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Abstract

Electricity is an essential part of our daily life which can be supplied by power systems

with fossil fuels or renewable energy sources. Nowadays, traditional power systems are

evolving towards new smart grid with the development of advanced information and

communication technology. Compared with the general electrical grid, smart grid features

a two-way flow of electricity and information as a distributed energy delivery network.

With lots of benefits such as increasing system efficiency, robustness and reducing outage

costs, smart grid has attracted worldwide attention in recent years both in industry and

academia.

Conventional electricity generation method mainly relies on the combustion of

fossil fuels. However, considering the limited supply of fossil fuels and increasing

environmental pollution, it is necessary and urgent to enhance the use of alternative

energy sources. Hence, the clean renewable energy sources such as wind and solar have

drew more public attention recently. Although renewable energy has many advantages,

the main drawback is the intermittent and random characteristic. With the increasing

integration of renewable generation in smart grid, many new technical challenges have

also emerged in regard to the reliable operation of power systems, especially the

uncertainty related problems. Therefore, it is imperative to handle the uncertainties in

smart grid to achieve reliable and stable operation.

The focus of this research is to study uncertainty modeling and related optimization

problems in smart grid. There are various uncertain sources in smart grid such as

renewable generation, load demand and electricity price, among which the uncertain

renewable generation has attracted more attentions in recent years. In this work, we focus

on the uncertainties caused by renewable generation such as wind power generation.

In order to deal with the possible uncertainties in system operation, different

approaches have been studied including the direct forecast methods and some

mathematical modeling methods. Although point forecast methods have been widely

studied for wind energy, the forecast errors cannot be fully eliminated which may bring

ii



significant influence power system operational decision. In this thesis, probabilistic

forecast is investigated, and a recurrent neural network (RNN) based interval prediction

model is first proposed to forecast uncertain wind power which can generate intervals

with a predefined confidence level. As the source of wind power, wind speed forecast is

also investigated in a multiobjective interval prediction framework.

Furthermore, microgrid is an important part of future smart grid, and microgrid energy

management has been a popular topic for a long time. To capture the uncertainties

of wind power in microgrid, mathematical modeling methods based on distributionally

robust optimization (DRO) and robust optimization (RO) are investigated for energy

management problems in this thesis. First, a distributionally robust chance-constrained

energy management model is proposed for islanded microgrids, which considers the

possible power imbalance due to uncertain wind power, and a novel moment based

ambiguity set is designed. The chance constraint for power balance is processed with DRO

technique and the problem is reformulated as a tractable second-order conic programming

(SOCP) problem. The effectiveness of the proposed approach has been validated by case

studies.

Based on the research of microgrid energy management, the uncertainty modeling

in transmission system is also studied in this thesis. Particularly, two-stage

chance-constrained unit commitment (UC) problem and energy and reserve dispatch

problem are studied with DRO method. The statistical-distance based ambiguity set is

proposed to describe the uncertain distribution of wind power in such problems.

To overcome the anticipativity of uncertainty in single-stage or two-stage models,

multistage energy management problem is investigated for grid-connected microgrids

which takes the non-anticipativity into account. The uncertainty modeling methods based

on RO and DRO techniques are analyzed for wind power with interval uncertainty set

or second-order conic representable ambiguity set, respectively. The effectiveness of the

proposed multistage model is verified by case studies.
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1
Introduction

The main focus of this thesis is on the uncertainty modeling and related optimization
problems in smart grid which combines multidisciplinary knowledge including artificial
intelligence, operation research and power systems. The uncertainty mainly comes from
renewable generation such as wind power and the research problems include forecast,
microgrid energy management, unit commitment and economic dispatch problem.

1.1 Background

Energy is one of the most important substances in the world which is required almost
all the time in our daily life. It is an essential part for all the lives on the earth including
humans, animals and plants. As an important invention in human history, electrical
energy is much more close to our everyday life nowadays, and we consume electricity
every day no matter at home or at work with a great range of electrical devices such as
computers, televisions, lights, smart phones and so on. Therefore, it is important to study
power and energy systems for the stable development of our society and economy.

With the rapid development of advanced information and communication technology,
traditional power systems have evolved towards the new smart grid which is also called
smart electrical grid or intelligent grid. Compared with traditional power systems which
usually carry power from some generation plants to a great number of consumers, smart
grid is an advanced and automated power delivery network with two-way flows of
electricity and information [1]. A general conceptual model of smart grid is shown
in Fig. 1.1. As can be seen from this figure, based on the traditional power systems
composed of generation, transmission, distribution and consumption, the information

1
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Figure 1.1: Smart grid conceptual model.

flow is included by using modern communication technologies which can help smart
grid increase the power delivery efficiency and event response rate. In other words, the
structure of a smart grid can be regarded as the interconnection of a traditional power
system, a communication system and an information system [2]. Moreover, smart grid has
many other advantages such as improving the power reliability and quality, enhancing
resilience to disturbance, self-heating and so on.

In smart grid, distributed generation (DG) is an important generation form which
utilizes distributed energy resources (DERs). Compared with traditional power systems,
more renewable energy based DG units and storage units including battery storage
systems and electrical vehicles can be integrated into smart grid. The integration
of renewable generation also makes the traditional electricity users become energy
producers with the two-way energy flow design, i.e., users can also produce and feed
excess energy from DERs to the grid. DG also promotes the development of a new grid
paradigm called microgrid which is an important component of future smart grid. A
microgrid can be regarded as an interconnection of a group of DG units, energy storage
devices and different loads in close proximity. It can operate in either an islanded mode
or a grid-connected model to enhance the reliability.

Thermal power generation is the most common traditional electricity generating way
which primarily consumes fossil fuels such as coal and crude oil. However, the amount
of these fossil fuels on our earth is limited, and the great combustion of them causes
greenhouse effect and severe environmental pollution problems. As a result, renewable
energies such as wind and solar energy which can be integrated into smart grid have
attracted significant attention recently. Renewable energies have many advantages such
as cleanness and wide availability, and their development and utilization can effectively
overcome the problems of burning fossil fuels.
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Figure 1.2: The growth of installed wind power in Canada.

There are different kinds of renewable energies that can be utilized on the earth
including the common wind energy and solar energy, hydroelectric power, tidal energy
and geothermal energy. With the increasing application in practice, wind energy has
become one of the most popular renewable sources in the world [3]. Take Canada as an
example, approximately 6% of the electricity demand is supplied by wind energy which
satisfies the power demand of more than three million Canadian homes. In addition, more
wind energy has been installed between 2008 and 2018 compared with other generation
sources, with an yearly average growth rate of 20% over the past decade as shown
in Fig. 1.2, and the installed capacity of wind energy reached 12,816 MW in 2018 [4].
Consequently, integrating renewable energies such as wind energy into smart grid is
important to alleviate the increasing energy crisis and worth studying.

Although renewable energies have many distinct advantages, the main drawback that
cannot be ignored is their uncertainty, i.e., they are intermittent and volatile which depend
on the variable weather to a large extent. As a result, the high penetration of renewable
generation in smart grid will lead to new challenges to the stable operation of power
systems. In addition to the uncertainty from renewable generation, there are also many
other uncertain sources in smart grid including the random load demand and variable
electricity price. All these uncertainties can influence the reliability and stability of system
operation. Therefore, research on how to quantify the uncertainty or how to eliminate the
impact of uncertainty are of great significance to the development of robust smart grid.
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In order to deal with different kinds of uncertainties, various methods have been
studied in previous research including forecast method and mathematical modeling
analysis. Among these methods, the most direct method is the forecast approach which
intends to estimate the unknown values of random variables. During the past decades,
numerous forecast methods have been proposed and applied in diverse fields involving
renewable energy [5], load demand [6] and electricity price [7]. Compared with the initial
point forecast, probabilistic forecast was studied later which shows more advantages in
quantifying the uncertainty. For mathematical modeling analysis approach, stochastic
programming (SP) and robust optimization (RO) are most studied to handle the random
variables, where the former usually uses a certain probability distribution or scenario
representations and the latter adopts uncertainty set to describe the uncertainty. However,
both SP and RO methods have some shortcomings with respect to the distribution
assumption and over-conservativeness of the solution, respectively, which may be further
improved.

1.2 Research Definitions

In this section, the critical terms and problems investigated in this thesis are clarified to
identify the scope of this research work.

1.2.1 Uncertainty Modeling Based on Forecast

High penetration of renewable generation has posed many new challenges to the stable
operation of power systems. To deal with the uncertainty problems, the most direct
method is forecast which aims to determine the value of a random variable based on
historical data. Statistical modeling technique and learning method are usually adopted
in forecast approach. Different forecast methods have been proposed for wind power or
wind speed prediction over the past decades. According to the forecast output, forecast
method can be classified into point forecast and probabilistic forecast. Compared with
point forecast method which only generate a deterministic forecast value, probabilistic
forecast could provide additional quantitative information about the uncertainty [8].
Probabilistic forecast actually includes interval forecast, quantiles forecast and probability
density function forecast and so on, among which interval forecast is the most visualized
one. Interval prediction method can generate estimated intervals of random variables
with a confidence level which provides more uncertainty information than point forecast.

Interval prediction is actually equivalent to an optimization problem with several new
evaluation indices such as the reliability index and interval width index [9]. By combining
these two indices into a single objective, the interval prediction can be handled as a
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single-objective optimization problem. In addition, by directly optimizing the two indices
simultaneously, the prediction interval (PI) construction problem is transformed into a
multi-objective optimization problem.

1.2.2 Neural Network Model

Artificial neural network (ANN) which is also referred to as neural network (NN) has been
motivated from the different computational way of human brain and natural intelligence.
ANN is a complex system network composed of a great number of processing units
called neurons and it has strong nonlinear learning ability. There are many properties or
capabilities in a ANN model such as nonlinearity, input-output mapping, parallel and
distributed processing and adaptivity [10]. The connection weights in a NN are gradually
adjusted in the learning process and used to store the obtained knowledge.

NN models are data-driven techniques which can represent a complex nonlinear
mapping relationship between input and output by learning from abundant historical
data. Due to the strong learning and generalization ability, NN models have been widely
studied in many problems including pattern recognition, classification and forecast.
Generally, NN models have two structures: feedforward and feedback. The feedforward
model conducts the computation from the input to the output in a forward direction and
it may contain one or more hidden layers. For NN models with feedback structure, or
recurrent NNs (RNNs), they are very useful in modeling a dynamic system.

1.2.3 Microgrid Energy Management

With the development of DG in smart grid, a new grid paradigm called microgrid has
been proposed which is regarded as one of the cornerstones of future smart grid [1].
A microgrid a low-voltage distribution system with the integration of various DERs
and controllable loads [11], and DERs contain different kinds of DG sources such
as conventional generators, wind turbines, photovoltaics (PV), hydro, biomass and
distributed storage systems [12]. In a microgrid, all DERs work coordinately to provide
desired reliable and stable power, and feed the power directly to the consumers or the
main utility grid [13]. Microgrids have different functionality by operating in either a
grid-connected mode or an islanded mode, and they should have the transition ability
between two operation modes.

Microgrids have attracted considerable attention in recent years due to their
advantages in dealing with the energy supply problems with DERs. In order to achieve
reliable and economic operation of a microgrid, an energy management system (EMS)
is usually required to schedule and dispatch the generation units considering various
constraints. With the increasing penetration of renewable generation in microgrids which
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are intermittent and uncertain, microgrid energy management problems also become more
complex and challenging.

1.2.4 Distributionally Robust Optimization

SP can effectively describe many uncertain decision-making problems where uncertainty
can be represented by a probability distribution. Although SP problem is a convex
optimization problem, it is usually solved via Monte Carlo approximations with many
scenarios which results in heavy computational burden. Another challenging difficulty
of SP is how to obtain the exact distribution of random variable in practice. In order to
address these issues, a robust version of SP was proposed by Scarf [14] which is also called
distributionally robust optimization (DRO).

DRO method can be seen as an intermediate approach between SP and RO. Instead of
making an assumption of certain distribution, the DRO method optimizes the expected
objective over a set of unknown distributions sharing certain statistical characteristics
such as moment information including mean and variance, and this set is usually called
ambiguity set. By incorporating such properties of distribution information, DRO method
can produce less conservative solutions compared with distribution free optimization
method thus addressing the limitations of SP and RO method. The research about this
method has made much progress [15] [16] and it has been effectively applied to solve
optimization problems in power systems recently.

1.2.5 Unit Commitment

Unit commitment (UC) and economic dispatch (ED) are two important problems for
energy scheduling and grid management. In a deregulated electricity market, UC
is usually used for day-ahead market clearing, reliability evaluation and intra-day
operations by independent system operators. The output of UC generally includes the
commitment status and dispatch decisions of generation units which satisfy the related
system constrains like power balance and power flow limits and specific unit constraints
such as ramping up/down and capacity limits [17], and the objective is usually to
minimize the total system cost.

In UC problem, binary variables are introduced to represent the status of generation
units (on/off) which makes the problem difficult to solve together with many other
constraints when problem size becomes large. A lot of different formulations as well
as solution methods for UC problem have been proposed in previous literature [18].
Although UC problems have been widely studied, many new challenges emerge as the use
of renewable generation increases, particularly, a large amount of uncertainty is added to
the UC problem and generation scheduling in grid management [19]. As a result, new UC
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models and solution approaches should also be developed to incorporate the uncertainty
modeling.

1.2.6 Energy and Reserve Dispatch

ED is also an important problem in power system operation which intends to control the
total generation to match the total load and minimize the system operating cost. ED is
often formulated as an optimization problem with the economic objective and related
constraints [20]. However, ED is also influenced now by the uncertainty from increasing
integration of renewable generation. To resolve the uncertainty of renewable generation in
power systems, one method is to schedule more reserves and use more flexible resources
to ensure sufficient energy supply. Although adequate reserves can protect the reliability
of electricity supply, the economic cost with reserve provision will also increase. Therefore,
it is significant to co-optimize the energy and reserve dispatch to improve the reliable and
economic operation of power systems with uncertain renewable energies [21] [22].

1.3 Literature Review

In this section, previous studies which are closely related to this research are reviewed as
follows.

1.3.1 Wind Power and Wind Speed Forecast

Wind power is the most common renewable energy studied in smart grid and wind
forecast has been widely investigated. Generally, wind forecast consists of direct wind
power forecast and indirect wind speed forecast.

• Wind power forecast: Based on the forecast time scale, wind power prediction
can be classified into short-term, medium-term and long-term prediction [23].
While according to the forecast models, it can be divided into two main categories:
physical and statistical [24]. Physical methods are developed by modeling the
relationship between physical variables and the specifications of wind turbines
with some physical-based equations. For the statistical methods, time series
models (e.g., autoregressive integrated moving average ARIMA) [25], data mining
approaches [26], artificial neural networks (ANNs) [27], [28], and support vector
machines (SVM) [29] are widely studied in the literature. Compared with physical
models, statistical models, as a data-driven technique, are usually simpler and more
adaptive. In addition, hybrid methods which combine different models have also
been researched [30] to improve the forecast performance. This kind of approach
aims to retain the advantages of the individual model and it seems to be better than
other methods.
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Conventional point forecast methods as mentioned above suffer from the problem
that they cannot eliminate the forecast error and the forecast accuracy may be
highly variable. They only generate a deterministic forecast value for a certain time
step without any indication of the associated uncertainty [31]. From the decision
making point of view, the use of point forecast will have significant impact on the
stable and reliable operation of power system. Therefore, recent research of wind
power prediction have focused more on probabilistic methods which can include
the forecast uncertainty [32].

Compared with the widely used point prediction methods, probabilistic forecasts
could provide additional quantitative information about wind power generation
uncertainty [8]. As a result, the probabilistic forecast of wind energy has attracted
much attention recently [33], [34]. In probabilistic forecast, the uncertainty can be
expressed by probabilistic measures such as probability density functions (PDFs),
quantiles and intervals, moments of distribution (mean and variance) and so on [8].
As the most visualized representation, interval forecast of wind energy gained more
popularity [35], [36].

Among different kinds of interval forecast approaches, the recently proposed
lower upper bound estimation (LUBE) method is a nonparametric procedure that
can construct appropriate prediction intervals (PIs) directly in an unsupervised
learning mode based on a feedforward neural network (NN) [9]. It makes
no assumption about the forecast error distribution and its computational
burden is almost negligible in comparison with other traditional NN-based PI
construction methods [37]. To obtain high quality PIs with narrow width and
large coverage probability, both single-objective procedure [38] and multi-objective
framework [39] using LUBE method are proposed in the literature. In [40], a
constrained single-objective framework is designed to minimize the PI width while
constraining the coverage probability. Similarly, a hybrid model based on back
propagation NN is proposed for wind speed interval forecast [41]. In this study,
the wavelet de-noising technique is employed to preprocess the data, and cuckoo
search optimization algorithm is used to train the NN model. In the multi-objective
framework, Pareto optimal solutions [39] and fuzzy inference method [42] are
investigated to construct the optimal PIs. In these studies, the prediction models are
all based on the feedforward NN model. In addition, rough neural networks which
combine rough and conventional neurons to deal with uncertainties of the data are
also studied for wind power or speed prediction [43]. In [44], the rough neurons
are integrated in a deep neural architecture to improve the accuracy of short-term
wind speed forecast. In [45], the most informative input parameters of an NN are
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determined through attribute reduction of rough set theory and the training time is
also reduced. Although good results are reported in these works, they concentrate
on wind speed point forecast instead of interval forecast. The combination of
deterministic and probabilistic forecast for wind power is also studied [46]. It is
an indirect probabilistic forecast method which firstly implements point forecast
with support vector regression (SVR) models and then the confidence intervals for
forecast values are obtained with quantile regression (QR) method.

Although NN-based LUBE method has been widely studied as aforementioned, the
existing research, to the author’s best knowledge, focus on the feedforward NN
prediction model, especially the multilayer perceptron (MLP) NN model. Generally,
NN models have two basic structures: feedforward and feedback. Compared with
the feedforward NN, recurrent neural network (RNN) with a feedback structure
has been shown to excel at time series forecast [47]. In a feedback structure, the
network behaves like a dynamic system which can better capture the characteristics
of variable wind speed [48]. However, interval prediction for wind power with
RNN model is rarely reported in the literature.

• Wind speed forecast: Similarly, wind speed forecast has also been researched for
several decades. In particular, the research on short-term wind speed prediction
with ANN model or other statistical models has attracted much attention. In [49],
different weather data including temperature, relative humidity and air pressure
are considered to predict the wind speed by using the common backpropagation
neural network. In [50], SVM model is studied to conduct short-term wind speed
forecast and in this forecast method, the dataset is preprocessed by empirical model
decomposition (EMD) and the parameters of SVM model are tuned by an improved
cuckoo search algorithm. In addition, hybrid methods have also been studied
to enhance the prediction accuracy by combining several models [51], [52]. The
RNN model has been extensively studied for wind power and speed forecast. For
instance, the local RNNs are studied for the long-term wind speed and power
prediction in [53]. These models were trained by two on-line learning methods
based on recursive forecast error algorithm. Similarly, the long-term wind speed
prediction was studied using a composite method of statistical and NN approaches
in [23]. Based on the general trend and pattern extracted from the historical data, the
nonlinear autoregressive with exogenous inputs (NARX) network was trained and
used to forecast the next year hourly data. Moreover, the Elman neural network was
also explored for wind speed forecast [54].

Interval prediction method has also been applied to wind speed forecast as
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mentioned above. Generally, the PI construction problem is defined as a
single-objective optimization problem. Considering the complicated nonlinear
and non-differentiable objective function, evolutionary algorithms instead of
traditional gradient based methods such as simulated annealing (SA) [9] and
particle swarm optimization (PSO) [40] are adopted to solve the problem. However,
PI construction is actually a multiobjective optimization problem as high quality PIs
need both sufficient reliability and narrow width.

Compared with abundant single-objective interval prediction research, there are
only a few studies about multiobjective interval prediction for wind speed. Based
on a simple multilayer perceptron NN model, the short-term wind speed interval
prediction is performed in a multiobjective framework in [39]. The NN model was
trained by a multiobjective evolutionary nondominated sorting genetic algorithm II
(NSGA-II) [55]. Similarly, radial basis function (RBF) NN model is also investigated
for wind speed multiobjective interval prediction [56]. In addition, SVM model is
also applied to predict wind speed which is trained by the multiobjective differential
evolution algorithm [57]. However, unlike the NN model, two SVMs are used
to create the PIs’ lower and upper bounds in this study which may increase the
computational burden.

1.3.2 Microgrid Energy Management with Uncertainty

Microgrid energy management has become challenging with the increasing penetration
of renewable generation. To deal with the uncertainty caused by renewable energy
generation in microgrid energy management, various methods have been investigated
including robust optimization, stochastic programming and chance constrained
programming. Among these methods, the application of robust optimization [58] in
microgrid energy management has been extensively explored recently. For example, the
energy management for a grid-connected microgrid with high penetration of wind power
and demand-side management is studied in [59]. The formulated robust optimization
problem is solved by a distributed algorithm to minimize the system net cost. Similarly,
a scenario-based robust energy management method for a grid-connected microgrid is
proposed to deal with the uncertain renewable generation and load in [60]. By exploring
the worst-case scenario, a robust energy management solution for the proposed model
could be obtained. In [61], a two-stage adaptive robust optimization method is studied for
microgrid energy management which considers the uncertainties of renewable generation
and grid-connection condition. The uncertainties are controlled by the “budget of
uncertainty” parameters in this work.

Stochastic programming is another common approach to handle the uncertainty
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in microgrid operation and energy scheduling. With this method, the uncertainties
associated with renewable generation and load are usually represented by certain
distributions such as normal distribution [62], [63]. Although not so many as the research
on robust and stochastic optimization model, chance constrained programming (CCP)
method is also investigated in microgrid energy management [64]. For instance, in [65],
two CCP problems are formulated for grid-connected microgrids energy management and
the problems are solved by a linear programming transformation. Also, a grid-connected
microgrid based on combined heat and power (CHP) system is studied in [66]. The CCP
method is employed to describe the uncertainty of renewable generation and load and
the optimal schedule problem is solved by a particle swarm optimization (PSO) based
algorithm. In [67], chance constrained optimization is employed to solve the demand
response problem for a home energy management system and the chance constraint is
used to describe the variable power interaction between the household and the utility
grid due to uncertain load demand. In addition, the CCP method has also been studied
for other power system problems such as transmission expansion planning problem with
load and wind uncertainties [68].

Although the microgrid energy management has been widely studied, most of the
research focuses on the grid-connected microgrids with uncertainties compared with
few research works on islanded microgrids [69], [70]. In addition, the constraints with
uncertainties have not been sufficiently studied which mostly concentrate on the balance
of generation and load demand [65].

1.3.3 Unit Commitment

As a critical application in power system operation, UC problem has been studied for a
long time which aims to reduce system cost and improve reliability by optimal scheduling
of generation units. Due to the high-level penetration of intermittent and unpredictable
renewable energy, new challenges about secure and reliable system operation also arise
such as large reserve capacity demand, divergence of area control error and possible power
imbalance [71]. Consequently, it is imperative to incorporate associated uncertainties into
UC problems with renewable generation so that more reliable solutions can be attained.

Although UC problem is usually nonconvex and very difficult to solve, many efforts
have been developed for UC problems with uncertainties in the past decades. In
particular, the stochastic optimization methods [17] attract the most attention, which
can be typically classified into two categories: stochastic programming and robust
optimization methods. Stochastic programming is a traditional method to deal with data
uncertainty and was first investigated to solve uncertain UC problems [72]. For example,
in [73], a security-constrained UC (SCUC) problem with uncertain wind power is studied
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and the wind power is assumed to follow normal distribution. In [74], a stochastic
UC model considering the uncertain load and outages is proposed, and the random
variables are represented by scenarios trees. Generally, it is assumed that the probability
distributions of random variables are known in stochastic programming methods, and
the objective is to minimize the expected total system cost. However, the exact probability
distribution is usually hard to be known in practice. In addition, stochastic programming
methods suffer from heavy computational burden as substantial scenarios are required to
comprehensively represent the probability distribution.

Robust optimization is another popular method to deal with uncertainties in UC
problems. Compared with stochastic programming, the true probability distribution is
not required in robust optimization, and the random variables are represented by some
uncertainty sets. A vast number of literature about robust UC problems has been reported,
such as the typical two-stage robust UC models [75] [76] [77] which consist of first-stage
commitment decision and second-stage recourse action. In addition, multistage robust UC
models have also been studied recently by taking into account the non-anticipativity of
dispatch decisions [71] [78]. Compared with stochastic programming, robust optimization
ignores the probabilistic information and tries to find the minimal cost under the
worst-case scenario within the uncertainty set. Although the solution is robust against all
uncertainty realizations, it may be over-conservative since the worst-case scenario rarely
occurs in practice.

To address the shortcomings of stochastic programming and robust optimization
methods, an alternative method, distributionally robust optimization (DRO), has attracted
much attention recently [15]. The DRO method aims at optimizing an uncertain problem
under the worst-case distribution from a so-called ambiguity set. The ambiguity set is a
family of probability distributions which share some certain statistical information. Since
partial distribution information is utilized in DRO method, the conservativeness of the
solution from this method is between robust optimization and stochastic programming.
In recent years, the DRO method has been widely applied to solve power system
optimization problems, especially the moment-based DRO method [16]. For instance,
in [79], a moment-based DRO model is proposed for UC problem, and linear decision rule
is used to reformulate and solve the intractable problem. In [80], DRO approach is used
to solve the contingency-constraint UC problem and the ambiguity set of contingency
probability distributions is constructed based on available moment information. Similarly,
the moment-based DRO method is used for co-optimization of energy and reserve
dispatch in [81], and the problem is reformulated to a tractable semidefinite programming
(SDP) problem.
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In addition, DRO method has also been applied to optimal power flow [82],
power system planning problem [83], distributed generation capacity assessment of
active distribution networks [84], optimal bidding problem of electricity markets [85],
transmission line congestion management problem [86] and so on. A general framework
of these works is that an ambiguity set is proposed first based on the assumption of
the research problem and a tractable reformulation is then derived based on dual and
approximation techniques.

Moment-based DRO method only considers moment information such as expectation
and variance. However, the actual distribution contains more information than moments.
In practice, a number of historical data of random variable are usually available
from which we can obtain more valuable distribution information, e.g., an estimated
distribution by data fitting. Therefore, distance-based or data-driven DRO methods
have been investigated in some very recent studies [87]. In [88], a distance-based
DRO model is studied for UC problem, and the ambiguity set is constructed based on
Kullback-Leibler (KL) divergence. Data-driven DRO method is also reported for UC
problem [89] where the confidence band of cumulative distribution function (CDF) is used
to construct the ambiguity set. Similarly, L1 norm and L∞ norm are used to construct
confidence sets in a data-driven manner for stochastic UC problem [90] [91]. With the
same confidence sets, a new duality-free decomposition method is proposed to solve the
distributionally robust UC problem in [92]. Wasserstein metric based DRO method has
also been studied for UC problem [93] [94] which constructs the ambiguity set based on
Wasserstein ball. In addition, data-driven DRO method is also studied for reserve and
energy scheduling problem [95] which considers the Wasserstein distance. According to
abundant related works, DRO based optimization problems are usually very complicated
and even intractable, and different ambiguity set construction methods lead to various
problem reformulation methods.

1.3.4 Energy and Reserve Dispatch

Energy and reserve dispatch is another important problem in power system operation. To
ensure the reliability of power system operation, new types of reserves are considered to
compensate the uncertain renewable generation, which makes it important to co-optimize
the energy and reserve dispatch from the economic respective [81]. Similar with UC
problem, SP and RO method have been investigated in energy and reserve dispatch
problem [96] [97] [98].

Considering the deficiencies of stochastic and robust optimization methods, the
new technique DRO has also been applied to deal with uncertainty according to
partial distribution information for energy and reserve co-dispatch [99]. In [100], a
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distributionally robust reserve model is proposed to minimize the cost of generation
and reserves, and the uncertainty from wind power forecast error is captured by an
ambiguity set based on first and second-order moment information. In [101], a two-stage
hydro-thermal-wind economic dispatch model considering distributional robustness is
studied, and the uncertain probability distribution of wind power is also described by
moment-based ambiguity set. In addition, distance-based DRO methods have also been
studied for energy and reserve dispatch problems. In [95], a two-stage data-driven
distributionally robust energy and reserve scheduling model with wind power is studied,
and the Wasserstein ball based ambiguity set is used to contain all possible probability
distributions. Also, a two-stage risk-averse stochastic model is proposed for energy and
reserve dispatch problem in [102], and Kernel density estimation is used to estimate the
probability distributions of wind power captured by the L1-norm based ambiguity set.

1.3.5 Multistage Energy Management for Microgrids

As analyzed before, microgrid energy management with uncertainty has been widely
studied with various modeling methods including SP, RO and DRO method. However,
most of these research works focus on single-stage or two-stage models, for example,
the single-stage robust energy management model [60], two-stage stochastic energy
management or scheduling model [62] [103] [104], two-stage robust energy management
model [61] [105] and so on. However, one problem in single-stage or two-stage models is
that the non-anticipativity of uncertainty is not considered.

As discussed above, single-stage or two-stage energy management models have been
widely studied for microgrids. In such models, the first stage is to determine the day-ahead
schedule under uncertainty, and the second stage aims to re-adjust the optimal schedule
with fixed uncertainty realization. Compared with two-stage models, multistage models
with uncertainty (e.g., multistage stochastic programming models) are more complicated
and computationally difficult. To overcome the computational tractability problems
of multistage models, various methods have been proposed, including the sample
average approximation and the popular decomposition method, stochastic dual dynamic
programming (SDDP). SDDP method was first proposed in [106] for the hydrothermal
generation scheduling problem. Recently, this method has been applied to deal with
power system multistage optimization problems, such as the real-time economic dispatch
[107], energy storage management [108], and DER aggregators operation under multiple
sources of uncertainty [109]. Although SDDP method has been demonstrated to solve the
computational challenge of multistage stochastic optimization problems, a limitation is
that the assumed distribution of random variables is hard to be known in practice, and
it is usually approximated by fitting the historical data. In comparison with the study of
multistage stochastic programming models, multistage robust or distributionally robust
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models have been seldom studied for microgrid energy management problems.

1.3.6 CCHP Microgrid

Among various microgrids, one interesting kind is the combined cooling, heating and
power (CCHP) based microgrid which is also known as tri-generation system and can
provide electric and thermal power simultaneously [110] [111]. A CCHP based microgrid
usually consists of renewable generation, CCHP units such as micro turbines (MTs),
heating and refrigeration system and different kinds of loads. The energy utilization
efficiency can be significantly improved (e.g., to be 80%) by implementing CCHP in a
microgrid compared with traditional independent energy system [112]. Therefore, CCHP
microgrid is considered as a leading power generation method in electricity market with
the efficiency and environmental concern.

There are generally two operational modes for CCHP units in practice, i.e., following
the electric load and following the thermal load depending on the priority of load
satisfaction [113]. To decouple the electric and thermal output of CCHP units, storage
systems are usually utilized in the microgrid operation. Energy management or dispatch
for CCHP microgrids has been widely studied with various strategies and methods.
For example, in [114], a coordinated operation strategy was proposed for a distribution
system integrated with gas-electricity and CCHP systems, and the accurate forecast of
renewable generation is used. Similarly, an optimal dispatch strategy for a CCHP system
was proposed to minimize the total operation cost with forecasted wind power in [115].
However, forecast errors for renewable generation cannot be eliminated fully, and exact
forecast values can hardly be obtained in practice.

Similar with the above discussion, SP and RO method have also been applied to
manage the energy scheduling for CCHP microgrids. For example, the optimal short-term
scheduling of combined heat and power (CHP) based microgrids is studied through a
stochastic programming formulation in [116] and the wind speed was assumed to follow
a Weibull distribution. The coordinated day-ahead scheduling and real-time dispatch
models are developed for the coupled co-optimization of cooling and electricity energy
in [117], and the uncertainty of wind power is represented by multiple scenarios generated
from normal distribution. The limitation of stochastic programming method is that it
usually suffers from high computational burden with many scenarios. In addition, the
true probability distribution cannot be known exactly in practice.

Compared with stochastic optimization method, robust optimization does not need
the true distribution assumption, and it has also been a popular method to handle the
uncertainties. In [118], a two-stage new robust coordinated operation method is proposed
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for a grid-connected CCHP microgrid with multiple uncertainties which are described
by uncertainty sets. Similarly, a two-stage adaptive robust optimization approach is
developed in [61] for energy management of a microgrid with CHP units and uncertain
wind power. In [119], a robust model based on information gap decision theory was
formulated to derive the optimal operation strategy for CHP units, and the envelop bound
model is used for uncertainty modeling in this work. Based on the above analysis, we can
find that distributionally robust energy management has seldom been studied for CCHP
microgrids.

1.4 Thesis Motivation and Objectives

As discussed above, the increasing penetration of renewable generation has brought
many new challenges to smart grid. The common uncertainty modeling methods for
renewable generation include (1) forecast technique and (2) mathematical modeling
analysis method. Although a lot of related research works have been done to deal with
uncertainty modeling as introduced in the literature review, there are still many aspects
that can be further explored or improved. In particular, compared with the common
point forecast for renewable energy, probabilistic method can be further investigated. In
addition, DRO may be studied to model the uncertainty instead of the general SP and
RO method. Therefore, exploring novel forecast technique and new modeling method
based on DRO to capture the uncertainty of renewable generation constitute the main
motivation of this research. The specific research issues consist of wind power and
wind speed forecast, energy management for islanded microgrids and grid-connected
microgrids, UC problem, and energy and reserve dispatch. Based on the challenges in
these research problems illustrated in the literature review, the main motivation and
objectives of this work can be described as follows.

• Wind Power Interval Prediction Based on RNN

It is known that forecast errors cannot be fully eliminated and the forecast accuracy
of point forecast may be highly variable. Compared with the common point
forecast, probabilistic forecast, specifically the interval forecast could provide more
quantitative information about uncertainty. Although NN-based interval prediction
has been widely studied as mentioned before, those works mainly focus on the
feedforward NN prediction model. However, RNN model has not been studied
for interval prediction which shows better performance for time series forecast.
As a result, in this study, the short-term wind power interval prediction based on
RNN model and LUBE method is investigated for the first time. Particularly, the
single-objective framework is employed and a novel aggregated cost function is
designed as the objective of model training. Considering the high complexity and
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nonlinearity of the cost function, the dragonfly algorithm (DA)-a new intelligent
and powerful optimization algorithm-is introduced to solve the problem effectively.
In addition, a new modification is proposed for DA to reinforce its search ability. To
cope with the chaotic historical wind power data, delay embedding theorem instead
of the general correlation analysis is applied to reconstruct the data in this study.

• Multiobjective Interval Prediction for Wind Speed

Wind speed is the direct source of wind energy, and the interval forecast for wind
speed is also investigated in this research. For interval prediction models, most of
them focus on the single-objective framework which combines different evaluation
indices into a comprehensive objective function, while there are only a few studies
about multiobjective interval prediction for wind speed. Actually, the construction
of PIs is essentially a multiobjective optimization problem which needs to optimize
various evaluation indices simultaneously. Therefore, the research of multiobjective
wind speed interval forecast is still not sufficient, and this thesis intends to further
improve the multiobjective interval prediction method from both the prediction
model and the optimization algorithm. In particular, the interval prediction for
short-term wind speed is performed based on NN models in a multiobjective
framework in this study.

• Chance-constrained Energy Management for Islanded Microgrids

Microgrids are important components of future smart grid which have attracted
much attention over the last decade. As discussed above, microgrid energy
management has been widely studied, however, most of the works investigated
the grid-connected microgrids with uncertain renewable generation. Moreover, the
effect of uncertainty has not been sufficiently studied in these works which mostly
employ the power balance constraint. Therefore, in this research, the islanded
microgrid will be first studied with the emphasis of uncertainty influence. Note that
for real islanded microgrids integrated with renewable energy, the power balance
may not always be satisfied due to the uncertain output of renewable energy.
Motivated by this point, a chance-constrained (CC) problem for islanded microgrids
energy management involving renewable generation is proposed to ensure the
system reliability. The uncertainty of renewable generation is represented by a new
box-type ambiguity set based on which the CC problem can be solved by DRO
method.

• Data-driven Distributionally Robust Chance-constrained UC
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UC problem is one of the most fundamental tasks in power system operation
which can also be integrated into microgrid energy management. Traditional
UC problems have been extensively studied, however, with the development of
new uncertainty modeling method, distributionally robust UC has been proposed
recently. Compared with moment-based DRO method which only considers
moment information such as mean and variance, distance-based DRO method can
usually extract more distribution information of random variable from a number
of available historical data. Therefore, a distributionally robust chance-constrained
UC problem based on distance-based DRO technique is studied in this work
which further enriches the research of UC problem. The studied UC problem here
is formulated as a two-stage model. In the first stage, with a chance constraint
restricting the probability of power imbalance, the commitment decision and a
base-case dispatch plan are determined, and in the second stage, the operational
risk or expected re-dispatch cost caused by load curtailment or wind power spillage
under the worst-case wind power distribution is considered.

• Energy and Reserve Dispatch Using DRO Method

Economic dispatch is another basic and significant problem in power system
operation and optimization. After the UC decision is determined, the optimal
dispatch problem will become the focus. To tackle the uncertainty of renewable
generation, new types of reserves emerge, and co-optimization of energy and reserve
dispatch has become an important problem for reliable system operation. Different
from previous literature, a data-driven two-stage energy and reserve dispatch
problem using distance-based DRO method is studied in this thesis. Particularly,
a two-stage model is formulated which minimizes the generation and reserve
cost with forecasted wind power in the first stage and minimizes the expected
re-dispatch cost considering the worst-case probability distribution in the second
stage.

• Multistage Robust Energy Management for Grid-connected Microgrids

Among various studies of microgrid energy management with uncertainty,
single-stage or two-stage models have been broadly employed as mentioned before.
In such models, the day-ahead schedule is usually determined in the first stage,
and the second stage aims to re-adjust the optimal dispatch with fixed uncertainty
realization. These models have limitations in capturing the uncertainty despite
their prevalence. With a simple uncertainty description method, it is typically
assumed that the information is perfect and the uncertainty is anticipative in the
second stage. More specifically, after the determination of day-ahead schedule, the
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uncertainties are all revealed at the same time for the scheduling horizon (e.g., 24
hours) with perfect information assumption in the second stage [109]. However, in
practice, the uncertainties can only be revealed gradually and the future information
is unknown at current time. Thus, a multistage model would be more practical
and proper to capture the inter-temporal uncertainties than a two-stage model.
Therefore, multistage energy management problem for grid-connected microgrids is
studied in this work which considers non-anticipative uncertainty, and RO method
is adopted to describe the uncertainty. To deal with the computational difficulty of
multistage robust model, a novel decomposition method similar to SDDP method,
i.e., the robust dual dynamic programming method (RDDP), is proposed to solve
the problem.

• Multi-period Energy Management for CCHP Microgrids with DRO

With the introduction of CCHP units in microgrid, the energy utilization efficiency
can be significantly improved. Hence, CCHP microgrid is considered as an
important generation method in current electricity market, and the general energy
management method can also be applied to CCHP microgrids. As discussed in
the literature review, the research of distributionally robust energy management
for CCHP microgrids is rarely reported. In addition, the existing works about
CCHP microgrids also mainly focus on the single-stage or two-stage models which
ignore the non-anticipativity of dispatch decisions. Consequently, to enforce
the non-anticipativity of dispatch decisions, a multi-period energy management
model for CCHP microgrids with DRO technique is proposed in this thesis. The
proposed multi-period model is included in a two-stage framework, and here
we use multi-period instead of multi-stage to make a difference. To capture the
uncertain distribution of renewable generation such as wind power, DRO method is
investigated and a new second-order conic representable ambiguity set is designed.

1.5 Thesis Outline

In this thesis, uncertainty modeling and related optimization problems in smart grid
with renewable generation are studied. The studied uncertainty modeling techniques
encompass direct interval forecast, DRO method and RO method. The relevant problems
involve wind power and wind speed interval prediction, microgrid energy management,
UC and energy and reserve dispatch. The relationship of these items is illustrated in Fig.
1.3. As shown in this figure, interval prediction of wind energy is first conducted which can
estimate the intervals of uncertain renewable generation. Based on these interval results,
microgrid energy management in distribution system is studied which considers the
interval based ambiguity set and uncertainty set. Moreover, both the chance-constrained
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Figure 1.3: Outline of this thesis.

energy management for islanded microgrids and multistage model for grid-connected
microgrids are studied. In addition, based on the research of chance-constrained energy
management model, UC and ED problems in transmission system are also investigated
with DRO method. More specifically, this thesis consists of six chapters and the detailed
descriptions are given as follows.

• Chapter 1: Introduction - The research background is first briefly introduced in this
chapter, followed by the definition of research problems and scope. Then relevant
literature is reviewed to highlight the research challenges for each problem. Finally,
the motivation, objectives and outline of this thesis are presented.

• Chapter 2: Direct Interval Prediction for Wind Power and Wind Speed - This
chapter presents interval forecast method for wind power and wind speed,
respectively. First, interval prediction based on RNN model is proposed to construct
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PIs with LUBE method for wind power. In addition, a novel comprehensive cost
function with a new PI evaluation index is designed with the purpose of enhancing
the model training. To tune the parameters of RNN prediction model, the dragonfly
algorithm with a linearly random weight update method is introduced as the
optimization tool. The performance of the proposed prediction model is validated
by a case study using a real world wind power dataset. Second, a multiobjective
interval prediction method based on wavelet neural network (WNN) for short-term
wind speed forecast is proposed. This method can generate a set of Pareto optimal
solutions which represents a set of prediction models that can directly construct
the prediction intervals. An advanced multiobjective evolutionary algorithm,
preference inspired co-evolutionary algorithm using goal vectors, is investigated to
train the WNN model. Two case studies are carried out with real wind speed data
of Victoria and Edmonton in Canada to justify the effectiveness of the proposed
method. The numerical results also show the superiority of the proposed forecast
approach compared with some benchmark methods.

• Chapter 3: Chance-constrained Energy Management for Islanded Microgrids - In
this chapter, a chance-constrained energy management model is developed for an
islanded microgrid, which includes distributed generators, energy storage system
and renewable generation like wind power. The objective function of this model
consists of generation cost, emission cost and degradation cost of storage system. To
capture the uncertainty of renewable generation, a novel ambiguity set is introduced
without knowing its probability distribution or exact moment information. With
this ambiguity set, the chance constraint is processed with DRO method and the
energy management problem is reformulated as a tractable second-order conic
programming (SOCP) problem. The proposed approach is tested with a case
study and simulation results indicate that it is effective and reliable. Moreover, the
comparison with the method based on known moment information and some other
methods is also conducted to show the performance of the proposed approach.

• Chapter 4: Data-driven Distributionally Robust UC and ED - Based on the
research in chapter 3, distributionally robust UC and ED problem are studied in this
chapter, respectively. First, a data-driven distributionally robust chance-constrained
(DDRC) UC model is developed. The proposed two-stage UC model focuses on
the commitment decision and dispatch plan in the first stage, and considers the
worst-case expected cost for possible power imbalance or re-dispatch in the second
stage. For uncertainty modeling of wind power, a distance-based ambiguity set is
designed which can be constructed in a data-driven manner. Based on the ambiguity
set, the original complicated UC problem is reformulated to a tractable optimization
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problem which is then solved by the column-and-constraint generation (C&CG)
algorithm. The performance of the the proposed approach is validated by case
studies with different test systems including the IEEE 6-bus test system, modified
IEEE 118-bus system and a practical-scale system, especially the value of data in
controlling the conservativeness of the problem. Similarly, a two-stage data-driven
distributionally robust energy and reserve dispatch problem with uncertain wind
power is studied. A different distance-based ambiguity set is proposed, based
on which the second-stage worst-case expectation of the problem is reformulated
to a combination of conditional value-at-risk (CVaR) and an expected cost with
respect to a reference distribution. Thus, the proposed two-stage DR model
becomes a two-stage stochastic optimization problem which can be readily solved.
Case studies are also carried out to verify the effectiveness of the proposed approach.

• Chapter 5: Multistage Energy Management for Microgrids - Microgrids can be
operated in islanded or grid-connected mode. In this chapter, multistage energy
management for grid-connected microgrids are investigated based on RO and DRO
technique, respectively. First, a novel multistage robust energy management model
for grid-connected microgrids is developed which considers the uncertainty of
renewable generation and load demand. To solve this complex and computationally
difficult problem, a robust version of dual dynamic programming method is
proposed which includes a forward pass and a backward pass procedure and has
a similar framework with the common stochastic dual dynamic programming
(SDDP) method. Based on real datasets, a case study is carried out to validate the
effectiveness of the proposed model and solution methodology. Numerical results
show that the proposed approach can effectively achieve the robust optimal solution,
and the comparison with other methods also testifies the advantage of the proposed
multistage robust model. Second, multi-period energy management for CCHP
microgrids is studied with DRO technique. Specifically, a two-stage multi-period
distributionally robust energy management model is proposed which considers the
non-anticipativity of uncertainty in dispatch process. A new second-order conic
representable ambiguity set is designed for uncertain wind power. To address this
complicated problem, linear decision rule (LDR) approximation is adopted and the
proposed problem is transformed into a tractable mixed-integer second-order conic
programming (MISOCP) problem. Case studies are conducted with real-world data
to validate the performance of the proposed approach, particularly, the comparison
with robust optimization and deterministic method are carried out to show the
effectiveness of the proposed method.

• Chapter 6: Conclusions and Future Work - The contributions of this research and
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the future work are summarized in this chapter.
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Direct Interval Prediction for Wind Power and

Wind Speed

Acronyms

ACE Average Coverage Error
ACF Autocorrelation Function
ARIMA Autoregressive Integrated Moving Average
AWD Accumulated Width Deviation
CWC Coverage Width-based Criterion
DA Dragonfly Algorithm
GA Genetic Algorithm
GPR Gaussian Process Regression
LUBE Lower Upper Bound Estimation
MLP Multilayer Perceptron
NARX Nonlinear Autoregressive with Exogenous Inputs
NCWC New Coverage Width-based Criterion
NN Neural Network
NSGA-II Nondominated Sorting Genetic Algorithm II
PACF Partial Autocorrelation Function
PICP Prediction Interval Coverage Probability
PICEA-g Preference-inspired Coevolutionary Algorithm Using Goal Vectors
PIMSE Prediction Interval Mean Squared Error
PINAW Prediction Interval Normalized Average Width
PINC Prediction Interval Nominal Confidence
PSO Particle Swarm Optimization
PM Polynominal Mutation
QR Quantile Regression
RBF Radial Basis Function
RNN Recurrent Neural Network
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SA Simulated Annealing
WNN Wavelet Neural Network

2.1 Introduction

With the development of advanced generation technologies, there has been an enormous
increase in the amount of renewable generation such as wind power in recent years.
Different wind power forecast methods have been proposed aimed at reducing its
uncertain impact on power system operation, and wind energy forecast consists of direct
wind power forecast and indirect wind speed forecast. For conventional point forecast
methods, only a deterministic forecast value can be generated for a certain time step
without any indication of the associated uncertainty [31] which may impact the following
system operation with this value. Therefore, probabilistic forecast methods including
interval prediction have attracted more attention recently which can include the forecast
uncertainty [32].

Interval forecast is one of the most popular probabilistic forecast methods, and a
nonparametric procedure LUBE method is proposed recently based on NN model.
NN-based LUBE interval prediction method has been widely studied due to the light
computational burden and no distribution assumption. However, such models are all
developed based on feedforward NN model. Considering the advantage of RNN model,
the RNN-based LUBE method is first investigated for short-term wind power interval
prediction, and a new intelligent algorithm called DA algorithm is introduced to optimize
the RNN model.

As a direct source of wind energy, wind speed interval forecast is also studied in this
chapter. Currently, most of the research works about wind speed interval prediction adopt
a single-objective optimization framework. However, interval prediction is actually a
multiobjective optimization problem, and only a few studies focus on the multiobjective
interval prediction with NN model. Consequently, improvement for multiobjective
interval prediction may be achieved from both the forecast model and optimization
algorithm. In this work, short-term wind speed interval prediction is performed based
on WNN model in a multiobjective framework, and a novel multiobjective evolutionary
algorithm is investigated to train the NN model with two objectives.

2.2 Interval Prediction for Wind Power

The direct interval prediction for wind power is studied in this section. The background of
PI is first introduced in subsection 2.2.1, followed by the presentation of the proposed RNN
interval prediction model and the DA algorithm in subsection 2.2.2. The performance of
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the proposed forecast approach is validated by case studies in subsection 2.2.3.

2.2.1 Background of PI

The construction of a PI is to estimate the upper and lower bound of an interval with a
confidence level which shows the accuracy and the quality of PIs need to be evaluated by
some measures. In this subsection, the PI evaluation indices are introduced first. Then, the
NN-based LUBE interval prediction method is explained.

2.2.1.1 PI Evaluation Indices

A high quality PI is expected to have larger reliability and narrower width. To assess
these two aspects of PIs, two indices, PI coverage probability (PICP) and PI normalized
average width (PINAW) [37], are mostly employed to quantitatively measure the forecast
intervals. PICP which is also called PI confidence level is used to show the probability that
target values will be covered by the forecasted intervals. Obviously, a larger PICP value
indicates that more targets will lie in the constructed PIs. This index is usually considered
as the critical indicator of PIs and it can be mathematically defined as follows:

PICP =
1

N

N∑
i=1

δi (2.1)

where N is the number of test samples and δi is a binary value which is described as
follows:

δi =

{
1, yi ∈ [Li, Ui]

0, yi /∈ [Li, Ui]
(2.2)

where yi is the target, Li and Ui are lower and upper bound of the PI, respectively.
Generally, the PICP value should be greater than the preassigned confidence level in the
training process, otherwise the PIs are invalid and should be discarded.

Although PICP index is the key feature of PIs, we can not just focus on this objective
and ignore the interval width. With sufficiently wide intervals, the PICP objective can be
easily achieved. However, very wide intervals hardly yield any valuable information and
may be useless in practice. Therefore, a quantitative measure of interval width, PINAW, is
defined to limit the interval width, as follows:

PINAW =
1

N ·Rg

N∑
i=1

(Ui − Li) (2.3)

where Rg means the range of the targets (difference between the maximum and the
minimum).
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PICP and PINAW can only evaluate one of the aspects of PIs, respectively. In order to
assess the overall quality of PIs, the index coverage width-based criterion (CWC) which
is a comprehensive cost function is designed [38]. Furthermore, a modified CWC cost
function is proposed to overcome the multiplication drawback [120] as follows:

CWC = PINAW + γ(PICP)e−η(PICP−µ) (2.4)

where γ(PICP) is a boolean function given by

γ =

{
1, if PICP <µ
0, if PICP ≥ µ

(2.5)

where η and µ are two controlling parameters. The former is usually a large constant
to penalize the invalid PIs, while the latter can be determined according to the nominal
confidence level.

With the CWC function, the primary multi-objective problem can be transformed into
a single-objective minimization problem. Although the CWC cost function is used as a
comprehensive evaluation index, we can find that it is only determined by the estimated
upper and lower bounds and the known information is not fully used in the training
process. Similar to the frequently used mean squared error (MSE) index in point forecast,
a new PI width evaluation criterion, PIMSE, is designed to make better use of the known
target values in this study:

PIMSE =
1

N

N∑
i=1

[(Ui − yi)2 + (Li − yi)2)]. (2.6)

By introducing this index, a new CWC (NCWC) function can be developed for the training:

NCWC = PINAW + γ(PICP)e−η(PICP−µ) + PIMSE. (2.7)

With this new cost function, we can combine the unsupervised learning and supervised
learning by using the known information in the training process. Besides, it is expected
that a more symmetric interval, which is closer to the true confidence interval, will be
obtained by minimizing the PIMSE index. Therefore, the NCWC is used to enhance the
model training in this work.

In the model training process with the NCWC objective, the reliability index PICP
will be the influential factor at the beginning stage due to the high penalty cost. If PICP
is less than the predefined confidence level, the NCWC will be large regardless of the
interval width. As the training continues, the PICP will become greater than the nominal
confidence level and the sum of PINAW and PIMSE should be the dominant factor. Note
that it is necessary to consider both criteria PINAW and PIMSE here as PINAW mainly
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focuses on narrower intervals and PIMSE will make full use of the known information
and make the intervals more close to the actual symmetric confidence intervals. If only
PIMSE index is considered, we may get symmetric but wide intervals which will lead to a
large PINAW value.

2.2.1.2 LUBE Method

The LUBE method is a nonparametric method that can directly construct PIs [9]. It is
simple and fast to generate PIs without any assumption about the forecast errors. In
previous work, LUBE method is implemented with a feedforward NN. The NN model
has two output nodes including the upper and lower bounds of PIs. Actually, this
method belongs to unsupervised learning since the upper and lower bounds are not
known during the training process. In practice, it is better to have narrower PIs with a
larger coverage probability. Therefore, the primary problem based on LUBE method is
a multi-objective problem with two conflicting objectives. This multi-objective problem
can be transformed into a single-objective problem by introducing the nonlinear and
nondifferentiable CWC cost function and some basic constraints [9], [40]. To optimize the
cost function in the NN training process, different gradient-free optimization methods
such as simulated annealing (SA), particle swarm optimization (PSO) algorithm have
been applied in previous study.

In each iteration of the training process, two outputs representing the lower and
upper bounds of a PI are generated based on the model inputs. Then the two measures
PICP and PINAW as well as the corresponding CWC cost function can be calculated for
all training samples. As the training procedure continues with a certain optimization
algorithm, the NN parameters are tuned gradually so that the PICP meets the predefined
confidence level and the interval width PINAW decreases. When the maximum number
of iterations is reached or there is no further improvement on the objective for a certain
number of consecutive iterations, the model training terminates and the resulting optimal
model can be used for construction of new PIs [121]. The key features of LUBE method
includes simplicity, low computation cost and distribution-free assumption compared
with traditional interval forecast methods. More details about the LUBE method can be
found in [9].

2.2.2 RNN-based interval prediction model

As mentioned above, the LUBE method is a simple and efficient method to construct
high quality PIs. Due to the easy implementation and low computational cost, LUBE
method has become popular in quantifying forecast uncertainty in a very short time.
It has attracted much attention and abundant research works are carried out based
on feedforward NN model to do interval prediction. Compared with the feedforward
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Figure 2.1: Schematic diagram of Elman network.

NN which can only learn a static input-output mapping relationship, an RNN with
feedback structure behaves like a dynamic system which is more suitable to model
temporal sequences. Therefore, the RNN-based interval prediction model for wind power
generation is developed in this study. Two typical RNN models, Elman network and
NARX model, are investigated.

2.2.2.1 Elman Network

As a first-order RNN, the Elman network is a simple recurrent network [122] which
employs a context layer to feedback the outputs of the hidden layer. The context layer is a
copy of the hidden layer outputs at the previous time step. Although simple in structure,
it has the ability to perform complex tasks. Based on the Elman network, the interval
prediction model can be developed and the schematic diagram of the model is shown in
Fig. 2.1.

In this three layer Elman network model, there are two output nodes representing the
upper and lower bounds of a PI. The only feedback is from the hidden layer to the context
layer and the connection weights are constants, while the other feedforward weights are
adjustable which could be optimized by intelligent optimization method. According to
the Elman structure, the dynamic change of this model can be mathematically expressed
as follows:

x(k) = φ[W1I(k − 1) +W2xc(k) + b1] (2.8)

xc(k) = x(k − 1) (2.9)

z1(k) = f(W3x(k) + b2) (2.10)

where x and z1 represent the output of the hidden layer and output layer, respectively, xc
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is the output of the context layer, φ(·) is the transfer function which is usually nonlinear
hyperbolic-tangent-sigmoid function, and f(·) is pure linear activation function.

2.2.2.2 NARX Network

NARX is another class of RNN that is suitable to model time series data. Unlike Elman
network, the feedback in this input-output recurrent model is from the output to the input.
The dynamic behaviour of NARX model can be mathematically described by [123]:

o(k + 1) = g[o(k), ..., o(k − do);u(k), ..., u(k − du)] (2.11)

where o is the output, u is the input, do and du are the output and input delay, respectively,
g(·) is also a nonlinear mapping function which can be approximated by a standard MLP
model. Without loss of generality, the typical three layer structure is used in this study.
Thus, the NARX-based interval forecast model is similar to the previously described Elman
forecast model and the schematic diagram is omitted.

2.2.2.3 Dragonfly Algorithm

Inspired by the behaviours of dragonflies, DA is a population-based optimization
algorithm that was proposed in 2016 [124]. In DA, each dragonfly represents a promising
solution for the optimization problem. In this study, the dragonfly or solution is a vector
that consists of the NN connection weight values. These weights are adjusted to find the
optimal values by minimizing the cost function. To solve the problems with DA, each
dragonfly should have two vectors: position (P ) and step (V ). The step vector here is
similar with the velocity vector in PSO, while the position updating of individuals is
determined by five main behaviours including separation, alignment, cohesion, attraction
towards food and distraction from an enemy. These behaviours can be described as
follows [124]:

Sei = −
∑Num

j=1
Pj − Pi (2.12)

Ali = (
∑Num

j=1
Vj)/Num (2.13)

Coi = (
∑Num

j=1
Pj)/Num− Pi (2.14)

Foi = P+ − Pi, Eni = P− + Pi (2.15)

where Pi is the position of current individual, Pj and Vj represent the j-th neighbour
individual’s position and corresponding velocity, respectively, Num is the number of
neighbour individuals, P+ and P− denotes the position of dragonflies’ food and enemy,
respectively.
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Based on the above behaviours of the dragonflies, the position vector of each individual
can be updated as follows:

P iter+1 = P iter + V iter+1 (2.16)

V iter+1 = (sSei + aAli + cCoi + fFoi + eEni) + wV iter (2.17)

where iter is the iteration number, s, a, c, f, e, and w are corresponding weight coefficients
which control the exploration and exploitation search during the optimization process.
The above updating rules are applicable for individuals with neighbours. When the
individuals have no neighbours, the Levy flight which is a random walk [125] is used to
improve their exploration and stochastic behaviours, and the position update is as follows:

P iter+1 = P iter + Levy(dim)× P iter (2.18)

Levy(dim) = 0.01× c1 × ρ
|c2|

1
λ

(2.19)

where dim is the dimension of the vector P , c1 and c2 are two random numbers in [0,1],
respectively, λ is a constant value and ρ can be calculated by the following equation:

ρ =

(
Γ(1 + λ)× sin(πλ2 )

Γ(1+λ
2 )× λ× 2

λ−1
2 )

)1/λ

(2.20)

where Γ(n) = (n− 1)!.

The DA has been demonstrated to perform better than other well-known optimization
algorithm such as PSO and genetic algorithm (GA) on the test functions [124]. Therefore, it
is introduced to tune the RNN parameters by optimizing the comprehensive cost function
in this study. In DA, the inertia weight w is adjusted adaptively by the typical linearly
decreasing manner. In order to enhance the total search ability of this algorithm, inspired
by the random inertia weight update method [126], we can further improve the weight
update by using Levy flight as follows:

witer = wmax − (iter/Maxt)× (wmax − wmin) (2.21)

witer+1 = witer + Levy(dim) (2.22)

where wmax and wmin are the maximum and minimum weights, respectively, Maxt is the
maximum iteration number, the Levy function is the same as that defined in (2.20).

2.2.2.4 Model Implementation

Based on the Elman and NARX network model, the LUBE method was implemented to
construct PIs with DA optimization algorithm. The single-objective problem is formulated
with the NCWC cost function. The model implementation flowchart is shown in Fig. 2.2
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Figure 2.2: Model flowchart for PI construction.

and details of the main steps are discussed below.

1) Dataset partition and preprocess. For the forecast model, the main input is the
historical wind power data. The original dataset should be split into training data,
validation data and test data. The training and validation data are combined to train the
model, while the test data are used to verify the model’s generalization ability. In order
to accelerate the model training process, the original data are usually normalized to [-1,1]
after partition.

To construct PIs with the RNN model, the original time series data should be
transformed into a suitable form for training the model. A dynamic system in discrete
time can be depicted as:

X(t+ 1) = F(X(t)) (2.23)

where X(t) is the system state at time step t and F is nonlinear vector valued function.
Since the wind power and speed data are volatile and chaotic [127] from a dynamic system,
the state space reconstruction technique with the delay embedding theorem [128] was
employed to process the original data. By this theorem, the one-dimensional chaotic data
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is supposed to compress the information of higher dimension. Hence, the time series data
X(t) can be reconstructed as follows:

X0(t) = [X(t), X(t− τ), · · · , X(t− (m− 1)τ)] (2.24)

where τ is time delay and m is the embedding dimension. Therefore, creating the delay
embedding comes down to finding the optimal values of parameters τ and m. For a given
dataset, these two parameters can be determined by the mutual information function and
false nearest neighbour method [129].

Once the delay embedding was completed, the reconstructed time series was generated
and it was used to train the RNN model for one-step ahead prediction task. In this case,
the number of model input was also determined which equals the embedding dimension.

2) Parameter initialization. There are two sets of parameters corresponding to the DA
algorithm and RNN model. In DA algorithm, the step and position vectors are initialized
with small random numbers. The connection weights of RNN model are represented by
the position vectors of dragonflies, thus their initialization is finished. To find the optimal
number of hidden nodes in RNN model, five-fold cross-validation method can be applied
with the training dataset.

3) Update step and position vectors. The position and step of each dragonfly are
updated according to the equations (2.16) and (2.17). The individual with better fitness
(smaller cost function value in this study) will be retained.

4) Model evaluation. Each individual corresponds to one prediction model. With
the connection weights, PIs can be constructed and the corresponding measures PICP,
PINAW and PIMSE can be calculated. The index NCWC is considered as the fitness in
RNN training process. The individual with the best fitness is recorded as dragonflies’
food source and its position vector represents the best model weights.

5) Termination criterion. The training is terminated when the maximum iteration is
reached in this work. If the termination condition is not met, then it will return to update
the step and position vectors.

6) PI construction for test dataset. When the training is completed, we can get the
optimal connection weights for RNN model. With this optimal prediction model, PI
construction can be easily accomplished for the test data. The relevant indices are also
calculated to evaluate the PI quality.
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2.2.3 Realistic Wind Energy Prediction Case Study

To validate the forecast performance of the proposed RNN-based LUBE method, a realistic
case study of wind energy interval prediction is carried out in this subsection. First of all,
the data source and relevant parameter settings are explained. Then, the numerical results
and discussion are presented.

2.2.3.1 Data Set

The historical wind power data is taken from the Adelaide wind farm located in Ontario,
Canada and it can be obtained from the IESO website [130]. Ontario takes the lead in the
clean wind power utilization with 4781 MW of installed capacity, which supplies about
5% of the total electricity demand in the province [131].

The chosen dataset consists of hourly wind power data in MW from 1 January 2016
to 7 April 2017. During this time period, the wind farm performance is assumed to be
normal and there is no missing or false data. The whole dataset is further partitioned into
three subsets for training, validation and test. The training set and validation set account
for about 80% of the whole dataset in this study, i.e., the whole year data in 2016. The
remaining data are used to test the model’s prediction performance.

2.2.3.2 Parameter Settings

As mentioned above, two sets of parameters about RNN model and DA algorithm should
be determined in the proposed prediction model. For the RNN model, we should design
the best structure by finding the optimal number of input nodes and hidden nodes.
The number of input nodes is related to the dimension of delay vectors which can be
determined by state space reconstruction technique. According to the delay embedding
approach, a time series is a series of observations of a dynamic system and the forecast is
about forecasting the system’s state. To forecast the system, we should construct a state
space that is equivalent to the original one by using a small set of the most recent previous
observations [128]. By delay embedding theorem, we need to find two parameters: the
embedding dimension m which represents the size of the set of most recent observations
and the time delay τ which means the optimal autocorrelation level in each delay vector.
In this study, τ is determined to be 16 by the mutual information method where the
first local minimum occurs and m is 7 by false nearest neighbour method, which can be
accomplished by the utility functions mutual and false nearest in TISEAN toolbox [132].
In this case, the dimension of reconstructed delay vectors is 7 and the number of input
nodes for the RNN model is also 7. After determining the value of τ and m, delay vectors
can also be obtained for the prediction model.
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Table 2.2: Cross-validation results of Elman model

Nodes PICP(%) PINAW(%) PIMSE NCWC CWC(%)

3 94.88 74.29 1.8427 2.5856 74.29
5 94.94 65.66 1.5107 2.1672 65.66
8 93.90 69.04 1.6974 2.3878 69.04
10 94.13 73.69 2.0186 2.7555 73.69

As for the number of hidden layer nodes, five-fold cross-validation method is
employed to explore it with the training dataset in this work. This method is frequently
used in the literature [9] which can help establish a stable model. The cross-validation
results of some typical hidden nodes numbers for Elman network are shown in Table
2.2. From this table, we can see that the model has the best performance according to
the NCWC index when the number of hidden nodes is 5. Therefore, the optimal structure
of Elman network is 7-5-2 and the number of nodes in the context layer is also 5. The
optimal structure of NARX model can be determined similarly and the number of hidden
nodes is also 5 in this study. In addition, for the typical three layer structure, the common
hyperbolic tangent and pure linear activation functions are used in the hidden and output
layer, respectively.

Another parameter set is about the optimization algorithm. It is suggested that the
weight coefficients in (2.17) can update in an adaptively tuning method to balance the
exploration and exploitation during the optimization [124]. Generally, the inertia weight
w varies from 0.9 to 0.4 [133]. In this study, its range is set to be [0.7, 1] by trial and error
method. In the NCWC or CWC cost function, the controlling parameter µ is set to be the
nominal confidence level 0.9 and η equals 50 [31]. In addition, the population size is 30
and the maximum number of iteration is set to be 1000 during the optimization process.

2.2.3.3 Test Results

The proposed Elman network and NARX interval prediction model have been applied to
construct wind power PIs. After the training process, the dragonflies’ food position vector
obtained by DA corresponds to the optimal prediction model. With the best model, PIs
can be constructed for the wind power test dataset. The performance measures are also
calculated to evaluate the obtained PIs’ quality including PICP, PINAW, PIMSE, NCWC
and the CWC cost function which is frequently used in the literature.

In the training process, the variation of the best individual’s objective function is
shown in Fig. 2.3. As shown in this figure, the NCWC function of both Elman and NARX
model decreases dramatically in the first few generations to get the satisfied PICP. When
PICP satisfies the nominal coverage probability, more attentions are paid to the interval
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Figure 2.3: NCWC of the best individual in the training process.

width, i.e., to minimize the sum of PINAW and PIMSE. As the optimization proceeds, the
NCWC objective continues to decrease and it converges to the optimal value eventually
for both models. The convergence validates the strong search ability of DA algorithm
with random linear weight update method. It can also be seen that the optimal objective
value of Elman network is a little better than that of NARX model.

For Elman network model, the PI construction results for test data are shown in Fig.
2.4. For better visualization, the PIs for the last week of test data are also given in Fig. 2.5.
From the results, we can see that most of the target values (the green dash line with star)
lie in the constructed upper and lower bounds. As shown in Fig. 2.5, both the predicted
upper and lower bounds have a similar trend with the real data, which implies that the
prediction model can capture the dynamic feature of wind power data well. Note that the
lower bound that is below zero is set to be zero in this study. In addition to the similar
trend of those three lines, we can also find that most of the constructed intervals are
approximately symmetric about the targets resulting from the involvement of PIMSE in
the training process. A symmetric interval is more closer to the true confidence interval
which can be obtained based on the known distribution information.

In order to verify the repeatability of the prediction model and get convincing forecast
results, the case study with Elman network is repeated for five times. Results of each run
including PICP, PINAW, PIMSE, NCWC and CWC are shown in Table 2.3. As can be seen
from this table, the PICP values of all five runs satisfy the nominal coverage probability
(90%), which indicates that the prediction model is reliable since the PICP index is usually
considered as the key feature of the PIs. The results are also consistent as the variances of
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Figure 2.4: Optimal PIs of Elman model for test data.
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Figure 2.5: Optimal PIs of Elman model for the last week of test data.

these measures are quite small, e.g., the standard deviation of CWC for five runs in Table
2.3 is 1.7912. Note that the PIMSE value here is calculated from the normalized data. As
the CWC cost function is a comprehensive index which is frequently used in the literature,
we will take this index for convenient comparison later. The median CWC value (63.71)
instead of the best one is used to represent the average performance of Elman prediction
model. Moreover, the median value is less influenced by outliers compared with the mean
value.
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Table 2.3: PI construction results of Elman model

No. PICP(%) PINAW(%) PIMSE NCWC CWC(%)

1 93.86 61.95 1.2362 1.8558 61.95
2 93.90 65.20 1.3421 1.9940 65.20
3 93.81 63.71 1.4188 2.0559 63.71
4 93.94 66.43 1.3564 2.0207 66.43
5 94.24 62.90 1.3364 1.9654 62.90
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Figure 2.6: Optimal PIs of NARX and MLP model.

Table 2.4: PI construction results of NARX model

No. PICP(%) PINAW(%) PIMSE NCWC CWC(%)

1 94.03 65.23 1.5537 2.2060 65.23
2 94.12 68.78 1.6633 2.3511 68.78
3 94.20 69.72 1.5718 2.2690 69.72
4 93.47 63.23 1.3599 1.9922 63.23
5 93.04 68.63 1.6428 2.3290 68.63

As for NARX model, the PI construction is similar with that of Elman model. Hence,
the results of only the last week are given in Fig. 2.6 for simplicity, from which we can
obtain similar conclusions. The NARX model is also run for five times and the results
are shown in Table 2.4. As can be seen, the NARX model is also reliable and its average
performance is represented by the median CWC value as well. The standard deviation of
CWC for NARX model in Table 2.4 is 2.7613.
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Table 2.5: PI construction results for different seasons

Season Elman model NARX model

PICP(%) PINAW(%) PIMSE NCWC CWC(%) PICP(%) PINAW(%) PIMSE NCWC CWC(%)

Spring 92.31 61.95 1.3643 1.9838 61.95 95.10 60.99 1.2494 1.8593 60.99
Summer 96.01 57.93 1.2364 1.8157 57.93 95.30 55.80 1.1230 1.6810 55.80
Autumn 91.73 66.30 1.4424 2.1054 66.30 91.25 65.68 1.8004 2.4572 65.68
Winter 94.93 64.50 1.3238 1.9687 64.50 95.17 67.02 1.3988 2.0690 67.02

Table 2.6: PI construction results of MLP model

No. PICP(%) PINAW(%) PIMSE NCWC CWC(%)

1 95.92 70.65 2.2352 2.9416 70.65
2 96.13 74.10 1.6891 2.4302 74.10
3 96.99 76.97 1.7817 2.5514 76.97
4 96.56 72.36 1.6312 2.3547 72.36
5 95.53 80.57 2.4104 3.2161 80.57

To further validate the effectiveness of the proposed method, the dataset is expanded
according to different seasons which are tested with the proposed method, respectively.
The average test results of four seasons with Elman model and NARX model are given in
Table 2.5. From this table, we can see that both Elman model and NARX model can get
good prediction results for different seasons. Moreover, the forecast results of spring and
summer are better than those of autumn and winter by a comparison of CWC and NCWC
values. This may be due to abrupt change of wind speed in autumn and winter seasons.

2.2.3.4 Comparison with benchmark models

For comparison purpose, some benchmark models are employed to construct PIs with the
same dataset including naive method, ARIMA model, Gaussian process regression (GPR),
QR and feedforward MLP model [40]. As a fundamental model, a typical three layer MLP
was designed and the implementation procedure for PI construction is similar with that of
RNN model. DA is also utilized to optimize the model with the same parameter settings.
The optimal number of hidden nodes is determined to be 5 by five-fold cross-validation
method. In addition, the activation functions are hyperbolic tangent and pure linear
function for the hidden layer and output layer [40], respectively. The PI results of MLP
model for the last week are shown in Fig. 2.6, where we can intuitively see that its interval
width is larger than that of NARX model. To get quantitative results, MLP model is also
repeated for five times and the median result is used to illustrate its average performance
as shown in Table 2.6. From Table 2.6, it can be observed that the performance of MLP
model seems not to be very stable due to the large standard deviation of CWC which is
3.9238.

ARIMA is a classical model used in time series forecast. Generally, ARIMA model
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performs better for one-step ahead forecast. In this study, the seasonal ARIMA model [134]
is considered for direct one-step prediction [40]. The naive model is another well-known
benchmark and it is similar to the persistence model in point forecast. According to this
method, the forecast for the next step is generated based on the previous values. For
example, the maximum and minimum values of the previous 20 samples are considered
as the upper bound and lower bound for next step, respectively [120]. GPR model is
an effective nonlinear prediction method which can be applied in many areas including
regression and classification [135]. It adopts the Gaussian white noise assumption in
the model and it is suitable to handle small sample problem. In addition, QR is another
common statistical method that can be used for probabilistic forecast [136].

The comparison of PI construction results is summarized in Table 2.7. From Table
2.7, it can be observed that our proposed RNN prediction model outperforms the other
benchmark models except for the GPR model. Note that in the GPR forecast model, the
noise of the data is assumed to follow Gaussian distribution and the joint distribution
of any finite number of variables is also Gaussian. However, the Gaussian distribution
assumption is usually not applicable in practice. On the contrary, our method makes no
assumptions on the data noise. In addition, the calculation time of GPR model for large
dataset is very long and it is 3152.69s in our case which is almost close to the prediction
time scale of one hour. Therefore, the application of GPR forecast model may not be
feasible in practice.

In addition to the GPR model, Elman model achieves the lowest CWC value as well
as the NCWC value, followed by the NARX model. All of the PICP values can satisfy
the preassigned nominal coverage probability 90% except for the QR and naive model.
Although the PINAW values are quite low for QR and naive model, their CWC values
are very large due to the penalty on the unsatisfied PICP or low reliability. When PICP
is satisfied, the PI quality depends on the interval width, which can be revealed by the
comprehensive index CWC. By comparing the CWC values in Table 2.7, we can see that
the PI quality has been significantly improved with the proposed RNN interval forecast
model. The percentage improvements of Elman model are 14.02%, 21.74%, 62.71% and
84.90% in comparison with MLP, ARIMA, QR and naive model, respectively. They are
7.38%, 15.70%, 59.83% and 83.73%, respectively, for NARX model.

To verify the performance of DA optimization algorithm, it is compared with other
population based approaches including GA and PSO. For the GA algorithm, the real-coded
technique is employed and the probability of crossover and mutation are set to be 0.9 and
0.1, respectively [137]. The parameters of PSO algorithm are taken from [40]. With the
same implementation procedure, we can obtain the average prediction results of Elman
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Table 2.7: Comparison of proposed model with benchmark models

Method PICP(%) PINAW(%) PIMSE NCWC CWC(%)

Elman 93.81 63.71 1.4188 2.0559 63.71
NARX 93.04 68.63 1.6428 2.3290 68.63
MLP 96.13 74.10 1.6891 2.4302 74.10

ARIMA 92.01 81.41 2.0675 2.8816 81.41
GPR 90.51 43.12 0.6897 1.1209 43.12
QR 89.86 63.75 1.3373 3.0459 170.87

Naive 87.46 65.28 1.6303 5.8493 421.90

Table 2.8: PI construction results with different algorithms

Algorithm Elman model NARX model

PICP(%) PINAW(%) PIMSE NCWC CWC(%) time(s) PICP(%) PINAW(%) PIMSE NCWC CWC(%) time(s)

DA 93.81 63.71 1.4188 2.0559 63.71 785.75 93.04 68.63 1.6428 2.3290 68.63 770.81
GA 94.85 74.78 1.8622 2.6100 74.78 771.49 94.07 71.48 1.7260 2.4408 71.48 770.80
PSO 93.21 86.30 2.5299 3.3930 86.30 1051.09 95.88 76.40 1.9980 2.7620 76.40 1022.86

model and NARX model with GA and PSO algorithm which are summarized in Table 2.8.
The training terminates when the maximum number of iterations is reached for all three
algorithms, and the corresponding training times are also given in Table 2.8. As can be
seen, the prediction results with the DA algorithm are the best according to the CWC and
NCWC values. GA and PSO are easy to be trapped in local optima when the training
terminates. In addition, the training time of DA and GA are almost the same, while the
time of PSO is longer. The training time of the proposed method is about 10 minutes
which is much less than the forecast time scale of one hour. In addition, when the training
process terminates, we can use the well-trained model offline, and the forecast time will
be shorter. In other words, the proposed method can be used for real-time forecast. Note
that the execution time is related to the optimal structure of our model. If the number of
hidden nodes in the recurrent model increases, then the average running time will also be
longer.

2.2.3.5 Discussion

As the forecast time range prolongs, the forecast accuracy significantly decreases as a
result of more uncertainties. Therefore, only one-step ahead prediction is considered in
this work which is more accurate in practice. However, multi-step forecast may also be
possible for our model with a proper data preprocess method. For wind power point
forecast, we know that some other inputs such as NWP data and nearby wind speed are
also considered except for the historical data to reduce the forecast error. These data may
also be useful for interval prediction which is worth studying in the future. The delay
embedding approach can be considered as a feature selection operation in our method.
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Also, other feature selection techniques can be used to process the input data which may
help determine the most informative features and achieve higher quality PIs. Although
it is possible to improve the forecast method as mentioned above, we can still find the
superiority of our model from the comparison with other benchmark models.

Generally, the quality of PIs is evaluated by the coverage probability and interval
width which are two conflicting objectives during PI construction process. To shorten
the interval width may deteriorate the coverage probability and vice versa. Actually,
the quality of PIs may be influenced by different factors such as data characteristics
and forecast model. For different datasets, the PI results generated by the same forecast
model are different as can be seen from Table 2.5. For forecast model, we may further
study some modified RNN models or design a better comprehensive cost function in the
existing single-objective framework to improve the PIs’ quality in the future. In addition,
considering the multiobjective characteristic of PI construction, a multiobjective problem
formulation for interval prediction may also be a good choice for future research. In a
single-objective framework for PI construction, the minimization of the comprehensive
cost function NCWC or CWC is essentially to find an optimal compromise between these
two aspects but it may not always balance them well. However, with a multiobjective
framework, a set of Pareto optimal solutions can be generated and we can select a
satisfactory one from them according to posterior preference information.

Due to the intrinsic randomness of DA algorithm in the training process, we may get
different prediction results for each run. Therefore, to avoid a suboptimal solution, it is
better to repeat the training several times and take the average as the optimal solution
in a practical application. In addition, the PI results can be utilized in different ways in
practice. For example, they can either be directly used in robust optimization problem
of power systems which only needs the lower and upper bound, or be transformed into
deterministic point forecast values with convex combination of the lower and upper
bound [138].

PI construction time is a critical factor in practice. Although the training time of the
proposed RNN model is a little longer than MLP model, the test time, which is more
useful for online applications, is almost the same with that of MLP model. The average
PI construction time of Elman and NARX model in this study are 0.0770s and 0.0737s,
respectively, which are very fast. All the experiments in this study are implemented with
MATLAB software on a PC with hardware configuration of Intel Core TM i7-6700 CPU
3.40 GHz and 8 GB of RAM.
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2.3 Multiobjective Interval Prediction for Wind Speed

In this section, interval prediction for short-term wind speed is studied in a multiobjective
framework based on WNN model. The multiobjective problem formulation for
PI construction is first described in subsection 2.3.1. Then the interval prediction
methodology including the WNN model and optimization algorithm is illustrated in
subsection 2.3.2, and subsection 2.3.3 provides the numerical results and comparison based
on real datasets.

2.3.1 Problem Formulation

Some new PI evaluation indices which are the basis to assess the PI quality are introduced
and the problem formulation of multiobjective interval prediction is presented in this
subsection.

2.3.1.1 PI and Evaluation Indices

The basic concept of PI and some common evaluation indices such as PICP and PINAW
have been introduced in section 2.2. In addition to the general indices introduced above,
there are some other indices used in the literature, such as the average coverage error
(ACE), interval score [35] and the accumulated width deviation (AWD) [139]. In PI
construction process, the PI nominal confidence (PINC) is usually predefined, and the
PICP index aims to approach PINC as closely as possible. In this case, ACE is defined
as the difference between PICP and PINC as follows:

ACE = PICP− PINC. (2.25)

ACE can be utilized to assess the quality of PIs with respect to the reliability. The smaller
the absolute value of ACE is, the better the quality of derived PIs is. Another index AWD
can also be used for reliability evaluation of PIs. By comparing the position of the real
targets and PIs, relative width deviation can be calculated, and AWD is the sum of relative
width deviation as shown below:

AWDi =


Li−yi
Ui−Li , yi < Li
0, yi ∈ [Li, Ui]
yi−Ui
Ui−Li , yi > Ui

(2.26)

AWD =
1

N

N∑
i=1

AWDi (2.27)

where yi represents the real target. AWD index penalizes the PIs if the real targets are not
enclosed, and a smaller AWD indicates higher PI quality. Note that the two basic indices
PICP and PINAW are used as the objectives of the formulated multiobjective problem in
this study.
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To assess the overall performance of the PIs including the calibration and sharpness,
another comprehensive index interval score is introduced. Denote the width of a PI as θi
which is calculated by θi = Ui−Li, then the interval score Si of a specific interval is defined
as follows:

Si =


−2αθi − 4(Li − yi), yi < Li
−2αθi, yi ∈ [Li, Ui]
−2αθi − 4(yi − Ui), yi > Ui

(2.28)

where α is related to the nominal confidence level (100(1 − α)%). Based on the interval
score of each forecast point, the overall interval score can be calculated as follows:

Score =
1

N

N∑
i=1

Si. (2.29)

From the definition, we can find that a lower absolute value of the interval score indicates
higher quality of PIs. The Score index can be used to assess the overall skill of PIs since
it considers all aspects of PI evaluation [35]. Note that a lot of evaluation indices for PIs
have been studied in previous literature and several common indices are employed in this
work. Some other indices such as the continuous ranking probability score [140] may also
be investigated for future research.

2.3.1.2 Multiobjective Problem Formulation

According to the performance indices introduced above, the PI construction is actually
an optimization problem which aims at high quality PIs. As CWC is a comprehensive
evaluation index, unconstrained single-objective optimization problem based on it was
first proposed as follows [9]:

Minimize: CWC(wij) (2.30)

where wij is the prediction model parameters to be tuned. Furthermore, taking
the coverage probability as the fundamental requirement for valid PIs, constrained
single-objective problem formulation was also proposed [40]. In this problem, PICP is
constrained to be larger than the supposed confidence level, and the minimization of the
PINAW value is the optimization objective.

Although the single-objective problem framework has been widely studied for interval
prediction, the PI construction is essentially a multiobjective problem. The problem
has two objectives: maximizing the reliability index and minimizing the width index,
which are two conflicting objectives, i.e., boosting one objective will deteriorate the other
one. Therefore, a multiobjective problem formulation is more appropriate to describe
the PI construction problem and the interval prediction for wind speed is conducted in
a multiobjective framework in this work. The primary multiobjective interval forecast
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problem can be expressed as follows:

Objectives: Maximize: PICP(wij)

Minimize: PINAW(wij)

Constraints: 0 ≤ PICP(wij) ≤ 100%

PINAW(wij) > 0.

(2.31)

Note that during the training process, the maximization objective can be easily
transformed to the minimization of 1-PICP(wij) according to the adopted training
algorithm.

As a multiobjective optimization problem can be converted into a single-objective
problem with some techniques such as weighted average method, the single-objective
problem formulation mentioned above can be considered as such technique. However, the
difference is obvious between single-objective problem and multiobjective problem. The
former only optimizes one single objective and gets one optimal solution, while the latter
optimizes several objectives simultaneously and obtains a set of trade-off solutions which
are called Pareto optimal solutions. These solutions form the Pareto front from which the
decision maker can select a most satisfactory one. Moreover, with the development of
multiobjective evolutionary algorithm, multiobjective optimization problem can be solved
efficiently and effectively without being transformed into a single-objective problem.

2.3.2 Solution Methodology

For multiobjective interval prediction problem, a good prediction model and optimization
algorithm should be designed to achieve high quality PIs. In this subsection, the
prediction model based on WNN is first proposed, followed by the introduction of
preference-inspired coevolutionary algorithm using goal vectors (PICEA-g) optimization
algorithm. Then the implementation strategy of interval prediction is presented.

2.3.2.1 Wavelet Neural Network Based Prediction Model

In direct interval prediction methods based on NN models, the multilayer perceptron
(MLP) model has been widely studied. In addition, RBF NN model is also reported for
multiobjective interval prediction [56]. However, another feedforward NN model, WNN,
has not been studied for interval prediction problem. The first WNN model was proposed
to approximate arbitrary nonlinear function as an alternative of classic feedforward
NN [141]. In point forecast, it was demonstrated that the WNN model outperforms the
other feedforward NN models such as MLP and RBF NN models [142], [143]. Inspired
by the good performance of WNN model in point forecast, it is reasonable to explore its
performance in interval prediction for wind speed. In addition, considering the essence
of interval prediction problem, a multiobjective optimization framework is better suited.
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Figure 2.7: Architecture of the proposed WNN model.

Therefore, it is worthy to design a multiobjective prediction model based on the WNN
model which is expected to have good prediction performance.

WNNs are developed by combining the wavelet theory and NN models. They
belong to feedforward NNs and have been successfully used in some classification and
time-series forecast problems [144]. Generally, there are two ways to combine the wavelet
theory and NN models in forecasting tasks. One is using wavelet transformation to
decompose the time-series data into some sub-series which are then combined with
NN models to forecast future values [145]. Another method is to employ the wavelet
basis function as the activation function of the hidden neurons to construct WNN model
which is also studied in this work. WNNs can be classified into adaptive models where
wavelet coefficients are variable and fixed grid WNNs where wavelet coefficients are
fixed [146]. Adaptive WNNs have better generalization capability because of the wavelets’
local properties and the adaption of wavelet shape corresponding to the training data.
Consequently, an adaptive WNN prediction model is proposed in this study which is
shown in Fig. 2.7. The proposed adaptive WNN model is a more efficient structure for
forecast tasks. Note that the wavelet transformation technique may also be investigated in
future research.

As can be seen in Fig. 2.7, a three layer WNN model is designed where the wavelet
transformation is embedded in the hidden neurons of the WNN model [147]. The output
layer has two nodes which represent the upper and lower bound of a PI, respectively.
According to the universal approximation theorem that a single hidden layer feedforward
NN with sigmoid activation function is able to approximate any function, we can get the
superposition of sigmoid wavelet [147]. Then the key problem in designing a good WNN
model is to find the optimal number of hidden nodes. Among different wavelets, the
Mexican hat wavelets are symmetrical and have explicit expression which can provide
exact time frequency analysis. In addition, they are based on continuous wavelet transform
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and can be shifted and scaled smoothly over the entire domain [142]. Hence, in this work,
the wavelet activation function used in the hidden units is the Mexican hat wavelet as
follows:

ψ(x) = (1− x2)e−0.5x2 . (2.32)

Thus, the WNN model shown in Fig. 2.7 can be expressed as below:

Hj = ψaj ,bj (

m1∑
i=1

wijxi), j = 1 · · ·n1 (2.33)

ψaj ,bj (z0) = ψ(
z0 − bj
aj

) (2.34)

yk =

n∑
j=1

wjkHj + gk, k = 1, 2 (2.35)

where m1 and n1 are the number of input nodes and hidden nodes, respectively, wij
and wjk denote connection weights, aj and bj are scale (dilation) and shift (translation)
parameters of wavelets, respectively, k is the number of output nodes and g represents the
bias. Note that some other wavelet functions may also be used as the activation functions.
But their performance needs to be further investigated in future. In this adaptive WNN
model, the connection weights and wavelets parameters are all variable that need to be
tuned to attain the best forecast performance.

The proposed interval prediction model is derived from the lower and upper bound
estimation (LUBE) [9] method which is a direct unsupervised learning process to generate
PIs. It can construct PIs simply and fast without making data distribution assumption.
Compared with the supervised learning process, the proposed method only use the
original data, and the lower and upper bounds are not required in the training process.
Particularly, the proposed model directly generates unknown PIs which are gradually
improved based on the evaluation indices. For the training set including the input and
targets, the input is determined by correlation analysis method which is introduced in
detail in Section 2.3.3.2. The real data points are used as the targets and the real lower
upper bounds are unknown. During the training process, a set of preliminary lower and
upper bounds is generated with the NN model as shown in (2.35) and they are compared
with the real targets to calculate the evaluation indices, i.e., the optimization objectives.
The PIs are adjusted iteratively based on the quality of objectives. In addition, since
wavelets have shown excellent performance in nonlinear function modeling, it is expected
that the proposed adaptive WNN model performs well in forecast tasks.

2.3.2.2 PICEA-g Algorithm

Various multiobjective evolutionary algorithms have been proposed such as the Pareto
dominance based NSGA-II which is one of the most efficient methods by employing an
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elitist and diversity preservation mechanism. Recently, a new multiobjective evolutionary
algorithm, PICEA-g, has been proposed and shown to perform better than other advanced
methods including NSGA-II [148]. Therefore, the PICEA-g algorithm is investigated to
train the the proposed WNN prediction model in this study.

It is known that preference-based methods are helpful to generate tradeoff surfaces
of interest to the decision maker in objective subspaces. With the decision maker’s
preferences, the incomparable solutions may become comparable. As a result, the concept
of co-evolving candidate populations and a set of preferences have been proposed [149]
and PICEA-g algorithm is a realization of this approach. In this approach, various
preference sets help generate various regions of Pareto front. It is expected to get a
good representative of the whole front with many sets of preferences as the co-evolution
proceeds.

The general idea of PICEA-g is summarized as follows [148]. In PICEA-g, a set
of preferences, also called goal vectors, is co-evolved with the common population of
potential solutions during the search process. As for fitness assignment, the potential
solutions obtain fitness by satisfying some certain goal vectors in objective space, but
the fitness contribution should be shared between all the solutions that meet the goals.
The goal vectors’ fitness is generated by satisfactory candidate solutions and higher
satisfaction implies lower fitness [150]. The aim of goal vectors is to adaptively lead
the potential solutions toward the Pareto front, i.e., they co-evolve with the solution
population in the process.

The implementation of PICEA-g can be illustrated in an elitist framework as shown in
Fig. 2.8. A population of potential solutions, P , and a set of goal vectors, G, are co-evolved
for some certain generations. For every iteration, the genetic variation operation is
conducted with the parent solution population P to produce the offspring Pv. While
the new goal vectors Gv are randomly regenerated according to the predefined bounds.
Then the solution population and the goal vectors are pooled respectively and sorted in
terms of the fitness. Lastly, truncation selection is implemented on the sorted population to
produce a fixed number of potential solutions and goal vectors as the offspring population.
Note that the minimization of 1-PICP and PINAW are considered as two objectives in
this work which are used to calculate the fitness during the optimization process. More
details about PICEA-g algorithm including the detailed fitness function can be found in
the references [148] and [151].
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Figure 2.8: PICEA-g implementation framework.

2.3.2.3 Implementation Strategy

Based on the proposed WNN prediction model and PICEA-g training algorithm,
multiobjective interval prediction for wind speed can be implemented with real datasets.
The main steps of the model implementation are summarized as follows.

Step 1: Data preprocess. Although the wind speed forecast may be influenced by
many factors like the weather condition and temperature, the historical wind speed
is the most relevant factor which is considered as the input in this study. The original
wind speed dataset should be partitioned into training set and test set. In addition,
the original data are usually normalized to speed up the model training.

Step 2: Initialize the parameters of the training algorithm. For PICEA-g algorithm,
the population size, maximum number of generations and parameters of genetic
operators should be specified. The population are coded with real values, i.e.,
real-coded chromosomes are adopted. Each individual represents one WNN model
and consists of all the free parameters as follows:

p = [wij , wjk, aj , bj , gk], i = 1 · · ·m1, j = 1 · · ·n1, k = 1, 2. (2.36)

The dilation parameter aj and translation parameter bj of wavelet functions are
randomly initialized with uniform distribution in the intervals [0.5,2] and [-3,3],
respectively [143]. The weights and bias of NN model are initialized randomly in
[-1,1] with uniform distribution. The real-coded genetic operators used in this study
are simulated binary crossover (SBX) and polynomial mutation (PM) [55]. For SBX
operator, it can be defined with the following formulas:

p1,t+1
idx = 0.5 ∗ [(1 + βidx)p1,t

idx + (1− βidx)p2,t
idx] (2.37)

p2,t+1
idx = 0.5 ∗ [(1− βidx)p1,t

idx + (1 + βidx)p2,t
idx] (2.38)
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where p1,t
idx and p2,t

idx are two parent variables in generation t, p1,t+1
idx and p2,t+1

idx are two
offspring variables in generation t+1, and the parameter βidx is calculated as follows:

βidx =

{
(2r)

1
ηc+1 , r ≤ 0.5

( 1
2(1−r))

1
ηc+1 , r > 0.5

(2.39)

where r is a random number in the interval [0,1] and ηc is the distribution index
defined by the decision maker. The SBX operator intends to generate offspring near
the parents which is helpful to inherit the valuable information. For PM operator, it
can be expressed as follows:

p′idx =

{
pidx + δidx(pidx − plowidx ), r ≤ 0.5
pidx + δidx(pupidx − pidx), r > 0.5

(2.40)

where plowidx and pupidx are the lower bound and upper bound of the decision variable,
respectively, r is still the random number and δidx is a parameter as follows:

δidx =

{
(2r)

1
ηm+1 − 1, r ≤ 0.5

1− (2(1− r))
1

ηm+1 , r > 0.5
(2.41)

where ηm is the user-defined index parameter.

Step 3: Determine the optimal WNN structure. The parameters of WNN prediction
model mainly includes the number of input nodes and hidden nodes. The input
features can be determined by correlation analysis method. Specifically, the
correlation analysis is implemented with the sample autocorrelation function (ACF)
and partial autocorrelation function (PACF) in this work, which will be introduced
explicitly in next subsection. Considering the sequence of time series data, the
number of hidden nodes is determined by trial and error method which has a
similar idea with cross validation method [40]. The hypervolume indicator [152]
is employed to assess the model performance and determine the optimal model
structure. A higher hypervolume value stands for a better model.

Step 4: Model training and evaluation. After determining the parameters and
optimal structure of the prediction model, the model was retrained with the training
data. The termination condition is to reach the predefined maximum iteration in this
study. When the training terminates, the Pareto front is attained for the test dataset
which consists of the PICP and PINAW values of each individual. The hypervolume
can also be calculated to evaluate the model.

Step 5: PI construction. From the multiobjective optimization method, a set of
Pareto optimal solutions can be obtained. To construct high quality and satisfactory
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PIs, the decision makers may select the best solution according to their preferences
such as the reliability requirement. This flexible selection is obviously an advantage
of multiobjective interval prediction over the single-objective interval prediction
method.

In wind speed forecast, the associated uncertainty can be represented by different
probabilistic approaches including probability density function, moments of distribution,
quantiles and intervals [121]. The most commonly used probabilistic forecast method is
based on quantiles. However, we can only get one quantile in one simulation with such
method and construct the PIs indirectly with a pair of these quantiles. In contrast, the
proposed interval forecast method can produce a set of optimal solutions simultaneously,
and the PIs are constructed directly without the estimation of quantiles. Therefore, from
the decision maker’s viewpoint, the proposed multiobjective interval prediction method
is more efficient and concise.

2.3.3 Numerical Results

To verify the effectiveness of the proposed multiobjective interval prediction model, case
studies with real-world wind speed data are executed in this subsection. First, the datasets
used as well as the parameter settings of the prediction model are depicted. Then the
prediction results and comparison with other models are demonstrated.

2.3.3.1 Datasets

The wind speed data used in this study are hourly mean wind speed taken from two
locations: Victoria and Edmonton in Canada [153]. The time periods of two datasets are
both from 1 August 2016 to 31 July 2017 with the hour unit. However, in this time period,
the Victoria dataset has 5 missing values. The missing values cannot be deleted directly to
keep the wind speed distribution. As the overall data trend will not dramatically change
in a very short time, the mean value of the data before and after the missing data point is
used to replace the missing one in this study.

Victoria is located on Vancouver Island while Edmonton is an inland city, thus the
wind speed data from these two locations are expected to have different characteristics.
The descriptive statistics of the two chosen datasets are summarized in Table 2.9. In this
study, 80% of the one year data (from August 2016 to May 2017) are used to train the
prediction model, the remaining are utilized to test the model. In addition, the training set
and the testing set are normalized to [-1,1], respectively. As the forecast accuracy decreases
with the increase of forecast time scale, one step ahead interval forecast is conducted in this
work.
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Table 2.9: Descriptive statistics of the two datasets

Location Mean Std. Min. Max.

Victoria 11.03 7.08 0 55
Edmonton 10.92 6.24 0 48

Table 2.10: Parameters of PICEA-g algorithm

Parameter Value

Npop 40
MaxGen 1000

Crossover operator SBX (pc=1, ηc=15)
Mutation operator PM (pm = 1/nvar, ηm=20)

2.3.3.2 Parameter Settings

Two sets of parameters need to be determined in the proposed prediction model. One is
about the PICEA-g algorithm, the other one is about the WNN model. The parameters of
PICEA-g algorithm used in this study are collected from the reference [148] as shown in
Table 2.10. Npop is the population size of candidate solutions. The number of goal vectors
is equal to the population size. MaxGen represents the maximum number of iterations
which controls the termination of the model training. For SBX crossover operator, the
recombination probability pc is 1 and the distribution index ηc is set to 15. For PM
mutation, the mutation probability pm is related to the number of decision variables nvar
and the distribution index ηm is equal to 20 in this study.

In time series forecast, correlation analysis is usually employed to identify the order
of the model. In particular, the sample autocorrelation function (ACF) and partial
autocorrelation function (PACF) are often utilized to conduct correlation analysis between
the forecast value and past historical data [40]. Therefore, the ACF and PACF analysis is
adopted to determine the input of the WNN model, i.e., determine the input values that
have maximum correlation to the forecast values. The ACF and PACF analysis method is
widely used in forecast tasks such as [40], [56]. Since the intermittent and volatile wind
speed fluctuates every now and then, it shows no apparent daily and weekly trend and
we can assume that it is stationary. Then the ACF and PACF analysis can be used directly
without difference operation. For the Victoria dataset, the ACF and PACF are shown in
Fig. 2.9. As can be seen from this figure, the ACF has an exponential decaying trend
and the PACF is cut off at lag 3. Thus, the proper order of this time series should be 3.
Considering xt as the time series variable, the vector (xt−2, xt−1, xt) is then used as the
input to forecast the value xt+1 at next step. Likewise, the correlation analysis with ACF
and PACF can also be implemented for Edmonton wind speed data. The proper time
series order is also 3 and the similar analysis graph is omitted here.
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Figure 2.9: ACF and PACF analysis of Victoria wind speed.

The number of hidden nodes usually has an important effect on the NN model
performance. To determine the optimal number of hidden nodes, two methods including
cross-validation and trial and error method are often studied in the previous literature. In
this study, the method proposed in [40] is adopted and combined with the hypervolume
indicator to investigate the optimal number of hidden neurons which has a similar idea
with cross-validation. For each selection of NN models, it is trained and validated for five
times with the training and testing datasets. The hypervolume indicator is calculated for
every simulation run and the average hypervolume value for each model was obtained.
The hypervolume represents the proportion of the objective space calculated based on the
obtained approximating Pareto front and a certain reference point [150]. The reference
point is set to (1.2, 1.2) for the minimization problem with two objectives (1-PICP, PINAW)
in this study. The hypervolume is calculated by the method developed in [154]. For
the minimization problem, the model with maximum average hypervolume value is
chosen to be the best model. Considering the balance of computation complexity and
generalization capability, the number of hidden nodes is limited to change from 3 to 10 in
this work. The average hypervolume results for Victoria dataset are given in Fig. 2.10. As
can be seen from this figure, the model with 8 hidden neurons has the best performance.
Therefore, the optimal structure of WNN prediction model for Victoria data is 3-8-2.
Similarly, the optimal number of hidden nodes of the prediction model for Edmonton
dataset was determined to be 7.

In single-objective interval prediction, CWC is used as the comprehensive index to
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Figure 2.10: Average hypervolume results.

evaluate the PIs’ quality. In order to compare multiobjective interval prediction with
single-objective interval prediction methods conveniently, CWC index is also investigated
in this work. For CWC parameters, the parameter µ is specified as the nominal confidence
level 1−α = 0.9, the large constant η is set to 50 [9]. These parameters may also be variable
according to the decision maker.

2.3.3.3 Prediction Results

After specifying the parameters and determining the optimal model structure,
multiobjective interval prediction for wind speed can be implemented. The model
is first trained with the training data. After the training termination is reached, a set of
Pareto optimal solutions, i.e., a set of non-dominated optimal prediction models can be
obtained. Applying these models to do interval prediction with test data leads to the
required Pareto front of test set.

The test results or the Pareto front with the proposed multiobjective interval prediction
model for Victoria and Edmonton data are presented in Fig. 2.11. From this figure, we can
see that good prediction results can be obtained for both datasets. Both the Pareto fronts
show good convergence and diversity and have reasonable and valid objective values.
Each point in the Pareto front indicates the result of a prediction model. Actually, the
decision maker can choose a satisfactory prediction model among these Pareto solutions
of training sets to construct PIs according to his posterior preference such as the interval
prediction reliability requirement.
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Figure 2.11: Pareto front of prediction results.

To generate high quality PIs, the comprehensive index CWC is considered and the
model with the smallest CWC value is taken as the most appropriate model. Since the
nominal confidence level is set to 0.9 in this work, choosing the model with smallest CWC
value is equivalent to choose the one with smallest PINAW value among those with PICP
not less than 0.9. The interval prediction results from the model with the smallest CWC
value for Victoria dataset are shown in Fig. 2.12. Note that only the prediction results
of the last week of the test dataset are shown in this figure for better visualization. In
addition, as the real wind speed is impossible to be below zero, the lower bound limitation
is set to zero in this study [40]. As can be seen from this figure, the PIs generated from
the model are valid and narrow with PICP=90.81% and PINAW=26.83%. Both the upper
bound and the lower bound vary similarly with the actual data.

Similarly, the PI construction results for Edmonton dataset can be attained as shown
in Fig. 2.13. From this figure, it can be seen that the wind speed of Edmonton has a
different fluctuation trend, but high quality PIs can still be generated by the proposed
WNN prediction model. The constructed PIs are able to enclose the real targets well. For
this case, PICP is 90.18% and PINAW equals 26.11%, which indicate narrow PIs on the
condition that the reliability is guaranteed.

2.3.3.4 Comparison with Other Models

In order to substantiate the effectiveness of the proposed interval forecast approach,
several benchmark models are employed to conduct interval prediction with the same
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Figure 2.12: Interval prediction results for Victoria data.
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Figure 2.13: Interval prediction results for Edmonton data.

datasets for comparison purpose. The proposed multiobjective interval prediction method
is first compared with other common single-objective interval forecast methods, then
different NN models in a multiobjective framework are also compared.
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The single-objective interval prediction methods considered in this study include NN
based LUBE method [9], quantile regression (QR) method and Naive method. NN based
LUBE method is widely studied for wind power interval prediction and the NN model
is usually the MLP model. The NN based LUBE method proposed in [40] is adopted
to conduct single-objective interval prediction for wind speed and the NN connection
weights are tuned by particle swarm optimization (PSO) algorithm. The corresponding
parameters can also be found in the reference. Note that some other feedforward NN
models and optimization algorithms (e.g., genetic algorithm) can also be studied for
single-objective interval forecast model which share the same principle. QR is another
typical probabilistic forecast approach [136] which can be applied to interval prediction.
Naive method is also a general benchmark forecast model and it works similarly with the
persistence model in point forecast. Naive method forecasts future intervals based on the
past historical data and it performs well for short-term forecast task. In this study, the
forecast error is assumed to follow normal distribution, the last wind power value is used
as the mean, and the variance is calculated based on the latest observations [35]. With the
mean and variance, PIs can be constructed for the forecast horizon.

The interval prediction results from the proposed approach and the benchmark
techniques for Victoria and Edmonton data are given in Table 2.11 and Table 2.12,
respectively. In addition to PICP and PINAW, ACE, AWD and Score indices are
also presented. The CWC value which is a comprehensive index is also listed in the
results. Note that the results of the proposed WNN-PICEA-g method are generated
from the most satisfactory solution of the Pareto solution set as mentioned above. For
better persuasiveness, the experiments with different PINC values are conducted, i.e.,
PINC=85%, 80%, 75% and 70% are also studied as shown in the tables.

From Table 2.11, we can see that the proposed method and NN-LUBE-PSO method
can generate valid PIs (PICP ≥ PINC) for Victoria data for all experiments. However,
QR and Naive methods are not so good. Obviously, the result of the proposed method
has the minimum interval width and ACE value. Although the NN-LUBE-PSO method
construct PIs with a high reliability, the PIs are less informative as they are too wide, and
the very high probability also leads to a slightly lower AWD value. Since CWC and Score
index can measure both the coverage probability and interval width of PIs, they can be
used to compare the overall performance of various forecast approaches. Therefore, the
proposed multiobjective interval prediction method has the best performance in Table
2.11. In addition, the multiobjective interval prediction method produces a set of Pareto
solutions with a simulation run which can offer more choices to the decision maker
than the single-objective prediction methods. More specifically, we can select the proper
solutions from the Pareto solutions according to different PINC requirements, while
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Table 2.11: Comparison results for Victoria data

PINC Method PICP (%) PINAW (%) ACE (%) AWD Score CWC

90%

WNN-PICEA-g 90.81 26.83 0.81 0.0196 -3.3890 0.2683
NN-LUBE-PSO 96.17 36.12 6.17 0.0058 -3.6507 0.3612

QR 85.72 29.98 -4.28 0.0535 -3.9617 8.7889
Naive 85.80 26.39 -4.20 0.0376 -3.6267 8.4143

85%

WNN-PICEA-g 85.95 23.31 0.95 0.0310 -4.4562 0.2331
NN-LUBE-PSO 91.26 30.54 6.26 0.0144 -5.0725 0.3054

QR 80.24 24.86 -4.76 0.0834 -5.1405 11.0542
Naive 81.81 23.33 -3.19 0.0548 -4.8260 5.1543

80%

WNN-PICEA-g 81.27 20.77 1.27 0.0450 -5.5404 0.2077
NN-LUBE-PSO 87.09 26.96 7.09 0.0314 -6.3132 0.2696

QR 74.01 21.05 -5.99 0.1202 -6.1379 20.1475
Naive 77.71 20.94 -2.29 0.0744 -5.8641 3.3548

75%

WNN-PICEA-g 75.79 18.11 0.79 0.0679 -6.4028 0.1811
NN-LUBE-PSO 82.92 21.65 7.92 0.0475 -6.6901 0.2165

QR 69.50 18.46 -5.50 0.1575 -7.0067 15.8027
Naive 73.32 18.92 -1.68 0.0970 -6.7774 2.5077

70%

WNN-PICEA-g 71.56 16.39 1.56 0.1020 -7.3752 0.1639
NN-LUBE-PSO 77.84 20.10 7.84 0.0930 -8.0008 0.2010

QR 64.31 16.12 -5.69 0.2053 -7.7543 17.3963
Naive 69.21 17.14 -0.79 0.1235 -7.5989 1.6534

several simulation experiments need to be conducted with a single-objective forecast
model.

Similar forecast results are also obtained for Edmonton data as shown in Table 2.12.
The proposed WNN-PICEA-g method can still construct valid PIs with narrow width
which demonstrates the stability and consistency of the method. It is still the best forecast
method according to the CWC value followed by the NN-LUBE-PSO method. For QR and
Naive method, the PICP value cannot reach the nominal confidence level most of the time
resulting a high CWC value. Furthermore, we can find that the ACE value of the proposed
method is much closer to 0. In summary, the proposed multiobjective interval prediction
method can construct PIs effectively and performs better than the benchmark approaches.

Since several other multiobjective interval prediction methods based on NN models
have been reported in the previous literature [39], [56], multiobjective comparison is also
implemented between the WNN model and other NN models including MLP NN and
RBF NN. The implementation strategy for MLP NN and RBF NN model is the same
with that of the proposed model. The PICEA-g algorithm with the same parameters is
still used as the training algorithm. To compare the performance of different models
quantitatively, the hypervolume indicator is adopted to measure the obtained Pareto front.
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Table 2.12: Comparison results for Edmonton data

PINC Method PICP (%) PINAW (%) ACE (%) AWD Score CWC

90%

WNN-PICEA-g 90.18 26.11 0.18 0.0233 -3.5946 0.2611
NN-LUBE-PSO 94.57 33.12 4.57 0.0133 -3.9449 0.3312

QR 81.78 27.54 -8.22 0.0664 -4.2310 61.1661
Naive 86.43 27.85 -3.57 0.0389 -3.9903 6.2351

85%

WNN-PICEA-g 87.49 23.60 2.49 0.0389 -4.9093 0.2360
NN-LUBE-PSO 90.92 27.73 5.92 0.0237 -5.1288 0.2773

QR 75.44 22.61 -9.56 0.1039 -5.4662 119.1755
Naive 81.70 24.64 -3.30 0.0557 -5.2556 5.4560

80%

WNN-PICEA-g 80.18 20.19 0.18 0.0728 -5.9536 0.2019
NN-LUBE-PSO 83.27 23.04 3.27 0.0410 -6.0864 0.2304

QR 70.19 19.20 -9.81 0.1466 -6.4896 135.2586
Naive 78.34 22.12 -1.66 0.0749 -6.3506 2.5200

75%

WNN-PICEA-g 76.98 19.11 1.98 0.0755 -6.9284 0.1911
NN-LUBE-PSO 77.27 21.75 2.27 0.0715 -7.5641 0.2175

QR 64.76 16.61 -10.24 0.1947 -7.3444 167.2513
Naive 74.80 19.98 -0.20 0.0969 -7.2948 1.3047

70%

WNN-PICEA-g 70.42 16.14 0.42 0.1033 -7.4815 0.1614
NN-LUBE-PSO 74.87 17.89 4.87 0.0861 -7.6088 0.1789

QR 59.91 14.52 -10.09 0.2495 -8.0989 155.4964
Naive 70.58 18.10 0.58 0.1226 -8.1209 0.1810

The average hypervolume results of different NN forecast models for Victoria and
Edmonton data are given in Table 2.13. The hypervolume values in this table are
average results for the test dataset from five independent simulation runs and a larger
hypervolume value means a better result for multiobjective minimization problem. As
can be seen from this table, the WNN model is slightly better than the MLP NN model,
but it performs much better than the RBF NN model, especially for the Edmonton dataset.
Therefore, the proposed WNN forecast model performs best which has the maximum
hypervolume.

In addition, NSGA-II algorithm is one of the most efficient multiobjective optimization
algorithms and has been widely studied to deal with different multiobjective problems. To
verify the performance of PICEA-g algorithm employed in this study, NSGA-II algorithm
is used to train the WNN model for comparison. The hypervolume results obtained from
the WNN model with NSGA-II algorithm are listed in the last column of Table 2.13, which
are also average results of five individual runs. It is obvious that the hypervolume results
from WNN trained by PICEA-g algorithm are better than those from WNN with NSGA-II
algorithm. Thus, we can conclude that PICEA-g algorithm has good performance in the
proposed multiobjective interval prediction method.
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Table 2.13: Multiobjective comparison results for different models

WNN MLP RBF WNN-NSGA-II

Victoria
hypervolume 1.3056 1.3053 1.2993 1.2989
Edmonton
hypervolume 1.3047 1.3043 1.2899 1.2966

Table 2.14: Training results for different population size

Npop Victoria Edmonton

time (s) hypervolume time (s) hypervolume

30 36.90 1.3050 37.43 1.3122
40 44.73 1.3086 44.14 1.3169
50 52.36 1.3125 52.17 1.3183

2.3.3.5 Discussion

The proposed multiobjective interval prediction model mainly consists of WNN model
and PICEA-g optimization algorithm. For PICEA-g algorithm, the widely used crossover
and mutation operators are maintained, and the corresponding parameter values are
collected from the reference which can be considered as optimal in this work. It is possible
to study different crossover and mutation operators and corresponding parameters to
further improve the performance of the forecast method in future. In addition, the
influence of the population size Npop is studied. The average training time and average
training hypervolume results with different Npop are summarized in Table 2.14, which
shows that the training time has a positive correlation with the Npop value. We can also
find that all the training time for different population size are less than one minute which
shows the computational efficiency of the optimization algorithm. When the training
process is finished, the testing time is less than one second. Particularly, the training time
is about 45s when Npop is 40 which is much less than the time scale (1 hour) of the dataset.
Hence, the proposed forecast model can be used to real-time wind speed forecast. The
increasing hypervolume values result from the increasing evenly distributed points in the
Pareto front. Therefore, the decision maker needs to select a proper population size to
balance the training time and the number of Pareto solutions in practice.

In addition, various feature selection methods, such as mutual information method,
recursive feature elimination, and chaotic feature selection based on phase space
reconstruction, can be investigated to preprocess the input data which may potentially
improve the forecast performance. The correlation analysis method is used in this work
for its efficiency and simplicity. To evaluate its effectiveness, another feature selection
method, phase space reconstruction, is studied for comparison purpose. The phase
space reconstruction technique aims to determine the delay vectors as the input. By
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Table 2.15: Hypervolume results for different feature selection methods

Npop Victoria Edmonton

PSR method CA method PSR method CA method

30 1.2874 1.3050 1.2977 1.3122
40 1.2951 1.3086 1.3048 1.3169
50 1.3017 1.3125 1.3094 1.3183

delay embedding theorem, we need to find two parameters in terms of the embedding
dimension and the time delay, which can be obtained by the mutual information method
and false nearest method, respectively [155]. In this work, the embedding dimension
is 8 and the time delay is 13 for Victoria dataset, and they are 8 and 15 for Edmonton
dataset, respectively. Then the delay vectors or the input can be constructed. The
number of the hidden nodes in the WNN model is determined with the same method as
introduced before. Similarly, the average training hypervolume results based on phase
space reconstruction (denoted as PSR) with various Npop are given in Table 2.15, and
hypervolume results with correlation analysis (denoted as CA) method are also listed for
better comparison. From this table, we can find that the correlation analysis method is
effective and sufficient to determine the input for short-term wind speed forecast. For more
complex forecast tasks, it is worth studying other advanced feature selection methods,
which is left for future work.

Compared with the single-objective interval prediction model, we can get a Pareto
front (a set of optimal solutions) from the proposed multiobjective interval prediction
model. Among the nondominated optimal solutions, the decision maker can flexibly
choose a proper solution according to the demand of reliability and interval width.
Each solution corresponds to an interval forecast model. With the choice of a proper
model, interval prediction can be implemented with new dataset. In addition, there
are different ways to use the prediction intervals in reality. For instance, they can be
applied to robust optimization and control problems for power systems integrated with
renewable generation [155]. More specifically, in robust optimization problems with
box-type uncertainty set, the prediction intervals can be directly used to describe the
uncertainty without the assumption of probability distribution, i.e., only the lower and
upper bounds are required in robust optimization problems. They can also be processed to
get the point forecast values by some convex combination methods, such as the weighted
summation method with the obtained lower and upper bounds.

2.4 Summary

Two interval forecast problems for wind energy are studied in this chapter, i.e., direct
interval prediction for wind power based on RNN model and multiobjective interval
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prediction with WNN model for wind speed.

First, the RNN-based LUBE method is proposed to directly construct optimal PIs for
wind power forecast. The RNN model has dynamic features and is suitable for time series
forecast. Based on the single-objective problem formulation, a novel comprehensive cost
function with a new PI evaluation index is designed to enhance the model training. To
optimize the RNN prediction model, the DA algorithm with a new weight update method
is introduced to solve the problem. In addition, the delay embedding theorem is applied
to reconstruct the chaotic wind power data for better prediction. The numerical results
with a real world wind power dataset show that the proposed RNN prediction model can
construct better PIs compared with the benchmark models.

Second, multiobjective interval prediction based on WNN model is proposed for
short-term wind speed forecast. The novel multiobjective evolutionary algorithm,
PICEA-g, is employed to train the WNN prediction model. Two case studies are
implemented to testify the performance of the proposed model with real-world hourly
wind speed data from Canada, and valid and narrow PIs are obtained. In addition,
experimental results show the superiority of the proposed approach compared with
other benchmark methods, the performance of PICEA-g algorithm is also verified by a
comparison with the popular NSGA-II algorithm. In particular, the quality of PIs from
the proposed multiobjective model is better than those from other single-objective forecast
models with respect to different PINC settings including 90%, 85%, 80%, 75% and 70%.
For multiobjective model comparison, the proposed model also achieves higher average
hypervolume results (1.3056 for Victoria dataset and 1.3047 for Edmonton dataset) than
other models. Moreover, the training time with PICEA-g algorithm for two case studies
are both less than one minute which shows the feasibility of the proposed model.



3
Chance-constrained Energy Management for

Islanded Microgrids

Acronyms

CC Chance-constrained
CCP Chance Constrained Programming
DG Distributed Generation
DRO Distributionally Robust Optimization
ESS Energy Storage System
SAA Sample Average Approximation
SDP Semidefinite Programming
SOCP Second-order Conic Programming
UC Unit Commitment

3.1 Introduction

This chapter presents a chance-constrained energy management problem for islanded
microgrids with the new uncertainty modeling technique - DRO method.

As an important paradigm of smart grid, the research of microgrid has been widely
conducted. With the high penetration of renewable generation, microgrid energy
management problem has become more challenging due to the introduction uncertainty.
Although traditional SP and RO method have been applied to deal with microgrid
energy management with uncertainty, both methods have some drawbacks with respect
to computational burden or over-conservativeness. In addition, chance constrained
programming (CCP) method is also investigated in microgrid energy management.

63
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In the existing literature, most of the research works focus on grid-connected
microgrids and only a few study islanded microgrids. In addition, the influence of
renewable generation uncertainty has not been sufficiently studied since the power
balance constraint is mostly used in the problem formulation. However, in a real islanded
microgrid, the power balance may not always be satisfied with uncertain renewable
energy.

Therefore, a chance-constrained (CC) energy management problem for islanded
microgrids considering the influence of uncertain renewable energy on power balance is
studied in this chapter, and DRO method is proposed to capture the uncertainty of wind
power. Specifically, the problem formulation is presented in section 3.2, and section 3.3
proposes the solution method to reformulate the distributionally robust chance constraint
to be second-order conic constraints so that the complete problem can be solved as an
SOCP problem. Then a case study with real datasets is carried out in 3.4.

3.2 Problem Formulation

A typical islanded microgrid is composed of conventional generators, ESS, renewable
generation and different kinds of load. It is usually assumed that the microgrid energy
management is controlled by an EMS in a centralized mode. In this section, different
components of the studied microgrid system are introduced and the corresponding energy
management problem is formulated.

3.2.1 Distributed Generation

Distributed generation (DG) in a microgrid usually includes micro-turbines, diesel
generators, fuel cells and renewable generation such as uncertain wind power which
is introduced in the next subsection. The conventional generation units are important
components of a microgrid and they are dispatchable to meet the load demand. In
this study, distributed generators are the main focus which burn fossil fuel to generate
electricity. The output power of generators is restricted by the maximum and minimum
limits as follows:

Pmini ≤ Pi,t ≤ Pmaxi ,∀i, t. (3.1)

In addition, the DG units should satisfy the ramping up/down constraints:

Pi,t+1 − Pi,t ≤ Rupi , ∀i, t (3.2)

Pi,t − Pi,t+1 ≤ Rdni ,∀i, t. (3.3)

Note that the generators are assumed to have on status over a finite time horizon in the
energy management [59]. If the unit commitment problem is considered in an extended
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model, then the start-up and shut-down constraints should also be included.

Generally, the operation cost of generators is mainly the fuel consumption cost or
generation cost which can be expressed as a quadratic model [69] as follows:

CGi,t = (aiP
2
i,t∆t+ biPi,t + ci)∆t. (3.4)

The linear cost model [61] is included in this quadratic model. In order to achieve
environmentally friendly microgrid energy management, the emission effect should also
be considered. In this study, it is assumed that only diesel generators produce emission
and the emission model is also represented as a quadratic function [156], [157]. Then the
emission cost model can be expressed as follows:

Emi,t = (diP
2
i,t∆t+ eiPi,t + fi)∆t (3.5)

CEi,t = cemis ∗ Emi,t (3.6)

where cemis is the emission cost coefficient. Note that the diesel generators are common
and necessary in islanded microgrids installed in some specific areas. Some more clean
renewable sources such as fuel cell may also be included in the microgrids to reduce the
emission, and the objective function will change accordingly.

3.2.2 Energy Storage System

In a microgrid integrated with renewable generation, the ESS plays a critical role in
mitigating the system uncertainties and maintaining the power balance. Considering a
battery ESS, we have the following dynamic model and constraints:

Ej,t+1 = Ej,t + ηchj P
ch
j,t∆t− P dchj,t ∆t/ηdchj , ∀j, t (3.7)

0 ≤ P chj,t ≤ P
ch,max
j ,∀j, t (3.8)

0 ≤ P dchj,t ≤ P
dch,max
j ,∀j, t (3.9)

Eminj ≤ Ej,t ≤ Emaxj , Ej,T = Ej,0,∀j, t (3.10)

where constraint (3.7) represents the dynamics of the stored energy; constraints (3.8)
and (3.9) are used to limit the charging and discharging power. In constraint (3.10), the
ESS capacity is restrained by a lower and upper bound to avoid overcharging and deep
discharging. In addition, the final stored energy is assumed to be equal to its initial
energy level. Note that the complementary constraint P chj,tP

dch
j,t = 0 is usually used to

avoid simultaneous charging and discharging which results in a mixed-integer linear
programming (MILP) model for ESS in some references [63], [69]. Actually, this constraint
is redundant when charging and discharging efficiency are considered as in this work
and the MILP model can be exactly relaxed to a linear model to reduce the computational
burden [158], [159].
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The ESS will degrade with frequent charging and discharging process. Therefore, the
ESS degradation cost should be considered in energy management. In this work, a linear
model is adopted to calculate the ESS degradation cost [61] for simplicity as follows:

CSj,t = cessj (ηchj P
ch
j,t∆t+ P dchj,t ∆t/ηdchj ) (3.11)

where cess is the degradation cost coefficient.

3.2.3 Load Demand

The load demand in a microgrid can be classified into two groups: critical loads and
deferrable loads. Critical loads are non-dispatchable and must be satisfied in highest
priority such as the hospital load demand. In this study we use Lt to represent the critical
load at each time slot.

Unlike critical loads, deferrable loads are dispatchable and can be scheduled according
to the real-time power supply and demand. For these kind of loads, using the electrical
vehicle as an example, their load only needs to be satisfied over a specified time horizon.
Hence, the deferrable load demand model can be expressed as follows [59]:

T bk∑
t=Tak

P defk,t = P defk , ∀k, t ∈ [T ak , T
b
k ] (3.12)

P def,mink ≤ P defk,t ≤ P
def,max
k , ∀k, t ∈ [T ak , T

b
k ] (3.13)

P defk,t = 0,∀k, t /∈ [T ak , T
b
k ]. (3.14)

3.2.4 Chance Constraint for Power Balance

For power balance constraint, most of the existing research focuses on the strict balance
of power generation and load demand. However, in an islanded microgrid, the power
demand may not always be satisfied due to the uncertain renewable generation, or the
strict power balance will result in high cost. To deal with this problem, CCP can be used to
allow the solutions to violate the constraint with no more than a small specified probability,
i.e., the constraint should be met with a certain confidence level [160]. Consequently, a
chance constraint for power supply and demand is proposed in this study which can be
represented as follows:

Pr{
Ndg∑
i=1

Pi,t +

Ness∑
j=1

(P dchj,t − P chj,t ) + wt ≥ Lt +

Ndef∑
k=1

P defk,t } ≥ 1− ε (3.15)

where wt is the aggregated random renewable power output and the uncertainty set
of its probability distribution is introduced in the next section, ε is a predefined small
probability index.
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Based on the above notations, we can get the objective function of the microgrid energy
management, i.e., the total operation cost of the microgrid, which includes the generation
cost and emission cost of diesel generators and the ESS degradation cost as shown below:

Ctot =
T∑
t=1

Ndg∑
i=1

(CGi,t + CEi,t) +

Ness∑
j

CSj,t

 . (3.16)

Thus, the complete chance constrained microgrid energy management problem is
formulated as follows:

min
x
{(3.16) : (3.1)− (3.3), (3.7)− (3.10), (3.12)− (3.15)}

where x denotes the set of decision variables.

The objective of the proposed chance constraint in the system model is to maximize
the system reliability, i.e., the load demand should be satisfied with a high probability.
Therefore, the dumping load can be added to absorb the excess power supply in practical
system operation to keep the power balance [161]. In case of insufficient energy supply,
we can also conduct frequency regulation for the generators or add more spare storage
systems to achieve the power balance in real-time operation. In addition, the proposed
energy management model is a single-stage one as the unit commitment (UC) problem is
not considered here. It is assumed that the UC decision has been done. The integration of
UC problem which elicits a two-stage energy management model is left for future research.
In practice, the optimal solution can provide the decision maker a preliminary and robust
dispatch plan when the uncertainties are unknown and the proposed microgrid model
may be applied in some remote islands where real-time dispatch is not so convenient.

3.3 Solution Methodology

The microgrid energy management problem formulated above is difficult to solve directly
due to the chance constraint and the uncertain renewable generation. To handle this
problem, in this section, a novel ambiguity set is first introduced to describe the uncertain
probability distribution of renewable power output. Then, based on this ambiguity set, the
DRO method is applied to process the chance constraint and the problem is reformulated
as a tractable SOCP problem.

3.3.1 An Ambiguity Set for Wind Power Output

In the power balance chance constraint, the renewable generation wt is a random variable.
In this work, without loss of generality, wind power is considered as the renewable
generation. To describe the uncertainty of wind power output, different methods
have been studied in the literature, e.g., the polyhedral and ellipsoid uncertain set in
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robust optimization method [59], [162], a particular probability distribution in stochastic
optimization [63]. Unlike the robust optimization and stochastic optimization method, the
DRO method handles the uncertain wind power with an ambiguity set. The ambiguity
set is described as the family of all distributions that have the same moment information
such as mean, variance and covariance and structural properties [163]. Different kinds
of ambiguity sets have been researched on DRO in the literature including Markov
ambiguity set [164], Chebyshev ambiguity set [165] and so on.

Among various ambiguity sets, the ambiguity sets with known moment information
are widely studied on uncertainty quantification [165], [100] and they have been adopted
to handle the random wind power [81]. The typical moment ambiguity set with known
mean and variance can be expressed as follows:

P1
t =

Pt ∈ P0
t (Wt)

∣∣∣∣∣∣
P{wt ∈Wt} = 1
EPt{wt} = µt

EPt{(wt − µt)2} = σ2
t

 (3.17)

where µt and σ2
t represent the mean and variance which can be obtained from historical

data. P0
t (Wt) denotes the family of all the probability distributions on the support of Wt

and Pt is the probability distribution of wt.

Although the mean and variance of wind power can be estimated from abundant
historical data, their actual values are hard to know in reality and the estimation may
not be accurate. In other words, it is difficult to determine the exact moment values. To
tackle the uncertain moment information, the ambiguity set with bounded moment such
as ellipsoid and conic bound [82] is studied in uncertainty description. Inspired by the
polyhedral uncertain set in robust optimization, a box-type ambiguity set is designed to
capture the uncertain moment information (mean and variance) in this work [166]. In such
a set as shown below, the moments are assumed to lie in a box region specified by upper
and lower bounds [167]:

P2
t =

Pt ∈ P0
t (Wt)

∣∣∣∣∣∣
Pt{wt ∈Wt} = 1,EPt{wt} = µt

EPt{(wt − µt)2} = σ2
t

µt ≤ µt ≤ µt, σ2
t ≤ σ2

t ≤ σ2
t

 (3.18)

where the first and second row in (3.18) have the same definition with those in (3.17), and
the third row is used to describe the estimated intervals of unknown mean and variance.
Note that µt and σ2

t in (3.18) are just mathematical symbols and they are unknown
compared with those in (3.17).

Based on this ambiguity set, we can obtain the distributionally robust (DR) variant of
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chance constraint (3.15):

Pt{
Ndg∑
i=1

P ti +

Ness∑
j=1

(P dchj,t − P chj,t ) + wt ≥ Lt +

Ndef∑
k=1

P defk,t } ≥ 1− ε, ∀Pt ∈ P2
t . (3.19)

Then we have the following DR chance constrained (CC) problem:

min
x
{(3.16) : (3.1)− (3.3), (3.7)− (3.10), (3.12)− (3.14), (3.19)}.

3.3.2 Problem Reformulation

Despite the fact that chance constrained problems with moment ambiguity sets have
been investigated by a few works, they mainly concentrate on theoretical derivation
and the study on DR-CC problem is still limited. To the best of our knowledge, this
is the first application of this method to islanded microgrid energy management with
uncertain wind power output. In this subsection, the chance constraint is handled with a
conservative approximation, i.e., the sufficient condition of the constraint is first derived,
which is, then, analyzed and processed based on our ambiguity set.

To solve the DR-CC problem introduced above, the DR chance constraint with
worst-case Conditional Value-at-Risk (CVaR) approximation is first tackled and then it can
be transformed into a tractable SOCP constraint. For convenience, we consider the DR
chance constraint (3.19) in a general form

Pt{h0(xt) + h(xt)wt ≤ 0} ≥ 1− ε,∀Pt ∈ P2
t , xt ∈ x. (3.20)

Note that we drop the index t of decision variables xt and other auxiliary variables in the
following for simplicity. It has been demonstrated that [165], [168]:

sup
Pt∈P2

t

Pt-CVaRε(h0(x) + h(x)wt) ≤ 0 ⇒ inf
Pt∈P2

t

Pt{h0(x) + h(x)wt ≤ 0} ≥ 1 − ε (3.21)

where the CVaR at level ε with respect to probability distribution Pt is defined as follows
[169]:

Pt-CVaRε(h0(x) + h(x)wt) = inf
β∈R

{
β +

1

ε
EPt [(h

0(x) + h(x)wt − β)+]

}
(3.22)

where (θ)+ = max{θ, 0}. Therefore, according to (3.21), we can consider the following
conservative approximation which is a sufficient condition to derive (3.20):

sup
Pt∈P2

t

Pt-CVaRε(h0(x) + h(x)wt) ≤ 0. (3.23)
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Then we can investigate the above worst-case CVaR approximation and the problem
solution based on this constraint is also feasible for the original problem. First, the left side
of constraint (3.23) can be processed equivalently as follows:

sup
Pt∈P2

t

inf
β∈R

{
β +

1

ε
EPt [(h

0(x) + h(x)wt − β)+]

}

= inf
β∈R

{
β +

1

ε
sup
Pt∈P2

t

EPt [(h
0(x) + h(x)wt − β)+]

} (3.24)

where the interchange of sup and inf is based on the stochastic saddle point theorem [170].
By introducing another uncertainty set Q = {(µt, σ2

t ) : µt ≤ µt ≤ µt, σ
2
t ≤ σ2

t ≤ σ2
t }, we

can reformulate the inner maximization problem in (3.24) as follows:

sup
Q

sup
Pt∈P1

t

EPt [(h
0(x) + h(x)wt − β)+]. (3.25)

Further, let r = h(x)wt, then the mean and variance of r are h(x)µt and (h(x))2σ2
t ,

respectively. Thus the inner maximization problem of (3.25) can be represented
equivalently in integral form:

sup
ξ∈M

∫
R

((h0(x) + h(x)wt − β)+)ξ(dr) (3.26)

s.t.

∫
R
ξ(dr) = 1,

∫
R
rξ(dr) = h(x)µt (3.27)∫

R
r2ξ(dr) = h2(x)σ2

t + (h(x)µt)
2 (3.28)

whereM is the cone of nonnegative Borel measures on R including the decision variable ξ.
Based on duality theory and using change of variables, the problem above is transformed
into the following equivalent problem [166] (see Appendix A):

inf
v,τ,z,s

v + s (3.29a)

s.t. 4zs ≥ τ2 + (h(x))2σ2
t (3.29b)

v − h0(x) + β + τ − h(x)µt − z ≥ 0 (3.29c)

z > 0, v ≥ 0. (3.29d)

Considering the outer uncertainty set Q, the constraint (3.25) is thus equivalent to

inf
v,τ,z,s

v + s (3.30a)

s.t. 4zs ≥ τ2 + max
σ2
t

(h(x))2σ2
t (3.30b)

v − h0(x) + β + τ −max
µt

h(x)µt − z ≥ 0 (3.30c)

z > 0, v ≥ 0 (3.30d)
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µt ≤ µt ≤ µt, σ2
t ≤ σ2

t ≤ σ2
t . (3.30e)

Since σ2
t ≥ 0 in (3.30b), we can easily get that max(h(x))2σ2

t = (h(x))2σ2
t . For the

maximization problem in (3.30c), it has the following dual form:

min η1µt − η2µt : s.t. h(x) = η1 − η2, η1, η2 ≥ 0. (3.31)

Therefore, combining all the equations above, we can get the equivalent version of
constraint (3.23) as follows:

inf
β,v,τ,z,s,η1,η2

β +
1

ε
(v + s) ≤ 0 (3.32a)

s.t. 4zs ≥ τ2 + (h(x))2σ2
t , h(x) = η1 − η2 (3.32b)

v − h0(x) + β + τ − (η1µt − η2µt)− z ≥ 0 (3.32c)

z > 0, v ≥ 0, η1 ≥ 0, η2 ≥ 0. (3.32d)

Note that the constraint (3.32b) is a rotated SOCP constraint which can be transformed
into a tractable standard SOCP constraint [167]. In summary, the chance constraint (3.19)
in the original energy management model is transformed into the SOCP constraint (3.32)
for which we only need to determine the auxiliary functions h0(x) and h(x) with respect
to decision variables from (3.19).

Thus, based on the CVaR approximation of the DR chance constraint, the islanded
microgrid energy management problem is reformulated as follows:

min
x,Θ
{(3.16) : (3.1)− (3.3), (3.7)− (3.10), (3.12)− (3.14), (3.32)}.

where Θ is the set of auxiliary variables including β, v, τ, z, s, η1 and η2 which are
introduced in the above reformulation process. Despite the conservatism of CVaR
constraint, this approximation is advantageous since the original problem can be
reformulated as a tractable SOCP problem. Note that the CVaR approximation in (3.21)
is actually equivalent when the chance constraint function is concave in wt [165], [166].

3.3.3 Including Unimodality Information

DRO method intends to find the optimal solution of the problem considering the
worst-case distribution in the ambiguity set. However, the worst-case distribution which
usually consists of some discrete points [171] is rarely encountered in practice. Thus, only
considering the moment information in the ambiguity set will lead to a very conservative
solution. In this regard, the unimodality information or strengthened supports can be
investigated to reduce the conservatism [172]. In this work, the inclusion of α-unimodality
is further studied [173], i.e., the unimodality information of random variable is assumed
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to be known except for the moment information in the ambiguity set.

The α-unimodality is defined as follows [174]: for any fixed positive α, a random
variable ω is said to have an α-unimodal distribution with mode 0 if qαE[g(qω)] is
nondecreasing in q > 0 for every bounded, nonnegative, Borel measurable function g on
Rn. Based on the moment and unimodality information, let µ̃t = α+1

α µt, S̃t = α+2
α σ2

t , we
have the following inequation according to [173]:

sup
Pt∈P1

t

EPt [(h
0(x) + h(x)wt − β)+] ≥ sup

Pt∈P1
t (µ̃t,S̃t)

EPt [(L(wt) − β)+] (3.33)

where P1
t (µ̃t, S̃t) is defined similarly as P1

t in (3.17) with the mean µ̃t and variance S̃t, and
L(wt) = h0(x) + ( α

α+1)h(x)wt. Combining (3.33) with (3.24) and (3.25), we can derive the
following constraint from (3.23):

inf
β∈R

β +
1

ε
sup
Q

sup
Pt∈P1

t (µ̃t,S̃t)

EPt [(L(wt)− β)+]

 ≤ 0. (3.34)

With the same reformulation method introduced in subsection 3.3.2, the equivalent
version of (3.34) can be attained similarly as (3.32), given by:

inf
β,v,τ,z,s,η1,η2

β +
1

ε
(v + s) ≤ 0 (3.35a)

s.t. 4zs ≥ τ2 +
α+ 2

α
(h(x))2σ2

t , h(x) = η1 − η2 (3.35b)

v − h0(x) + β +
α

α+ 1
τ − (η1µt − η2µt)− (

α

α+ 1
)2z ≥ 0 (3.35c)

z > 0, v ≥ 0, η1 ≥ 0, η2 ≥ 0. (3.35d)

Note that α is set to 1 in this study considering the wind power characteristic and the
nesting property of α-unimodality [175]. Thus, the DR-CC microgrid energy management
problem based on the moment and unimodality assumption is reformulated as follows:

min
x,Θ
{(3.16) : (3.1)− (3.3), (3.7)− (3.10), (3.12)− (3.14), (3.35)}.

The inclusion of unimodality information is expected to induce a less conservative solution
theoretically.

3.4 Case Study

In this section, a case study is conducted to evaluate the proposed DRO method in solving
the CC islanded microgrid energy management. The studied microgrid configuration
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Table 3.2: Parameters of conventional generators

Unit
Pmini

(kW)
Pmaxi

(kW)
Rupi /Rdowni

(kW)
ai

($/kWh2)
bi

($/kWh)
ci

($/h)
di(×10−4)

(kg/kWh2)
ei(×10−4)

(kg/kWh)
fi(×10−4)

(kg/h)

G1 10 150 30 0.02 0.05 0.1 6.49 -5.55 4.09
G2 8 135 25 0.1 0.04 0.14 5.64 -6.05 2.54
G3 15 280 40 0.01 0.02 0.02 3.38 -3.55 5.33

Table 3.3: Parameters of ESS

Emin

(kWh)
Emax

(kWh)
P ch,max

(kW)
P dch,max

(kW) ηch ηdch

40 180 100 100 0.95 0.95

and relevant datasets are first described. Then the simulation results and discussion are
presented. The microgrid energy management is implemented over a finite time horizon
(e.g., T=24 hours) in this study and the time step is set to be 1 hour. All the experiments
are performed in MATLAB with the modeling tool YALMIP [176] and CPLEX 12.71 solver
on a desktop with an Intel Core i7-6700 CPU 3.40 GHz and 8 GB of RAM.

3.4.1 Description of Microgrid

In this work, a microgrid composed of three conventional generators, an ESS, a wind
turbine, a critical load and a deferrable load [61] is considered. For the three generators,
their parameters are given in Table 3.2 which are collected and modified from [59], [156].
The same emission coefficients are used here and the emission cost coefficient is 1 $/kg.
In addition, an ESS with storage capacity of 200 kWh is deployed in the microgrid whose
parameters are summarized in Table 3.3. The initial and final energy levels of ESS are
set to be half of its capacity and the degradation cost coefficient is 0.0035 $/kWh [61].
Note that the studied microgrid system is a general test system which is developed based
on previous literature. More cases or test systems may be studied in the future with the
proposed solution method, and the results are expected to change accordingly.

As for wind power, we only need the upper and lower bounds of the mean and
variance. Based on the estimated mean and variance taken from [100], the upper and
lower bounds can be obtained by deviating 10% from the rated values. The mean values
of wind power are illustrated in Fig. 3.1 as an example. Moreover, the critical load demand
from [73] is approximately scaled and used as shown in Fig. 3.1. Note that only the real
power is considered here. The deferrable load is assumed to have a total demand of 100
kWh which needs to be satisfied between 13th and 18th time slot. The minimum and
maximum serving rates for deferrable load are set to be 10 kW and 50 kW, respectively.
The chance constraint confidence level is set as 1− ε = 95%.
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Figure 3.1: Wind power and critical load.

3.4.2 Simulation Results

With the parameters and datasets introduced above, the DR-CC microgrid energy
management problem is solved in this subsection. The output power of conventional
generators is first analyzed. The optimal energy schedule of the three generators is shown
in Fig. 3.2. As can be seen from this figure, the output of three generators has great
difference: the unit G3 has the largest output, followed by the unit G1, while the unit G2
produces the least output power. This phenomenon is consistent with the generation cost
as we can find that unit G3 has the smallest generation cost coefficients. However, the
generation cost coefficients of unit G2 are quite large. Additionally, the emission cost only
takes a small proportion compared with the generation cost which will be introduced later.

ESS plays a significant role in microgrid energy management which helps achieve
peak load shifting. The energy schedule of ESS including the stored energy level, the
charging and discharging power is shown in Fig. 3.3. As we can see from this figure, the
ESS charges in the first few hours when the load demand is low, it stays unchanged for
several hours when the maximum capacity is reached. As the load increases later, the
generators produce more power and the ESS starts to discharge. It can also be found that
the change of ESS state is influenced by the load change most of the time. In addition, the
energy schedule of deferrable load (e.g., EV) is also presented in Fig. 3.3. The deferrable
load is served almost at a uniform rate over the specified time interval except the sudden
increase in the 17th and 18th period. The total microgrid energy management cost in this
case is $9847.5.
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Figure 3.2: Optimal power schedule of conventional generators.

For the method considering the unimodality information, the energy management
has a similar dispatch solution which has been omitted here. However, the total system
cost with this method is $8381.5 which substantiates the improved conservatism by
incorporating the unimodality information.

3.4.3 Discussion

1) Reliability and robustness of our method: The DRO method solves the CC islanded
microgrid energy management with a worst-case CVaR approximation. To validate the
effectiveness of our solutions, we use Monte Carlo simulation method to test the reliability
and robustness of our approach. Based on the estimated mean and variance values of wind
power, a million scenarios are randomly generated by assuming a normal distribution.
With these wind power samples, our energy management solutions are checked. The
percentage of the scenarios that satisfy the power balance constraint is up to 99.99934%,
which is higher than the setting confidence level 95%. In addition, this probability value
ensures that the chance constraints violation probability in the total scheduling horizon
is very low. Similarly, the method with unimodality information can also be checked and
the percentage is about 99.9919%. Therefore, this result further verifies that our method
is reliable and robust against the unknown probability distributions sharing the same
moment information.
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Figure 3.3: Optimal energy schedule of ESS and deferrable load.

2) Influence of different parameter ε and interval size: Various confidence levels will result
in various solutions in microgrid energy management. Moreover, the uncertainty of
microgrid system can be controlled by adjusting the confidence level or the parameter
ε. Although the confidence level 1 − ε = 95% is mostly studied, the influence of some
other parameter settings is investigated in this study. The total system cost with different
parameter ε, including 0.01, 0.05, 0.1 and 0.15, are summarized in Fig. 3.4 and the
corresponding energy management solutions are omitted for simplicity.

As can be seen from this figure, the smaller the ε value, the higher the total system
cost. A small ε value represents a high confidence level. In other words, we have to pay
more to achieve a more reliable system. In addition, comparing the difference between
the neighbouring system cost, we can find that a dramatic decrease occurs when the
parameter ε increases from 0.01 to 0.05 which means that the marginal cost becomes larger
as the confidence level increases. Thus, we have to select a proper confidence level in
practice to avoid the extremely high cost caused by a strict reliability constraint.

The critical feature of the proposed ambiguity set is the inclusion of the interval for
uncertain mean and variance. To investigate the impacts of the interval on the simulation
results, the interval size is enlarged gradually. In this case study, the intervals for mean
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Figure 3.4: System cost with different ε.

and variance are attained as follows: (1 ± λ µ)µt and (1 ± λ var)σ2
t , where the deviation

coefficients λ µ and λ var are increased from 0.1 to 0.4 with a step size of 0.1. The
corresponding results of total cost are plotted in Fig. 3.5 with interpolation, from which
we can see that the system total cost increases as the intervals expand. Also, the intervals
for mean values have a larger impact on the cost in this case caused by the larger nominal
values. Therefore, to reduce the total cost, the interval in the ambiguity set should be
shortened in practice. In this regard, different data-driven techniques can be used to
estimate the interval based on historical dataset, such as the popular direct interval
forecast methods [31].

3) Comparison with other methods: In this part, the proposed method denoted as M1 is
compared with the DRO method based on known moment information (e.g., mean and
variance), sample average approximation (SAA) method and stochastic optimization with
normal distribution (SND) in solving the CC microgrid energy management problem.
The method with known moment information is denoted as M2, where the ambiguity set
P1
t is used instead of P2

t and the other constraints remain unchanged. In addition, the
inclusion of unimodality information in M1 and M2 is also studied, denoted as Muni

1 and
Muni

2 , respectively. In these methods, the confidence level is set as 95%. Note that the
CC problem is usually transformed into a semidefinite problem (SDP) with the method
M2 [165]. The SDP problem can be solved directly by off-the-shelf solvers or we can use
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Figure 3.5: System cost with different interval size.

the same method in Section 3.3 to further reformulate it as a tractable SOCP problem.

SAA is an effective method to cope with CC problems and a number of theoretical
research can be found in previous literature [177], [178]. The basic idea is to approximate
the true distribution in chance constraint with an empirical distribution obtained from
Monte Carlo sampling technique. For the chance constraint Pr{h0(x) + h(x)wt > 0} ≤ ε

in this work, it can be approximated with SAA method as follows:

N−1
s

Ns∑
l=1

I(0,∞)(h
0(x) + h(x)wlt) ≤ γ (3.36)

where I(0,∞) is the indicator function of (0,∞), i.e., I(y) = 1 if y > 0, otherwise, I(y) = 0;
Ns is the number of samples and γ is the risk level of the SAA chance constraint; wlt
represents the sample of the random variable. According to [177], the SAA chance
constraint can be replaced with mixed-integer constraints, thus the SAA problem is a
mixed-integer quadratic programming (MIQP) problem. In this case study, Ns and γ are
set to 500 and 0.05, respectively, and the samples are generated from a normal distribution
with nominal mean and variance. More details about the SAA method can be found in
relevant references.

For the SND method, it is assumed that the uncertain wind power follows a normal
distribution with deterministic mean and variance. With this assumption, the original
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Table 3.4: Comparison of system cost with different methods
Method Generation ($) Emission ($) ESS ($) Total ($)

M1 9553.9 292.9 0.7 9847.5
Muni

1 9101.8 278.9 0.8 9381.5
M2 8816.8 270.0 0.7 9087.5
Muni

2 8403.0 257.1 0.7 8660.8
SAA 22542.6 697.9 0.8 23241.3
SND 6978.3 212.9 0.8 7192.0

chance constraint can be transformed into a deterministic constraint as follows:

{Pr{h0(x) + h(x)wt ≤ 0} ≥ 1− ε} = {h(x)µt + h0(x) + |h(x)|σtzε ≤ 0} (3.37)

where zε = Φ−1(1− ε) is the (1− ε) quantile of standard normal distribution. In this case,
the mean and variance are also set to the nominal values introduced before.

The system cost results of these different methods are summarized in Table 3.4. It can
be seen that the cost of our method (M1) is higher than that of M2 which implies that our
method with the ambiguity set P2

t is more conservative. However, our methodM1 is more
reliable and robust than M2 whose CC satisfaction percentage is 99.909% calculated from
the method discussed above. This comparison gives us an intuitive effect of the method
M1 and the result is rational since M1 assumes that less information is known about the
uncertain wind power compared with M2. Also, the inclusion of unimodality information
produces a less conservative solution for both methods as expected. Additionally, we can
also find that the generation cost accounts for a considerable proportion of the total system
cost compared with the emission cost and ESS degradation cost. This large difference is
mainly caused by the setting of different cost coefficients. This verifies the analysis of
different output power of conventional generators in the simulation results.

As the SAA method is based on Monte Carlo sampling, the system cost may vary for
each run. Hence, the simulation is repeated for ten times and the average cost is calculated
as given in Table 3.4. As can be seen, the result of SAA is more conservative and its
performance is not as good as M1 despite the fact that the samples are generated from
a normal distribution. For SND method, we can see that the system cost is lower due to
the more certain information about the uncertain wind power in the assumption.

3.5 Summary

In this chapter, distributionally robust CC energy management is studied for islanded
microgrids. The CC energy management model is first designed for an islanded microgrid
which consists of conventional generators, ESS, wind turbines and various load demand.
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In addition to the common generation cost in the objective function, the emission cost and
ESS degradation cost are also considered in this model. The uncertainty of wind power
is captured by a novel ambiguity set in this work, based on which the individual chance
constraint can be tackled with the DRO method and the microgrid energy management
problem is reformulated as a tractable SOCP problem. The proposed method has been
analyzed through a case study and the simulation results show its effectiveness and
reliability. Moreover, the comparison with the approach with known moment information
validates the robustness of the proposed method, which is more applicable in practice. The
comparison with SAA and stochastic optimization method also reveals the advantage of
the proposed method.



4
Data-driven Distributionally Robust UC and

ED

Acronyms

ARUC Adjustable Robust Unit Commitment
CVaR Conditional Value-at-risk
C&CG Column-and-constraint Generation
DDRC Data-driven Distributionally Robust Chance-constrained
DRED Distributionally Robust Economic Dispatch
DRUC Distributionally Robust Unit Commitment
ED Economic Dispatch
DRO Distributionally Robust Optimization
MILP Mixed-integer Linear Programming
RUC Robust Unit Commitment
SED Stochastic Economic Dispatch
SUC Stochastic Unit Commitment
UC Unit Commitment

4.1 Introduction

UC and ED are two basic and important problems in power system operation which have
been the research focus for a long time. In recent years, the deployment and utilization
of renewable energy sources has increased significantly in power system operation,
which also brings many new challenges to the reliability and security of power systems.
Consequently, it is necessary to investigate new uncertainty modeling methods for UC
and ED problems with uncertain renewable generation.

81
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In this chapter, a data-driven distributionally robust chance-constrained (DDRC) UC
problem with uncertainty is studied which is formulated as a two-stage model. The
commitment decision and base-case dispatch plan are determined in the first stage with
a chance constraint considering possible power imbalance, and the expected worst-case
re-dispatch cost is minimized in the second stage. Compared with the popular stochastic
programming or robust methods in previous literature, DRO method is studied in this
work, and the uncertainty of wind power distribution is captured by a distance-based
ambiguity set, more specifically, a set with the form of L1 norm which can be constructed
from historical data. Based on the ambiguity set, the proposed complex DDRC UC
problem can be reformulated into a tractable optimization problem, thus solved by some
existing decomposition algorithms such as the column-and-constraint generation (C&CG)
algorithm.

In addition, new types of reserves have been considered to compensate the uncertainty
of renewable generation which also makes the co-optimization of energy and reserve
dispatch important. Similarly, DRO method is studied in this chapter for a data-driven
two-stage energy and reserve dispatch problem. The proposed two-stage model
minimizes the generation and reserve cost with forecasted wind power in the first
stage and minimizes the expected re-dispatch cost considering the worst-case probability
distribution in the second stage. An ambiguity set based on L∞ norm is investigated in
this problem which is different from those studied in previous literature. Based on the
proposed ambiguity set, the second-stage worst-case expectation is reformulated into a
combination of the conditional value-at-risk (CVaR) and expected cost with respect to
a reference distribution, thus the original two-stage DRO problem becomes a two-stage
stochastic linear program problem which can be readily solved.

4.2 Data-driven Distributionally Robust Chance-constrained UC

This section aims to study the chance-constrained UC problem with a data-driven DRO
method. In subsection 4.2.1, the problem formulation is introduced including the UC
model and ambiguity set. Detailed solution methodology is presented in 4.2.2. Then case
studies are conducted based on the IEEE 6-bus test system and modified IEEE 118-bus
system and a practical-scale 319-bus system to validate the performance of the proposed
approach in subsection 4.2.3.

4.2.1 Problem Formulation

In this subsection, the DDRC two-stage UC problem is first formulated which includes
various constraints and objective function. The ambiguity set and its construction are
then introduced to capture the uncertain distribution of renewable generation (i.e., wind
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power).

4.2.1.1 UC Mathematical Model

Two-stage UC models are widely studied in previous literature, and most of them focus
on commitment decision in the first stage and optimal recourse in the second stage.
For example, two-stage robust UC problems are studied in [179] [180], and two-stage
UC problems considering distributional uncertainty are investigated in [80] [181]. In
these works, the here-and-now decision variables are usually commitment decision and
wait-and-see decision variables are recourse action. By contrast, a new DDRC two-stage
UC model is developed in this work which considers the traditional UC model with a
chance constraint in the first stage and attains the best corrective actions by minimizing the
expected re-dispatch cost in the second stage. In addition, two-stage energy and reserve
dispatch problems are also widely studied [102] [182] which considers the base-case
dispatch plan in the first stage and re-dispatch in the second stage, while UC decisions are
not covered in these works. From this aspect, the proposed UC model can be regarded as
a combination of traditional two-stage UC problem with the energy and reserve dispatch
problem, and it is solved with the new DRO method instead of the previous stochastic
or robust optimization methods. The detailed formulation of the proposed model is as
follows:

min
∑
t

∑
i

[SUiuit + SDivit + Fi(xit)] + max
P∈D

EP [Q(y, u, v, x, ξ)] (4.1)

s.t. − yi(t−1) + yit − yih ≤ 0,∀t ∈ T , ∀i ∈ I, 1 ≤ h− (t− 1) ≤ T upi (4.2)

yi(t−1) − yit + yih ≤ 1,∀t ∈ T , ∀i ∈ I, 1 ≤ h− (t− 1) ≤ T dni (4.3)

− yi(t−1) + yit − uit ≤ 0, ∀t ∈ T , ∀i ∈ I (4.4)

yi(t−1) − yit − vit ≤ 0, ∀t ∈ T , ∀i ∈ I (4.5)

yit, uit, vit ∈ {0, 1}, ∀t ∈ T , ∀i ∈ I (4.6)

xiyit ≤ xit ≤ xiyit, ∀t ∈ T , ∀i ∈ I (4.7)

xit − xi(t−1) ≤ RU iuit +RUiyi(t−1), ∀t ∈ T , ∀i ∈ I (4.8)

xi(t−1) − xit ≤ RDivit +RDiyit, ∀t ∈ T , ∀i ∈ I (4.9)

− Ll ≤
∑
b∈B

Kb
l (
∑
i

xbit + wbt (ξ)− dbt) ≤ Ll, ∀t ∈ T , l ∈ G (4.10)

Pr(−δ ≤
∑
i

xit +
∑
b

wbt (ξ)−
∑
b

dbt ≤ δ) ≥ 1− ε1, ∀t ∈ T (4.11)

where the objective function in (4.1) contains the start-up cost, shut-down cost, fuel cost
and worst-case expected penalty cost. Constraints (4.2) and (4.3) represent the minimum
up-time and minimum down-time constraints, respectively. Constraints (4.4) and (4.5)
restrict the start-up and shut-down operation, respectively. Constraint (4.6) lists the
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binary variables representing the generators’ statuses of on/off, start-up and shut-down.
Constraint (4.7) represents the generation capacity limits. Constraints (4.8) and (4.9)
enforce the ramp-up and ramp-down rates, respectively. Constraint (4.10) denotes the
power transmission line capacity limits which is from DC power flow model. Note
that the variable xbit represents the output of the ith generator located at bus b at time
t. Constraint (4.11) defines the chance constraint for possible power imbalance, and the
small violation probability should be less than a predefined risk level.

After determining the commitment decision and base-case dispatch plan, the system
operators conduct re-dispatch strategy by considering all uncertainty realizations in the
second stage. Discrete scenarios are often used to replace the continuous distribution to
solve the difficult numerical computation. In this work, it is assumed that the uncertain
parameter ξ has a finite support, i.e., there are a finite number of realizations (e.g.,
scenarios ξ1, ξ2,... ξN ) for the uncertain wind power output [90]. However, the true
probability distribution is unknown here and is described by the ambiguity set.

In formulation (4.1), the operational risk for the second stage problem is considered
which also represents the expected penalty cost or re-dispatch cost [95]. This cost is caused
by load curtailment or over-generation of the system with the reveal of uncertain wind
power. Note that wind power curtailment is not considered since finite scenarios are
assumed in this work as mentioned above. In other words, we need to re-adjust the
generation or consider load shedding with possible worst-case wind power in the second
stage. Additionally, we should note that both system-level and nodal-level uncertainty
modeling should be investigated to identify the real worst case. Specifically, we have the
following formulation for the second stage problem:

Q(y, u, v, x, ξ) = min
∑
t

[πgent

∑
i

(ruit + rdit) + πlst
∑
b

dls,bt ] (4.12)

s.t.
∑
i

(ruit − rdit) +
∑
b

dls,bt =
∑
b

dbt −
∑
i

xit −
∑
b

wbt (ξ), ∀t ∈ T ,∀i ∈ I (4.13)

xit + ruit ≤ xiyit, ∀t ∈ T , i ∈ I (4.14)

xit − rdit ≥ xiyit, ∀t ∈ T , i ∈ I (4.15)

0 ≤ ruit ≤ RUi, ∀t ∈ T , i ∈ I (4.16)

0 ≤ rdit ≤ RDi, ∀t ∈ T , i ∈ I (4.17)∑
b∈B

Kb
l (
∑
i

xbit + wbt (ξ)− dbt + ∆pbt) ≤ Ll,∀t ∈ T , l ∈ G (4.18)∑
b∈B

Kb
l (
∑
i

xbit + wbt (ξ)− dbt + ∆pbt) ≥ −Ll, ∀t ∈ T , l ∈ G (4.19)

∆pbt =
∑
i

(ruit − rdit) + dls,bt , dls,bt ≥ 0, ∀ t ∈ T (4.20)
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where the objective function in (4.12) includes the possible re-dispatch cost of generators
and load shedding cost. Constraint (4.13) denotes the system power balance with
re-dispatch action. The re-dispatch amount of each unit should be limited by the available
generator capacity as given in (4.14)-(4.15) and the corresponding ramp rate given in
(4.16)-(4.17). The set of constraints (4.18) and (4.19) show the transmission line flow
considering the adjusted dispatch action as given in (4.20). Note that the re-dispatch
variables in (4.20) correspond to the generator units in (4.19) and the symbol b is omitted
here for consistency. In addition, it is assumed that all generators can flexibly adjust their
output in the re-dispatch process with corresponding ramping rate in this work [71].

In the objective function, the fuel cost function of generation units Fi(xit) is typically
a non-decreasing quadratic function. For practical and computational purposes, the
quadratic fuel cost function is usually approximated by a piece-wise linear function. In this
work, the following piece-wise linear model is used for fuel cost calculation [183] [184]:

0 ≤ x̂kit ≤ ∆xki yit, ∀k = 1, ...,K0 (4.21a)

∆xki =
xi − xi
K0

(4.21b)

xki,ini = (k − 1)∆xki + xi (4.21c)

xki,fin = ∆xki + xki,ini (4.21d)

Cki,ini = ai(x
k
i,ini)

2 + eix
k
i,ini + ci (4.21e)

Cki,fin = ai(x
k
i,fin)2 + eix

k
i,fin + ci (4.21f)

ski =
Cki,fin − Cki,ini

∆xki
(4.21g)

xit = xiyit +
∑
k

x̂kit (4.21h)

Fi(xit) = ai(xi)
2 + eixi + ciyit +

∑
k

ski x̂
k
it (4.21i)

where new variable x̂kit is introduced, and its relationship with the decision variable xit is
described in (4.21h). In addition, K0 is the number of pieces, and ski is the slope of each
linear piece. The coefficients ai, ei and ci are dependent on the physical characteristic of
the generators.

4.2.1.2 Ambiguity Set Construction

As discussed above, the true probability distribution of wind power is unknown and
ambiguous in practice. However, we can get partial information about the true distribution
from available historical data and construct the ambiguity sets to capture the uncertainty
of distribution. In this work, a distance-based ambiguity set is studied which has the
following form:

D = {P ∈ P : dist(P, P0) ≤ θ} (4.22)
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where P is the set of all possible distributions, P0 and θ are the nominal distribution and
divergence tolerance level, respectively. The dist() function denotes a distance measure
between two distributions, such as the KL divergence [88]. Since discrete distribution
for wind power is considered in this study, the L1-norm distance is adopted to construct
the ambiguity set. In addition, the nominal distribution derived from historical data
tends to converge to the true distribution under L1-norm as the data size increases [90].
Consequently, the ambiguity set used in this work, denoted by D1, can be expressed as
follows:

D1 = {p ∈ [0, 1]N :

N∑
n=1

|pn − p̂n| ≤ θ,
N∑
n=1

pn = 1} (4.23)

where pn and p̂n are the true probability and nominal probability respectively
corresponding to index n, and N is the number of scenarios. Note that the ambiguity set
D1 is a specific set compared with the general formD, and the true probability in this set is
unknown which can be described with the nominal probability estimated from historical
data.

To construct the set D1, a critical step is the determination of nominal distribution
and tolerance level. For the nominal or reference distribution, we can derive it with
nonparametric estimation method in a data-driven manner. Specifically, assuming that
there are A historical data samples available in total, we can estimate the reference
distribution with a histogram. For example, according to the number of scenarios, we
can construct a histogram with N bins. Count the number of data samples in each bin,
say, A1, A2,..., AN and A =

∑N
n=1An, then we can use the frequency An/A in each bin

as the nominal probability p̂n. For simplicity, the nominal distribution is denoted as
P0 = (p̂1, p̂2, ..., p̂N ). Note that the nominal distribution from the histogram is only an
estimation of the true distribution and it may be obtained from other methods.

Based on the size of available historical data, we can also define proper tolerance level
(i.e., θ) to construct effective ambiguity set. Following the above histogram approach, we
can determine the tolerance level according to the Proposition 8 in [185] as follows:

θ =
√
χ2
N−1,1−α̃/A (4.24)

where 1 − α̃ is the confidence level that the data-driven ambiguity set D1 with nominal
distribution P0 and θ contains the unknown real distribution. From (4.24), we can find
that the value of θ is mainly determined by the confidence level and historical data size.
Since the value of θ decreases as the size of historical data increases, the true distribution
becomes much closer to the reference distribution. When the data size goes to infinity, θ
will be zero. In addition, since

∑N
n=1 |pn − p̂n| ≤

∑N
n=1(pn + p̂n) = 2, we can obtain the

θ value limit which should fall into [0, 2] interval. The effect of θ value will be further
analyzed in the numerical experiments.
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4.2.2 Solution Methodology

In this subsection, the solution methodology is introduced which first reformulates the
original UC problem including transformation of the chance constraints and objective
function. With the proposed reformulation technique, the original complex UC problem
becomes tractable, and the conservativeness can be controlled flexibly in a data-driven
manner. Then, based on the problem structure, a decomposition algorithm (i.e., C&CG
algorithm) is introduced to solve the problem.

4.2.2.1 Problem Reformulation

To solve the UC problem, we need to focus on two critical points in the problem
formulation. One is the data-driven chance constraint for power imbalance, and the other
is the two-level objective function. Since the distribution of wind power is ambiguous
and defined within a distance-based ambiguity set, worst-case distribution should be
considered to ensure the chance constraint. In other words, the chance constraint in (4.11)
can be recast as follows:

min
P∈D1

Pr(−δ ≤
∑
i

xit +
∑
b

wbt (ξ)−
∑
b

dbt ≤ δ) ≥ 1− ε1, ∀t ∈ T . (4.25)

Based on the studied discrete distribution, the above inequality can be further
reformulated as [91]

min
P∈D1

N∑
n=1

pnt · I[−δ,δ](
∑
i

xit +
∑
b

wbt (ξ
n)−

∑
b

dbt) ≥ 1− ε1, ∀t ∈ T (4.26)

where I[−δ,δ](
∑

i xit +
∑

bw
b
t (ξ

n) −
∑

b d
b
t) represents an indicator function. It equals 1 if

−δ ≤
∑

i xit +
∑

bw
b
t (ξ

n) −
∑

b d
b
t ≤ δ, otherwise it is 0. Note that similar idea can also

be used to deal with robust chance constraint with other distance based ambiguity set
such as the KL divergence based set and CVaR method may be investigated to derive a
conservative constraint [186].

To simplify the notation, we can introduce binary variables znt to replace the indicator
function, i.e., znt = I[−δ,δ](.). Then, the above constraint (4.26) can be reformulated using
big-M method as follows:

−δ − (1− znt )M ≤
∑
i

xit +
∑
b

wbt (ξ)−
∑
b

dbt ≤ δ + (1− znt )M, ∀t ∈ T , ∀n (4.27)

min
pnt

N∑
n=1

pnt z
n
t ≥ 1− ε1 (4.28)

N∑
n=1

|pnt − p̂nt | ≤ θ (4.29)
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N∑
n=1

pnt = 1, ∀t ∈ T ,∀n (4.30)

pnt ≥ 0, ∀t ∈ T ,∀n (4.31)

where constraints (4.29)-(4.31) are derived from the predefined ambiguity set D1. For
constraint (4.29), we can introduce an auxiliary variable qnt to eliminate the absolute
operation, i.e., let qnt = |pnt − p̂nt |, which leads to the following equivalent formulas [90]:

N∑
n=1

qnt ≤ θ (4.32)

qnt ≥ pnt − p̂nt (4.33)

qnt ≥ p̂nt − pnt . (4.34)

Considering the minimization operation in constraint (4.28), we can try to transform
the minimization into maximization by duality theory which helps remove the operation
in the inequality. Based on the constraints (4.32)-(4.34), (4.30)-(4.31) and the minimization
objective, the dual results can be deduced as follows:

max
αt,βnt ,γ

n
t ,λt
− αtθ +

N∑
n=1

(−βnt p̂nt + γnt p̂
n
t ) + λt (4.35)

− βnt + γnt + λt ≤ znt , ∀t ∈ T ,∀n (4.36)

− αt + βnt + γnt ≤ 0, ∀t ∈ T ,∀n (4.37)

αt, β
n
t , γ

n
t ≥ 0, λt unrestricted, ∀t ∈ T , ∀n (4.38)

where αt, βnt , γnt and λt are corresponding dual variables.

Then the constraints (4.28)-(4.31) can be replaced with the following constraints:

−αtθ +
N∑
n=1

(−βnt p̂nt + γnt p̂
n
t ) + λt ≥ 1− ε1, ∀t ∈ T (4.39)

Constraints (4.36)− (4.38). (4.40)

In addition to the data-driven chance constraint, the objective function in the proposed
UC model also involves the uncertain distribution which hinders the optimization of the
problem. To reformulate the objective function, we need to focus on the second-level
objective, i.e., the worst-case expected penalty cost max

P∈D1

EP [Q(x, ξ)]. Note that x is used to

represent the decision vector for notation brevity. According to Theorem 1 in [185], we can
get an equivalent reformulation with the ambiguity set D1 as follows:

max
P∈D1

EP [Q(x, ξ)] = (1− θ

2
)CVaRP0

θ/2[Q(x, ξ)] +
θ

2
max
ξ

Q(x, ξ) (4.41)
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where CVaRP0

θ/2[Q(x, ξ)] denotes the conditional value-at-risk of Q(x, ξ) with respect to the
nominal distribution P0 with confidence level θ/2. In addition, the CVaR is defined as
below [187]:

CVaRP0

θ/2 = min
φ

φ+
1

1− θ/2
EP0 [Q(x, ξ)− φ]+ (4.42)

where φ is a new free variable and [Q(x, ξ)− φ]+ = max {Q(x, ξ)− φ, 0}.

By substituting the CVaR, the worst-case expectation objective can be further written
as follows:

max
P∈D1

EP [Q(x, ξ)] =min
φ
{(1− θ/2)φ+ EP0 [Q(x, ξ)− φ]+}+

θ

2
max
ξ

Q(x, ξ). (4.43)

In the above formulation, EP0 [.]+ can be obtained based on the estimated nominal
distribution P0. For max

ξ
Q(x, ξ), it is actually a max-min function. Thus, the final

reformulated objective function including the commitment cost has a min-max-min form.
Then the reformulated problem can be regarded as a common two-stage robust problem
which can be solved by a decomposition algorithm.

4.2.2.2 C&CG Decomposition Algorithm

As discussed above, the reformulated problem is a two-stage optimization problem that
can be solved in a decomposition framework. In this study, the C&CG algorithm [188] is
investigated to solve the problem which creates a master problem and subproblem. Given
a unit commitment decision and base-case dispatch plan, the worst-case uncertainty is
captured in the subproblem. Meanwhile, new variables and constraints are generated
in the subproblem and fed back to the master problem. The algorithm iterates until all
uncertainties can be guarded against.

Combining (4.1) and (4.43), we can acquire the following objective function:

min
∑
t

∑
i

[SUiuit + SDivit + Fi(xit)] + (1− θ/2)φ

+ EP0 [Q(x, ξ)− φ]+ +
θ

2
max
ξ

min
ruit,r

d
it,d

ls,b
t

∑
t

[
πgent

∑
i

(ruit + rdit) + πlst
∑
b

dls,bt

]
. (4.44)

Based on this objective, we can decompose the reformulated problem with the related
constraints, and the master problem (MP) is as follows:

min
∑
t

∑
i

[SUiuit + SDivit + Fi(xit)] + (1− θ/2)φ+ EP0 [Q(x, ξ)− φ]+ + η

s.t. Constraints (4.2)− (4.9), (4.21) and (4.27),

Constraints (4.10), (4.13)− (4.20), ∀n,

Constraints (4.36)− (4.39), Optimality cuts,
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where η represents the optimal value of subproblem and the optimality cuts are derived
from subproblem. Note that the CVaR or EP0 [·]+ term in the objective function can
be solved as a scenario-based stochastic optimization problem [102]. Moreover, all the
constraints involved in MP are linear with continuous or integer variables. Therefore,
the MP is a mixed-integer linear programming (MILP) problem that can be solved by
off-the-shelf solvers.

To formulate the subproblem (SP1), the second-stage problem with constraints
(4.13)-(4.20) is first dualized to eliminate the inner minimization in (4.44). For the second
stage problem, we need to find the worst-case scenario in the finite support set of uncertain
parameter ξ. Actually, the finite support set in this work can be extended to be the common
interval uncertainty set, and the worst-case scenario is usually the extreme point of this
convex set. Thus, we can define the following adjustable uncertainty set for the second
stage problem:

U =
{
wt(ξ) = w̄bt + ŵb+t ρ+

bt − ŵ
b−
t ρ−bt, ρ

+
bt + ρ−bt ≤ 1,[∑

b

∑
t

(ρ+
bt + ρ−bt)

]
/Γmax ≤ Γ, (ρ+

bt, ρ
−
bt) ∈ {0, 1}

}
(4.45)

where w̄bt is the forecasted mean value of wind power, ŵb+t and ŵb−t are the corresponding
deviation from the upper bound and lower bound in the finite support set, ρ+

bt and ρ−bt are
auxiliary binary variables. In addition, the normalized budget of uncertainty Γ is used
here [71]. Note that Γ is set to 1 in the proposed DDRC UC model to find the worst case
scenario of the second stage problem. Then the subproblem can be written as below:

fsp = (θ/2) max
∑
t

{
µ1
t (
∑
b

dbt −
∑
i

xit −
∑
b

w̄bt )

+
∑
b

ŵb+t σ1+
bt +

∑
b

ŵb−t σ1−
bt +

∑
i

µ2
it(−xiyit + xit)

+
∑
i

µ3
it(xiyit − xit) +

∑
i

(−µ4
itRUi − µ5

itRDi)

+
∑
l

µ6
tl(−Ll + L0

tl) +
∑
l

µ7
tl(−Ll − L0

tl) +
∑
l

∑
b

ŵb+t σ2+
btl +

∑
l

∑
b

ŵb−t σ2−
btl

}
(4.46)

µ1
t − µ2

it − µ4
it +

∑
l

Kb
l (−µ6

tl + µ7
tl) ≤ π

gen
t , ∀t, ∀i (4.47)

− µ1
t − µ3

it − µ5
it +

∑
l

Kb
l (µ

6
tl − µ7

tl) ≤ π
gen
t ,∀t, ∀i (4.48)

µ1
t +

∑
l

Kb
l (−µ6

tl + µ7
tl) ≤ πlst , ∀t, ∀i (4.49)

σ1+
bt ≤Mρ+

bt, σ
1+
bt ≤ −µ

1
t +M(1− ρ+

bt) (4.50)

σ1−
bt ≤Mρ−bt, σ

1−
bt ≤ µ

1
t +M(1− ρ−bt) (4.51)
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σ2+
btl ≤Mρ+

bt, σ
2+
btl ≤ (µ6

tl − µ7
tl)K

b
l +M(1− ρ+

bt) (4.52)

σ2−
btl ≤Mρ−bt, σ

2−
btl ≤ (−µ6

tl + µ7
tl)K

b
l +M(1− ρ−bt) (4.53)

ρ+
bt + ρ−bt ≤ 1, (ρ+

bt, ρ
−
bt) ∈ {0, 1}, ∀t, ∀b (4.54)∑

b

∑
t

(ρ+
bt + ρ−bt)/Γmax ≤ Γ (4.55)

(µ2
it, µ

3
it, µ

4
it, µ

5
it, µ

6
tl, µ

7
tl) ≥ 0 (4.56)

L0
tl =

∑
b

Kb
l (
∑
i

xbit + w̄bt − dbt) (4.57)

where (4.46) is the dual objective function and (4.47)-(4.57) are corresponding constraints.

In the objective function, there are some bilinear terms due to the introduction of dual
variables which are given below:

−
∑
b

ŵb+t µ1
tρ

+
bt +

∑
b

ŵb−t µ1
tρ
−
bt (4.58)∑

l

∑
b

ŵb+t ρ+
bt(µ

6
tl − µ7

tl)K
b
l −

∑
l

∑
b

ŵb−t ρ−bt(µ
6
tl − µ7

tl)K
b
l . (4.59)

These bilinear terms have been linearized using big-M technique which introduces
the auxiliary variables σ1+

bt , σ1−
bt and σ2+

btl , σ2−
btl along with corresponding constraints

(4.50)-(4.53). Then we can solve the MP and SP1 iteratively until the algorithm terminates.
Specifically, if fsp ≤ η, the algorithm terminates and the optimal decisions are obtained,
otherwise, the following cut is fed back to the MP for next iteration:

η ≥ (θ/2)
∑
t

[
πgent

∑
i

(ruit + rdit) + πlst
∑
b

dls,bt

]
. (4.60)

More details about the algorithm can be found in related references [91] [95] [188].

4.2.3 Numerical Results

To validate the performance of the proposed approach, case studies based on IEEE test
systems and a practical system are conducted in this subsection. First, the IEEE 6-bus
test system with a wind farm is studied to illustrate the effectiveness of the proposed
model and approach. Then a modified IEEE 118-bus test system is investigated for the
scalability and potential practical application of the proposed approach. In addition, a
practical 319-bus system with a large number of uncertainty sources is also studied to
further verify the scalability of the proposed approach. Related simulation experiments are
implemented in MATLAB environment with YALMIP toolbox [176] and GUROBI solver
on a desktop which has an an Intel Core i7-6700 CPU 3.40 GHz and 8 GB of RAM.
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Figure 4.1: Structure of IEEE 6-bus test system.

4.2.3.1 IEEE 6-bus Test System

The studied IEEE 6-bus test system is illustrated in Fig. 4.1. Detailed parameters about this
system can be found in [189]. In addition, a wind farm is connected to the system at bus
4 which is the source of uncertainty. For wind power data, we can generate the historical
data from a certain assumed distribution such as the multivariate normal distribution [90].
In this work, the forecasted mean wind power is acquired from the IESO website [190]
which is properly scaled and shown in Fig. 4.2, and the variance is 0.3 of the mean. Then
the historical data can be generated by Monte Carlo simulation. Note that the historical
data can be directly collected in practice. In addition, the number of bins is set to be 5, K0 =

5 for the piecewise linear fuel cost function, the penalty re-dispatch and load shedding cost
coefficient πgen

t and πls
t are 50 $/MW and 100 $/MW, respectively, and the time horizon is

24 hours.

• Influence of historical data size

For the proposed data-driven UC problem, the influence of historical data size
is first investigated. With different data size, different nominal distributions and
thus the ambiguity sets can be generated. In this case, the confidence level in the
ambiguity set is set to be 1 − α̃ = 95% and let the data size A vary from 50 to
5000. The corresponding results including total system cost and tolerance level θ
are summarized in Table 4.2. From this table, we can see that θ value decreases with
the increment of historical data which means that the ambiguity set D1 shrinks and
the problem becomes less conservative. Thus, the total system cost decreases with
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Figure 4.2: Mean wind power output.

Table 4.2: Influence of data size on system cost
Data size (A) Total cost (×104$) θ

50 4.9131 0.4356
100 4.8527 0.3080
500 4.7475 0.1378
1000 4.7231 0.0974
2000 4.7031 0.0689
5000 4.6850 0.0436

the rise of data size as shown in the table. This result verifies the importance of data
for reducing the uncertainty, i.e., more information can be attained with more data
available. Actually, θ will become 0 and the set D1 degrades to a singleton (i.e., the
nominal distribution) as the data size goes to infinity. In addition, the average time
for the simulation experiment is about 13.27s.

• Influence of confidence level in ambiguity set

To construct the ambiguity set in a data-driven manner, we also need to pay attention
to the effects of confidence level (1−α̃) in addition to the data size. In this subsection,
the data size is fixed to be 1000 and the variation of total system cost is studied
with different confidence level ranging from 0.6 to 0.95. Similarly, the corresponding
system cost and the θ values are reported in Table 4.3. As can be seen from this
table, θ becomes larger as the confidence level increases which also results in a larger
ambiguity set. A larger ambiguity set can cover the true distribution with a higher
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Table 4.3: Influence of confidence level on system cost
Confidence level Total cost (×104$) θ

0.6 4.6943 0.0636
0.7 4.7014 0.0698
0.8 4.7080 0.0774
0.9 4.7127 0.0882

0.95 4.7231 0.0974

chance, and this reliability is achieved by increasing the total cost, i.e., the problem
becomes more conservative.

• Comparison with other methods

One of the significant advantages of the proposed data-driven solution methodology
is that the conservativeness of the problem can be adjusted depending on the amount
of available data. As discussed above, the data size has an effect on the θ value which
determines the ambiguity set and conservativeness. With the proposed problem
reformulation method, we can easily compare the proposed distributionally robust
UC problem with the common stochatic UC (SUC) problem and Robust UC (RUC)
problem by adjusting the θ value. From (4.41), we can derive that the worst-case
expected cost becomes the worst-case cost when θ is set to be 2 or CVaR when θ

is 0 which converges to the expectation [185]. In other words, the corresponding
two-stage SUC or RUC problem can be obtained by setting θ to be 0 or 2, and they
are used for comparison purpose here. In addition, adjustable robust optimization
is also a popular method in solving UC problems with uncertainties [71] [76].
Therefore, the adjustable robust UC (ARUC) problem is also considered as a
benchmark model here. Note that the ARUC model in this work is derived from
adjusting the normalized budget of uncertainty Γ in (4.45), i.e., Γ is set to 0.2,
0.5 and 0.8, respectively. Thus, the ARUC here is actually a data-driven model
considering the distributional uncertainty. Taking A=1000 as an example, we can
compare the proposed distributionally robust UC (DRUC) problem with SUC, RUC
and ARUC problem, and the result is shown in Fig. 4.3. Note that the results
of SUC can be regarded as optimal with known probability distribution of wind
power. From this figure, it can be seen that the conservativeness of the proposed UC
problem is between those of SUC and RUC, which also validates the flexibility of
the data-driven method in controlling the conservativeness. In addition, the ARUC
problem, with a lower cost, is less conservative than the DRUC problem since it is
derived based on DRUC model, and the conservatism of ARUC model decreases as
the parameter Γ becomes smaller.

To better show the benefits of the proposed approach, an out-of-sample assessment
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Figure 4.3: Comparison with other methods for 6-bus system.

of the commitment and base-case dispatch decisions obtained from different
models mentioned above was implemented. Out-of-sample assessment is widely
used to compare the performance of the solution in related references [80]
[89]. More specifically, we first solved the first-stage UC problem and obtained
the corresponding decisions. Then, we fixed the first-stage decisions, and
the second-stage re-dispatch problem was solved with 300 randomly generated
scenarios from the ambiguity set [102]. By calculating the average second-stage cost,
we can compare the out-of-sample performance of different models. The boxplot
result of the second-stage simulated cost is given in Fig. 4.4. As shown in this figure,
the proposed DRUC model has the lowest average (median) second-stage cost which
represents better performance. For the RUC model, the higher cost is caused by the
great down re-dispatch and there is almost no load shedding for this case. Note
that the second-stage cost is related to the cost coefficients, and the difference may
become more significant by setting a larger penalty cost coefficients.

4.2.3.2 IEEE 118-bus Test System

In this subsection, a case study with the modified 118-bus test system [191] is conducted to
verify the scalability and potential application of the proposed approach for large systems.
This test system has 54 generation units, 186 transmission lines and 91 loads. In this
case, three wind farms are connected to the system at buses 10, 30 and 50. With the
same parameter settings and analysis method, we can obtain the corresponding simulation
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Figure 4.4: Out-of-sample assessment result for 6-bus system.

Table 4.4: Influence of data size for 118-bus system
Data size (A) Total cost ($) θ

50 1150931.7 0.4356
100 1148830.2 0.3080
500 1146150.4 0.1378

1000 1145678.2 0.0974
2000 1145239.2 0.0689
5000 1144773.4 0.0436

results as given in Table 4.4, 4.5 and Fig. 4.5, respectively. From these results, similar
conclusions can be attained which are omitted here. Additionally, the out-of-sample
assessment for this system is also carried out, and the boxplot result is shown in Fig.
4.6. From this figure, we can also see the benefit of the proposed approach by comparing
the average cost. This proves the effectiveness of the proposed approach for large-scale
systems. In addition, the average time for the experiment with this system is about
1147.63s which is also acceptable in practice.

4.2.3.3 Practical-scale Power System

To further evaluate the performance of the proposed approach in a practical-scale power
system, a real-world provincial 319-bus system located in Northeast China is studied in
this subsection [192]. There are 65 units and 431 branches in this system, and the detailed
data can be found in [88] [192]. In order to model a large number of uncertainty sources, 10
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Table 4.5: Influence of confidence level for 118-bus system
Confidence level Total cost ($) θ

0.6 1145084.8 0.0636
0.7 1145179.4 0.0698
0.8 1145233.9 0.0774
0.9 1145449.2 0.0882

0.95 1145678.2 0.0974
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Figure 4.5: Comparison with other methods for 118-bus system.

wind farms are considered here which are assumed to share the same support set for wind
power data. For simplicity, only the performance comparison of different models was
conducted with this practical system, and the influence of the data size and confidence
level in the ambiguity set is omitted. The corresponding experiment results are shown in
Fig. 4.7 and Fig. 4.8. As can be seen from these results, the cost comparison has a similar
trend with those in previous case studies. Therefore, we can acquire similar conclusions for
this practical-scale power system which shows the scalability of the proposed approach.
In addition, due to the scale increase of this practical system, the resulting model is also
a large-scale complex model with many variables and constraints, and the average time
for this experiment is about 5754.52s. Actually, this simulation time is used to obtain the
day-ahead commitment and base-case dispatch plan, and for the second-stage problem or
real-time re-dispatch, the average simulation time is only about 3.77s, which is quite fast
in practice. Consequently, the proposed approach is applicable for large-scale practical
system. In addition, it is also worth studying the proposed method with larger test systems
for future research where faster algorithms may be investigated to deal with the long
computation time.
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Figure 4.6: Out-of-sample assessment result for 118-bus system.
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Figure 4.7: Comparison with other methods for 319-bus system.

4.3 Energy and Reserve Dispatch Using Data-driven DRO

Generally, ED problem will become the research focus when UC decisions are determined.
Therefore, a similar data-driven distributionally robust (DR) energy and reserve dispatch
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Figure 4.8: Out-of-sample assessment result for 319-bus system.

problem is studied in this section. The proposed two-stage distributionally robust model is
formulated and a new different ambiguity set based on L∞ norm is designed in subsection
4.3.1. Subsection 4.3.2 presents the detailed solution methodology based on reformulation
technique, and case studies are carried out to verify the effectiveness of the proposed
method in subsection 4.3.3.

4.3.1 Problem Formulation

In this subsection, the studied two-stage DR energy and reserve dispatch model with
uncertain renewable generation is first formulated. Without loss of generality, wind power
is considered as the renewable generation here. Then, the ambiguity set construction is
introduced.

4.3.1.1 Two-stage Dispatch Model

Different from the previous stochastic or robust economic dispatch problem [193], a DR
dispatch problem is studied in this work. As mentioned above, the proposed two-stage
dispatch model determines the generation and reserve with forecasted wind power in the
first stage and finds re-dispatch decisions against any uncertainty realization in the second
stage. The first-stage decision can be seen as a base-case dispatch plan. As done in the
references [95] [102], an hourly-ahead dispatch problem is also considered in this work.
Mathematically, the two-stage DR energy and reserve dispatch model can be expressed as
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follows:

min
pg ,ru,rd

[
∑
i

Fi(p
g
i ) + dui r

u
i + ddi r

d
i ] + max

P∈D
EP [Q(pg, ru, rd, ξ̃)] (4.61)

s.t.
Ng∑
i

pgi +

Nw∑
j

wfj =

NL∑
k

pLk (4.62)

pmin
i ≤ pgi − r

d
i , p

g
i + rui ≤ pmax

i , ∀i (4.63)

− Ll ≤
Ng∑
i

πgilp
g
i +

Nw∑
j

πwjlw
f
j −

NL∑
k

πLklp
L
k ≤ Ll, ∀l (4.64)

0 ≤ rdi ≤ RDi, 0 ≤ rui ≤ RUi, ∀i (4.65)

Fi(p
g
i ) ≥ a

m
i p

g
i + bmi , ∀i, ∀m (4.66)

where the objective function in (4.61) includes the fuel cost, spinning reserve cost and
second-stage worst-case expected cost. Q(·) represents the second-stage cost and D is
the ambiguity set which will be introduced later. Constraint (4.62) is the power balance
equation. Constraint (4.63) limits the generation output. Constraint (4.64) ensures the DC
power flow limit. Constraint (4.65) limits the up and down reserve capacities. Constraint
(4.66) is the piecewise linear approximation with m pieces of the common quadratic fuel
cost function.

In the second stage, when the forecast errors ξ̃ of wind generation are revealed, we
can adopt corrective actions by re-dispatching. In this case, the real wind power and
generation output can be expressed as below:

w̃j = wfj + ξ̃j , ∀j (4.67)

p̃gi = pgi + pgui − p
gd
i , ∀i (4.68)

Furthermore, the second-stage problem can be stated as follows:

Q(pg, ru, rd, ξ̃) = min
Ng∑
i

(cui p
gu
i + cdi p

gd
i ) +

Nw∑
j

cwj w
c
j +

NL∑
k

cLck p
Lc
k (4.69)

Ng∑
i

p̃gi +

Nw∑
j

(w̃j − wcj) =

Nk∑
k

(pLk − pLck ) (4.70)

− Ll ≤
Ng∑
i

πgilp̃
g
i +

Nw∑
j

πwjl(w̃j − wcj)−
NL∑
k

πLkl(p
L
k − pLck ) ≤ Ll, ∀l (4.71)

0 ≤ pgui ≤ r
u
i , 0 ≤ pgdi ≤ r

d
i , ∀i (4.72)

0 ≤ pLck ≤ pLk , 0 ≤ wcj ≤ w
f
j , ∀k, ∀j (4.73)

where the second-stage cost in (4.69) includes the re-dispatch cost of generators, wind
power curtailment cost and load shedding cost. Constraint (4.70) limits the power
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balance in the second stage problem. Constraint (4.71) is the transmission line flow
limit. Constraint(4.72) ensures that the generator re-dispatch capability is limited by the
first-stage reserve capacity. Constraint (4.73) restricts the load shedding and wind power
curtailment.

In this study, the uncertainty source is the wind power generation, which is
demonstrated by ξ̃ in above formulations. In addition, it is assumed that the uncertain
wind power has a finite support [90], i.e., the number of possible realizations ξ̃s is finite
(e.g., ξ̃1, ξ̃2, ..., ξ̃S). However, the true probability distribution is unknown and is restricted
by the constraints in the ambiguity set D.

4.3.1.2 Ambiguity Set Construction

As mentioned above, the true probability distribution of wind power is unknown. In
this study, a distance-based ambiguity set is designed to constrain the true distribution,
i.e., a distance measure between two distributions is used to describe the ambiguity set.
Specifically, the general ambiguity set can be defined as: D = {P ∈ P : dist(P ||P0) ≤
θ}, where P is the set of all distributions, dist() is a distance measure between the true
distribution P and a reference distribution P0, and θ is the tolerance level. In this work,
the L∞ norm is adopted as the distance function which has not been studied for energy
and reserve dispatch problem before. Accordingly, the studied ambiguity set is given as
follows:

D∞ = {P ∈ P : ||P − P0||∞ ≤ θ}. (4.74)

The advantage of using the L∞ norm is that the convergence between the true distribution
and reference distribution can be guaranteed as the data size goes to infinity.

In above ambiguity set, the reference distribution can be derived with the histogram
method from historical data [90] [91]. For example, it is assumed that there are N data
samples in total, and the sample space can be partitioned into S bins. Then, we can
count the frequency of samples in each bin (e.g., N s) and the reference distribution can
be obtained as P0 = (f1

0 , f
2
0 , ..., f

S
0 ) with the element fs = N s/N . In addition, the tolerance

level θ can be adjusted to control the conservatism. According to the Proposition 9 in [185],
θ can be determined as follows:

θ = (zα/2/
√
N) maxs=1,...,S

√
f s0 (1− fs0 ) (4.75)

where zα/2 is the 100(1 − α/2)th percentile of standard normal distribution. In this case,
the ambiguity set contains the true distribution with a (1− α) confidence level.
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4.3.2 Solution Methodology

For better description, the two-stage DR dispatch model is first expressed in a compact
form as follows:

min c>x+ max
P∈D∞

EP [Q(x, ξ̃)] (4.76)

s.t. Q(x, ξ̃) = min q>y (4.77)

Ax ≤ h (4.78)

Bx+Cy+Dξ̃ ≤ d (4.79)

Ex+ Fy ≤ e (4.80)

x ≥ 0, y ≥ 0 (4.81)

where x represents the first-stage decision variables including pgi , r
u
i and rdi , y is the

second-stage variables including pgui , p
gd
i , w

c
j and pLck . In addition, constraint (4.78)

represents the first-stage constraints, (4.79) includes (4.70)-(4.71), and (4.80) includes
(4.72)-(4.73).

To solve the above complex two-stage DR dispatch problem, a general idea is to
reformulate the worst-case second-stage expected cost, and this is also the basic idea of our
solution method. For the ambiguity set introduced in (4.74), we can write it equivalently
as fs0 − θ ≤ fs ≤ fs0 + θ, for all s = 1, 2, ..., S. Furthermore, let fsl = fs0 − θ and fsu = fs0 + θ

by introducing two auxiliary variables fsl and fsu, we can get the following equivalent L∞
norm based ambiguity set:

D∞ = {f ≥ 0 : fsl ≤ fs ≤ f su,∀s,
S∑
s=1

fs = 1} (4.82)

where fl and fu are the lower and upper bound of the unknown probability distribution,
respectively. In addition, it is assumed that Pl :=

∑S
s=1 f

s
l ∈ (0, 1) and Pu :=

∑S
s=1 f

s
u > 1

to avert trivial cases.

Based on the above ambiguity set, we can induce two new probability measures from
fl and fu − fl, respectively, which are given below:

Pl =
∑

s∈{1,...,S}

fsl
Pl

(4.83)

Pu−l =
∑

s∈{1,...,S}

f su − fsl
Pu − Pl

. (4.84)

With these two probability measures, we can reformulate the worst-case second-stage
expectation in (4.76) to a convex combination of an expectation and the CVaR [185] as
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follows:

max
P∈D∞

EP [Q(x, ξ̃)] = PlEPl [Q(x, ξ̃)] + (1− Pl)CVaRPu−l
(Pu−1)/(Pu−Pl)[Q(x, ξ̃)]. (4.85)

Considering the definition of CVaR [169], the right-hand second term of (4.85) can be
further written as below:

(1− Pl)CVaR = min
φ∈R

(1− Pl)φ+ (Pu − Pl)EPu−l [Q(x, ξ̃)− φ]+ (4.86)

where [τ ]+ = max{τ, 0}.

Combining (4.85) and (4.76), we can find that the original two-stage DR problem
is transformed into a two-stage stochastic linear program problem. In addition, since
there is only min operator in this two-stage problem, the problem can be readily solved
by available solvers without decomposition. More specifically, we need to solve a
scenario-based stochastic problem for the second-stage cost and CVaR term in (4.86) [102],
which can be described as follows:

min
φ,βs,ys

(1− Pl)φ+ (Pu − Pl)EPu−l(βs) (4.87)

βs ≥ 0, βs ≥ q>ys − φ, ∀s (4.88)

Bx+Cys +Dξ̃s ≤ d, ∀s (4.89)

Ex+ Fys ≤ e,ys ≥ 0, ∀s (4.90)

where βs is the auxiliary variable for scenario s. Different from the common two-stage DR
or robust problem solved by decomposition method such as Benders decomposition and
column and constraint generation method, the proposed two-stage model is reformulated
to a two-stage stochastic linear program problem which can be solved directly based on
scenarios.

4.3.3 Case Studies

In this subsection, case studies are carried out based on IEEE 6-bus test system and
118-bus test system to verify the effectiveness of the proposed method. The problem is
programmed in Matlab with YALMIP toolbox and solved by GUROBI solver. All the
simulation experiments are implemented on a Windows-based PC with an Intel Core
i7-6700 CPU 3.40 GHz and 8 GB of RAM.

4.3.3.1 IEEE 6-bus System

The structure of IEEE 6-bus system is illustrated before, and there are 3 generators
connected to buses 1, 2 and 6, seven transmission lines and three loads in this test system.
Detailed data about this system can be found in [189]. The generation units are assumed
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Table 4.6: Effects of data size for 6-bus system
Data size Cost ($) θ SED cost ($)

100 7969.51 0.0821 7744.02
500 7837.29 0.0367 7744.02
1000 7807.93 0.0258 7744.02
2000 7777.29 0.0183 7744.02
5000 7768.88 0.0116 7744.02

to be on for dispatch problem. For the cost coefficients of each unit, dui and ddi in the
first stage are assumed to be 10% of the first-order coefficients of the quadratic fuel cost
function, cui and cdi are equal to the per-unit production cost at maximum output [81]. The
cost coefficients of wind power curtailment and load shedding are 100 $/MW and 200
$/MW, respectively. Three loads at buses 3, 4 and 5 have a demand of 100MW, 100MW
and 150MW, respectively.

In addition, it is assumed that there are two wind farms connected to buses 4 and
6, and each has a forecasted output of 50 MW [95]. To generate historical data of wind
power, normal distribution is used where the mean equals to the forecasted value and the
variance is 10% of the mean. Note that historical data can be collected directly in practice.
In addition, the number of bins is set to be 5 [90]. Then we can estimate the reference
distribution with the histogram method. For the piecewise linear function, the number of
pieces is 3 in this study.

• Effects of historical data size

Based on the above parameter settings, the value of data in influencing the
conservatism of the problem is first validated. The parameter α in (4.75) is set
to be 0.05 and the data size ranges from 100 to 5000. The numerical results of
distributionally robust ED (DRED) are summarized in Table 4.6. In addition, the
cost result with 50000 data size is also given as a benchmark which can be seen as
the stochastic economic dispatch (SED) problem with perfect information, i.e., this
case is used to estimate the problem with true distribution. From this table, we can
see that the total average cost decreases as the data size increases, thus the problem
becomes less conservative. Considering the change of θ value, it can also be derived
that the ambiguity set shrinks with more data information involved, and the DRED
problem is expected to converge to the SED problem with perfect information when
the data size goes to infinity. In summary, the results show the value of additional
data in controlling the conservatism of the problem.

• Influence of confidence level

In this subsection, the influence of the confidence level in ambiguity set on the
conservatism of the problems is tested. From (4.75), we can see that the confidence
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Figure 4.9: Influence of confidence level for 6-bus system.

level will influence the θ value which indicates the size of the ambiguity set. In this
case study, the number of data is fixed as 1000 and the value of confidence level
(1 − α) is adjusted from 0.6 to 0.95. The results of corresponding cost and θ value
are illustrated in Fig. 4.9. As can be seen from this figure, both the total cost and
the θ value increase with the increment of confidence level. This is reasonable since
higher confidence level means a higher chance that the ambiguity set contains the
true distribution. Therefore, θ should become larger to enlarge the ambiguity set
when confidence level increases, which also results in a more conservative problem.

4.3.3.2 IEEE 118-bus System

In this subsection, the performance of the proposed method is further tested with a
larger system, a modified IEEE 118-bus test system, which can also be used to verify the
potential application of the approach in practice. The detailed data about this system
can be found in [191] and the total load demand is 4720 MW. Related parameters such as
the cost coefficients are the same with those in 6-bus system case study. In addition, it is
assumed that six wind farms are connected to the system at buses 12, 17, 49, 59, 80 and
92, and each has a 100 MW forecasted output [95]. The wind farms are assumed to have
the same support set for simplicity, and the historical data are also generated from normal
distribution.

With a similar simulation experiment, the effectiveness of the proposed method is
also validated by checking the influence of historical data size and confidence level. The
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Table 4.7: Effects of data size for 118-bus system
Data size Cost ($) θ SED cost ($)

100 105278.57 0.0821 102405.63
500 103803.66 0.0367 102405.63

1000 103397.21 0.0258 102405.63
2000 103003.38 0.0183 102405.63
5000 102771.85 0.0116 102405.63
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Figure 4.10: Influence of confidence level for 118-bus system.

simulation results are given in Table 4.7 and Fig. 4.10, respectively. From analyzing these
results, we can derive the same conclusions as before which are omitted. The computation
time for this case study is only several seconds, and this also confirms the potential
application of the proposed method on a practical power system.

In addition, the proposed method is tested with more data sets, i.e., Weibull
distribution and log-normal distribution are also used to generate historical data except
for the above normal distribution. For these various distributions, we study the influence
of the data size similarly and compare the obtained average total costs with the cost of
SED with perfect information. More specifically, the gap between the DRED cost (e.g.,
zdr) and optimal SED cost (z∗) is calculated which is defined as (zdr − z∗)/z∗. The results
are illustrated in Fig. 4.11. As can be seen from this figure, the cost of DRED problem
converges to that of perfect SED problem with the increase of historical data size under
different distributional settings. Consequently, the conservatism of the DRED problem
decreases with more data information.
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Figure 4.11: Influence of data size under different distributions.

4.4 Summary

Data-driven distributionally robust chance-constrained UC and energy and reserve
dispatch problem are investigated in this chapter.

First, a two-stage data-driven distributionally robust chance-constrained unit
commitment problem is studied which determines the commitment decision and basic
dispatch plan in the first stage, and considers the worstcase expected power imbalance or
re-dispatch cost in the second stage. The chance constraint is used to restrain the possible
energy imbalance. Different from the moment-based ambiguity set, a distance-based
ambiguity set is constructed to capture the uncertainty of wind power distribution,
and this set can be derived in a data-driven environment. Numerical results show that
the system cost decreases with more available historical data, for example, the cost
decreases from $4.9131 × 104 with data size 50 to $4.6850 × 104 with data size 5000 for
IEEE 6-bus test system, and that the conservativeness of the problem can be controlled
by tuning the data size and confidence level in the ambiguity set. In addition, the
effectiveness and flexibility of the proposed data-driven approach is also verified by
the comparison with SUC, ARUC and RUC problems, for example, the total cost of the
proposed DRUC problem with data size 1000 is $4.7231 × 104 for IEEE 6-bus test system
which is between the cost of SUC problem ($4.6478×104) and RUC problem ($4.8870×104).

In addition, a two-stage data-driven distributionally robust energy and reserve
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dispatch problem is also studied, and the two-stage model considers the base-case dispatch
plan and reserve in the first stage and worst-case re-dispatch in the second stage. Unlike
the common moment-based ambiguity set, a new distance-based ambiguity set, i.e., L∞
norm based set, is designed which has not been studied for such problem before. Based
on this new ambiguity set, the second-stage worst-case expected cost is reformulated
into a combination of CVaR and an expectation with respect to a reference distribution,
which makes the proposed two-stage distributionally robust model become a two-stage
stochastic optimization problem. The results of simulation experiments validate the
effectiveness of the proposed approach, especially the value of data in controlling the
conservatism of the problem. Moreover, it is also shown that the distributionally robust
problem converges to the stochastic problem with perfect information with the historical
data size goes to infinity.



5
Multistage Energy Management for Microgrids

Acronyms

CCHP Combined Cooling, Heating and Power
COP Coefficient of Performance
C&CG Column-and-constraint Generation
DG Distributed Generation
ESS Energy Storage System
DRO Distributionally Robust Optimization
LDR Linear Decision Rule
MISOCP Mixed-integer Second-order Conic Programming
MT Micro Turbine
RO Robust Optimization
RDDP Robust Dual Dynamic Programming
SDDP Stochastic Dual Dynamic Programming
TSS Thermal Storage System
UC Unit Commitment

5.1 Introduction

Microgrids play a significant role in future smart grid, and they can operate in either
islanded mode or grid-connected mode. Compared with the islanded microgrids,
grid-connected microgrids can transact electricity with the main grid. In addition,
almost all of the energy management models for microgrids in existing literature belong
to single-stage or two-stage models which ignore the non-anticipativity of uncertainty.
Therefore, multistage energy management for grid-connected microgrids with uncertainty
is investigated to overcome this problem in this chapter, and RO and DRO uncertainty
modeling techniques are studied, respectively.

109
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A new multistage robust energy management problem is proposed first for
grid-connected microgrids which considers the uncertainty from renewable generation
and load demand. Compared with the common single-stage or two-stage model,
multistage models with uncertainty are more complicated and computationally difficult.
To address the computational difficulty, a novel decomposition method similar to SDDP
method, i.e., the robust dual dynamic programming method (RDDP), is proposed to solve
the multistage model. This method decomposes the multistage problem into small-stage
problems and tries to approximate the unknown cost-to-go function with a lower and
upper bound. The effectiveness of the proposed approach is validated by a case study
with real datasets.

Among different microgrids, one interesting kind is the combined cooling, heating
and power (CCHP) based microgrid which can supply electric and thermal power
simultaneously. As a leading power generation method with high efficiency and good
environmental benefits, CCHP microgrids have also attracted wide attention. However,
distributionally robust energy management for CCHP microgrids has seldom been
reported. In this chapter, a multi-period energy management model for CCHP microgrids
is studied with DRO technique, and the non-anticipativity of uncertainty is considered.
The proposed multi-period model is included in a two-stage framework, and here
multi-period instead of multi-stage is used to make a difference. In addition, a new
second-order conic representable ambiguity is designed with DRO method, and linear
decision rule (LDR) method is investigated to help solve the distributionally robust
multi-period energy management problem.

5.2 Multistage Robust Energy Management for Microgrids

This section intends to study the multistage robust energy management problem for
grid-connected microgrids. In subsection 5.2.1, the multistage robust energy management
model is formulated including the system model and a description of multistage robust
optimization problem, followed by the solution methodology based on RDDP method in
subsection 5.2.2. The case study and corresponding simulation results are provided in
subsection 5.2.3.

5.2.1 Problem Formulation

Generally, a microgrid has two operation modes, i.e., grid-connected mode and islanded
mode. In grid-connected mode, the microgrid can exchange power with the main grid to
maintain the power balance. In case of main grid fault, it can switch to the islanded mode.
Multistage energy management of a grid-connected microgrid with uncertainty is studied
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Figure 5.1: Microgrid system model.

in this work, which can also be extended to an islanded microgrid by setting zero power
exchange. To formulate the problem, the microgrid system model and uncertainty set
considered are first introduced in this subsection, then the multistage robust optimization
problem is presented.

5.2.1.1 System Model

In general, a microgrid is composed of a number of conventional generators, renewable
generators (or RESs), ESSs and a group of loads. The schematic diagram of a typical
grid-connected microgrid is shown in Fig. 5.1 [194]. In this model, all units are connected
to one bus, only the nodal power balance is considered and there are no transmission line
flows. In addition, it is assumed that the considered distribution lines have sufficiently
large capacity and line loss is neglected [60] [61] [194]. The objective of microgrid
energy management is to minimize the total system cost by determining the output of
different DERs, the charging or discharging schedule of ESSs and the amount of electricity
purchased from or sold to the main grid.

There are different kinds of conventional generators in a microgrid such as
micro-turbines, DG units, and fuel cells. In this work, DG units are considered as the
conventional generators, and the fuel cost is formulated as a linear function at each time
period t, which can also be approximated by a piece-wise linear function [60]:

Cdg
it = (adgi Pit + bdgi )Δt, ∀i, t (5.1)

where Pit is the output of ith DG unit at time t and Δt is the duration of a time slot (e.g.,
1h). At each time period, the output of DG units should satisfy the lower and upper limits
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and corresponding ramp-up/ramp-down constraints as follows:

P i ≤ Pit ≤ P i, ∀i, t (5.2)

Pit − Pi(t−1) ≤ R
up
i ,∀i, t (5.3)

Pi(t−1) − Pit ≤ Rdni ,∀i, t. (5.4)

The day-ahead schedule of DG units is assumed to be finished and the DG units have on
status in this work. Therefore, the startup and shutdown costs are also neglected here.

To alleviate the negative impact of renewable generation uncertainty, distributed ESSs
such as batteries and flywheels can be utilized in microgrid. The battery storage system is
selected in this work. Let Ejt denote the stored energy of ESS unit j at the end of time t,
then the energy balance of ESS in ∆t time slot can be expressed as follows [195]:

Ejt = Ej(t−1) + ηe+j P chjt ∆t− P dchjt ∆t/ηe−j , ∀j, t (5.5)

where ηe+j and ηe−j represent the charging and discharging rates, respectively, P chjt and P dchjt

are charging and discharging power at time period t for unit j, respectively. In addition,
the charging and discharging power should satisfy the following constraints:

0 ≤ P chjt ≤ P
ch
j , 0 ≤ P dchjt ≤ P

dch
j , ∀j, t (5.6)

where P chj and P
dch
j are maximum charging and discharging limits, respectively. Note

that the complementary constraint to avoid simultaneous charging and discharging is not
required here as the charging/discharging efficiency is considered [158]. Since each ESS
unit has a capacity limit, the following constraint is used to restrict its stored energy:

Ej ≤ Ejt ≤ Ej , ∀j, t (5.7)

where Ej and Ej are minimum and maximum stored energy for unit j. In addition, for
periodic use of ESS, the final stored energy level at time T should be equal to the known
initial capacity value as follows:

EjT = Ej0. (5.8)

Considering the influence of frequent charging and discharging on storage lifetime, a
linear function model is used to describe the ESS degradation or maintenance cost [61]:

Cessjt = cessj (ηe+j P chjt + P dchjt /ηe−j )∆t,∀j, t (5.9)

where cessj denotes the degradation cost coefficient of unit j.

For a grid-connected microgrid, it can trade energy with the external market, i.e.,
purchase electricity from the main grid or sell the excess power to the main grid. Let
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cbuyt and csellt denote the purchase price and sale price at time period t in electricity market,
respectively, then the power exchange cost with the main grid can be expressed as follows:

Cgridt = (cbuyt P buyt − csellt P sellt )∆t (5.10)

where P buyt and P sellt represent the amount of power purchased from or sold to the external
market, respectively. It is usually considered that cbuyt > csellt which is reasonable to avert
trading arbitrage. Otherwise we can gain profits from buying and selling power in the
market [196]. In addition, the trading power should satisfy the following constraints:

0 ≤ P buyt ≤ P buyt , 0 ≤ P sellt ≤ P sellt (5.11)

where P buyt and P sellt are the maximum limits of power purchase and sale, respectively.

Renewable energy generation is an important part of microgrids. Without loss of
generality, wind power is considered as the renewable source in this work. Although
there are different kinds of demands in a microgrid, aggregated load is considered for
simplicity. Taking all the power supply and demand into account, we have the following
power balance constraint at each time period:∑

i

Pit +
∑
j

(P dchjt − P chjt ) + P buyt − P sellt + wt + P losst = P loadt (5.12)

where wt and P loadt represent the aggregated wind power output and load demand,
respectively, P losst is an auxiliary variable to balance the load shedding. Wind power and
load demand are sources of uncertainty in this work, which can be expressed by a new
random vector ξt = (wt, P

load
t ) for convenience.

In robust optimization problems, the true distribution of random variable is usually
unknown and uncertainty set is used to describe the uncertainty. In this work, the
polyhedral interval uncertainty set is used for uncertain wind power and load demand
as given below:

Uξ = [ξt : ξ
t
≤ ξt ≤ ξt] (5.13)

where ξ
t

and ξt are the lower and upper bounds of the variable. The uncertainty set
introduced above is bounded and stage-wise rectangularity is assumed. To obtain such
uncertainty sets, several methods can be used as shown in the literature. For example,
we can use the popular interval prediction method to estimate the uncertainty set [31].
In addition, the uncertainty set can also be attained by point forecast methods which
construct the interval by a point forecast value and corresponding confidence level [60].
Note that the random variable is assumed to be deterministic in the first stage of a
multistage problem.
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5.2.1.2 Multistage Robust Optimization Problem

Based on the microgrid equipment models introduced above, we can define the decision
variable xt and the objective function of a single stage problem as follows:

c>t xt =
∑
i

Cdgit ∆t+
∑
i

Cessjt + Cgridt + clossP losst (5.14)

xt = [Pit, P
ch
jt , P

dch
jt , Ejt, P

buy
t , P sellt , P losst ] (5.15)

where closs is the corresponding penalty cost coefficient. Note that xt = xt(ξt) where
ξt is omitted for notational simplicity. For a multistage model, the decisions are made
sequentially with the gradual disclosure of uncertainty.

Combining the previous constraints and objective functions, we can write the
multistage robust problem as below:

min
x1

c>1 x1 + [max
ξ2

min
x2

c>2 x2 + [· · ·+ max
ξT

min
xT

c>T xT ] · · · ]

s.t. (5.2)− (5.8), (5.11)− (5.12).
(5.16)

By transforming the constraints into a matrix form at each stage, we can also write the
multistage problem in a compact form:

min
A1x1 ≥ b1
x1 ≥ 0

c>1 x1 + [max
ξ2

min
B2x1 + A2x2 ≥ b2

x2 ≥ 0

c>2 x2 + [· · · + max
ξT

min
BT xT−1 + AT xT ≥ bT

xT ≥ 0

c>T xT ] · · · ] (5.17)

where At and Bt are corresponding coefficient matrices derived from the constraints, and
ξt is omitted in bt(ξt) which means that bt is influenced by the random parameter ξt. ξ1

is deterministic in the first stage. The problem (5.17) is also called the nested problem
formulation, which is very difficult or intractable to solve for even a small number of
stages.

To solve this problem, we can decompose it into stage problems and write it in a
dynamic programming form as follows:

min c>1 x1 +Q2(x1)

s.t. A1x1 ≥ b1
x1 ≥ 0

(5.18)

where Q2 represents the worst-case future cost-to-go function in the first stage
problem and the stage-t worst-case cost-to-go function Qt is defined as Qt(xt−1) =

max
ξt
{St(xt−1; ξt)}with the inner problem St(xt−1; ξt) defined as follows:

St(xt−1; ξt) = min c>t xt +Qt+1(xt)

s.t. Btxt−1 +Atxt ≥ bt
xt ≥ 0, t = 2, · · · , T

(5.19)
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and at the last stage, we have QT+1(xT ) = 0 or it can be some known convex polyhedral
function [197]. Thus, the nested multistage robust problem can be replaced by the
dynamic programming equations, i.e., the stage-1 problem and stage-t problem as shown
in (5.18) and (5.19). The solution methodology is also developed based on the dynamic
programming form.

5.2.2 Solution Methodology

In multistage stochastic programming problem, we need to identify the expected future
cost function to solve the problem and the SDDP method is thus developed with an
outer approximation method for the expected future cost. By contrast, it is the worst-case
future cost that needs to be considered in multistage robust problem, and this difference
hinders the direct application of SDDP method. To solve the multistage robust energy
management problem introduced above in this work, a robust version of dual dynamic
programming method is proposed which is also called robust dual dynamic programming
(RDDP) method [198]. This method has a similar framework with the popular SDDP
method which also consists of a forward pass and a backward pass procedure. Generally,
the forward pass is used to search for the worst-case realizations of random variables and
corresponding optimal recourse decisions which will generate upper and lower bounds
of the worst-case cost-to-go function at each stage, while the backward pass aims to refine
the obtained upper and lower bounds.

Compared with the SDDP method, the RDDP method introduces an upper bound to
approximate the worst-case cost-to-go function in addition to the common lower bound.
Based on the assumption of a convex affine worst-case cost-to-go function, the upper
bound is obtained by inner approximation method [199], and the lower bound is attained
by outer approximation which will be discussed in detail below.

5.2.2.1 Upper Bound Problem

Recall that the multistage robust problem in (5.19), the worst-case cost-to-go functionQt+1

in this problem is unknown at current stage which makes the evaluation of Qt difficult. A
good idea is to find the approximation of this function so that the robust optimal solution
can be obtained. Therefore, in this work, we approximate each worst-case cost-to-go
function Qt, t = 2, · · · , T by iteratively constructing its lower and upper bounds which
satisfy Qt(xt−1) ≤ Qt(xt−1) ≤ Qt(xt−1). To get the upper bound Qt(xt−1), we can define
and solve the following upper bound problem:

St(xt−1; ξt) = max
ξt

min
xt

c>t xt +Qt+1(xt)

s.t. Btxt−1 +Atxt ≥ bt(ξt)

xt ≥ 0, t = 2, · · · , T

(5.20)
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whereQt+1(xt) is the upper bound ofQt+1(xt). Generally, we have St(xt−1; ξt) ≥ Qt(xt−1)

since the upper bound Qt+1(xt) is considered in St(xt−1; ξt). Likewise, if
Qt+1(xt) = Qt+1(xt), then the optimal value of St(xt−1; ξt) would be the same with
that of Qt(xt−1). Hence, the optimal solution of problem St(xt−1; ξt) can be used to
approximate Qt(xt−1) from above.

It is obvious that the problem St is a common max-min problem which can be
solved by dual method or vertex enumeration method in condition that Qt+1(xt) is a
convex piecewise affine function. By dualizing the inner minimization problem, the
problem can be transformed into a single level problem and solved by mixed-integer
linear programming method. Another method is the vertex numeration method [198].
Since it has been demonstrated that the inner minimization problem in (5.20) is convex
in the parameter ξt, the optimal solution is obtained at a certain extreme point of the
uncertainty set Uξ. Thus, we can try to identify the extreme points of the set Uξ and solve
a finite number of linear programming problems. The vertex enumeration method can be
much easier when the number of extreme points is small in the problem or the parallel
computation technique can be used. Considering the problem scale and the interval
uncertainty set, the vertex enumeration method will be used to solve the upper bound
problem in this work.

As the explicit expression of Qt+1(xt) is unknown, we use the inner approximation
method [199] for it in this work so that we can solve the upper bound problem
approximately. Assuming that Jt points (xjt ,S

j
t+1(xt)), j = 1, · · · , Jt have been collected

for the upper bound Qt+1 of stage t + 1 worst-case cost-to-go function, then we can
approximate the upper bound function with the lower convex envelop or convex hull of
these points, and the upper bound problem in (5.20) can be expressed approximately as
follows:

St(xt−1; ξt) = max
ξt

min
xt

c>t xt +

Jt∑
j=1

λjSjt+1

s.t. Btxt−1 +Atxt ≥ bt(ξt)

xt =

Jt∑
j=1

λjxjt ,

Jt∑
j=1

λj = 1

λj ≥ 0, xt ≥ 0, t = 2, · · · , T.

(5.21)

where λj is the auxiliary variable. Note that the critical point of using inner
approximation is the convex assumption of the worst-case cost-to-go function and the
inner approximation property can be inherited from stage to stage.
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5.2.2.2 Lower Bound Problem

To obtain the lower bound Qt(xt), we can solve the following lower bound problem with
any one fixed uncertainty realization ξ̃t:

St(xt−1; ξ̃t) = min c>t xt +Qt+1(xt)

s.t. Btxt−1 +Atxt ≥ bt(ξ̃t)

xt ≥ 0, t = 2, · · · , T

(5.22)

where Qt+1(xt) is the lower bound of Qt+1(xt). Compared with Qt(xt−1), only one
realization of the random variable and the lower bound Qt+1 of stage (t + 1) worst-case
cost-to-go function are considered here, thus the optimal value of this problem can bound
Qt(xt−1) from below. With a convex and piecewise affine function Qt+1(xt), the lower
bound problem can be solved as a linear programming problem, and we can find the lower
bound ofQt(xt−1) by the supporting hyperplanes or outer approximation of St during the
iteration process. More specifically, we can define the approximate problem by replacing
Qt+1(xt) with an auxiliary variable θat+1 constrained by a set of cutting planes [197] as
follows:

St(xt−1; ξ̃t) = min c>t xt + θat+1

s.t. Btxt−1 +Atxt ≥ bt(ξ̃t), [πt(ξ̃t)]

θat+1 + π>t+1,kBt+1xt ≥ gt+1,k, k = 1, · · · ,K

xt ≥ 0, t = 2, · · · , T

(5.23)

where the variable πt(ξ̃t) is the Lagrange multiplier vector corresponding to the constraint
and gt+1,k is the intercept of kth cut defined as follows:

gt+1 = St+1(xt; ξ̃t+1) + π>t+1Bt+1xt (5.24)

where xt is the optimal solution of problem St+1(xt; ξ̃t+1). The cuts can also be generated
and expressed by the cut calculation algorithm in [200] which has the same principle of
outer approximation method.

5.2.2.3 RDDP Method

The upper bound and lower bound problems introduced above are the main components
of the proposed RDDP method. They are frequently constructed and refined in the
forward pass and backward pass during the iteration process until we find the optimal
worst-case cost-to-go function. Based on this idea, the procedure of RDDP method can be
summarized as follows:

1) Initialization: Set the lower bound and Qt(xt−1) = −M and the upper bound
Qt(xt−1) = +M , for t = 2, · · · , T , where M is a large enough number and it can also be set
to∞. Note that this is for the first iteration before the update of lower and upper bounds.
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In addition, set QT+1(xT ) = QT+1(xT ) = 0 for the last stage.

2) First stage problem: Solve the lower bound problem for the first stage as follows with
a deterministic realization of the random variable and store the optimal solution x1. If
the difference between the upper bound Q2 and the lower bound Q2 is less than a small
predefined parameter or the maximum iteration is reached, then terminate the algorithm,
else go to step 3).

min c>1 x1 +Q2(x1)

s.t. A1x1 ≥ b1
x1 ≥ 0.

(5.25)

3) Forward pass: For t = 2, · · · , T , solve the upper bound problem St(xt−1; ξt) in (5.20)
and get the optimal solution ξ

fw
t . Then based on the worst-case uncertainty realization

ξ
fw
t , solve the lower bound problem St(xt−1; ξ

fw
t ) in (5.22) and store the optimal solution

xt.

4) Backward pass: For t = T, · · · , 2, solve the upper bound problem St(xt−1; ξt) based
on xt−1 and obtain the new optimal solution ξ

bw
t . If St(xt−1) < Qt(xt−1), then collect

the point (xt−1,St(xt−1)) to update the upper bound approximation in (5.21). Based on
ξ
bw
t and xt−1, we can solve the lower bound problem St(xt−1; ξ

bw
t ), and let πt be the dual

optimal solution. If St(xt−1; ξ
bw
t ) > Qt(xt−1), then update the lower bound problem in

(5.23) by adding the following cut into the previous stage problem:

θat + π>t Btxt−1 ≥ gt (5.26)

gt = St(xt−1; ξ
bw
t ) + π>t Btxt−1. (5.27)

This lower bound update method has the same idea with that in the common SDDP
method, which iteratively adds Benders’ cuts to approximate a convex and piecewise
affine function. After completing step 4), go back to step 2).

To better illustrate the RDDP solution process for multistage robust energy
management, a schematic diagram based on the above procedure is given in Fig. 5.2.
The idea is to express the multistage problem in a nested formulation. Take the first
stage problem as an example, the uncertainty is revealed in the first stage, and different
cost-to-go functions are used to capture the uncertain parameters in the following stages.
As shown in this figure, we need to obtain the estimated Q2(x1) function for the first
stage problem. Similarly, the corresponding cost-to-go function Qt+1(xt) should also be
estimated at stage t. These cost-to-go functions can be approximately attained by solving
the upper bound problem and lower bound problem iteratively. With the above RDDP
method, we can solve the proposed multistage robust energy management problem, more
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Figure 5.2: Schematic diagram of solution process.

specifically, we can find the worst-case scenario and get the robust optimal solution. The
case study and numerical results will be presented in next subsection.

5.2.3 Case Study

In order to validate the effectiveness of the proposed multistage robust model and
solution methodology, a case study for a grid-connected microgrid with real-world data
is conducted in this subsection. First, a description of the studied microgrid and related
parameters and data is given. Then the simulation results of the robust optimal solution
from RDDP method are presented. The comparison between the proposed method and
other methods is also analyzed.

5.2.3.1 Microgrid Description and Data

In this work, a grid-connected microgrid composed of three diesel generators, an energy
storage system, a wind turbine and uncertain loads is studied. Without loss of generality,
wind power is considered as the renewable generation. The time horizon for the energy
management problem is set to 24 hours, i.e., the number of stages T is 24, and the time
step Δt is 1 hour. For three diesel generators, the involved parameters are collected from
related references [60], [59] and summarized in Table 5.2. The considered storage system
has a maximum capacity of 90 kWh, and the minimum storage level is set to be 20 kWh
to avoid overdischarging. The limits for charging and discharging rate are both set to 50
kWh, and the same charging and discharging efficiency is used which is 0.95. In addition,
the initial energy storage level is half of the maximum capacity, and the degradation cost
coefficient of the storage system is set to 0.0035 $/kWh [61].

Renewable generation and load demand are considered to be uncertain factors. As
mentioned before, the uncertainty set for these random variables can be obtained by
different methods. Here the point forecast values are used to generate the interval
uncertainty set. The point forecast data for wind power and load are collected from the
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Table 5.2: Parameters for the generators

Unit P i

(kW)
P i

(kW)
Rup

i /Rdn
i

(kW)
adgi

($/kWh)
bdgi

($/h)

G1 10 50 30 0.13 30
G2 8 45 25 0.2 50
G3 15 70 40 0.25 80

IESO website [201] which are properly scaled. Based on the point forecast values, we
create the interval sets by setting up a certain deviance (e.g., 10%) from the nominal values.
The generated intervals and the point forecast values are given in Fig. 5.3. Note that the
interval bounds are assumed to be known in this work. If the bounds are also uncertain,
we can try to estimate them using some popular interval prediction methods [31]. In
addition, it can be a potential future research topic to consider the bounds as decision
variables.

As the microgrid operates in grid-connected mode, we also need to consider the
exchange power with the main grid and the market electricity price. The maximum power
exchange including the purchase and sale is set to 100 kWh in this work, and the electricity
prices are acquired from the NYISO website [202]. The appropriately scaled day-ahead
electricity price is used as the purchase price from the market, and the electricity sale price
is set to 80% of the purchase price for simplicity [60], which are both presented in Fig. 5.4.
In electricity market, the electricity price can be determined by static or dynamic pricing
scheme. Since the renewable generation and load are usually main factors of uncertainty
in a microgrid system, the static prices are used in this work which includes fixed prices
and time-of-use prices [194]. For the effect of uncertain prices, it will lead to uncertain
coefficients in the objective function, and this may be studied in future work. In addition,
a linear penalty cost function is used for possible load shedding and the unit penalty cost
is equal to 10 $/kWh in this study [61].

5.2.3.2 Simulation Results

Based on the above relevant parameters and data, the multistage robust energy
management problem can be solved with the RDDP method. All the experiments are
implemented in MATLAB environment with Gurobi solver on a desktop with an Intel
Core i7-6700 CPU 3.40 GHz and 8 GB of RAM.

The convergence of the algorithm is first analyzed. In this experiment, the maximum
iteration is used as the termination criterion. The evolution of the lower and upper
bounds for the worst-case cost-to-go function value in the first stage problem is shown in
Fig. 5.5. As can be seen from this figure, the lower and upper bounds almost converge to
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Figure 5.3: Wind power and load data.

the same value and their difference is very small (0.44%). Thus the obtained solution can
be considered as the optimal robust solution when the algorithm terminates. Note that
we can also set a small positive parameter ε1 (e.g., 10−2) to terminate the method, which
may need less iterations. The execution time for solving this problem with this method is
about 255s which is acceptable in practice. For the proposed multistage robust problem,
the critical point is that we need to determine the unknown cost-to-go functions in this
method. It is supposed that the approximate optimal cost-to-go functions are obtained
when the algorithm terminates. Accordingly, with the estimated cost-to-go functions,
optimal decisions or implementable policies can be attained which can guard against any
uncertainty realization in the uncertainty set.

After the termination of the method, the optimal robust solution including the
schedule of DG units, ESS and the electricity exchange with the market can be obtained
corresponding to the worst-case realizations of uncertainty. The optimal schedule of
three DG units is given in Fig. 5.6. From this figure, we can find out that G1 always has
the maximum output since the second time period. For G2 and G3, they both have the
minimum output at the first few time slots, then the output increases gradually until the
maximum output is reached which corresponds to the change of load demand. Taking the
generation cost function into account, we can see that G1 always maintains the maximum
output due to its lowest cost, while the other two units have larger generation cost and
only increase their output when the load becomes larger.
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Figure 5.4: Electricity exchange price.

Similarly, we can also attain the optimal schedule of the ESS and the power exchange
with the main grid as shown in Fig. 5.7. Note that the blue line in this figure represents the
storage level of ESS at each time slot. As shown in this figure, the ESS first discharges to the
minimum value considering the initial storage level (half of the maximum capacity), then
it charges almost to the maximum capacity and stay unchanged for some time periods.
When the load demand increases at later time stages, the ESS starts to discharge. For the
electricity exchange between the microgrid and main grid, it is influenced by the electricity
prices. For example, from time period 13 to 22 when the electricity purchase price is greater
than 0.25, there is no electricity purchase unless the load demand is large enough and
cannot be satisfied by the cheaper DG units and ESS. When the electricity purchase price
decreases, more power will be purchased from the main grid to substitute the generator
output, i.e, the power supply from the main grid would be cheaper than the generation
of unit G3. In this case, the total cost for the robust optimal solution is 4356.17 $. Note
that the above optimal robust solution is obtained with the given uncertainty set. If the
uncertainty set is adjusted, the corresponding optimal solution will also change.

5.2.3.3 Comparison with Other Methods

In this subsection, the proposed method is compared with some other methods to verify its
effectiveness and advantage. Since the objective of multistage robust energy management
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Figure 5.5: Evolution of lower and upper bounds.

problem is to find the robust optimal solution, we can focus on the comparison of solutions
from different methods regarding the system reliability. The comparison methods include
SDDP method, sample average approximation (SAA) method and the deterministic
method with perfect information.

SDDP method is usually used to solve the multistage stochastic programming
problems as shown in (5.28) and only the outer approximation for the expected future
cost-to-go function is considered. It has a similar framework with the proposed method
which mainly consists of a forward pass to generate a statistical upper bound and a
backward pass to refine the lower bound. There are different convergence criteria for
this method, for instance, the method terminates when the difference between the lower
bound and the upper bound is very small, and here we use the improved convergence
criterion reported in [203]. The uncertain wind power and load are assumed to follow
uniform distribution in the interval set. Note that the uniform distribution here is used to
generate some scenarios from the interval set for SDDP method. Some other distributions
such as Weibull distribution or normal distribution can also be utilized. In addition, IGDT
method [204] may also be investigated to deal with the uncertainty in multistage microgrid
energy management problem. SAA is a common method to solve stochastic programming
problems. In this work, SAA is actually used to solve a two-stage robust problem as we
generate scenarios from the interval uncertainty set and the uncertainties are all known
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Figure 5.6: Power generation level of DG units.

with the scenario. Both SDDP and SAA method belong to stochastic approach, and we
will check them with the worst-case scenario for system reliability concern. In addition,
a deterministic two-stage problem with perfect information, i.e., the worst-case scenario,
is also studied, and the cost function at each stage are all known, and the problem can be
solved without the approximation of future cost-to-go function.

min
A1x1 ≥ b1
x1 ≥ 0

c>1 x1 + E[ min
B2x1 + A2x2 ≥ b2

x2 ≥ 0

c>2 x2 + [· · · + E[ min
BT xT−1 + AT xT ≥ bT

xT ≥ 0

c>T xT ] · · · ]] (5.28)

The total cost comparison of the solutions from different methods is given in Fig. 5.8.
From this figure, we can see that the total cost of RDDP method for the worst-case scenario
is much lower than that of SDDP method and SAA method which validates the advantage
of the robust method. Moreover, it is very close to the cost of the deterministic problem
with perfect information. Note that the cost of SDDP method is the average value of five
simulation experiments and the number of scenarios is 100 for SAA method. For better
comparison, the corresponding detailed costs of these methods are listed in Table 5.3. As
can be seen from this table, with larger generation cost and exchange cost, both the RDDP
and deterministic method have no penalty cost, while SDDP and SAA method generate
very large penalty cost for the unexpected load shedding in the worst-case scenario. Note
that the negative exchange cost represents the profit from selling excess power. Therefore,
the RDDP method can achieve robust optimal energy management by introducing more
generator output and electricity purchase from the main grid. Also, the comparison
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RDDP SDDP SAA Deterministic
0

2000

4000

6000

8000

10000

12000

14000

16000

C
os

t (
$)

Figure 5.8: The total cost of different methods.

results show the advantage of the proposed multistage model, i.e., the system is more
reliable in the worst-case realizations of uncertainty.

Although the above analysis focuses on the comparison of solution methods, the
comparison of system models may also be investigated. As mentioned before, microgrid
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Table 5.3: Detailed cost comparison for different methods

Method RDDP SDDP SAA Deterministic

Generation cost 4316.34 4220.14 4209.79 4313.80
Storage cost 0.68 0.65 0.67 0.67
Exchange cost 39.15 -68.74 -82.92 39.97
Penalty cost 0 10279.70 11260.35 0
Total cost 4356.17 14431.75 15387.90 4354.44

system has been widely studied in the literature, and most of the system models have
a similar structure. In this work, the microgrid system model is developed based on
previous literature. However, the energy management problem is studied in a multistage
perspective which is a significant difference compared with the previous single stage or
two-stage problems. In addition, the distributed microgrid system is the main focus here,
and it is also worth studying the proposed approach with a large realistic system in the
future, e.g., the economic dispatch problem in transmission system.

5.3 Multi-period Distributionally Robust Energy Management
for CCHP Microgrids

In this section, multi-period energy management for CCHP microgrids including UC
scheduling is investigated with the DRO uncertainty modeling technique instead of RO
method. The proposed CCHP microgrid system model and two-stage multi-period
formulation are introduced in subsection 5.3.1. In subsection 5.3.2, the new ambiguity set
is demonstrated and the solution methodology based on LDR is derived. Case studies are
carried out to show the results and performance of the proposed approach in subsection
5.3.3.

5.3.1 Problem Formulation

Microgrids can be operated in grid-connected or islanded mode. In this work, the energy
management of a grid-connected CCHP microgrid is studied which usually consists
of conventional generation units such as micro turbines (MTs), renewable generation,
storage systems, electric load and thermal load. The basic structure and energy flows
of a CCHP microgrid are depicted in Fig. 5.9. As shown in this figure, there are
two energy flows: electricity energy and thermal energy to satisfy the electric load and
thermal load respectively. Since the cooling load can be met by transforming some
amount of heat energy with the absorption chiller, we combine the heat and cooling
load together here [118]. For the energy supply, MTs can generate electric energy and
heat energy simultaneously, and the microgrid can exchange energy with the main
grid. Considering the coupling nature of MTs, the gas furnace and thermal storage
system are introduced to flexibly supply enough heat power. In this work, a two-stage
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Figure 5.9: The scheme of a grid-connected CCHP microgrid.

multi-period energy management model is studied for CCHP microgrids, specifically, the
day-head scheduling of MTs is investigated in the first stage and multi-period dispatch
considering non-anticipativity is studied in the second stage. In this subsection, the general
components models and constraints are introduced first, then the multi-period problem
formulation is given. The detailed models of the studied microgrid are formulated in the
following subsections.

5.3.1.1 CCHP Units

In a CCHP microgid, the most important component is the CCHP unit which can
significantly improve the overall energy utilization efficiency by fully utilizing the waste
heat from generating electricity. For CCHP unit in the studied system, MTs are used which
can directly generate power with natural gas. Specifically, the electric and heat output
power of MTs are expressed as follows [112]:

Pit = GitQ
GηMT

i , ∀i, t (5.29)

hMT
it = GitQ

G(1− ηMT
i,loss − ηMT

i ) (5.30)

where Gi,t is the natural gas consumption of unit i at time t, QG is the heat value of gas,
ηMT
i is the efficiency coefficient and ηMT

i,loss is the loss coefficient of unit i.
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As conventional generation units, the start-up/shut-down operation, minimum on
time and off time limits should be considered in the day-ahead stage [61]. The related
constraints are given below:

−yi(t−1) + yit − yis ≤ 0, ∀i, t, 1 ≤ s− (t− 1) ≤ UTi (5.31)

yi(t−1) − yit + yis ≤ 1, ∀i, t, 1 ≤ s− (t− 1) ≤ DTi (5.32)

yit − yi(t−1) = y+
it − y

−
it , y

+
it + y−it ≤ 1,∀i, t (5.33)

yit, y
+
it , y

−
it ∈ {0, 1},∀i, t (5.34)

where yit, y
+
it , y

−
it are binary variables representing the on/off status, start-up and

shut-down operation of MTs, respectively.

In addition, we also have the generation capacity limit, ramping up/down restriction
for MTs which are represented as below:

yitP i ≤ Pit ≤ yitP i, ∀i, t (5.35)

Pit − Pi(t−1) ≤ P iy+
it +Rupi yi(t−1), ∀i, t (5.36)

Pi(t−1) − Pit ≤ P iy−it +Rdni yit, ∀i, t. (5.37)

Considering the coupling electric and heat output of MTs, other heating devices such as
gas furnace can be introduced to supply sufficient heat power in this system. Gas furnace
generates heat power by combusting natural gas, and the output constraints are as follows:

hGFgt = GGFgt Q
GηGFg ,∀g, t (5.38)

hGFg ≤ hGFgt ≤ h
GF
g ,∀g, t (5.39)

where GGFgt is the gas consumption of unit g at time t, and ηGFg is the output efficiency.
Note that the heat power can be transformed into cooling power via absorption chillers to
meet the cooling load.

5.3.1.2 Storage Systems

Energy storage systems can play an important role in energy supply of a microgrid.
Both electric energy storage system (ESS) and thermal storage system (TSS) can be used
in a CCHP microgird. For ESS system, it should satisfy the charging and discharging
restrictions at each time slot, and the storage level should be limited by the lower and
upper bounds in the whole horizon which can be expressed below:

re+j ≤ r
e+
jt ≤ r

e+
j , re−j ≤ r

e−
jt ≤ r

e−
j ,∀j, t (5.40)

Eej ≤ Eej0 +
∑
τ∈[1:t]

(re+jτ η
e+
j − r

e−
jτ /η

e−
j )∆t ≤ Eej ,∀j, t (5.41)
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where Eej0 denotes the initial energy storage level, ηe+j and ηe−j are charging and
discharging efficiency, respectively. Similarly, the energy storage dynamics and related
constraints are represented as follows:

rq+m ≤ r
q+
mt ≤ rq+m , rq−m ≤ r

q−
mt ≤ rq−m ,∀m, t (5.42)

Eqm ≤ E
q
m0 +

∑
τ∈[1:t]

(rq+mτη
q+
m − rq−mτ/ηq−m )∆t ≤ Eqm,∀m, t. (5.43)

5.3.1.3 Load Balance and Objective

As discussed above, there are electric energy flow and thermal energy flow in the CCHP
microgrid system which are used to satisfy the corresponding loads. Based on the heat
power from MTs, gas furnace and TSS, the thermal load balance can be expressed as
follows:

NMT∑
i=1

hMT
it +

NGF∑
g=1

hGFgt +
Nq∑
m=1

(rq−mt − r
q+
mt) = pHCt + pACt ,∀t (5.44)

0 ≤ pHCt ≤ pHC , 0 ≤ pACt ≤ pAC ,∀t (5.45)

where pHCt and pACt are the heat power supplied to the heating coil and absorption chiller
[118], respectively, as shown in Fig. 5.9. The final energy conveyed to the demand is
limited by the device’s coefficient of performance (COP), and the conversion relation is
given below:

qHEt = pHCt ∆t · COPH , qCEt = pACt ∆t · COPC ,∀t. (5.46)

CCHP microgrid system is usually used in smart buildings such as residential house or
commercial buildings. To make the proposed CCHP microgrid model more realistic, the
temperature dependent thermal load is considered in this work. In addition, the dynamics
of the heating and cooling system such as air conditioning system can be described by
setting the indoor temperature. Specifically, the thermal load can be modeled by the
thermodynamic equation which is dependent on the indoor temperature setpoint and
environmental temperature as follows:

(qHEt − qCEt )/∆t = cair(dθin/dt)− (θamt − θint )/Rtr,∀t (5.47)

where cair is a coefficient representing the air specific heat capacity, θin and θam are
the indoor and ambient temperature, respectively, and Rtr is the thermal resistance of
building envelop.

Considering the inertia of thermal energy, the indoor temperature actually alters slowly
and it can be regarded as a constant within each time slot (e.g., one hour). Therefore, the
thermodynamic equation in (5.47) can be transformed into a discrete state model as below:

(qHEt − qCEt )/∆t = cair(θint − θint−1)/∆t− (θamt − θint )/Rtr,∀t. (5.48)
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With this model, we can control the thermal load by setting different indoor temperatures.
As the comfortable indoor temperature usually has a certain range, we also have the
following constraint:

θint ≤ θint ≤ θ
in
t ,∀t. (5.49)

Without loss of generality, wind power is considered as the renewable generation in
this work. Combining the output power of MTs, ESS and the electricity exchange with the
main grid, the constraints about electric load balance are expressed as follows:

NMT∑
i=1

Pit +

Ne∑
j=1

(re−jt − r
e+
jt ) +

Nw∑
n=1

wnt + P buyt − P sellt = P loadt ,∀t (5.50)

0 ≤ P buyt ≤ P buy, 0 ≤ P sellt ≤ P sell,∀t (5.51)

where wnt represents the uncertain wind power, and its uncertainty modeling with DRO
method is introduced in the next subsection. For the main grid, we can purchase electricity
from or sell excess power to it with the power flow limit.

The proposed energy management for CCHP microgrids is formulated in a two-stage
framework, therefore, we need to consider the day-ahead scheduling cost in the first stage
and dispatch or recourse cost in the second stage for the objective function. In particular,
the first-stage cost includes start-up, shut-down and no load cost of MTs, the second-stage
cost consists of fuel cost, degradation cost of ESS and TSS, and the electricity transaction
cost with main grid. Mathematically, the objective function is represented as follows:

Ctot =
∑
t

∑
i

(SUiy
+
it + SDiy

−
it + cNLi yit) + max

P∈D
EP[Q(y,w)] (5.52)

Q(y,w) =
T∑
t=1

{
cgas(

NMT∑
i=1

GMT
it +

NGF∑
g=1

GGFit )

+
∑
j

cessj (re+jt η
e+
j + re−jt /η

e−
j ) +

∑
m

cqm(rq+mtη
q+
m + rq−mt/η

q−
j ) + (cbuyt P buyt − csellt P sellt )

}
(5.53)

where the set D is the ambiguity set for uncertain wind power w, Q(·) is the second-stage
operational cost, and y represents the first-stage decision variables. In addition, a linear
degradation cost is used here for storage systems [61].

5.3.1.4 Multi-period Formulation

For notational conciseness, the general two-stage CCHP microgrid model introduced
above can be written in a compact matrix formulation as follows:

min
y∈Y

a>y + max
P∈D

EP[Q(y,w)] (5.54a)
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Q(y,w) = min
x
{b>x : Ty +Wx ≥ h−Hw} (5.54b)

where the set Y represents the first-stage constraints including constraints (5.31)-(5.34), the
matrix inequality expression in (5.54b) consists of the second-stage constraints (5.29)-(5.30)
and (5.35)-(5.51), and the second-stage decision variables are collected in x.

As discussed above, in a common two-stage model, there is an unrealistic assumption
that the non-anticipativity is not considered. In other words, it is assumed that the
second-stage dispatch decisions are optimized simultaneously with the disclosure of all
uncertainty realizations in the beginning [205]. However, the uncertain wind power is
revealed sequentially in practice and the dispatch decisions can only be made according
to the uncertainty realizations up to current period, i.e., the dispatch decision at time t
is dependent on the wind power realizations from time 1 to t which can be expressed
as w[t]. Accordingly, we can formulate the two-stage multi-period problem enforcing
non-anticipativity as follows:

min
y∈Y,x(·)

a>y + max
P∈D

EP[b>x(w[t])] (5.55a)

s.t. Ty +Wx(w[t]) ≥ h−Hw (5.55b)

where x(w[t]) represents a function of w[t]. Generally, the distributionally robust
multi-period problem is complex and intractable, and the solution method will be
introduced in next subsection.

5.3.2 Solution Methodology

In this subsection, the ambiguity set for wind power is first designed to describe
its possible probability distribution, then linear decision rule approach is introduced
to approximate the multi-period problem, and the intractable distributionally robust
multi-period problem is finally reformulated as a tractable problem.

5.3.2.1 Ambiguity Set for Wind Power

In DRO method, an ambiguity set is used to capture all possible probability distributions of
random variables sharing common statistical characteristics such as moment information.
In this work, a new ambiguity set based on moment information of wind power [206] is
also designed. More specifically, by defining w[t] = (w1, · · · ,wt) and wt = (wnt), the
studied ambiguity set is given below:

D =

P ∈ P0(RN
wT )

∣∣∣∣∣∣∣∣∣∣
P(w ∈ W) = 1,
EP(w) = µ,

EP((wnt − µnt)2) ≤ σnt, ∀n, t,
EP[(

∑t
l=k 1

′(wl − µl))2] ≤ γkt,
∀k ≤ t, t ∈ [T ]

 (5.56)
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where P0(·) is the set of all distributions,W is support set defined asW = [w,w], µ is the
estimated mean vector of wind power, σnt and γkt are parameters related with variance
which can be used to adjust the conservatism. The parameters in this set can be estimated
from historical wind power data, i.e., the set can be constructed in a data-driven manner.

There are two main features in the ambiguity set introduced above. First, the
partial cross-moment information is included which helps capture both the temporal
correlation and spatial correlation of wind power [207]. Second, this set is a second-order
conic representable set and the corresponding DRO problem can be transformed into a
second-order conic program which can be solved by many off-the-shelf solvers. To obtain
a tractable DRO problem with the set (5.56), the following lifted ambiguity set is proposed
[206] by introducing auxiliary variables which keeps the optimal solution equivalent:

D =


P ∈ P0(RNwT × RNwT × RT (T+1)/2)∣∣∣∣∣∣∣∣

P((w,u,v) ∈ W) = 1,
EP(w) = µ,

EP(unt) ≤ σnt, ∀n, t,
EP(vkt) ≤ γkt,∀k ≤ t, t ∈ [T ]

 (5.57)

where u and v are auxiliary variables, andW is the lifted support set defined as below:

W =

(w,u,v)

∣∣∣∣∣∣∣∣
w ≤ w ≤ w,

(wnt − µnt)2 ≤ unt,∀n, t,
[
∑t

l=k 1
′(wl − µl)]2 ≤ vkt,

∀k ≤ t, t ∈ [T ]

 . (5.58)

It is equivalent to deal with the DRO problem with the lifted ambiguity set since the
original set D is equivalent to the set of marginal distributions of w under all P ∈ D.
In addition, we can further design a tighter lifted support set W̃ by incorporating the
upper bounds of u and v which can significantly improve the performance of the optimal
solution, and the improvement is verified in case studies. The set W̃ is expressed as
follows:

W̃ = {W, unt ≤ unt, vkt ≤ vkt,∀n, t, k ≤ t} (5.59)

where the upper bounds can be obtained as: unt = max{(wnt − µnt)2, (wnt − µnt)2} and
vkt = max{(

∑t
l=k 1

′(wl − µl))2, (
∑t

l=k 1
′(wl − µl))2}.

5.3.2.2 Linear Decision Rule

The multi-period problem (5.55) is computationally challenging since the recourse variable
x is a function of all past uncertainty realizations. In addition, the explicit expression of
the recourse policy and worst-case expectation are generally intractable to acquire. One
effective approach to solve this multi-period problem is linear decision rule (LDR) method
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which is also known as affine decision rule [79] [208]. LDR method enforces the recourse
variable to be linearly dependent on some random variables to overcome the intractability.
Actually, the LDR method depending on all past uncertainty realizations prior to time t
still makes the problem very computationally difficult, thus a simplified LDR method is
adopted in this work which can achieve sufficiently good results [78]. In the simplified
LDR method, the recourse variable is assumed to be a linear function of the uncertain
parameters at current time period. Particularly, the LDR method for a single recourse
variable can be expressed as follows:

xt(w[t],u[t]) = x0
t +

∑
n

xwntwnt +
∑
n

xuntunt (5.60)

where x0
t is a constant, xwnt and xunt are related linear coefficients which will be considered

as decision variables in the new problem. In addition, the auxiliary variable unt is also
included in this LDR method since this enhanced LDR method can improve the results
as shown in [206]. Considering the variables unt and vkt are both related with the
second-order moment information, vkt is neglected here to reduce the number of decision
variables.

Based on (5.60), we can write the LDR method for all recourse variables in a matrix
form as follows:

x(w,u) = x0 +Xww +Xuu (5.61)

where x0 denotes the constant vector, Xw and Xu are coefficients matrices. With LDR
method, the non-anticipativity is automatically included and we can obtain a tractable
problem for the complex multi-period problem.

5.3.2.3 Problem Reformulation

To solve the proposed two-stage multi-period distributionally robust problem for CCHP
microgird system, we need to reformulate it into a tractable problem. First, we need to deal
with the second-stage worst-case expectation max

P∈D
EP[b>x] in the two-stage framework to

reduce the computational burden [209]. The worst-case expectation can be written in an
integral form as below:

max
P∈D

∫
W

(b>x)dP (w,u,v) (5.62a)

s.t.

∫
W
dP (w,u,v) = 1 : (λ) (5.62b)∫

W
wdP (w,u,v) = µ : (η) (5.62c)∫

W
untdP (w,u,v) ≤ σnt,∀n, t : (βnt) (5.62d)
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W
vktdP (w,u,v) ≤ γkt, ∀k ≤ t : (αkt) (5.62e)

where the symbols in the parenthesis are related dual variables that are used later.
According to the strong duality, the equivalent dual problem of (5.62) is given as follows
[206] [209]:

min
λ,η,β≥0,α≥0

λ+ η>µ+ β>σ +α>γ (5.63a)

s.t. λ+ η>w + β>u+α>v ≥ b>x, ∀(w,u,v) ∈ W (5.63b)

where β and α are corresponding dual vectors composed of βnt and αnt, respectively.
By combining the first-stage problem with (5.63) and considering the LDR method

in (5.61), we can get the following equivalent formulation of the two-stage multi-period
problem (5.55):

min
y∈Y

a>y + min
λ,η,β≥0,α≥0

λ+ η>µ+ β>σ +α>γ (5.64a)

s.t. λ+ η>w + β>u+α>v ≥

b>(x0 +Xww +Xuu), ∀(w,u,v) ∈ W (5.64b)

Ty +W (x0 +Xww +Xuu) ≥ h−Hw. (5.64c)

The constraints (5.64b) and (5.64c) can be further recast equivalently as follows:

λ− b>x0 ≥ max
(w,u,v)∈W

[(b>Xw)′ − η]>w

+ [(b>Xu)′ − β]>u−α>v (5.65a)

Ty − h+Wx0 ≥ max
(w,u,v)∈W

(−WXw −H)w −WXuu. (5.65b)

Note that the above two constraints are actually robust constraints with the support set
W and they have the same structure. To eliminate the max operator in the right-hand side,
we can transform the maximization problem into a minimization problem based on dual
theory, and the minimization problem is equivalent to the existence of a feasible solution
where the min operator can be neglected. Take constraint (5.65a) as an example, and we
can get the dual problem of the right maximization based on conic duality [205] [210] (see
Appendix B) as follows:

min
ψ
w>δ −w>δ̃ − µ>θ − 1

2
1>θ̃ +

1

2
1>θ̂

−
∑
t

∑
k∈[1:t]

t∑
l=k

1>µlρkt −
1

2
1>ρ̃+

1

2
1>ρ̂ (5.66a)

δ̃nt − δnt + θnt +
t∑

k=1

T∑
l=t

ρkl = e>nt(η − (b>Xw)′),∀t, n (5.66b)

(θ̃nt + θ̂nt)/2 = e>nt[β − (b>Xu)′],∀t, n (5.66c)
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(ρ̃kt + ρ̂kt)/2 = αkt,∀t, k ≤ t (5.66d)√
(θ

2
nt + θ̃2

nt) ≤ θ̂nt, ∀t, n (5.66e)√
(ρ2
kt + ρ̃2

kt) ≤ ρ̂kt, ∀t, k ≤ t (5.66f)

where ψ = {δ, δ̃,θ, θ̃, θ̂,ρ, ρ̃, ρ̂} are dual variables corresponding to the constraints inW ,
1 is a vector with all 1 elements, and ent is a zero vector except that the (2(t − 1) + n)th
element is 1. Thus, the constraint (5.65a) is recast as follows:

λ−b>x0 ≥ w>δ −w>δ̃ − µ>θ − 1

2
1>θ̃ +

1

2
1>θ̂

−
∑
t

∑
k∈[1:t]

t∑
l=k

1>µlρkt −
1

2
1>ρ̃+

1

2
1>ρ̂ (5.67a)

(5.66b)− (5.66f). (5.67b)

Since constraint (5.65b) has the same structure with (5.65a), similar approach can
be applied to deal with (5.65b) by introducing new dual variables and replacing the
right-hand side of the above dual constraints with the elements of the coefficients matrices
of (w,u,v) in (5.65b), and the detailed formulation is omitted here. Therefore, constraints
(5.65a) and (5.65b) are transformed into a finite number of linear and second-order conic
constraints, and the original two-stage multi-period problem is finally reformulated as a
tractable mixed-integer second-order conic program (MISOCP) which is actually a single
minimization problem and can be solved by some off-the-shelf solvers.

5.3.3 Case Studies

In this subsection, case studies are conducted to validate the performance of the proposed
approach. Related parameters are first set and historical wind power data are collected
to construct the ambiguity set. Then the simulation results and comparison with other
methods are presented. All the experiments are implemented in Matlab environment
solved by the MOSEK solver [211] on a personal computer (Intel Core i7-6700 CPU 3.4
GHz and 8GB RAM).

5.3.3.1 Data and Parameter Settings

In this work, a CCHP microgird composed of three MTs, a gas furnace, two wind farms,
one energy storage and thermal storage system, and electric and thermal loads which
are all in a single bus system is considered. The optimization horizon is T = 24 hours
with the scale of one hour. Based on the hourly wind power data of December, 2018
from [212], we can estimate the mean, upper and lower bounds used in the ambiguity set
as shown in Fig. 5.10 which are properly scaled. It is assumed that two wind farms have
the same power profile for simplicity. In addition, the other parameters in the ambiguity
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Figure 5.10: Data profiles.

Table 5.4: Parameters of MTs
Unit P i P i DTi UTi Rup

i /Rdn
i ηMT

i ηMT
i,loss

MT1 5 20 1 1 10 0.295 0.115
MT2 5 50 2 2 25 0.285 0.15
MT3 50 100 2 3 50 0.3 0.1

set can also be estimated from the data with covariance matrix. The scaled electric load
and purchase price are collected from AESO [213], the forecast ambient temperature of
Edmonton on July 16 is used here which is related to the thermal load, and they are all
shown in Fig. 5.10. In addition, the price of selling electricity to the main grid is assumed
to be 0.8 of the purchase price.

The main parameters of MTs are given in Table 5.4 which are collected from relevant
references [112] [205]. In addition, the start-up (shut-down) costs of three MTs are 3, 3, 1.5,
respectively, and the no-load operation costs are 3, 6, 1, respectively. The rest parameter
values about the gas furnace, storage systems and other constraints used in this work are
listed in Table 5.5.

5.3.3.2 Simulation Results

With the data and parameter settings introduced above, we can solve the two-stage
multi-period CCHP microgrid energy management problem. First, we can get the unit
commitment (UC) decisions of three MTs, and the results are presented in Table 5.6. From
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Table 5.5: Main parameter values
Parameters Value Parameters Value

ηe+j /ηe−j 0.95 Eq
m0 90 kWh

ηq+m /ηq−m 0.9 Eq
m/E

q

m 20/180 kWh
ηGF
g 0.93 hGF

g /h
GF

g 0/80 kW
θint /θ

in

t 18/22 oC pAC/pHC 200 kW
cair 1.85 kWh/oC QG 9.78 kWh/m3

cgas 0.5 $/m3 re+j /re+j 0/100 kW
cessj /cqm 0.0035 $/kWh re−j /re−j 0/100 kW

COPC/COPH 0.83/0.8 rq+m /rq+m 0/100 kW
Ee

j0 90 kWh rq−m /rq−m 0/100 kW
Ee

j/E
e

j 20/180 kWh Rtr 1.3 oC/kW

Table 5.6: UC results of MTs
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

MT1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0
MT2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0
MT3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

this table, it can be seen that MT3 is always on to supply power since it has the lowest
generation cost, while MT1 and MT2 are started up at time period 11 when the load
increases. The total cost for this case is $115.1317, and the solution time is about 38 min.

To further verify the performance of LDR method, the second-stage recourse variables
are investigated for a realized wind power data. More specifically, the lower bounds of
wind power data are used, and the output of MTs and the ESS storage level, the electricity
transaction with main grid and indoor temperature settings are illustrated in Fig. 5.11.
Note that since there are not many so thermal loads in this system, the output of gas
furnace is close to zero, and the TSS is almost not used, hence, their output are not shown
here. From Fig. 5.11, we can see that three MTs approximately generate the maximum
output as a result of the low wind power. In addition, the indoor temperature settings are
also within the predefined comfortable range.

5.3.3.3 Comparison with Other Methods

In this subsection, the proposed CCHP microgrid energy management problem is further
studied with the new support set W̃ to improve the solution and the proposed approach is
compared with other methods to validate its effectiveness. With the set W̃ which includes
upper bounds of auxiliary variables, we can reformulate the problem similarly and the
optimal cost achieved is $78.5489 which enhances the original objective. For comparison
purpose, we study the problem with robust optimization (RO) approach and deterministic
method. In RO method, the interval uncertainty set is used and the problem is solved with
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Figure 5.11: Output of recourse variables with LDR.

Table 5.7: Comparison results
Method DRO DRO2 RO Deterministic

Total cost ($) 115.1317 78.5489 628.0743 -74.2021
UC cost ($) 108 147 240 126

column and constraint generation (C&CG) approach [61] [188]. For deterministic method,
fixed wind power realizations (e.g., mean values) are used and there is no uncertainty. The
comparison results are summarized in Table 5.7 including the total cost and first-stage UC
cost. In this table, DRO is the proposed method and DRO2 is the DRO method with new
support set W̃ . From the total cost, we can find that the proposed DRO method is less
conservative than RO method which schedules more units to guard against uncertainty.
In addition, the total cost (profits) of deterministic method is better than DRO method.
However, there is no uncertainty information in deterministic method and the wind power
realizations are assumed to be known in entire horizon. By contrast, the non-anticipativity
of multi-period problem is enforced in the proposed DRO method which can deal with the
uncertainty from renewable generation.

5.4 Summary

To ensure the non-anticipativity of uncertainty, multistage energy management is studied
for grid-connected microgrids in this chapter, and RO and DRO uncertainty modeling
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method are investigated, respectively.

First, a novel multistage robust energy management model for grid-connected
microgrids is developed in this chapter, which considers the uncertainty of renewable
generation and load demand. Compared with traditional two-stage models, the multistage
model can deal with the non-anticipativity of uncertainty. To address the computationally
difficult multistage problem, a robust version of dual dynamic programming named
the RDDP method is proposed which combines the outer approximation and inner
approximation in the forward and backward pass. A case study with real datasets is
conducted and the experimental results verify the effectiveness of the method in achieving
robust energy management. In addition, the comparison with other methods including
SDDP, SAA, and deterministic method also demonstrates the advantage of the proposed
multistage model and solution method with respect to the robust optimal solution.

In addition, distributionally robust multi-period energy management for CCHP
microgrids is also investigated in this chapter. Different from previous literature, a
two-stage multi-period model is proposed which considers the non-anticipativity of
dispatch process. To capture the uncertainty of wind power, a second-order conic
representable ambiguity set is designed based on moment information (e.g., mean and
covariance) which can also describe the temporal and spatial correlation of random
variable. With LDR method, the complex multi-period problem is finally reformulated as
a tractable mixed-integer second-order conic program (MISOCP) problem. In addition,
a tight support set with upper bounds of auxiliary variables introduced in the lifted
ambiguity set is investigated to further improve the solutions. The performance of the
proposed approach is validated by case studies based on real-world data, particularly, the
comparison experiments with RO and deterministic methods are conducted to show the
effectiveness of the proposed approach.



6
Conclusions and Future Work

Tradition power systems are evolving towards the new smart grid with the development
of advanced communication technologies. In addition, the utilization of renewable energy
also attracts wide attention to alleviate the energy crisis problem. However, with the
increasing penetration of renewable generation, many new challenges with regard to
uncertainty have arisen in the reliable and secure operation of smart grid. Therefore, it is
necessary and important to study the influence of uncertainty for better decision-making
process in power system operation.

To reduce the impact of uncertain and intermittent renewable generation, uncertainty
modeling and related optimization problems in smart grid are investigated in this thesis.
The uncertainty modeling techniques studied in this work consist of interval forecast
method, DRO method and RO method, and the involved problems include wind energy
forecast, chance-constrained energy management for islanded microgrids, data-driven
distributionally robust UC and ED problem, and multistage energy management for
grid-connected microgrids. More specifically, the direct interval prediction for wind power
based on RNN and multiobjective interval prediction for wind speed based on WNN are
first studied, respectively. Based on the interval forecast, the moment based ambiguity
set with an interval form is designed and chance-constrained energy management
problem is studied for islanded microgrids. Since UC scheduling is not included in
the chance-constrained energy management problem, data-driven distributionally robust
UC and ED problem are then investigated with distance-based ambiguity sets. Finally,
multistage energy management problem for grid-connected microgrids is studied based
on RO and DRO method which considers the non-anticipativity of uncertainty.

140
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6.1 Contributions of Thesis

The main contributions of this thesis can be summarized as follows:

• The RNN model exhibiting the dynamic system behaviors is investigated for wind
power interval forecast, and this is the first time to apply RNN model to do interval
forecast for wind power. A new evaluation index for the PI width is proposed to
enhance the RNN model training; this new index, unlike the previous measures,
further considers and uses the known information in the training process. DA
is introduced for the first time to solve the PI problem and a new weight update
method which combines linear decrease and random walk is designed to improve
the algorithm search ability. In addition, delay embedding approach rather than
the typical correlation analysis is employed to reconstruct the time series data and
determine the input of the prediction model. It is suitable to process wind power
data with chaotic characteristics.

• The WNN model is proposed for wind speed interval prediction is a multiobjective
framework. Although WNN model has been studied before for point forecast
tasks, it is the first time to conduct interval prediction based on WNN model in
this study, i.e., this is a new interval forecast method for wind speed. A novel
multiobjective evolutionary algorithm PICEA-g is investigated to train the NN
model which considers two objectives. Considering the multiobjective essence of
PI construction, the proposed multiobjective problem formulation is a more direct
problem formulation compared with the indirect single-objective transformation,
and this is more reasonable and practical. Case studies are implemented to validate
the proposed prediction method based on real-world datasets. More specifically,
the proposed model is compared with various single-objective and multiobjective
interval prediction models based on the quality of solutions and Pareto front,
and comparison results show the efficiency of the proposed approach, that is, the
WNN-based multiobjective interval prediction model can achieve better forecast
results.

• A CC energy management problem is formulated for an islanded microgrid
considering DG units, ESS, renewable generation and various load demand. Unlike
the previous chance constraints in the literature, the common power balance is
presented in a probabilistic version for islanded microgrids in this work. The
objective of the proposed model is to minimize the total system cost including the
generation cost and emission cost of DG units and degradation cost of ESS where the
consideration of emission cost is necessary in practice with increasing attention of
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environment problem. A novel ambiguity set is proposed to describe the uncertain
probability distribution of renewable generation. In particular, the box-type
ambiguity set is used to capture the uncertain moment information (e.g., mean
and variance) of renewable generation. This ambiguity set has not been studied
previously for microgrid energy management problem with uncertainty. Based
on the ambiguity set, the DRO method is utilized to solve the microgrid energy
management problem by transforming the CC problem into a tractable second-order
conic programming (SOCP) problem which can be solved by off-the-shelf solvers
efficiently. A case study with real datasets to verify the effectiveness of the
proposed method is presented. The comparison with the DRO method with known
moment information is also carried out to show the robustness of the approach. In
addition, sample average approximation (SAA) and stochastic optimization with
normal distribution method, which are two common methods to deal with chance
constraint, are also applied to solve the problem for comparison purpose.

• A data-driven distributionally robust chance-constrained two-stage UC model is
proposed in this work which determines the commitment decision and base-case
dispatch plan in the first stage and minimizes the re-dispatch cost due to possible
power imbalance in the second stage. Specifically, a chance constraint is used to
restrain the power imbalance in the first stage, and the re-dispatch cost resulted from
load curtailment or wind power spillage is considered in the second stage. This is a
new model by combining the new DRO technique and two-stage chance-constrained
model compared with those in previous literature. A new problem reformulation
method is proposed with the studied distance-based ambiguity set. Particularly,
based on the proposed ambiguity set, the original complicated UC problem is
reformulated into a tractable two-stage optimization problem which can be solved in
a decomposition framework, i.e., the second-stage objective function is transformed
into a convex combination of conditional value-at-risk (CVaR) and worst-case
cost. According to the available historical wind power data size, the constructed
ambiguity set can be adjusted, thus the conservativeness of the solution can also
be altered accordingly. Moreover, there is a marginal diminishing effect for data
size in controlling the conservativeness. In addition, the new reformulation method
helps explicitly reveal the value of additional data in reducing the conservatism of
the problem, and we can flexibly acquire the corresponding stochastic problem and
robust problem.

• A data-driven two-stage distributionally robust model is proposed for energy
and reserve dispatch problem with wind power, and a new ambiguity set based
on L∞ norm is designed to describe the uncertainty of wind power probability
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distribution. The second-stage worst-case expectation is reformulated into a convex
combination of CVaR and an expected cost so that the original problem can be
solved as a stochastic linear program problem, the effectiveness of the proposed
method, especially the value of data, is validated by experiments based on IEEE
6-bus test system and 118-bus test system.

• A new multistage robust energy management model for gridconnected microgrid
is developed, which considers the nonanticipative uncertainty from a practical
perspective compared with previous two-stage models, and the uncertainty
considered comes from renewable generation and load demand. To deal with the
computational difficulty of multistage robust model, a novel decomposition method
similar to SDDP method, i.e. the robust dual dynamic programming method
(RDDP), is proposed to solve the problem. This robust version of dual dynamic
programming makes the complex multistage problem computationally tractable to
find the worst-case optimal solutions. It decomposes the multistage problem into
small-stage problems and tries to approximate the unknown cost-to-go function
with a lower and upper bound. A case study with real datasets is carried out
to verify the effectiveness of the proposed model and method. In particular, the
simulation results are analysed and the comparison with other methods including
the common SDDP is discussed.

• A two-stage multi-period energy management model is proposed for CCHP
microgrids which considers the non-anticipativity of dispatch decisions, and the
DRO technique is adopted as the uncertainty modeling method. In order to capture
the uncertain distribution of wind power, a new second-order conic representable
ambiguity set is designed, and this moment-based set can describe the temporal
and spatial correlation of random variable. In addition, linear decision rule is
investigated to help transform the multi-period problem into a tractable problem.
In addition, together with the lifted ambiguity set, a tight support set with upper
bounds is developed to further improve the solutions.

6.2 Directions for Future Work

In this thesis, several problems in smart grid with renewable generation are studied
including interval prediction based on NN model, microgrid energy management, UC and
ED based on DRO or RO method. Although good results are achieved in this work, there
are still some open issues based on this research, for example, how to further improve the
forecast performance, how to design more practical ambiguity sets and models, and so on.
Particularly, the following topics are proposed for future work:
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• The RNN and WNN model used in the interval forecast adopt a typical three layer
structure, more complicated NN model such as deep NN model [214] may be
investigated to improve the forecast performance.

• More advanced evolutionary algorithms may be introduced to help train the NN
model and enhance the performance. In addition, it is also possible to study
long-term interval forecast model for wind power and wind speed.

• For DRO method, some new ambiguity sets may be investigated to capture the
uncertainty of renewable generation, e.g., the ambiguity set combining the moment
and distance information may be designed.

• Two-stage UC and ED models are very common in the literature. Therefore,
a potential research topic is the multistage UC and ED problem considering
distributional uncertainty, and the corresponding solution method is also worth
studying.

• For microgrid energy management, the economic cost is mostly is considered
as the objective. It is possible to develop a multiobjective energy management
model [215] in the future which considers multiple objectives such as the cost,
pollutant emissions and reliability index.

• Although renewable generation is a very common source of uncertainty, there are
other uncertain factors in smart grid including load demand and electricity price.
Hence, multiple uncertainties may be considered in related problems for future
research.

• Demand response is a critical and effective measure to enhance the interaction
between demand side resources and renewable generation in power system [216].
The integration of demand response in current microgrid energy management
problem which may reduce the cost by shifting some loads is worth studying in the
future.
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A
Dual Problem and Change of Variables

The problem reformulation based on duality theory and change of variables in Chapter 3 is
presented in this appendix. From (3.26)-(3.28), we can get the dual problem by introducing
corresponding dual variables θ0, θ1 and θ2 as follows:

inf
θ0,θ1,θ2

θ0 + θ1h(x)µt + θ2[h2(x)σ2
t + (h(x)µt)

2] (A.1a)

s.t. θ0 + θ1r + θ2r
2 ≥ 0 (A.1b)

θ0 + β − h0(x) + (θ1 − 1)r + θ2r
2 ≥ 0. (A.1c)

It can be verified that strong duality holds as h2(x)σ2
t is positive [165] and the dual problem

has feasible solutions when θ2 > 0. The constraints (A.1b) and (A.1c) can be transformed
into the following equivalent constraints by considering the minimum value of the left
hand side:

inf
θ0,θ1,θ2

θ0 + θ1h(x)µt + θ2[h2(x)σ2
t + (h(x)µt)

2] (A.2a)

s.t. θ0 −
θ2

1

4θ2
≥ 0, θ0 + β − h0(x)− (θ1 − 1)2

4θ2
≥ 0. (A.2b)

Then using the following variables change with auxiliary variables v, τ and z > 0, we can
obtain the problem (3.29).

θ0 = v +
(τ − h(x)µt)

2

4z
, θ1 =

τ − h(x)µt
2z

, θ2 =
1

4z
.
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B
Dual of SOCP Problem

The duality theory for SOCP problem is outlined in this appendix. Consider the following
SOCP problem:

min f>x (B.1)

s.t. ||Aix+ bi|| ≤ c>i x+ di, i = 1, · · · , N, (B.2)

where x ∈ Rn is the optimization variable, and f ∈ Rn, Ai ∈ R(ni−1)n, bi ∈ Rni−1, ci ∈ Rn

and di ∈ R are corresponding problem parameters. The norm used in the constraints is
usually the Euclidean norm, i.e., ||y|| =

√
y>y. Then the dual of this SOCP problem is as

follows:

max −
N∑
i=1

(b>i zi + diwi) (B.3)

s.t.

N∑
i=1

(A>i zi + ciwi) = f, (B.4)

||zi|| ≤ wi, i = 1, · · · , N, (B.5)

where zi ∈ Rni−1 and w ∈ RN are dual variables.
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