted track modulus averages are well correlated. 

Moreover, the RMSE and MAPE are quite small, i.e. 2.81 MPa and 6.99% respectively, 

considering that range of inputted track modulus average is 12.8 to 41.4 MPa. In addition to 

confirming the applicability of Yrel data in indicating track modulus information, the current 

methodology provides more accurate results than the other method in the literature [110]. As 

shown in Table 3-2, the R2 value computed in the related study decrease as the length of the track 

segment reduces whereas the R2 in the current study is almost constant for cases with 10 m track 

section and higher. 

Table 3-2. Estimation accuracy of the track modulus average (no noise added) 

Section length (m) MAPE (%) RMSE (MPa) R2 R2 in [110] 

5 12.42 4.58 0.86 0.79 

10 6.99 2.81 0.95 0.93 

15 5.90 2.56 0.95 N/A 

20 4.32 1.60 0.98 0.96 

25 3.87 1.63 0.98 N/A 

The goodness of the estimation method for the case of 10 and 20 meter section lengths is 

demonstrated in Figure 3-5 for four models as an example. These four models had different track 
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modulus average and variations. From the figure, the values estimated from networks are close to 

the actual track modulus average inputted to the FEMs. Most importantly, the local fluctuation of 

the track modulus is well captured.  

 

 Figure 3-5. Moving average of the actual track modulus inputted to the FEMs vs. estimated 

values over: (a) 10-meter section length; (b) 20-meter section length 

The effectiveness of the framework is investigated further by adding artificial noise to the Yrel data 

extracted from the FEMs. This simulates the real-life condition in which the Yrel measurements are 

affected by parameters such as the resolution of the MRail measurement system, track 

irregularities, etc. The artificial noise is added based on equation (3-5) [155]. An example of pure 

vs. noise-added Yrel is shown in Figure 3-6. 

 𝑌𝑟𝑒𝑙−𝑛𝑜𝑖𝑠𝑦 = 𝑌𝑟𝑒𝑙 + 𝛼 ⋅ 0.12 + 𝛽 ⋅ 0.1 ⋅ 𝑌𝑟𝑒𝑙 (3-5) 
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where α and β are random number ranging from -1 to 1 

 

Figure 3-6. Demonstration of pure and noisy Yrel  

The noisy Yrel is used to train new networks and then the trained networks are used to estimate 

track modulus average. The estimated track modulus is then compared with the inputted track 

modulus for each model and the error is reported in Table 3-3. From the table, the estimation of 

track modulus average (Uave) from noisy Yrel is still successful even for the short track section 

length of 10 m as R2 is 0.95 and RMSE is 2.77 MPa. This demonstrates that the framework 

performs effectively even when the Yrel data contains noise and thus expected to work with real-

life data. 

Table 3-3. Estimation accuracy of the track modulus average (with added noise) 

Section length (m) 
MAPE 

(%) 
R2 RMSE (MPa) R2 in [110] 

5 14.09 0.83 5.07 0.79 

10 7.01 0.95 2.77 0.93 

15 5.93 0.96 2.36 -* 

20 6.07 0.97 1.98 0.96 

25 3.98 0.98 1.53 -* 

*Not available for comparisons since those section lengths are not available in the previous study 

3.5. Estimation of track modulus standard deviation (USD) 

The estimation of track modulus standard deviation from Yrel data using statistical methods and 

curve fitting approaches has not been successful for track section lengths shorter than 80 m [110]. 

Therefore, frequency characteristics of the deflection data are investigated in this study to increase 

the estimation accuracy of track modulus standard deviation. The coefficients associated with the 
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Yrel frequency components are employed as one of the inputs to the ANNs, whose outputs are the 

track modulus standard deviation over different track section lengths. As demonstrated in Figure 

3-7, Yrel and track modulus data are divided into different subgroups based on various track section 

lengths (similar to the procedure used for estimating the track modulus average). Then, statistical 

analysis, fast Fourier transform, and liftering technique are applied on Yrel data in each subgroup 

to extract the average and standard deviation of the Yrel and average and standard deviation of 

liftering FFT coefficients. These parameters are used as the inputs of ANNs. 

 

Figure 3-7. Procedure for estimating track modulus standard deviation (USD)  
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Figure 3-8(a) shows an example of the FFT coefficients of Yrel data over a track section of 30 m 

for 81 models. As can be seen, the coefficients at higher orders are relatively small. This is 

undesirable for training the ANN due to possible bias. Therefore, the coefficients are processed 

using a liftering technique (equation (3-6)) to roughly normalize their variances [156]. 

 𝑋′(𝑘) = (1 +
𝐿

2
sin (

𝜋(𝑘 + 1)

𝐿
)) ⋅ 𝑋(𝑘), 𝑘 = 0,… ,𝑁 − 1 (3-6) 

where L is the sin lifter parameter, which is 50 in the current study, X(k) is the FFT coefficients. 

 

Figure 3-8. FFT of Yrel: a) before liftering; b) after liftering  

Once the liftering technique is applied (Figure 3-8(b)), average and standard deviations of the lifted 

FFT are calculated using equation (3-7) and (3-8) are used as two additional inputs for ANNs.   

 𝑃1 =
2

𝑁 − 1
∑ |𝑋′(𝑘)|

(𝑁−1)/2

𝑘=0

 (3-7) 

 𝑃2 = √
2

𝑁 − 1
∑(|𝑋′(𝑘)| − 𝑃(1))

2

𝑁/2

𝑘=0

  (3-8) 

   

The architecture used for developing the network in this section has two hidden layers and 15 

hidden nodes in each layer, similar to the network's architecture for estimating the track modulus 

average. The trained networks are used for estimating the track modulus standard deviation over 

different track section lengths and three accuracy measurements are reported in Table 3-4. In order 

to show the current input-output pair is optimized, two network architectures are trained (ANN-1 
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with 4 inputs, i.e. average and standard deviation of Yrel and average and standard deviation of the 

lifted FFT; ANN-2 with 2 inputs, i.e. mean and standard deviation of Yrel). In each case, the two 

networks are trained and tested multiple times and the mean and standard deviation of performance 

parameters are computed and reported in Table 3-4. For the case of 5 m section length, for instance, 

the networks’ input and output are first extracted based on the chosen section (5 m), then ANN-1 

and ANN-2 networks are trained using the training data and tested against the data extracted from 

9 unseen FEMs. 

From Table 3-4, the error values show that the standard deviation of track modulus (USD) can be 

estimated satisfactorily by both network configurations (ANN-1 and ANN-2). Even for the 10-m 

section length case, for instance, the coefficient of correlations between the actual USD and the one 

estimated by the two networks are high, e.g. 0.83 and 0.82, respectively. However, the networks 

with four inputs (ANN-1) slightly outperform the one with two inputs (ANN-2) regardless of the 

section lengths. Specifically, the RMSE and MAPE are always smaller than those arising from the 

trained networks whose inputs are the statistical properties of Yrel only (ANN-2). Values estimated 

using the networks with four inputs have relatively high R2 in all cases showing that the 

methodology is successful. In particular, the R2 is as high as 0.94 for the case of 25-meter section 

length and the RMSE is 1.83 MPa, which is a relatively small error considering that the maximum 

standard deviation of the inputted track modulus in the FEMs is 31.05 MPa. Moreover, the first 

network (ANN-1) provides more reliable results as the standard deviation of RMSE remains stable 

(varying from 0.11 to 0.17 MPa) and lower than those of ANN-2. Therefore, combining FFT and 

statistical analysis to configure the input for the networks noticeably improve the estimation 

accuracy and increase the stability of the ANNs, the mapping function between the Yrel 

characteristics and the track modulus standard deviation (USD). Most importantly, there is a big 

step forward in this study compared to the previous study, where the R2 coefficient is 0.748 even 

though 40-meter section length is used [110]. The performance of this estimation can be considered 

ineffective as the R2 coefficient reduced significantly in shorter track segment cases (Table 3-4). 

Hence, considering the current results, it can be claimed that neural networks are more powerful 

for mapping the relationship between Yrel and track modulus, especially over the short track section 

lengths. 
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Table 3-4. Estimation accuracy of USD (no noise added, the standard deviation in the parenthesis) 

Section 

length (m) 

Network 

configuration 

RMSE 

(MPa) 
MAPE (%) R2 R2 in [110] 

10 
ANN-1 3.00 (0.16*) 18.41 0.83 0.53 

ANN-2 3.05 (0.22) 19.12 0.82 - 

15 
ANN-1 2.36 (0.08) 15.01 0.89 - 

ANN-2 2.61 (0.39) 15.79 0.87 - 

20 
ANN-1 2.23 (0.11) 14.49 0.91 0.66 

ANN-2 2.59 (0.89) 14.47 0.88 - 

25 
ANN-1 1.83 (0.13) 11.96 0.94 - 

ANN-2 1.99 (0.30) 11.72 0.92 - 

30 
ANN-1 2.08 (0.17) 11.61 0.92 - 

ANN-2 2.14 (0.44) 11.79 0.91 - 

*Standard deviation of the estimation error 

For more descriptive results, the strong correlation between the actual and estimated track 

modulus’s standard deviation for the 25-meter section length is demonstrated in Figure 3-9. As 

can be seen, the estimated standard deviations follow the same patterns as those of the actual values 

which greatly vary from 3.2 to 31.05 MPa.  

 

Figure 3-9. The actual track modulus standard deviation over 25-meter section length vs. 

estimated values 

The effectiveness of the methodology is further validated by adding noise into the deflection data 

(Yrel). Similar to the procedure mentioned in the previous section, noise is added to the Yrel data 

from 90 models using Equation (3-5). The dataset from 81 models is then used to train the networks 
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using two approaches: networks with two inputs (average and standard deviation of Yrel) and 

networks with four inputs (average and standard deviation of Yrel and average and standard 

deviation of lifted FFT). The developed networks are used to estimate track modulus standard 

deviations over different section lengths from unseen Yrel data. The estimated values are compared 

with the standard deviation of track modulus inputted to FEMs and results are reported in Table 

3-5. The results show the proposed approaches work well even when Yrel datasets are affected by 

noises. The R2 is again higher than 0.90 when the 25-meter or higher section lengths are utilized.  

Table 3-5. Estimation accuracy of USD (with noise added) 

Section length 

(m) 

Network 

configuration 
R2 RMSE (MPa) MAPE (%) 

10 
ANN-1 0.82 3.06 20.12 

ANN-2 0.81 3.14 19.64 

15 
ANN-1 0.87 2.59 16.30 

ANN-2 0.87 2.64 16.23 

20 
ANN-1 0.89 2.42 16.13 

ANN-2 0.89 2.45 14.71 

25 
ANN-1 0.94 1.86 11.96 

ANN-2 0.93 1.88 11.73 

30 
ANN-1 0.94 1.84 10.43 

ANN-2 0.93 1.89 10.95 

3.6. Conclusions 

In this chapter, two frameworks are proposed for estimating the track modulus average and 

standard deviation over different track section lengths. The frameworks employed Yrel data (a 

relative rail vertical deflection measured using MRail system) for the track modulus estimations. 

The relationship between the statistical properties of track modulus and Yrel data are investigated 

using artificial neural networks (ANNs). Datasets from FEMs are used to train the ANNs in which 

their outputs are either track modulus average or standard deviations. Both statistical and 

frequency analyses are conducted to identify the optimized inputs for the ANNs from the Yrel data. 

From the results, the track modulus average over a track section length of 10 m or longer is 

accurately estimated from the average and standard deviation of the Yrel data within the 

corresponding section length. Additionally, the standard deviation of track modulus over a section 

length of 25 m or longer is estimated with an acceptable level of accuracy. It is also shown that the 

trained ANNs work well for the track modulus estimations even when the Yrel values as the ANNs 
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inputs are affected by noise. The proposed ANNs are only applicable to a specific rail type and 

loading condition. Hence, a similar procedure should be followed to train ANNs for different 

ranges of rail sections and loading types. 
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Chapter 4: Estimations of Vertical Rail Bending Moments from Numerical Track 

Deflection Measurements Using Wavelet Analysis and Radial Basis Function Neural 

Networks2 

4.1. Overview 

A method for estimating rail bending moments from relative vertical track deflection data 

measured by a train-mounted measurement system is presented in this chapter. The novelty of the 

current study is that complete estimations of rail positive and negative bending moments from 

track deflection measurements are conducted by using Wavelet multiresolution analysis in 

conjunction with radial basis function neural network considering the effects of varying track 

modulus. The simulation results show that the proposed framework can effectively employ vertical 

track deflections to estimate both maximum positive and negative bending moments in rails with 

the average estimation error being 6.22% (i.e. 2.82 kNm). Moreover, the study confirms the 

capability of the train-mounted vertical track deflection measurement system (commercially 

known as MRail) in evaluating the rail bending moments over long distances.  

4.2. Introduction 

Rapid deterioration of civil infrastructures has been observed over the last few decades due to 

operational, environmental factors, and most importantly, aging of those structures. To maintain 

the reliability and safety aspects, implementing smart infrastructures appears as a possible solution 

due to their ability to provide self-diagnosis, self-prognosis, etc. In this context, structural health 

monitoring (SHM) plays an important role in smart systems. This study is devoted to the SHM of 

railway infrastructure since it is considered as one of the most important components of the civil 

infrastructure system in many countries, including Canada [1,157]. 

In railway engineering, several structural health monitoring systems have been developed for 

different types of evaluations. In general, those systems can be separated into two main categories, 

i.e. standstill and onboard systems. In standstill monitoring systems, measurement devices are 

installed at specific locations on the track primarily for condition monitoring of railway vehicles 

 

2 A version of this chapter is under review in the ASCE Journal of Transportation Engineering, Part A: Systems. 

Authors: N.T. Do, M. Gül (the outcome of the first review round was “minor revisions for review by editor only”) 
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and track at the current location [77,88,92-95]. Onboard monitoring systems, on the other hand, 

have been in use for decades due to their ability in providing overall assessments of track 

conditions over long distances as well as the condition of the rail vehicle under monitoring. The 

typical applications of these systems include evaluations of vertical track stiffness, wagon and 

wheel defects [158,159]. Recently, rolling deflection measurement systems for track performance 

monitoring have gained attention due to their potential in assessing different aspects of track 

structures.  There are two main approaches to system developments. One system provides the 

vertical track deflections using dynamic measurements on a single axle, whereas the other outputs 

relative vertical track defections. Among the systems developed in China, Europe, and North 

America [7,9,20,26,77,88,92-97], the current study is devoted to the use of MRail, a train-mounted 

vertical track deflection (VTD) measurement system, to investigate rail bending moments from 

the measured data [8,21,107]. 

Regarding the types of rail accidents in North America, derailments have been reported as one of 

the most common problems [2,160]. Relevant research studies have shown that the main cause is 

rail breaks (the leading cause of derailments) due to fatigue and excessive loads [2,10,161]. Rail 

sections are always subjected to either compression or tension due to the residual, thermal-induced 

stresses, and live bending stress from the applied moving loads. There are studies conducted to 

estimate different types of stresses in rails although the results are inconsistent due to their complex 

nature [33,162,163]. Specifically, live bending stresses, one of the main factors contributing to 

transverse fatigue defects that lead to rail breaks,  are generally evaluated by using strain gauges 

installed at discrete locations to measure strains due to passing trains [18]. However, this method 

is not practically feasible for a whole railway network. Advances in fibre optic sensor technologies 

allow engineers to measure moving loads and the corresponding strains in the rails within a 

relatively long segment [18,164]. This has opened new opportunities in validating analytical 

methods for rail stress and bending moment estimations. However, implementing optical fibre is 

still limited at a specific segment of track.  

Although the MRail system was developed primarily for track stiffness evaluations, it was also 

used for estimating rail bending moments [19]. However, there are concerns about the validity of 

the method. First, the mathematical relationship between the deflection data and bending stresses 

is oversimplified and heavily relies on Winkler model (an analytical model for vertical deflection 
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and bending moments of track structure under specific loads and constant track modulus). Second, 

although the effect of track modulus variations was taken into account when examining the vertical 

rail deflection, direct estimations of bending moments were not yet determined [25].  

In this study, the main objective is to develop a methodology to accurately estimate the positive 

and negative bending moments in rails using the data collected by MRail system. For this purpose, 

complete estimations of positive and negative bending moments from VTD under the effects of 

stochastic track modulus are proposed. The VTD data and bending moments are extracted from 

finite element models (FEMs) of track having specific rail profile, geometry, and various track 

modulus. Firstly, the extrema of Yrel  are extracted. Secondly, wavelet multiresolution analysis 

(WMRA) is conducted on positive and negative bending moments to extract their minima and 

maxima. Then, radial basis function neural networks (RBFN) are utilized to approximate the 

extrema of bending moments from VTD measurements. The results show that the methodology 

can effectively estimate the values of rail bending moments locally. Although it is infeasible to 

measure rail bending moments over long distances via strain gauges, efforts can be made to collect 

the rail bending moments at specific locations along the rail which is sufficient for the training 

stage of the estimation process. Therefore, the main contribution of the current study is that it is 

the first time positive and negative bending moments of rail over long distances are successfully 

estimated directly from the measured VTD data considering the effect of varying track modulus. 

The proposed framework can help to improve the rail reliability analysis by increasing the accuracy 

and productivity as well.  

4.3. The measurement system 

The current study focuses on one of the available train-mounted measurement systems whose main 

task is vertical track stiffness evaluations. In North America specifically, there are two different 

systems for this purpose: Track Loading Vehicle (TLV) [7] and the Real-time vertical track 

deflection measurement system (commercially called MRail), developed at the University of 

Nebraska-Lincoln under the sponsorship of the Federal Railroad Administration)  [21]. These VTD 

systems have been proved to be a potential tool for assessment of track condition and rail bending 

stress based on analytical methods [22,133]. In this study, due to the ability in measuring vertical 

rail deflection at revenue speed with modest resources, measurement data from MRail are chosen 
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as the preliminary inputs for rail bending moment estimations. Note that the same concept can still 

be applied for other track vertical stiffness measurement systems although minor modifications 

are required.  

As shown in Figure 4-1, the sensor system consists of two laser lines and a digital camera, which 

is rigidly attached to a bracket mounted to the side frame of a railcar truck. By using image 

processing techniques, the relative deflection (Yrel) between the rail-wheel contact line and the rail 

surface at 1.22 m from the nearest axle is measured [21]. In the next section, a theoretical 

background about the proposed methodology is given followed by detailed discussions about the 

two frameworks for maximum positive bending moments (M +max) and negative bending moments 

(M -max) estimations. 

 
Figure 4-1. Illustration of MRail system 

4.4. Methodology 

Under the rail-wheel contact points, there is compressive stress at the railhead and tensile stress at 

the rail base, whereas a reversal of stress is observed on the sides of the wheel load locations. As 

the wheel passes over, the rail section is cyclically subject to positive moment and negative 

moment that are corresponding to the tensile and compressive stresses. The cycle of changing from 

tension and compression in railhead and base greatly contribute to transverse defects in rail 

materials [44]. 
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The magnitude of bending stresses directly relates to the vertical rail displacements that are 

dependent on rail type, axle load, and track foundation stiffness (track modulus). Although the 

Winkler model is widely used as an analytical rail model, the assumption of constant track modulus 

is a considerable limitation.  In this study, instead of relying on the Winkler model for computing 

the rail deflections and bending moments, FEMs of a track with a specific rail type, axle loads, 

and varying vertical spring supports (track modulus) are utilized to extract the vertical rail 

deflections (Yrel) and the resulting bending moments. The FEMs are created in CSiBridge software 

and consist of two rails (size RE136), crossties, spring supports connected to the base of the 

crossties [148]. The model length is 180.8 m with 0.508 m tie spacing resulting in a total of 357 

crossties. The effects of boundary conditions are minimized by assigning constant stiffness within 

10 m at both ends of the models and only the middle part with various stiffness is used for the 

analysis. Yrel  at 0.3 m (1 ft) interval is computed from the deflected rail profile. A demonstration 

of the applied loads is shown in Figure 4-2. 

 
Figure 4-2. Demonstration of the applied loads 

In order to study the variations of rail vertical deflections and bending stresses due to the variations 

of track modulus, 90 models with random normal distribution track modulus are considered (Table 

4-1). The generated track modulus values are converted to the stiffness coefficients assigned to the 

spring supports.  Further validations of the FEM model can be found in [110]. 

Table 4-1. Statistical properties of the track modulus in the FEMs 

Track modulus average 

(MPa) 
COV No. of simulations 

41.4 0.25; 0.5; 0.75 
30 (10 simulations for each 

COV) 

27.6 0.25; 0.5; 0.75 
30 (10 simulations for each 

COV) 

12.8 0.25; 0.5; 0.75 
30 (10 simulations for each 

COV) 

Figure 4-3 shows an example of the track modulus assigned to a model, the extracted Yrel, and 

maximum bending moments (M +
max and M -

max). As can be seen, there are some degrees of 

3 x 173.5 kN 2 x169.5 kN

RE 136

2 m 2 m 1.78 m2.26 m
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correlations between Yrel  and the corresponding positive and negative moments. However, direct 

relationships between Yrel  and bending moments have not been configured successfully although 

different studies have been conducted [19,25].  

 
Figure 4-3. Demonstration of a numerical model: (a) the inputted track modulus; (b) the 

extracted Yrel; (c) the envelope M +max profile; (d) the envelope M -max profile 

In the current work, a technique is proposed by using wavelet analysis and radial basis function 

neural networks for the estimations of minima and maxima of positive and negative bending 

moments via Yrel . First, the minima and maxima of Yrel  are extracted. Second, wavelet 
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multiresolution analysis is utilized to decompose the bending moments (M +
max and M -

max) into 

different levels so that the true maxima and minima of bending moments can be defined. Third, 

RBFN is employed as a function approximation tool to map the Yrel  (local minima and maxima) 

into positive and negative bending moments. Finally, the proposed methodology is validated by 

examining the estimated bending moment from unseen Yrel data. In the following sections, an 

overview of wavelet analysis and RBFN are given followed by the details about the procedures 

for positive and negative bending moment estimations. 

4.4.1. Wavelets and multi-resolution analysis 

An overview of wavelet analysis is given herein. More details about wavelet analysis can be found 

in the literature [165-169]. Continuous wavelet transform (CWT) of a signal x(t) is determined as: 

 CWT(𝛼, 𝜏) =
1

√|𝑎|
∫ 𝑥(𝑡)𝜓 (

𝑡 − 𝜏

𝑎
) 𝑑𝑡

+∞

−∞

 (4-1) 

where a and τ are the scaling and translation parameters of the wavelet function ψ(t). The signal is 

continuously multiplied by each scaled and shifted version of the mother wavelet. 

The discrete wavelet transform (DWT) of a digitized signal x(n) is computed as: 

  𝐷𝑊𝑇(𝑗, 𝑘) = 2−𝑗/2 ∑𝑥(𝑛)𝜓(2−𝑗𝑛 − 𝑘)

𝑁−1

𝑛=0

 (4-2) 

where ψ(n) is the discrete wavelet function, 2-j/2 and ψ(2-jn - k) are  the parameters for the scaled 

and shifted version of the ψ(n).  

The scale parameter (j) and the translation parameter (k) are the discrete versions of a and b. The 

scale parameter controls the stretching and shrinking of the mother wavelet whereas the shift 

parameter refers to the movement of the mother wavelet along the entire signal. 

Practically, DWT is performed by an efficient process called Wavelet multi-resolution analysis 

(WMRA), which was proposed by Mallat [170]. WMRA is a process of filtering a signal through 

low-pass and high pass filters whose parameters are related to the scaled and shifted versions of 

the mother wavelet. A signal 𝑥(𝑛) can be expanded as:  
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 𝑥(𝑛) = ∑ 𝑎𝐽,𝑘𝜙𝐽,𝑘(𝑛)

+∞

𝑘=−∞

+ ∑ ∑ 𝑑𝑗,𝑘𝜓𝑗,𝑘(𝑛)
+∞

𝑘=−∞

𝐽

𝑗=1
 (4-3) 

where 𝜙𝑗,𝑘(𝑛) = 2
𝑗/2 𝜙(2𝑗𝑛 − 𝑘) is the scaled and shifted version of the scaling function 𝜙(𝑛); 

𝑎𝐽,𝑘 and 𝑑𝑗,𝑘 are the expansion coefficients at the scale level J and j.  

In equation (4-3), the first summation is referred to as the approximation A (the high-scale, low-

frequency component of 𝑥(𝑛)); the second summation is referred the detail D (the low-scale, high-

frequency component of 𝑥(𝑛)); In practice, the level of decomposition can go up to a finite number 

J, therefore, equation (4-3) can be simplified as 

 𝑥(𝑛) = 𝐴𝐽 + ∑ 𝐷𝑗
𝐽

𝑗=𝑗0

≈ 𝐴𝐽 + ∑ 𝐷𝑗
𝐽

𝑗=1
 (4-4) 

where 𝐴𝐽 = ∑ 𝑎𝐽,𝑘𝜙𝐽,𝑘(𝑛)
+∞
𝑘=−∞  is the approximation at level J and 𝐷𝑗 = ∑ 𝑑𝑗,𝑘𝜓𝑗,𝑘(𝑛)

+∞
𝑘=−∞  is the 

detail at level j. 

4.4.2. Radial basis function neural networks (RBFN) 

Similar to the Multilayer perceptron, RBFN is a layer-type structure (Figure 4-4). Typically, the 

network contains three layers, i.e. the input layer, hidden layer, and output layer. Input vector X 

with S dimensions is presented into S nodes of the first layer, whereas the hidden layer contains K 

nodes. Depending on the chosen algorithms the number of hidden nodes may vary from 1 to N, 

the size of the training sample. The output at each hidden node is calculated by a radial basis 

function (i.e. Gaussian function). The network outputs are computed as the weighted sum of hidden 

layer outputs.  
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Figure 4-4. Radial basis function neural network 

Since the RBFN is a distance-weighted regression technique, it suitably fits the applications for 

function approximations and pattern classifications. The universal approximation function using 

RBFN can be realized as: 

 

𝑦𝑘 = 𝐹(𝐱) =  ∑𝑤𝑘𝑗𝜑𝑗(𝐜𝑗 , 𝐱)

𝐻

𝑗=1

+ 𝑏𝑘  

=∑𝑤𝑘𝑗

𝐻

𝑗=1

exp (−
1

2𝜎𝑗
2 ‖𝐜𝑗 − 𝐱‖

2
) + 𝑏𝑘 

(4-5) 

where yk is the kth element of the output, wkj is the element of the weight matrix W, cj and σj are 

the centroid (or kernel) and the width of the Gaussian function at the jth hidden node; bk is the kth 

element of the bias vector at the output layer.   

Training RBFNs involves selecting an optimized weight matrix W, the centers and widths of the 

RBFs. The process consists of three main steps: 

• Determine the center unit in each hidden node by k -means clustering algorithm. 

• Initialize the width of the Gaussian functions. 

• Compute the weight matrix by recursive least-square estimation [149]. 

k-means clustering algorithm is commonly used to group training data and determine the clusters’ 

means which are corresponding to the kernels or centers of the Gaussian functions in the hidden 
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layer. The establishments of the centers are followed by the selection of the RBF widths. The 

heuristic for choosing the function width (also known as the spread) is that it should be large 

enough so that there will be sufficient overlaps among the Gaussian functions for a smooth 

approximation. Too large widths can lead to overgeneralizations since there no distinct peaks in 

the decision region formed by the RBFs. In contrast, RBFs with too small widths are not desirable 

since more RBFs in the network are requires, which potentially results in a lack of generalizations 

and overfitting. In this study specifically, the optimized width is chosen within the range from 0.05 

to 10. Overall, the training procedure of an RBFN is demonstrated in Figure 4-5. It is worth noting 

that careful attention should be given in training RBFN since it is susceptible to overfitting 

compared to other network types.   
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Figure 4-5. Flowchart of defining RBFN parameters 
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4.5. Estimation of positive bending moment (M +max) 

Yrel data extracted from a FEM model and the corresponding maximum positive moment are shown 

in Figure 4-6. 

 
Figure 4-6. (a) Yrel data along the rail location; (b) The corresponding positive moment 

It can be noticed that there are some correlations between the fluctuations of Yrel  and those of 

maximum positive bending moment. The data shows the highest correlation occurs at 

approximately 1.22 m lag, which is due to the configuration of MRail system whose measured 

point is 1.22m away from the nearest wheel. Moreover, the strongest similarity is found at the 

extreme points between Yrel  and positive bending moments. Considering that critical locations 

along a track are more likely to suffer from excessive deflections and high bending moments, the 

current study is conducted to estimate the local extrema of positive bending moments from relative 

deflection data (Yrel).  

The minima and maxima of Yrel  can be easily extracted (Figure 4-6) by applying a simple forward 

difference technique. However, it is not the case for bending moment data as there are local peaks 

in the signal because of multiple load case combinations. Therefore, wavelet multiresolution 

analysis (WMRA) is utilized to decompose the positive moment into different components 
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containing different frequency contents. A four-level decomposition of the moment in Figure 4-6.b 

is shown in Figure 4-7. 

 
Figure 4-7. The decomposed approximation and details of the maximum bending moment using 

Daubechies wavelet at four-level decomposition. 

As can be seen, the approximation A4 can be considered the main component of the positive 

bending moment since its magnitude occupies more than 90% the original moment, whereas the 

remaining decomposed components, i.e. D1 to D4, are numerically insignificant. Therefore, the 

positive bending moment data from 90 models are analysed by WMRA to compute the 

approximation A4 (Figure 4-7), which are subsequently used to extract the bending moment's local 

minima and maxima. 

Having the local extremum of Yrel  and positive bending moments allows the construction input-

output pairs for training RBFNs. As it was mentioned in the above section, one of the most 

important parameters of RBFNs is the number of the radial basis function’s width that strongly 

varies depending on input data, number of hidden neurons and error threshold during training. 

Therefore, for the purpose of finding the optimized parameters (Figure 4-5), different networks are 
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trained with varying hidden neurons and the width values ranging from 0.05 to 10. The final 

network will be the one that produces the minimum error. Note that data from 81 out of 90 models 

are used during training, whereas the remaining 9 models are separated and reserved for testing 

the proposed framework. Five-fold cross-validation is also employed to minimize the overfitting 

problem. 

 
Figure 4-8. the performance of RBFNs with different widths 

Figure 4-8 shows the performance of RBFNs in terms of mean square errors (MSE) with different 

width values and 100 hidden neurons. It can be seen that increasing the width value can reduce the 

MSE whose value converges at a width of 3.9. Considering that larger widths does not necessarily 

result in better performance, it is decided that the final width value is 3.9.  

After successfully establishing the RBFN, testing with unseen data is conducted. Figure 4-9 shows 

the bending moments of six models that were not used during training the networks, the estimated 

minima and maxima values. As can be seen, all critical points including the lower and upper 

bounds in the bending moments are effectively captured.  
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Figure 4-9. the variations of positive bending moment and its estimated extremum 

Considering the performance measures of the RBFN, RMSE (root mean square error) and MAPE 

(mean absolute percentage error) are considered in this chapter. They are defined as below: 

 RMSE = √∑
(𝑦𝑖 −  �̂�𝑖)2

𝑛

𝑛

𝑖=1

  (4-6) 

 MAPE =
1

𝑛
∑
𝑦𝑖 −  �̂�𝑖
𝑦𝑖

𝑛

𝑖=1

× 100 (4-7) 

where yi and ŷi are the actual and estimated values, n is the forecast horizon 

Estimation errors of all nine unseen models are shown in Table 4-2. As can be seen, the estimation 

of positive bending moments is successful as the RMSE and MAPE are numerically small. 

Specifically, the highest error is found in model 8, where the RMSE is 3.65 kNm. The error is 



 

65 

 

deemed acceptable since it is 7.3% of the actual bending moment. In the next section, the procedure 

for estimating negative bending moments is introduced. The reason is that the estimation requires 

different input-output pairs and further modifications are conducted to train the RBFN.  

Table 4-2. Estimation errors (Maximum positive bending moment) 

Model 1 2 3 4 5 6 7 8 9 

RMSE (kNm) 1.81 2.56 3.01 1.50 2.41 3.40 3.32 3.65 3.32 

MAPE (%) 3.80 4.84 5.81 3.02 4.85 7.25 6.39 7.30 6.26 

 

4.6. Estimation of negative bending moment (M -max) 

In this case, the same procedure is applied to extract the local minima and maxima of Yrel and the 

negative bending moments. However, 5-level WMRA is applied to compute the approximation 

A5 of the negative bending moment. Subsequently, the local minima of the negative bending 

moment are extracted from the approximation A5. An example of Yrel and the corresponding 

negative bending moment is shown in Figure 4-10. In this case, specifically, the local minimum 

values of the negative bending moment are more important since they are predominantly high in 

magnitude. Therefore, the purpose of the current section is to estimate the local minima (those 

with high magnitudes) of the negative bending moment. 
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Figure 4-10. Relative deflection and the corresponding negative bending moment 

In contrast to the process of positive bending moment estimations, where the output is computed 

via a one-to-one mapping function, the estimation of negative bending moment requires more 

inputs for better estimations. Specifically, it is observed that a local minimum value of negative 

bending moments strongly correlates to three consecutive max-min-max Yrel points 

(demonstrations are shown in the rectangular boxes in Figure 4-10). This observation can be 

further confirmed by the Euler-Bernoulli beam theory, where the bending moment is proportional 

to the second derivative of the deflection. As shown in equation (4-8), the bending moment results 

from the double integration of the vertical deflection which can be approximated by three 

deflection points in the discrete form.  

 𝑀 = −
𝐸𝐼𝑑2𝜔

𝑑𝑥2
≅ −𝐸𝐼 ×

𝜔𝑥+1 − 2𝜔𝑥 + 𝑤𝑥−1
Δ𝑥2

 (4-8) 

where M is the bending moment, EI is the bending stiffness, E is the modulus of the elasticity of 

the rail, and I is the second moment of area of the rail, ωx is the vertical deflection at position x. 
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After the input-output datasets are collected, training a RBFN is conducted by selecting the 

appropriate parameters. In this specific case, solely using mean square error (MSE) as the cost 

function during training is not effective, since it will result in an extremely large number of hidden 

neurons and consequently overfitting. Therefore, in addition to mean square error, the coefficient 

of correlation is used as the main objective to obtain the optimized number of hidden neurons and 

the Gaussian function’s spread.  Figure 4-11 shows the network performance under different 

values of widths and hidden nodes. The figure clearly shows that increasing the number of hidden 

nodes and spread constant does not always help to improve network performance. In fact, the 

network performance is significantly reduced as the width and the number of hidden nodes is larger 

than 5 and 50 respectively. From Figure 4-11.b, it is concluded that 2.85 is the optimized value of 

the width and 28 hidden neurons are chosen for the current network. It is worth mentioning again 

that overfitting is one of the biggest concerns in designing RBFN, which prevents it from being 

deployed in real-life applications. Using multiple types of measures for network performance 

would be a solution. 

 
Figure 4-11. Network performance: (a) 3D plot; (b) 2D plot 

Having the network fully trained, the new data are utilized to evaluate the effectiveness of the 

proposed estimation method. The negative bending moments of the six models that were not used 

during training are shown in Figure 4-12. It is clear from the figure that almost all local minima 

values are captured. The results continue to confirm that the negative bending moment is strongly 

related to the statistical properties of Yrel , the relative vertical deflection.  



 

68 

 

 
Figure 4-12. the variations of positive bending moment and its estimated minimum 

Regarding the estimation errors shown in Table 4-3, the small errors reveal that the maximum 

negative bending moment can be successfully estimated from Yrel. Specifically, the highest error 

is found in model 9, where the RMSE is 5.01 kNm (equivalent to 10.53 % of 𝑀max 
− ). In this context, 

the estimation error is deemed appropriate considering that the maximum negative moment is as 

high as 55 kNm. 

Table 4-3. Estimation errors (Maximum negative bending moment) 

Model 1 2 3 4 5 6 7 8 9 

RMSE (kNm) 1.69 1.51 2.53 2.03 3.61 2.83 1.82 4.68 5.01 

MAPE (%) 5.59 3.95 7.09 5.94 8.63 6.56 5.26 8.89 10.53 
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4.7. Conclusions 

A new methodology is presented in this chapter to evaluate rail vertical bending moments using 

train mounted VTD records. First, VTD measurements, maximum positive and negative bending 

moments are extracted from finite element track models having varying track modulus. Second, 

Wavelet multiresolution analysis is applied to extract the extremum values of the bending moments 

in the rail section. Subsequently, a Radial basis function neural network (RBFN) is utilized as a 

universal function approximation to quantify the correlation between the extreme values of Yrel  

the corresponding bending moments. The proposed method successfully estimates the rail bending 

moments (𝑀𝑚𝑎𝑥
+ ,  𝑀𝑚𝑎𝑥

− ) from VTD measurements considering the effects of varying track 

modulus. The results also confirm the ability of using MRail measurement system for rail bending 

moment estimations which is useful for rail reliability analysis.  
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Chapter 5: A Recursive SSA-AMUSE Based Technique for Single Channel Blind Source 

Separation with an Application on Vertical Track Deflection Measurements3 

5.1. Overview 

Vertical track deflection measurements have been widely used to evaluate track stiffness. However, 

interpreting these measurements remain a challenge due to multiple sources that contribute to the 

total deflections. This chapter presents a recursive SSA-AMUSE (SSA: singular spectrum analysis, 

AMUSE: algorithm for multiple unknown signals extraction) technique to solve single channel 

blind source separation (SCBSS) problem, aiming to evaluate track stiffness from a single 

observation of vertical track deflections. As the first step, the inputted signal is decomposed into 

finite sequences using SSA. Then, AMUSE is employed to recover the source signals from the 

SSA components. The proposed SSA-AMUSE method is implemented iteratively to extract the 

original signals sequentially. The first application of the proposed method on the synthetic signals 

provides more accurate results than the other available methods. Moreover, the successful 

application of the current method on vertical track deflection measurements due to the 

simultaneous impact of varying track modulus and track geometry greatly promotes the application 

of a continuous track stiffness measurement system on rail-track structure health monitoring. 

5.2. Introduction  

Measured signals of dynamic mechanical systems contain various information and features for 

condition diagnosis. However, the sampled signal is simply the response due to multiple unknown 

sources that create simultaneous stimuli on the system. Moreover, due to technical and economical 

requirements in some circumstances, only a single sensor is allowed during measurements. 

Therefore, mechanical system condition assessments using a single measurement is essentially the 

single channel blind source separation (SCBSS) problem whose task is to extract interpretable 

signals from the observed signal recorded by a single sensor [171]. 

The general procedure in SCBSS is first applying a multi-mapping method to decompose the 

observed signal to equivalent elementary signals followed by a blind source separation step to 

 

3 A version of this chapter is under review in Mechanical Systems and Signal Processing, Elsevier. Authors: N.T. Do, 

M. Gül 
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reconstruct the sources. Wavelet-ICA, EMD-ICA and EEMD-FastICA are typical algorithms for 

SCBSS [172,173]. Shao et al. [172] employed wavelet decomposition and independent component 

analysis (ICA) to solve the SCBSS problem. First, wavelet decomposition was used to break a 

single signal into multiple series, then ICA is applied to extract the original signals. With a similar 

idea, Mijović et al. [173] proposed a slightly different approach that uses empirical mode 

decomposition (EMD) and ICA to recover the source signals from a single observation signal. 

Recently, Isham et al. [174] proposed the application of variational mode decomposition, another 

decomposition technique that is claimed to surpass the limitation of EMD (i.e. mode mixing and 

end effect [175]), for rotating machinery diagnosis. The applications on wind turbine gearboxes 

and bearing outer race fault show that the method is capable of determining the mode number of 

the signals for fault diagnosis. Other techniques for underdetermined BSS can be found in the 

literature [176-180]. 

Overall, the application of SCBSS has been widely used in many scientific and engineering fields. 

However, it has not been applied in railway engineering thoroughly. For example, track stiffness 

measurement systems have been introduced to measure vertical track deflections (VTD), as a 

means of structural health monitoring of railway infrastructures [7,21,103]. The systems show 

great potentials in monitoring the rail and track conditions [112,181]. However, the following 

issues prevent their applications from regular maintenance activities [134]: 

• Vertical track deflections contain mixed information of track roughness (or track geometry) 

and deflections due to support stiffness. As the track roughness information in the data is 

dominant, advanced data analysis techniques are required to accurately reveal the 

substructure condition.  

• The calculation of track modulus is done from the total deflection containing both void 

deflection and contact deflection although the contact deflection is the only one directly 

related to the substructure stiffness.  

Therefore, analyzing the measured data from the vertical track stiffness measurement systems can 

be posed as an SCBSS assignment whose outputs could provide information about the track 

modulus, track geometry, and so on. More importantly, a framework that successfully utilizes the 
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data from vertical track stiffness measurement systems would greatly contribute to standardize 

their applications in track maintenance routines.  

In this study, a hybrid algorithm that employs singular spectrum analysis (SSA) and Algorithm for 

Multiple Unknown Signals Extraction (AMUSE) technique is proposed to solve the SCBSS 

problem. Specifically, the combined technique is implemented iteratively to separate the source 

signals. The organization of the chapter is as follows, In Section 5.3, the theoretical background 

of the proposed method is described. Next, in Section 5.4, the performance of the proposed method 

in separating synthetic signals is tested and compared with those of other methods in the literature. 

In Section 5.5, the method is further validated with the VTD signals extracted from a track model 

simulated by SIMPACK (a multibody dynamic package) and ABAQUS. Finally, a conclusion 

section summarizing the method as well as a future plan is presented. 

5.3. Methodology 

5.3.1. Mathematical description of the single blind source mixing system 

A dynamic system is excited by multiple excitations in which the observed response is measured 

via a single sensor. Depending on the interactions among the source signals, the mixture 

mechanism can be an instantaneous linear combination or higher-order combinations to produce 

the multi-channel mixed signal. The mixing model can be described as: 

 𝑥(𝑡) = 𝑓(𝑠1(𝑡), 𝑠2(𝑡), … , 𝑠𝑛(𝑡)) + 𝑒(𝑡) (5-1) 

where f() is the mixing function, si(t) is the i-th source signal, e(t) is the measurement noise that 

has Gaussian distribution with zero mean and σ2 variance, n denotes the number of source signals. 

The goal of SCBSS problem is to define the unmixing matrix W and the source signals from the 

single mixed signal x(t) only.  

 𝐬(𝑡) = [𝑠1(𝑡), 𝑠2(𝑡), … , 𝑠𝑛(𝑡)] = 𝑥(𝑡) ×𝐖
T (5-2) 

To make it possible to solve equation (5-2), the underdetermined blind separation problem is first 

transformed to a determined problem followed by a blind source separation technique to retrieve 

the separated signals. In other words, in this study, the single mixed signal x(t) is first transformed 

into multiple mixed signals using singular spectrum analysis (SSA). Then, the determined blind 

source separation is performed using the algorithm for multiple unknown signals extraction 
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(AMUSE) technique. The combined method is applied iteratively on the original signal to extract 

the sources.  

5.3.2. Singular Spectrum Analysis (SSA) for Signal Decomposition  

SSA is a time series analysis and forecasting technique with a wide range of applications such as 

multivariate geometry, dynamical systems. Overall, the main idea of SSA is to decompose a time 

series into a sum of multiple series. In this section, details about implementing SSA are given. 

Further background about SSA can be found in the literature and is out of the scope of the chapter 

[182,183]. 

Consider a finite real-value series 𝑥(𝑡) = (𝑥1, 𝑥2, … , 𝑥𝑁) with N discrete points.  The window 

length L and parameter K are defined that satisfies 1< L < N and K = N – L +1. SSA algorithm 

follows two main stages (i.e. decomposition and reconstruction) that consist of four steps.  

Step 1: Embedding  

One-step delay-embedding is performed on the original series x to compute its trajectory matrix X  

 𝐗 = [𝑋1, 𝑋2, … , 𝑋𝐾] =

[
 
 
 
 
𝑥1 𝑥2 𝑥3 ⋯ 𝑥𝐾
𝑥2 𝑥3 𝑥4 ⋯ 𝑥𝐾+1
𝑥3 𝑥4 𝑥5 ⋯ 𝑥𝐾+2
⋮ ⋮ ⋮ ⋱ ⋮
𝑥𝐿 𝑥𝐿+1 𝑥𝐿+2 ⋯ 𝑥𝑁 ]

 
 
 
 

 (5-3) 

The current delay-embedding configuration produces the trajectory matrix X that has constant 

skew-diagonals. Therefore, this step is also known as matrix Hankelization transform.  

Step 2: Singular value decomposition 

In this step, the trajectory matrix X is decomposed into L matrices by singular value decomposition 

(SVD) of X. That is: 

 𝐗 =∑𝐗𝑖 = √𝜆𝑖𝑈𝑖𝑉𝑖
T

𝐿

𝑖=1

 (5-4) 

where Ui is the left singular vector, 𝑉𝑖 is the right singular vector, and λi is the eigenvalues (that are 

λ1 ≥ λ2 ≥ … ≥ λL ≥ 0) of the covariance matrix XXT. 
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Step 3: Grouping 

The expansion in equation (5-4) can be simplified by partitioning the Xi matrices into Ig subsets 

such that: 

 𝐗 = 𝐗𝐼1 + 𝐗𝐼2 +⋯+ 𝐗𝐼𝑔  (5-5) 

where 𝐗𝐼 = ∑ 𝐗𝑖𝑖∈𝐼  is the elementary matrix of X. 

The grouping procedure depends primarily on the singular values of XXT matrix whose 

magnitudes are sorted in descending order and usually appear in pairs.  

Step 4: Diagonal averaging  

At this final step, each elementary matrix  𝐗𝐼 is transformed into a new series with N elements. 

For simplicity, let Y = 𝐗𝐼 with 𝐗𝐼 ∈ ℳ𝐿,𝐾(ℝ), L ≤ K. By diagonal averaging the element yl,k of the 

matrix Y, the corresponding series �̃� = (�̃�1, �̃�2, … , �̃�𝑠, … �̃�𝑁) is produced: 

 �̃�𝑠 =

{
 
 
 
 

 
 
 
 1

𝑘
∑ 𝑦𝑚,𝑘−𝑚+1

𝑘

𝑚=1

                                 for 1 < 𝑘 ≤ 𝐿

1

𝐿
∑ 𝑦𝑚,𝑘−𝑚+1

𝑘

𝑚=1

                                   for 𝐿 < 𝑘 ≤ 𝐾

1

𝑁 − 𝑘 + 1
∑ 𝑦𝑚,𝑘−𝑚+1

𝑁−𝐾+1

𝑚=𝑘−𝐾+1

          for 𝐾 < 𝑘 ≤ 𝑁

 (5-6) 

Overall, by applying the diagonal averaging (equation (5-6)) to each matrix 𝐗𝐼 in equation (5-5), 

the original series x(n) is decomposed into a g interpretable component series. 

 𝑥(𝑡)  
𝑺𝑺𝑨
→  𝐲(𝑡) = {𝑦(1)(𝑡), 𝑦(2)(𝑡), … , 𝑦(𝑔)(𝑡)}, 𝐲 ∈ ℳ𝑁,𝑔(ℝ) (5-7) 

5.3.3. Algorithm for Multiple Unknown Signals Extraction (AMUSE) technique 

The application of SSA helps to transform a signal blind source separation problem into a 

determined blind source separation problem. Equation (5-2) is rewritten in a new form where both 

sources and measured signals are in matrix form. 

 𝐬(𝑡) = 𝐲(𝑡) ×𝐖T (5-8) 

where s and y are N × g matrices that contain g sources and observed signals, W is the g×g 

unmixing matrix. 
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The source s and the unmixing matrix W can be estimated by second order blind identification 

(SOBI) techniques by assuming that the sources are weakly uncorrelated and stationary. In this 

study, AMUSE is employed to develop a hybrid SSA-AMUSE technique for solving the SCBSS 

problem. AMUSE method was introduced by Tong et al. [184] to estimate the unmixing matrices 

and sources by simultaneously diagonalizing two covariance matrices. The main implementation 

steps of AMUSE is listed below. 

First, the covariance matrix of the observed signals y is estimated: 

 𝐑𝑦(0) = 𝐸{𝐲(𝑡)𝐲
T(𝑡)} (5-9) 

where Ry(0) is the covariance matrix at zero time lag and t = 1:N (N is the length of the time 

series) 

Then, the eigenvalue decomposition of Ry(0) is computed: 

 𝐑𝑦(0) = 𝐕𝑦𝚲𝑦𝐕𝑦
T (5-10) 

where Vy is the matrix of eigenvectors and 𝚲𝑦 is the diagonal matrix of eigenvalues in descending 

order.  

Then, whitening transformation is performed:  

 �̅�(𝑡) = (𝐕𝑦𝚲𝑦
−
1
2𝐕𝑦

T)𝐲(𝑡) = 𝐐𝐲(𝑡) (5-11) 

where Q is the whitening matrix and  �̅�(𝑡) is the whitened matrix. 

Then, the covariance matrix with lag τ and the corresponding symmetrized covariance matrix are 

calculated: 

 𝐑�̅� (𝜏) = 𝐸{�̅�(𝑡)�̅�(𝑡 − 𝜏)
T} (5-12) 

 𝐑�̅� 
𝑆 (𝜏) =

1

2
(𝐑�̅� (𝜏) + 𝐑�̅� (𝜏)

T) (5-13) 

Finally, eigenvalue decomposition is applied the second time to the symmetrized covariance 

matrix 𝐑�̅� 
𝑆 (𝜏) to extract its eigenmatrix V. Finally, the unmixing matrix W and the separated 

sources s are estimated using: 
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 𝐖 = 𝐕T𝐐 (5-14) 

 𝐬(𝑡) = 𝐲(𝑡)𝐖T (5-15) 

   

5.3.4. The proposed hybrid SSA-AMUSE method 

Both SSA and AMUSE have been widely employed as blind source separation techniques [185-

188]. However, each method inherits both strengths and weaknesses. Specifically, SSA is ideal for 

trend and seasonality detection although not all source signals are distinguished by these properties. 

On the other hand, the implementation of AMUSE is straightforward and computer-efficient in 

comparison with other blind separation techniques that employ joint approximate diagonalization 

(JAD) to transform the covariance matrix in equation (5-12) [189,190]. The choice of time lag τ 

can be cumbersome when implementing AMUSE technique, but it provides users a lot of 

flexibility in evaluating the recovered sources which are estimated by different values of τ. In some 

specific cases where the unmixed sources are not completely uncorrelated, the application of 

AMUSE becomes superior. In order to maximize the effectiveness of both techniques, in this study, 

an iterative framework that combines SSA and AMUSE is proposed to solve the SCBSS problem. 

The key contribution of the proposed method is that the sources are revealed sequentially from the 

single mixed signal through an iterative process that cannot be done at once. The algorithm flow 

of the proposed SSA-AMUSE method is shown in Table 5-1. 

Table 5-1. Algorithm flow of the proposed SSA-AMUSE method 

• Initialize: 𝒙 ∈ ℝ𝑁:  the raw data; K: the number of extracted components 

• Define the trajectory matrix of x 

𝐗 = [𝑋1, 𝑋2, … , 𝑋𝐾] /* equation (5-3) */ 

• Define the grouping subsets by examining the singular spectrum of X  

𝑰 = {𝐗𝐼1 , 𝐗𝐼2 , … , 𝐗𝐼𝑔} /* equation (5-5) */ 

• For i = 1 to n  

− Perform SSA on x:  

y = SSA(x, K, I)  /* §5.3.2 */ 

− Perform AMUSE on y:  

s = AMUSE(y, τ) /* §5.3.3 */ 

− Define the residual xr:  

xr = x - ∑y  

− Update new x:  

x = xr  

• end 
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5.4. Application on synthetic signals  

In order to show the effectiveness of the proposed method in a comparative manner, the synthetic 

signals appearing in He et al. [191] are replicated in this chapter. A mixed signal is generated by 

instantaneously compounding the four synthetic dynamic signals below [191]: 

 

𝑠1 = 𝑠𝑖𝑔𝑛 (cos (
2𝜋𝑓1𝑡

𝑓𝑠
)) =

𝜋

4
∑
sin(2𝜋(2𝑘 − 1)𝑓1𝑡)

2𝑘 − 1

∞

𝑘=1

 

=
4

𝜋
(sin(2𝜋𝑓1𝑡) +

1

3
sin(2𝜋3𝑓1𝑡) +

1

5
sin(2𝜋5𝑓1𝑡)) 

where 𝜔1 = 2𝜋𝑓1 

(5-16) 

 𝑠2 = sin (
2𝜋𝑓2𝑡

𝑓𝑠
) (5-17) 

 𝑠3 = sin (
2𝜋𝑓3𝑡

𝑓𝑠
) (5-18) 

 𝑠4 = sin (
2𝜋𝑓4𝑡

𝑓𝑠
) sin (

2𝜋𝑓5𝑡

𝑓𝑠
) (5-19) 

In the above equations, the sampling frequency fs = 10,000 Hz, the frequencies of the signals are: 

f1 = 155 Hz, f2 = 80 Hz, f3 = 90 Hz, f4 = 9 Hz, f5 = 300 Hz [191]. The source signals with the length 

of 4000 samples are shown in Figure 5-1(a-d). 

According to equation (5-1), a randomly generated matrix is employed to mix the source signals 

to produce the mixed signal shown in Figure 5-1(e). 
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Figure 5-1. The synthetic signals: (a) Source s1; (b) Source s2; (c) Source s3; (d) Source s4; (e) the 

mixed signal 

The most two important parameters for implementing the SSA method is the window length (L) 

resulting in the number of decomposed series (K) and the clustering group for the reconstruction 

of the time series components. The heuristic is that increasing K will result in further levels of 

decompositions that are corresponding to noise, trend, sinusoidal decompositions respectively 

[192]. In the current application, half of the mixed source length is chosen to be K, a relatively 

large number of components to be extracted from the mixed signal as the purpose is to define the 

original sinewave signals.  
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Besides, the third step (grouping) in the SSA process requires attention to assign the signals to be 

grouped for the final reconstruction step. Although the grouping step gives users the freedom of 

choice, it can be done by examining the singular spectrum (i.e. eigenvalue spectrum) of the 

trajectory matrix. For instance, the singular spectrum plot in Figure 5-2 clearly shows several steps 

composed by the pairs of eigenvalues. Through this observation, it is decided that two consecutive 

matrices Xi and Xi+1 (equation (5-4)) are grouped together. It is noted also that only the first three 

sources are extracted in each iteration of the proposed method (Table 5-1). As the number of 

iterations increases, the sources will be eventually recovered.  

 
Figure 5-2. First 50 eigenvalues of the trajectory matrix of the mixed signal 

Figure 5-3 and Figure 5-4 not only show the typical results of SSA and AMUSE analysis in an 

iteration but also demonstrate the novelty of the proposed method. In Figure 5-3, the application 

of SSA on a single signal results in three individual signals (i.e. ssa1, ssa2, ssa3), which still appear 

to have some degrees of correlations, especially between ssa2 and ssa3. Specifically, ssa2 is similar 

to ssa3 in both time and frequency domain with the power spectral density (PSD) functions peaking 

around 290 and 310 Hz.  
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Figure 5-3. The extracted SSA components and corresponding PSD 

The application of AMUSE on the SSA components (Figure 5-3) helps to further separate the 

signals to obtain the original ones. As recommended by Cichocki and Amari [193] and Miettinen 

et al. [194], different values for τ are tested and it is found that the time lag τ = N/6 = 666 produces 

the most effective results. As can be seen from Figure 5-4, the first recovered signal (amuse1) is 

deemed to be the original signal s4 as their pattern and frequencies are almost the same. Similarly, 

the signal amuse2 matches well with the source signal s3. The last signal (amuse3) is relatively 

similar to the first amuse1 signal in both time and frequency domain. However, it is not considered 

as a recovered separated source as its characteristics are not as clear as those of amuse1. 

Quantitatively, comparisons between the recovered and original signals are tabulated in Table 5-2 

where there is no difference in the frequencies between identified signals and the source signals. 
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Figure 5-4. The separated signals and the corresponding PSD after applying AMUSE 

The final separated sources after three iterations are shown in Figure 5-5. As can be seen from the 

figure, the source signals s2, s3, s4 are recovered as they match well with the original sources in 

Figure 5-1. Quantitively, the signal interference ratio (SIR) of the original signals s2, s3, s4 and 

their recovered signals is computed to be 46.5 dB which is comparable to 35 dB the quantity from 

the method proposed by He et al. and the other EMD-ICA, wavelet-ICA methods cited in the same 

paper [191].  
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Figure 5-5. Separated normalized sources after three iterations 

As shown in Table 5-2, it is clear that all signals are successfully recovered and separated as there 

is no error in the recovered frequencies. It is worth noting that additional signals are also revealed 

and reconstructed as the iteration process continues. The frequencies of these additional signals 

are always a factor of the first frequency (f1) of the square signal (s1). This finding agrees well with 

equation (1) where a square signal is actually an infinite sum of sinewave signals.   
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Table 5-2. Identified frequencies of the separated signals 

 Identified f Original f Error  

Signal number  (Hz)  (Hz) (%) 

1 155 155 (first component of signal s1) 0 

2 80 80 (signal s2) 0 

3 465 (= 3×155) 465 (second component of signal s1) 0 

4 290; 310 290; 310 (signal s4) 0 

5 90 90 (signal s3) 0 

6 775 (= 5×155) 775 (third component of signal s1) 0 

5.5. Application on dynamic rail track models  

In this study, the proposed SCBSS technique is applied to VTD signals to examine the subgrade 

stiffness. It is noted that although VTD can be measured by many track stiffness measurement 

systems [7,9,97,195], the relative deflection signal analogous to that measured by MRail system 

is simulated in this study to validate the current study. MRail is a continuous track stiffness 

measurement system developed at the University of Nebraska-Lincoln under the sponsorship of 

the Federal Railroad Administration [21]. The relative vertical rail deflection (Yrel) between the 

rail-wheel contact line and the rail surface at 1.22 m from the nearest axle is measured by the 

system which is then used for track condition assessments. The system has shown a lot of 

advantages in assessing track over long distances [25,110,112,132]. As noted in Section 5.2, on 

the other hand, Yrel may consist of mixed information and therefore the corresponding track 

modulus can not be observed clearly from the raw signal. In this context, the method in the current 

study is proposed to examine the track stiffness from Yrel signal under the effects of track geometry 

and varying track modulus. The purpose of the proposed methodology is two folds: to retrieve 

track modulus and track geometry information separately from the Yrel data.  

The Yrel data is simulated with a dynamic rail-track model developed using multibody dynamic 

simulation software, SIMPACK. The system consists of three wheelsets, crossties, and flexible 

rails supported by discrete supports having varying track modulus. Note that a light load (5kN) is 

applied at the third wheelset that is located at 1.22 m from the middle wheelset. With the current 

configuration, the wheel-rail contact can be always ensured and the relative deflection (Yrel) can 

be extracted by using deflections of the three wheelsets. Regarding the flexible rail parts, a finite 

element model (FEM) of a rail (RE100 profile) is created in ABAQUS and its substructure is 

generated with different retained nodes evenly distributed at 300 mm spacing on the railhead and 
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600m spacing on the rail base. Subsequently, the substructure model of the rail is imported to 

SIMPACK to create a flexible track model. A demonstration of the model is shown in Figure 5-6. 

Note that the red lines are the two FEMs. For computing efficiency and license resources, the total 

length of the rail part is 52.8 m and only the middle segment from 5m to 45m is studied.  

 
Figure 5-6. (a-b) Abaqus rail model; (c) SIMPACK model with a flexible track; (d) wheelset 

locations 

To validate the modeling process, deflections from the numerical model were compared with those 

obtained from the Winkler model. As can be seen from Figure 5-7(a), the deflections (at the applied 

loads) given by the numerical simulation are slightly larger than those given by Winkler model, 

although they follow the same pattern. This behavior agrees well with an on-site experiment 

conducted by Lu, S. [8], where the actual rail deflections were captured by a video camera. It is 

worth noting that the deflection given by SIMPACK model is slightly asymmetric at the given 

wheelset locations. It is because of the loading configurations and the back wheelset is right above 

the tie, whereas the second one is standing between two ties. The zigzag pattern of Yrel (Figure 

5-7(b)) extracted from the SIMPACK model is due to the discrete spring supports. 
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Figure 5-7. (a) Rail deflections from SIMPACK and Winkler models; (b) Yrel extracted from 

SIMPACK model 

Regarding track geometry, the analytical forms in terms of random irregularity power spectrum 

proposed by the Federal Railroad Administration (FRA) of the U.S. are employed. Specifically, 

the irregularities of track geometry are defined by six levels as detailed below [196].  

The power spectrum density functions are shown below: 

 𝑆𝑣(𝜔) =
(𝑘𝐴𝑣𝜔𝑐

2)

(𝜔2 +𝜔𝑐
2)𝜔2

 (𝑐𝑚2/𝑟𝑎𝑑/𝑚)  (5-20) 

 𝑆𝑎(𝜔) =
(𝑘𝐴𝑎𝜔𝑐

2)

(𝜔2 + 𝜔𝑐
2)𝜔2

 (𝑐𝑚2/𝑟𝑎𝑑/𝑚)  (5-21) 

 𝑆𝑐(𝜔) =
(4𝑘𝐴𝑣𝜔𝑐

2)

(𝜔2 +𝜔𝑐
2)(𝜔2 + 𝜔𝑠)

 (𝑐𝑚2/𝑟𝑎𝑑/𝑚)  (5-22) 

where Sv(ω), Sa(ω), Sc(ω) are track irregularity power spectral density functions for track profile, 

alignment, and cross-level (rad/m), ω is the spatial frequency (rad/m), ωc, and ωs are cutoff 

frequency (rad/m), Av and Aa are roughness coefficients (cm2⋅rad/m), which vary depending on 

irregularity levels (Table 5-3). The constant k is 0.25. 

Table 5-3. Values of the parameters for FRA track irregularity power spectral density function  

Parameters Levels and the corresponding values 

 1 2 3 4 5 6 

Av (mm2 rad/m) 12107 10181 6816 5376 2095 339 

Aa (mm2 rad/m) 33634 12107 4128 3027 762 339 

ωs (rad/m) 0.6046 0.9308 0.852 1.1312 0.8209 0.438 

ωc (rad/m) 0.8245 0.8245 0.8245 0.8245 0.8245 0.8245 
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Random samples to the track irregularity are determined from the trigonometric series below 

 𝑟(𝑥𝑘) = √
2

𝑁
× ∑√𝑆(𝜔𝑘)Δ𝜔 × cos(𝜔𝑘𝑥𝑘 + 𝜙𝑘)

𝑁

𝑘=1

 (5-23) 

where 

xk is the spatial location along the track 

ωk is the discrete frequency in the PSD functions. 

ϕk is the random phase angle uniformly distributed over [0, 2π]  

As per discussion in related studies [133,143], the vertical profile has the most influence on Yrel 

readings. Therefore, the current study considers the vertical profile as the factor that is mixed with 

the track modulus in the Yrel measurements.  

5.5.1. Case study 1: Track model with imperfect sinewave track modulus 

In this case, a random vertical profile is generated and inputted to the track model together with a 

sinewave track modulus. Note that the inputted sinewave track modulus is added with artificial 

noise to better represent uncertainties in the measurement system. The purpose is to justify the 

accuracy of the extracted Yrel signal in identifying the track modulus. The inputted values and the 

corresponding Yrel are demonstrated in Figure 5-8.  
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Figure 5-8. (a) The inputted sinewave track modulus (with noise); (b) the Yrel signal 

Intuitively, the Yrel signal in Figure 5-8 clearly shows a strong correlation with the inputted track 

modulus where high values of support stiffness result in low deflections (Yrel). The blind separation 

process is now conducted on the Yrel signal which mainly contains the track modulus information 

in this case. Similar to the previous application, the procedure in Table 5-1 is followed by first 

defining the level of SSA decomposition. Although there is no rule for deciding the window length 

(L), it is recommended that sufficiently detailed elementary series (K) can be achieved when L ≈ 

N/2 [182]. In the current application, since the length of the raw Yrel data is relatively short (N = 

135) and since the aim is to identify only one to two types of separate sources of information (i.e. 

track modulus and track geometry), only 10 elementary series are decomposed by the SSA process. 

Finally, the AMUSE technique with 2 time lags, one of the typical values used in the literature for 

AMUSE method [121,194], is deployed to extract the final separated signals.  

Figure 5-9 shows the resulting signals after a single iteration. First of all, the global sinewave 

characteristic of the track modulus is not only revealed but also further sharpened to better reflect 

the actual sinusoidal pattern of the inputted track modulus (Figure 5-9(a)). Most importantly, the 
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application of the proposed SSA-AMUSE method continues to show the localized effects of the 

discrete spring supports which is shown in Figure 5-9(b), the zig-zag pattern in the second 

separated signal reflects the discontinuity of the rail supports. It is worth mentioning that the effect 

of discrete spring supports is completely faded in the raw Yrel signal as the varying track modulus 

effect is overwhelming. The proposed method has successfully revealed the two inherent 

properties of the track model i.e. sinewave track modulus variations and discrete spring supports.  

 
Figure 5-9. The separated signals computed by the proposed method 

 

5.5.2. Case study 2: Track model with random vertical profile + random track modulus 

In this case, a more complicated scenario is simulated where both track modulus and vertical 

profile are randomly generated and inputted to the track model. A Class 6 random vertical profile, 

the inputted track modulus and the corresponding Yrel are shown in Figure 5-10. 
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Figure 5-10. (a-b) The inputted track parameters; (c) the extracted Yrel signal 

The same procedure is applied to extract the two separated signals from Yrel. The resulting two 

source signals which are relevant to the track modulus and vertical profile are shown in Figure 

5-11. It can be observed that the two separated sources successfully indicate the variations of both 

track modulus and vertical profile. On the other hand, however, the magnitudes of track modulus 

and vertical profile are not well reflected by the recovered sources. The results are deemed 

successful as the patterns and variations of the sources are well captured. Unfolding the variations 

of track modulus enables a valid establishment of a function approximation to estimate the actual 

values of track modulus from the processed Yrel (which is the first separated signal in this case) 

[197]. It is also shown in the current simulated model that the ability of the method in separating 

the track modulus is less effective as the level of track geometry variations increases. It is expected 

as the mixing mechanism of track modulus and track geometry source becomes more complicated. 

Therefore, further investigations of real-life measurements would be needed to confirm the levels 

that track geometry present in Yrel data.  
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Figure 5-11. Comparisons: (a) the inputted track geometry vs. source 1; (b) track modulus vs. 

source 2 

5.6. Conclusions  

In this chapter, a recursive SSA-AMUSE algorithm that is capable of separating a single channel 

instantaneous mixing signal is proposed. The single channel observation is first mapped into multi-

channel signals to transform an underdetermined blind source separation problem to determined 

blind source separation. AMUSE technique is subsequently applied to the processed multi-channel 

signals to define the original sources. Importantly, implementing the proposed SSA-AMUSE 

method in an iterative process provides superior results as the original sources are eventually 

peeled off from the observed signal. The applications of the proposed method on various synthetic 

signals previously used in the literature and Yrel data confirm that the original signals are 

successfully reconstructed. The method puts a step forward in promoting the application of track 

stiffness measurement systems as it is the first time blind source separation is introduced to the Yrel 

measurements for investigating track modulus variations. In the next chapter, a further 

development of the current method is proposed and validated with real-life Yrel data.   
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Chapter 6: A Hybrid Single Channel Blind Source Separation Technique for Extracting 

Track Geometry and Stiffness with a Real-life Application4 

6.1. Overview 

This chapter presents a single channel blind source separation (SCBSS) technique for evaluating 

track support conditions and track geometry using vertical track deflection data measured by a 

continuous track stiffness measurement system. A track flexibility index and an estimated track 

quality index are computed from the separated signals extracted from the measured deflection data 

using singular spectrum analysis and algorithm for multiple unknown signals extraction. The 

application of the proposed method on the field data recorded from a revenue track shows that the 

variations in the track stiffness as well as the variations in the vertical track profile are successfully 

evaluated. Contrary to the assumption that the vertical profile is the primary geometric factor 

affecting the readings of continuous track stiffness measurement systems, our investigation shows 

that superelevation significantly influences the measurement system and thus the measured data. 

This finding can be a significant contribution to the development of other continuous track stiffness 

measurement systems where deflections are computed using indirect methods.  

6.1. Introduction  

Measuring vertical track deflections is a common task in investigating the vertical track stiffness, 

one of the factors contributing to the deterioration of track geometry, rail failures, and other 

superstructure components [82]. In the railway engineering literature, track stiffness and track 

modulus are the two common parameters to quantify the track foundation. Different continuous 

and standstill systems were developed and claimed to be capable of providing track stiffness 

information. A standstill system collects the total deflection at predefined points on the track under 

known applied loads from which the total track stiffness can be calculated. The main advantage of 

standstill systems is that the track stiffness can be defined accurately, whereas its disadvantage is 

that repeating the test at multiple locations is time-consuming and requires track closure. The 

common commercial systems include impact hammer method, falling weight deflectometer, track 

 

4 A version of this chapter will be submitted to Journal of Rail and Rapid Transit. Authors: N.T. Do, M. Gül, M.T. 

Hendry 
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loading vehicle [89,198,199]. In addition, there are other methods that utilize digital image 

correlation, multi-depth deflectometers, and LVDT to define the total track deflection [200,201]. 

On the other hand, due to the ability of taking vertical track deflection (VTD) measurements over 

a railway network level, continuous track stiffness measurement systems are necessary for track 

maintenance and monitoring. Different systems have been developed in various parts of the world, 

such as China, Europe, and North America, and these systems generally use either laser sensors or 

vibration sensors to measure the VTD [7,9,97,195]. It should be noted that the total VTD outputted 

by the measurement systems is a combination of different parameters such as void deflection, track 

geometry variations, and vertical stiffness of different subgrade layers [134]. Therefore, it is 

important to fully investigate factors affecting the track deflection data measured by such systems 

so that the contact deflection due to track stiffness can be identified. In this chapter, in particular, 

the data measured by a continuous stiffness measurement system known as MRail is investigated. 

The MRail system was developed by the researchers at the University of Nebraska-Lincoln (UNL) 

[195]. Different studies have been conducted on the system to investigate the effects of track 

geometry and its ability in providing information about the track stiffness 

[21,22,25,110,111,132,141,143,197]. It was shown that there was a significant correlation between 

the measured data and track geometry although the relationship was not successfully quantified. 

In order to minimize the effects of track geometry and surface imperfections, the moving average 

of the measured data and its first derivative have been used to map the subgrade conditions 

[112,132,141]. By using the method, the locations of soft foundation such as muskeg formation 

and its variations were successfully identified [112]. However, as moving average approach is 

used to remove short wavelength irregularities in the MRail data, further techniques are worth 

investigated to deal with the long wavelength components which contains not only track stiffness 

information but also other unknown information. Therefore, defining the main factors that affect 

the collected VTD (referred to Yrel) recorded by the MRail system should be rigorously studied so 

that the track stiffness can be successfully identified. Fully understanding the factors affecting Yrel 

data and establishing an appropriate method for defining the track stiffness variations are key 

challenges that prevent the widespread application of continuous stiffness measurement systems. 

Although different studies have shown that the Yrel data can be used to examine the variations of 

track stiffness and subgrade conditions [24,108,109,112], investigation on the effects of track 
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geometry and other factors on Yrel remains limited. An analytical test conducted by Lu et al. [143] 

concluded that only large vertical geometry defects over a short length significantly affects the Yrel 

readings. On the other hand, Roghani et al. [113] showed that there is a significant correlation 

between statistical distributions of the track geometry and Yrel. Moreover, Mehrali et al. [132] 

conducted a field study on Yrel data and track geometry to investigate the levels of their correlations. 

The authors found that the track alignment (the lateral deviation of the gauge side from a reference 

line measured from its midpoint location) has the highest correlation with Yrel data.  

As Yrel data contains mixed information coming from track geometry, track stiffness, and track 

surface imperfections, it can be posed as a single channel blind source separation (SCBSS) 

problem whose main objective is to recover the original signals that were mixed in a single 

observation. The current study proposes a new solution for SCBSS problem by utilizing Singular 

spectrum analysis (SSA) and Algorithm for Multiple Unknown Signals Extraction (AMUSE). The 

advance of the method is that all required parameters for SSA are self-identified due to the use of 

AMUSE technique. Another contribution of the current study is that the blind source separation 

concept is introduced to track structure health monitoring to promote the use of a continuous track 

stiffness measurement system. The results from the field test conducted on a revenue mainline 

show that the proposed method is also successful in examining the track geometry and track 

stiffness variations by two separated signals. In addition, it is also shown that the superelevation 

has a significant influence on the measured data. This finding is important as superelevation was 

discovered as an influential factor in the continuous track stiffness measurement system for the 

first time in the literature. 

6.2. Methodology 

6.2.1. Mathematical description of the single channel mixing system 

In many practical situations, a single sensor is used to record multidimensional outputs of a 

dynamic system. The linear instantaneous mixture acquired by the sensor can be described as: 

 
𝑥(𝑡)  = ∑𝑎𝑖𝑠𝑖(𝑡)

𝑛

𝑖=1

+ 𝑒(𝑡) 
(6-1) 

where ai is the mixing coefficient, si(t) is the i-th source signal, e(t) is the measurement noise, n 

denotes the number of source signals. The goal of single channel blind source separation problem 
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is to define the unmixing matrix W and the source signals from the single mixed signal x(t) only 

(equation (6-2)).  

 𝐬 = [𝑠1(𝑡), 𝑠2(𝑡), … , 𝑠𝑛(𝑡)] = 𝑥(𝑡) ×𝐖
T (6-2) 

In general, the SCBSS problem is resolved by transforming the observed signal into a combination 

of multiple signals. Then, a blind source separation (BSS) technique can be applied to the 

decomposed signals to recover the sources. In this study, the decomposition step is achieved by 

singular spectrum analysis (SSA), whereas the algorithm for multiple unknown signals extraction 

(AMUSE) technique is used to solve the BSS problem. In the current study, both SSA and AMUSE 

can be implemented after all free parameters are defined automatically (which will be discussed 

in the next sections).  

6.2.2. Singular Spectrum Analysis (SSA) for Signal Decomposition  

SSA is a time series analysis that is widely known for its ability in signal decomposition, 

forecasting and gap filling estimation [182]. Overall, the main idea of SSA is to decompose a time 

series into a sum of multiple series. In this section, details about implementing SSA is given. 

Further detailed discussion about SSA is not in the scope of this chapter and can be found in the 

literature [182,183]. 

Consider a finite real-value series 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁) with N discrete points.  The two main 

parameters of SSA are the window length L and parameter K (the number of decomposed signals) 

that satisfy 1< L < N and K = N – L +1. SSA algorithm follows two main stages (i.e. decomposition 

and reconstruction) that consist of four steps: (1) embedding, (2) singular value decomposition, (3) 

grouping, and (4) diagonal averaging. 

Step 1: Embedding  

One-step delay-embedding is performed on the original series x to compute its trajectory matrix X  

 𝐗 = [𝑋1, 𝑋2, … , 𝑋𝐾] =

[
 
 
 
 
𝑥1 𝑥2 𝑥3 ⋯ 𝑥𝐾
𝑥2 𝑥3 𝑥4 ⋯ 𝑥𝐾+1
𝑥3 𝑥4 𝑥5 ⋯ 𝑥𝐾+2
⋮ ⋮ ⋮ ⋱ ⋮
𝑥𝐿 𝑥𝐿+1 𝑥𝐿+2 ⋯ 𝑥𝑁 ]

 
 
 
 

 (6-3) 

where 𝑋𝑖 = (𝑥𝑖, … , 𝑥𝑖+𝐿−1)
𝑇with 1 ≤ i ≤ K denotes the lagged vector.  
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The current delay-embedding configuration produces the trajectory matrix X that has constant 

skew-diagonals. Therefore, this step is also known as matrix Hankelization transform.  

Step 2: Singular value decomposition 

In this step, the trajectory matrix X is decomposed into L matrices by singular value decomposition 

(SVD) of X. That is: 

 

𝐗 =∑𝐗𝑖

𝐿

𝑖=1

=∑√𝜆𝑖𝑈𝑖𝑉𝑖
T

𝐿

𝑖=1

 

(6-4) 

where Ui is the left singular vector, 𝑉𝑖 is the right singular vector, and λi is the eigenvalues (that are 

λ1 ≥ λ2 ≥ … ≥ λL ≥ 0) of the covariance matrix XXT. 

Step 3: Grouping 

The expansion in equation (6-4) can be simplified by partitioning the X matrix into Ig subsets such 

that: 

 𝐗 = 𝐗𝐼1 + 𝐗𝐼2 +⋯+ 𝐗𝐼𝑔 (6-5)  

where 𝐗𝐼 = ∑ 𝐗𝑖𝑖∈𝐼  is the elementary matrix of X. 

The grouping procedure depends primarily on the singular values of XXT matrix whose 

magnitudes are sorted in descending order, and usually appear in pairs.  

Step 4: Diagonal averaging  

At this final step, each elementary matrix  𝐗𝐼 is transformed to a new series with N elements. For 

simplicity, let Y = 𝐗𝐼 with 𝐗𝐼 ∈ ℳ𝐿,𝐾(ℝ), L ≤ K. By diagonal averaging the element yl,k of the 

matrix Y, the corresponding series �̃� = (�̃�1, �̃�2, … , �̃�𝑠, … �̃�𝑁) is produced: 

 

�̃�𝑠 =

{
 
 
 
 

 
 
 
 1

𝑘
∑ 𝑦𝑚,𝑘−𝑚+1

𝑘

𝑚=1

                                 for 1 < 𝑘 ≤ 𝐿

1

𝐿
∑ 𝑦𝑚,𝑘−𝑚+1

𝑘

𝑚=1

                                   for 𝐿 < 𝑘 ≤ 𝐾

1

𝑁 − 𝑘 + 1
∑ 𝑦𝑚,𝑘−𝑚+1

𝑁−𝐾+1

𝑚=𝑘−𝐾+1

          for 𝐾 < 𝑘 ≤ 𝑁

 

(6-6)  
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Overall, by applying the diagonal averaging (equation (6-6)) to each matrix 𝐗𝐼 in equation (6-5), 

the original series x(t) is decomposed into g interpretable component series. 

 𝑥(𝑡)  
𝑺𝑺𝑨
→  𝐲(𝑡) = {𝑦(1)(𝑡), 𝑦(2)(𝑡),… , 𝑦(𝑔)(𝑡)}, 𝐲 ∈ ℳ𝑁,𝑔(ℝ) 

(6-7)  

6.2.3. Algorithm for Multiple Unknown Signals Extraction (AMUSE) technique 

The application of SSA helps to transform a unidimensional signal into multiple elementary signals. 

Equation (6-2) is rewritten in a new form where both sources and measured signals are in matrix 

form. 

 𝐬(𝑡) = 𝐲(𝑡) ×𝐖T (6-8)  

where s and y are N × g matrices that contain g sources and observed signals, W is the g×g 

unmixing matrix. 

The source s and the unmixing matrix W can be estimated by second order blind identification 

(SOBI) techniques by assuming that the sources are weakly uncorrelated and stationary. In this 

study, AMUSE technique is employed to develop a hybrid SSA-AMUSE technique for single 

blind source identification. AMUSE method was introduced by Tong et al. [184] to estimate the 

unmixing matrices and sources by simultaneously diagonalizing two covariance matrices. The 

main implementation steps of AMUSE is listed below. 

First, the covariance matrix of the observed signal y is estimated: 

 𝐑𝑦(0) = 𝐸{𝐲(𝑡)𝐲
T(𝑡)} (6-9)  

where Ry(0) is the covariance matrix at zero time lag. 

Then, the eigenvalue decomposition of Ry(0) is computed: 

 𝐑𝑦(0) = 𝐕𝑦𝚲𝑦𝐕𝑦
T (6-10)  

where Vy is the matrix of eigenvectors and 𝚲𝑦 is the diagonal matrix of eigenvalues in descending 

order.  

Then, whitening transformation is performed:  
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�̅�(𝑡) = (𝐕𝑦𝚲𝑦

−
1
2𝐕𝑦

T)𝐲(𝑡) = 𝐐𝐲(𝑡) 
(6-11)  

where Q is the whitening matrix and  �̅�(𝑡) is the whitened matrix. 

Then, the covariance matrix with lag τ and the corresponding symmetrized covariance matrix are 

calculated: 

 𝐑�̅� (𝜏) = 𝐸{�̅�(𝑡)�̅�(𝑡 − 𝜏)
T} (6-12)  

 
𝐑�̅� 
𝑆 (𝜏) =

1

2
(𝐑�̅� (𝜏) + 𝐑�̅� (𝜏)

T) 
(6-13)  

Eigenvalue decomposition is applied the second time to the symmetrized covariance 𝐑�̅� 
𝑆 (𝜏) to 

extract its eigenmatrix V. Finally, the unmixing matrix W and the separated sources s are estimated: 

 𝐖 = 𝐕T𝐐 (6-14)  

 𝐬 = 𝐲𝐖T (6-15)  

6.2.4. The proposed hybrid SSA-AMUSE method 

Both SSA and AMUSE have been widely employed in blind source separation problems [185-

188]. SSA is well known for decomposing a signal into trend and seasonality components. On the 

other hand, AMUSE is a blind source separation technique that is popular due to its straightforward 

implementation process [189,190]. In addition, the choice of time lag τ provides users a lot of 

flexibility in evaluating the recovered sources when implementing AMUSE technique. In this 

study, τ is chosen to be 1 (a common value for AMUSE) throughout the analysis. On the other 

hand, the choice of SSA parameters is cumbersome as there is no universal rule for it [182]. In this 

context, the application of AMUSE is considered an ideal supplement to SSA as it helps to define 

the optimized SSA parameters. In this study, the key constraint in the method’s algorithm is that 

the first SSA and AMUSE components (which is called SSA1 and AMUSE1 respectively) must be 

close to each other as much as possible. By implementing the AMUSE and SSA techniques with 

different values of K, the final parameters of the proposed method can be finalized by examining 

the difference between the first components of SSA and AMUSE. In this context, the maximum 

Pearson coefficient of correlation between SSA1 and AMUSE1 (equation (6-16)) is used as the cost 

function to the define the final K value. 
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argmin
𝐾 ∈ ℤ

𝑃 = argmin
𝐾 ∈ ℤ

1

𝑀 − 1
∑
𝐴𝐾(𝑖) − 𝜇𝐴𝐾

𝜎𝐴𝐾
⋅
𝐵𝐾(𝑖) − 𝜇𝐵𝐾

𝜎𝐵𝐾

𝑀

𝑖=1

 

(6-16)  

where AK and BK denotes SSA1 and AMUSE1 components computed with a specific K value, μ and 

σ denotes the mean and standard deviation of each component. 

The algorithm flow of the proposed SSA-AMUSE method is shown below: 

 

Figure 6-1. The flowchart for the proposed method 

6.3. Application of the proposed method on field data 

In this section, the proposed method is applied to analyze the field data. Yrel and track geometry 

measurements recorded along over 200 km of Canadian track are analyzed in the current study. 
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6.3.1. Study site and measurement system 

The schematic description of the study side is shown in Figure 6-2. Since the measurement system 

was operated together with the revenue locomotives, the wheel loads and weight of the adjacent 

cars were not available. 

 

 

Figure 6-2. The study area 

6.3.2. The continuous track stiffness measurement system 

As mentioned previously, MRail system is used to measured vertical track deflections [195]. The 

system hardware and data acquisition are shown in Figure 6-3. Overall, the system provides 

noncontact measurements of the vertical track deflection using two laser lines and a camera to 

capture the laser projections on the rail surface. Deflections measured by the system are the relative 

distance of the railhead at 1.22 m from the nearest wheel before and after loading (i.e. Yrel).  
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Figure 6-3. The MRail system: (a) the carrying car; (b) the acquisition uinit; (c) the mounting 

frame; (d) the laser unit 

6.3.3. Preliminary analysis 

The raw Yrel recorded over the whole study site is shown in Figure 6-4(a). A preliminary analysis 

is first conduced to investigate the variations of the recorded data and to locate their extreme values 

for further investigations.  A moving average (MA) of Yrel over 1524 m (5000 ft) is shown in  

Figure 6-4(b). In addition, a simple control chart with the upper control limit (UCL) and lower 

control limit (LCL) being computed by one standard deviation of Yrel MA is depicted in the same 

figure. As shown in Figure 6-4(b-c), the Yrel values at Mile 49.4 and 101.4 are two of the outliers 

being detected. The two locations actually have deterioration that was observed during the 

operations of the railway line [202,203]. Figure 6-4(c) also shows other extreme values of Yrel 

within the first 64.4 km of the study site. The common factor of these values is that they are mostly 

located at curves. This phenomenon will be further investigated in the subsequent sections.  
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Figure 6-4. The variations of Yrel along the railway line: (a) raw Yrel; (b) 1524-m MA of Yrel and 

its control chart; (c) the map of Yrel’s extreme values along the railway line 

An example of the raw Yrel and track geometry measurements is given in Figure 6-5. As can be 

observed in the figure, the Yrel data has a degree of similarity with the track vertical profile, 

especially at locations with high Yrel magnitudes. However, the similarity cannot be quantified 

from the raw signals as further analysis is required to investigate their correlation.  
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Figure 6-5. The measured data: (a) Yrel; (b) Profile; (c) Alignment; (d) Guage; (e) Crosslevel  

6.3.4. Analysis results  

In order to show the effectiveness of the methodology, the Yrel data and vertical track profile for a 

track segment including a railway bridge is first examined. From Figure 6-6, due to the presence 

a short span, a long span railway bridges connected by an approach, the high variations of track 

stiffness over this track segment can be clearly observed. In addition, Yrel and vertical profile reflect 

well the variations of the track stiffness and geometry, especially at the railway bridges and grade 

crossings approximately occurring at the kilometer 68.8 and 71.0. The impact of track geometry 



 

103 

 

(e.g. the unloaded track profiles in space) on Yrel measurements were investigated in different 

studies [132,142,143]. For instance, Roghani et al. [113] conducted a correlation analysis between 

geometry defects and the filtered Yrel measurements. It was found that highest frequency of defects 

in warp, crosslevel, and profile coincide with the large magnitudes of moving average filtered Yrel. 

This finding agrees with the investigation about track stiffness measurement systems conducted 

by [134], where the authors confirmed that the total deflections measured by those systems 

included the unloaded track profiles, void deflections (e.g. under hanger sleeper), and contact 

deflection under loading.  

 

Figure 6-6. (a) The measured Yrel ; (b) the track profile; (c) the track segment 

First, different configurations of SSA are initiated and applied on the Yrel data. the purpose is to 

show the sensitivity of SSA under different configurations. As mentioned previously, the most 
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important parameter for SSA is the number of elementary components (K) resulting in the 

corresponding value of window length L. In this study different values of K are selected (i.e. N/6, 

N/5, …, N/2). The first SSA component of Yrel with four different values of K is shown in Figure 

6-7. 

  

Figure 6-7. SSA1 component under different K parameters 

As shown in Figure 6-7, different values of K alter the first SSA component (i.e. SSA1) in such a 

way that increasing K results in SSA1 that has longer wavelength content. In this study, the SSA1 

component of Yrel is considered a reflection of track modulus as it is essentially the trend of the 

signal. In fact, extracting the trend or long wavelength component in Yrel by moving average filter 

has been widely applied in many related studies which showed that the moving average of Yrel 

reflects really well the subgrade conditions (or track modulus variations) [141,143]. Herein, the 

trend is extracted by SSA instead of moving average filter. A comparison between the SSA1 

component and different moving averaged Yrel is shown in Figure 6-8. 
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Figure 6-8. The processed Yrel: (a) the 1st SSA component; (b) 76.2-m MA; (c) 106.7-m MA; (d) 

167.6-m MA of Yrel 

As observed in Figure 6-8,  the moving average of Yrel (Figure 6-8(b-d)) is well comparable to the 

first SSA component (Figure 6-8(a)) as they follow similar patterns. However, the first SSA 

component is more efficient than the moving average of Yrel as it effectively eliminates short 

wavelength content. It is worth noting that short wavelength (or high frequency) components in 

Yrel data can also be further removed by using moving average with longer window length. 

However, increasing the window length of a moving average filter will also cause the filtered 

signal to lose local fluctuations. By comparison between  Figure 6-8(a) and Figure 6-8(d),  the 

local fluctuations still retain in the SSA1 signal whereas they are hardly observed in Figure 6-8(d) 

(167.6-m MA of Yrel).  

The question of interest is defining the value of SSA parameter, K in an automatic manner. The 

application of AMUSE is proposed to define the K value of SSA and further separate the SSA 

components to retrieve additional information about the track geometry.  
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Figure 6-9. Comparison between the first four SSA and AMUSE components 

Figure 6-9 demonstrates an example of the first four SSA and AMUSE components. As can be 

seen, SSA components are transformed into the corresponding AMUSE components after applying 

AMUSE. In this study, as the trend of the signal represented by SSA1 should be reserved at the end 

of the analysis to indicate the variation of track stiffness, the constraint when applying AMUSE is 

that the first SSA component should be maintained after the transformation. As indicated in the 

flowchart (Figure 6-1), by varying the parameter K and examining the coefficient of correlation 

(P) between SSA1 and AMUSE1, the final K value is the one that produces the highest P value. The 

variation of the correlation between SSA1 and AMUSE1 under different values of K is shown in 

Figure 6-10. As can be seen, when K varies from 150 to 450, AMUSE1 is closest to SSA1. In this 

case, 300 is chosen as the final value of K. Different data segments were also checked and it is 

shown that K = 300 is a suitable value for the current application. 
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Figure 6-10. The correlation between SSA1 and AMUSE1  

With the current configuration of SSA (K = 300) and AMUSE (τ = 1), the first few components 

of AMUSE are utilized to represent the track modulus and track geometry information. Regarding 

the application of SSA, it simply produces the trend, seasonality, and harmonics in the signal. On 

the other hand, AMUSE further separates the SSA components and rearranges the components in 

a way that each component contains separated informative signals. For instance, with the current 

configuration of SSA (K = 300) and AMUSE (τ = 1), the raw Yrel in Figure 6-6 is first decomposed 

into 300 components. Only the first 20 components are kept for further processing with AMUSE 

as they account for more than 90% of the total energy of the original Yrel. Finally, the first AMUSE 

component is used as the flexibility index (FI) to indicate the track stiffness variations, whereas 

the second separated signal (coming from the linear combination of the 2nd to the 10th AMUSE 

components) is considered as the indicator of the vertical profile signal. The results are depicted 

in Figure 6-11, where the computed FI clearly shows the location with a high variation of track 

stiffness. Comparing Figure 6-6(c) and Figure 6-11(a), the lowest value of FI occurs at km 69.7 is 

due to the short railway bridge. It is followed by an increase in FI due to the soft approach, and 

then a decrease due to the second railway bridge.  
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Figure 6-11. The final signals extracted from Yrel: (a) Flexibility index; (b) the 2nd separated  

The correlation between the second separated signal and the vertical profile data is shown by the 

strong correlation between the track quality index (TQI) computed by the two signals. In this study, 

the TQI is computed by calculating the standard deviation within 76 m (250 ft) length of the track. 

the actual TQI of the profile (TQIPro) is computed directly from the track geometry measurements 

whereas the estimated track quality index (TQIest) is computed from the 2nd separated signal of Yrel 

data. As can be seen in Figure 6-12, the variation of TQIPro is well captured by TQIest, especially 

at the locations with high variations of the track geometry. In this case, the coefficient of 

correlation between the two TQIs is 0.73. 
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Figure 6-12. Comparison between the actual TQI and the TQIest  

By applying the same procedure, the values of FI and the TQIest are computed over long distances. 

As can be seen in Figure 6-13(a), sudden changes in the FI are corresponding to the road crossings, 

where the track modulus increases significantly. It is also seen in Figure 6-13(b) that the TQIest 

and its variations well capture the actual TQIPro of the track profile as the coefficient of correlation 

between the two parameters computed over 9 km of the track is 0.75. A good match between the 

current estimated TQIest and the actual TQIPro especially those with high magnitudes is another 

advantage of the proposed method over moving average filter approach [113]. From Figure 6-13(c), 

the TQI is estimated by calculating the standard deviation of the measured Yrel after subtracting 

from its filtered signal (using 122-m MA filter). As can be seen, the actual values of TQIPro are 

underestimated by this method. Quantitatively, the Mahalanobis distance between the excessive 

values of TQI in Figure 6-13 estimated by the proposed method and the actual values is 7.46 

whereas it is 36.60 when TQI was estimated by the moving average method [113]. This means that 

the TQIPro values estimated by the current method are closer and more correlated to the actual 

values. Moreover, it is worth noting that the estimated TQIest is solely computed from Yrel data 

without any priori knowledge about the track geometry measurements. 
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Figure 6-13. (a) The FI and (b) TQIest computed by the proposed method 

Importantly, there is a track segment within the 41.84th km in Figure 6-13(a) where there is a 

substantial decrease in the FI although the track profile quality in this segment is higher than other 

locations in Figure 6-13(b). This behaviour in the processed Yrel signal (e.g. the FI signal) can only 

be explained by further decomposing the Yrel signal using the proposed method. In this case, K = 

7000 is chosen to apply SSA on Yrel signal which results in a more global trend in SSA1 (the first 

SSA component). The comparison between the track plan, the corresponding superelevation and 

the resulting SSA1 are shown in Figure 6-14. It is clear that the SSA1 (which is computed from the 

Yrel measurements) is directly related to the superelevation of the track (Figure 6-14(b)) with the 

coefficient of correlation being 0.85. The effect is due to the fact that MRail system uses images 

of the laser lines projected on the rail surface to output Yrel signals. When the difference in the 

height of two rails (superelevation) is substantial, especially at curves, the angle between the 

camera and rail surface changes accordingly. Therefore, the image of the laser lines on the rail 

surface will be different which results in the change in Yrel values. The effect of superelevation can 

be further confirmed by the asymmetric correlation between the SSA1 components of Yrel recorded 

on the left and right rails. This asymmetric correlation is due to the instance when the left rail is 
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higher than the right rail and vice versa. This effect can be minimized by taking the average of 

SSA1 computed from the left and right Yrel as shown in Figure 6-14(c). 

 

Figure 6-14. Comparisons between: (a) the track plan; (b) superelevation; and (c) the computed 

SSA1 

The method’s effectiveness in locating the subgrade stiffness variations is also demonstrated via a 

tangent track segment in Figure 6-15. The segment is laid on a peat mire formation (a big bog can 

be observed in Figure 6-15(a)) between the 162.5th and 164th km. For this reason, the segment has 

undergone deteriorations (e.g. skewed, broken ties, rail seat abrasion failure) due to the strong 

movement of the rail-track structure [203]. Note that the average of the FI signals on the left and 

right rail is taken as the final flexibility index (FImean) to reduce the effect of superelevataion. As 

shown in Figure 6-15(b), the increase in the FIs between the 162.5th and 164th km indicates exactly 
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the location of the track that has reduced track modulus. Apparently, the variations of 

superelevation over this tangent segment are minimal which explains the symmetric correlation 

between the FI values on the left and right rails. In addition, Figure 6-15(c) shows that there is a 

strong correlation between the  TQIest  and TQIPro with the coefficient of correlation being 0.72. 

Therefore, the computed TQIest can be considered as an indicator of the track profile variations. 

 

Figure 6-15. The results over a tangent track: (a) the track location; (b) FI’s variations; (c) the 

estimated TQIest 

6.4. Conclusions  

In this case, a new single channel blind source separation methodology is proposed to evaluate the 

track support conditions and track geometry of a Canadian railway line using continuous vertical 

track deflection measurements. This study also reveals more insight into the factors that affect the 

readings of a continuous track stiffness measurement system (MRail in particular). By combining 

singular spectrum analysis and algorithm for multiple unknown signals extraction, the recorded 
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vertical track deflection data is separated into two independent signals which are subsequently 

used to build a track flexibility index (FI) and an estimated track quality index (TQIest). The results 

show that the FI can provide useful information about the track modulus and its variations (e.g. 

level crossings, soft foundation due to peat meres), whereas TQIest effectively reflects the vertical 

profile variations. On the other hand, the analysis in the current study shows that vertical profile 

is not the only primary factor that affects the readings of the MRail system. In this case, the 

measurements are substantially affected by the track superelevation, especially at curved tracks. 

This study also suggests that MRail measurements should be taken at both left and right rails to 

output the average values which are less sensitive to the variations of superelevation.   
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Chapter 7: Conclusions and Recommendations for Future Research  

7.1. Summary and conclusions 

In this study, new methodologies for track stiffness and rail bending moment evaluations 

considering the effects of track geometry using vertical track deflection (VTD) measurements were 

developed and validated. As track conditions at the surface level and subgrade stiffness are 

successfully quantified from a single type of measurements, the developed methods are expected 

to facilitate cost-effective maintenance strategies and contribute to the safety and reliability of 

railway networks. The study focused on the MRail system, a continuous track stiffness 

measurement system that collects the relative VTD (which is Yrel) between the line connecting 

wheel/rail contact points and the rail surface, at a distance 1.22 m from the nearest wheel. The 

current study also provided a detailed investigation of track geometry effects on the readings of 

the MRail system. Although the proposed methodologies in this thesis require the measured Yrel 

data as the primary input, the application of the methodologies on other types of continuous track 

stiffness measurement data would be still valid provided that the process of interpreting the VTD 

should be slightly modified, depending on the type of measurement systems. The following 

paragraphs present the summary and conclusion of the investigations of each objective of this 

research as presented in Chapters 3 to 6. 

The capability of using Yrel measurements for evaluating the track modulus, an important factor 

representing the track performance, was investigated in detail in Chapter 3. A series of finite 

element models (FEMs) that were previously developed to simulate a rail segment on discrete 

spring supports with varying stiffness were employed to estimate the track modulus variations 

from Yrel over different track section lengths. Two methodologies based on Artificial neural 

networks (ANNs) together with statistical and frequency analysis were proposed to estimate the 

track modulus average and standard deviation from the corresponding Yrel. The results showed that 

the variations of track modulus were effectively estimated regardless of the effects of reducing the 

length of the track section. The ANNs in the study were trained with the data corresponding to a 

specific rail size and loading condition. Therefore, re-training ANNs are required for other loads 

and rail sizes.  
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Information about the maximum bending moments is valuable for calculating maximum tensile 

and compressive stress in rails. For this reason, the capability to MRail system for evaluating the 

rail bending moments was investigated in Chapter 4. The analysis of the simulated Yrel data and 

the bending moments showed that there is a strong correlation between the extreme values of Yrel 

and those of the bending moments. The values of the maximum positive and negative bending 

moments depend on different factors including but not limited to the loading conditions and the 

track foundation. Thus, the simulated Yrel data was used to estimate the extreme values of the 

bending moments. In this context, radial basis function neural networks and wavelet 

multiresolution analysis were employed to develop two frameworks for estimating the local 

extreme values of positive and negative moments. The results from the proposed methodologies 

further confirmed the potential of using data from a continuous track stiffness measurement system 

(e.g. MRail) for structural health monitoring of rails over large railway networks.  

As the effectiveness of using a continuous track stiffness measurement system for track 

performance monitoring was demonstrated Chapter 3 and Chapter 4, Chapter 5 investigated the 

effects of track geometry variations on the Yrel measurements. Dynamic models were developed to 

simulate the stochastic properties of track modulus and longitudinal track geometry variations. The 

main purpose was to investigate the impacts of track geometry on the Yrel measurements and to 

verify the ability of using Yrel data (which contains mixed information due to the presence of track 

geometry) for identifying the variation of track modulus. A new methodology was proposed to 

solve the single channel blind source separation problem by employing singular spectrum analysis 

(SSA) and the algorithm for multiple unknown signals extraction (AMUSE). Prior to applying the 

method on the simulated Yrel measurements, its performance was validated by recovering the 

original separated synthetic signals from a single channel observation. The methodology was 

subsequently used to separate the track geometry and track modulus information from Yrel, a single 

channel datatype. Contradict to the related studies in the literature, the results in the study showed 

that the effects of track geometry on Yrel measurements were significant and they may mask the 

information of track modulus in the Yrel data. The extracted track features showed that information 

about both track modulus and track geometry was obtained simultaneously using the proposed 

method.  
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Investigations of the field measurements of track geometry and Yrel (recorded by MRail system) 

were comprehensively conducted to verify the effectiveness of the proposed study. The 

preliminary analysis of the data recorded from over 200 km of a track subdivision confirmed the 

dominance of the track profile on the Yrel data. An improved method was developed to reveal the 

flexibility index for track performance and track quality index for track geometry evaluations from 

Yrel data only. The field investigation also discovered the great impacts of superelevation on the 

MRail system. This finding could be a significant implication in improving the effectiveness of 

MRail system as well as other continuous track stiffness measurement systems where track 

deflections are inferred from other raw signals such as images or accelerations.  

7.2. Recommendations for future research 

The proposed methodologies in this research require further developments to facilitate an effective 

structural health monitoring framework for rail track structures. The estimations of rail bending 

moments using Yrel data should be validated with field data. The task can be done by collecting the 

strain response of a rail under train passages and the Yrel data collected by MRail system. Collecting 

rail strains over long distances is possible due to the implementation of fiber optic sensing that has 

been widely used in railway monitoring [18,164]. Having the Yrel data and the corresponding strain 

allows a valid verification of the proposed method for estimating rail bending moments from Yrel. 

The estimation results can be further compared with the degradation history of the rails at a specific 

subdivision for a better understanding of the impact of excessive bending in rails on rail defects. 

This rigorous study could contribute to: 1 – establishing allowable rail deflections that result in 

acceptable bending stresses; 2 – developing an outlier detection tool to facilitate effective rail 

inspection strategies.  

This research also indicated that superelevation can cause systematic errors in the readings of 

MRail system. This effect implies that the motion of the car carrying the MRail system potentially 

affects the measurements especially because the MRail system employs an image-based technique 

to output track deflections. Any rotation in the measurement system may distort the recorded 

images considerably and may result in inaccurate Yrel measurements. Therefore, a detailed analysis 

of the system configuration should be conducted to study the impact of vehicle motions on Yrel, 

especially rotations in the vertical and transverse planes. A study may be conducted to implement 
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an inertial measurement unit (IMU) on the car hosting the MRail system. The recorded vehicle 

motions would facilitate a better understanding about the measured Yrel data. 

Effects of environmental and operational conditions on VTD measurements should be considered 

extensively. It has been shown that there was a considerable decrease in rail bending stress and 

deflections when ballast was frozen. In low temperature, rails are subject to high tensile thermal 

stresses, and are more susceptible to fracture. Therefore, a comprehensive assessment of rail 

bending stresses and track stiffness from VTD measurements must include a detailed study of 

simultaneous effects of environmental and operational factors on the measured data.  

Comprehensive combinations of continuous track stiffness measurement techniques with other 

track performance monitoring methods such as ground penetration radar (GPR) for a better rail 

track structural health monitoring scheme. Both GPR and track stiffness measurement systems 

have been widely used in track performance evaluations [78,85,204,205]. However, they were 

mainly deployed individually or in a parallel manner, which means data from each system was 

interpreted separately. It must be emphasized that processing GPR signals can only be handled by 

well-trained personnel as engineering judgments must be made to convert GPR scans into the 

sublayer thickness, whereas interpretations of the MRail data itself do not guarantee accurate 

evaluations of track stiffness. Therefore, detailed investigations about the relationship between the 

MRail data and other data such as GPR should be conducted so that the analysis of each dataset 

can supplement each other, and issues associated with the track performance can be clearly 

explained.   
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