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Abstract

High harmonic generation (HHG) in atomic gases has been considered as a potential
coherent x-ray source which can have many important applications in science and
engineering. In this Ph.D. thesis, a number of important and practical issues in
HHG have been theoretically investigated. These include: (1) spectral and temporal
characteristics of the high harmonic emission: (2) improving harmonic conversion
efficiency through high order difference frequency mixing (HDM): and (3) generation
of attosecond coherent soft-x-ray pulses.

These investigations have been facilitated by the development of a number of
computational models which are designed to studv HHG at both the microscopic
and macroscopic levels. In microscopic studies. a semi-classical dipole model has been
used to describe harmonic generation from individual atoms. In macroscopic studies.
the one dimensional nonlinear wave equation incorporating the microscopic dipole
model has been used to describe harmonic emission from the overall macroscopic
medium.

From these studies. several important findings have been obtained. First. it has
been found that XUV harmonics can have large spectral blue shifts and linewidths
under typical experimental conditions and that these harmonics can be generated
with temporal durations of only a few femtoseconds. Secondly. it has been found
that as opposed to previous anticipation. HDM cannot be used to increase harmonic
conversion efficiency arbitrarily. Finally. it has been found that efficiency coherent
soft-x-ray pulses can be generated by using driving lasers with temporal durations of

several laser cvcles.



RS CEE AR s A ot ST L Setilc L AL L SR TS

-y

MR el A i L iR O AR

Acknowledgements

I would like to thank my supervisors. Dr. C. E. Capjack. Dr. N. H. Burnett and
Dr. R. Rankin. for their patient guidance and support during the course of this
thesis research.

I would also like to thank Dr. P. B. Corkum and Dr. M. Yu. [vanov at the National
Research Council of Canada for many helpful discussions.

Finally. I would like to thank Dr. T. Brabec at the Technische Universitat Wien

for his collaboration on the study of high order difference frequency mixing.



et

¥ i ingre ST

falldl ol T i Rl g AR

hatab ool L

List of Symbols

a Atomic ground state population
ag The Bohr radius

¢ Speed of light

d Atomic dipole moment

d, Atomic dipole acceleration

d, Atomic dipole velocity

Ab, Harmonic phase mismatch

Aby Mixed field phase mismatch

€ Charge of electron

E Electric field

E, Fundamental electric field

E. Control electric field

E, High frequency electric field

E, Harmonic electric field

E Electric field envelope

E, Fundamental electric field envelope
E. Control electric field envelope

Ey High frequency electric field envelope
E, Harmonic electric field envelope

E, Atomic unit of electric field

FWHM Full width at half maximum

¥ The Keldysh parameter



Ranatiian it At U

ST IR AT A TN e mr s A Ve

h Planck’s constant

HDM High order difference frequency mixing
HHG High harmonic generation

I Laser intensity

I Fundamental field intensity

1. Control field intensity

Iy High frequency field intensity
I, Harmonic field intensity

I, Ionization potential

Iy lonization potential of a hydrogen atom
k. Control field wave vector

k, Fundamental field wave vector
k, Harmonic field wave vector
kgt Mixed field wave vector

KE Electron kinetic energy

A Wavelength

A Control field wavelength

A, Fundamental field wavelength
A, Harmonic field wavelength

At Mixed field wavelength

m Mass of electron

n. Critical number density

Te Electron number density

n, Background number density
w Frequency

Wy Atomic unit of frequency

we Control field frequency

o Fundamental field frequency

<k High frequency field frequency



il ]

Y R L LR LY

O CENTERCENY W T M SN R PTTOT VAN S

TRTTENEL: W R AT L RN n g e

=R TR e

XUV

Plasma frequency

Harmonic field frequency
Mixed field frequency
Ionization probability
Medium polarization
Harmonic polarization
Harmonic polarization envelope
Mixed field polarization envelope
Atomic wave function
Electron wavefunction spread
Tunnel ionization rate

The accumulated phase
Fundamental cycle

Electron release time
Electron re-collision time
Fundamental phase

Control field phase
Harmonic phase

Mixed field phase

High frequency field phase
Ponderomotive potential
Electron velocity

Atomic unit of velocity
Electron re-collision velocity
Atomic potential

Electron trajectory

Extreme ultraviolet

Charge of atomic residue



A BnAr Sord . ATV S e e ba

Contents

1 Introduction

1.1 General HHG Experimental Observations

1.2 Theoretical Investigation . .
1.2.1 Single atom analysis
1.2.2 Propagation analysis

1.3 Scope of Thesis . . ... ..

2 Spectral and Temporal Study of High Harmonic Generation

2.1 Single Atom Analysis . . . . .. ..o o oL oL
2.1.1 Tunnel ionization . . . . . ... ... . ... . ... ......
2.1.2  Classical motion of tunnel ionized electrons . . . . . ... ...
2.1.3  The semi-classical dipole model . . . . . .. . ... ... ...
2.1.4 The quantum dipolemodel . . . . . . . ... . ... ... ..
2.1.5 Theionizationmodel . . . . . . ... . ... ... .. ... ..
2.1.6 Evaluation of the various dipole moments. . . . . ... .. ..
2.1.7 Resultsand discussion . . . .. ... ... ... .. ......

2.2 Propagation Analysis . . . . .. ... ... ... L.
2.2.1 The one dimensional propagation model . . . . .. ... ...
2.2.2 The qth harmonic polarization component . . . . . .. .. ..
2.2.3 Simulation results and discussions . . . . ... ... .. ....

2.3 Summaryand Conclusions . . . . ... ... ... .. .........

3 High Order Difference Frequency Mixing

UL

]

16



3.1 The HDM Phase Matching Condition . . . . . . .. .. ... ... .. 75

3.2 The Mixed field Atomic Response . . . . . .. ... .......... T
3.2.1 Preliminarvanalvsis . . ... ... ... ... ......... I

3.2.2 Numericalresults . . . ... ... ... .. ... ... ..., 79

3.3 One Dimension Propagation Study . . . ... ... .......... 87
3.3.1 Resultsand Discussion . . . .. .. .. ... .......... 88

3.4 Summaryand Conclusions . . . .. ... ... ... ... ....... 102

4 Coherent Attosecond Soft-X-Ray pulses 104
4.1 Single Atom Analysis . . . ... .. ... ... L L L 105
4.1.1 lonization of theatom . . . .. ... . ... ... ....... 105

4.1.2 Thedipoleresponse. . . . . .. . ... ... ... ....... 105

4.2 Propagation Analysis . . . .. .. ... ... ..o L. 110
4.2.1 The one dimension model . . . . ... ... .. .. ...... 110

4.2.2 Solving the wave equations . . . . . . . ... ... ... .. .. 111

4.3 Results and Discussion . . . . . ... ... .. ... .. ... ... L2
4.3.1 Understanding of the conversion saturation . . . . . .. .. .. 116

4.4 Summary and Conclusions . . . . . ... ... ... .. .. .. .... 129

5 Two Dimensional Propagation Considerations 130
6 Conclusions 138

A Stationary Phase Evaluation of the qth Harmonic Dipole Compo-

nent 150
B The One Dimension HHG Wave Solver 152
C The One Dimension HDM Wave Solver 159

D Phase and Amplitude of an Ultra-Short Laser Pulse in a Steep Ion-
ization Front 162



L L AR AA e TR T

TSR ENT

S0 T T TR T e SRARE NV e e

List of Figures

I.1

1.3

o
(8]

A typical schematic HHG experimental configuration. . . . . ... . .
Harmonic spectrum obtained from a 1053 nm. 30 mJ. 1 ps. Nd-glass

laser in neon (from Ref. [2]). . . . . . . ... ... ... ... ...

Calculated single atom harmonic spectrum for a 1064 nm. 3 x 10'®* W /cm?

laser interacting with xenon from Ref. [19]. Superimposed are the ex-
perimental results from Ref. [20]. (The spectra have been adjusted in

Ref. [19] to agree at the Tth harmonic.) . . . . . ... ... ... ...

(a) The ionizing electric field corresponding to a peak intensity of
5 x 10" W/cm?. (b) The tunnel ionization rate for a neon atom in

! where the laser period {, is equal to 2.5 fs. (c) The ion-

units of ¢
ization probability. . . . .. ... L oL
(a) The force acting on the electron due to E. (b) The electron tra-
jectories which have negative initial displacements. (c) The electron
trajectories which have positive initial displacements. The dashed
lines denote those trajectories which will not cross the x-axis again.
F,=—~(e/m)E, and 1, = —(e/m)(E,/w?) . ... ... ........
(a) The force acting on the electron due to E. (b) The velocity of
the electron during its first re-collision with the parent atom. (c)
The kinetic energy of the electron during its first re-collision with
the parent atom. F, = —(e/m)E,. v, = —(e¢/m)(E,/w,) and [, =
(I/ANEXE?)/(mw?) . . .

V]
[EV]



B et L S oo ab A R LRI TL LI EL TRAEY At he ]

2.5

2.6

2.7

-~

2.8

o

13

The electron trajectories calculated from two slightly different ioniza-
tion times. The difference in displacement hetween these two trajec-
tories at the re-collision time ¢ is denoted by ér. . . . . . . . . .. ..
Dipole acceleration power spectra obtained from (a) the quantum
model and (b) the semi-classical model. . . . . . . ... ... . ....
Dipole acceleration power spectrum obtained from the Brunel model.
A zoom of the first harmonics is shown in the inset. . . . . .. .. ..
Zoom of the dipole acceleration spectra near the 55th harmonic com-
ponent for (a) the quantum model and (b) the semi-classical model. .
Zoom of the dipole acceleration spectra near the 85th harmonic com-
ponent for (a) the quantum model and (b) the semi-classical model. .
Temporal envelopes of the 535th harmonic dipole acceleration compo-
nents obtained from (b) the quantum model and (c¢) the semi-classical
model. Shown in (a) are the temporal profiles of the driving laser
intensity /(¢) and the ionization probability P(¢). . ... ... .. ..
Temporal envelopes of the 85th harmonic dipole acceleration compo-
nents obtained from (b) the quantum model and (c) the semi-classical
model. Shown in (a) are the temporal profiles of the driving laser
intensity /(t) and the ionization probability P(f). . . ... .. .. ..
The re-collision times at which the electrons have the same re-collision
ENETEY. - + v o v e et e e e e e e e e e e e e e e e e e e e e
Dipole acceleration power spectrum obtained from the semi-classical
model (a) near the 35th harmonic and (b) near the 83th harmonic.
The solid lines denote the pre-3.17 component and the dotted lines
denote the post-3.17 component.. . . . . ... ... .. ........
Dipole acceleration power spectrum near the 535th harmonic obtained
from the quantum model with ¢, set to t — nt, where n = 1.2.3.4 in

(a). (b), (c). (d). respectively. . . . .. ... . ... ... .. ...,

41



AR, L HEL TR JEX TR PP

o

.14

o
.

—
[

o
—_
-1

(]
—
oL

2.21

2.22

Dipole acceleration power spectrum near the 85th harmonic obtained
from the quantum model with ¢’ set to nt, where n = 1.2.3.4 in (a).
(b). (c), (d), respectively. . . . . ... ... .. ... .. ...
Shown in (a) is the amplitude of the 55th harmonic dipole acceleration
component. Shown in (b) are the phases of the corresponding Pre-3.17
and Post-3.17 components. The solid lines denote results from the
semi-classical model and the dashed lines denote the results from the
quantummodel. . . . . .. oL Lo Lo
The accumulated phase S(¢;) and the recombination phase qu,f, for
the 55th harmonic Pre-3.17 and Post-3.17 components. . . . . .. ..
Phase of the Pre-3.17 and Post-3.17 55th harmonic dipole acceleration
components. The circles. solid lines and dashed lines denote the results
obtained respectively from Eqn. (2.61). the semi-classical model and
the quantum model. . . . .. . ... oL oL oL
Spatial profiles of the driving intensity. /. the electron density. n,. and
the 55th harmonic intensity. I55. recorded at ¢ = 2383 fs. 566 fs. 906 fs
and 1586 fs. Direction of propagation is in the positive = direction.
The medium has a background density of n, = 500 torr. . . ... ..
Temporal and spectral profiles of the 55th harmonic intensity recorded
at = =5 pm. 100 pm. 200 pm. and 400 pm. The dashed lines denote
the temporal electron density profiles recorded at these locations.
Temporal and spectral profiles of the 85th harmonic intensity recorded
at z=1pm.35 pm. 10 pm. and 20 gm. The dashed lines denote the
temporal electron density profiles recorded at these locations

The energy of the 55th and 5th harmonics. The circles denote the
discrete locations at which the harmonic energy is calculated. . . . . .
Temporal profiles of the 55th harmonic intensity at = = 200 um as

obtained by (a) analytical and (b) simulation calculations. . . . . . .

51

54

U
Tt

63

66

67

7l



BRR T gt T AT I T e DePg WP AIRE TN NS T B g a4 -

T AUV AT f TR e BBy v

2.23 Temporal profiles of the 85th harmonic intensity at = = 200 gm as

3.1

3.4

3.6

obtained by (a) analytical and (b) simulation calculations. . . .. ..

(a) Dipole acceleration power spectrum obtained for a 150 fs funda-
mental pulse interacting with neon. The fundamental pulse has a peak
intensity of 1.5 x 10’ W/cm? and a wavelength of 400 nm. (b) Dipole
acceleration power spectrum obtained for the mixing of a CW control
field with the same fundamental pulse used in (a). The control field
has a wavelength of 10400 nm and an amplitude equal to 0.070 of the
fundamental pulse peak amplitude. . . . . ... ... ... .. ....
Dipole acceleration power spectra near the 26w, — «. mixed line ob-
tained for the mixing of the same fundamental pulse used in Figure 3.1
and a CW control field with different amplitudes. E., is the amplitude

of the control field and E|, is the peak amplitude of the fundamental

Energy of the 25w,. 26w, — «. and 26w, — 3. dipole acceleration
COmMPONENtS. . . . . . . . . . L e e e e e e e e e e e e e e e e
(a) The normalized fundamental intensity and the ionization probabil-
ity calculated in the absence of the control field. (b) The normalized
control field profile. {c) Temporal profiles of the 25th harmonic at
E., = 0. the 26w, — w. component at E., = 0.025 E,, and the the
26w, — 3w, component at E., = 0.065 E,,. These ficlds are normalized
with respect to the peak 25th harmonic amplitude. . . . . . ... ..
(a) Phase (in rad) of the 25th harmonic dipole component in the ab-
sence of the control field. (b) and (c) Phases of the 26w, — w. and
26w, — Jw. components at two different valuesof £.. . ... ... ..
The time-integrated energy of the 25th harmonic pulse. The values
of the harmonic energy have been calculated at discrete locations as

indicated by thecircles. . . .. .. .. ... ... ...........



AE T VTR

FETWE TENIWR TS

3.8

3.9

3.10

3.11

3.12

3.13

3.14

4.1

The temporal profiles of the 23th harmonic recorded at different loca-
tions. Also plotted are the normalized fundamental intensity and the
electron density. The electron density has a maximurn value of 50 torr
corresponding to 100% ionization of thegas. . . .. .. .. ... ...
Spectral profiles of the near-26 mixed field recorded at different loca-
tions in the medium. . . . . ... ... ... o L.
Time integrated energy of the near-26th mixed field and the 25th har-
monic when there is no control field. The energy is normalized with
respect to the maximum 25th harmonic energy. . . . . .. .. .. ..
Temporal profiles of the low frequency control field near the ionization
front recorded at different locations in the medium. . . . . .. .. ..
Temporal profiles of the 26w, — «. sub-band component recorded at
different locations in the medium. Also shown are the normalized
fundamental intensity and electron density. . . . .. .. ... ... ..
The control field frequency shift at different locations in the medium
as obtained from the numerical simulation (solid lines) and from the
SVE analysis (dashed lines) . . .. ... ... ... .. ........
Shown on the left is the control phase as obtained from the numeri-
cal simulation (solid lines) and from the SVE analvsis (dotted lines).
Shown on the right is the deviation from the SVE phase. . . . . . ..
Energy conversion of the near-26 mixed field generated by the mixing
of the same 400nm fundamental field and a 3500nm control field with

an initial amplitude equal to 0.07E\,. . . . . . ... .. .. .. ....

Ground state population for helium as calculated from the average
ADK ionization rate for a Gaussian laser pulse with different FWHM
durations. Plotted is the ground state population versus the rising
portion of the laser pulse. The laser has a wavelength of 750 nm and

a peak intensityof 2 x 10¥W/em?2. . . .. ... .. ... ... ...

91



4.2

4.3

44

4.6

4.8

Dipole acceleration power spectra for a 750nm. 2 x 10"*W /cm? laser
pulse interacting with helium. The driving pulse durations are (a) 5 fs
and (b) 200 fs. The spectra have been normalized with respect to the
energy of thedrivingpulse. . . . ... ... ... o000
The temporal profiles of the incident electric field, £,. the ionization
probability. P, and the intensity envelope of the dipole acceleration. /.
as seen through a filter which only allows frequency components above
w/w, = 210 to pass through. Here, E, is the maximum incident field
strength corresponding to an intensity of 2 x 10"*W /cm?2. t, = 2.5 fs
is the laser’s fundamental cvcle. The interacting medium is helium.

Spectral profiles of the induced harmonic field generated by a 750 nm.
5 fs. 2 x 10"®W/cm? incident laser field interacting with 500 torr of
helium. The spectral profiles are shown near the cutoff region as a
function of propagation distance. . . . . ... ... ... ... ....
Peak amplitude of the induced field as function of propagation dis-
tance. The induced field has been spectrally filtered to contain only
frequencv components above w/w, =210 . . . ... .. ... ... ..
Temporal profiles recorded at = = 20 gm of the incident electric field.
E,. the electron density divided by the critical density for the funda-
mental field. n./n.. and the amplitude envelope of the induced field as
seen through a filter which only allows frequency components above
w/w, = 210 to pass through. Here. E, is the maximum incident field
strength corresponding to an intensity of 2x 10'*W/cm? and ¢, = 2.5fs
is the laser's fundamental cycle. The interacting medium is helium.

Magnitude of the Fourier transformed dipole velocity calculated at
different locations in the medium. . . . . . .. ... ... ... ... .
Phase of several frequency components near the cutoff region of the

Fourier transformed dipole velocity as functionof /. . ... ... ..

109



BN

e RS ST N TR YR AN G Y T et

e

i Akl Bt it AL RY LT L ELEETES

4.9 The amplitude and phase of the complex fundamental envelope in the
retarded time frame recorded at various locations in the medium. £,
and ¢, are respectively the initial peak field amplitude at = = 0 and
the fundamental cycle. The dotted lines denote the phase calculated
from the slowly varying envelope approximation. . . . . . .. ... ..

4.10 The phase and amplitude of the complex fundamental envelope in the
retarded time frame recorded at = = 16 ym in the medium. E, and
t, are respectively the initial peak field amplitude at = = 0 and the
fundamental cycle. The solid lines denote results obtained from the
semi-analytical calculations and the dotted lines denote results from
numerical solution to the wave equation . ... ... ... ......

4.11 Change in cutoff frequency as predicted from the cutoff law. Here the
change in the fundamental’s ponderomotive potential is assumed to
be due to the average frequency shift and the decrease in the peak
intensity in the interval where the responsible electrons are ionized
and recombine. . . .. .. ... oL

4.12 Phase of the wy / w, frequency component. The circles denote the
phase obtained from the numerical simulation. The solid line represent
the phase obtained from the semi-analvtical analvsis. The dashed lines
denote the two contributions from the semi-analvtical analysis. . . . .

4.13 Peak intensities of the soft-x-ray attosecond pulse (solid line) and the

201st harmonic generated by a 200 fs incident laser pulse (dashed line). 128

5.1 (a) and (b) Spatial profiles of the incident laser beam with a Rayleigh
range of 5 mm and the electron density recorded near = = 200 ym. (c)
The peak axial intensity recorded at various locations in the medium

(solid line) and that calculated from Eqn. (5.3) (dashed line).

133



el SR L TETTIO SRS

WEEITIAEN SRS e e e e e A, e

B.1

(a) and (b) Spatial profiles of the incident laser beam with a Rayleigh
range of 20 mm and the electron density recorded near = = 200 ym. (c)
The peak axial intensity recorded at various locations in the medium
(solid line) and that calculated from Eqn. (5.3) (dashed line).. . . . .
(a) and (b) On axis spatial profiles of the incident laser beam with
a Rayleigh range of 20 mm and the electron density recorded near
z = 200 um. (c) On axis phase of the laser beam recorded at the same
location. The solid line denotes the phase obtained from the numerical

simulation while the circles denote the phase calculated from the WKB

formula: —(1/2)k,=z(n./ns). - . o o o o

The computation grid and the moving frame. Z, and T, are respec-
tively the total simulation length and time: Z,, and T, are respectively
the spatial and temporal extend of the moving frame: and k. Az and
k.Ax are respectively the left and right spatial boundaries of the mov-
ing frame. The solid circles denote the grid points near the (j + 1).\¢

time step. . . . . . . . . . . e e



il St Al (S it ARt d A & A Sha otk Anbinalnith Sl b ente obe LI L INT SRERNLSE RS

Chapter 1

Introduction

Advances in laser technology have made possible the production of very intense op-
tical laser pulses with focussed intensities up to 10'" W/cm? and with ultra-short
durations ranging from a few femtoseconds to a few hundred femtoseconds. One of
the most important applications of these lasers is the study of intense field laser-atom
interaction where the laser’s electric field strength is comparable to the intra-atomic
field strength which binds the nucleus and the electrons together. Many interest-
ing phenomena have been experimentally ohserved as a results of these studies [1].
Among them are above threshold ionization. multiphoton ionization and tunnel ion-
ization. Besides these. an optical process which converts the incident laser light into
much higher frequency components has also stirred a lot of excitement in the scientific
community.

When low density (= 100 torr) atomic gases such as neon and argon are expo.sed
to an intense (= 10" W/cm?), short duration (= 150 fs to | ps) laser pulse. the
output radiation has been found to contain coherent {requency components which
are odd harmonics of the incident laser field [2]. The highest harmonic components
have been observed in the extreme-ultraviolet (XUV) and soft-x-ray spectral regions.
This process has been commonly referred to as high harmonic generation (HHG) and
is expected to be a useful source of short wavelength coherent radiation.

Interest in the development of high brightness coherent XUV and soft x-rav

sources has been immense. This can be partly seen from the tremendous effort in-

l



vested in the development of x-ray lasers and synchrotrons in the past decade. Some
of the proposed applications of these sources include [3]: Electron Spectroscopy for
Chemical Analysis (ESCA) which studies the elemental composition and chemical
state of the surface of a material by photoionizing the core electrons and analyzing
their kinetic energy distribution; X-Ray Microscopy which uses x-rays to resolve very
small structure of living biological specimens: and X-Ray Holography which proposes
to use coherent x-rays to take three dimensional holographic images of living cells.
For microscopic and holographic applications. the desired x-ray wavelength range
is between 2.3 nm and 4.4 nm. which has been referred to as the “water-window".
In this wavelength range. carbon-containing biological objects absorb radiation effi-
ciently whereas water is relativelyv transparent. A radiation source which can produce
x-rays in the water-window will allow for very high contrast imaging of the biological
objects with respect to their surrounding.

To date. harmonics have been reported with wavelengths as short as 7 nm [4. 5.
6. 7. 8] and energies as high as a few n.J with an energy conversion efficiency of about
10=7 [9]. These figures indicate that HHG can be a useful source of XUV or soft x-ray
radiation. A number of HHG applications have alrcady been investigated: Haight
and co-workers have used harmonic radiation to perform spectroscopic analysis of
solid-state surfaces [10. 11. 12]: Balcou ¢/ al have used high harmonics to measure
the relative photo-ionization cross section of a number of rare gases [13]: and Larsson
et al have used high harmonics to study spectroscopy of helium [14].

When compared with other coherent XUV and soft-x-ray sources such as syn-
chrotrons and x-ray lasers, HHG is anticipated to have a number of distinct advan-
tages according to current HHG experimental and theoretical evidence. These include
short pulse duration. high spectral brightness. broad spectral tunability and compact
experimental setup. For example. one of the studies to be presented in this thesis pre-
dicts that harmonic pulses can have durations of as short as several femtoseconds and
that it may be possible to generate coherent soft-x-ray pulses with durations of only a

few hundred attoseconds. These pulse durations are at least two orders of magnitude
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shorter than the picosecond XUV or soft-x-ray pulses generated by synchrotrons and
x-ray lasers [15]. The peak spectral brightness of high harmonic pulses in the XUV
range is estimated to be greater than 10?* photons mm~=% mrad~2 s~! [16] which is
many times greater than that of existing synchrotron sources. In addition. since the
frequency of the incident lasers can be easily adjusted with existing laser technology.
the frequencies of the resulting harmonics are thought to be tunable. This can be
potentially a great advantage over x-ray lasers where the lasing wavelength is fixed
by the transition levels. Finally, most HHG experiments use compact solid state
lasers, such as the Ti:Sapphire lasers. to generate the harmonics. The trend toward
smaller and smaller sizes of these lasers will make HHG a potentially “table-top™ size
device. This represents a great advantage over current synchrotron sources which are
laboratory-size devices.

Although a basic understanding of HHG has been obtained through both exper-
imental and theoretical investigations. a number of important and practical issues
remain to be investigated. These include the spectral and temporal characteristics
of the high harmonic radiation. methods of further improving the energy conversion
efficiency and schemes to increase the shortest harmonic wavelength obtainable. In
this thesis research. a theoretical investigation has been undertaken to address some
of these issues. These studies are detailed in the following chapters. In the remain-
der of this chapter. an overview of HHG experimental observations and the current
theoretical understanding is provided to give a gencral understanding of the HHG
process. This is then followed by a detailed discussion of the scope of the thesis

investigation.

1.1 General HHG Experimental Observations

HHG experiments are performed by focussing an intense, linearly polarized ! laser

pulse onto a low density gas target. This is illustrated schematically in Figure 1.1.

'For elliptically polarized lasers, strengths of the high harmonic radiation have been observed to
decrease significantly. An explanation is given in the next section.
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Figure 1.1: A typical schematic HHG experimental configuration.
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Typical lasers used in current experiments have wavelengths ranging from 250 nm to
1000 nm and durations in the femtosecond range. The vacuum focussed intensities of
these lasers vary from 10'* W/cm? to 10'®* W /cm? . The gas target is placed inside
a vacuum and is in the form of a gas jet or a gas slab confined by a squeezed metal
tube (see inset in Figure 1.1). In either case. the gas is allowed into the vacuum
chamber from a gas reservoir by opening a pulsed valve prior to the arrival of the
laser pulse. The gas medium is usually one of the five noble gases and the target
density ranges from a few torr to a few hundred torr. The output radiation emerging
from the gas target is directed into a spectrograph and is spectrally dispersed by a
reflection grating. Finally. the harmonic signal is detected by an XUV or soft-x-ray
detector.

Experimental results of HHG are usually presented in the form of an energy
spectrum which depicts the energy distribution of the various detected harmonic
components. A tvpical HHG spectrum is shown in Figure 1.2. Here. two general
characteristics common to most experimental spectra are seen. First. only odd har-
monics are observed. Secondly. for sufficiently high laser intensities. there exists a
~plateau” region in the spectrum where the harmonic strengths are relatively con-
stant. This region is preceded by a rapid fall-off of the first few harmonics and ends
with a “cut-off” bevond which harmonic signals decrease very rapidly again. The
laser intensities at which harmonic plateaus are formed generally increase from me-
dia with lower ionization potentials (e.g. xenon) to media with higher ionization
potentials (e.g. helium). Typical intensities where harmonic plateaus occur range

from 10" W/cm? to 10'®* W/cm?

1.2 Theoretical Investigation

As is common in nonlinear optical studies [17]. the theoretical interpretation of HHG
experimental results involves two steps. The first step is to determine the polarization
of the medium. This is achieved through single atom analysis which calculates the

microscopic electric dipole moment induced by the laser field. The second step is to

Ut
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determine the macroscopic electromagnetic field emerging from the medium. This is
achieved through propagation analysis which seeks solutions to Maxwell's equations
using the polarization obtained from single atom analysis. Physically. the first theo-
retical step can be interpreted as an examination of how individual atoms respond to
the driving laser field while the second step is an investigation of how the resulting
harmonic field propagates in the macroscopic medium involving many atoms. These

two steps are discussed in greater detail below.

1.2.1 Single atom analysis

The source for any radiation scattered from a medium is its induced polarization

which is equal to the induced dipole moment per unit volume:

-

P=n,d (1.1)

Here. n, is the number density of the medium and d is the atomic electric dipole
moment induced by an external laser field. In HHG analyvsis. the dipole moment
is obtained from quantum mechanical analysis and is calculated as the expectation

value of the dipole operator €7 for a single atom:
d(t) =< U|cAV > (1.2)

Here. ¥ is the wave function of the atomic system in the presence of the laser field
and is a solution to the relevant Schrodinger equation describing the laser-atom in-
teraction.

Various methods have been used to determine the atomic dipole moment respon-
sible for HHG [2]. Specifically. the dipole moment for realistic atomic systems has
been calculated and extensively studied by Kulander and co-workers {18]. Assuming
that the atom can be treated as a single electron moving in an effective electrostatic
potential, they determine the atomic wave function by direct numerical integration
of the time-dependent Schrédinger equation:

,a h2 2 ., -
za‘ll— —%T +V(F)—erE| W (1.3)
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Here, E is an external driving electric field linearly polarized in the r direction and
V" is the effective electrostatic potential. m is the electron mass and ¢ is the electron
charge. The calculated single-atom spectra. which is evaluated as the square of the
Fourier transform of the time-dependent dipole moment, possess many features of the
experimental spectra such as the rapid fall-off of the first harmonics. the constant
intensity plateau region, and the sharp harmonic cut-off. An example is shown in
Figure 1.3. In addition, when propagation effects are taken into consideration. good
quantitative agreement with experimental results have also been obtained [21. 22. 9].
However. despite the success of these theoretical results, such numerical solutions
provide a less than complete physical insight into the underlying process.

A physical understanding of the HHG atomic response has been obtained follow-
ing a proposed scaling law for the single-atom HHG spectra. In [23]. by using the
numerical methods employed by Kulander ef al [18]. Krause ¢/ al observe that the
cut-off harmonic (wewor) for many atomic systems can be predicted quite accurately

by:

hwentorr = I, + 30, (1.4)

where [, is the ionization potential of the atom and {, = (1/4)(c?E?)/(mw?) is the
laser’s ponderomotive potential and w is the laser’s frequency. This scaling law seems
to be supported by many experimental results [24. 4. 5]. Following this observation. a
physical interpretation of the cut-off law (Eqn. (1.4)) has been proposed by Corkum
[25). It is suggested that HHG is a result of the following process. Firstly, the
valence electrons of the atoms are tunnel or field ionized [26. 27. 28. 29] with zero
initial velocity [27. 31]. Secondly. these electrons are accelerated by the laser’s electric
field and their motion is described by Newton's laws of motion 2. Finally. harmonics
are emitted by those electrons which return to the vicinity of the parent atom and
recombine to the ground state. A similar interpretation of the HHG process has also

been given by Schafer et al [30].

" . . . . . . . . . . .
A more detailed discussion of tunnel ionization and the classical niotion of the resulting ionized
electrons is given in Chapter 2.

(4]
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Figure 1.3: Calculated single atom harmonic spectrum for a 1064 nm.
3 x 10'3 W/cm? laser interacting with xenon from Ref. [19]. Superimposed are the
experimental results from Ref. [20]. (The spectra have been adjusted in Ref. [19] to
agree at the 7th harmonic.)
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From the above semi-classical * model. the cut-off law can be readily understood
from energy conservation considerations [25. 30]. For an electron released with zero
initial velocity from an atom and then accelerated according to Newton's law of
motion by an oscillating electric field with a constant intensity. it can be easily
shown from numerical calculations that the maximum kinetic energy the electron
can have when re-visiting the parent atom is equal to 3.17 ", and this occurs during
the electron’s first re-encounter with the atom *. Consequently. when the re-colliding
electron does recombine with the atom. the maximum energy of the emitted photon
must be equal to the maximum acquired kinetic energy of the electron. 3.17 [',. plus
the ionization potential of the atom. /,. Hence. hweyor = 1, +3.17 U}

The semi-classical model has also been able to explain a second general obser-
vation from the simulation results of Krause ef al [23]. that is. the strength of the
single-atom harmonic plateau is proportional to the medium’s ionization rate. Ac-
cording to the semi-classical model. since harmonics are generated by the spontaneous
recombination of tunnel ionized electrons. the number of harmonic photons produced
is proportional to the number of electrons ionized. Therefore. the harmonic intensity
will be proportional to the ionization rate. In Ref. [25]. Corkum attempts to calcu-
late the dipole moment by phenomenologically constructing the atomic wave function
based on the semi-classical approach ® where ionization is described by tunnel theo-
ries [29]. He shows that the resulting harmonic spectrum is indeed proportional to
the ionization rate and the height of the calculated harmonic plateau agrees very well
with that observed from the numerical calculations by Krause ¢/ al [23].

The harmonic nature of the emitted radiation can also be understood from this
model. Assuming the incident laser has a slowly varving intensity envelope. the
ionized electrons will be accelerated and pass the parent atom the same way during

each laser cycle. Therefore, any radiation that is emitted by the recombination of

3The model is semi-classical in that ionization and recombination of the electrons are described
quantum mechanically while the electrons’ motion in the laser field is described classically

4This will be shown in Chapter 2

®A more detailed discussion of this model will be given in Chapter 2

10
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these electrons to the ground state will be at a harmonic of the laser frequency. As
will be discussed in the next chapter. the observation of only odd harmonics can also
be explained by this model since the corresponding dipole moment reverses sign in
successive one-half laser periods.

After the proposal of the semi-classical model. a more rigorous quantum mechan-
ical analysis has been carried out to justify the semi-classical hypothesis. In Ref. [32].
Lewenstein ef al obtain a closed form solution to the three dimensional Schrodinger
equation by ignoring contributions from all bound states except the ground state to
the system wavefunction and by neglecting the effect of the atomic potential on the
continuum states. These assumptions are valid in the tunnelling regime [27] where
the electrons are in the presence of a very strong laser field during ionization and
recombination. Analysis of the resulting dipole moment indicates that the main con-
tribution to the emission of a particular harmonic indeed comes from the electrons
which. after having tunneled through the atomic potential barrier with zero initial
velocity. follow a classical trajectory in the laser field and then return to the nu-
cleus with a kinetic energy equal to the harmonic photon energy minus the atomic
potential.

One immediate success of the Lewenstein model is its ability to explain quanti-
tatively the dependence of HHG on the ellipticity of the incident laser light [33. 34].
From classical trajectory considerations. electrons with zero initial velocity can only
re-collide with the parent atom when the accelerating laser ficld is linearly polarized.
A very small ellipticity of the laser field will cause the electrons to drift away and miss
the atomic nucleus. Consequently. no harmonics can be emitted. In quantum me-
chanics. the ionized electron is described by a wave function with a time-dependent
spatial spread due to the small uncertainty of the electron’s initial momentum when
it is released from the atom [34]. Therefore. the ellipticity dependence is not as
severe as in the classical case and is dependent on the spread of the electron wave
function. Theoretical calculations of the harmonic ellipticity dependence obtained

from the Lewenstein model. which is capable of describing the spread of the electron

Il
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wave packet. show very good agreement with experimental results [33].

1.2.2 Propagation analysis

When the medium’s polarization is determined. propagation analysis can be carried
out to study HHG under more realistic experimental conditions. The general propa-
gation modelling approach [2] is to solve the electromagnetic wave equation derived

from Maxwell’s equations:

| PE 47 O?P
/2 = — .."
VE-Z%E T @ (1-3)

where E is the total electric field inside the medium. including the driving field as
well as the generated harmonic fields and P is the medium polarization induced by
E and is determined from single atom analysis.

Extensive propagation modelling of HHG in almost neutral media by a focussed
laser beam has been done by L'Huillier and co-workers [2. 21. 22. 5. 35. 36]. By ne-
glecting the depletion of the driving field and assuming that harmonics are generated
by only the driving field. the wave equation (Eqn. (1.3)) is decomposed into a set of
decoupled equations for the driving and harmonic ficlds. The resulting equations are
solved in the two-dimensional paraxial and slowly varving envelope (SVE) approxi-
mations [2] using either integral or finite difference methods. The dipole models of
Kulander et al [18] and Lewenstein ef al [32] have been used in these propagation
studies. For long duration (= | ps) driving lasers. the calculated harmonic spectra
show good quantitative agreement with experimental results.

For HHG from very short duration (< 100 fs) lasers in a rapidly ionizing medium.
the SVE approximation used by L'Huillier ¢/ al is no longer applicable. Recently.
Rae and Burnett have developed a model to study HHG in this regime [37]. They
numerically solve the fully time-dependent wave equation (Eqn. (1.5)) in the one-
dimensional limit. Atomic response is consistently calculated by numerically inte-
grating the Schrodinger equation for a one dimensional atom interacting with the

total propagating electric field. Results from this investigation have provided some
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insight into the fast dynamical response of the HHG process under these conditions.
although they cannot be compared directly to experimental results due to the one-
dimensionality of the atomic modelling which ignores the important effect of the

transverse spread of the electron wave function.

1.3 Scope of Thesis

To date, most experimental and theoretical work has concentrated on the understand-
ing of the harmonic conversion efficiency and the location of the harmonic cut-off.
Many experiments have been done to specifically study the strength and extent of the
harmonic plateau under various conditions and many theoretical studies have been
aimed at interpreting these experimental results. As a result. there are still many
important issues which remain to be investigated.

In this thesis. a number of practical and interesting issucs which have not been
previously studied are examined. These include: (1) the temporal and spectral char-
acteristics of the high harmonic emission: (2) the possibility of increasing harmonic
conversion efficiency by high order difference frequency mixing: and (3) the genera-
tion of attosecond coherent x-ray pulses. These studies are organized in this thesis
as follows:

Chapter 2 examines the spectral and temporal structure of the high harmonic
emission generated under conditions which are typical of many current HHG ex-
periments. Here, both single atom and propagation analyses are carried out. The
single atomic response is obtained from the dipole models developed by Corkum [23]
and Lewenstein ef al [32]. These models are attractive to use not only because of
their mathematical and computational simplicity but also because of their ability
to predict experimental results and their agreement with other more rigorous theo-
retical calculations. The propagation analysis is conducted using a one-dimensional
non-SVE propagation model where the polarization current is consistently calculated
from the Corkum/Lewenstein model. The main features of this propagation model

are that it uses the realistic dipole model developed by Corkum and Lewenstein and

13
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that it also allows the study of fast transient effects in HHG. Results from this study
indicate that harmonic lines are strongly blueshifted and broadened under realistic
experimental conditions and that these harmonics can have durations of only a few
femtoseconds.

Chapter 3 investigates the possibility of increasing harmonic conversion efficiency
by high order difference frequency mixing. Here. a proposed phase matching scheme
is studied. In this scheme, a secondary low frequency. low intensity laser field is
allowed to co-propagate with the high frequency high intensity driving laser field.
Preliminary studies by others [38. 39. 40] suggest that the output harmonic field
strength can be greatly increased. In this part of the thesis study. both the atomic and
one-dimensional propagation models have heen modified to allow for an additional
laser field. Results from this investigation show that the conversion enhancement
is not as promising as anticipated and the limitations of the proposed scheme are
examined.

Chapter 4 explores the possibility of generating attosecond coherent x-ray pulses
by using a driving laser with a duration of only a few optical cvcles. Here. the atomic
dipole moment of Lewenstein ¢f al [32] is used. Single atom calculations predict that
the odd harmonic structure usually associated with longer driving pulses no longer
exists and the resulting dipole spectrum resembles a continuum spectrum. In propa-
gation analysis. a different model has been developed to describe the propagation of
the generated continuum spectrum. Results from this study indicate that attosecond
soft-x-ray pulses can be quite efficiently generated from this process.

Chapter 5 addresses some two-dimensional issues which have been ignored in the
previous studies in the thesis. Here. a two dimensional paraxial wave solver which
has been developed by Rankin et al [41] has been used to study the propagation of
the driving laser beam. The regime of validity of the previous one-dimension analysis
is examined.

Finally. Chapter 6 summaries the findings and conclusions of this thesis investi-

gation. Implications of the thesis results are also discussed.

4
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Chapter 2

Spectral and Temporal Study of

High Harmonic Generation

Experiments which investigate high harmonics have all been performed with pulsed
lasers. Typical durations of these lasers range from a few picoseconds to just a few
femtoseconds. Consequently. all observed harmonics are generated in a time varying
environment and the harmonic radiation itself is also a time-dependent quantity. In
spite of this fact. not many studies. either experimental or theoretical. have been
done to examine the temporal behavior of the harmonic emission. Equally neglected
are svstematic studies of the spectral constitution of the harmonic emission which
can have important implications in many HHG applications.

The objective of this study is to investigate the spectral and temporal character-
istics of the high harmonic radiation. Here. harmonic spectral and temporal profiles
are obtained and studied via single atom and one dimensional propagation modelling
of the HHG process. In this chapter. a detailed description of this investigation ' is
given. Section 2.1 examines the single atom response. Here. the dipole models used
in the calculations are described and the single atom harmonic spectral and temporal

profiles are presented. Section 2.2 investigates propagation eflects. Here. the dipole

'A version of this study has been published in Phys. Rev. A 52. R4336 (1993). entitled “Spec-
tral and temporal structure in high harmonic emission from ionizing atomic gases™. by C. Kan.
C . E. Capjack. R. Rankin and N. H. Burnett.
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models used in single atom analysis are coupled to a one dimensional propagation
model. Effects on the harmonic spectral and temporal profiles due to propagation
are discussed. Finally. the chapter ends with a summary of findings and conclusions

of this investigation.

2.1 Single Atom Analysis

As discussed in Chapter 1, the first step in HHG modelling is to determine the dipole
moment of the atomic system. Only when this quantity is determined can a more
realistic propagation analysis be carried out. Physically. the second time derivative
of the dipole moment. i.e. the dipole acceleration. is a measure of the scattered
radiation emitted by a very dilute atomic gas.

In this study. three dipole models have been used. The first model is based on
the HHG model developed by Corkum [25]. Here. the dipole moment is derived
formally from a number of intuitive physical arguments. The second model is based
on the mathematically rigorous HHG model developed by Lewenstein and co-workers
[32]. As will be shown later. although these two models have a few physical and
computational differences. they vield essentially the same results. The last model is
based on the HHG process described by Brunel [42]. As will be shown later. this
model predicts negligible high harmonic emission and is used here mainly to account
for free electron induced dispersion in the propagation analysis.

As discussed in Chapter 1. essential in understanding these dipole models are two
related processes: tunnel ionization and the classical dynamics of the tunnel ionized
electrons in the laser field. Consequently. these processes will be discussed first. A

description of the three dipole models will then follow.

2.1.1 Tunnel ionization

When an atom is exposed to a strong external d.c. electric field. there is a finite

probability that the valence electron can he ionized from the atom [26]. The physical

16
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interpretation behind this process is that the external electric field acts to lower the
effective potential as seen by the valence electron. Consequentiy. there is a finite
probability that the electron can tunnel through the lowered potential barrier caused
by the external d.c. field and become ionized. Such a process has hbeen referred to as
tunnel ionization.

In the case of a strong low frequency laser field. it has been shown [27] that if the
laser cycle is long compared to the time needed for the electron to pass or tunnel
through the effective potential barrier. ionization of the valence electron can also be
described by the tunnelling process. Here. the lowered potential barrier is caused by
the instantaneous value of the external electric field. Quantitatively. this condition

is achieved when [27]:
1K 1 (2.1)

Here v is the so-called Keldysh parameter given by:

2.0

7=, / 'y (-._)

where w, is the laser frequency and «;/27 is the inverse of the tunnelling time \¢,.
As discussed in Ref.[27]. the tunnelling time is just the mean free time in which the

electron tunnels through the lowered potential barrier and is given by:

Aty =2ml, | ¢E (2.3)

where m and e are respectively the electronic mass and charge: [, is the ionization
potential of the atom: and E is the laser electric field strength.
For complex atoms. the tunnel ionization rate has been obtained by Ammosov.

Delone and Krainov and is given by [29]:

[ INY? B 1 2 7 INY?E
= Clhpt 2( ) 2 o |-z () = 2.
Ri “’C"'zih[ A |E|] e"p[ s\7.) JE| (24)

Here w, is the atomic unit of frequency equal to 4.134 x 10'® s=!: [, is the ionization

potential of the atom: /; is the ionization potential of the hyvdrogen atom equal to

|
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13.6 eV': E is the instantaneous electric field strength: £, is the atomic unit of electric
field equal to 0.514 x 10'2 V/m: n* = Z/,/I,/I} is the eflective principle quantum
number where Z is the charge of the atomic residue: I = n* — 1 is the effective orbital
quantum number; and C,.;- is a numerical constant equal to:

92n

n*C(n*+I~+ 1)[(n= = 1I~)

2
Cﬂ..l' -

where I is the gamma function. The ionization probability is determined by the rate
equation [42]:

dP(t) _ .
— = BRL-PQ) (2.6)

from which it can be readily shown that:

!v
-1

P(t) =1 —exp (—/’ R;df") (:

Shown in Figurc 2.1 are the tunnel ionization rate and the tunnel ionization
probability calculated for an electric field with a peak intensity of 3 x 10" W /cm?
interacting with a neon atom for two laser cycles. It is seen that due to its dependence
on E. the ionization rate becomes significant only near the peaks of |E|. This results
in a step-like ionization probability profile as shown in Figure 2.1(c).

It should be noted that the tunnel ionization rate given by Eqn. (2.4) is only valid
for |[E| « E, [43]. Specifically, it has been proposed [46] that when |E| reaches a
certain critical strength. E.. the ionization probability immediately becomes unity.
The critical field strength is just the external electric ficld strength which is needed
to lower the atomic potential barrier by an amount equal to the atomic ionization
potential such that the bound electron can escape freely from the atom without
tunnelling. This critical field strength (in atomic units) is given by[46]:

ol 1n)* (2.8)

be =167

[t should also be noted that in the case where y > 1. ionization is described by

multiphoton ionization [27] in which the bound electron is ionized by simultaneously

[V
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Figure 2.1: (a) The ionizing electric field corresponding to a peak intensity of

5 x 10" W/cm? (b) The tunnel ionization rate for a neon atom in units of ¢!
where the laser period ¢, is equal to 2.5 fs. (¢) The ionization probability.
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absorbing a number of the incident laser’s photons. In this thesis investigation.
studies are conducted only in the regime where tunnel ionization is the dominant

ionization mechanism.

2.1.2 Classical motion of tunnel ionized electrons

After electrons have been ionized in a laser field. they are free from the influence of
the atomic potential and their motion is determined by the laser electric field 2. In

classical mechanics. the motion of a free electron in an electric field is determined by:

a(t) = —< E(1) (2.9)

m

where a is the acceleration of the electron: € and m are respectively the electronic
charge and mass: and E is the laser electric field strength which is assumed to be
linearly polarized. If the initial velocity and position of the clectron are known at
the time of release or ionization from the atom. Eqn. (2.9) can be integrated to give
the velocity and displacement of the electron at all later times.

The initial velocity of a tunnel ionized electron has been shown theoretically to
be near zero [27] within a small uncertainty. This uncertainty is due to the fact
that there is an uncertainty in time at which the bound electron tunnels through the
effective potential barrier and becomes ionized. From the uncertainty principle. there
is also an uncertainty in initial energy associated with the ionized electron. Using
the energy-time uncertainty relation. it has heen shown [43] that the uncertainty in

the initial velocity is given by:

2h

m !melp

eE

|Av| = (2.10)

For strong laser fields (e.g. [, > 10" W/cm?). it can be shown that this small velocity

uncertainty has little effect on the motion of the electron in the direction of the

>This is true provided that the electrons velocities are much less than the speed of light. as they
are in the cases studied here. Therefore. the magnetic component of the Lorentz force can therefore
be neglected.
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laser’s electric field. However. in the direction perpendicular to the electric field. this
uncertainty can cause a net drift in the electron trajectory. In quantum mechanical
analysis. such a drift corresponds to spreading of the electron wavefunction. This
will be further discussed below. By neglecting this small initial velocity uncertainty
and assuming that E(t) = E, cos(w,t). the velocity of a tunnel ionized electron in

the direction of the electric field can be calculated as:

p(l) = —=2

[sin(wet) — sin(w,t’)] (2.11)
mw,

where ¢’ is the electron release time. The initial position of the tunnel ionized electron
can be estimated from the width of the effective potential barrier due to the sum of
the atomic Coulomb field and the external laser ficld [14] and is equal to a few Bohr
radii (ag = 5.2918 x 10~"" m) for the studies conducted in this thesis. For electron
motion in the strong laser fields studied here. it can he shown that this small initial
displacement has negligible effect on the electron trajectory. Consequently. the initial
position of the electron can be assumed zero and the displacement of the tunnel

ionized electron can be calculated as:

—¢E, : |
(1) = =2 [ cos(w,t) + cos{w,’) = sin(w,l'}{wd — wl')] (2.12)
mw

2

The electron trajectories as obtained From Eqn. (2.12) for different release (ion-
ization) times are shown in Figure 2.2. [t is seen that an electron ionized during the
time intervals 0.25 < t'/t, < 0.5 and 0.75 < '/t, < 1.0 where {, is the laser cycle
cannot revisit or re-collide with the parent atom. An electron ionized during these
intervals simply drifts away from the parent atom. However. an electron ionized be-
tween 0.5 < #'/t, < 0.75 will have its first re-collision with the parent atom between
0.75 < t/t, < 1.5 while an electron ionized between 1.0 < t’/f, < 1.25 will have its
first re-collision between 1.25 < t/t, < 2.0. From Figure 2.2. it is also seen that therc
is also a chance that the electron can once again re-collide with the parent atom after
the first re-collision.

Figure 2.3 shows the re-collision velocity and kinetic energy of the electron during

its first re-encounter with the parent atom. In Figurc 2.3(b). the negative re-collision
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Figure 2.2: (a) The force acting on the electron due to E. (b) The electron trajectories
which have negative initial displacements. (c) The electron trajectories which have
positive initial displacements. The dashed lines denote those trajectories which will
not cross the x-axis again. F, = —(e/m)E, and 7, = —(¢/m}(E,/«?)
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velocity corresponds to an electron ionized between 0.5 < t'/t,, < 0.75 (Figure 2.2(b))
while the positive re-collision velocity corresponds to an electron ionized between
1.0 < t'/t, < 1.25 (Figure 2.2(b})). The corresponding re-collision kinetic energy is
shown in Figure 2.3(c). As mentioned in Chapter 1. the maximum kinetic energy
attainable by such an electron is about 3.17 U/, where {7, = (1/4)(e®E?)/(mw?) is the
driving laser field’s ponderomotive energy. It is seen that for an energy below this

maximum. there can be four times at which an electron can have the same re-collision

energy.

2.1.3 The semi-classical dipole model

This model is based on the dipole model developed by Corkum [23] who proposes
that HHG is a result of the spontaneous recombination to the ground state of the
tunnel ionized electrons which have heen accelerated by the laser’s electric field and
are now re-colliding with the parent atom. In the following discussion. the original
model is described first. This is followed by a description of the extended model

which is used in this investigation.

The Corkum model

In Ref. [25]. the dipole moment is obtained by assuming that the wavefunction of the
atomic system in the presence of an external electric field can be written as:
v= Uy v (2.13)
where ¢, represents the ground state wavefunction of the atom and v'. is the contin-
uum wavefunction representing the recombining electrons. The dipole expectation is
then given by:
d = <tlex|y >

< Ygler|yy > + < Yyler|v. > + < v er|y, > + < vlerfve > (2.14)

In order to evaluate the dipole moment. a number of considerations and assump-

tions are made. Firstly. it is assumed that ionization is small and depletion of the
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Figure 2.3: (a) The force acting on the electron due to E. (b) The velocity of the
electron during its first re-collision with the parent atom. (c) The kinetic energy
of the electron during its first re-collision with the parent atom. F, = —(e/m)E,.

v, = —(e/m)(E,/w,) and U, = (1/4)(e* E?)/(mw?)
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ground state wavefunction can be neglected. Therefore. the ground state wavefunc-
tion can be modeled as the steady state ground state wavefunction of the atomic
system. Furthermore. it is assumed that this wavefunction can be approximated by
a hydrogen-like ground state wavefunction which is symmetric in space. Therefore.
< ¥,ler|yy >= 0. Secondly, it is assumed that the contribution from < ¢.|er|v. >
is small compared with that from < ¥,|er|¢". >. This assumption has been dis-
cussed elsewhere [47] in which it is concluded that the contribution from the term
< ¢ler|t. > is indeed an unlikely source of HHG. As a result. the dipole moment is

calculated as:

—_—
I\
.
—
(W] ]

~

d =< v,lex|v. > +c.c.

Thirdly. by arguing that harmonic radiation of a given harmonic frequency (gw,. q =
odd) must come from the recombining electrons having total energy in the range
ghw, — hw, < E, < gqhw, + hw,. the continuum wavefunction is expressed as a
series of free electron wavefunctions having harmonic [requencies of the incident field

frequency. That is.
U = Z v, = Z ch:pqr/hc-rq../,,! (216)

where p, is the re-collision momentum of the tunnel ionized electrons that satisfies

the energy conservation equation:

P2
hqu.'o:#-}-[p (2.17)

The left hand side of the equation is simply the harmonic photon energy whereas the
right hand side is the fotal energy which the electrons will give up by recombining
to the atomic ground state with a potential energy /,. It should be noted that for
a given peak electric field strength E,, the maximum re-collision Kinetic energy an
electron can have is about 3.2 [, (see Section 2.1.2). Consequently. harmonic photon
energy should be limited to qhw, < 3.2 U, + I, which is just the cut-off law described
in Chapter 1. The amplitude A, is obtained from the consideration that each of

the wave components in Eqn. (2.16) should represent the tunnel ionized electrons

-t
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having total re-collision energy in the range Auwy — hw, < E, < hwy + he, where
E. = p*/2m + I,. Therefore. by assuming a spatial extent | (see discussion below)
for the qth wavefunction component. v,. at re-collision. A, can be determined by the

following normalization condition:

i hwothwo (dP(E,)
2y =/" — =)V JE. 2.18
|Aq| 7 qhwo—hwn dEc E ( )

Here, P(E.) is just the tunnel ionization probability expressed in terms of the total re-
collision kinetic energy E. of the tunnel ionized electrons. The left side of Eqn. (2.18)
simply denotes the number of electrons represented by v, whereas the right side of
the equation represents the number of electrons having re-collision energy between
qhw, — hw, and ghw, + hw,. The spatial extent at re-collision. 1. is assumed to
consist of two terms. The first is the extent of the electron wavefunction in the
directions perpendicular to the electric field and is assumed to be caused by spreading
of the wavefunction resulting from the uncertainty in the initial transverse electron
momentum at the time of ionization (see Section. 2.1.2). In Ref. [25]. this spread
is assumed to vary linearly in time and has a value obtained from experimental

3. The second is the extent of the qth wavefunction component in

considerations
the direction of the electric field or the longitudinal spread. This is taken as the re-
collision velocity v, = p,/m multiplied by the time difference. 8. between the times
when the electron having energy hAwp — hw, < E, < hwy + hw, passes the parent
atom. Therefore the wavefunction extent is given by V, = (7r?)[(p,/m)dt] where r,
is the transverse wavefunction spread.

Two important effects have been neglected in this model. The first is the deple-
tion of the ground state wavefunction and the second is the phase relation between
the continuum wavefunction components representing the electrons recombining at
different times and having the same re-collision energy. These two effects will he

incorporated in the extended model described helow and their importance will also

be discussed.

3In the extended model discussed below. however. this spreading is obtained from the uncertainty
in initial velocity of the tunnel ionized electrons.
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The extended model

The extended model developed here follows the same general principle as the Corkum

mode] discussed above. The dipole moment is calculated as:
d(t) = (¥,ler|V.) (2.19)

However, the forms of the ground state and continuum wavefunctions have been
modified. These modifications have been made to account for the depletion of the
ground state wavefunction and the phase of the continuum wavefunction.

For ultra-high intensity laser pulses. ionization and thercfore ground state de-
pletion proceed very rapidly. on the time scale of a fraction of the pulse duration.
Therefore. since HHG ceases when no more electrons can be ionized. the temporal
durations of the generated harmonics will depend to a large extent on the deple-
tion of the ground state. In this extended model. the ground state wavefunction is
now calculated as the steadv state ground state wavefunction. v,. multiplied by a

time-dependent amplitude a(?):
U, =a(t), (2.20)

To determine a(¢). it is assumed that recombination is small and the ground state

population is therefore equal to one minus the tunnel ionization probability P(¢):
¥, [* = la(t)]* = 1 - P(t) (2.21)

Hence.

a(t):,/l_.p(t) (2.2:

The second modification involved in this extended model is concerned with the

o
(3]
[{V]
—

phase of the continuum wavefunction. As can been seen from the description of the
original model. there is no phase relationship hetween the various electron trajectories

which contribute to the same harmonic emission. In this extended model. this phase
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relationship is accounted for by assuming that the recombining wavefunction takes
the following form:
i[ﬂa‘-'-’,—-su)]
U, = A(t)e
where pp(t) is the re-collision momentum of the tunnel ionized electrons and S(1) is

the accumulated phase of the electron wave function given by:

Lot PP(E") 5 9.
S(t) = 5/ dt (—27+I,,) (2.24)
Here, p(t”) is the momentum of the tunnel ionized clectron as a function time from its
birth at ¢’ to its re-collision with the parent atom at {. It should be noted that when
A is constant and p?/2m > [,. the wavefunction (Eqn. 2.23) is a solution to the time
dependent Schrodinger equation for a free electron in an electric field. The atomic
ionization potential /, is included to account for the effect of the atomic potential on
the recombining electrons. As will be shown later. by assuming the wave function in
the above form. the phase relationship between the harmonic emission generated at
different times in a laser cycle agree very well with the more rigorous quantum model
described below.

The time-dependent amplitude A(¢) is determined as follows. From Figure 2.4. it
is seen that the electrons ionized between ¢’ and (' + §f will be in the vicinity. dr. of
the parent atom at t. Therefore for small 6" and §.r and assuming a transverse spread
rs for the electron wavefunction. the electron probability conservation condition is

given by:

|A2(7r?)dr = %Jt' (:

!\)
I~
(1}

The right side of Eqn. (2.25) simply represents the number of electrons ionized he-
tween ' and t' 4+ &t while the left side denotes the number of electrons in the vicinity
of the parent atom within the volume defined by dr and the transverse spread r,. In
this extended model. the transverse spread of the electron wavefunction r, is calcu-

lated from the uncertainty in the transverse velocity of the tunnel ionized electrons

o
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by using Eqn. (2.10) for |Ar|.

re = |Av(t — )| = (2.26)

That is, the transverse spread is interpreted here as the nect drift of the classical
electron trajectories in the direction perpendicular to the external electric field. By
noting that dr/ét' is just the change of electron displacement at time t (at which
r = 0) due to a change in the ionization time ¢’ and can be approximated by |+ /d'|.

the time dependent amplitude of the electron wavefunction is then given hy:

Physically. [0x /3¢| is evaluated at r = 0 and can be interpreted as the longitudinal

spread of the electron wavefunction *.

2.1.4 The quantum dipole model

This model has been developed by Lewenstein and co-workers [32] and is obtained
by a more mathematically and quantum mechanically rigorous analvsis. A summary
of this analysis is given below and a complete description of the model can be found
in Ref.[32].

Similar to the semi-classical model. the quantum model starts with an expansion
of the time-dependent wavefunction of the atomic system into a time dependent
ground state wavefunction ¥,(¢) and a time-dependent continuum state wavefunction

W (t):

(t) = Y,(t) + ¥(1)

o

= aq(t) e + [ dPob(F.t)wge'! (2.2
g

where ¥, and and ¢'; are the wavefunctions representing the field-free ground state
and continuum states of the atomic system. and a(t) and b(7. t) are the corresponding

time dependent amplitudes to be determined.

4The absolute sign is used to ensure the longitudinal spread calculated is a positive quantity.
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Figure 2.4: The electron trajectories calculated from two slightly different ioniza-
tion times. The difference in displacement hetween these two trajectories at the
re-collision time { is denoted by dur.
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By substituting ¥(¢) into the time-dependent Schrédinger equation (Eqn. 1.3) for
a linearly polarized electric field and neglecting the effects of the atomic potential on

the continuum states y.. a differential equation for b(¢.t) is obtained :

) ab mvz - A h ab
ih— = (‘)— + 1,,) b(v.t) — 165(”;30:

ot + a(f)e E(t)d(F) (2.29)

where d.(7) is the bound-free dipole transition element defined as:
dol) = (velele,) (2.30)
From Eqn. (2.29). a closed form solution of b(#.¢) can he obtained *:
i t - -
b(F.t) = —;’-e/ dt'a(tVE(1)d, (7 + A1) = (")
! Ili m Y T m\ 2 A -

xesp{~ [[arrs [2(F+ T - T+ n]} a0

where .-f(t) is the vector potential given by:

—

i =Ani =< [ arEw); (2.3

m

N
U]
o
~

By considering only the transitions from the continuum states back to the ground

state. i.e. d(f) =< ¥, |er|¥, >. the dipole moment can be obtained as:

dit) = —é—ez /' di’/dava'(t)a(t')E(l’)d, (F+ At - .I(t'))
xd; (T)exp [—iS(T.t.t")] (2.33)
where
f y - -
S(E.e.t)= | dt”}—;- [? (7+ A - M) + 1,,] (2.34)

is called the quasi-classical action.

As discussed in Ref. [32]. the dipole expression as given by Eqn. (2.33) has the
physical interpretation as a sum of probability amplitudes corresponding to the re-
combination process. The term E(t)d. (E+ Ai) - .i.(t’)) is the probability ampli-

tude for a bound electron to make the transition to the continuum at #’ with velocity

5For a description of the analytical method involved. see for example Ref. [18] p442-443.

31



L s dl ofs R STREES IR NT L

OIS ATE ey YR Ny AT Syt

T T TN FRS s vt

¥. The electron then propagates and acquires a phase equal to exp[—:S(F.1.t")]. Fi-
nally, the electron recombines with the atom at f with a probability amplitude equal
to d; (U).

By using stationary phase analysis. it is shown in Ref. [32] that the main contri-
bution to the dipole integral (Eqn. (2.33)) comes from the electrons which are ionized
from the atom with zero initial velocity and then return to the vicinity of the par-
ent atom. Further analysis of the Fourier transform of the dipole moment indicates
that the main contribution to the qth harmonic emission is due to the re-colliding
electrons which have kinetic energy equal to fqw, — [,. Hence. this quantum theory
justifies the three-step description from the semi-classical analysis. A quantitative

justification will be given in the next section.

2.1.5 The ionization model

In the tunnelling regime (v < 1). a third model has been proposed by Brunel to
describe HHG. In [42]. it is shown that the time dependent tunnel jonization current
can be a source of harmonic generation. Here. the rate of change of the tunnel

jonization current is found to be:

aJ €

9 me

=
(&
e
—
~
&
®
Co
Ot

where n, is the background electron density and P(t) is the tunnel ionization proba-

bility. Using the correspondence relation:

a? aJ
Somad(t) = (2.36)

the dipole acceleration can be found:

62 62
2dlt) = =P(E (

o
(V)
-1

Since P(t) is a highly nonlinear function of E. harmonic components can be generated

by such a dipole acceleration
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As will be shown later. for very high frequency harmonics. the harmonic emission
as predicted by this model is negligible compared to that predicted by the semi-
classical and quantum recombination dipole models. The major use of this dipole
model in this investigation is to account for free electron induced dispersion in the

propagation analysis (see Section 2.2).

2.1.6 Evaluation of the various dipole moments
Tunnel ionization and the ionization dipole moment

The tunnel ionization probability can be most easily evaluated from Eqn. (2.7):
t
P(t) =1 — exp (/ R,(E(t”))dt")

where the integration over the ionization rate R, can be readily computed numerically.
The 1onization dipole acceleration (Eqn. (2.37) given by:

€2

da(t) = — P(t)E

m
can then be readily obtained.
The semi-classical dipole moment

For a hydrogen-like ground state wave function [32]:

3/4
v, = (" )e-ﬁlﬂ (2.38)

=172

where o = -;f/a"é._ I, is the ionization potential of the atom. /; is the ionization
potential of the hydrogen atom. ag is the Bohr radius. The semi-classical dipole
moment can be obtained by substituting Eqn. (2.20) and Eqn. (2.23) into Eqn. (2.19)

to give:
d(t) = (eag)(27)*/? A(t)d(Fr(t))e™ ") + c.c. (2.39)

where the normalized amplitude is given by:

(1= P =PI R(1)

(__12_) A(r/1p)
ag [ A [t)

Aty =

13



Here ¢, is the fundamental cvcle of the driving laser and (ir is the normalized free-

bound transition element given by:

1 (%) FR(l)
dr(ﬁR(t)) = (__T/g) (_7)24 ke 5/1 ? 3 (241)
e ) T 2

where v, is the atomic unit of velocity. og(t) = v(t)/(2,/U,/m) is the normalized
electron velocity at re-collision and [}, = $(e?E?)/(mw?) is the peak ponderomo-
tive potential of the driving electric field. The normalized transverse spread can be

expressed as:

LR 1/4
= = 3-.——-([ o/21y) (f— 1) (2.42)

ag " Jhe/2I,

where { = t/t, is the normalized time.

Ts

Now. assuming that the driving electric field is given by:
E(t) = E,g(t) cos wt (2.43)
where ¢(!) is a slowly varying Gaussian envelope:
glt) = e2m2uli)} (2.44)

and {, is the FWHM of the square of the envelope. the electron velocity at first

re-collision with the parent atom is given by (See Eqn. (2.11)):
Tr(l) = —2g(t) (sin wt — sinwt’) (2.45)

where the release time t’ is obtained from setting r(f) = 0 in the displacement
equation (see Eqn. (2.12)):

_eEO ’ . 7 '
(= coswt + coswt’ — sinwt'(wt —wt')) (2.16)

t) =
() = 2

from which the longitudinal spread of the electron wavefunction dr / 8¢’ can be

found:
il B /t 2m2 LelB) s i — i (2.47
o’ Bl oI s ) 3 N =11)

r=0
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Finally, the accumulated phase is given by:

I, | wlt=0) [1+ Lg(t)(1 + 2sin wt?)|

. (2.48)
hw +7'Eg(t) [4 sin wt’(cos wt — coswt’) —
P

St t') =
(sin 2wt — sin?..ut')]

1
2

In order evaluate the dipole moment at time ¢. the ionization time t’ is determined
by numerically solving z(¢.t') = 0 from Eqn. (2.46). Once ¢’ is found. other quantities
in Eqn. (2.39) can be easily calculated to give d(¢). In this study only the ionization
times corresponding to the electron’s first re-encounter with the parent atom are

calculated. In other words. only the contribution to the dipole moment from electrons

which are having their first re-collision with the parent atom is considered.

The quantum dipole moment

Following the suggestions in Ref. [32]. the continuum wave functions v are assumed

32
TLI‘ .')
(2'7 ) (2.49)
2.

33 is performed analytically using the stationary

to be plane waves of the form

The integration over ¢ in Eqn.

phase approximation 6. The dipole moment then becomes:

22732 [T, [he\™?
) = lean)=7—\51, \3h,

t . 3/2 . . - . .
/ dt’ (2—17> a*(t)a(t')E(t')d (f‘,(t.l') + A(t) - .~1(1')) di(ts(1.1"))
ta -
x exp [~185(/.1')] (2.50)
Here { = t/t, is the normalized time: E(t) = E(t)/E, is the normalized electric field
where E, is the maximum field strength: {7, = $(¢?E?)/(mw«?) is the peak pondero-
motive potential; d-(v) is the normalized transition element given by Eqn. (2.41) for

a hydrogen-like ground state wave function: A = 2= [ Edi is the normalized vector

potential; and ¥, is the normalized stationary velocity given by:

os(t. ") = -t,Tlt.,/t_fdi" [.i(f) - .i(r")] (2.51)

%A discussion of this method can be found in Ref. [19] p316-p317.
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Lastly. the stationary value of the classical action is given by:

S,(t.t') = A dt"2= [Qﬁlf (i',(t.l')+.-1(1)—.4(I"))2+ I"] (2.52)

hw,

The remaining quantity that is required in order to evaluate the dipole moment is
the time-dependent ground state amplitude a(¢) which. as is shown in Ref. [32]. can
also be consistently determined by the rigorous analysis described therein. However.
an analysis which neglects the effects of the atomic potential on the continuum states
has been shown to give inaccurate ionization rates [27]. This in turn will lead to an
inaccurate determination of the ground state amplitude. Therefore. in this study.
the ground state amplitude in the rigorous model is calculated as a(f) = /1 — P(t)
where P(t) is the ionization probability (Eqn. 2.7) obtained from the Ammosov-
Delone-Krainov (ADK) ionization rate (Eqn.2.4). This rate has been obtained from
analysis which does take into account the effects of the atomic potential on the
ionizing electrons [29].

Numerical evaluation of the dipole moment can be more easily implemented by

defining the following quantiles:

B(t) =2= [ A(M)di" (2.53)
C(t) =2= /' A2(")di" (2.54)
Then
pe(t. ) = —A(t) + Wl_[,-)([?u) —~ B(1") (2.55)
and

2w (f — 1) (2.36)

(B(t) - B(t")?] I,
27 (t ~ 1) ] + h

It should be noted that, unlike the evaluation of the extended semi-classical dipole

S.(t.t") = zﬁU” [C‘(t) -C(t" -

o <o
moment. no slowly varying envelope approximation is used to calculate the dipole
moment here. The driving electric field can be an arbitrary function of time. The vec-
tor potential 4 (Eqn. 2.32), the stationary value of the classical action S,(Eqn. 2.52).
the stationary value of the velocity v, (Eqn. 2.51) and the dipole moment (Eqn. 2.50)

are all calculated numerically from the corresponding integral equations.
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2.1.7 Results and discussion

Calculations have been done to obtain the dipole acceleration induced by a 130 fs
(FWHM) laser pulse interacting with a neon atom. The laser is assumed to have a
wavelength of 750 nm and a peak intensity of 10'"® W/cm?. These parameters are
chosen to model typical HHG experimental conditions in the long-wavelength regime.
The dipole acceleration for the semi-classical and quantum models is obtained nu-
merically from the corresponding dipole moment using the central difference formuia
for second derivatives. Harmonic spectra are obtained by taking the square modulus
of ihe fast Fourier transform of the corresponding dipole accelerations.

Shown in Figure 2.5 are the dipole acceleration power spectra obtained from the
quantum and semi-classical models. It is seen that both spectra exhibit a harmonic
plateau with a sharp cut-off near the 109th harmonic. The cut-off photon energy
from either spectrum agrees well with that predicted by the cut-ofl law: hwn,,, =
I, +3.17 U, = 21.5 eV +3.17(52.5 eV) = 188.0 eV = 109 hw,. It is also seen that
the magnitude of the plateau harmonics in the two spectra agree very well with one
another. The first noticeable difference between the two spectra is that the magnitude
of the first few harmonics in the semi-classical spectrum is very small compared to
that in the quantum spectrum. The vanishing first harmonics in the semi-classical
model is consistent with the fact that the minimum re-collision kinetic energy of the
electrons is zero. Therefore. the minimum energy of the harmonic photons should
be equal to [,. Consequently. harmonics with photon energy less than [, cannot
be generated by the recombination process described by the semi-classical model.
The reason for the non-vanishing low harmonics in the quantum model is not clear.
Further investigation may be needed.

Shown in Figure 2.6 is the dipole acceleration power spectrum as obtained from
the ionization model. Although the first few harmonics are much larger than the
those observed from the quantum and semi-classical spectra. the magnitude of the
high harmonics is negligibly small compared to that ohserved from the quantum or

semi-classical results. As discussed in Ref. [31]. this generation mechanism may only
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Figure 2.5: Dipole acceleration power spectra obtained from (a) the quantum model
and (b) the semi-classical model.
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be responsible for the generation of low order harmonics.

A closer examination of the quantum and semi-classical harmonic spectra can
be found in Figure 2.7 and Figure 2.8 which show the harmonic spectral regions
near the 55th and 85th harmonics. Here. it is seen that all spectra show interesting
spectral structure. Specifically, assuming that these are actually odd harmonics. all
the harmonic lines are blue shifted from the respective odd harmonic frequencies and
they all have large linewidths. These results also show that harmonics in the mid-
plateau region seem to have a broader line width than those near the cut-off region.
The spectra obtained from the rigorous model appear to have an even larger blue
shifted component for the mid-plateau harmonics.

The temporal profile of an individual harmonic can be obtained by using a spec-
tral filter to isolate a particular harmonic line in the compler Fourier spectrum and
then performing an inverse Fourier transform. The temporal profiles for the 55th and
85th harmonics obtained from the quantum and semi-classical models are shown in
Figure 2.9 and Figure 2.10. An ideal (or square) band-pass filter has been used to
isolate the spectral regions from h34.8 to h35.8 for the 35th harmonic and from h84.8
to h85.8 for the 85th harmonic. It is seen that the magnitude of the semi-classical
harmonics agrees very well with that of the quantum harmonics. Furthermore. har-
monics calculated from both models exhibit a general temporal structure. First.
all harmonics start to appear at a threshold intensity /(¢) corresponding to a pon-
deromotive potential {',(¢) = (hwy, — I,)/3.2. This is consistent with the fact that
harmonics can only be generated when the field is high enough to accelerate the
electrons to have the necessary re-collision energy. The harmonics then seem to ex-
hibit an interference pattern. Finally. the harmonics vanish when the ground state
is depleted due to ionization. For the 53th harmonic. the quantum model predicts a
more complicated interference structure than the semi-classical model. For the 85th

harmonic, on the other hand. the interference structure is rather similar.
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Explanation of the spectral structure

From Figure 2.7, it is seen that each mid-plateau harmonic line consists of two com-
ponents separated by a fraction of the fundamental frequency. The corresponding
temporal structure of these harmonics may be due to the coherent beating of these
two components. As will be shown below. these components correspond to different
electron trajectories having the same re-collision energy.

As shown in Section 2.1.6. the semi-classical dipole moment can be written as

(see Eqn.( 2.39)):

d(t) = D(t)e™") + D= (1)eS™) (2.57)
where
D(1) = (eap)(2x)**A(t)d(tR(1)) (2.58)

A(t) is the normalized wavefunction amplitude: and d is the normalized dipole tran-
sition element and is a function only of the re-collision velocity vg(f). Now. as-
suming the dipole moment can be expanded into a sum of harmonic components.
d(t) = ¥, d,e'™". Appendix A shows that using a stationary phase approximation.

the qth harmonic dipole component can be approximated as:

4 - D(ty) | 27 iiSttg)=quotal]
7 2, \ KNE.(t;,)
+ D(ty2) | _ 2w (ilS(te2) = guntea]
2, \ KE. (L)
D-(t;l) i 271 ei[S(r;')—unoI;l]
2t0 \/ [\-Er( ;l)
. D‘)(tqg) : 27:- RCUAR I (2.59)
"'tﬂ \ [\ Er( 72)

where the ¢;'s are the four re-collision times at which the electrons have the same
re-collision energy (see Figure 2.11). and K'E, is the change in the re-collision kinetic

energy with respect to the re-collision time. By using a number of considerations.
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Eqn. (2.59) can be simplified as follows. First. due to the anti-svymmetry of the
electric field within one laser cycle. i.e. E(t) = —E(f +t,/2). an electron ionized at
t' +t,/2 will follow a trajectory which is just the negative of the trajectory followed
by an electron ionized at ¢'. That is, z(f.t' +t,/2) = —x(f — t,/2.t'). Therefore. the
re-collision velocity corresponding to one of these trajectories should be negative of
the other trajectory. The re-collision times are then separated by ¢,/2. since the two
trajectories should occupy the same time duration between ionization and the first
re-collision. Consequently, {7 = ¢, + {,/2. Secondly. since the electrons re-colliding
at t; and ] are ionized at the same electric field infensity. the ionization rates at
these two times should be also the same. Now further assuming that the electric field
envelope and ground state amplitude do not change very much in one laser cvcle, it is
seen from Eqn. (2.40). .»i(tq) = .-i(t;l). Now. since Jr((-) = —d,(—r) (see Eqn. (2.41).
then D=(¢,) = —D=(¢7). Finally. it can be seen from the symmetry in the electron
trajectories that S(¢;,) = S(t;l) and [\:E,(tql) = [\:E,(I;,). Therefore. Eqn. (2.59)

becomes:

N\ | DR 271 s
dq = (1 _ e'q") { (131) = ! cSUq ) =1wntqi]

+ D'qu)l .'2‘7?' E.’[S(rqz)—'z#nfqz]} (2.60)

zto V [\-Er([:ﬂ)

From Eqn. (2.60). it is seen that for ¢ = even. the dipole components vanish.
Therefore, only odd harmonics are possible. More important. it is seen that there
are two distinct contributions for each harmonic line. One of these contributions
comnes from the electrons re-colliding at a time before the 3.17 {, kinetic energy peak
whereas the other comes from the electrons re-colliding at a time after the 3.17 (',
kinetic energy peak.

Shown in Figure 2.12 is the dipole acceleration spectrum obtained from the semi-
classical model zoomed near the 55th and 85th harmonics. The contributions from
the two re-collision times have been explicitly separated. The contribution from the

collision time before the 3.17 [’, peak will be referred to as the pre-3.17 component

and the contribution from the collision time after the 3.17 (", peak will be referred to

16
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as the post-3.17 component. The separation is done by setting the dipole moment to
zero at time intervals in each laser cycle corresponding to before or after the 3.17 (),
peak. It is seen that both of these components are blue shifted with the post-3.17
component having a larger blue shift. It is also seen that the difference in blue shift
between the two components is larger for the lower harmonics than for the higher
harmonics.

Before an explanation of the harmonic blue shift is given, it is useful to understand
why a larger blue shifted spectral structure is obtained when the quantum model is
used. [t has been found that such a spectral structure is due to the electrons which
are having their second or more re-collision with the parent atom with the same
re-collision energy. In the quantum model. the inclusion of these trajectories can be
achieved through setting the lower limit. {,. in the time integration (see Eqn. (2.50)).
By setting f, to a time progressively earlier to the current time t. more and more
trajectories are included. Shown in Figure 2.13 and Figure 2.14 is the quantum
dipole spectrum zoomed near the 35th and 85th harmonics for different ¢,. It is
seen that when {, = t — {,. the quantum spectrum agree very well with the semi-
classical spectrum. (The quantum spectrum as shown in Figure 2.7 and Figure 2.8
are obtained with {, =t — 2¢,.)

The agreement between the two models can be more clearly seen in the temporal
domain. In Figure 2.15. the magnitude and phase of the 35th harmonic as obtained
from the two models are shown. For the quantum model. {, has been set to { — ¢,,.
The pre-3.17 and post-3.17 phases have been obtained using the technique described
above. It is seen that aside from a small difference in dipole magnitude. the semi-
classical results agree very well with the quantum results. Furthermore. it is seen that
the phases of the two harmonic components both increase with time with the post-
3.17 phase varying more rapidly than the pre-3.17 phase. In the spectral domain.
these degenerate time dependent phases then result in the spectral blue shift and line
splitting as evidenced from Figure 2.12.

The time dependent nature of the harmonic phase can be easily understood from

s
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Eqn. (2.60) where the phase of each harmonic component is explicitly given by:
0, = S(t,) — qu.t, (2.61)

Since both the accumulated phase S and the re-collision time ¢, depend on the
incident intensity, if the incident intensity is time varying. the harmonic phase should
also be time varying. Figure 2.16 shows these quantities for the 535th harmonic as
function of fundamental intensities. It is seen that for the pre-3.17 component. both
S(t,) and qwt, decreases with increasing intensity. with the largest change occuring
in qwt,. This will then lead to an increasing phase dependence on intensity. For the
post-3.17 component. both S(¢,) and gwt, increase with intensity with the largest
change in S({;). This will also result in an increasing phase dependence on intensity.
Now since harmonics are generated in the rising edge of the laser pulse where the
ground state is still not depleted. the phase of the harmonic components. which
is an increasing function of intensity. should also increase with time. This is in
agreement with the numerical results seen in Figure 2.15. Figure 2.17 quantifies such
an agreement. Shown here are the phases of the pre-3.17 and post-3.17 components
of the 55th harmonic as calculated by Eqn. 2.61 as function of incident intensity.
Superimposed are the results from Figure 2.15 which have been re-plotted as function
of the rising fundamental intensity. It is seen that the phase as predicted by the
stationary phase approximation agrees very well with that obtained by the fully time
dependent calculation of the dipole moment.

Finally, it should be noted that the the temporal dependence of the real harmonic
field is given by qu,t — 8,(1) = qw,(t —t,) + S(¢;). The physical implication is that
the phase of the qth harmonic component is locked to the accumulated phase of the
electron wavefunction at the time the electron has the required energy to generate

the harmonic.
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2.2 Propagation Analysis

In this study. harmonic temporal and spectral behavior is investigated in a one di-
mensional propagation analysis. Here. the dipole models discussed in Section 2.1
are coupled to a one dimensional wave propagation model. The use of one dimen-
sional analysis neglects several important issues in HHG. These include geometric
complications due to beam focussing [2] and free electron induced defocussing [41]".
However, the use of a one dimensional model allows the efficient computation of the
interacting waves and therefore makes the analysis computationally practical. In ad-
dition. such a one dimensional approximation is physically appropriate to situations
where harmonics are generated by a loosely focussed laser beam interacting with a
very thin gas target 8. In this section. the one dimensional propagation model used
in this investigation will be described first. This is followed by a presentation of the

calculated results.

2.2.1 The one dimensional propagation model

In the one dimensional propagation model. the HHG process is described by numer-
ical solutions to the the nonlinear wave equation (Eqn. (1.5)) in the one dimensional
limit. The polarization source current is derived from the recombination and ion-
ization models. By assuming that the polarization current is due to the driving
fundamental alone. the nonlinear wave equation can bhe decomposed into a wave
equation describing the propagation of the driving fundamental wave and a set of
wave equations describing the generation and propagation of the harmonic waves.
The derivation of these equations is given below.
The general one dimensional nonlinear wave equation is given by:

PE_LFE _ 4n3P
d:2 2 ot c? Jt?

“A more detailed discussion of these effects will be given in Chapter 5.
8This will also be discussed in Chapter 5
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where E is the total electric field in the medium and P is the polarization induced
by the total electric field E. All fields are assumed to be lincarly polarized? in a
direction perpendicular to :. In general. the induced polarization P should consist
of two terms [2]: P = P, + P, where P, is responsible for the generation of the
harmonic waves and P, is responsible for the dispersion of these waves. As discussed
in the Section 2.1 . in the high field regime considered here. the main contribution to
HHG is from the recombination of tunnel ionized electrons. Therefore. P, = Pp =
n,dg where n, is the background gas density and dg is the recombination dipole
moment. From Section 2.1, it is also seen that harmonics arc generated when the
ground state is partially depleted. Hence. they are generated in a partially ionized
plasma. In such a medium. the main source of dispersion is due to the free electrons.
Therefore. P; = n,d; = -:—:-n(E (see Section 2.1.3) where d; is the ionization dipole
moment describing the tunnel ionizing electrons. n, = n,P is the electron density in

the medium and P is the ionization probability. Consequently. the wave equation

becomes:
PE 18E  L(E.M) 4= &?
=~ 55, — 3 E=—F55LalEt 2.6:

where w,. = (47n.e?/m)'/? is the plasma frequency and «? (E.!) denotes that the
plasma frequency should be calculated from the fotal electric field E.

Mathematically. the total electric field can be decomposed into two separate fields
E =FE,+ E, and Eqn. (2.63) can be rewritten as:

PE, 10%E, W(E, +E;.1)

o= aor T a &=l (264)

OE, 10%E, wI(E,+E,.t) Ax 2 ]
a:; T2 a_t;h - lcz = E¢.=C——PR(E,+§,,.1) (2.65)

E\:=0,¢) = E;(: = 0.1) (2.66)

°It should be noted that the underscored quantities do nof denote vector fields but represent fast
oscillating quantities as opposed to slowly varying envelopes
1%Physical meanings of these two fields will be discussed shortly.

n

-1



Euz=0.t)=0 (2.67)

Here. E;(z = 0.¢) is the incident laser’s electric field at the medium boundary. [t
should be noted that since the boundary condition for Eqn. (2.63) is £(z = 0.¢) =
E;(z = 0,t). solving the coupled equations Eqn. (2.64) and Eqn. (2.65) with the
specified boundary conditions is completely equivalent to solving Eqn. (2.63). It is
now assumed that £, > E, so that the coupled equations may be decoupled as:

O’E, 18%E, <i(E.t)

9:2 2 9z c? £,=0 (2-68)

PE, _18E, (E0) . _mdPyE,.1
d:2 c? Jt2 2 =hT 2 a2

(2.69)
Physically. Eqn. (2.68) describes the propagation of the driving laser field. E,. in
the ionizing plasma induced by the driving field itself. Eqn. (2.69) describes the
propagation of the harmonic waves generated by the driving field inside the ionizing
plasma. In HHG. both experimental [9] and previous theoretical [33] studies have
estimated the harmonic conversion efficiency to be veryv low (< 107%). Therefore the
assumption that £, > E, is justified.

As shown in the Section 2.1. for the 150 fs laser pulse studied. the recombination
dipole spectrum consists of discrete harmonic lines !'. Consequently. the recom-
bination polarization can be expand as: Pp = >, P, where P, oscillates at the
qth harmonic frequency qw,. By further assuming that E, can also be expanded

as £, = 3, E,, the harmonic wave equation can also be separated into a set of

equations of the form:

FE, 10°E, wplEit) _ AnO°Py(E, 1) (2.70)
0:2 ¢ at2 2 T e ar? -

Now, by imposing homogeneous boundary conditions on this set of equations and
by noting that the boundary condition for Eqn. (2.69) is also homogeneous. it is

seen that solving this set of equations is completely equivalent to solving Eqn. (2.69).

'However. for very short fundamental pulses. the spectrum will no longer consist of discrete lines.
This will be discussed in detail in Chapter 4

BN



Phuysically. Eqn. (2.70) describes the propagation of an individual harmonic wave gen-
erated by the qth harmonic component of the recombination dipole moment induced
by the driving laser field E,.

As will be shown in the following subsection, the qth harmonic polarization P,
can be expressed as P, exp[i(qk,z — qu,t)] where P, is a slowly varying envelope in

space and time. Then by also expressing the driving and harmonic fields as E, =

E, exp[i(k,z — wot)] and E, = E, expli(gk,z — qu,t)]. a set of envelope equations is
obtained:
3251 1 3251 ino aE[ IaEl “"‘30( El.t)
- — - — = 2.7
0:2 ¢ ot c (3: +c at c? E=0 (271)
0*E, B 1 8*E; | 2iquw, (OE, + 10E,\ u:f,a(El.t)E
92 c* or? c d: ¢ Ot c? !
17 [ 9*P, dP. .
S — g 251 _ 22 979
c2<812 S S T °P7> (2.52)

Here the term w7 (E|.t) has been replaced by w?,(E).{) which is just the plasma
frequency calculated from the average tunnel ionization rate. The average ioniza-
tion rate is obtained by averaging the static rate R, (Eqn. (2.1)) for a driving field

| E1| cosw,t over one laser cycle 27 / w, and is given by [28]:

For the driving field strengths studied here. the induced ionization rate is quite small
and the ionization probability does not change by very much over many laser cvcles.

Consequently, the use of the average ionization rate is appropriate.

2.2.2 The qth harmonic polarization component

When the qth harmonic polarization is known. the set of envelope equations (Eqn. (2.71))

and Eqn. (2.72)) can be solved. As will be shown below. the qth harmonic polariza-
tion can be expressed as P (t) = P,(t)exp[i(qgk,z — quw,t)] where the slowly varving

envelope P, is given by:

. "2 - n
P(z.t) = n,(l - P(:.I))e"’o’(:'”/ dt"d(|E\(=. 1)} cos(w,t”). 1")c'™"  (2.74)
0
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Here 6,(t) = arg(E,) is the fundamental phase deviation from the vacuum phase and
d(|E1(t)| cos(w,t").t") is the steady state dipole moment '? calculated for an electric
field |E\(z,t)| cos(w,t) assuming |E)(z.t)| is constant over a laser period.

The derivation of Eqn. (2.74) is as follows. From Section 2.1.7. it is seen that the
dipole spectrum consists of discrete harmonic lines. Therefore the dipole moment

can be expanded as:

o
-1
1]
—

d(t) =Y dy(t)e~" =" (2.
q

where d,(t) is a slowly varying envelope. Assuming d,(¢) does not change very much

in one fundamental cvcle ¢,. it can be obtained as:
t+t, "
d,(t) = / d(1")e' 1" gi" (2.76)
t

If the ionization probability is slowly time varving. P(#") =~ P(t) between t and ¢ +¢,.

Then.
t+to ”"
dy(t) = (1~ P(t))/ d(t")e " dt"” (2.77)
t

where d is the steady state dipole moment calculated by setting P = 0 in the dipole
expression for a depleting ground state (Eqn. (2.50) and Eqn. (2.39)). By using
the stationary phase approximation (See Appendix A) and the semi-classical dipole

moment (see Section 2.1.6). d,(¢) is given by:

tR(t')

dy(t) = eap(2m)**(1 = P(1) 3. | i guepaayrd( VRlte))c T Blaseetdd (2 78)
e (" 7af 3T |y,

Here, t, corresponds to the various re-collision times between ¢ and t+t, at which the
tunnel ionized electrons have the necessary energy to produce the qth harmonic. The
ionization probability is assumed to be slowly varying and remains at the value P(t)
between ¢ and ¢ + £,. Now, if d; in Eqn. (2.78) has been obtained for a fundamental

field E)(t)cos(wot). a change in the fundamental phase. E,(t) cos(w,t — 0:(1)). will

12That is. the ionization probability P(t) is artificially set to zero in the dipole expression.
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affect d, as follows. First, assuming E,({) and 6,(¢) do not change significantly
during one laser cycle. the phase shift of the driving field near { means that the
real oscillating field near ¢ is shifted forward in time by an amount 8t = ,(t)/w,.
Therefore, both the ionization time #'(f;) and recombination time ¢, are shifted by
the same amount. Hence, quantities in Eqn. (2.78) which do not depend explicitly on
these times or depend only on the condition befween these times will not be affected.
For example. the ionization rate is dependent on the eleciric field strength at .
Since both the field and the ionization time are shifted by the same amount. the
ionization rate at #' remains the same. A second example is the re-collision velocity
vr and the accumulated phase S which depend on the electric field between ¢’ and
t;. Since the electric field profile remains the same hetween these two times. these
quantities will also not be affected. The only quantity in Eqn. (2.78) which depends
explicitly on the recombination time is the recombination phase in the exponential
which will be changed to /(#==!a+90:(")  Consequently- d,(|E (1) cos(w,t —8,(t)). t) =
€1, (|E1|(t) cos(w,t). t). Therefore. d,(|E (t)| cos(w.! —6,(f)).t) can be evaluated

as:

. tn _ ”
dy(t) = (1 - P(t))e“’e‘“’j/ dt"d(|EL|(1) cos(w, ). 1")e'r=" (2.79)
0

Here the limits of integration have been changed to 0 and {,. This is justified because
due to the periodicity of d(t) near . the re-collision phases «of, between the phase w,t
and w,(f+t,) will be the same as those between the phase w,(f+41) and wo(l+1,+6t)
where [8t| < ¢,. Therefore a convenient interval to carry out the Fourier integration
will be between 0 and ¢,. Finally. by noting that the real electric field is given by
E, =|Ei|cos(w,t ~ k,z — arg(E})) and that the polarization is related to the dipole

moment by Pr = n,d, Eqn. (2.74) results.

2.2.3 Simulation results and discussions

The 1-D model has been incorporated into an efficient numerical scheme (see Ap-

pendix B) to study the effects of propagation on the spectral and temporal char-
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acteristics of high harmonics. This model has also been used to examine the HHG
conversion efficiency in the 1-D limit. Results have heen obtained for a 150 fs laser
pulse propagating in 500 torr of neon. The wavelength of the laser is Y50 nm and the
peak temporal intensity of the laser pulse at the entrance to the medium (= = 0) is
10'W /cm?. These parameters correspond to the conditions typical of current HHG
experiments. The quantum dipole model which includes the HHG contributions from
secondary-return electrons has been used to calculate the nonlinear polarization.

Figure 2.18 shows the spatial profiles of the 55th harmonic intensity obtained
at four different times near z = 20, 100, 200 and 400 y#m. Also shown are the
corresponding spatial profiles of the driving intensity and the electron density at
these times. For = < 200 um. it is seen that as the the harmonic field propagates.
its leading edge keeps growing while the trailing edge saturates. This results in the
harmonic field having a very narrow spatial extent at = = 200 gm. implying a single
ultra-short XUV pulse. However. at = > 200 ym. even the leading edge of the
harmonic pulse saturates and the ultra-short harmonic pulse appears to break up
into even finer structures.

The shortening of the harmonic pulse can be more clearly seen from Figure 2.19
which shows the temporal and spectral profiles of the harmonic field obtained at
four different locations (= = 5. 100. 200 and 400 gym). At = = 5 pym. the harmonic
temporal profile resembles that obtained in single-atom analysis. showing the inter-
ference pattern caused by harmonic contributions from different electron trajectories.
At larger distances. the interference pattern disappears. At = = 200 pm. the 55th
harmonic is a single pulse with a temporal duration of about 5 fs. At still larger dis-
tance, the harmonic pulse breaks up into sub-pulses again. From the spectral profiles.
it is seen that the HHG contribution from the secondary-return electrons seems to
saturate very early compared to the contribution from the first-return pre-3.17 and
post-3.17 electrons. This is evidenced by the disappearance of the more blue shifted
structure to the right of the two main pre-3.17 and post-3.17 peaks. Furthermore. it

is seen that the pre-3.17 and post-3.17 lines seem to “collapse” into one single line
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Figure 2.18: Spatial profiles of the driving intensity. /;. the electron density. n,. and
the 55th harmonic intensity. [55, recorded at ¢t = 283 fs. 566 fs. 906 fs and 1586 fs.
Direction of propagation is in the positive = direction. The medium has a background

density of n, = 500 torr.



centered at a frequency midway between the original pre-3.17 and post-3.17 lines.
By comparing the temporal and the corresponding spectral profiles at = = 200 pm.
it is seen that the harmonic pulse is a transform-limited pulse. At = > 200 ym. the
spectral line starts to split again.

Shown in Figure 2.20 are the temporal and spectral profiles of the 85th harmonic.
Similar to the 55th harmonic, the 85th harmonic field becomes single ultra-short
pulse at some distance and breaks up afterwards. From the spectral profiles. it is
seen that the 85th harmonic saturates at about = = 5 pm. a much smaller saturation
distance than for the 55th harmonic. However. similar to the 35th harmonic. the
harmonic pulse becomes transform-limited at the saturation distance and the spectral
line starts to split again after the saturation distance.

A comparison of the 55th and 85th harmonic conversion efficiency is shown in
Figure 2.21. The harmonic energy is obtained by integrating the harmonic intensity
temporal profile at the specific locations. Here it is seen that. as compared to the
55th harmonic. the 85th harmonic saturates at a much smaller propagation distance

with a much lower peak conversion efficiency.

Explanation of pulse shortening and saturation

The shortening and saturation of the harmonic wave can be explained by the phase
difference or phase mismatch between the harmonic wave generated in one region
and that generated in another region in the medium. In a 1-D geometry. such a
phenomenon is well understood for harmonic conversion from a steady state. low
intensity driving field propagating in a medium with constant dispersion 3. The
phase mismatch is due to the phase velocity mismatch between the driving and
harmonic waves in the dispersive medium. In the case of a plasma with constant

density n., the phase mismatch for the qth harmonic is given by:

k,z 1 .
Ab,(z) = L (1 - -> Ze (2.80)
q) n.

!3For example. see [17].
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Figure 2.19: Temporal and spectral profiles of the 55th harmonic intensity recorded
at z = 5 um, 100 gm, 200 pm, and 400 ym. The dashed lines denote the temporal
electron density profiles recorded at these locations.
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and the intensity of the qth harmonic is given by:

” Ad
I, = 167r2q2(k0:)2P;sinc2 (——)—3) (2.81)

where P, in this case is the steady state or constant nonlinear polarization induced
by the steady state driving field. From Eqn. (2.81) and the property of the sinc?()
function, it is seen that due to phase mismatch. the harmonic wave generated by
P, can only grow up to a distance z, at which Af,(z,) = 7. For = > z,. the
harmonic saturates. It is also seen that the larger the phase mismatch. the shorter
the saturation distance z, is and the smaller is the maximum achievable harmonic
intensity [,(z,).

In the present case of a high intensity. pulsed driving field traveling in a medium
with spatially and temporally varying dispersion (which is due to the spatially and
temporally dependent ionization). eflects of phase mismatch can be understood as
follows. First. if group velocity and higher order dispersion of the driving and har-
monic fields are small, the second derivatives in the the coupled wave equations.
Egn. (2.71) and Eqn. (2.72). can be neglected:

aa[’:‘ + 1a£1 + zf—’_’:El =0 (2.82)

0, , 10E, , fun.
d: ¢ 0t 29 n.

Now, further assuming the ionization front is propagating approximately undistorted

—F, = 127qk,P, (2.83)

at the speed of light:
ne(z,t) = n.(z ~ct) (2.84)

the solutions to Eqn. (2.82) and Eqn. (2.83) can be obtained in the retarded frame
(!=zand /=t —z/c) as

E(z'.t')= E,(t')exp [—11—;-""( )-'} (2.85)
E (. t') = 12nqgk, exp [-l—%l— ]/ de'P,(€'.t )e\p[ kyn (7 )E'] (2.86)

(9.9
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where E,(t') and n.(t') are the laser envelope and electron density profile at =’ = 0.
From Eqn. (2.74). Eqn. (2.834) and Eqn. (2.85). it is seen that the qth harmonic
polarization P, can be written as:

,II

k e ’ = ”n ’ " "y _iqw
P,(z".t') = exp [—z—z—nn( ) ](1 — P(t ))/; dt"d(|E\(t')|cos(w,t"). t")e' T

(-4

= exp [—-i!&?en(—t)':'] P,(z' =0.t) (2.87)

Hence, the P,(z’.t') here is just equal to the qth harmonic polarization at ' = 0
times a phase factor. Finally from Eqn. (2.87) and Eqn. (2.86). the qth harmonic

intensity is given by:
2 0 t’)
I(2'.¢) = 167r2q2(ko:')2Pq’( = 0.t")sinc? (A al2. ) (2.88)

where the qth harmonic phase mismatch is now given by:

A0(= ) = T (1 - 1) ne(l) (2.89)

2 q n.

By comparing Eqn. (2.88) and Eqn. (2.89) with Eqn. 2.81) and Eqn. 2.80). it is
seen that the only difference in the dynamic case is that P,. n, and therefore Af, are
now a function of the retarded time t’. Consequently. the harmonic wave generated
at a different portion of P,(¢’) will experience difference phase mismatch. Specifically.
the portion of the harmonic wave that is generated at a low electron density will see
a very small phase mismatch and can therefore grow over a very long distance. On
the other hand, the portion of the harmonic wave that is generated at a high electron
density will see a very large phase mismatch and therefore saturates in a very short
distance. This is consistent with the simulation results which show that the leading
edge of the harmonic wave, which is generated at a lower electron density. grows over
a longer distance than the trailing edge of the harmonic wave which is generated at
a high electron density and which saturates very early. A quantitative comparison
is given in Figure 2.22 and Figure 2.23. Here, the analytical results are obtained

from Eqn. (2.88) with P, calculated for the incident laser pulse at the entrance to

the medium. [t is seen that the analytical results agree verv well with the simulation
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results. Consequently. the initial shortening of the harmonic pulse is due to the
larger free electron induced phase mismatch experienced by the trailing portion of
the harmonic pulse as compared to that experienced by the leading portion of the
harmonic pulse.

Now, since even the leading edge of the harmonic pulse is generated at non-zero
electron density, it will also eventually saturate due to non-zero phase mismatch.
For very large distances. the phase mismatch which is proportional to n.(t’)z" can
vary quite significantly for only a very small change in electron density. Therefore.
even the leading edge of the harmonic pulse which is generated in slightly different
electron densities can experience large differences in phase mismatch. As a result.
the portion which experiences Af, = 27 will vanish while other portions will remain.
This is then manifested as pulse break up. When the leading edge of the harmonic
pulse saturates, the overall harmonic energy conversion also saturates. This has been
verified by simulation results which show that breaking up of the ultra short harmonic
pulse indeed starts to occur when the overall energy conversion starts to decrease.

The different saturation lengths for the 55th and 85th harmonics can be explained
as follows. A particular harmonic can only be gencrated when the intensity is high
enough such that the re-collision electrons can provide the necessary recombination
energy. Therefore the leading edge of a harmonic pulse should be located near the
driving intensity where qhw, = [, +3.17 {(];). As a result. the leading edge of lower
order harmonics is located at a lower driving intensity while that of the higher order
harmonics is located at a higher driving intensity. Now. since higher driving intensity
implies higher ionization level and higher electron density. the leading edge of the 85th
harmonic sees a larger free electron induced phase mismatch than the 55th harmonic.
Therefore the 85th harmonic should saturate much earlier. From Figure 2.19 and
Figure 2.20, it is clearly seen that the leading edge of the 85th harmonic is generated
at a much higher ionization level than that of the 35th harmonic.

The collapse of the pre-3.17 and post-3.17 harmonic lines can be understood as

follows. For small distances. the harmonic wave is just proportional to the polariza-
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tion current P, = n,d,. Hence. the harmonic spectrum should resemble that of the
single atom spectrum. As the harmonic propagates. only the leading edge which is
generated near the cutoff driving intensity at which ghw, = I, +3.17 U,([;) survives.
At this intensity, the phase dependence of the pre-3.17 and post-3.17 components
on the driving intensity becomes the same (see Figure 2.17). Physically, this is due
to the fact that at the cutoff intensity. electrons which have the required energy to
generate the harmonic originate from a single trajectory. As a result. the splitting
of the harmonic line due to the degenerate harmonic phase disappears. Now, since
the harmonic phase at the cutoff intensity is still an increasing function of driving
intensity. the spectral profile of the phase-matched harmonic wave will appear as a
single blue-shifted line.

Finally. the early saturation of the harmonic contribution from the secondary-
return electrons can be explained as follows. It can be shown by numerically solving
the equations of motion (see Section 2.1.2) that the cutofl law for these electrons
is ghw, = [, + 2 U’,. Therefore. the harmonic contribution from these electrons
will be generated at a higher driving intensity and therefore higher electron density.
Hence, the harmonic contribution from secondarv-return electrons sees a larger phase

mismatch than the that from first-return electrons and therefore saturates earlier.

2.3 Summary and Conclusions

In this study, a number of important characteristics of HHG have been found. First.
it has been found that harmonic spectral lines are intrinsically blue shifted and can
have very large line width under current experimental conditions. The origin of the
blue shifting and line broadening has also been identified. They are due to a degen-
erate intensity dependent phase arising from harmonic contribution from different
electron trajectories. In addition, it has been found that mid-plateau harmonics can
be generated rather efficiently at very low ionization levels and can have a temporal

duration of only a few femtoseconds.
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Chapter 3

High Order Difference Frequency
Mixing

As was shown in the last chapter. because HHG occurs only in a relativistic ioniza-
tion front. the conversion efficiency is severely limited by free electron induced phase
mismatch which prevents the growth of the high frequency fields over an extended
distance. Recently. it has been proposed that high order difference frequency mixing
(HDM) of the type wy = qw, — lw. (w, > w.. ¢ > [ 2 1) may be a more attrac-
tive means of producing very high frequency fields in a low density plasma [38. 39].
In Refs.[38, 39], it is shown under a number of general considerations ' that phase
matching may be achieved for the high frequency mixed field (w,) by choosing ap-
propriate frequencies for the two incident fields (w, and «.). The phase matching
condition is shown to be independent of electron density which implies that even if
the high frequency mixed field were produced in an ionizing environment (as in the
case of HHG), it could be equally phase-matched across the ionization front.

In this chapter, a specific investigation 2 has been carried out to examine HDM

in the strong field regime * where HHG can also take place. As in Chapter 2. the

'These will be discussed in the next section.

2A version of this study has been published in “Phase-matched frequency conversion in ionizing
atomic gases”, Physical Review A54, R1026 (1996). by C. kan, C. E. Capjack. R. Rankin. T. Brabec
and N. H. Burnett.

3That is. when the driving field strength is comparable to the intra-atomic field strength.

IE!
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present analysis is divided into two parts. The first is concerned with the atomic
dipole response to the incident driving field which now consists of two frequency
components (w, and w.) . The second is concerned with the propagation of all the
participating waves including the high frequency mixed field and the two incident
fields. In this study, the mixed field atomic response is obtained from an extension
of the the recombination dipole model discussed in Chapter 1 and propagation ef-
fects are studied by using a one dimensional propagation model similar to that used
in Chapter 1. The remainder of this chapter is organized as follows: Section 3.1
describes the proposed HDM phase matching condition: Section 3.2 describes the
mixed field dipole response:; Section 3.3 describes the one dimensional propagation
model and presents the calculated results: and Section 3.4 summarizes the findings

and conclusions of this study.

3.1 The HDM Phase Matching Condition

In Refs.[38. 39]. the phase matching condition is obtained under the following as-
sumptions. First. it is assumed that the nonlinear polarization induced by the
two incident fields can be expanded as P(E,.E..t) = 3, Puexp[—i(qu, — lw:)t]
where £, = E, cos(w,t — 0;) and E, = E.cos(w,t — 8.) are the incident fields with
phases 8, and 0.. Secondly, it is assumed that phase of the ¢/ nonlinear polariza-
tion is related to the phases of the two incident fields by 8, = qf; — [6. such that
Py = Py expli(q8, — 16.)] where P, is real. This second assumption has been shown
to be valid in the weak field regime [38] or in the strong field regime if the polarization
is a local function of the total incident fields, i.e.. P(z.t) = f[E (=.t) + E.(=.1)] [39].
Finally, it is assumed that the high frequency mixed field is generated in a plasma

with a constant electron density n. that is much smaller than the critical densities of

the participating fields such that the phases of the these fields can be given by:

0(z) =kyz=— (1—7—): (3.1)



«'s I n,

0.(z)=kez=— (l - ——) = (3.2)

c 2ne
where n! are the critical densities of the incident waves. From these considerations.
and assuming the ¢/ mixed field component is given by E; = Eyexp[i(kyz — wqyt)]
where ky = (wu/c)[l — (1/2)(n./n?)] and n¥ is the critical density of the mixed

wave, the mixed field envelope in the 1-D limit can be obtained as [17]:
— 0% [ 4 p ~ifGy(2)
Eq = it / dz Pye=ia% (3.3)

where the phase mismatch is given by:

Aby =0y — (q0,(=) —10.(2)) (3.4)
and

B =kys=2 (] L0, 3.5)

gt = ql~—T —57—7—37 o (3.5

is just the phase of the high frequency mixed wave. Substituting Eqn. (3.1). Eqn. (3.2)

and Eqn. (3.5) into Eqn. (3.4). the phase mismatch becomes:

2

Ay = 52 (ghs = Ao = M) (3.6)
where
Aode
A paracd __o_:— 3-"'
‘= . — I (3.7)

Here w,. is the plasma frequency and Ay is the wavelength of the mixed wave.
Eqn (3.6) then suggests a way of phase-matching the mixed field (wy) by choosing
appropriate frequencies or wavelengths for the incident fields. For the phase match-
ing of very high frequency mixed field such that wy = quw, — lw.. w, > w.. ¢ > [. the

phase matching condition becomes

A = %A,, (> 1) (3.8)

This implies that the HDM scheme can be implemented with a high frequency field

«, and a much lower frequency control field w. such that w, / w.=¢q /1 (g > )



A nice feature of this phase matching condition is that it does not depend on
the electron density. Therefore. if the high frequency mixed field is generated in an
ionizing front (as in the case of HHG) and if the phase matching condition is still valid
in such an environment, the mixed field can conceivably be phase-matched across the

entire ionization front.

3.2 The Mixed field Atomic Response

The first step in examining the HDM scheme is to understand the behavior of the
mixed field nonlinear polarization or, equivalently, the mixed field atomic dipole
moment. In this investigation, the recombination dipole model (see Section 2.1)

which has been used to study HHG is used to study the HDM atomic response.

3.2.1 Preliminary analysis

A preliminary understanding of the mixed field dipole moment can be obtained from
the following analysis using the semi-classical dipole model. Here. it is assumed that
the amplitude and frequency of the control field. E.. are much lower than those of
the high frequency field, E,. such that (1) the induced dipole moment is mainly
due to the high frequency field. (2) the role of the control field is only to perturb the
accumulated phase of the electron wavefunction. (3) the real amplitude of the control
field can be considered constant in one laser cycle of the high frequency field. and ()
the control field does not affect the recombination time of the re-colliding electrons.

From these assumptions, the mixed field dipole moment can be written as:
d(t) = dy(t)e™ 51 +%2) (3.9)

where d, is the semi-classical dipole moment obtained for the high frequency field

alone and the perturbed accumulated phases are given by:

U E t/'o
S = - 7.‘2( p)(_c__) (1" . " _ sin(w.t’ " _ gt 3.
= =16 (52) (5) [, A1) sintaat!) = i ) olt” =) (3:10)
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S, = 167 (ff: ) (’%—) /t,/t d(t"[t,)w,(t” = ') (3.11)

Here U, is the ponderomotive potential in the high frequency field. E. is the real
amplitude of the control field, and E, is the envelope of the high frequency field.
Eqn. (3.10) and Eqn. (3.11) are obtained by calculating the accumulated phase
(Eqn. (2.24)) for a field E = E, cos(w,t) + E.(t) and using assumption (3) discussed
above.

By using the stationary phase approximation and by ignoring the higher order
perturbed phase S; which is proportional to (E./E,)?. the envelope of the qth har-

monic dipole moment is given by:

d, =

y = Sdaolty) [5119) — e 5 )] (3.12)

| —

where d,, and ¢, are respectively the envelope of the qth (q = odd) harmonic dipole
component and the recombination time when there is no control field. It is seen
from Eqn. (3.12) that unlike harmonic generation where only odd harmonic com-
ponents exist. the mixed field dipole moment can contain even harmonic compo-
nents. By substituting £_ = E.cosw.t into Eqn. (3.12) and using the relation [48]
exp(ir cos8) = (1) Ji(z) exp(—il) where J; is the the [-order Bessel function. the
dipole envelope becomes:

=~

doo(te) D () [la) + Ji(—a)] e~ (3.13)

l=—x

dg =

lol'—‘

where

o oo () (5)

Therefore, it is seen that there exist sub-band components with frequencies /.. asso-

t/t,,
// d(t" [1,) (sin(wst”) ~ sin(wot')) wolt” — ') (3.14)
t'/t,

ciated with each harmonic components. Moreover. from the symmetry of the Bessel
functions [48]:

Jila) = Ji(—e). (I =even)
Jila) = —Ji(—a). (I =odd) (3.15)
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it is seen that only [ = even sub-band components exist for ¢ = odd and only / = odd
sub-band components exist for ¢ = even.

The saturation of the mixed field components can be estimated by examining the
first maxima of the Bessel functions. For the [ order Bessel function. the first maxi-
mum occurs at approximately amsr = {(7/2). Therefore. the mixed field components

will saturate when

E. .« U, \ [tte !
Czl_ _62( P) t"ta . w,on__- 0: , " g 3.
_Eo 5 ( 167 reon) Jere, d(t"/t,) (sin(w,t”) — sin(w,t’)) w,(t t )) (3.16)

and the saturated amplitude of a qw, — [w. component will be:
d';r;ar = dqo(tq)'ll(oma.r) (3~17)

For example. for a high frequency field with a wavelength equal to 400 nm and an
intensity equal to 1.5 x 10'> W/cm®, Eqn. (3.16) and Eqn. (3.17) predict that the
saturation amplitudes for the “near” even mixed field components g, — lw. where
q = even are =~ 0.53d,, for [ = 1 and = 0.4d,, for [ = 3. The saturation occurs at
E./JE, =~ 002 for/ = 1 and E./E, = 0.06 for / = 3. Therefore. this justifies the
assumption that E./E, < 1. In addition. even for such a weak control field. the
saturated amplitudes of the mixed field components can he as high as 50% of the

amplitude of the nearby odd harmonic component when no control field is present.

3.2.2 Numerical results

Results from numerical evaluation of the recombination dipole moment have been
obtained to examine the simple analysis discussed above. Here. the quantum dipole
moment (see Section 2.1.4) which makes no specific assumptions regarding the form
of the incident field is used to calculate the mixed field dipole moment. Figure 3.1(a)
shows the dipole acceleration power spectrum for a 150 fs fundamental pulse interact-
ing with neon. The pulse has a peak intensity of 1.5 x 10'> W/cm? and a wavelength
of 400 nm. This field can be realized by the second harmonic of a Ti:Sapphire laser. It

is seen that under these conditions. the harmonic plateau extends to about the 27th

In
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harmonic which has a wavelength of 15 nm. With the addition of a ("W control field
with a wavelength of 10.4 um and an amplitude equal to 0.070 of the fundamental
field’s peak amplitude, many mixed field components appear (see Figure 3.1(b)). The
control field wavelength used here is chosen to satisfy the proposed phase matching
condition (Eqn. 3.8) for the 26w, —w. mixed field and can be realized by a CO2 laser.
It should be noted that unlike HHG where only ¢ = odd spectral lines are possible.
q = even components can also be seen in the HDM spectrum. This is in agreement
with the simple analysis discussed above.

The growth of the mixed field components near the 26w, — w. line as function of
control field amplitude is shown in Figure 3.2. Here. it is seen that as the control field
amplitude is increased. more and more sub-band components (/«.) appear. Specifi-
cally, for ¢ = odd. only [ = even sub-band components exist whereas for ¢ = even.
only / = odd sub-band components exist. This again is consistent with the simple
analysis discussed above. However. the sub-band components are apparently all blue
shifted as is the 25th harmonic in the absence of the control field. As will be discussed
below, this is again due to an intensity dependent phase. For £, = 0.06 £,. it is seen
that the mixed field components 26w, — [w..l = 1.3 have both saturated to a level
within an order of magnitude of the 25th harmonic that is generated by the funda-
mental field alone. This is more clearly shown in Figure 3.3 where the energv of the
25w, 26w, — w. and 26w, — 3w, lines is plotted as function of the control field ampli-
tude. The energy for each component is obtained by integrating the power spectrum
in the corresponding spectral range and is normalized with respect to the energy of
the 25th harmonic when E., = 0. Here, it is seen that the saturated 26w, — w. and
26w, — 3w, sub-band energies are about 10 % of that of the 25th harmonic produced
by the fundamental field alone. Assuming the mixed field energy is proportional to
the square of the mixed field amplitude. these results are also in agreement with the
results obtained in the simple analysis discussed above.

The temporal profiles of the ¢ = 26./ = 1.3 components at saturation are shown

in Figure 3.4. These profiles are obtained by applying an ideal band-pass filter

(V.2
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Figure 3.1: (a) Dipole acceleration power spectrum obtained for a 150 fs funda-
mental pulse interacting with neon. The fundamental pulse has a peak intensity of
1.5 x 10'> W/cm? and a wavelength of 400 nm. (b) Dipole acceleration power spec-
trum obtained for the mixing of a CW control field with the same fundamental pulse
used in (a). The control field has a wavelength of 10400 nm and an amplitude equal
to 0.070 of the fundamental pulse peak amplitude.
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Figure 3.2: Dipole acceleration power spectra near the 26w, — w. mixed line obtained
for the mixing of the same fundamental pulse used in Figure 3.1 and a CW control
field with different amplitudes. FE., is the amplitude of the control field and E,, is
the peak amplitude of the fundamental pulse.
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to the spectral region corresponding to the mixed lines and performing an inverse
Fourier transform. For example, the 26w, — 3. temporal profile has been obtained

.89«&'0 to

(1]

by isolating the spectral region in the frequency range between « = 2
w = 25.97w, in the complex spectrum followed by an inverse Fourier transform. The
specific range is obtained by a visual inspection of the spectrum. Also shown are the
normalized profiles of the control field amplitude and fundamental intensity and the
temporal profile of the ionization probability calculated at E., = 0. The ionization
probability has been found to change little for the control field amplitude. E,,. studied
here. From Figure 3.4 , it is seen that the temporal profiles of the mixed fields very
closely follow that of the 25th harmonic.

As is evidenced from the spectral blue shifts of the mixed lines. the dipole phase
must also have a temporal dependence. This is shown in Figure 3.5. The phase of
the mixed field cornponent, 0;,(!). is obtained by assuming that the component varies
as expli(qwt — lw.t + 0;,(1))]. Figure 3.5a shows the phase of the 25th harmonic in
the absence of the control field. It is seen that this phase increases with time. thus
resulting in a blue shift in the spectral domain. Again. this time dependent phase
is due to the dependence of the harmonic phase on the fundamental intensity which
is in turn varying in time (see Section 2.1.7). Figure 3.5b and Figure 3.5¢ show
respectively the phases of 26w, — w,. and 26w, — 3w. components at two different
values of E.. It is seen that the temporal dependence very closely follows that of the
25th harmonic and that a change of the amplitude of the control field only causes a
small constant phase shift of the mixed field components. This shows that the mixed
field dipole phase is a strong function of the fundamental intensity but a rather weak
function of the control field amplitude.

Finally, of particular importance in the HDM scheme is the dependence of the
dipole moment on the phases of the incident fields. By varving the phases of the
fundamental (6,) and the control field (6.), it has been found that for the case studied
here the dipole phase is indeed given by 6, = 0:, + g0, — 18, where 0;, is the intensity

dependence phase discussed above. The magnitudes of the mixed field components.
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Figure 3.4: (a) The normalized fundamental intensity and the ionization probability
calculated in the absence of the control field. (b) The normalized control field profile.
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are normalized with respect to the peak 25th harmonic amplitude.
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on the other hand, depend little on the incident phases.

3.3 One Dimension Propagation Study

The 1-D propagation model described in Chapter 2 has been extended to study the
proposed HDM scheme. Similar to the HHG model, it is assumned here that the total
field inside the medium consists of three fields, i.e. £ = E, + E. + E,, where £,
is the high intensity, high frequency fundamental field, E, is the low intensity, low

E,. is the mixed field generated by the induced mixed

frequency control field and
field nonlinear polarization. It is further assumed that £, > E£..£,. Then the 1-D

nonlinear wave equation (Eqn. (2.62)) can be partially decoupled into a set of wave

equations:
82E. 1 82E1 ino aEl 1 pF -
82 _@or ¢ \ o Z Er=0 (3.18)
J*E. 1 9°E. 2w, BE, 1OE, ,,,
52 @ o ' < ( d: ¢ ot £-=0 (3.19)
0*E, 1 8%F, 2w, (GE, 10E, w':, 47!‘«-‘3
—_— - — - — 3.2
a:? c? 912 c 0z + c Ot c? Eq e? b (3.20)
where the envelope fields are related to the real fields by:
E\(=.1)=|E\(z ICOS(C‘( ——ct)+arg(E|(:.I))> (3.21)
E.(z.t) = |E.z,t)|cos (‘%C(z —ct)+ arg(E.(=. t))) (3.22)
E,(2.1) = |Ey(z.t)] cos (%(; — )+ arg(Eq(:.t))) (3.23)

and the plasma frequency wy, is calculated from the tunnel ionization equation, taking
into account the fundamental field only. In Eqn. (3.20), E,; is the envelope of a
near-qth mixed field generated by the near-qth mixed field nonlinear polarization P,

defined below.
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As is seen from the single-atom analysis. since the mixed ficld dipole spectrum
consists of discrete spectral lines, the mixed field nonlinear polarization can be
expanded as Pr(t) = 3,3, qu(t)exp[i(qwo—lwc)t] = 3, Pq(t)exp[iqu;ot] where
Pq(t) =3, Pq,(t)e‘i'“’C'. From the single-atom analysis. it is also seen that for the
control field strengths studied here, P, is only significant for small {. Therefore.
since w, K W, Pq(t) is slowly varying compared to e’ and can then be obtained

approximately by:

. n, [ttt o
Bty =22 [77 dt"emi " d( B, (1), E.(t").1") (3.24)

o t

where d is the recombination dipole moment induced by the two incident fields.
Similar to the HHG model. it is now assumed that the fundamental field envelope
and ionization probability do not vary significantly over one fundamental laser cycle
t,. Here it is also assumed that the magnitude of the low frequency control field does
not vary significantly in one ¢,. Then P,, can be evaluated as:

- n,

Pt = °

/ T dpremioat” J(1 B, (1) costunt” + arg( E(1). EL(1).£7)  (3.25)

t

(1 —P(1))

where d is the steady state dipole moment obtained by setting P(t) = 0 in the dipole
expression. Also, as was discussed in Section 2.2.2. the effect of a phase shift in the
fundamental field, 6,. will only change the phase of the qth harmonic components by

qb,. hence:

1B Erlt) e,

B,(t) = dt'e=" 9" d(| E, ()] cos(wot"). E.(1)) (3.26)

where the change of the integration limits also follows from the same arguments
discussed in Section 2.2.2. Finally, it should be noted that since P, = 3, Pye~"".

E, = ¥ Ee~ ! should also contain the various subband components.

3.3.1 Results and Discussion

The propagation model has been incorporated into a computer simulation code using

a similar numerical method as that for the HHG model. The numerical scheme is

o
[v.4)
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described in Appendix C. Calculations have been carried out to study the propagation
of a 400 nm, 150 fs, ionizing laser pulse with a peak intensity of 1.5 x 10'*W /cm?
and a much weaker control laser whose amplitude at the entrance to the medium
is constant and whose frequency satisfies the HDM phase matching condition for a
particular high frequency mixed field with frequency wy = 26w, — lw.. The nonlinear
medium is 50 torr of neon. Calculations have also been done to obtain results for the
neighboring 25th harmonic when there is no control field. These results are used to
examine the possible conversion improvement due to HDM.

With no control field, the energy conversion of the 25th harmonic is shown in
Figure 3.6. Here. the harmonic energy is obtained by integrating over time the
harmonic intensity recorded at specific locations in the medium and is normalized
with respect to the maximum energy reached. It is seen that the conversion efficiency
saturates at about 100 gm. Asexpected. the saturation is due to free electron induced
phase mismatch. This can be seen from Figure 3.7 where the 25th harmonic temporal
profiles recorded at different locations are shown. At z = | ym. the harmonic profile
resembles that from the single atom response (see Figure 3.4). At = = 100 gm. the
phase mismatch due to free electrons (A0 = 0.3g7(=/)A,)(n./n.)) is greater than =
for an ionization fraction greater than 60%. Hence a large portion of the harmonic
pulse generated at higher ionization saturates and the peak of the harmonic pulse is
now “pushed” toward lower electron density. This also results in the overall energy
saturation as is indicated from Figure 3.6. At : = 200 ym. the phase mismatch at
60% ionization becomes 27, resulting in zero conversion efficiency in this portion of
the harmonic pulse.

The growth of the near-26th (26w, — ¥°;lw.) mixed field is shown in Figure 3.8.
Plotted are the spectral profiles of the mixed field recorded at various locations in
the medium. Here, the control field wavelength has been set to 10.4 um to phase
match the [ = 1 sub-band component. The control field amplitude at the entrance to
the medium has been set to 0.037 of that of the peak fundamental amplitude in order

to saturate the atomic response (see Figure 3.3). In Figure 3.8. it is seen that as the
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Figure 3.6: The time-integrated energy of the 25th harmonic pulse. The values of
the harmonic energy have been calculated at discrete locations as indicated by the
circles.
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Figure 3.7: The temporal profiles of the 25th harmonic recorded at different locations.
Also plotted are the normalized fundamental intensity and the electron density. The
electron density has a maximum value of 50 torr corresponding to 100% ionization
of the gas.
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mixed field propagates. the growth of the non-phase-matched sub-band components
saturates rather rapidly. At z = 100 ym. the mixed field is composed primarily of the
phase-matched [ = 1 sub-band components. However. at = = 200 um. even the / = |
sub-band ceases to grow. The energy saturation is more clearly seen in Figure 3.9
where the time integrated energy of the near-26th mixed field (including all sub-
bands) is plotted as function of propagation distance. Also shown for comparison
is the energy of the 25th harmonic when there is no control field (i.e. Figure 3.6).
The energy is normalized with respect to the maximum 25th harmonic energy. It is
seen that although the near-26th mixed field has a longer saturation length, due to its
smaller nonlinear polarizablity (see Figure 3.3) which is responsible for a more gradual
growth, the maximum energy obtainable is only 80% that of the 25th harmonic.
Hence. no improvement in conversion efficiency has been achieved.

Now since the saturation of the 25th harmonic can be accurately explained by
the free electron induced phase mismatch predicted by A8 = 0.5k,zq(n./n.). the
phase of the fundamental field should well be described by 8, = ki,(1 — 0.5n./n.)=.
Furthermore, since the electron density in the HDM case is also due to the funda-
mental intensity alone. the phase of the fundamental field should be the same as that
in the HHG case. This implies that the propagated low frequency control field is
responsible for the saturation of the mixed field.

Figure 3.10 and Figure 3.11 show respectively the amplitude of the control field
near the ionization front at different locations and the temporal profiles of the [ = 3
sub-band component at the same locations. Also shown in Figure 3.11 are the fun-
damental and electron density profiles. From these figures. it is seen that the control
field has experienced an upshift of its frequency and a reduction in its amplitude.
Both the frequency upshift and amplitude reduction are more pronounced in the
middle of the ionization front where the high frequency mixed field peaks.

Frequency upshifts of laser pulses co-propagating with a relativistic ionization

front have been examined many studies *. Physically. the frequency upshifting is a

4See Ref. [51] and references therein.
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Figure 3.10: Temporal profiles of the low frequency control field near the ionization
front recorded at different locations in the medium.
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result of different parts of the laser pulse propagating at different phase velocities
due to the spatially and temporally varying electron density. As can be inferred from
the analysis given in Section 2.2.3, the shifts are directly proportional to the slope
of the ionization front times the propagation distance in the SVE approximation. It
is obtained from the fact that the phase of a laser field with a vacuum wave vector
and frequency, k,&, co-propagating with a relativistic ionization front in the SVE
approximation is given by k[l — (1/2)n.(z —ct)/n ]z — ot = k= —&t — (1/2)kzn.(z -
ct)/n. = kz —o[l+(z/2¢c)d(ne(z —ct)/n.)/dt]t where k, is the vacuum wave vector of
the laser field. This then shows a frequency shift of Aw = &(=/2¢c)d(n.(z.t)/n.)/dt.
From this analysis, the phases of the participating waves in the HDM scheme still
follow that given by Eqns (3.1,3.2.3.5), but with n, now replaced by n.(z — ct).
Consequently, the phase matching condition given by Eqn (3.8) should still be valid.

However, when the frequency shift is large. it has been shown that the SVE ap-
proximation is no longer valid and the shifts become a nonlinear function of the
density slope and propagation distance. Furthermore. the amplitude of the propa-
gating field is also distorted and becomes a function of the upshifting laser frequency.
From Ref. [51], the frequency of the laser field as seen in the retarded time frame

(z'==z,t/ =t —z/c) for a linear density ramp n.(f') = n.,(t’/7) increases as:

- n 1/2
w(z') =@(1+'— ) (3.27)
cT n.
and the amplitude of the laser field is reduced by:
E(z') = E,—— (3.28)
w(=')

It should be noted that for small distances or frequency shifts, Eqn (3.28) reduces to
that predicted by SVE analysis. Then. the phase of the laser field should be given
by:

-

cT N,

S\ 2
0(21’ l) - W(Zl,tl)t,—«’:)t' =a l:(l + = f.o) _ 1] tl (329)

Again, for small frequency shifts, this formula reduces to that given by the SVE

approximation: §(z'.¢') = (1/2)(@/c)z"(neo/n)(t'[7) = (1/2)k="(ne(t')/n.).
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In the HDM process. the deviation from the SVE or ideal phase will result in a
non-zero phase mismatch for the high frequency mixed field. In this case the phase

match becomes:
Af = — (80, — qbb, + 166.) = 156, (3.30)

where 60 = @°<tua! — gideal is just the deviation from the SVE or ideal phase. In
Eqn (3.30), the contributions from the corrections to the fundamental and mixed field
phases should be small due to their much larger critical densities and can therefore
be neglected.

Figure 3.12 shows the instantaneous frequency shift of the control field as calcu-
lated from the simulation near the ionization front. Also shown is the ideal frequency
shift obtained from the SVE analysis. The control frequency shift is obtained from
the simulation by differentiating the phase of the complex control field envelope with
respect to time. Here, it is seen that at = = 50 pm. the actual frequency shift agrees
quite well with the ideal shift up to the maximum shift at ¢/t; = 300 where the
actual shift starts to deviate from the ideal case. As the control field propagates. the
actual frequency shift deviates more and more from the ideal case. The frequency
shift obtained from the simulation seems to agree very well with that predicted by
Eqn (3.27). From Figure 3.11. it is seen that the slope of the ionization front near
ne* /2 is about (ne,/nS)/(25t;) where n.,/nS = 0.17 for the 50 torr of gas and n;
is the critical density of the control field. Hence, the frequency shifts at the center
of the ionization front as predicted from Eqn (3.27) will be Aw./w,, = 1.1 and 1.8
for = =200 and 400 um respectively. These values agree very well as those observed
in Figure 3.12. One unexpected feature of the actual frequency shift is the appar-
ent “spread” of the shift to the trailing edge of the ionization front. According to
the Eqn (3.27), the frequency should be zero when the dn./d; = 0 corresponding to
T = oc. However, from Figure 3.12, it is seen that at the trailing edge of the ionization
front, even though the electron density is constant. there is a still a significant shift of
the control field frequency. The cause of this effect is group velocity dispersion of the

control field which is not taken into account in deriving Eqn (3.27). The phase of the



did i’ ol

ST TR IR TR AU SRR e SN IR

control field is shown in Figure 3.13. Also shown is the phase as calculated from the
SVE analysis and deviation from the SVE ideal phase. The phase deviation at the
center of the ionization front is about 7 at = = 200 um leading to a phase mismatch
of [60. = . Hence the mixed field, which peaks at the center of the ionization front.
should saturate here. This indeed has been observed (see Figure 3.9).

A competing mechanism which can also cause saturation of the mixed field is
the reduction of the control field amplitude. When this quantity is reduced below
a certain threshold, the mixed atomic response becomes very small (see Figure 3.3).
This will then prevent further growth of the mixed field. However. this problem can
be easily solved by setting the initial control field amplitude to a value much higher
than the threshold so that the amplitude remains ahove the threshold value in the
region where saturation is caused by the nonlinear frequency shift. For example.
in the present simulation. the initial amplitude of the control field has been set to
E., = 0.037E,, which is considerably above the threshold amplitude of 0.02F,, (see
Figure 3.3). Consequently, the reduced amplitude of the control field at the observed
saturation of the mixed field is about E.(z = 200 ym) = 0.02E,, (see Figure 3.10)
which can still support a significant magnitude of the mixed field nonlinear polariza-
tion.

From the above analysis, is is seen that the saturation of the mixed field is due to
the nonlinear frequency shift of the long wavelength control laser and the nonlinear
shift is more serious for longer wavelength fields. It may be possible to reduce the
effects of the nonlinear frequency shift by reducing the wavelength of the control
laser field. For example, a 3500 nm field can be used instead of the 10400 nm field to
phase match the 26w, — 3w, mixed field. The energy conversion from this scheme is
shown in Figure 3.14. Also shown for comparison is the conversion efficiency of the
non-phase-matched 25th harmonic. Here, the initial amplitude of the control field is
set to £, = 0.07E,, which is needed to saturate the atomic response. It is seen that
by using a shorter wavelength control field to phase-match a higher /-order mixed

field. the phase matching length and therefore the maximum obtainable conversion
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Figure 3.12: The control field frequency shift at different locations in the medium
as obtained from the numerical simulation (solid lines) and from the SVE analysis

(dashed lines)
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Figure 3.13: Shown on the left is the control phase as obtained from the numerical
simulation (solid lines) and from the SVE analysis (dotted lines). Shown on the right
is the deviation from the SVE phase.
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efficiency can be significantly increased. In this case. a factor of 10 enhancement has
been achieved.

It is then tempting to use this propagating model to study the possibility of fur-
ther increasing the near-26 mixed field by using an even shorter wavelength control
field to phase match even higher /-order mixed field components. However, for con-
trol field wavelengths less than 3500nm (which has already a half cycle of only 4
fundamental periods), the assumption that the control field amplitude is constant in
one fundamental period becomes invalid. It is not clear if the propagating model can
still be used in this regime. A different analysis may be needed to study HDM in

which the incident frequencies are not very different from one another.

3.4 Summary and Conclusions

In this study, HDM of the type wy = gw,~lw. (w, > w..q¢ > [ > 1)) has been studied
using a 1-D numerical propagation model incorporating the recombination polariza-
tion. It is found that very high order mixed field nonlinear polarization components
can be produced by the mixing of a high intensity high frequency fundamental field
and a low frequency low intensity control field. It is also found that although a pre-
scription for phase matching a high frequency mixed field in a plasma with constant
electron density exists, the conversion efficiency for HDM in an ionizing plasma can-
not be arbitrarily improved. The saturation of the mixed field in such a plasma is
due to the non-zero phase mismatch arising from the nonlinear upshift of the low

frequency control wave propagating in a relativistic ionization front.
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Chapter 4

Coherent Attosecond Soft-X-Ray

pulses

Recent advances in laser technology have resulted in the production of visible laser
pulses (A, = 750 nm) with durations as short as only a few femtoseconds and pecak
focussed intensities as high as 10'W/cm? [52]. From the single atom viewpoint
[33. 54], these ultra-short driving pulses may be exploited to generate radiation with
much shorter wavelengths than is possible from longer driving pulses. As discussed
in previous chapters, the highest frequency or cutoff radiation is related to the driv-
ing laser’s intensity by Awma.r = [, + 3.17U, where [, is the highest ponderomotive
potential which can be felf by the ionizing atom. As will be shown below. as the
driving pulse width is shortened, the atom can experience higher and higher inten-
sities before becoming completely ionized. Consequently. higher frequency radiation
can be generated.

In this Chapter, an investigation of ultra high frequency conversion by an ultra-
short duration driving pulse propagating in an atomic gas is described!. Section 4.1
describes response of a single atom to such an incident field. Section 4.2 discusses

propagation effects in the one dimensional limit. Finally, Section 4.4 summarizes the

1A version of this investigation has been submitted to Physical Review Letters entitled “Coherent
xuv generation from gases ionized by several cycle optical pulses” by C. Kan. N. H. Burnett.
C. E. Capjack and R. Rankin.
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findings and conclusions of this investigation.

4.1 Single Atom Analysis

4.1.1 Ionization of the atom

Tunnel ionization by a short duration laser pulse can be quite different from that by a
long duration pulse. Specifically, the highest intensity that can be experienced by an
atom before it becomes fully ionized is quite different for short duration lasers than for
long duration lasers. This is immediately apparent from the fact that the ionization
probability. P(t), depends not only on the instantaneous electric field strength but

also on the field’s history. That is,
t
P(t)=1 —exp (—/ R,(E(t”))dt”) (4.1)

where R, is the tunnel ionization rate (see Section 2.1.1). As an example. Figure 4.1
shows the ground state population (1 — P(t)) calculated from the average tunnel
ionization rate for a Gaussian laser pulse with different temporal (FWHM) durations
but a fixed peak intensity equal to 2 x 10"®W /cm?. It is seen that for a 400 fs
pulse. no atoms can survive the peak intensity without becoming completely ionized.
However, as the pulse is shortened to 25 fs, about 20 % of the atoms can survive
the peak intensity. For a 5 fs pulse, more than 70 % of the atoms can experience
the peak intensity. Because more atoms can survive higher intensities for ultra-short
laser pulses, higher frequency components can be produced with better conversion

efficiencies.

4.1.2 The dipole response

The single atom dipole spectrum for an ultra-short duration driving field can be
readily obtained by using the Lewenstein dipole model which makes no specific as-
sumptions regarding the temporal duration or structure of the driving laser radiation

(See Section 2.1.4 and Section 2.1.6). Shown in Figure 4.2 is the dipole acceleration
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Figure 4.1: Ground state population for helium as calculated from the average ADK
ionization rate for a Gaussian laser pulse with different FWHM durations. Plotted
is the ground state population versus the rising portion of the laser pulse. The laser
has a wavelength of 750 nm and a peak intensity of 2 x 101*W /cm?.
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spectra obtained for a 750 nm. 5 fs. 2 x 10"*W /cm? driving laser pulse interacting
with a helium atom. The spectra have been normalized with respect to the energy
of the laser pulse ¢;. Also shown for comparison is the spectrum obtained for a
200 fs pulse. As expected, the very short duration driving pulse causes a very large
frequency shift and broadening of the harmonic lines (See Chapter 2). As a result.
distinct harmonic generation no longer exists for the 5 fs pulse. The dipole spectrum
for the ultra-short pulse displays a rather complicated spectral structure.

Of the greatest interest in the spectrum is the region near the frequency cut-
off which shows the highest frequency radiation achievable from this process. For
the long duration driving pulse, the cutoff harmonic has a wavelength of about
750 nm / 175 = 4.3 nm. By using the cutoff law, Awnper = [, + 3.17U,, this indi-
cates that the atom has only experienced an intensity of about 1.6 x 10"®W /cm?
before becoming completely ionized. On the other hand. for the short duration driv-
ing pulse, the highest frequency component has a wavelength of about 3.5 nm. By
again using the cutoff law. this indicates that the atom has indeed survived the peak
intensity of 2 x 10®W /cm?.

Also of interest is the temporal behavior of the ultra-high frequency radiation.
Shown in Figure 4.3 is the temporal profile of the frequency components as seen
through a spectral filter which only allows transmission of frequencies above w/w, =
210. Alsoshown is the temporal profiles of the driving laser and ionization probability.
It is seen that these frequency components constitute an attosecond pulse in the time
domain.

The generation of the attosecond pulse in Figure 4.3 can be understood from the
semi-classical picture inherent in the Lewenstein dipole model. In this picture, the
generation of the high frequency field is due to the recombination of electrons which
were ionized in the previous fundamental cycle and have been accelerated by the
laser field. In the simplest case where the laser is only turned on for one fundamental
cycle from w,t = —7 to =, there exists only a very brief moment near w,t = 0.47

(see Section 2.1.2) where the highest frequency components can be generated. This
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Figure 4.2: Dipole acceleration power spectra for a 750nm, 2 x 10'3W /cm? laser pulse
interacting with helium. The driving pulse durations are (a) 5 fs and (b) 200 fs. The
spectra have been normalized with respect to the energy of the driving pulse.
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Figure 4.3: The temporal profiles of the incident electric field. E,. the ionization prob-
ability. P, and the intensity envelope of the dipole acceleration. /. as seen through
a filter which only allows frequency components above w/w, = 210 to pass through.
Here, E, is the maximum incident field strength corresponding to an intensity of
2 x 10"®*W /cm?, ¢, = 2.5 fs is the laser’s fundamental cvcle. The interacting medium
is helium.
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corresponds to the recombination time of the electrons which were ionized at wt’ =
—0.67 and have acquired the maximum kinetic energy 3.17(’, from the driving field.
In the case of the 5 fs pulse considered here. the maximum incident intensity only
occurs in only one particular time interval (i.e. t/t, = 5.5 to 6.5 in Figure 4.3) and
has a clear contrast against the intensity peaks in the previous and following cycles.
The highest frequency components are therefore generated within this particular
cycle. According to the semi-classical picture, these frequency components should
be generated near {/f, = 6.2 by the electrons which are ionized near t'/t, = 5.7.
The temporal location of the calculated attosecond pulse agrees very well with that

obtained from this semi-classical interpretation.

4.2 Propagation Analysis

4.2.1 The one dimension model

The one dimension model used here is very similar to that used in Chapter 2. The
major difference follows from the dipole spectrum no longer consisting of distinct
harmonic lines so that the slowly varying envelope approximation can no longer be
used to decompose the harmonic equation into a set of envelope equations for the
individual harmonic components. As a result, the total induced field generated by
the nonlinear polarization must be solved by the full wave equation.

In this model. the total electric field inside the medium is decomposed into a high
intensity fundamental field, £, and the induced field, E,. Assuming E, > E,. the

fundamental field is again described by the envelope equation (see Section 2.2.1):

0%E, 10%*E, 2w, (0E, 10E, wz,(_E_,.t)
— + —_ —_——
0= c Ot

E =0 (4.2)

922 ¢ ot? + c c?

where the real field is defined as:
E, = Re[E elk>=1] (4.3)

and the plasma frequency wy. in this case is obtained from tunnel ionization equation

(Eqn. (2.7)) using the instantaneous d.c. ionization rate R,(£,) (Eqn. (2.4)). The

110



IET TSI TATRTE L R

propagation of the induced field. however. must now be studied using the full wave
equation:

O’E, 1 8’E, whe(E;.t) 4
2 "2or T a b= gnedlEnl) (4.4)

which is required because the dipole acceleration d, cannot be decomposed into a
set of envelope components. Again, the quantum dipole model is used to obtain the

dipole acceleration.

4.2.2 Solving the wave equations

In this study. the equation for the fundamental field is solved using the same finite
difference technique as described in Appendix B. Although an attempt has been made
to also solve the induced wave equation by a similar finite difference method. it is
found that due to the large bandwidth of the induced wave. a very fine numerical
grid is needed to obtain convergent results. To solve the induced wave equation for
realistic modelling conditions in such a numerical grid requires computational power
bevond that which is available in this project. Consequently. an approximate integral
method has been used instead to solve the induced wave equation.

For very high frequency radiation, the effects of free electrons on its propagation
is negligible. Therefore, for the high frequency portion of the induced radiation. the

wave equation can be written as:

0’E 1 3’E; 4=
S " Eap = anedd£) (4.5)

where d* denotes the high frequency portion of the dipole acceleration. A Fourier

transform of Eqn( 4.5) gives:

O*E,(z,w 2 47
———352 )+%E-h(sz)=’§'nod:(z-.w) (4.6)

from which a close form solution exists for £,(z.w):

!

or = ’d., :,.u—' jui=i -
E,,(z,w) = ‘?Tlo/ d= %6 < (4!)
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Here, the function
G(z,2') = —e™ T (4.8)
w

is just the Green’s function for the one dimensional Helmholtz operator, d?/dz? +
(w/c)?, satisfying the boundary conditions for a wave advancing in the positive =
direction assuming a e~ time dependence. Eqn. (4.7) can be easily integrated
numerically once E; has been obtained from the numerical wave solver for the eval-
uation of the dipole moment d,. Now, by noting the properties of Fourier transform
operations, the physical meaning of Eqn. (4.7) becomes apparent. In the tempo-
ral domain, the integrand is simply the first time derivative of the dipole moment
(or the dipole velocity) evaluated at the retarded time tgp = t — (= — =’}/c. Hence.
Eqn. (4.7) simply says that the temporal profile of the high frequency induced field
is proportional to the sum of the dipole velocity fields recorded at earlier locations

and evaluated at the retarded time.

4.3 Results and Discussion

The one dimensional model has been solved for a 5 fs incident laser pulse with a peak
intensity of 2 x 101°*W /cm? and a wavelength of 750 nm interacting with 500 torr of
helium. The spectral profiles of the induced field, E,(z.w), near the cutoff frequency
region are shown in Figure 4.4. Here, it is seen that the growth of the high frequency
induced field saturates at about 9 pm. The saturation ncar the cutoff frequency
region can be more clearly visualized by plotting the peak amplitude of the induced
field envelope in the temporal domain. Shown in Figure 4.5 is the peak temporal
amplitude of the induced field as seen through a spectral filter which only allows
frequencies above w/w, = 210 to pass through. The temporal profile of the filtered

induced field at z = 20 um is shown in Figure 4.6.
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Figure 4.4: Spectral profiles of the induced harmonic field generated by a 750 nm, 5 fs.
2 x 10'®W/cm? incident laser field interacting with 500 torr of helium. The spectral
profiles are shown near the cutoff region as a function of propagation distance.
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Figure 4.5: Peak amplitude of the induced field as function of propagation distance.
The induced field has been spectrally filtered to contain only frequency components
above w/w, = 210
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Figure 4.6: Temporal profiles recorded at = = 20 ym of the incident electric field.
E,, the electron density divided by the critical density for the fundamental field.
ne/n., and the amplitude envelope of the induced field as seen through a filter which
only allows frequency components above w/w, = 210 to pass through. Here. E, is
the maximum incident field strength corresponding to an intensity of 2 x 10'*W /cm?
and ¢, = 2.5 fs is the laser’s fundamental cvcle. The interacting medium is helium.
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4.3.1 Understanding of the conversion saturation

As discussed in Section 4.2.2, the Fourier transformed induced field at a distance
= into the medium is proportional to the integral over earlier distances =’ of the

function:

, do(2' w) ; tz=21
d,,(z ,w) = ——(ZT-—)-G € (49)

which is just the Fourier transform of the dipole velocity field at =’ evaluated at the
retarded time tg =t — (z — 2’)/c. Therefore, in order to understand the saturation of
the induced field, the dependence of both the amplitude and phase of d.(z".«) on =’
must be determined. Figure 4.7 and Figure 4.8 show. respectively. the magnitude of
the Fourier transformed dipole velocity calculated by Eqn. (4.9) at different =z’ and the
phase of several of its frequency components near the cutoff region as function of ='.
From Figure 4.7, it is seen that the cutoff region of the dipole velocity spectrum seems
to be moving towards lower frequencies for larger propagating distances. Therefore.
the magnitude of the frequency components near the cutoff region (210 < w/w, <
230) becomes vanishingly small after ' = 13 ym . Consequently. when these spectra
are integrated along z’, the high frequency portion (e.g. 210 < w/w, < 230) of the
resulting integral will become constant after =* = 13 ym. This is indeed observed
in Figure 4.5. From Figure 4.8, it is seen that the phase of the cutoff frequency
components of the dipole velocity decreases for increasing =/. At =’ = 9 um. the
change of phase is about m. Hence the induced field should saturate at this distance.
This is also consistent with the result shown in Figure 4.5.

The decrease of the dipole spectrum’s cutoff frequency can be understood as a
result of the frequency upshift and amplitude reduction of the fundamental driving
field which causes a reduction of the field’s ponderomotive potential. A reduced
ponderomotive potential results in a smaller kinetic energy of the recombination
electrons which in turn lowers the frequency of the x-rays emitted. Figure 4.9 shows
the amplitude and phase of the complex fundamental field envelope in the retarded

time frame recorded at various locations. Also shown is the fundamental phase as
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calculated from the SVE approximation (dashed lines) given by

gSvE - = - 4.1
1 S (4.10)

It is seen from the calculated results that the field amplitude is distorted as the field
propagates. Most noticeable is the non-uniform reduction of the field amplitude.
[t appears that the reduction is greater at the times when the phase changes more
rapidly with time. With regard to the fundamental phase, it is seen that the SVE
approximation no longer applies here. Specifically. the calculated phase does not
follow the shape of the electron density profile. As is described in Appendix D. a
more accurate analysis shows that the phase as viewed in a retarded reference frame

(2’ = =z. tp =t — z/c) should be described by:
g, = AiRe[f(fR)] (4.11)

where the function f is a solution to the following differential equation:

df ) N,
—xif =2xY =" = 1.12
Ainil) 2w f Inc 0 (4.12)

In addition. the field envelope in the retarded frame should decrcase according to:
E\(z'.tgr) = E,exp(3) (4.13)

where

Aw 1 df 2 dRe[f]

oy I dUAlt)) - 2k dltalty) (4.14)

is just the instantaneous frequency upshift of the fundamental field. Hence. Eqn. (4.13)
says that the reduction in field amplitude is largest when the instantaneous frequency
upshift is the largest. It is interesting to note that. unlike the SVE analysis 2. the
frequency upshift is actually smaller at times when ionization changes more rapidly.
Figure 4.10 shows the fundamental phase and amplitude calculated from the semi-

analytical analysis (Eqn. (4.11) and Eqn. (4.13)). Also shown are those from the

%In the SVE case. the frequency shift is proportional to dn, /df [35].
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numerical calculations. It is seen that the semi-analytical results agree with the fully
numerical results very well. As the amplitude and frequency of the fundamental field
are modified, the field’s ponderomotive potential is also modified. This in turn modi-
fies the maximum kinetic energy of the recombining electrons and ultimately changes
the cutoff frequency of the x-ray emitted. Specifically. assuming the increase in in-
tensity Al and the decrease in frequency Aw is small, the ponderomotive potential
of the fundamental field is modified by:

(1-AI/AL) . Al Aw _
T A Ar = el 272 (4.15)

[ ° w',

Up = U

For the cutoff frequency components. the responsible electrons are ionized near the
retarded time t'/t, = 32.2 and recombine near t"“/t, =~ 32.9 (see Figure 4.9). By
examining the amplitude and phase of E, from the simulation results. it is found
that the average change in frequency in this temporal region is given approximately
by Aw / w, = 0.0025z(um) whereas the change in the field envelope follows ap-
proximately Al / [, = 0.003z(gm). By assuming these two quantities are mainly
responsible for the change in the ponderomotive potential in Eqn. (4.15). Figure 4.11
shows the cutoff frequency versus propagating distance as calculated from the cutoff
law: hw, = [, + 3.2U, where ', is determined hy Eqn. (4.15). It is seen that these
results agree with the numerical results shown in Figure 4.7.

The phase shift of dipole velocity components in the retarded frame near the
cutoff region can be also understood in terms of the phase. frequency and intensity
modification of the propagating fundamental field. As discussed in Chapter 1 in
the context of distinct harmonic generation. the phase of the high frequency field is
related to the phase of the recombination electrons which is in turn determined by
the following three quantities: the phase of ionization. the phase of recombination
and the accumulated phase of the recombining electrons. These quantities in turn
depend on the phase, frequency and amplitude of the fundamental field. Formally.

the dependence of the dipole phase shift (in the retarded frame) can be written as:

d0n(='.tg) 00, d' 0, dwy 86, dl,
&~ ovde T am do T ol dv (4.16)
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Figure 4.9: The amplitude and phase of the complex fundamental envelope in the
retarded time frame recorded at various locations in the medium. FE, and ¢, are
respectively the initial peak field amplitude at = = 0 and the fundamental cycle. The
dotted lines denote the phase calculated from the slowly varving envelope approxi-

mation.
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retarded time frame recorded at z = 16 um in the medium. E, and ¢, are respectively
the initial peak field amplitude at z = 0 and the fundamental cycle. The solid lines
denote results obtained from the semi-analytical calculations and the dotted lines
denote results from numerical solution to the wave equation
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where w,t’ is the phase at which ionization of the high energy recombining electrons
occurs, w; and [} are a measure of the fundamental field's frequency and intensity as
experienced by the ionized electrons before recombination.

The contribution to the phase shift of the dipole velocity spectrum due to a change
in the phase at which ionization occurs can be obtained as follows. When there is
only a constant time shift of the fundamental field. i.e. E|(f + ét). it can be shown
that the solution to the time dependent Schrédinger equation will only change by
the same time shift, i.e. W(t + §t). Physically, this means that when the driving field
is delayed by ét, the response of the atom is simply delaved by the same amount.
Hence the dipole response will also only change by d,.(f + éf). Accordingly. the phase
of the dipole velocity frequency component wy in the Fourier domain will change by
80y = widt. Therefore. 38, / 9’ = wr. Now. using the fact that the ionization time
is related to the phase of the driving field 6, by ¢’ = 6,(f') / «,. the first term in
Eqn (4.16) is given by:

36},.@: _ idal(f’)

Bt 9=’ w, d=’ (4.1%)

Then when Eqn (4.16) is integrated. the following expression for the dipole velocity

phase shift results:

O, = 6} + o;h (4.18)
where
6y = Z0,() (4.19)

is just the dipole phase shift contribution due to a change in the time or phase at

which the recombination electrons are ionized and

< (00, der | 00, dI
wi dyp ot — h 1 h Clo o
o) = [ (&u, &= " al, d:") 4 (4.20)

3This is a standard property of Fourier transform.
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is the phase shift contribution due to the change in driving frequency and intensity in
the time interval between ionization and recombination of the electrons responsihle
for generating the attosecond soft-x-rays.

In the case of a long driving (> 100 fs) pulse (see Chapter 2). the change in
frequency and intensity (in the retarded frame) of the driving field. as experienced by
the recombining electrons, should be small. Therefore dw; / d=’ =0 and dl; / d z' =
0. Hence, the main contribution to the dipole velocity phase shift should be mainly
due to 8. In the SVE case, the driving phase is given by Eqn. (4.10). For a
harmonic frequency wy /w, = gq, the dipole velocity phase shift is then given by
(using Eqn. (4.18) and Eqn. (4.19)) 8, = 6% = —(1/2)gk,='(n.(t')/n.) which is just
the phase mismatch for a high frequency (¢ > 1) harmonic wave (see Eqn. (2.89)).
However. when the driving field duration is as short as the 5 fs pulse studied here
where the SVE approximation breaks down. the contribution from 9;’“" may become
significant. An estimate of this contribution can be obtained as follows. First. the

dipole velocity is calculated for the following artificial driving pulse:

al,(t.w,) ift <t
I = (4.21)

O]o(t.u.'o +6«U) ift > t

where [,(t.w,) is equal to the driving field at the entrance to the medium. t is
the release time at = = 0 of the electrons responsible for the generation of the w;
frequency component. éw is a constant frequency shift, and o is a constant used to
adjust the peak intensity of the fundamental pulse. By varving o and dw to model
the effects of /(z') and Aw,(z’) as seen from the simulation. the phase of the wy
frequency component can then be obtained as a function of /(z’) and Aw;(z’).
Using the method discussed above, the contribution to the dipole phase shift
for the wp/w, = 215 component, 0;‘:"". is shown in Figure 4.12. Plotted also are
the contribution from 8} calculated from Eqn. (4.19) using 8,(t’) obtained from the
simulation and the total contribution 6, = 8! + 6;"/'. Shown as circles are the
actual phase shift of the w, dipole velocity frequency component as obtained from

the simulation. It is seen that the results obtained from the semi-analytical analvsis
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agree quite well with the simulation results and that the main contribution to the
phase shift is due to 4% .

Finally, it is interesting to compare the soft-x-ray conversion efficiency between a
200 fs pulse and the 5 fs pulse in this 1-D propagation limit. In Figure 4.13. the solid
line denotes the peak intensity of the attosecond soft-x-ray pulse generated by the 5 fs
driving pulse. The dashed line represents the peak intensity of the 201st harmonic
generated by a 200 fs pulse in the same 500 torr helium with the same wavelength
and peak intensity as the 5 fs pulse. It is seen that the attosecond x-ray pulse
saturates at much longer distances into the medium with a much better conversion
efficiency. Such a conversion improvement is due in large part to the much stronger
dipole response produced by the 5 fs pulse (see Figure 4.2). The better conversion
efficiency is also due to the longer phase matching length. As discussed above (and in
Chapter 2). the phase mismatch for the high harmonic generated by the long driving
pulse is A8, = g, where 0, is the driving field’s phase deviation from the vacuum
phase and is given by Eqn. (4.10). Then the harmonic field should saturate at a
distance z; when Af,(z,) = 7. For a 200 fs driving pulse. the 201st harmonic is
generated near the peak of the driving pulse where the intensity is high enough to
accelerate the electrons to generate the high harmonic field. In this region. the atom
is almost completely singly ionized and therefore n. = 500 torr. Consequently. the
anticipated saturation length should be about =, = 0.4 ym which agrees very well the
results shown in Figure 4.13. For the 5 fs case. the phase mismatch is also to a large
extent determined by g6, (see Figure 4.12). However, according to the discussion just
presented, 8, for the 5 fs pulse should be determined from Eqn. (4.11) and Eqn. (4.12)
and should be evaluated at a time ¢’ at which the recombining electrons responsible
for the generation of the attosecond soft-x-ray pulse are ionized. At ¢, it is seen from
the above results that 6, is much smaller than that calculated from the SVE formula
assuming full ionization. As a result. the soft-x-ray field generated by the 5 fs pulse

will have a much longer saturation length than for a 200 fs pulse.
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Figure 4.12: Phase of the wy, / w, frequency component. The circles denote the phase
obtained from the numerical simulation. The solid line represent the phase obtained
from the semi-analytical analysis. The dashed lines denote the two contributions
from the semi-analytical analysis.



TR R A, W TR L=

FAT LR v AR aat TR

DA e ol D

Intensity (W/cmz)

Figure 4.13: Peak intensities of the soft-x-ray attosecond pulse (solid line) and the
201st harmonic generated by a 200 fs incident laser pulse (dashed line).
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4.4 Summary and Conclusions

In this study, ultra-high frequency conversion by an ultra-short duration driving
pulse propagating in an atomic gas has been investigated. In a single atom study. it
is found that much better conversion in the soft-x-ray region can be obtained by a
5 fs driving pulse as compared to that obtained by a 200 fs driving pulse. It is also
found that the highest frequency components generated by the 5 fs pulse constitute
an attosecond pulse in the temporal domain. Physically. such an attosecond pulse
is due to the recombination of the electrons which have acquired the highest kinetic
energy from the peak of the driving field during a single optical cvcle. In the 1-D
propagation analysis. it is shown that the soft-x-ray pulse. as generated by the 3 fs
driving pulse, can achieve a much better peak intensity than that generated by a
longer (200 fs) pulse. The improved efficiency is due to a stronger dipole response

and a longer phase matching length.
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Chapter 5

Two Dimensional Propagation

Considerations

Propagation results in this thesis research have been obtained in the 1-D approxi-
mation. This is mainly because of the heavy computational requirement needed in
2-D studies and the restricted computational power available to this thesis project.
However. it is felt that the 1-D approximation. besides providing a first step in
understanding phase matching issues in the various studies conducted here. is also
applicable in a number of realistic situations. In this chapter. important 2-D effects
relevant to these thesis studies are discussed. Preliminary studies to examine the
regime of applicability of the 1-D approximation are also given.

One important 2-D effect is the additional phase mismatch caused by focussing
of the driving laser field. In a medium with constant dispersion and assuming the
driving laser remains a Gaussian beam inside the medium and is not tightly focussed.
the phase mismatch for the qth harmonic (where ¢ > 1) produced by the Gaussian

beam near the beam waist is given by[2]:
Ab, = AG] + G2 (5.1)

where AOZ is the phase mismatch due to dispersion in the medium and in the case
of a plasma is equal to q[(k,z/2)(n./n.)] as discussed earlier in the 1-D studies. The
additional phase mismatch. A#3. is called the geometrical phase mismatch and is
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given by:

A =qtan™'[(z — z7)/zR] (5.

[}
[SV]
g

where z; and zp are respectively the location of focus and the Rayleigh range of the
driving laser. As discussed in Ref.[17]. the geometrical mismatch is a direct result
of the additional phase shift, §; = tan™'[(z — z;)/zg]. that occurs in a focussed
Gaussian beam relative to an unfocussed plane wave. This additional phase shift
of the driving field then causes an additional phase shift of the harmonic nonlinear
polarization equal to gf; which eventually leads to the additional phase mismatch
given in Eqn. (5.1).

Focussing of the laser beam can also introduce another phase mismatch due to the
change in axial laser intensity [56]. For a focussed laser beam in a constant dispersion

medium. its axial intensity profile changes as it propagates according to:

I,(z—ct) .
[ = (5.3)
(T+ (=~ 21)2/75)
where [,(= — ct) is the axial intensity profile at focus. Since the atomic dipole mo-

ment and hence the nonlinear polarization have an intensity dependent phase (see
Chapter 2). the varying axial driving intensity profile will then introduce a phase
shift in the nonlinear polarization. This then also leads to a phase mismatch for the
harmonic field.

Another important 2-D effect is the refraction of the driving laser beam propa-
gating in the tunnel ionizing medium [41]. Due to the laser beam’s radial intensity
profile, which is highest on the propagation axis. the density of the tunnel ionized
electrons builds up most quickly on axis. This leads to a radial refractive index profile
which is minimum on axis. Such a refractive index profile then acts as a divergent lens
which continually defocuses the driving laser beam as it propagates in the medium.
Consequently, the axial intensity decreases as the laser propagates in the medium.
Depending on the electron density profile. the effective interaction length of the laser
beam can be limited to a value much shorter than the Rayleigh range. In terms of

harmonic generation. defocussing of the driving laser beam can have two important
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effects. The first is the harmonic phase mismatch caused by the varyving (decreasing)
axial laser intensity as discussed above. The second is the fact that when the laser
intensity decreases below the threshold for the generation of the high harmonics. the
growth of these harmonics may saturate earlier than that predicted by free electron
induced phase mismatch in the 1-D analysis.

Defocussing of a long duration laser pulse corresponding to the driving laser
studied in Chapter 2 has been investigated by using a 2-D time dependent paraxial
wave solver which has previously been developed at the University of Alberta to
study beam refraction problems [41]. Here. the time dependent wave equation is

numerically solved in the cylindrical slowly varving envelope (SVE) approximation:

L, w?
18 < aE)+2ii (3E+ 13_@.)_ 2E =0 (5.4)

ror\' or c\az " ¢ ot c?
where the envelope F is related to the real field by E = Re[E exp(i(k,z — «t))] and
wpe is the plasma frequency calculated from the tunnel ionization equation.

Results have been obtained for a 150 fs laser pulse interacting with 300 torr of
neon. The laser is assumed to have a wavelength of 750 nm and a focussed intensity
in vacuum of 10" W/cm?. The Rayleigh range of the laser is 5 mm and the location
of the focus is assumed to be at the entrance to the medium (z = 0). Shown in
Figure 5.1(a) and (b) are the spatial profiles of the laser bearn and the electron density
profile recorded near = = 200 um which corresponds to the location of saturation of
the 35th harmonic studied in Chapter 1. It is seen that. due to refraction. the peak
on-axis intensity is significantly lower than that predicted by Eqn. (5.3). This is more
clearly seen in Figure 5.1(c) which shows the maximum axial intensity recorded at
different locations in the medium. At z = 200 um. the recorded intensity is about
7 x 10" W/em? which is about 30% less than the value of 10'* W/cm? predicted by
Eqn. (5.3).

It has been found that one method to reduce the effect of defocussing on the axial
intensity profile is to increase the Rayleigh range and consequently the beam waist of
the incident laser beam for a fixed target thinkness. Figure 5.2 shows results for a laser

beam with the same parameters as Figure 5.1 except that the Rayleigh range is equal
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Figure 5.1: (a) and (b) Spatial profiles of the incident laser beam with a Rayleigh
range of 5 mm and the electron density recorded near = = 200 zm. (c) The peak axial
intensity recorded at various locations in the medium (solid line) and that calculated

from Eqn. (5.3) (dashed line).
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to 20 mm. Here it is seen that the axial intensity is much closer to that determined
from Eqn. (5.3). The reason for the improved axial intensity can be explained as
follows. For an incident laser beam with a peak intensity much higher than that
needed to saturate ionization, a flat-top density profile is created when the laser
starts to enter into the medium. This means the electron density is approximately
constant near the propagation axis where the intensity is large and decreases rapidly
at a certain radial position where the intensity falls below the threshold for ionization.
Therefore as the laser enters into the medium. only the wings of the laser beam are
strongly refracted by the radial electron density “edge”. The axial portion of the
laser beam sees a rather constant electron density and does not refract significantly
at this stage. However. as the laser propagates. the laser intensity at the “edge” of
the flat-top density profile continues to decrease due to refraction and the density
edge starts to get closer and closer to the propagation axis. Eventually. even the
central portion of the laser beam is refracted. From this consideration. it is apparent
that by making the laser beam waist larger at the entrance to the medium. it will
take longer for the electron density edge to move near the propagation axis to refract
the central portion of the laser beam.

One added advantage of using long Ravleigh range laser beams is the reduction
of geometrical phase mismatch. This is immediately apparent from Eqn. (5.2). Fig-
ure 5.3 shows the axial phase profile recorded near z =200 ym. Also shown are
the axial intensity and density profiles. The circles denotes the axial phase as cal-
culated from the WKB formula: —(1/2)k,z(n./n.). These results suggest that the
axial phase of the laser closely follows that predicted from i-D analysis and that
geometrical phase mismatch plays no role here.

From the above analysis, it is seen that for long duration driving fundamental
pulses studied in Chapter 2 and Chapter 3. the 1-D geometry can be achieved by
propagating a loosely focussed beam in a thin target medium and considering only
the central portion of the laser beam. These considerations may also be applicable

in the propagation analysis of the 5 fs driving pulse studied in Chapter 4. although
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Figure 5.2: (a) and (b) Spatial profiles of the incident laser beam with a Rayleigh
range of 20 mm and the electron density recorded near = = 200 um. (c) The peak
axial intensity recorded at various locations in the medium (solid line) and that
calculated from Eqn. (5.3) (dashed line).
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a model which goes beyond the SVE paraxial approximation may be needed to ac-
curately describe the 2-D effects associated with these pulses. Finally. for the CW
low frequency lasers studied in Chapter 3. refraction of these lasers may be much
more severe than for the high frequency lasers discussed above due to their much
longer wavelength. In this case. a plasma waveguide [40] may be needed to achieve

an effective 1-D geometry for the problem.

137



TR N W AR M o,

Chapter 6

Conclusions

In this thesis. a number of studies have been carried out to investigate several impor-
tant and practical issues in high harmonic generation. These include: (i) the spectral
and temporal characteristics of the high harmonic emission: (ii) phase matching by
high order difference frequency mixing: and (iii) generation and propagation of coher-
ent attosecond soft-x-ray pulses. In this concluding chapter. a summary of the thesis
investigation and results is given. The implications of the results are also discussed.

The chapter ends will a discussion of possible future investigations.

Spectral and Temporal Study of High Harmonic Generation

This study examines the temporal and spectral characteristics of the high harmonic
emission from both single atom and propagation analyses. In single atom analysis.
two similar dipole models based on a three-step recombination model are used to
obtain the single atom response. From these models. single-atom harmonic spectra
as well as the temporal profile of individual harmonics have been obtained. It is
identified that the harmonics are all spectrally blue shifted and can have very large
linewidths. The origin of these blue shifts and large linewidths has been found and is
due to the harmonic’s phase dependence on the driving intensity which is varying in
time. Specifically. it is found that each harmonic line can consist of several degenerate
components whose phase is locked to the accumnulated phase of the electron wavefunc-

tion at the recombination time at which the electron has the necessary recombination
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energy to produce the harmonic. The degeneracy comes from the fact that there can
be several possible electron trajectories which have the same recombination energy
but recombine at different times in each laser cvcle.

A one dimensional propagation analysis has been carried out to study the effects
of propagation on the spectral and temporal profiles of the harmonics. Here. the
three-step recombination dipole model has been coupled to a 1-D wave equation
with dispersion assumed to be caused by tunnel ionizing electrons. Results from
the propagation analysis have shown that the temporal and spectral profiles of a
propagated harmonic resemble those obtained from the single atom dipole analysis
only at very small propagation distances near the entrance to the medium. As the
harmonic propagates. the harmonic temporal widths shorten although the overall
harmonic energy is still increasing. This continues until the harmonic becomes a
transform-limited pulse with a duration as short as only a few femtoseconds. At this
point. the harmonic energy also saturates. The propagation distance at which the
harmonic saturates is larger for the lower order plateau harmonics compared to that
for the high order cutoff harmonics. The shortening and saturation of the harmonic
pulse has been explained by free electron induced phase mismatch introduced by the
ionization front generated by the driving laser.

An important implication of these results is that the generated harmonic pulse
may not be transform limited. Therefore, experimental measurements of the har-
monic’s spectral linewidth may not be able tc determine the temporal duration of
the harmonic field. These results also indicate that for femtosecond driving pulses.
harmonic blue shifts and broad linewidths are not caused by the blue shift and line
broadening of the driving wave due to time-dependent ionization [53]. but are caused
by a time or intensity dependent dipole phase. Another implication is concerned
with the tunability of the harmonic radiation. Since the harmonics can have very
large linewidths, they cannot be tuned by simply adjusting the frequency of the fun-
damental field. Special filtering techniques which can choose a practical frequency

component within a harmonic line may be needed to achieve tunability. From these
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results, it is also seen that one method of making narrow harmonic lines is to use a
driving pulse with a flat top temporal profile. i.e.. a laser pulse which can rise rapidly
to an intensity needed to produced the desired harmonics and remain constant at
such an intensity for many laser periods. This will greatly reduce the blueshift and
line broadening due to the intensity dependent harmonic phase. Results from this
study also indicate that in the one dimensional propagation geometry, phase matched
XUV harmonic pulses with temporal durations of a few femtoseconds may be pro-
duced. Such a geometry may be achieved by propagating a loosely focussed laser
beam with a flat top spatial profile near the propagation axis in a thin high density

target.

High order Difference Frequency Mixing

This study explores a possibility to reduce or eliminate the phase mismatch caused
by free electrons. Here. a previously proposed phase matching scheme is investigated.
In this scheme. a low frequency (w.) control field is allowed to co-propagate with a
high frequency (w,) driving field in the interacting medium. It was shown under a
number of general assumptions that the generated "mixed” field (wy = qw, — l;)
can be phase matched by adjusting the frequencies of the incident fields such that
w, = ({/q)w,. A study has been done to investigate the high order difference mixing
(HDM) scheme in a regime where HHG can also take place. Here. the dipole model
previously used to study HHG is used to obtain the HDM nonlinear polarization. It is
found that if the intensity of the high frequency field is sufficiently high to produce a
broad HHG dipole spectrum, the addition of a very moderate intensity low frequency
control field can produce very high order mixed field components. Specifically. apart
from a small frequency blue shift due to an intensity dependent phase. the mixed
field dipole components are located very close to the expected frequencies qw, — lw,
where, unlike HHG in which only ¢ = odd is possible. ¢ = even is also possible in
HDM. However, due to the atomic symmetry. only ! = even lines exist for ¢ = odd

and only / = odd lines exist for ¢ = even. The maximum achievable amplitudes of
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these mixed field components are about an order of magnitude lower than those of
the neighboring odd harmonics when no control field is present.

A propagation model which incorporates the HDM dipole response has been
used to investigate the mixed field conversion efficiency in the HDM phase matching
scheme. This model is very similar to that used in Chapter 2 to study HHG. Results
have been obtained to examine the phase matching of two “near even™ mixed waves
with frequencies qw, — lw, and qw, — 3w, where w. = (1/q)w, and we = (3/g)w,.
It is found that even though the frequencies of the driving and control waves are cho-
sen to satisfy the proposed phase matching condition. the mixed field still saturates.
The saturation distance is about an order of magnitude shorter for the quw, — lw,
field compared to that for the qw, — 3w, field. For the gu, — 3w, wave. about an
order of magnitude increase in conversion efficiency has been obtained compared to
the conversion efficiency of the neighboring odd harmonic when no control field is
present. For the guw, — lw, field. no improvement has been obtained. The cause of
the saturation of the mixed field has been found. It is due to the fact that HDM is
taking place in a relativistic ionization front in which nonlinear frequency upshifts of
low frequency fields due to the electron density gradient can introduce a large phase
mismatch in the high frequency mixed field.

These results show that HDM cannot be used to arbitrarily increase the conver-
sion efficiency of the high frequency mixed field even in a one dimensional geometry
such as that achieved in a plasma waveguide [40]. However. it may be possible to
greatly increase the conversion efficiency of a high frequency mixed field generated
by ions. The use of ions is attractive because it can increase the shortest wavelength
achievable due to the ions’ higher ionization potential and larger saturation intensity
as compared to neutral atoms. This can be seen from the cutoff law. The anticipated
conversion improvement is due to the fact that for n./n. < | the phase mismatch
of the mixed field is caused by the electron density gradient and is not due to the
static electron density. Therefore. HDM can be used to eliminate the potentially

large phase mismatch of the mixed field due to the background electron density in
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the ionized plasma.

Attosecond Coherent X-rays

In this study, the possibility of increasing the conversion efficiency of the cutoff har-
monics is explored. This investigation has been done in light of the availability of
high intensity optical laser pulses with a duration of only a few laser cycles. Prelim-
inary analysis from tunnel ionization considerations has shown that as the width of
the driving laser pulse shortens, many more neutral atoms can experience the peak
of the laser pulse. Therefore, many more electrons can still be ionized and acceler-
ated near the peak of the driving field. Consequently. much stronger high frequency
emission can be expected from the recombination of these energetic electrons.
Calculations from the quantum dipole model have verified this simple picture.
From these calculations. it is shown that the amplitudes of the cutoff dipole fre-
quency components as obtained from an ultra-short driving pulse are many orders of
inagnitude larger than those obtained using a much longer driving pulse. It is also
found that due to the very short duration of the driving pulse. distinct harmonic
generation no longer exists. The dipole spectrum obtained from the ultra-short driv-
ing pulse actually resembles a continuum spectrum. It is also found that the high
frequency components in the spectrum constitute an attosecond soft-x-ray pulse in
the temporal domain. Physically, the attosecond pulse is due to a single recombi-
nation of the electrons which are ionized just before the peak of the laser pulse and
which recombine just after the peak of the laser pulse. A propagation analysis has
been done to examine phase matching issues in the 1-D limit. Results from this anal-
ysis show that the attosecond soft-x-ray pulse has a phase matching length about
an order of magnitude greater than that of a soft-x-ray harmonic generated from
longer driving pulses. An explanation of the improved phase matching length has
been found. It is due to the ultrashort driving pulse’s much smaller phase deviation
from the vacuum phase at the time when the electrons are ionized. As a result of

the enhanced dipole response and phase matching length. the attosecond soft-x-rayv
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pulse is found to have a peak intensity many orders of magnitude larger than that of
the soft-x-ray harmonic produced by longer driving pulses.

Results in this study indicate that in the one dimensional limit. efficient generation
of attosecond coherent x-ray pulses is possible. This is achieved by propagating an
intense optical laser pulse with a few femtoseconds duration in a high density helium

gas.

Future Investigations

An interesting extension to the present work is the investigation of the effects of the
relative carrier phase of the several-femtosecond driving pulse studied in Chapter 4.
Preliminary calculations have shown that the value of the carrier phase can affect
the intensity of the x-ray spectrum near the cutoff region by an order of magnitude.

Phase matching of the XUV radiation generated by several-femtosecond optical
pulses also deserves further investigation. Preliminary calculations have shown that
these ultra-short optical pulses can also efficiently generate the frequency components

in the XUV region.
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Appendix A

Stationary Phase Evaluation of the

qth Harmonic Dipole Component

The method of stationary phase is useful in evaluating the approximate value of an

integral of the form !:
I =/F(t)e‘°"’dt (A.1)

If the function F(¢) is slowly varving in time while the phase ®(¢) is rapidly varving.
the main contribution to the integral should come from the times at which the phase
® is stationary with respect to time. i.e.. ® = 0 where ® is the first time derivative
of ®. At other times, the function ¢'**) oscillates rapidly from positive to negative
values, meaning that the integrand averages to almost zero. As a result, it can be

shown that the integral can be given approximately by:

271 1/ ‘
I=~1, = (é(t )) F(t,)e' ) (A.2)

where ¢, is the time at which ® = 0 and ® is the second time derivative of .

From Eqn. (2.39), the semi-classical dipole moment can be written as:

d(t) = D(t)e™S) 4 D=(1)et*SW (A.3)

'A discussion of this method can be found in Ref. [49] p316-p317.
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Then if the dipole moment can be expanded as a sum of harmonic components:

d(t) = ¥, d,e'™', the envelope of an individual component can be calculated as:
1 [t " 1 [t "
dy=5L+ 16 = 7/ dtD(t)e™ “"+t—/ dt D™ (t)eti®2() (A.4)
0 JO o Jo

where ®; = S + quw,t and ®; = § — quw,t. Using the stationary analysis. the main

contribution to /; in comes from the time when:

ds -
E——qwozo (A.5)

Using S = (1/h) [,: dt"(p*(t")/2m + I,,) and assuming the ionization time ¢ is a weak

function of the recollision time ¢, this stationary phase condition leads to:

P(t,)
2m

+ 1, — ghw, = 0 (A.6)

where {, is the time at which the above condition is satisfied. It should be noted
that this equation is just the cutoff law described in Chapter 1. From Figure 2.3.
it is seen that for a given ghw, below [, + 3.2 [’,. there are four different times at
which the above stationary phase condition is satisfied. As for the first integral. /.

the stationary phase condition is:

2

t
ZU) 4 ghe, =0 (A7)
m

Since all terms in the above equation are positive. there is no stationary phase for

). As aresult, [; should be negligible compared to [,. Consequently.

1/2
D.(tl) 2‘41'1 - ! 1
d = q _ i[S(tg)—quaty) A8
R () e (A9

where t; are the four recombination time at which the stationary phase condition is

satisfied and A'E, = S where A'E, is the recollision kinetic energy given by p?/(2m).
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Appendix B

The One Dimension HHG Wave

Solver

An efficient numerical scheme has been developed to solve the one dimensional HHG
wave equations (Eqn. (2.71) and Eqn. (2.72)). Details of this scheme are described

below.

Normalization of wave equations

The wave equations can be conveniently solved in the normalized form where vari-
ables are expressed in units which are relevant to the physical problem. Here. the

normalization is given by:
tjt, — t
[
E,/E_4 -
P/EA g

d

n./n. — n. (B.1)
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where ¢, is the laser cycle. A, is the laser wavelength. E 4 is the atomic unit of electric

field, and n. is the critical density in the laser field. The wave equations then hecome:

82E, &E, (8E, OE, \
a2 T Toase T — ] —(2 = .
=2 612 dm ( LB ot ( 71’) neEl 0 (B 3)
8E, &E, . (dE, OE, \
—_ — | - (2
-2 o +47rzq( Be + Y (27)°n. E,
3P, dP, -
= —_ —3 _ (2x
4r ( ETE 4 T (27)°q¢° P, (B.4)

Finite difference scheme

A second order finite difference scheme based on that given in Ref. [50] is used
to solve the HHG wave equations. In this scheme. with the fields discretized as
F1'* = F(kAz. jAt). the partial derivatives are computed as:

821:' Fj.k-H _ 21;';./: + F_j.k-l

ﬁ A-?

32F F_]+l.k _ 2F].k + F_,-l.k

FI AL

aF Fik+l _ prk-t

9: 2A-

aF Fj+l.k _ Fj—l.k _
I I (B.5)

The resulting finite difference equations are then given by:

F[E{H'k - AlE{'kH — (B + Bllni'k)Ei,'k ~-C E{'k—l - DlEi’_Lk =0 (B.6)

FyEI*' _ 4 Ei*+1 _ (B, + Buni*)Ei* — C,EM*=' — D,Ei~** = §  (B.T)
where
S = — (H.PJ*" + H,P}* + H.P]™'*) (B.8)
and the coefficients are given by:

A = mP+2ximAt
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B, = -2m*+2
By, = —(2=At)?

Cy = m?=2mimAl

D, = —-1-2miAt

Fi = 1-2=iAt (B.9)

A, = m?+2migmAt

B, = -2m?+2
B, = —(27At)?

C, = m®-—2migmAt

D, = —-1-27iqAt

F, = 1-2migAt (B.10)

H, = 47(l = 2miqAt)

Hy, = —47(2+ (27qAl)?)
H. = 4x(l +2migAl) (B.11)
and
Ai
= — 12
m _X: (B.12)

Initial conditions, boundary conditions and method of solution

Assuming the fields are to be solved from t = 0 to t = NJAft = T, for = = 0 to
: = N Az = Z,, the finite difference equations can be readily solved when two
initial conditions, E~'* and E®*, and two boundary conditions. £9° and E#*V: are
provided in each equation. These conditions are obtained as follows. If the peak of
the incident laser pulse arrives at the left boundary (= = 0) much later than ¢ = 0.

say a few FWHM's. the driving field as well as the harmonic field can be assumed to
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be zero inside the medium prior to ¢t = 0. Thus the initial conditions are:

Ei(z.t=0) = 0
Efz.t=—At) = 0

Ez.t=0) = 0
Ez.t=—At) = 0 (B.13)

Now, if the simulation region is made large enough. say Z; > c(T; + 10 «x FW HA{)
where c is the speed of light, no fields can propagate to the right boundary (z =
Z;) within T,. Therefore, together with the left boundary conditions discussed in

Section 2.2.1, the boundary conditions for the driving and harmonic fields should be:

Ef:=0.t) = Eg(z=0.¢)
Efz:=2Z.t) = 0
E:=0.t) = 0
E(:=2Z.1) = 0 (B.14)

With these initial and boundary conditions. the difference equations can be explicitly

solved as:
EItUk - = (ALEI*' + (B, + Bun*)EY* + CLEP*™ + D EI™F)  (B.13)
1
I = (A, ES5 4 (B, + Bun*) E2* + C,EM™ 4 D,EI™ §) (B.16)

F,

where the electron density is calculated by:

nl* N,y (1 - e"Q]'k)
Q* = QM+ AtR(EIT) (B.17)

Now, by using Eqn. (2.74) and noting that the probability of ionization is given by

Pik = 1 — exp[—Q**¥], the polarization P, at each grid point can be calculated as:

Pik = ne~@"* sl prk (B.18)

1]

-t



where Di* = D,(E{*) and
t') - : ”n
D,(E\) = / dt"d(| E\| cos(w,t"). ") 1! (B.19)
0

In practice, a table of D, is obtained as a function of |E)| prior to the actual sim-
ulation. During the simulation, D;'k is obtained by simple linear interpolation from
the D, table. This greatly reduces the computational time for each simulation by
not having to calculate the numerically intensive integral (Eqn. (B.19)) at each grid

point. Finally, this numerical scheme has been shown to be stable for [50}:
m< 1 (B.20)

However. for computation efficiency. m should be set to he as close to unity as
possible. This is because in wave propagation problems. if Az is small enough to
resolve the spatial variation of the propagating fields. At = A: (or in real units
At = Az/c) should also be small enough to resolve the temporal variation of the
fields. Thus if m <« 1. then Af « A: and many unnecessary temporal grid points

will be used.

The moving frame technique

The technique utilizes some general properties of the finite difference scheme to avoid
calculating unnecessary computation points. The basic principle can be explained
as follows. First, since the initial condition for E| is E?'k = Efl'k = 0 for £ > 0.
it is seen from Eqn. (B.15) that EI** = 0 for £ > 1. Similarly. E** =0 for k > 2.
Ef'k = 0 for ¥ > 3 and so on. As a result. E, at the computation points to the
right of a straight line with a slope m = At/A:z passing through the origin should
be all zero. This region is denoted as I in Figure B.1 as bound by the line /; and the
z-axis. Furthermore, since E; is zero in this region, P,,(E'{‘k) and consequently EJ*
as calculated from Eqn. (B.16) should also be zero in this region. Now. consider a
second straight line. [;, having a slope m and intersecting the t-axis at T, = N,At.

From Eqn. (B.15) and Eqn. (B.16). it is seen that in each time step the fields to the



right of [; at the current time step depend only on the fields in the previous two time
steps also to the right of l,. Therefore. computation of the fields to the right of /,
does not require the knowledge of the fields in region III (see Fig. B.1) as bound by
l; and the t-axis. Consequently, if the interesting computation region is to the right
of [3, calculation of the fields in both regions I and III can be totally ignored.
Physically, the calculated fields in region II (which is bound by /;, /; and the
t-axis) represent the solution to the wave equations as viewed by a window having
a spatial width of Z, and propagating at the speed c¢/m where ¢ is the speed of
light. Since m < 1 for numerical stability. the numerical scheme simply implies that
information in region II cannot propagate faster than c to affect information in region
I. Similarly, information in region I cannot affect information in region II. Now. since
E, and E, both propagate at about the speed of light and E, is only generated in a
region where E) is appreciable, a moving frame with a spatial extend of a few times
c( FW H M), initially centered at the peak of E;. can be used to greatly reduce the

computation time.
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Figure B.1: The computation grid and the moving frame. Z, and T, are respectively

the total simulation length and time; Z, and T, are respectively the spatial and
temporal extend of the moving frame: and kjAz and k.A:z are respectively the left
and right spatial boundaries of the moving frame. The solid circles denote the grid
points near the (7 + 1)A¢ time step.

ot

o



Eal. AL LSRR

AT e

AT SRR 0 T ATAT LR PR REPAPITACSUCATR S

Appendix C

The One Dimension HDM Wave

Solver

The HDM wave equations are solved using a similar numerical scheme as that used
in solving the HHG wave equations. Using the same normalized variables defined by

Eqn. (B.2). the wave equations become:

FE_OE , (9E, E\ . ., . _
622 _W+4"1<3- -1-7 —(_:-)TIC[L]— (Cl)

2 2
0%E. O°E. ch(as 6E_.)__(2

52 o T 5: " i

d9°F, 62E JE, OE,
me 2% 2 ¢
g~ e T <3..+8t) (27 )ne £y
32P 9P,
= —Amig—L — (27)%¢? .

where g. = w./w,. The same second order finite difference scheme used to solve the
HHG wave equations are used here to solve the HDM wave equations. With the
initial and boundary conditions for E; and E, given by Eqn. (B.13) and Eqn. (B.14)

and the initial and boundary conditions for E. given by:

E(z.t=0) = 0
Ec(-:-t:_Af) =
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E(z=0,t) = EJ (z=0.¢)

(C.4)
The fields are solved as:
E{+1.k — _I_i_ (AIE{.I:+I + (B + B“ni.k)E{.k + CIE{.I:-—I 4 DIE{—l.k) (C.5)
1
Eitt = FL (AEI' + (B, + Buni*)EX* + C.EM*' + D.EI"'*)  (C.6)
Eai+l.k - Fi (Aqu.k+l + (B, + Bqln{-k)E;.k + COE;.k—l +D, E;—l.k _ 5) (C.7)
q

where the electron density is calculated by Eqn. (B.17). the coefficients for E, and
E, are given by Eqn. (B.9) andEqn. (B.10). and the coefficients for the E, equation

are:

A = m? 4+ 27ig.mAt

B. = =2m®+2
B, = —-(27At)?

C. = m?—=2rig.mAt

D. = —-1-27iq.Al

F. = | -2riq.Al (C.8)

The polarization P, at each grid point is calculated as:
Pi* = n e~  earg Bl Di* (C.9)
where Di* = D (E{*, EI*) and
D,(E:,E.) = /0 © A d(|Ey] cos(wt”). E.. 1")e' " (C.10)
Here the real control field £, at each grid point is obtained as:

E* = [EX¥| cos[(w./c)(k Az — jAL) — arg E2¥] (C.11)
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Similar to the HHG wave solver. a table of D, is obtained as a function of |E}| and
E. prior to the actual simulation. During the simulation. D} is obtained by simple
bi-linear interpolation from the D, table. Finally. the moving frame technique is also

used here to improve computation efficiency.
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Appendix D

Phase and Amplitude of an
Ultra-Short Laser Pulse in a Steep

Ionization Front

The phase and amplitude of a very short duration laser pulse can be obtained as
follows. First. by using the normalized variables defined by Eqn. (B.2). the envelope
wave equation for the fundamental field (Eqn. (4.2)) in the retarded time frame

(z'=zand tg =t — z/c) is given by:

0*FE, 0*F, OF, 2
-2 +4dri— — 27)n.E| = .
7 25197 4mi 5o 2x)n.Ey =0 (D.1)

Secondly. it is assumed that the complex envelope E| can be written as E;(z.1g) =
A€'S where A is a real envelope and S is the phase. It is further assumed that the real
envelope is not significantly distorted as it propagates in the medium and is therefore
a function of {5 only, i.e. A = A(tg). It is also assumed that the phase is a linear
function of =’ given by S(z’,tr) = 2’ f(tRg). Finally. it is assumed that the relativistic
ionization front n. also propagates undistorted in the medium and is therefore also
a function of g only. The assumptions concerning the fundamental envelope and

ionization front are made based on the the simulation results observed in Figure 4.9
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in Section 4.3. Using these assumptions. the wave equation becomes:

df . ;:A .2
7y 2ri — =2 | = Uwn (tg) = 2
; ( 1 1 1w n.(tg) =0 (D.2)

In obtaining Eqn. (D.2), terms involving f? and =’ have been neglected. These
omissions are reasonable if f <« 1 and have been justified by Figure 4.10 in Section 4.3
where the semi-analytical results obtained here agree very well with the simulation
results. Now, as can be seen from the results shown in Figure 4.10. f becomes
significant when ionization is appreciable. In this region. the term d.A/dtgp, which is
proportional to tp / 72 where 7 is the FWHM of the fundamental pulse. should be
very small. Consequently. the phase of the fundamental envelope near the ionization

front is described by:

5= ;—f(fn) (D.3)
where the function f is governed by the following differential equation:
df . . aNe(lR)
— =271 f - Aw = .
A 1f —2 o 0 (D.4)

Here. =/, tg and n. are expressed in real units. It should be noted that since Eqn. (D.4)
is a complex equation, the phase S is also a complex quantity. Consequently. the

real phase of the fundamental envelope should be given by:
6, = :\:—Re[f(tn)] (D.5)

It is also found that by subsituting f = Re[f] + :Im[f] into Eqn. (D.4) and grouping

together real and imaginary terms. Re[f] is related to Im[f] as:

2 dRe[f]
Im(f] = EETSWTITR (D.6)

Consequently, the magnitude of the fundamental envelope is modified by:

z'  dRelf]
= A(t S i 7
Finally, since the instantaneous frequency shift is defined as Aw = —d#,/dtg. the

magnitude of the fundamental envelope can also be written as:

|E\| = A(tg)e s (D.8)
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