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Abstract

Model predictive control (MPC) is one of the most popular control strate-

gies in modern control systems and has been used in a variety of applica-

tions due to its ability to handle hard constraints. As a significant branch of

MPC, robust MPC is an effective strategy to deal with external disturbances

or system uncertainties, and guarantee robust stability of uncertain systems.

However, with the increase of system complexity and various demands, robust

MPC optimization problems become more and more complicated, leading to

high computational loads. By contrast, event-triggered control, which exe-

cutes control actions only when some events occur, has shown advantages

over traditional periodic control in dealing with resource constraints in ener-

gy, computation, and communication. Hence, this thesis is concerned with

the combination of robust MPC and event-triggered control to address the

challenges in traditional MPC.

Three research topics are considered. Firstly, from a deterministic point of

view, a two-step triggering scheme involving a tentative verification of a deter-

ministic triggering condition and a delayed triggering with a waiting horizon is

proposed to ensure necessary events and reduce the number of times of solving

the MPC optimization problem. Secondly, the stochasticity is considered into

the design of event-triggered schemes, which is investigated in two aspects: i)

Based on the probability density function of disturbances, an event-triggered

scheme related to a designed minimal robust positively invariant set of tube-
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based MPC is constructed to generate dynamic triggering sets, leading to a

prescribed expectation of inter-execution times and a reduction of computa-

tional burden, while not sacrificing the quadratic performance significantly.

ii) With an updating law for the transition probabilities of a Markov chain,

a stochastic triggering scheme involving a prescribed triggering function and

a checking function is proposed to achieve aperiodic and non-persistent event

verification and enlarge the inter-execution time. Both tube-based MPC and

linear matrix inequality-based (LMI-based) MPC are presented with such a

stochastic triggering scheme. Thirdly, for unknown systems with initially mea-

sured input-output data, a robust data-driven MPC with a terminal inequality

constraint is developed to complete the analysis of recursive feasibility and sta-

bility, and an event-triggered scheme is designed based on a mismatch between

the data-driven model and the original plant to reduce computational burden.

Finally, an event-triggered stochastic MPC approach is applied to constrained

queueing networks with a dynamic topology for the scheduling problem.

Different from most existing results which focus on only triggering ac-

tion, the proposed approaches also incorporate event checking into the event-

triggered scheme design and make use of optimal control sequences of MPC,

resulting in more flexible triggering schemes with longer inter-execution times.

The effectiveness of the proposed approaches is verified by numerical exam-

ples and comparative studies with existing work. Recursive feasibility of MPC

and robust stability of linear discrete-time systems are theoretically analyzed.

These results provide some new insights for the design of event-triggered ro-

bust MPC.
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Chapter 1

Introduction

This thesis explores the design and analysis of event-triggered robust model

predictive control (MPC) for linear time-invariant systems with bounded dis-

turbances. In this chapter, the research background for event-triggered robust

MPC is introduced and a literature review is provided to summarize the re-

cent development in this area. Thereafter, the contributions of the thesis are

listed, followed by a thesis outline.

1.1 Research Background

Model predictive control (MPC) is a modern optimal control method to

predict optimized future control actions based on online numerical optimiza-

tion. A main advantage of MPC is to deal with constraints on the operating

region and control inputs, and optimize the closed-loop performance. It de-

pends on the cost function to impose control objectives, such as stabilizing a

system, tracking a reference trajectory or a setpoint, and approaching state

estimation of a complex model. The key idea behind MPC is to utilize a dy-

namical model to predict the future behavior for a control input sequence over

a finite time horizon. This input sequence is optimized at each time step in

order to satisfy hard constraints and achieve optimal performance, and only

the first element of the optimized input sequence is applied to the dynamical

system; then the whole procedure is repeated at the next time step using lat-

est available information on the system state. Since it delivers a great many
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advantages such as a simple control policy for dynamic systems, generic con-

sideration of constraints, and recursive feasibility of optimization problems,

MPC has received considerable attention from academia and industry in the

past decades.

1.1.1 Robust Model Predictive Control

As is well known, uncertainty is ubiquitous and inevitable in control appli-

cations [1, 2]. Hence, robust control techniques have been incorporated into

MPC to deal with external disturbances or system uncertainties, resulting in

robust MPC, which has become a main branch of MPC. In robust MPC, the

bound of the uncertainty is assumed to be known, which is necessary to de-

termine robust invariant sets limiting future states and control inputs, and is

a basis for guaranteeing robust satisfaction of constraints. Although a com-

prehensive theory for analyzing stability, robustness, and optimality of robust

MPC is available, with the increase of system complexity and various demands,

robust MPC optimization problems become more and more complicated, lead-

ing to high computational loads, a large number of control parameters, and

other disadvantages.

Many early approaches took account of reducing the on-line computational

burden of robust MPC by introducing off-line strategies. References [3, 4, 5]

designed a feedback control law off-line, and merely optimized some additional

perturbations on the feedback law on-line. In [6, 7], the only on-line compu-

tation was to search a suitable feedback gain in a look-up table which was

constructed off-line by solving MPC optimization problems. References [8, 9]

extended the idea in [7] to off-line output feedback robust MPC. Although the

above-mentioned methods obtained some promising results by using off-line

methods to alleviate the on-line computation load in robust MPC, few of them

can be applied to a wide range of applications since they are very complicated

and inflexible. Hence, more advanced strategies need to be explored.
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1.1.2 Event-Triggered Control

Nowadays, the majority of control systems are typically implemented over

shared communication media and thus how to design effective scheduling

strategies for such control systems has been a challenging problem. With

conventional controllers, the information is transmitted between system com-

ponents (such as actuators, sensors, and plants) in a periodic manner, regard-

less of whether the measured output changes or not. This approach is the

so-called time-triggered control, which may lead to some unnecessary trans-

missions and then cause a waste of communication and computation resources.

To circumvent this, event-triggered control, which releases and transmits data

only when some events occur, has been developed to reduce computation and

communication [10]. In event-triggered control, the system decides when to

execute an action based on a well-designed triggering condition on the mea-

sured signals, leading to aperiodic communication and computation that only

take place when needed. In other words, some action is executed unless some

triggering condition is satisfied.

A natural question is how to design an effective triggering condition to

make an event triggered at the appropriate time. Actually, such a trigger-

ing condition can be designed in different forms, such as the error between

the predicted state/output and the actual state/output exceeding a given

value [11, 12, 13], a function derived from stability analysis crossing a pre-

defined threshold [14, 15], the actual state leaving a certain triggering set

[16, 17], or a dynamic strategy depending on an internal dynamical variable

[18, 19]. These triggering schemes have been effectively applied in linear sys-

tems [11, 12, 14, 20], uncertain systems [21, 22], stochastic systems [23, 24, 25],

and multi-agent systems [26, 27]. Furthermore, different performance specifi-

cations have been analyzed under event-triggered control, including bounded-

input bounded-output stability [28], input-to-state stability [25, 29, 30], mean

square stability [31], and finite-gain L2 stability [15]. Some improved event-

triggered control schemes have been combined with different controller designs,
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such as sliding mode controllers [23, 32], H∞ controllers [33, 34], and model

predictive controllers [27, 35, 36]. Although a great many triggering schemes

have been designed for reducing data transmission in networked control sys-

tems (NCSs) [22, 26, 28, 33, 35, 36], much progress for other purposes has been

made for event-triggered control, such as achieving efficient task scheduling

[37], generating desirable switching rules in switched systems [38, 39, 40], and

leader-following consensus problems [41, 42]. Moreover, the implementation

of event-triggered control in different practical applications has been explored

in, e.g., urban traffic networks [43], wastewater treatment plants [44], and

large-scale transport systems [45].

1.2 Literature Review

Due to the potential advantages of event-triggered control over tradition-

al time-triggered control and its wide use in various fields, it is a natural

choice to combine MPC and event-triggered control to address the challenges

in traditional MPC. For known system models with external disturbances or

parameter uncertainties, a great deal of effort has been devoted to event-

triggered robust MPC. In recent years, for unknown systems with initially

measured data, data-driven techniques have been introduced to the design of

robust MPC and event-triggered control, and some preliminary results have

begun to appear.

1.2.1 Event-Triggered Robust MPC with Known Sys-
tem Models

With known nominal system models, research on event-triggered robust

MPC has achieved extensive meaningful maturity. Typically, the results are

either based on deterministic or stochastic triggering conditions.
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1.2.1.1 Event-Triggered Robust MPC Based on Deterministic Trig-
gering Conditions

Most existing triggering schemes used in robust MPC are based on de-

terministic criteria. These results have shown the benefits of event-triggered

robust MPC in two aspects.

On the one hand, to alleviate the burden of communication, events are

used to decide if data transmissions occur or not. For example, reference [46]

presented an event-triggered robust MPC approach for discrete-time linear

systems with exogenous disturbances and the state information would be sent

from the sensor to the controller only if the event condition would be satisfied,

reducing the communication effort while guaranteeing a desired performance.

In order to mitigate the unnecessary waste of communication between the

sensor and the controller, references [47, 48, 49] proposed an event-triggered

output feedback robust MPC where only when the output error exceeded a

given threshold, the current measured output could be transmitted to the

controller. Reference [50] designed an event-triggered combined scheme of M-

PC and integral sliding mode control to reduce the number of transmissions

of the actual plant state and avoid network congestion. From a geometrical

viewpoint, a sequence of triggering hyperrectangles was constructed on-line

around the optimal state sequence of a robust MPC problem in [51], leading

to reduced data transmission. More complicated problems have been incorpo-

rated into the design of event-triggered robust MPC, such as, network-induced

delays [52], packet dropouts [53, 54], and denial-of-service (DoS) attacks [55].

On the other hand, to reduce the burden of computation, namely, reduc-

ing the amount of solving optimization problems, events are used to deter-

mine when it is necessary to solve optimization problems. In [56, 57], an

event-triggered condition was derived based on the Lipschitz property to de-

cide whether the optimization problem should be solved or not. An aperiodic

formulation of event-triggered MPC was provided in [58] based on new feasi-

bility and stability results by imposing a terminal constraint. Reference [59]
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extended the dynamic event-triggered scheme in [18] to robust MPC to reduce

resource consumption more significantly. A co-design of the event-triggered

condition and feedback policy was proposed in [60], achieving a larger attrac-

tion region and better control performance. More complicated but efficient

event-triggered robust MPC strategies have been presented in recent years.

In [61], two different event-triggered strategies were constructed in the sensor

and controller nodes for reducing communication and computational loads,

respectively. Reference [62] combined event-triggered and self-triggered mech-

anisms to save on-line computational resources from two aspects: reducing the

frequency of solving the MPC optimization control problem and decreasing the

prediction horizon adaptively.

Although above mentioned triggering schemes can alleviate the burden of

communication and computation for robust MPC, most of them are dependent

on the current states or measurement errors only. From the conservatism point

of view, such deterministic triggering schemes with one-step checking may lead

to occasional events that are unnecessary to be treated. In addition, due to the

uncertainties in practical systems, false events may be generated, resulting in

some unnecessary triggering. Hence, designing an effective triggering scheme

to ensure that the triggered events are necessary is still an open problem.

1.2.1.2 Event-Triggered Robust MPC Based on Stochastic Trig-
gering Conditions

Another type of event design based on stochastic conditions or criteria has

emerged due to the flexibility and analyzability associated with stochastic dis-

tributions. In [23], an event-triggered sliding mode control was employed to

keep receiving and sending the delayed measurement to update control actions

for uncertain stochastic systems subject to limited communication capacity.

In [24], a framework of event-triggered stabilization was established for the

stochastic systems by applying a powerful stochastic convergence theorem.

Reference [25] derived some sufficient conditions on an event-triggered con-

trol protocol for stochastic multi-agent systems with state-dependent noises
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and achieved the desired consensus for the closed-loop system in probability.

For discrete-time linear systems subject to Gaussian white noise disturbances,

reference [63] proposed a stochastic event-triggered control scheme that theo-

retically and numerically outperformed a periodic one. By using the ergodicity

property of a homogeneous Markov chain, an event-triggered control design

was proposed in [64], and the trade-off between the communication rate and

the control performance was quantified analytically. A Gaussianity-preserving

event-based sensor was adopted in [65, 66] to reduce the communication rate

and maintain the estimation performance.

Relevantly, based on the knowledge of probability density functions, some

triggering sets were designed to achieve a desired expectation of inter-execution

times for a tube-based robust MPC scheme in [67]. A stochastic event-

triggered predictive control scheme was proposed in [68] which allowed non-

uniformly sampled measurements and large delays involved in outputs. How-

ever, reference [68] just considered a predictive feedback law, which is not

standard robust MPC with guaranteed hard constraints and recursive feasi-

bility. Up to now, the stochasticity of most stochastic event-triggered control

schemes is from stochastic systems. Although stochastic distributions make

the design of triggering conditions flexible, they may cause loss of recursive

feasibility and stability in MPC design. This is the main reason why few

results on stochastic event-triggered MPC can be found. Hence, how to de-

sign a stochastic event-triggered condition for robust MPC with guaranteed

recursive feasibility and stability is worth exploring.

1.2.1.3 Problems in Deterministic and Stochastic Triggering Con-
ditions

Apart from the problems mentioned in deterministic and stochastic event-

triggered robust MPC approaches, there are two common problems. First,

although the introduction of event-triggered control leads to reduced commu-

nication and computation loads in robust MPC, these benefits are at the cost

of control performance. How to achieve the trade-off between control per-
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formance and computational burden has not been further investigated and is

still a challenging problem in event-triggered robust MPC. Second, both de-

terministic and stochastic event-triggered robust MPC approaches mentioned

above require persistent event monitoring and verification, which are resource-

intensive, and the connection between event verification and action triggering

is usually overlooked. As a matter of fact, monitoring the system state and

verifying the triggering condition at the next sampling instant should depend

on the system state and the feasibility of the triggering condition at the current

sampling instant. If the system is triggered at the current sampling instant,

the waiting time for the subsequent event verification and triggering could be

longer, as the updated control action may regulate the system state well. More

advanced and effective strategies should be designed to link event verification

with action triggering.

1.2.2 Event-Triggered Data-Driven MPC

Typical MPC requires explicit knowledge of the underlying system mod-

els which are usually obtained from first principles or system identification.

However, with the increase of system complexity in real-world applications,

obtaining an accurate system model becomes computationally demanding and

even impossible, posing grand challenges for the practical implementation of

MPC. To tackle the modeling issue, data-driven approaches have been consid-

ered for MPC, which can implement MPC controllers directly from measured

data without prior knowledge of an accurate model. The existing results are

typically divided into two categories. One is to improve an inaccurate initial

model continuously through online measurements, which are expected to cap-

ture the uncertainties in the initial model, such as learning-based or adaptive

MPC schemes [69, 70, 71]. Another category is to directly predict future tra-

jectories according to Willems’ fundamental lemma from behavioral systems

theory [72]. Compared with the first category, this type of data-driven MPC,

also called purely data-driven MPC, is completely based on initial measure-
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ment data and does not require system identification or online state estima-

tion, thus drawing growing interests. Recently, some primary issues arisen

from this category have been investigated, for instance, an optimal problem

of the weights in linear combinations of past trajectories for unconstrained

systems [73], a distributionally robust constrained problem with probabilistic

guarantees on performance [74], and an application to power system oscillation

damping [75].

Despite remarkable developments in [73, 74, 75], there are still two chal-

lenging problems that need to be solved. On the one hand, for a data-driven

approach, it is challenging to construct appropriate terminal constraints such

that recursive feasibility and closed-loop stability are guaranteed. The afore-

mentioned work [73, 74, 75] does not provide any results regarding this prob-

lem. Very recently, reference [76] utilized terminal equality constraints and

provided the first analysis on recursive feasibility and stability of purely data-

driven MPC. However, as pointed out in model-based MPC [77], a terminal

equality constraint is rather restrictive, because it is generally difficult to drive

a state to a specified point. Further, it always requires a long prediction hori-

zon so as to make the optimization problem feasible. On the other hand, al-

though the proposed data-driven MPC approaches in [73, 74, 75] can greatly

lower the model requirements and simplify the implementation of MPC, they

may bring heavier computational burden and require more computational re-

sources than that of model-based MPC due to the introduction of a large

amount of data. To circumvent this issue, reference [76] provided a multistep

strategy, that is, solving a data-driven MPC optimization problem for every

fixed n steps. Since this strategy is unconcerned about any performance of

the controlled system, it undoubtedly shows some conservatism.

Recently, some work devoting to enabling event-triggered control to data-

driven MPC has started to appear. With training data samples, reference [78]

applied a statistical learning to event-triggered MPC, which showed better

tracking performance with less frequent event triggers when compared with
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classical event-triggered MPC. In [79], a subspace predictive control method

with a novel event-triggered law was developed based on data of linear time-

invariant systems. However, references [78, 79] considered only a simple case,

that is, based on state and input data without disturbances only, and no

complete analysis of recursive feasibility and stability were presented.

1.3 Research Motivation and Contributions

Despite the remarkable progress in the above-mentioned literature, there

are still some challenges which require further research before event-triggered

robust MPC can be applied widely in practice:

• In event-triggered robust MPC, the reduction of computation loads is at

the cost of control performance. How to achieve the trade-off between

control performance and computational burden?

• Most existing triggering conditions depend on the current states or mea-

surement errors only, leading to occasional or false events that are un-

necessary to be treated. How to design an effective triggering scheme to

ensure that the triggered events are necessary?

• As a matter of fact, like when to trigger the event, when to check the

triggering condition should also be dependent on the system dynamics

and be carefully designed. How to link event verification with action

triggering?

• For data-driven MPC, how to utilize event-triggered control to allevi-

ate the issue of computational resources and how to provide complete

analysis of recursive feasibility and stability?

Motivated by the above problems, this thesis focuses on the design of event-

triggered robust MPC to reduce computational burden as well as guarantee

recursive feasibility of MPC and robust stability of linear discrete-time sys-
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tems with bounded disturbances. The main contributions are summarized as

follows:

1. According to the probability distribution of disturbances, an event-

triggered scheme related to a designed minimal robust positively in-

variant set is constructed to generate dynamic triggering sets. With the

designed event-triggered scheme, a tube-based MPC that allows the ini-

tially predicted state different from the current actual state of the plant

is considered to preserve the control performance, and the optimization

problem subject to hard constraints is solved only when the current state

is outside the corresponding triggering set. The designed event-triggered

controller can achieve a prescribed expectation of inter-execution times,

while not sacrificing the quadratic performance significantly.

2. A two-step scheme involving a tentative verification of a triggering con-

dition and a delayed triggering with a waiting horizon is proposed to

ensure necessary events and reduce the average triggering rate. The

triggering condition and the waiting horizon are synthesized based on a

prediction model of the plant and a robust positively invariant set asso-

ciated with it. Furthermore, the proposed two-step triggering scheme is

extended to multi-agent systems, and a theoretical condition associated

with closed-loop stability and consensus is derived for each agent.

3. Based on the ergodicity of a purposely designed Markov chain, a stochastic

triggering scheme including a prescribed triggering function, an updating

law for the transition probabilities of the Markov chain, and a checking

function is investigated to achieve aperiodic and non-persistent event

verification and enlarge the inter-execution time. Both tube-based M-

PC and linear matrix inequality-based (LMI-based) MPC are considered,

and they show complementary merits with such a stochastic triggering

scheme. Under mild conditions, recursive feasibility and closed-loop ro-

bust stability of both approaches are guaranteed theoretically.
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4. Using initially measured input-output data of unknown systems, a ter-

minal inequality constraint is developed for the data-driven MPC opti-

mization problem without any prior identification, resulting in a larger

feasible region and a lower bound for the prediction horizon when com-

pared with a terminal equality constraint. An event-triggered scheme

associated with a local controller is designed to trigger the solution of

the data-driven MPC optimization problem when necessary, leading to

the reduction of resource consumption. A complete analysis of recur-

sive feasibility and stability is presented based on the designed terminal

ingredients.

5. An event-triggered stochastic MPC approach is studied for the schedul-

ing problem of constrained queueing networks with a dynamic topology.

A discrete-time Markov chain (DTMC) in combination with a Bernoulli

trial is used to model the time-varying routing of queueing networks.

The constituency and positiveness constraints on queue lengths togeth-

er with a dynamic topology and the stochasticity in packet arrival are

incorporated into a stochastic MPC optimization problem. An event-

triggered scheme with adaptive event checking involving an estimated

waiting horizon is designed to trigger the solution of the optimization

problem when necessary, leading to reduced computational burden and

improved utilization of communication resources. With a constructed

stability region of arrival rates, the stability of queueing networks is dis-

cussed by the relation between the inter-execution time and objective

function.

1.4 Thesis Outline

The remainder of the thesis is organized as follows:

• In Chapter 2, based on a probability density function of disturbances, an

event-triggered scheme related to a designed minimal robust positively
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invariant set of tube-based MPC is constructed to generate dynamic

triggering sets.

• In Chapter 3, a two-step triggering scheme involving a tentative verifi-

cation of a triggering condition and a delayed triggering with a waiting

horizon is proposed and an extension of this approach is applied to multi-

agent systems.

• In Chapter 4, a stochastic triggering scheme involving a prescribed trig-

gering function, an updating law for the transition probabilities of the

Markov chain, and a checking function is designed to achieve aperiod-

ic and non-persistent event verification and enlarge the inter-execution

time.

• In Chapter 5, a data-driven MPC with a terminal inequality constraint

is developed for unknown systems with initially measured input-output

data and an event-triggered scheme is considered to reduce computa-

tional burden.

• In Chapter 6, an event-triggered stochastic MPC approach is applied to

constrained queueing networks with a dynamic topology for the schedul-

ing problem.

• In Chapter 7, concluding remarks of the thesis and some potential di-

rections of future work are provided.
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Chapter 2

Event-Triggered Robust MPC
with Guaranteed Average
Inter-Execution Times∗

This chapter investigates an event-triggered robust MPC controller in-

volving a set-valued triggering function to achieve a prescribed expectation of

inter-execution times. In [60, 67], a restrictive condition that the initially pre-

dicted state is equal to the current actual state is always required in the MPC

optimization problem, which makes it hard to preserve control performance if

the optimization problem is only solved at triggering instants. To avoid this,

tube-based MPC is considered to remove this requirement and incorporated

into the design of the event-triggered scheme, achieving the trade-off between

control performance and computational burden. According to the probabil-

ity distribution of bounded disturbances, the dynamic triggering sets which

can limit the state error between the actual state and the predicted state are

derived based on the concept of robust positively invariant sets. The opti-

mization problem is solved only at event-triggered instants when the state is

outside the corresponding set.

This chapter is organized as follows. Section 2.1 describes the system

model and formulates an event-triggered robust MPC problem. Section 2.2

∗A version of this chapter has been published as: Li Deng, Zhan Shu, and Tongwen Chen,
Event-triggered robust model predictive control for linear discrete-time systems with a guar-
anteed average inter-execution time. International Journal of Robust & Nonlinear Control,
vol. 32, no. 6, pp. 3969-3985, Apr. 2022.
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studies tube-based MPC and designs the event-triggered scheme. Section

2.3 analyzes recursive feasibility and robust stability. Section 2.4 verifies the

proposed approach by numerical examples. Section 2.5 concludes this chapter.

2.1 Problem Formulation

Consider the following linear discrete-time system with bounded distur-

bances:

x(t+ 1) = Ax(t) + Bu(t) + ω(t), (2.1)

where t ∈ Z+; x(t) ∈ Rnx is the system state; u(t) ∈ Rnu is the control input;

ω(t) ∈ Rnx is the persistent unknown disturbance; the matrix pair (A,B) is

stabilizable. The disturbance ω(t) is bounded, i.e., ω(t) ∈ W , where W is a

compact and convex set containing the origin.

Assumption 2.1. The disturbance ω(t) for all t ∈ Z+ is independently and

identically distributed with a bounded probability density function fω.

The system is subject to the following constraints:

x(t) ∈ X , u(t) ∈ U , (2.2)

where X ⊆ Rnx and U ⊆ Rnu are compact and convex sets containing the

origin.

The nominal system corresponding to (2.1) is

x̂(t+ 1) = Ax̂(t) + Bû(t), (2.3)

where x̂(t) ∈ Rnx and û(t) ∈ Rnu are the state and control input of the nominal

system.

In this chapter, we consider a tube-based MPC approach to handle state

and control constraints in (2.2) by using the concept of robust positively

invariant sets. Before proceeding, we have the following notations: Given

two sets Z1,Z2 ⊆ Rn, the Minkowski set addition is defined by Z1 ⊕ Z2 ,
{z1 + z2 | z1 ∈ Z1, z2 ∈ Z2} and the Pontryagin set difference is defined by

Z1 ⊖Z2 , {z ∈ Rn | z ⊕Z2 ⊆ Z1}.
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Definition 2.1. [80] A set Z is a robust positively invariant set for the system

in (2.1) with a state feedback control law if (A+BK)Z ⊕W ⊆ Z, where K ∈

Rnu×nx is a stabilizing feedback gain.

For the system in (2.1), we will adopt the following definition of robust

stability.

Definition 2.2. [80] A set Z is robustly exponentially stable for the system

in (2.1) with a feasible region XN and an initial state x(0) ∈ XN if there exist

θ ∈ (0, 1) and δ > 0 such that d(x(t),Z) ≤ δ
√
θtd(x(0),Z) for all t ∈ Z+,

where d(x(t),Z) , min{∥x(t)− z∥ | z ∈ Z}.

In order to save computational resources, an event-triggered controller is

designed as

u(t) = κ(x̃(tj), t− tj), t ∈ Z[tj ,tj+1−1],

tj+1 = min{t ∈ Z≥tj+1 | x(t) /∈ ϕ(x̃(tj), t− tj)},

where {tj : j ∈ Z+} ⊆ Z+ denotes the triggering instant sequence; the function

κ : Rnx×R → Rnu is to be designed; the set-valued function ϕ will be designed

by ϕ(x̃(tj), t− tj) = x̃(t− tj|tj)⊕Qt−tj , where x̃(t− tj|tj) is the predicted state

at instant t based on the measurement at the event-triggered instant tj and

x̃(tj) = x̃(0|tj); the closed sets Qt−tj ⊆ Rnx , t ∈ Z[tj ,tj+1−1], are to be designed.

That is, an event should be triggered if the actual states deviate too much

from the predicted states.

To satisfy the constraints in (2.2) and reduce the amount of computa-

tion in solving the optimization problem while not sacrificing the quadratic

performance significantly, this chapter is to design an event-triggered robust

MPC controller κ involving a set-valued triggering function ϕ such that the

optimization problem is solved at event-triggered instants only and a given

expected value of inter-execution times ∆ , E{tj+1 − tj} is achieved based

on Assumption 2.1. Besides, the recursive feasibility and closed-loop stability

are guaranteed.
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2.2 Event-Triggered Robust MPC

In [60, 67], a restrictive condition that the initially predicted state x̃(t) is

equal to the actual state x(t) is required to simplify the design. In general,

the actual state converges to the predicted value after solving the optimiza-

tion problem rather than equals it instantaneously. However, removing such a

requirement is not an easy thing. Firstly, when x(t) ̸= x̃(t) is considered, how

to describe the uncertainty between x(t) and x̃(t) is challenging. Secondly, as

x(t) − x̃(t) = 0 no longer holds, design simplification based on this relation-

ship cannot be employed. Moreover, it undoubtedly poses a grand challenge

to prove recursive feasibility and robust stability. In this section, we are de-

voted to removing such a restrictive requirement by using a robust positively

invariant set Z, leading to tube-based MPC.

2.2.1 Setup of Tube-Based MPC

Given a stabilizing feedback gain K ∈ Rnu×nx , a robust positively invariant

set Z is designed by following the method in [81]. Then, the terminal set Xf

should be designed to satisfy the following conditions:

Xf ⊆ X ⊖ Z (2.4a)

(A+BK)Xf ⊆ Xf (2.4b)

KXf ⊆ U ⊖KZ. (2.4c)

Define the terminal cost function as: Vf (x̃) = x̃TPx̃, P ≻ 0, and a control law

ũ = Kx̃, K ∈ Rnu×nx such that

Vf ((A+BK)x̃)− Vf (x̃) ≤ −x̃T(Q+KTRK)x̃ (2.5)

for x̃ ∈ Xf , where Q ≻ 0 and R ≻ 0.

Remark 2.1. In order to guarantee (2.5), one can obtain P and K by using

the LQR technique directly or firstly design a stabilizing feedback gain K by

one of many standard approaches, such as pole assignment, and then solve

(2.5) to obtain P .
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Moreover, the following lemma describes the relationship between a robust

positively invariant set and the state trajectory, which will be used to design

an event-triggered controller later.

Lemma 2.1. [80] Suppose that Z is a robust positively invariant set of the

system in (2.1). If x(t) ∈ x̂(t) ⊕ Z and u(t) = û(t) + K(x(t) − x̂(t)), then

x(t+ 1) ∈ x̂(t+ 1)⊕Z for all ω(t) ∈ W.

At the event-triggered instant tj, a robust MPC optimization problem for

the current actual state x(tj) is described as:

min
x̃(tj),ũ(tj)

JN(x̃(tj), ũ(tj))

s.t. x(tj)− x̃(tj) ∈ Z, (2.6a)

x̃(i+ 1|tj) = Ax̃(i|tj) + Bũ(i|tj), i ∈ Z[0,N−1], (2.6b)

x̃(i|tj) ∈ X ⊖ Z , i ∈ Z[0,N−1], (2.6c)

ũ(i|tj) ∈ U ⊖KZ, i ∈ Z[0,N−1], (2.6d)

x̃(N |tj) ∈ Xf ⊆ X ⊖Z , (2.6e)

where x̃(i|tj) is the predicted state at instant tj+ i based on the measurement

at the event-triggered instant tj and x̃(tj) = x̃(0|tj); ũ(i|tj) is the predicted

control input at tj + i and ũ(tj) = ũ(0|tj); N ∈ Z≥1 denotes the prediction

horizon; Z[0,N−1] , {i ∈ Z | 0 ≤ i ≤ N − 1}. Let HN(x(tj)) , {x̃(tj), ũ(tj)

∈ HN | (2.6a) to (2.6e)} be the set of feasible decision variables, where HN ,
Rnx × · · · × Rnx × Rnu × · · · × Rnu . Then, the feasible region is defined as

XN , {x(tj) ∈ Rnx | HN(x(tj)) ̸= ∅}.

In (2.6), instead of imposing the constraint x(tj) = x̃(tj) as in [60, 67], we

consider the constraint in (2.6a), which was proposed to reduce conservatism

in [80]. The state and control input constraints in (2.6c)-(2.6d) are based on a

robust positively invariant set Z. Equation (2.6e) is the terminal constraint.

The solutions of the optimization problem are the optimal control sequence

ũ∗(tj) , {ũ∗(0|tj), ũ∗(1|tj), . . . , ũ∗(N − 1|tj)} and the optimal state sequence

x̃∗(tj) , {x̃∗(0|tj), x̃∗(1|tj), . . . , x̃∗(N |tj)}. The corresponding optimal cost is

J∗
N(x(tj)).
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The cost function in (2.6) is given by

JN(x̃(tj), ũ(tj)) ,
N−1∑
i=0

l(x̃(i|tj), ũ(i|tj)) + Vf (x̃(N |tj)),

where l(x̃(i|tj), ũ(i|tj)) , x̃(i|tj)TQx̃(i|tj) + ũ(i|tj)TRũ(i|tj), i ∈ Z[0,N−1] is

the stage cost, and Vf (x̃(N |tj)) , x̃(N |tj)TPx̃(N |tj) is the terminal cost.

Motivated by Lemma 2.1, the event-triggered control law applied to the system

in (2.1) is given by

u(t) = ũ(t− tj|tj) +K(x(t)− x̃(t− tj|tj)), t ∈ Z[tj ,tj+1−1]. (2.7)

The designed event-triggered controller is dependent on the actual state x(t)

and the disturbance ω(t), leading to a closed-loop control at the instants when

the on-line optimization is absent.

Then, the closed-loop system with the event-triggered controller is given

by

x(t+ 1) = Ax(t) + Bu(t) + ω(t), t ∈ Z[tj ,tj+1−1] (2.8)

tj+1 = min{t ∈ Z≥tj+1 | x(t) /∈ x̃(t− tj|tj)⊕Qt−tj}. (2.9)

Without loss of generality, set t0 = 0 and suppose that the initial state x(0)

is triggered automatically at instant t0. Assume that the event-triggered con-

troller transmits a whole sequence ũ∗(tj) to the actuator at the event-triggered

instant tj. According to (2.7)-(2.9), if the event-triggered condition in (2.9) is

not satisfied, the elements {ũ∗(0|tj), ũ∗(1|tj), . . . , ũ∗(t − tj|tj)} of the control

sequence ũ∗(tj) would be applied; otherwise, the optimization problem in (2.6)

would be solved, and a new control sequence ũ∗(tj+1) would be transmitted

to the actuator. From the perspective of practical implementation, we set

tj+1 = tj + N if there is no event triggered after N − 1 steps, which guaran-

tees that an event will be triggered within the prediction horizon N , that is,

tj+1 − tj ≤ N for all j ∈ Z+.

Remark 2.2. In [67], the event-triggered control input is designed as u(t) =

ũ(t− tj|tj), t ∈ Z[tj ,tj+1−1], which means that the term K(x(t)− x̃(t− tj|tj)) is

19



neglected and the control inputs are deterministic and invariant between two

event-triggered instants. Since x(tj) = x̃(tj) is considered in the optimiza-

tion problem of [67], the control law is valid at the event-triggered instant tj.

However, when the event-triggered condition is not satisfied and the optimiza-

tion problem is not solved, if u(t) = ũ(t − tj|tj) is still applied to the system

between two event-triggered instants, in the presence of disturbances, it is d-

ifficult to achieve effective control and preserve the control performance since

x(t) = x̃(t− tj|tj), t ∈ Z[tj+1,tj+1−1], is not always satisfied in general.

2.2.2 Event-Triggered Scheme Design

In this section, triggering sets Qi, i ∈ Z[1,N−1], are designed to guarantee a

given average inter-execution time based on the probability density functions

defined as follows.

Definition 2.3. [82] Let Y , [YT
1 , . . . ,Y

T
i ]

T ∈ Ri be a continuous random

vector with a joint probability density function fY (y). For a set D ⊆ Ri, the

probability that the continuous random vector Y falls inside D is

P{Y ∈ D} ,
∫

D
fY (y)dy.

If FY (y) , P{Y1 ≤ y1, . . . ,Yi ≤ yi} is the cumulative distribution function of

Y , the joint probability density function fY (y) can be computed as a partial

derivative

fY (y) =
∂iFY (y)

∂y1 · · · ∂yi
.

According to the event-triggered condition in (2.9), we define the following

probability that an event is triggered at instant t + i after event-triggered

instant t:

P̂i , P{x(t+ i) /∈ x̃(i|t)⊕Qi, x(t+ ℓ) ∈ x̃(ℓ|t)⊕Qℓ, ℓ ∈ Z[1,i−1]}. (2.10)

To ensure that an event is triggered within the prediction horizon N , we

assume that
∑N

i=1 P̂i = 1 and P̂i ≥ 0. Then, the expectation of inter-execution
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times is determined as

∆̂ , E{tj+1 − tj} =
N∑
i=1

iP̂i. (2.11)

Hence, by choosing P̂i and designing corresponding triggering sets Qi, we can

achieve any desirable value of ∆̂. However, since

x(t+ ℓ)− x̃(ℓ|t) =
ℓ−1∑
s=0

(A+BK)sω(t+ ℓ− s− 1) + (A+ BK)ℓ(x(t)− x̃(t))

for ℓ ∈ Z[1,i], the probability in (2.10) is related to the uncertain error between

x(t) and x̃(t). It is numerically intractable to construct suitable triggering

sets Qi, i ∈ Z[1,N−1], to satisfy (2.10) for given P̂i. Hence, to specify this

uncertainty, we define another probability to design triggering sets Qi, i ∈

Z[1,N−1], by using the robust positively invariant set Z in the following form

Pi , P
{ i−1∑

s=0

(A+BK)sω(i− s− 1) /∈ Qi ⊖ (A+BK)iZ,

ℓ−1∑
s=0

(A+BK)sω(ℓ− s− 1) ∈ Qℓ ⊖ (A+BK)ℓZ, ℓ ∈ Z[1,i−1]

}
. (2.12)

According to Assumption 2.1, the probability in (2.12) is independent of t.

Note that
∑N

i=1 Pi = 1, Pi ≥ 0, and the expected value of inter-execution

times ∆ = E{tj+1 − tj} =
∑N

i=1 iPi. Since the set Z contains all uncertainties

between x(t) and x̃(t), the designed Qi through (2.12) by giving Pi will lead

to a mismatch between P̂i and Pi. Hence, instead of specifying Pi, we give

a desired value ∆ directly, and then obtain some triggering sets Qi through

(2.12) to execute the event-triggered condition in (2.9). The details of this

strategy are as follows.

Assume that tj+1 = tj +N if there is no event triggered after N − 1 steps,

which means QN = (A+BK)NZ. It is known from (2.12) that the condition

(A+ BK)iZ⊆Qi, i ∈ Z[1,N−1], needs to be satisfied. Hence, to facilitate the

discussion, we design Qi , γ(A+BK)iZ, i ∈ Z[1,N−1], where γ ∈ R≥1. Define
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the following function Pi : R≥1 −→ R[0,1]

Pi(γ) , P
{ i−1∑

s=0

(A+BK)sω(i− s− 1) /∈ (γ − 1)(A+ BK)iZ,

ℓ−1∑
s=0

(A+ BK)sω(ℓ− s− 1) ∈ (γ − 1)(A+BK)ℓZ, ℓ ∈ Z[1,i−1]

}
.

Then, let Q̃i(γ) , (γ − 1)(A + BK)iZ for γ ∈ R≥1 and i ∈ Z[1,N−1]. The

following lemmas provide some important properties of Q̃i(γ) and Pi(γ).

Lemma 2.2. For all γ1, γ2 ∈ R≥1 with γ1 ≤ γ2, Q̃i(γ1) ⊆ Q̃i(γ2).

Proof. Let γ1, γ2 ∈ R≥1 with γ1 ≤ γ2. It follows that

Q̃i(γ1) = (γ1 − 1)(A+BK)iZ ⊆ (A+BK)i((γ1 − 1)Z ⊕ (γ2 − γ1)Z)

for all i ∈ Z[1,N−1]. Since Z is a compact and convex set containing the origin,

then if z ∈ (γ1 − 1)Z ⊕ (γ2 − γ1)Z, there must exist z1, z2 ∈ Z such that

z = (γ1 − 1)z1 + (γ2 − γ1)z2. Then,

z = (γ2 − 1)

(
(γ1 − 1)

(γ2 − 1)
z1 +

(γ2 − γ1)

(γ2 − 1)
z2

)
∈ (γ2 − 1)Z.

Thus, we have (γ1 − 1)Z ⊕ (γ2 − γ1)Z = (γ2 − 1)Z. Hence,

Q̃i(γ1) ⊆ (γ2 − 1)(A+BK)iZ = Q̃i(γ2).

�

Define the following function P̃i : R≥1 −→ R[0,1] as

P̃i(γ) , P
{ i−1∑

s=0

(A+BK)sω(i− s− 1) ∈ Q̃i(γ),

ℓ−1∑
s=0

(A+ BK)sω(ℓ− s− 1) ∈ Q̃ℓ(γ), ℓ ∈ Z[1,i−1]

}
(2.13)

for γ ∈ R≥1 and i ∈ Z[1,N−1]. Then, according to Definition 2.3, the mono-

tonicity of P̃i(γ) is shown in the following lemma.
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Lemma 2.3. P̃i(γ) is a continuous and monotonically nondecreasing function

with respect to γ, where γ ∈ R≥1 and i ∈ Z[1,N−1].

Proof. Define P̃0(γ) = 1. Since an event is triggered within the prediction

horizon N , define P̃N(γ) = 0. Let z(ℓ− 1) =
∑ℓ−1

s=0(A+BK)sω(ℓ− s− 1) for

ℓ ∈ Z+
[1,i], then there exists a nonsingular matrix T ∈ Rinx×inx as

T =


I 0 · · · 0

(A+BK) I · · · 0
...

...
. . .

...
(A+BK)i−1 (A+ BK)i−2 · · · I


such that z = Tω, where z , [z(0)T, . . . , z(i − 1)T]T, ω , [ω(0)T, . . . , ω(i −

1)T]T. Based on the probability density function fω, the joint probability

density function of z is obtained as fz(z) = |det(T−1)|fω(T−1(z)) for all z ∈

Rinx . Then, it follows that

P̃i(γ) =
∫
{ω∈Rinx |

∑ℓ−1
s=0(A+BK)sω(ℓ−s−1)∈Q̃ℓ(γ), ℓ∈Z+

[1,i]
}
fω(ω)dω

=

∫
{z∈Rinx |z(ℓ−1)∈Q̃ℓ(γ), ℓ∈Z+

[1,i]
}
fz(z)dz

=

∫
Q̃i(γ)×Q̃i−1(γ)×···×Q̃1(γ)

fz(z)dz,

where dω, dz denote inx-dimensional volume differentials. Let vol(X ) denote

the Lebesgue measure of X . Based on Lemma 2.2, it is easy to show that

vol(Q̃i(γ)) is continuous and monotonically nondecreasing with respect to γ.

Then, for any arbitrary γ1, γ2 ∈ R≥1 with γ1 ≤ γ2, it follows that

P̃i(γ2) =
∫
Q̃i(γ2)×···×Q̃1(γ2)

fz(z)dz

=

∫
Q̃i(γ1)×···×Q̃1(γ1)

fz(z)dz+

∫
(Q̃i(γ2)×···×Q̃1(γ2))\(Q̃i(γ1)×···×Q̃1(γ1))

fz(z)dz

≤ P̃i(γ1) + h(γ1, γ2),
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where

h(γ1, γ2) = sup
z∈Rinx

fz(z)vol
(
(Q̃i(γ2)× · · · × Q̃1(γ2)) \ (Q̃i(γ1)× · · · × Q̃1(γ1))

)
= sup

z∈Rinx

fz(z)

( i∏
ℓ=1

vol(Q̃ℓ(γ2))−
i∏

ℓ=1

vol(Q̃ℓ(γ1))

)
.

It follows that h(γ, γ) = 0 for any γ ∈ R≥1. Furthermore,

P̃i(γ1) ≤ P̃i(γ2) ≤ P̃i(γ1) + h(γ1, γ2),

P̃i(γ2)− h(γ1, γ2) ≤ P̃i(γ1) ≤ P̃i(γ2).

Thus, P̃i(γ) is a continuous function with respect to γ. It is shown that (2.13)

is equal to

P̃i(γ) = P
{ ℓ−1∑

s=0

(A+BK)sω(ℓ− s− 1) ∈ Q̃ℓ(γ), ℓ ∈ Z+
[1,i]

}
. (2.14)

Then, according to Lemma 2.2, for any γ1, γ2 ∈ R≥1 with γ1 ≤ γ2, P̃i(γ1) ≤

P̃i(γ2) for i ∈ Z+
[1,N−1], which implies that P̃i(γ) is monotonically nondecreas-

ing. �

Then, define the expected function ∆ : R≥1 −→ R[1,N ] of inter-execution

times as

∆(γ) = E{tj+1 − tj} =
N∑
i=1

iPi(γ)

for γ ∈ R≥1. Based on the results of Lemmas 2.2 and 2.3, we can obtain the

following lemma to show the monotonicity of ∆(γ).

Lemma 2.4. ∆(γ) is a monotonically nondecreasing and continuous function

with respect to γ. Moreover, ∆(1) = 1, and ∆(γ) = N for a sufficiently large

γ.

Proof. The probability Pi(γ) that an event is triggered at the ith step after

the last event-triggered instant is given as

Pi(γ) = P
{ i−1∑

s=0

(A+BK)sω(i− s− 1) /∈ Q̃i(γ),

ℓ−1∑
s=0

(A+BK)sω(ℓ− s− 1) ∈ Q̃ℓ(γ), ℓ ∈ Z[1,i−1]

}
. (2.15)
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Note that Pi(γ) = P̃i−1(γ) − P̃i(γ). According to Lemma 2.3, P̃i(γ) is a

continuous function with respect to γ, thus ∆(γ) is also a continuous function

with respect to γ. Moreover, for any γ1, γ2 ∈ R≥1 with γ1 ≤ γ2, it follows that

∆(γ1) =
N∑
i=1

iPi(γ1) =
N∑
i=1

i(P̃i−1(γ1)− P̃i(γ1))

= P̃0(γ1) +
N−1∑
i=1

P̃i(γ1)

= 1 +
N−1∑
i=1

P̃i(γ1)

≤ 1 +
N−1∑
i=1

P̃i(γ2) = ∆(γ2).

It is shown that ∆(γ) is monotonically nondecreasing with respect to γ. Since

Z is a nonempty set, then Q̃i(1) = ∅ for all i ∈ Z[1,N−1], implying P1(1) = 1 in

(2.15). Hence, ∆(1) = 1; furthermore, since the probability density function

fω is bounded, there exists a sufficiently large γ such that Pi(γ) = 0 for

i ∈ Z[1,N−1] and PN(γ) = 1, implying ∆(γ) = N . �

According to Lemma 2.4, for a given expected value of inter-execution

times ∆, there exists an appropriate γ. Since the set Z contains all uncer-

tainties between x(t) and x̃(t), there is a possibility that when
∑i−1

s=0(A +

BK)sω(i− s− 1) /∈ Qi ⊖ (A+BK)iZ is satisfied at instant tj + i, the event-

triggered condition in (2.9) may be satisfied at instant t ≥ tj+i, which implies

∆̂ ≥ ∆. That is, the designed event-triggered scheme may reduce the com-

munication more than expected.

2.3 Recursive Feasibility and Stability Analy-

sis

In this section, recursive feasibility of the proposed event-triggered robust

MPC and robust stability of the closed-loop system are analyzed.
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2.3.1 Recursive Feasibility

The following theorem ensures that if the optimization problem in (2.6) is

feasible at the initial event-triggered instant, then it remains feasible for all

future event-triggered instants.

Theorem 2.1. Suppose that (x̃∗(tj), ũ
∗(tj)) is the optimal solution of the op-

timization problem in (2.6) for x(tj) ∈ XN at any event-triggered instan-

t tj ∈ Z+. Then, under the event-triggered condition in (2.9), for the system

in (2.1), (x̃(tj+1), ũ(tj+1)) with ũ(tj+1) , {ũ(0|tj+1), . . . , ũ(N − 1|tj+1)} and

x̃(tj+1) , {x̃(0|tj+1), . . . , x̃(N |tj+1)} defined by

x̃(i|tj+1) =

{
x̃∗(tj+1 − tj + i|tj), i ∈ Z[0,tj+N−tj+1]

(A+BK)i−(tj+N−tj+1)x̃∗(N |tj), i ∈ Z[tj+N+1−tj+1,N ].
(2.16)

ũ(i|tj+1) =

{
ũ∗(tj+1 − tj + i|tj), i ∈ Z[0,tj+N−tj+1−1]

Kx̃(i|tj+1), i ∈ Z[tj+N−tj+1,N−1].
(2.17)

is feasible for the optimization problem at the triggering instant tj+1.

Proof. According to Lemma 2.1, since x(tj) ∈ x̃∗(tj) ⊕ Z, it follows that

x(tj + i) ∈ x̃∗(i|tj) ⊕ Z, i ∈ Z[0,N ], implying x(tj+1) ∈ x̃∗(tj+1 − tj|tj) ⊕ Z.

Hence, according to (2.16), we have that

x(tj+1) ∈ x̃(tj+1)⊕Z.

Then, the constraint in (2.6a) is satisfied. To prove that the constraints in

(2.6c)-(2.6e) are feasible, firstly, consider i ∈ Z[0,tj+N−tj+1−1]. Since x̃∗(tj+1 −

tj + i|tj) ∈ X ⊖Z and ũ∗(tj+1 − tj + i|tj) ∈ U ⊖KZ, then according to (2.16)

and (2.17), we have that

x̃(i|tj+1) ∈ X ⊖ Z , i ∈ Z[0,tj+N−tj+1−1],

ũ(i|tj+1) ∈ U ⊖KZ, i ∈ Z[0,tj+N−tj+1−1].

Secondly, consider i ∈ Z[tj+N−tj+1,N−1]. Since x̃
∗(N |tj) ∈ Xf ⊆ X ⊖Z , accord-

ing to (2.4b), we have that

(A+BK)i−(tj+N−tj+1)x̃∗(N |tj) ∈ Xf ⊆ X ⊖Z , i ∈ Z[tj+N−tj+1,N−1],
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which implies x̃(i|tj+1) ∈ X ⊖ Z and x̃(N |tj+1) ∈ Xf ⊆ X ⊖ Z . According to

(2.4c), we have that

Kx̃(i|tj+1) ∈ KXf ⊆ U ⊖KZ, i ∈ Z[tj+N−tj+1,N−1],

which implies ũ(i|tj+1) ∈ U ⊖ KZ. It is concluded that (x̃(tj+1), ũ(tj+1))

constructed by the optimal solution of the optimization problem, is feasible at

the triggering instant tj+1. Therefore, recursive feasibility of the optimization

problem is guaranteed. �

2.3.2 Robust Stability

According to (2.5), the following lemma is obtained by induction to show

the decreasing of Vf (x̃(t)). It will be used to ensure the decreasing of the

optimal cost function J∗
N(x(tj)) later.

Lemma 2.5. For all x̃(t) ∈ Xf , t ∈ Z+, we have that

Vf ((A+BK)ix̃(t)) ≤ Vf (x̃(t))−
i−1∑
~=0

l(x̃(~|t), Kx̃(~|t)), i ∈ Z≥1. (2.18)

Proof. According to the condition in (2.5), we have that

Vf ((A+BK)x̃(t)) ≤ Vf (x̃(t))− l(x̃(t), Kx̃(t)), (2.19)

Vf ((A+BK)2x̃(t)) ≤ Vf ((A+ BK)x̃(t))− l(x̃(1|t), Kx̃(1|t)), (2.20)

...

Vf ((A+BK)ix̃(t)) ≤ Vf ((A+BK)i−1x̃(t))− l(x̃(i− 1|t), Kx̃(i− 1|t)).
(2.21)

Then, equation (2.18) is obtained by summing from (2.19) to (2.21). �

Lemma 2.6. Suppose that J∗
N(x(tj)) is the optimal cost of the optimization

problem in (2.6) for x(tj) ∈ XN at any event-triggered instant tj ∈ Z+. Then,

under the event-triggered condition in (2.9), the optimal cost J∗
N(x(tj+1)) sat-

isfies

J∗
N(x(tj+1)) ≤ J∗

N(x(tj))−
tj+1−tj−1∑

i=0

l(x̃∗(i|tj), ũ∗(i|tj)). (2.22)

27



Proof. Since recursive feasibility of the MPC optimization problem is guar-

anteed, a feasible cost JN(x(tj+1)) at the event-triggered instant tj+1 is con-

structed based on the optimal solution of the optimization problem as

JN(x(tj+1)) =J
∗
N(x(tj))− Vf (x̃

∗(N |tj))−
tj+1−tj−1∑

i=0

l(x̃∗(i|tj), ũ∗(i|tj))

+ Vf (x̃(N |tj+1)) +
N−1∑

i=tj+N−tj+1

l(x̃(i|tj+1), ũ(i|tj+1))

≥J∗
N(x(tj+1)). (2.23)

According to Lemma 2.5, we have

Vf (x̃(N |tj+1)) = Vf ((A+BK)(tj+1−tj)x̃∗(N |tj))

≤ Vf (x̃
∗(N |tj))−

N−1∑
i=tj+N−tj+1

l(x̃(i|tj+1), ũ(i|tj+1)). (2.24)

Substituting (2.24) into (2.23) yields (2.22). �

Lemma 2.7. Under the event-triggered condition in (2.9), for the system in

(2.1), there exist constants c2 > c1 > 0 such that

J∗
N(x(tj)) ≥ c1∥x̃∗(tj)∥2, ∀ x(tj) ∈ XN , (2.25)

J∗
N(x(tj+1)) ≤ J∗

N(x(tj))−
tj+1−tj−1∑

i=0

c1∥x̃∗(i|tj)∥2, ∀ x(tj) ∈ XN , (2.26)

J∗
N(x(tj)) ≤ c2∥x̃∗(tj)∥2, ∀ x(tj) ∈ Xf ⊕Z . (2.27)

Proof. Equations (2.25)-(2.27) can be easily obtained by induction based on

(2.22) in Lemma 2.6. �

Based on Lemma 2.7, the main stability theorem is obtained below.

Theorem 2.2. For the system in (2.1) with x(0) ∈ XN and ω(t) ∈ W, t ∈ Z+,

the set Z is robustly exponentially stable.

Proof. According to (2.26), if tj+1 = tj + 1, we have that

J∗
N(x(tj + 1)) ≤ J∗

N(x(tj))− c1∥x̃∗(tj)∥2, ∀ x(tj) ∈ Xf ⊕Z .
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Then, it follows from (2.25) and (2.27) that

J∗
N(x(tj + 1)) ≤ (1− c1

c2
)J∗
N(x(tj)),

which implies that

J∗
N(x(tj+1)) ≤ (1− c1

c2
)(tj+1−tj)J∗

N(x(tj)). (2.28)

For all β ≥ 0, let Sβ , {x(t) | J∗
N(x(t)) ≤ β, t ∈ Z}. Since J∗

N(x(t)) = 0 for

all x(t) ∈ Z [80], S0 = Z and there exists a β > 0 such that Sβ ⊆ Xf ⊕ Z.

Then, from (2.28), in general, we have that

J∗
N(x(t)) ≤ θtJ∗

N(x(0)) (2.29)

for all x(0) ∈ Sβ and t ∈ Z+, where θ = 1 − c1/c2. Based on (2.29), there

must exist some 0 < c <∞ satisfying

∥x̃(t)∥ ≤ c
√
θt∥x̃(0)∥. (2.30)

Then, for all x(0) ∈ XN and ω(t) ∈ W , there exists an ϵ ∈ Z+
>0 such that

x(i) ∈ Sβ for all i > ϵ. Hence, from (2.30), there must exist a µ > c such that

∥x̃(t)∥ ≤ µ
√
θt∥x̃(0)∥ for all x(0) ∈ XN . Since x(t) ∈ x̃(t) ⊕ Z, d(x(t),Z) ≤

µ
√
θtd(x(0),Z). Hence, according to Definition 2.2, the set Z is robustly

exponentially stable for the system in (2.1) with the feasible region XN . �

2.4 Simulation Examples

Example 2.1. Consider the linear system provided in [67]:

x(t+ 1) =

[
1.1 0.2
0 1.2

]
x(t) +

[
0
1

]
u(t) + ω(t),

where ω(t) is independently uniformly distributed on W = [−1, 1] × [−1, 1]

for all t ∈ Z+. The state constraint is X = [−30, 30] × [−30, 30], and the

control constraint is U = [−10, 10]. The horizon length is set as N = 10. The

weighting matrices of the stage cost are chosen as Q = I2 and R = I. In this

example, 50 random realizations of the disturbance sequence are considered.
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Figure 2.1: Feasible regions XN .

Table 2.1: Distribution of inter-execution times based on K1

Inter-execution time Count Frequency

2 814 3.00%
3 11350 41.78%
4 11127 40.96%
5 3446 12.69%
6 406 1.49%
7 21 0.08%

Table 2.2: Distribution of inter-execution times based on K2

Inter-execution time Count Frequency

2 3438 11.21%
3 17166 55.99%
4 8714 28.42%
5 1265 4.13%
6 74 0.24%

Table 2.3: Comparison results with [67] in Case A

K1 K2

J̄perf T̄c J̄perf T̄c

Time-triggered controller 5.7709 501.23s 7.2608 521.65s
Time-triggered controller in [67] 5.7705 492.75s 7.2593 493.27s

Event-triggered controller 5.7811 153.69s 7.2796 179.36s
Event-triggered controller in [67] 6.7682 181.03s 8.9162 182.51s
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A. Comparisons with different feedback gains

Consider the following two feedback gains and the corresponding weighting

matrices of the terminal cost:

K1 =
[
−1.0042 −1.0788

]
, P1 =

[
2.6093 0.2100
0.2100 2.1837

]
,

K2 =
[
−1.7500 −1.3000

]
, P2 =

[
17.5385 4.5894
4.5894 3.2404

]
,

where K1 is the LQR gain and K2 is an arbitrarily stabilizing feedback gain.

Given an expected value of inter-execution times ∆ = 3, then we can find

γ1 = 3.7368 and γ2 = 4.5368 by using a stochastic approximation approach

as provided in [83]. Set the initial state x(0) = [−27.19, 18.74]T and the

simulation steps Tsim = 105. Consider the following performance index:

Jperf =
1

Tsim

Tsim−1∑
t=0

x(t)TQx(t) + u(t)TRu(t). (2.31)

To show the advantages of the proposed method, comparisons with the

method in [67] have been carried out. Let J̄perf and T̄c be the average perfor-

mance index and on-line computation time of these 50 random disturbance

realizations, respectively. It is seen from Figure 2.1 that, robust MPC with

x(t) ̸= x̃(t) can bring a larger feasible region XN than that with x(t) = x̃(t).

For one of realizations, the distributions of inter-execution times in 105 steps

are listed in Table 2.1 and Table 2.2, which present the resulted average inter-

execution times ∆̂1 = 3.6813 and ∆̂2 = 3.2619, respectively. As shown in

Table 2.3, there is no significant increase of the performance index for the

designed event-triggered controller when compared with time-triggered (peri-

odical) controller, but there is a 17.29% increase of the performance index by

employing the method in [67] based on the LQR gain. Moreover, when the

LQR gain is not considered, it is shown that the control performance in [67]

will become worse, but the proposed method can still keep the control per-

formance close to that of time-triggered (periodical) controller. Furthermore,

the proposed event-triggered scheme requires less computation time than that

of [67]. Hence, it is shown that the proposed event-triggered robust MPC not
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only achieves better reduction of transmission costs, but also preserves the

desired control performance.

B. Transient behavior analysis

To analyze the transient behavior brought by the event-triggered con-

trollers, the disturbances ω(t) are set to be [0, 0]T for t ∈ [21, 50] and uniformly

distributed on W = [−1, 1]× [−1, 1] for other sampling instants. It is assumed

that the disturbances keep the same for the simulation with these two meth-

ods. Set the simulation steps Tsim = 70 and the initial state x(0) = [0, 0]T

which is regarded as the stable point of the nominal system. Consider the

error performance index:

Jerror =
1

Tsim

Tsim−1∑
t=0

√
(x(t)− x(0))T(x(t)− x(0)). (2.32)

Then, we obtain Jerror = 1.0079 by using the proposed method, which is small-

er than that in [67] in which the error performance index is Jerror = 1.0655.

For one of disturbance realizations, it is seen from Figure 2.2, the control

inputs fluctuate in a smaller range than that of [67], and the speed of conver-

gence to the origin is faster when the disturbances disappear. Similar results

can be also observed on state trajectories. Therefore, for this example, the

transient behavior of the closed-loop system in the proposed event-triggered

robust MPC is better than that in [67].

Example 2.2. Consider the decentralized interconnected system (DIS2)

provided in [84]:

ẋ(t) =

−4 2 1
3 −2 5
−7 0 3

 x(t) +
1 0
1 0
0 1

 u(t) + ω(t). (2.33)

Let the sampling instant Ts = 0.2s. The constraint sets are X = [−40, 40] ×

[−40, 40] × [−40, 40] and U = [−25, 25] × [−25, 25]. Set the horizon length

N = 8. The weighting matrices of the stage cost are chosen as Q = I3 and

R = I2. The feedback gain and weighting matrix of the terminal cost are
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Figure 2.2: Control input and state trajectories (The circles represent event-
triggered instants).

Table 2.4: Distribution of inter-execution times

Inter-execution time Count Frequency

2 1654 5.43%
3 19441 63.82%
4 8504 27.91%
5 838 2.75%
6 27 0.09%

Table 2.5: Comparison results with [67]

J̄perf T̄c

Time-triggered controller 13.2980 1405.86s
Time-triggered controller in [67] 13.2878 1011.29s

Event-triggered controller 13.3237 315.71s
Event-triggered controller in [67] 22.9653 295.08s

given as:

K =

[
−2.1123 −0.9940 0.7995
2.3691 0.1225 −2.8873

]
, P =

 15.5988 2.6096 −13.8923
2.6096 3.1475 0.6272

−13.8923 0.6272 20.4932

 .
Set the initial state x(0) = [−1.18, 8.74, 12.87]T. We can obtain γ = 8.5020

for a given expected value of inter-execution times ∆ = 3. Consider 50 ran-

dom realizations of the disturbance sequence. For one of realizations, the

distribution of inter-execution times is displayed in Table 2.4, which presents
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the resulted average inter-execution time ∆̂ = 3.2825. From the compar-

ison results in Table 2.5, it is concluded that the proposed event-triggered

robust MPC can achieve a better balance between computational burden and

control performance than [67]. In order to analyze the transient behavior,

we set the disturbances ω(t) = [0, 0, 0]T for t ∈ [21, 40] and the initial state

x(0) = [0, 0, 0]T. The error performance index Jerror = 0.9071 is obtained by

using the proposed method, which is smaller than that in [67] (Jerror = 1.3312).

It is concluded that the proposed method provides a better transient behavior

than that in [67].

2.5 Summary

In this chapter, an event-triggered robust MPC approach based on the

concept of minimal robust positively invariant sets has been proposed for lin-

ear discrete-time systems with bounded disturbances. Tube-based MPC has

been incorporated into the design of the event-triggered scheme, achieving the

trade-off between control performance and computational burden. Accord-

ing to the known probability distribution of bounded disturbances, an event-

triggered condition which can limit the state error between the predicted state

and the actual state has been derived to reduce the amount of computation

in solving the optimization problem. Both recursive feasibility and robust

stability of the proposed event-triggered robust MPC are guaranteed. Sim-

ulation results have shown the benefits of the designed event-triggered MPC

controller.
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Chapter 3

Robust MPC Using A
Two-Step Triggering Scheme∗

This chapter investigates a two-step triggering scheme involving a tenta-

tive verification of a triggering condition and a delayed triggering to ensure

necessary events for tube-based MPC constructed in Chapter 2. In practical

situations, events may be triggered occasionally or falsely. Under such cir-

cumstances, existing control actions may remain effective, and solving the op-

timization problem could be unnecessary. Hence, to avoid unnecessary events

and reduce resource consumption further, we propose a two-step triggering

scheme, which ensures that the triggered events are necessary. A trigger-

ing function is proposed based on the distances between actual states and

a robust positively invariant set. With a constructed two-step verification,

the optimization problem is solved and the triggering instant is updated if

the triggering conditions are satisfied at both checking instants, leading to a

further reduction of computational burden. Moreover, the designed two-step

triggering scheme can be extended to multi-agent systems.

This chapter is organized as follows. Section 3.1 designs a two-step trig-

∗A version of this chapter has been published as: Li Deng, Zhan Shu, and Tongwen Chen,
Robust model predictive control using a two-step triggering scheme. IEEE Transactions
on Automatic Control, vol. 68, no. 3, pp. 1934-1940, Apr. 2022. An extension of this
Chapter has been published as: Li Deng, Zhan Shu, and Tongwen Chen, Event-triggered
robust distributed MPC for multi-agent systems with a two-step event verification. 8th
IFAC Symposium on System Structure and Control, vol. 55, no. 34, pp. 144-149, Sep.
2022.
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gering scheme for tube-based MPC, analyzes recursive feasibility and robust

stability, and verifies the proposed approach by numerical examples. Section

3.2 extends the designed two-step triggering scheme to a multi-agent system

and discusses stability and consensus of the overall multi-agent system. Sec-

tion 3.3 concludes this chapter.

3.1 Tube-Based MPC with Two-Step Trigger-

ing

Consider the linear discrete-time system with bounded disturbances in

(2.1). According to [80] and [81], a robust positively invariant set can be

regarded as the “origin” of the systems with disturbances. Hence, we take the

following assumption in the remaining analysis and design of this chapter.

Assumption 3.1. x(t) /∈ Z, where Z is a robust positively invariant set

designed as in Algorithm A.1.

In this section, we will design a two-step triggering scheme for the tube-

based MPC optimization problem shown in (2.6). In the existing event-

triggered MPC, the optimization problem is solved at each triggering instant,

and less computational resources are required compared with periodic compu-

tation. However, events in practical situations may be triggered occasionally

or falsely. Under such circumstances, existing control actions may remain ef-

fective, and solving the optimization problem could be unnecessary. Hence,

to avoid unnecessary events and reduce resource consumption further, we pro-

pose a two-step triggering scheme, which can ensure that the triggered events

are necessary.

3.1.1 Problem Formulation

Define the triggering instant sequence as {tl : l ∈ Z+} ⊆ Z+. First, a

tentative checking condition is given by

t1j = min
{
min{t ∈ Z>tl | g(t, x(t), x(tl)) > 0}, tl +N

}
, (3.1)
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Figure 3.1: Illustration of triggering instant sequences.

where g : Z+ × Rnx × Rnx → R is a triggering function to be designed, and

{t1j : j ∈ Z+} ⊆ Z+ is the first checking instant sequence. At t1j , instead of

triggering immediately, we generate a waiting horizon κ(t1j) ∈ Z[1,N−1], that is,

the most likely instant when the condition in (3.1) is violated again. Define the

second checking instant sequence as {t2j : j ∈ Z+} ⊆ Z+ and t2j = t1j + κ(t1j).

Then, the triggering instant is determined by

tl+1=

{
t2j , if t2j = tl +N

min{t2j ∈ Z+ | g(t2j , x(t2j), x(t1j)) > 0}, otherwise
. (3.2)

Assume that the initial instants t0 = t10 = t20 = 0. Here, N is regarded

as the maximum of the inter-execution time, i.e., if the inter-execution time

exceeds it, then the system will be triggered automatically. Clearly, it follows

that {tl : l ∈ Z+} ⊆ {t2j : j ∈ Z+}. A relation between these sequences is

illustrated in Figure 3.1, where h ∈ Z+.

Combining (3.1) and (3.2), two kinds of events are considered in this two-

step triggering scheme: one is unnecessary events, for which (3.1) is satisfied

but (3.2) is not; the other is necessary events, for which both (3.1) and (3.2)

are satisfied.

Remark 3.1. Setting the prediction horizon N as the maximum of the inter-

execution time plays a critical role in preserving the control performance and

guaranteeing robust stability for the proposed two-step triggering scheme.

An event-triggered controller to be designed is of the form

u(t) = φ(x(t), x̃(t), ũ(t)), t ∈ Z[tl,tl+1), (3.3)

where the function φ : Rnx × Rnx × Rnu → Rnu is to be determined.
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The main purpose is to design a controller of the form (3.3) with a trig-

gering function g and a waiting horizon κ such that the optimization problem

in (2.6) is solved at tl.

3.1.2 Two-Step Triggering MPC Design

In this subsection, the triggering Function g and the waiting horizon κ are

designed, and the effects of triggering parameters on the inter-execution time

are analyzed.

3.1.2.1 Triggering Function g

To ensure robust stability when the optimization problem in (2.6) is not

solved, according to Definition 2.2, for t ∈ Z>tl , the triggering function g is

designed as

g(t, x(t), x(tl)) = d(x(t), τZ)− µ
√
θt−tld(x(tl), τZ),

where τ ∈ (0, 1], µ ∈ (0, η], θ = 1− c1/c2 and

η = min

{
1,

zmin

zmax

√
θ

}
, (3.4a)

c1 = λmin(Q+KTRK), (3.4b)

c2 = λmax(P ), (3.4c)

zmin and zmax are the shortest and longest distances between the points on the

boundary of Z and the origin.

Let z⋆(x(t),Z) , arg min{∥x(t)−z∥ | z ∈ Z}. According to the definition

of the distance, we have that d(x(t), τZ) = ∥x(t)− z⋆(x(t), τZ)∥. Since τZ is

a homogeneous convex subset of Z, z⋆(x(t), τZ) = τz⋆(x(t),Z) holds. Then,

the triggering function g is equivalent to the following form

g(t, x(t), x(tl)) =∥x(t)− τz⋆(x(t),Z)∥ − µ
√
θt−tl∥x(tl)− τz⋆(x(tl),Z)∥.

For notational simplicity, let z⋆(x(t)) stand for z⋆(x(t),Z). Then, we have the

following two lemmas, which are helpful for our analysis later.
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Lemma 3.1. For a stabilizing feedback gain K ∈ Rnu×nx, we have that
ρ(A+BK)√

θ
≤ 1, where ρ(A+BK) is the spectral radius of A+BK.

Proof. According to (2.5), we have that

P ≽ (A+ BK)TP (A+BK) + (Q+KTRK). (3.5)

Let ξ ∈ Cnx be the corresponding eigenvector of ρ(A + BK) and ξ̄ be the

complex conjugate transpose of ξ. Pre- and post-multiplying (3.5) by ξ̄ and

ξ, respectively, yields that

ξ̄P ξ ≥ [ρ(A+BK)]2ξ̄P ξ + ξ̄(Q+KTRK)ξ.

Since K is a stabilizing gain, i.e., ρ(A+BK) < 1, we have that

(1− [ρ(A+BK)]2)λmax(P ) ≥ λmin(Q+KTRK).

Then, it follows that

λmax(P )− λmin(Q+KTRK)

λmax(P )
≥ [ρ(A+ BK)]2. (3.6)

Note that θ = 1− c1/c2. Then, from (3.4b)-(3.4c), equation (3.6) implies that
ρ(A+BK)√

θ
≤ 1. �

Lemma 3.2. If µ ∈ (0, η], then µ
√
θt−tl∥z⋆(x(tl))∥− ∥z⋆(x(t)∥ ≤ 0 for t > tl.

Proof. If µ ∈ (0, η], from (3.4a), then we have that

µ
√
θt−tl∥z⋆(x(tl))∥ − ∥z⋆(x(t))∥ ≤ zmin

zmax

√
θ

√
θzmax − zmin = 0. (3.7)

�

3.1.2.2 Waiting Horizon κ

At t1j , the tentative checking condition in (3.1) is satisfied. Instead of

triggering immediately, we would like to estimate the most likely instant when

the tentative checking condition in (3.1) is violated again as follows:

κ∗(t1j) = min
{
k ∈ Z>0 | d(x(t1j + k), τZ) ≤ µ

√
θkd(x(t1j), τZ)

}
. (3.8)
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Due to the presence of uncertain disturbances, it is difficult to predict d(x(t1j+

k), τZ) at t1j . Thus, it is numerically intractable to obtain κ∗(t1j) based on

(3.8). Since τZ is a homogeneous convex subset of Z, we have that d(x(t1j +

k), τZ) = d(x(t1j + k),Z) + (1 − τ)∥z⋆(x(t1j + k))∥. Then, the condition in

(3.8) can be written as

d(x(t1j + k),Z) ≤ µ
√
θkd(x(t1j), τZ)− (1− τ)∥z⋆(x(t1j + k))∥. (3.9)

Since τ ∈ (0, 1], we can obtain a necessary condition of (3.9) as

d(x(t1j + k),Z) ≤ µ
√
θkd(x(t1j), τZ). (3.10)

Accordingly, we consider an alternative, that is, estimating a lower bound

κ(t1j) of κ
∗(t1j) as

κ(t1j) = min
{
k ∈ Z>0 | d(x(t1j + k),Z) ≤ µ

√
θkd(x(t1j), τZ)

}
. (3.11)

Although d(x(t1j+k),Z) remains uncomputable, we have the following lemma

to facilitate the computation.

Lemma 3.3. For a stabilizing feedback gain K ∈ Rnu×nx, there always exist

a k̄ ∈ Z>0, a sufficiently small σmin > 0, and a σmax > 0 which is dependent

on A+BK such that

σmin[ρ(A+BK)]k∥x̃(t)∥ ≤ d(x(t+ k),Z) ≤ σmax[ρ(A+BK)]k∥x̃(t)∥ (3.12)

for k ∈ Z(0,k̄).

Proof. Since x(t) ∈ x̃(t)⊕Z , x(t+ k) ∈ x̃(k|t)⊕Z according to Lemma 2.1.

Then, we have that d(x(t + k),Z) ≤ ∥x̃(k|t)∥. According to the prediction

model in (2.6b), x̃(k|t) = (A + BK)kx̃(t) by using the control law ũ = Kx̃.

Since A + BK is Schur, ∥(A + BK)kx̃(t)∥ ≤ σmax[ρ(A+BK)]k∥x̃(t)∥, where

σmax > 0 is dependent on A+BK. On the other hand, for a sufficiently small

σmin, we can always find a k̄ such that σmin[ρ(A+BK)]k∥x̃(t)∥ ≤ d(x(t+k),Z)

for k ∈ Z(0,k̄). �
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Here, σmin is trivial, and σmax can be estimated by a generalized eigenvalue

problem subject to LMIs as follows:

min
σ2
max,M

σ2
max

s.t. I ≼M ≼ σ2
maxI (3.13a)

ϵ

[ρ(A+ BK)]2
(A+BK)TM(A+ BK)−M ≺ 0 (3.13b)

where M ≻ 0; ϵ > 0 is a given scalar which is sufficiently close to 1, but not

equal to 1.

According to Lemma 3.3, d(x(t1j + k),Z) can be roughly described by

σ[ρ(A+BK)]k∥x̃(t1j)∥, where σ ∈ (σmin, σmax), and κ(t1j) in (3.11) can be

estimated correspondingly by

κest(t
1
j) = min

{
k ∈ Z>0 |

(ρ(A+BK)√
θ

)k ≤ µd(x(t1j), τZ)

σ∥x̃(t1j)∥

}
. (3.14)

On the other hand, since N is the maximum of the inter-execution time, the

waiting horizon κ(t1j) is consequently determined by

κ(t1j) = min
{
κest(t

1
j), tl +N − t1j

}
. (3.15)

As κ is a lower bound of κ∗, i.e., κ ≤ κ∗, and the estimation κest in (3.14)

may not be accurate due to the choice of σ, we need to check the triggering

condition again at t2j .

Remark 3.2. From the above analysis, the values of σmin and σmax have an

effect on the determination of the waiting horizon. However, how to design

σmin and σmax to generate a tight estimation and how to update these two

parameters as the system operates remain challenging, and are left for future

study.

3.1.2.3 Two-Step Triggering Scheme

Combining (3.1) and (3.2), the proposed two-step triggering scheme is

summarized as Algorithm 3.1, and an event-triggered controller is designed

41



Algorithm 3.1: Two-step triggering scheme.

1: Initialize all parameters.
2: At tl, solve the optimization problem in (2.6). Let t = tl + 1.
3: if t < tl +N , then
4: if g(t, x(t), x(tl)) > 0 is satisfied, then
5: let t1j = t, calculate κ(t1j), and wait until t2j .
6: if t2j = tl +N , then
7: let tl+1 = tl +N , l = l + 1, and go back to step 2.
8: else
9: if g(t2j , x(t

2
j), x(t

1
j)) > 0 is satisfied, then

10: let tl+1 = t2j , l = l + 1, and go back to step 2.
11: else
12: let t = t2j + 1, and go back to step 3.
13: end
14: end
15: else
16: let t = t+ 1, and go back to step 3.
17: end
18: else
19: let tl+1 = tl +N , l = l + 1, and go back to step 2.
20: end

based on Lemma 2.1:

u(t) = ũ(t− tl|tl) +K(x(t)− x̃(t− tl|tl)), t ∈ Z[tl,tl+1), (3.16)

where ũ(t− tl|tl) and x̃(t− tl|tl) are the solutions to the optimization problem

in (2.6) at the triggering instant tl. In tube-based MPC, the tightened input

constraint in (2.6d) may lead to some conservativeness. To reduce it, instead

of directly applying the optimal control sequence to the system, we consider

a term K(x(t) − x̃(t − tl|tl)) in (3.16), which can be regarded as a feedback

compensation for the tightened input constraints and disturbances.

3.1.2.4 Parameters Analysis

According to Figure 3.1, the inter-execution time between two triggering

instants is given by

∆ , tl+1 − tl =
h∑
s=0

(t1j+s − t2j+s−1) + κ(t1j+s). (3.17)
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Equation (3.17) shows that ∆ is related to the checking instant sequences

{t1j : j ∈ Z+}, {t2j : j ∈ Z+} and the waiting horizon κ. In view of this, we

provide the following two propositions to analyze the effects of µ and τ on κ

and t1j so that their effects on ∆ can be quantified.

Proposition 3.1. At t1j , we have the following results:

• (i) If there exist µ1, µ2 ∈ (0, η] with µ1 ≤ µ2 and κ1, κ2 ∈ Z[1,N−1]

satisfying the condition in (3.14), then κ1 ≥ κ2.

• (ii) If there exist τ1, τ2 ∈ (0, 1] with τ1 ≤ τ2 and κ3, κ4 ∈ Z[1,N−1] satisfy-

ing the condition in (3.14), then κ3 ≤ κ4.

Proof. (i) Note that ρ(A+BK)√
θ

≤ 1 according to Lemma 3.1. If µ1 ≤ µ2,

according to (3.14), we have that[
ρ(A+BK)√

θ

]κ1
≤

[
ρ(A+BK)√

θ

]κ2
,

which implies that κ1 ≥ κ2.

(ii) If τ1 ≤ τ2, then we have that d(x(t1j), τ1Z) ≥ d(x(t1j), τ2Z). Under the

satisfaction of the tentative checking condition in (3.1), according to (3.14),

we have that [
ρ(A+BK)√

θ

]κ3
≥

[
ρ(A+BK)√

θ

]κ4
,

which implies that κ3 ≤ κ4. �

Proposition 3.2. Let tl be the last triggering instant.

• (i) If there exist µ1, µ2 ∈ (0, η] with µ1 ≤ µ2 satisfying the condition in

(3.1) at t̂1, t̂2, respectively, that is,

t̂1 = min{t ∈ Z>tl | ∥x(t)− τz⋆(x(t))∥ > µ1

√
θt−tl∥x(tl)− τz⋆(x(tl))∥},

(3.18)

t̂2 = min{t ∈ Z>tl | ∥x(t)− τz⋆(x(t))∥ > µ2

√
θt−tl∥x(tl)− τz⋆(x(tl))∥},

(3.19)

then t̂1 ≤ t̂2.
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• (ii) If there exist τ1, τ2 ∈ (0, 1] with τ1 ≤ τ2 satisfying the condition in

(3.1) at t̂3, t̂4, respectively, that is,

t̂3 = min{t ∈ Z>tl | ∥x(t)− τ1z
⋆(x(t))∥ > µ

√
θt−tl∥x(tl)− τ1z

⋆(x(tl))∥},
(3.20)

t̂4 = min{t ∈ Z>tl | ∥x(t)− τ2z
⋆(x(t))∥ > µ

√
θt−tl∥x(tl)− τ2z

⋆(x(tl))∥},
(3.21)

then t̂3 ≤ t̂4.

Proof. (i) Assume that t̂1 > t̂2. Then, the condition in (3.18) is not satisfied

at t̂2. Combining this with (3.18)-(3.19) yields that

µ2

√
θt̂2−tl∥x(tl)− τz⋆(x(tl))∥ < ∥x(t̂2)− τz⋆(x(t̂2))∥

≤ µ1

√
θt̂2−tl∥x(tl)− τz⋆(x(tl))∥. (3.22)

Obviously, µ1 > µ2, which contradicts the pre-specified condition µ1 ≤ µ2.

Hence, t̂1 ≤ t̂2.

(ii) Since τZ is a homogeneous convex subset of Z, we have that ∥x(t)−

τz⋆(x(t))∥ = ∥x(t) − z⋆(x(t))∥ + (1 − τ)∥z⋆(x(t))∥. Then, the conditions in

(3.20) and (3.21) can be written as

∥x(t̂3)− z⋆(x(t̂3))∥ − µ
√
θt̂3−tl∥x(tl)− z⋆(x(tl))∥

> (1− τ1)(µ
√
θt̂3−tl∥z⋆(x(tl))∥ − ∥z⋆(x(t̂3))∥), (3.23)

∥x(t̂4)− z⋆(x(t̂4))∥ − µ
√
θt̂4−tl∥x(tl)− z⋆(x(tl))∥

> (1− τ2)(µ
√
θt̂4−tl∥z⋆(x(tl))∥ − ∥z⋆(x(t̂4))∥). (3.24)

Suppose that t̂3 > t̂4. Then, equation (3.23) is not satisfied at t̂4. Combining

this with (3.23)-(3.24) yields that

(1− τ2)(µ
√
θt̂4−tl∥z⋆(x(tl))∥ − ∥z⋆(x(t̂4))∥)

< (1− τ1)(µ
√
θt̂4−tl∥z⋆(x(tl))∥ − ∥z⋆(x(t̂4))∥). (3.25)

From (3.7) in Lemma 3.2, it follows that τ1 > τ2, which contradicts the pre-

specified condition τ1 ≤ τ2. Hence, t̂3 ≤ t̂4. �
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Propositions 3.1 and 3.2 indicate that a bigger µ may lead to a smaller κ

and a larger t1j ; a bigger τ may lead to a larger κ and a larger t1j . Therefore,

according to (3.17), a larger ∆ may be obtained by picking a bigger τ . Theo-

retical analysis of the relationship between ∆ and µ is challenging, but some

numerical evaluations are provided in the simulation.

3.1.3 Recursive Feasibility and Stability Analysis

In this section, recursive feasibility of the proposed event-triggered robust

MPC and robust stability of the closed-loop system are analyzed.

3.1.3.1 Recursive Feasibility

At tl, the optimization problem in (2.6) is solved, and the optimal control

sequence ũ∗(tl) , {ũ∗(0|tl), ũ∗(1|tl), . . . , ũ∗(N − 1|tl)} and the corresponding

optimal state sequence x̃∗(tl) , {x̃∗(0|tl), x̃∗(1|tl), . . . , x̃∗(N |tl)} are obtained.

Then, at t2j ∈ Z>tl , if the condition in (3.2) is satisfied, then let tl+1 = t2j be

the latest triggering instant, and the optimization problem is solved; else, the

candidate predicted state and control input are constructed as

x̃(i|t) =

{
x̃∗(t− tl + i|tl), i ∈ Z[0,tl+N−t]

(A+BK)i−(tl+N−t)x̃∗(N |tl), i ∈ Z[tl+N+1−t,N ].
(3.26)

ũ(i|t) =

{
ũ∗(t− tl + i|tl), i ∈ Z[0,tl+N−1−t]

Kx̃(i|t), i ∈ Z[tl+N−t,N−1].
(3.27)

Theorem 3.1. Under the proposed two-step triggering scheme, for all x(t +

1) = Ax(t) + Bu(t) + ω(t), t ∈ Z[tl,tl+1), (x̃(tl+1), ũ(tl+1)) constructed by

(x̃∗(tl), ũ
∗(tl)) is feasible for the optimization problem at the triggering instant

tl+1, where ũ(tl+1) , {ũ(0|tl+1), . . . , ũ(N − 1|tl+1)} and x̃(tl+1) , {x̃(0|tl+1),

. . . , x̃(N |tl+1)}.

Proof. Similar to the proof of Theorem 2.1, and thus omitted. �

3.1.3.2 Robust Stability

Theorem 3.2. For the system in (2.1) with an initial state x(0) ∈ XN and

ω(t) ∈ W, t ∈ Z+, the set Z is robustly exponentially stable under the proposed
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two-step triggering scheme.

Proof. At tl, according to Lemmas 2.5-2.7, we have that

c1∥x̃∗(tl)∥2 ≤ J∗
N(x(tl)) ≤ c2∥x̃∗(tl)∥2, ∀ x(tl) ∈ Xf ⊕Z. (3.28)

Then, at t ∈ Z>tl , two cases should be considered under the proposed two-step

triggering scheme.

First, if the condition in (3.2) is satisfied, then the optimization problem

in (2.6) is solved and a new optimal cost J∗
N(x(t)) is obtained. According to

(2.22) in Lemma 2.6, the following condition is satisfied

J∗
N(x(t)) ≤ J∗

N(x(tl))−
t−tl−1∑
i=0

c1∥x̃∗(i|tl)∥2. (3.29)

Combining (3.28) and (3.29) yields that J∗
N(x(t)) ≤ θ(t−tl)J∗

N(x(tl)). Then,

there must exist a ς1 > 0 satisfying ∥x̃∗(t)∥ ≤ ς1
√
θt−tl ∥x̃∗(tl)∥. Since x ∈

x̃⊕Z , we have that d(x(t),Z) ≤ ς2
√
θt−tld(x(tl),Z) for ς2 > 0. Second, if the

condition in (3.1) or (3.2) is not satisfied, then we have that

∥x(t)− z⋆(x(t))∥ − µ
√
θt−tl∥x(tl)− z⋆(x(tl))∥

≤ (1− τ)(µ
√
θt−tl∥z⋆(x(tl))∥ − ∥z⋆(x(t))∥). (3.30)

According to (3.7) in Lemma 3.2, it follows that d(x(t),Z) ≤ µ
√
θt−tld(x(tl),Z).

Hence, combining these two cases, there must exist a δ ≥ ς2 always satisfy-

ing d(x(t),Z) ≤ δ
√
θtd(x(0),Z) for all x(0) ∈ XN and ω(t) ∈ W , t ∈ Z>0.

According to Definition 2.2, the set Z is robustly exponentially stable for the

system in (2.1) with the proposed two-step triggering scheme. �

3.1.4 Simulation Examples

To show the advantages of the proposed method, we compare the com-

monly used one-step triggering scheme with the condition in (3.1) and the

proposed two-step triggering scheme in the following examples.

Example 3.1. Consider the linear system provided in [60]:

x(t+ 1) =

[
1.1 1
0 1.3

]
x(t) +

[
1
1

]
u(t) + ω(t). (3.31)
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Table 3.1: Comparison results of parameters µ, τ

∆̃1 ∆1 ∆̄1 ∆̃2 ∆2 ∆̄2 κ̃ L

µ = 0.1 1.34 1 5 3.76 2 5 1.12 69
µ = 0.6 1.72 1 5 4.06 3 5 1.00 78
τ = 0.1 1.12 1 4 3.28 3 5 1.02 21
τ = 0.5 3.44 1 5 4.92 3 5 1.16 52

Table 3.2: Comparison results with [60]

∆̃ J

One-step triggering scheme 1.72 3.2808
Two-step triggering scheme 4.06 3.3293
Triggering scheme in [60] 1.15 3.2695

By using the LQR technique, we obtain

K =
[
−0.4991 −0.9546

]
, P =

[
2.6093 0.2100
0.2100 2.1837

]
.

Accordingly, θ = 0.6290. σmax = 6.6786 is obtained by solving (3.13); then

choose σ = 1. As with [60], we set the simulation steps Tsim = 1000 and the

initial state x(0) = [−30, 10]T, and consider the performance index in (2.31).

To show the effects of parameters µ and τ on the average waiting horizon κ̃,

the average inter-execution time ∆̃, and the number of unnecessary events L,

different values of µ and τ are considered, and the results are presented in Table

3.1, where ∆ and ∆̄ represent the minimum and maximum of inter-execution

times, respectively; the subscripts “1” and “2” are used to emphasize the

one-step triggering scheme and the two-step triggering scheme, respectively.

It is shown that the average inter-execution time becomes larger with the

increase of parameter µ or τ in the one-step triggering scheme, which coincides

with theoretical analysis in Proposition 3.2. By using the two-step triggering

scheme, it is seen from Table 3.1 that a smaller µ leads to a little longer

average waiting horizon κ̃, but the resulting average inter-execution time may

become smaller; a larger µ or τ avoids more unnecessary event triggering and

reduces resource consumption further.

In addition, to show the effect of σ on the estimation of κ, we compare
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Figure 3.2: The accuracy of the estimation of κ.
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Figure 3.3: State trajectories.

κ with κ∗ for different values of σ, and calculate the accuracy of estimation,

namely, the ratio of the number of κ = κ∗ to the total number of estimation.

From Figure 3.2, initially, the accuracy tends to increase with respect to σ,

and when σ exceeds some value, the accuracy becomes stable. Moreover,

from Figure 3.3 and Table 3.2, the two proposed event-triggered robust MPC

controllers obtain a larger average inter-execution time with slight control

performance loss when compared with [60].

Example 3.2. Consider the decentralized interconnected system in (2.33).

Let the sampling period be Ts = 0.2s. The constraint sets are X = [−40, 40]×

[−40, 40] × [−40, 40] and U = [−25, 25] × [−25, 25]. The weighting matrices

of the stage cost are chosen as Q = I3 and R = I2. σmax = 3.9171 is obtained

by solving (3.13); then choose σ = 0.5. Set µ = 0.2, τ = 0.5, and N = 8.
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Table 3.3: Comparison results with [67] in Case A

∆̃ J

One-step triggering scheme 3.32 71.1341
Two-step triggering scheme 7.11 73.2351
Triggering scheme in [67] 1.38 72.0724

Table 3.4: Comparison results with [67] in Case B

∆̃ J Jerror Tstep

One-step triggering scheme 5.16 8.9491 1.0821 10.96
Two-step triggering scheme 7.25 9.4559 1.1069 11.03
Triggering scheme in [67] 1.79 9.8695 1.1978 11.70

We consider 50 random realizations of the disturbance sequence on W =

[−1, 1] × [−1, 1] × [−1, 1] and compare the proposed methods with event-

triggered MPC in Section V-C of [67].

Case A: Set the simulation steps Tsim = 30 and the initial state x(0) =

[10, 10, 10]T. From Table 3.3, the one-step event-triggered robust MPC outper-

forms [67] in terms of the inter-execution time and control performance, and

the two-step triggering scheme brings the greatest reduction of computational

burden with slight control performance loss. It is shown that the designed

event-triggered controller in (3.16) preserves the control performance even if

the optimization problem is not solved.

Case B: Set the simulation steps Tsim = 60 and the initial state x(0) =

[0, 0, 0]T. The disturbance ω(t) is set to be [0, 0, 0]T for t ∈ [16, 30]. Consider

the error performance index in (2.32). Let Tstep represent the average step-

s interval that the states return to around the origin after the disturbance

disappears. From Table 3.4, all the indexes (∆̃, J , Jerror, Tstep) with the two

proposed event-triggered MPC controllers are better than that in [67], showing

a superior performance.
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3.2 An Extension to Multi-Agent Systems

In this section, we will extend the designed two-step triggering scheme in

Section 3.1 to multi-agent systems.

3.2.1 Problem Formulation

Consider a linear discrete-time multi-agent system with M agents. Each

agent Ai (i = 1, . . . ,M) is described as

xi(t+ 1) = Aixi(t) + Biui(t) + ωi(t), t ∈ Z+, (3.32)

where xi(t) ∈ Rnx is the system state; ui(t) ∈ Rnu is the control input; ωi(t) ∈

Rnx is the persistent unknown disturbance and ωi(t) ∈ Wi; the matrix pair

(Ai, Bi) is stabilizable. The topology of these M agents is constructed by an

undirected graph. Let Ni be the set that collects the neighbours of agent Ai.

Each agent Ai (i = 1, . . . ,M) is subject to the following constraints:

xi(t) ∈ Xi, ui(t) ∈ Ui, (3.33)

where Xi ⊆ Rnx and Ui ⊆ Rnu are compact and convex sets containing the

origin.

To handle the constraints in (3.33) for each agent, we use a distributed M-

PC approach. Define a terminal cost function: Vf,i(x̃i(k|t)) = x̃i(k|t)TPix̃i(k|t),

k, t ∈ Z+, where x̃i(k|t) is the predicted state at t + k and x̃i(t) = x̃i(0|t);

Pi ≻ 0 should be designed to satisfy

Pi − (Ai +BiKi)
TPi(Ai +BiKi) ≽ (Qi +KT

i RiKi) +
∑
j∈Ni

2(Qij +Qji),

(3.34)

where Ki ∈ Rnu×nx is to be designed; Qi ≻ 0 and Ri ≻ 0 are given weighting

matrices; Qij ≻ 0 and Qji ≻ 0 are cooperation matrices between agent Ai and

agent Aj. Based on the obtained feedback gain Ki by (3.34), the terminal set
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Xf,i is constructed by the following conditions:

Xf,i ⊆ Xi ⊖Zi, (3.35a)

(Ai +BiKi)Xf,i ⊆ Xf,i, (3.35b)

KiXf,i ⊆ Ui ⊖KiZi. (3.35c)

For agent Ai, a distributed tube-based MPC optimization problem is for-

mulated as:

min
x̃i(t),ũi(t)

Ji(t)

s.t. xi(t) ∈ x̃i(t)⊕Zi, (3.36a)

x̃i(k + 1|t) = Aix̃i(k|t) + Biũi(k|t), k ∈ Z[0,N−1], (3.36b)

x̃i(k|t) ∈ Xi ⊖Zi, k ∈ Z[0,N−1], (3.36c)

ũi(k|t) ∈ Ui ⊖KiZi, k ∈ Z[0,N−1], (3.36d)

x̃i(N |t) ∈ Xf,i, (3.36e)

∥x̃i(k|t)− x̂i(k|t)∥ ≤ ζi(t), k ∈ Z[0,N−1], (3.36f)

where ũi(t) , {ũi(0|t), . . . , ũi(N − 1|t)} and x̃i(t) , {x̃i(0|t), . . . , x̃i(N |t)};

ũi(k|t) is the predicted control input at t+k and ũi(t) = ũi(0|t); N ∈ Z≥1 is the

prediction horizon. In this optimization problem, equation (3.36a) is the error

constraint between xi(t) and x̃i(t) based on Zi; equations (3.36c)-(3.36e) are

the tightened state, control input, and terminal constraints for the prediction

model in (3.36b), respectively. Equation (3.36f) is the compatibility constraint

to ensure that the actual states of agents do not deviate too much from their

latest transmitted states to neighbors, where x̂i(k|t) is the transmitted state

to neighbors, i.e., x̂i(k|t) = x̃i(k|t − 1); ζi(t) is a given upper bound of the

difference between x̃i(k|t) and x̂i(k|t). The cost function is defined as

Ji(t) =
N−1∑
k=0

[
li(x̃i(k|t), ũi(k|t)) +

∑
j∈Ni

(x̃i(k|t)− x̂j(k|t))TQij

× (x̃i(k|t)− x̂j(k|t))
]
+ Vf,i(x̃i(N |t)),

where li(x̃i(k|t), ũi(k|t)) = x̃i(k|t)TQix̃i(k|t) + ũi(k|t)TRiũi(k|t) is the stage

cost;
∑

j∈Ni
(x̃i(k|t)− x̂j(k|t))TQij(x̃i(k|t)− x̂j(k|t)) is a cooperation term.
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For agent Ai, denote the triggering instant sequence as {tli : l ∈ Z+} ⊆ Z+.

Given a triggering instant tli, we introduce a first checking instant sequence

{tdi : d ∈ Z+} ⊆ Z+ and a triggering function gi : Z+ × Rnx × Rnx → R to be

designed. Accordingly, the first checking instant is updated by

tdi = min
{
min{t ∈ Z>tli | gi(t, xi(t), xi(t

l
i)) > 0}, tli +N

}
, (3.37)

where t0i = 0 as d = 0. By continuously checking the condition in (3.37),

the first checking instant tdi will be determined only if the checked condition

is satisfied. Then, instead of triggering immediately, we generate a waiting

horizon κi(t
d
i ) ∈ Z[1,N−1], that is, the most likely instant when the condition

in (3.37) is violated again. Define a second checking instant sequence as {t̂di :

d ∈ Z+} ⊆ Z+ and let

t̂di = tdi + κi(t
d
i ), (3.38)

where t̂0i = 0 as d = 0. Then, the triggering instant is determined by

tl+1
i =

{
t̂di , if t̂di = tli +N,

min{t̂di | gi(t̂di , xi(t̂di ), xi(tdi )) > 0}, otherwise,
(3.39)

where t0i = 0 as l = 0. Clearly, it follows that {tli : l ∈ Z+} ⊆ {t̂di : d ∈ Z+}.

Under the two-step triggering scheme in (3.37)-(3.39), an event-triggered

controller is designed as

ui(t) = φi(t− tli, xi(t)), t ∈ Z[tli,t
l+1
i ),

where the function φi : Z+ × Rnx → Rnu is to be determined.

Similar to Section 3.1, the objective of this section is to design a two-

step triggering scheme with a triggering condition gi and a waiting horizon κi

for each agent Ai (i = 1, . . . ,M) such that the distributed tube-based MPC

optimization problem in (3.36) subject to the constraints in (3.33) is solved

at the triggering instant tli only.

3.2.2 Distributed MPC with Two-Step Triggering

In this subsection, the weighting matrix of the terminal cost function is

obtained and a two-step triggering scheme for distributed MPC is designed.
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3.2.2.1 Terminal Cost Function Vf,i

To guarantee recursive feasibility and achieve closed-loop stability and con-

sensus of the overall multi-agent system in robust distributed MPC, the in-

fluences from neighbouring agents are incorporated into the design of the ter-

minal cost function Vf,i by cooperation matrices Qij and Qji in the following

lemma.

Lemma 3.4. For each agent Ai (i = 1, . . . ,M) with given weighting matrices

Qi ≻ 0 and Ri ≻ 0, and cooperation matrices Qij ≻ 0 and Qji ≻ 0, if there

exist matrices P̄i ≻ 0 and Yi such that
P̄i ∗ ∗ ∗ ∗

AiP̄i + BiYi P̄i ∗ ∗ ∗
P̄i 0 Q−1

i ∗ ∗
Yi 0 0 R−1

i ∗
P̄i 0 0 0 (

∑
j∈Ni

2(Qij +Qji))
−1

 ≽ 0, (3.40)

then (3.34) can be guaranteed, and the weighting matrix and corresponding

controller gain are obtained by Pi = P̄−1
i and Ki = YiP̄

−1
i .

Proof. For (3.40), let Yi , KiP̄i. Then, pre- and post-multiplying (3.40) by

P̄−1
i and using the Schur complement equivalence yield that

P̄−1
i − (Ai +BiKi)

TP̄−1
i (Ai + BiKi) ≽ (Qi +KT

i RiKi) +
∑
j∈Ni

2(Qij +Qji).

Let P̄−1
i = Pi, then (3.34) is guaranteed. �

3.2.2.2 Two-Step Triggering Scheme

For agent Ai, at t ∈ Z>tli , the triggering function gi is constructed as

gi(t, xi(t), xi(t
l
i)) = d(xi(t), τiZi)− µi

√
θ
t−tli
i d(xi(t

l
i), τiZi),

where τi ∈ (0, 1], µi ∈ (0, ηi], θi = 1− pi/qi, and

ηi = min

{
1,

zi,min

zi,max

√
θi

}
,

pi = λmin(Qi +KT
i RiKi +

∑
j∈Ni

2(Qij +Qji)),

qi = λmax(Pi),
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Lemma 3.5. For agent Ai with a stabilizing feedback gain Ki ∈ Rnu×nx, there

always exist a lower bound σmin
i > 0 and an upper bound σmax

i > 0 such that

σmin
i [ρ(Ai +BiKi)]

ki∥x̃i(t)∥ ≤ d(xi(t+ ki),Zi)

≤ σmax
i [ρ(Ai + BiKi)]

ki∥x̃i(t)∥

for ki ∈ Z(0,k̄i), where k̄i ∈ Z>0; σ
min
i is sufficiently small; σmax

i is decided by

the following generalized eigenvalue problem subject to LMIs:

min
(σmax

i )2,Hi

(σmax
i )2

s.t. I ≼ Hi ≼ (σmax
i )2I (3.42a)

ϵi
[ρ(Ai +BiKi)]2

(Ai +BiKi)
THi(Ai +BiKi)− Hi ≺ 0 (3.42b)

where Hi ≻ 0; ϵi > 0 is a prescribed scalar which should be chosen to infinitely

close to 1.

Proof. Similar to the proof of Lemma 3.3, and thus omitted. �

According to Lemma 3.5, for a suitable σi ∈ (σmin
i , σmax

i ), we have that

d(xi(t
d
i + ki),Zi) = σi[ρ(Ai +BiKi)]

ki∥x̃i(tdi )∥. Hence, we can estimate κi(t
d
i )

in (3.11) by

κesti (tdi ) = min

{
ki ∈ Z>0 |

(ρ(Ai +BiKi)√
θi

)ki ≤ µid(xi(t
d
i ), τiZi)

σi∥x̃i(tdi )∥

}
.

According to (3.37) and (3.39), the waiting horizon κi(t
d
i ) is decided by

κi(t
d
i ) = min

{
κesti (tdi ), t

l
i +N − tdi

}
. (3.43)

3.2.3 Stability and Consensus Analysis

For agent Ai, at t
l
i, let ũ⋆i (t

l
i) , {ũ⋆i (0|tli), ũ⋆i (1|tli), . . ., ũ⋆i (N − 1|tli)} and

x̃⋆i (t
l
i) , {x̃⋆i (0|tli), x̃⋆i (1|tli), . . . , x̃⋆i (N |tli)} be the corresponding optimal control

and state sequences, respectively. At t ∈ Z>tli , if there is no necessary event

triggered, then the feasible control inputs could be applied to the system
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and the feasible predicted states could be sent to its neighbors, which are

constructed based on the optimal solution (x̃⋆i (t
l
i), ũ

⋆
i (t

l
i)) as follows:

x̃i(k|t) =

{
x̃⋆i (t− tli + k|tli), k ∈ Z[0,tli+N−t],

(Ai +BiKi)
k−(tli+N−t)x̃⋆i (N |tli), k ∈ Z[tli+N+1−t,N ].

(3.44)

ũi(k|t) =

{
ũ⋆i (t− tli + k|tli), k ∈ Z[0,tli+N−1−t],

Kix̃
⋆
i (k|t), k ∈ Z[tli+N−t,N−1].

(3.45)

Theorem 3.3. For agent Ai, under the two-step triggering scheme in (3.37)-

(3.39), (x̃i(t
l+1
i ), ũi(t

l+1
i )) constructed by (x̃⋆i (t

l
i), ũ

⋆
i (t

l
i)) is feasible for the op-

timization problem in (3.36) at the triggering instant tl+1
i , where ũi(t

l+1
i ) ,

{ũi(0|tl+1
i ), . . ., ũi(N − 1|tl+1

i )} and x̃i(t
l+1
i ) , {x̃i(0|tl+1

i ), . . . , x̃i(N |tl+1
i )}.

Proof. Similar to the proof of Theorem 2.1, and thus omitted. �

Definition 3.1. A set Z is robustly exponentially stable for the overall multi-

agent system in (3.32), if for each agent Ai (i = 1, . . . ,M) with a robust

positively invariant set Zi, a feasible region X̃i, and an initial state xi(0) ∈ X̃i,

there exist θ ∈ (0, 1) and δ > 0 such that d(xi(t),Z) ≤ δ
√
θtd(xi(0),Z) for all

t ∈ Z+, where Z , Co
(∪q

i=1(Zi)
)
represents a convex hull for the union of

some convex sets Zi, i = 1, . . . , q.

To show consensus among all agents, in the presence of disturbances, we

prove that all states finally converge to Z based on Definition 3.1. Before

proceeding, the following useful lemma is derived from (3.34) by induction.

Lemma 3.6. For each agent Ai (i = 1, . . . ,M), assume that J⋆i (xi(t
l
i)) is

the optimal cost of the optimization problem in (3.36) for xi(t
l
i) ∈ X̃i at any

triggering instant tli ∈ Z+. Then, the optimal cost J⋆i (xi(t
l+1
i )) satisfies

M∑
i=1

J⋆i (xi(t
l+1
i ))−

M∑
i=1

J⋆i (xi(t
l
i))

≤
M∑
i=1

( tl+1
i −tli−1∑
k=0

−li(x̃⋆i (k|tli), ũ⋆i (k|tli))

−
∑
j∈Ni

(x̃i(k|tli)− x̂j(k|tli))TQij(x̃i(k|tli)− x̂j(k|tli))
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+ (N − 1)
∑
j∈Ni

λmax(Qij)
(
2(ζi(k|tli) + ξij(k|tli))ζj(k|tli) + ζ2j (k|tli)

))
.

where ξij(k|tli) = ∥x̂i(k|tli)− x̂j(k|tli)∥.

Proof. The proof can be found in [27]. �

Theorem 3.4. For the overall multi-agent system in (3.32), under the pro-

posed two-step triggering scheme in (3.37)-(3.39), the set Z is robustly expo-

nentially stable. Moreover, the consensus is achieved among all agents.

Proof. For each agent Ai (i = 1, . . . ,M), let tli be its latest triggering instant.

At t ∈ Z>tli , two cases should be considered under the proposed two-step

triggering scheme in (3.37)-(3.39). On one hand, if there is a necessary event

triggered, then the optimization problem in (3.36) is solved. According to

Lemma 3.6, the optimal cost J⋆i (xi(t)) should satisfy

M∑
i=1

J⋆i (xi(t)) ≤
M∑
i=1

viJ
⋆
i (xi(t

l
i)),

where vi > 0. Then, it follows that
∑M

i=1 ∥x̃⋆i (t)∥ ≤
∑M

i=1 vi

√
θ
t−tli
i ∥x̃⋆i (tli)∥.

Since xi ∈ x̃i ⊕Zi, there must exist a γi > 0 such that

M∑
i=1

d(xi(t),Z) ≤
M∑
i=1

γi

√
θ
t−tli
i d(xi(t

l
i),Z),

where Z , Co
(∪q

i=1(Zi)
)
. Accordingly, we have that

d(xi(t),Z) ≤ γ
√
θt−t

l
id(xi(t

l
i),Z), (3.46)

where γ = maxi∈M{γi} and θ = maxi∈M{θi}.

On the other hand, if there is no necessary event triggered, then we have

that

∥xi(t)− z(xi(t))∥ − µi

√
θ
t−tli
i ∥xi(tli)− z(xi(t

l
i))∥

≤ (1− τi)(µi

√
θ
t−tli
i ∥z(xi(tli))∥ − ∥z(xi(t))∥).
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Since µi

√
θ
t−tli
i ∥z(xi(tli))∥ − ∥z(xi(t))∥ ≤ 0, we have that

d(xi(t),Z) ≤ µ
√
θt−t

l
id(xi(t

l
i),Z), (3.47)

where µ = maxi∈M{µi}. Combining (3.46) and (3.47) yields that d(xi(t),Z) ≤

δ
√
θtd(xi(0),Z) for all xi(0) ∈ X̃i, where δ > 0. According to Definition 3.1,

the set Z is robustly exponentially stable for the overall multi-agent system

in (3.32) with the proposed two-step triggering scheme. Furthermore, it is

concluded that all states finally converge to the set Z, that is, the consensus

being achieved among all agents. �

3.2.4 Simulation Example

Example 3.3. Consider a linear discrete-time multi-agent system with 3

agents (M = 3). The system matrices are as follows:

A1 =

[
1.6 1.1
−0.7 1.2

]
, B1 =

[
1
1

]
,

A2 =

[
1.5 1.1
0 1.2

]
, B2 =

[
0.8
0.9

]
,

A3 =

[
1.4 1.1
−0.3 1.1

]
, B3 =

[
1.2
0.8

]
.

The constraint sets are Xi = [−30, 30] × [−30, 30], Ui = [−20, 20], and Wi =

[−0.5, 0.5] × [−0.5, 0.5]. The neighbouring sets are N1 = {2, 3}, N2 = {1},

and N3 = {1}. Let Qi = I2, Ri = 1, Q12 = Q13 = I2, Q21 = 0.5I2, and

Q31 = 0.8I2. By solving (3.42), we can obtain σmax
1 = 32.7603, σmax

2 = 7.2682,

and σmax
3 = 6.1472, respectively. Then, choose triggering parameters σi = 1,

τi = 0.1, µi = 0.05, the prediction horizon N = 6, and the initial states x1(0) =

[−6, 15]T, x2(0) = [−3, 22]T, and x3(0) = [−5, 25]T. Consider the following

indexes: the overall cost J̃ = 1
M

∑M
i=1 Ji, the overall average waiting horizon

κ̃ = 1
M

∑M
i=1 κ̃i, and the overall average inter-execution time ∆̃ = 1

M

∑M
i=1 ∆̃i,

where Ji = 1/Tsim

∑Tsim−1
t=0 ∥xi(t)∥2Qi

+ ∥ui(t)∥2Ri
+
∑

j∈Ni
∥xi(t)− xj(t)∥2Qij

; κ̃i

is the average waiting horizon and ∆̃i is the average inter-execution time for

agent Ai.
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Table 3.5: Comparison results with one-step triggering

κ̃ ∆̃ J̃

One-step triggering scheme - 1.27 28.0541
Two-step triggering scheme 1.15 2.97 28.8777
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Figure 3.4: The distributions of triggering instants (The red crosses represent
unnecessary events).

Figure 3.5: State trajectories.

To show the effectiveness of the proposed two-step triggering scheme in

(3.37)-(3.39), we compare it with the commonly used one-step triggering

scheme in (3.37). From Table 3.5, both the average waiting horizon and inter-

execution time of the two-step triggering scheme are longer than that of the

one-step triggering scheme. All the distributions of triggering instants are de-

picted in Figure 3.4. It is shown that the proposed two-step event verification

can avoid unnecessary events triggering and reduce resource consumption fur-

ther. Seen from Figure 3.5, the states of each agent finally converge to the
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set Z, which shows that the proposed event-triggered robust distributed MPC

can achieve consensus for this multi-agent system.

3.3 Summary

In this chapter, a two-step triggering scheme to ensure necessary events for

tube-based MPC has been investigated. Based on the distances between actual

states and a robust positively invariant set, a novel event trigger including

two-step checks has been designed, resulting in a larger average inter-execution

time. The effects of designed parameters on the inter-execution time have been

analyzed. Both recursive feasibility and robust stability have been proven.

An extension of the designed two-step triggering scheme has been applied to

multi-agent systems. Robust stability and consensus among all agents have

been achieved. Simulation results have shown the effectiveness of the designed

event-triggered robust MPC controllers.
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Chapter 4

Event-Triggered Robust MPC
with Stochastic Event
Verification∗

As a matter of fact, like when to trigger the event, when to check the

triggering condition should also be dependent on the system dynamics and

carefully designed. This chapter investigates a novel event-triggered robust

MPC approach to link event verification with action triggering and achieve

adaptive and non-persistent state monitoring and event verification. Based on

the ergodicity of a purposely designed Markov chain, a stochastic triggering

scheme involving a prescribed triggering function, an updating law for the

transition probabilities of the Markov chain, and a checking function is pro-

posed to determine when to solve the underlying optimization problem. Both

tube-based MPC and LMI-based MPC are considered, and they show com-

plementary merits with the proposed stochastic triggering scheme. Recursive

feasibility of both approaches and robust stability of the closed-loop system

are guaranteed theoretically.

This chapter is organized as follows. Section 4.1 formulates a stochastic

event verification problem. Section 4.2 studies the stochastic event-triggered

scheme to link event verification with action triggering. Section 4.3 and

∗A version of this chapter has been published as: Li Deng, Zhan Shu, and Tongwen Chen,
Event-triggered robust MPC with stochastic event verification. Automatica, vol. 146, Dec.
2022.
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Section 4.4 present stochastic event-triggered tube-based MPC design and

stochastic event-triggered LMI-based MPC design, respectively. Section 4.5

verifies the two proposed approaches by numerical examples. Section 4.6 con-

cludes this chapter.

4.1 Problem Formulation

Consider the linear discrete-time system with bounded disturbances in

(2.1). The system is subject to the following state and control constraints:

x(t) ∈ X , u(t) ∈ U , t ∈ Z+, (4.1)

where X , {x ∈ Rnx | |x[ι]| ≤ x̄[ι], ι = 1, 2, · · · , nx} and x̄ , [x̄[1], x̄[2], . . .,

x̄[nx]]T with x̄[ι] > 0; U , {u ∈ Rnu | |u[ℓ]| ≤ ū[ℓ], ℓ = 1, 2, · · · , nu} and

ū , [ū[1], ū[2], . . . , ū[nu]]T with ū[ℓ] > 0.

In this chapter, robust MPC is used to handle the state and control con-

straints in (4.1). Let N ∈ Z≥1 be the prediction horizon of MPC. An event-

triggered controller is designed to solve a robust MPC optimization problem

at the triggering instants only. Unlike persistent event verification and self-

triggered event verification, this work is devoted to constructing a flexible

event verification and linking it with action triggering.

Denote the checking instant sequence as {tl : l ∈ Z+} ⊆ Z+. Given a

checking instant tl, we introduce a checking function µ : Z+ × Z[0,1] → Z[1,N ],

to determine the next checking instant, that is,

tl+1 = tl + µ(tl, ξtl), (4.2)

where t0 = 0 as l = 0, and ξtl is a triggering indicator to be designed showing

if the system is triggered at tl.

Denote the triggering instant sequence {tj : j ∈ Z+} ⊆ Z+. Accordingly,

the triggering instant is generated by

tj+1 =

{
min{tl | g(tl, x(tl), x(tj)) > 0}, if tl < tj +N,

tl, if tl = tj +N,
(4.3)
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where g : Z+ ×Rnx ×Rnx → R is a triggering function which will be designed

later based on the latest checking and triggering information, and t0 = 0

as j = 0. Here, the MPC prediction horizon N is regarded as a time-out

triggering interval, i.e., if the inter-execution time exceeds it, then the system is

triggered automatically at this instant. Clearly, {tj : j ∈ Z+} ⊆ {tl : l ∈ Z+}.

Then, an event-triggered controller κ : Z+ × Rnx → Rnu to be designed is

of the form

u(t) = κ(tj, x(t)), t ∈ Z[tj ,tj+1). (4.4)

The main objective of this chapter is to design the checking function µ

together with corresponding triggering function g and triggering indicator ξtl

such that the triggering condition is checked at some specific instants and

control action is updated accordingly through on-line optimization if the con-

dition is satisfied at these instants. Based on the designed event verification

and triggering scheme, two robust MPC approaches, tube-based MPC and

LMI-based MPC, are to be used to synthesize the event-triggered controller

in (4.4).

4.2 Stochastic Event-Triggered Scheme Design

As we know, traditional event-triggered MPC, on the one hand, requires

persistent event monitoring and verification, and ignores the connection be-

tween event verification and action triggering, that is,

tl+1 = tl + 1. (4.5)

Self-triggered MPC, on the other hand, operates in an open-loop way so that

triggering instants are generated without considering the uncertain distur-

bances between triggering instants, that is,

tj+1 = tj + Γ(tj),

where Γ(tj) is a priori maximum of the inter-execution time related to the

current triggering information. In this chapter, we plan to develop a novel
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event verification and triggering scheme in (4.2) and (4.3) that links event

verification and triggering. The key idea of our design is that the next event

verification instant tl+1 should be dependent on the event triggering informa-

tion at the current instant, ξtl , as shown in (4.2). To this end, we will construct

a Markov chain with adaptive transition probabilities to design the checking

function µ such that tl+1 and ξtl are linked.

4.2.1 Triggering Function g

At the checking instant tl ∈ Z[tj ,tj+1), the triggering function g is construct-

ed in term of the current state x(tl) and the latest triggering state x(tj) as

follows:

g(tl, x(tl), x(tj)) = (x(tl)− x(tj))
TΩ0(x(tl)− x(tj))− θx(tj)

TΩ1x(tj), (4.6)

where tl ∈ Z[tj ,tj+1), the triggering parameter 0 < θ < 1 is a prescribed

scalar which can be used to tune the trade-off between inter-execution time

and control performance, and the matrices Ω0 ≻ 0 and Ω1 ≻ 0 reacting to

uncertain disturbances are to be designed in the next section. To facilitate

the remaining derivations, define the following two functions to characterize

the variation of g:

f0(tl, x(tl), x(tj)) ,
(x(tl)− x(tj))

TΩ0(x(tl)− x(tj))

θx(tj)TΩ1x(tj)
, (4.7)

f1(tl, x(tl), x(tj)) ,
1

f0(tl, x(tl), x(tj))
. (4.8)

f0, f1 are used to design adaptive transition probabilities of the Markov chain

later. Based on the triggering function g, the triggering indicator ξtl defined

on the checking instants tl is designed as follows:

ξtl ,
{
1, g(tl, x(tl), x(tj)) > 0,

0, otherwise.
(4.9)

Then, combining (4.6)-(4.9) yields that

ξtl =

{
1, if 0 < f1(tl, x(tl), x(tj)) < 1,

0, if 0 < f0(tl, x(tl), x(tj)) ≤ 1.
(4.10)
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The triggering indicator ξtl is determined by the variation of the triggering

function, namely, f0(tl, x(tl), x(tj)) and f1(tl, x(tl), x(tj)), which will be used

to link event verification with action triggering later.

Remark 4.1. In the presence of disturbances, it is regarded that the actual

states cannot come to the origin directly. Hence, the denominator of (4.7),

i.e., x(tj)
TΩ1x(tj), is not equal to zero for Ω1 > 0.

4.2.2 Triggering Indicator ξtl and Generated Random
Process ξt

To construct the checking function µ such that the next checking instant

tl+1 and the triggering indicator ξtl are linked, a random variable ξt is generated

from ξtl in (4.9) and the union of a collection of homogenous Markov chains

{ξt}t∈(tl,tl+1) with a state space B = {0, 1} to be designed. Define the one-step

transition matrix dependent on tl as

Ttl ,
[
1− αtl αtl
βtl 1− βtl

]
,

where 0 < αtl , P{ξt+1 = 1 | ξt = 0} < 1 and 0 < βtl , P{ξt+1 = 0 | ξt =

1} < 1 for t ∈ (tl, tl+1).

If the system is triggered at tl, the triggering condition in (4.9) is less likely

to be satisfied at tl+1, as the updated control action may regulate the system

well. Consequently, the waiting time for the subsequent event verification and

triggering can be longer. Otherwise, the triggering condition in (4.9) is more

likely to be satisfied due to possible disturbances, and the waiting time for

the subsequent event verification and triggering should be shorter. Inspired

by this idea, βtl should be set to a large number if ξtl = 1, and αtl should be

set to a large number if ξtl = 0. To this end, an updating law of the transition

probabilities is proposed below:{
αtl = αtl−1

, βtl = β̃tl , if ξtl = 1,

αtl = α̃tl , βtl = βtl−1
, if ξtl = 0,

(4.11)
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where

β̃tl ,
2(ψtl − β0)(f1(tl, x(tl), x(tj)))

n

1 + (f1(tl, x(tl), x(tj)))n
+ β0, (4.12)

α̃tl ,
2(α0 − 1

N
)(f0(tl, x(tl), x(tj)))

n

1 + (f0(tl, x(tl), x(tj)))n
+

1

N
, (4.13)

ψtl , min(αtl(N − 1), 1), (4.14)

and n > 0 is a known scalar; α0 and β0 are given initial values and should

satisfy

α0 ∈ [
1

N
, 1), (4.15)

β0 ∈ (0, 1− 1

N
]. (4.16)

Lemma 4.1. For given initial values α0 and β0, the updating law for Markov

transition probabilities in (4.11) can guarantee that

1

N
≤ αtl ≤ α0, tl ∈ Z+, (4.17)

β0 ≤ βtl ≤ ψtl , tl ∈ Z+. (4.18)

Proof. To facilitate the proof, f0 and f1 are considered as independent vari-

ables of (4.13) and (4.12), respectively. Obviously, αtl and βtl are continuous

with respect to f0 and f1, respectively. Then, the first-order derivative of αtl

with respect to f0 is derived as

α′
tl
=

2n(α0 − 1
N
)(f0)

n−1

(1 + (f0)n)2
, (4.19)

and the first-order derivative of βtl with respect to f1 is derived as

β′
tl
=

2n(ψtl − β0)(f1)
n−1

(1 + (f1)n)2
. (4.20)

Since {ξt}t∈(tl,tl+1) is a homogenous Markov chain, we just discuss the following

two cases according to (4.10). First, if ξtl = 0, i.e., 0 < f0 ≤ 1, then combining

(4.15) and (4.19) yields that α′
tl
≥ 0. Specifically, if α0 ∈ ( 1

N
, 1), then α′

tl
>

0 and αtl is monotonically increasing with respect to f0, and thus we have

1
N
< αtl ≤ α0; else, α0 = 1

N
, then α′

tl
= 0 and αtl = α0 = 1

N
for any f0.
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Consequently, we have (4.17). Then, it follows that 1 − 1
N

≤ αtl(N − 1) ≤

α0(N − 1), which implies that

ψtl ≥ 1− 1

N
, tl ∈ Z+. (4.21)

Second, if ξtl = 1, i.e., 0 < f1 < 1, then combining (4.16) and (4.21) with

(4.20) yields that β′
tl
≥ 0. Specifically, if β0 ∈ (0, 1− 1

N
), then β′

tl
> 0 and βtl

is monotonically increasing with respect to f1, and thus we have β0 < βtl < ψtl ;

else, β0 = 1 − 1
N

and α0 = 1
N
, then ψtl = α0(N − 1), and thus β′

tl
= 0 and

βtl = ψtl = β0 for any f1. Consequently, we have (4.18). �

Based on Lemma 4.1, combining (4.15) and (4.17) yields that

1

N
≤ αtl < 1, tl ∈ Z+.

Note that for tl ∈ Z>0, βtl = ψtl holds only when ψtl = β0. Then, combining

(4.14), (4.16), and (4.18) yields that

β0 ≤ βtl < 1, tl ∈ Z>0. (4.22)

Hence, the updating law in (4.11) can guarantee the probability requirement

αtl , βtl ∈ (0, 1).

Remark 4.2. The updating law in (4.11) is derived from the Hill function

which has the form of fn

1+fn
and is often used to reflect the ligand concentration

in biochemistry, and n is called the Hill coefficient. To illustrate the benefits of

employing the Hill function, f0 and f1 are considered as independent variables

ranging from 0 to 1. The evolutions of αtl and βtl for different Hill coefficients

are depicted in Figure 4.1. It is shown that, firstly, the form of the Hill function

can easily guarantee the requirement αtl , βtl ∈ (0, 1); secondly, it can limit

αtl and βtl in the lower and upper bounds, which is verified in Lemma 4.1;

furthermore, we can use the Hill coefficient n to adjust the sensitivity of f0

(f1) on αtl (βtl).

According to the designed updating law for Markov transition probabilities

in (4.11) and Lemma 4.1, the ergodicity property of the homogeneous Markov
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Figure 4.1: The evolutions of α and β for different Hill coefficients.

chain {ξt}t∈(tl,tl+1), which is essential for the design of µ, is established in the

following lemma.

Lemma 4.2. The homogeneous Markov chain {ξt}t∈(tl,tl+1) with the state space

B is ergodic.

Proof. Since the transition probabilities of the Markov chain {ξt}t∈(tl,tl+1)

satisfy αtl , βtl ∈ (0, 1), it follows from Lemma 4.1 that every state can be

reached from every other state, and thus this chain is evidently irreducible

and aperiodic. Accordingly, this irreducible chain with the state space B is

positive recurrent. Since {ξt}t∈(tl,tl+1) is irreducible, aperiodic, and positive

recurrent, it is ergodic. �

4.2.3 Checking Function µ

For the Markov chain {ξt}t∈(tl,tl+1), denote the first-return step to the state

“1” as µ11 and the first-arrival step from the state “0” to the state “1” as µ01.

At the checking instant tl, if the triggering condition is satisfied, i.e., ξtl = 1,

then the most likely instant when it is to be satisfied again can be estimated by

the first-return step µ11; else, the first-arrival step µ01 can be used to estimate

when ξtl would visit the state “1” from the state “0”. Therefore, the checking

function µ(tl, ξtl) of determining the next checking instant can be constructed
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Figure 4.2: Architecture of the proposed stochastic event-triggered scheme.

accordingly as

µ(tl, ξtl) =

{
min

{
⌋µ11(tl)⌋, tj +N − tl

}
, if ξtl = 1,

min
{
⌊µ01(tl)⌋, tj +N − tl

}
, if ξtl = 0,

(4.23)

where ⌊µ11(tl)⌋ is the rounding half up of µ11(tl), that is, the nearest integer

of µ11(tl).

The control structure with the proposed stochastic event-triggered scheme

is illustrated in Figure 4.2. It is seen that the designed event trigger contains

two parts. The ‘State monitoring’ part is used to decide whether the current

sampling instant t is the checking instant tl. If it is, i.e., t = tl, then the

triggering condition will be checked; else, a feasible control input constructed

by the optimal solution of the optimization problem at triggering instant tj

and stored in the ‘Controller’ will be applied. At the ‘Event verification’

part, if the triggering condition is satisfied, i.e., ξtl = 1, the value of βtl will

be updated by the event trigger and then the optimization problem will be

solved by the ‘MPC optimizer’; else, the value of αtl will be updated and the

feasible control input will be applied. Accordingly, a new Markov chain will

be generated based on the updated Markov transition probabilities to obtain
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µ11(tl) or µ01(tl), and then the next checking instant will be determined.

By virtue of the ergodicity property of a homogeneous Markov chain in

[85], the following lemma can be used to determine the mean first-return step

and the mean first-arrival step.

Lemma 4.3. [85, Section 3.4] For the homogenous ergodic Markov chain

{ξt}t∈(tl,tl+1) with the state space B, the mean first-return step to the state “1”

is

E{µ11(tl)} = 1 +
βtl
αtl

(4.24)

and the mean first-arrival step from the state “0” to the state “1” is

E{µ01(tl)} =
1

αtl
. (4.25)

Combining (4.23) with (4.24)-(4.25), the designed checking function µ(tl, ξtl)

is dependent on Markov transition probabilities αtl and βtl which are associ-

ated with the variation of the triggering function g. It is seen that, if ξtl = 1,

βtl could be larger and thus E{µ11(tl)} could become larger, i.e., the average

waiting time for the subsequent event verification and triggering may become

longer; else, αtl could be larger and thus E{µ01(tl)} could become smaller, i.e.,

the average waiting time may become shorter. Hence, the proposed stochastic

event-triggered scheme in (4.2) and (4.3) follows the fact that the waiting time

is dependent on the system state and the feasibility of the triggering condi-

tion. It links event verification with action triggering and achieves adaptive

and non-persistent state monitoring and event verification.

4.2.4 Inter-Execution Time

Define ∆j , tj+1 − tj, j ∈ Z+ as the inter-execution time between the

triggering instant tj and tj+1. Then, we have the following theorem to quantify

the bounds of the mean inter-execution time E{∆j}.
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Figure 4.3: Illustration of inter-execution time.

Theorem 4.1. For given initial values α0, β0, and the updating law for

Markov transition probabilities in (4.11), we have that

1 +
β0
α0

≤ E{µ11(tl)} ≤ N, tl ∈ Z+, (4.26)

1

α0

≤ E{µ01(tl)} ≤ N, tl ∈ Z+. (4.27)

Furthermore, the mean inter-execution time E{∆j} satisfies

1 +
β0
α0

≤ E{∆j} ≤ N, j ∈ Z+. (4.28)

Proof. From (4.24), it is observed that a larger αtl and a smaller βtl lead

to a smaller E{µ11(tl)}, and a smaller αtl and a larger βtl lead to a larger

E{µ11(tl)}. Thus, based on (4.17) and (4.18), we have that

1 +
β0
α0

≤ E{µ11(tl)} ≤ 1 +
ψtl
αtl
, tl ∈ Z+.

According to (4.14), ψtl ≤ αtl(N−1) holds, implying that 1+
ψtl

αtl
≤ N . Hence,

we have (4.26). From (4.25), it is observed that E{µ01(tl)} is non-increasing

with respect to αtl . Thus, based on (4.17), we have (4.27).

At the checking instant tl ∈ Z(tj ,tj+1], two cases should be considered as in

Figure 4.3, where r ∈ Z≥1. For case 1, ξtl = 1, i.e., tj+1 = tl, then

∆j = tl − tj = µ(tj, ξtj = 1).

For case 2, ξtl−r
= 0, ξtl−r+1

= 0, · · · , ξtl−1
= 0, and ξtl = 1, i.e., tj+1 = tl, then

∆j = tl − tj =µ(tj, ξtj = 1) + µ(tl−r, ξtl−r
= 0) + · · ·+ µ(tl−1, ξtl−1

= 0).
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Based on the above two cases, we have that

∆j =

{
µ(tj, ξtj = 1) +

∑r
s=1 µ(tl−s, ξtl−s

= 0), if r ∈ Z≥1,

µ(tj, ξtj = 1), otherwise.
(4.29)

From (4.23), we have that µ(tj, ξtj = 1) = µ11(tj) since µ11(tj) ≤ N . Then,

combining it with (4.29) yields that

E{∆j} ≥ E{µ11(tj)}. (4.30)

It is seen from (4.3) that N is a time-out triggering interval, thus E{∆j} ≤ N .

Combining it with (4.30) yields that (4.28). �

As can be seen in Theorem 4.1, the prediction horizon N of MPC has a crit-

ical impact on the implementation of the designed stochastic event-triggered

scheme. Such an upper bound of inter-execution time is essential in event-

triggered robust MPC to preserve the optimality and closed-loop stability.

The problem of selecting the prediction horizon is beyond the scope of this

chapter due to its complexity and is left for our future study.

The designed law in (4.11) not only provides a flexible way to update

αtl and βtl with the evolution of the system states and builds a connection

between event verification and action triggering, but also plays an important

role in the design of the terminal cost function and the guarantee of recursive

feasibility and closed-loop stability in event-triggered robust MPC as will be

shown in the next two sections.

4.3 Stochastic Event-Triggered Tube-Based M-

PC Design

Based on the stochastic event-triggered scheme proposed in Section 4.2,

tube-based MPC is to be developed in this section.
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4.3.1 Tube-Based MPC Design

Given a stabilizing feedback gain KT ∈ Rnu×nx , the local controller is

constructed by

κT (x̃(i|t)) = KT x̃(i|t), i, t ∈ Z+, (4.31)

and the corresponding prediction model is given by

x̃(i+ 1|t) = Ax̃(i|t) + BκT (x̃(i|t)), i, t ∈ Z+, (4.32)

where x̃(i|t) is the predicted state at t + i and x̃(t) = x̃(0|t); the subscript

T is used to emphasize the variables related to tube-based MPC. Then, the

terminal set XT should be designed to satisfy the conditions in (2.4a)-(2.4c).

Define the terminal cost function as

VT (x̃(i|t)) = x̃(i|t)TΩξ(i|t) x̃(i|t), i, t ∈ Z+, (4.33)

where

Ωξ(i|t) =

{
Ω1, if ξ(i|t) = 1,

Ω0, if ξ(i|t) = 0.

To guarantee the closed-loop stability, Ω0 and Ω1 need to be designed such

that the following condition holds:

E{VT (x̃(i+ 1|t))− VT (x̃(i|t))} ≤ −E
{
l(x̃(i|t), κT (x̃(i|t)))

}
, (4.34)

where x̃(i|t) ∈ XT ; l(x̃(i|t), κT (x̃(i|t))) , x̃(i|t)TQx̃(i|t)+κT (x̃(i|t))TRκT (x̃(i|t));

Q ≻ 0 and R ≻ 0 are given weighting matrices. The following theorem gives

the desirable Ω0 and Ω1.

Theorem 4.2. Under the stochastic event-triggered scheme in (4.2) and (4.3),

if there exist two matrices Ω0 ≻ 0 and Ω1 ≻ 0 such that

(A+BKT )
T(β0Ω0 + (1− β0)Ω1)(A+ BKT )− Ω1 ≼ −(Q+KT

TRKT ),
(4.35)

(A+BKT )
T((1− α0)Ω0 + α0Ω1)(A+BKT )− Ω0 ≼ −(Q+KT

TRKT ),
(4.36)

Ω0 ≼ Ω1, (4.37)

then the condition in (4.34) holds.

72



Proof. Substituting (4.31) and (4.32) into (4.34) yields that

(A+BKT )
TE{Ωξ(i+1|t)}(A+BKT )− E{Ωξ(i|t)} ≼ −(Q+KT

TRKT ). (4.38)

At t ∈ Z+, two cases should be considered under the stochastic event-triggered

scheme in (4.2) and (4.3). First, if ξ(i|t) = 1, then E{Ωξ(i|t)} = Ω1, E{Ωξ(i+1|t)} =

βtlΩ0 + (1 − βtl)Ω1; else, E{Ωξ(i|t)} = Ω0, E{Ωξ(i+1|t)} = (1− αtl)Ω0 + αtlΩ1.

Accordingly, equation (4.38) is guaranteed by the following conditions:

(A+BKT )
T(βtlΩ0 + (1− βtl)Ω1)(A+BKT )− Ω1 ≼ −(Q+KT

TRKT ),
(4.39)

(A+BKT )
T((1− αtl)Ω0 + αtlΩ1)(A+BKT )− Ω0 ≼ −(Q+KT

TRKT ).
(4.40)

Note that (4.39) and (4.40) are dependent on the transition probabilities αtl

and βtl associated with tl. Since (4.22) holds, if (4.35) and (4.37) are satisfied,

we have that

(A+BKT )
T(βtlΩ0 + (1− βtl)Ω1)(A+BKT )− Ω1

=(A+BKT )
T(β0Ω0 + (1− β0)Ω1)(A+BKT )− Ω1 + (A+ BKT )

T

× (βtl − β0)(Ω0 − Ω1)(A+BKT )

≼− (Q+KT
TRKT ).

Hence, equation (4.39) is guaranteed. Likewise, if (4.36) and (4.37) are sat-

isfied, equation (4.40) is guaranteed for 0 < αtl ≤ α0. Therefore, equation

(4.34) can be guaranteed by (4.35)-(4.37). �

Ω0 and Ω1 obtained by solving the conditions in Theorem 4.2 off-line are

closely related to the local controller gain KT and the corresponding robust

positively invariant set Z containing all uncertainties. Hence, an implicit con-

nection is built between the checking function µ and uncertain disturbances

through the local controller gain KT , the triggering function g, the trigger-

ing indicator ξtl , and the updating law for Markov transition probabilities

in (4.11), resulting in a “closed-loop” operation from disturbances to event

verification.
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Based on the solved Ω0 and Ω1 in Theorem 4.2, at each triggering instant

tj, an event-triggered tube-based MPC optimization problem is formulated

by:

min
x̃(tj),ũ(tj)

JN(tj),

s.t. (2.6a), (2.6b), (2.6c), (2.6d), and (2.6e) (4.41)

The performance cost associated with predicted states and control inputs is

designed as

JN(tj) , E
{N−1∑

i=0

l(x̃(i|tj), ũ(i|tj)) + VT (x̃(N |tj))
}
. (4.42)

According to Lemma 2.1, to steer the states into the robust positively

invariant set Z, an event-triggered tube-based MPC should be designed by

uT (t) = ũ(t− tj|tj) +KT (x(t)− x̃(t− tj|tj)), (4.43)

where t ∈ Z[tj ,tj+1); x̃(t − tj|tj) and ũ(t − tj|tj) are the solutions of the opti-

mization problem in (4.41) at the triggering instant tj. Due to the implicit

link between uncertain disturbances and event verification, the controller in

(4.43) has the potential to keep the actual states close to the predicted states

and preserve the control performance even if the optimization problem is not

solved.

4.3.2 Recursive Feasibility and Stability Analysis

Definition 4.1. The system in (2.1) is said to be exponentially mean-square

stable with a feasible region XN and an initial state x(0) ∈ XN if there exist

θ ∈ (0, 1) and δ > 0 such that E
{
∥x(t)∥2

}
< δθt∥x(0)∥2 for t ∈ Z+.

Theorem 4.3. Suppose that (x̃⋆(tj), ũ
⋆(tj)) is the optimal solution of the opti-

mization problem in (4.41) at any triggering instant tj. For the system in (2.1)

with the event-triggered controller in (4.43) and the stochastic event-triggered

scheme in (4.2) and (4.3), (x̃(tj+1), ũ(tj+1)) with ũ(tj+1) , {ũ(0|tj+1), . . . ,
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ũ(N − 1|tj+1)} and x̃(tj+1) , {x̃(0|tj+1), . . . , x̃(N |tj+1)} defined by

x̃(i|tj+1) =

{
x̃⋆(∆j + i|tj), i ∈ N[0,N−∆j ],

(A+BKT )
i+∆j−N x̃⋆(N |tj), i ∈ N[N+1−∆j ,N ],

(4.44)

ũ(i|tj+1) =

{
ũ⋆(∆j + i|tj), i ∈ N[0,N−1−∆j ],

κT (x̃(i|tj+1)), i ∈ N[N−∆j ,N−1],
(4.45)

is feasible for the optimization problem at the triggering instant tj+1. More-

over, the closed-loop system is exponentially mean-square stable.

Proof. (Recursive feasibility) Similar to the proof of Theorem 2.1, and thus

omitted.

(Stability) According to the stochastic event-triggered scheme in (4.2) and

(4.3), two cases should be considered to prove closed-loop stability at the

checking instant tl ∈ Z>tj . If the triggering condition is not satisfied, i.e.,

ξtl = 0, a feasible cost JN(x(tl)) is constructed as

JN(x(tl)) =E
{
J⋆N(x(tj))− VT (x̃

⋆(N |tj)) + VT (x̃(N |tl))

−
tl−tj−1∑
i=0

l(x̃⋆(i|tj), ũ⋆(i|tj)) +
N−1∑

i=tj+N−tl

l(x̃(i|tl), κT (x̃(i|tl)))
}
.

(4.46)

According to (4.34), using the candidate states in (4.44) and control inputs in

(4.45), we have that

E
{
VT (x̃(N |tl))

}
≤ E

{
VT (x̃

⋆(N |tj))−
N−1∑

i=tj+N−tl

l(x̃(i|tl), κT (x̃(i|tl)))
}
.

Substituting it into (4.46) yields that

JN(x(tl))− J⋆N(x(tj)) ≤ −E
{ tl−tj−1∑

i=0

l(x̃⋆(i|tj), ũ⋆(i|tj))
}
. (4.47)

Then, there exists a scalar 0 < θ < 1 satisfying

JN(x(tj + 1) | ξtj = 1) ≤ θJ⋆N(x(tj)),

... (4.48)

JN(x(tl) | ξtl−1 = 0) ≤ θJN(x(tl − 1)).
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By induction based on (4.48), we have that

JN(x(tl)) ≤ θ(tl−tj)J⋆N(x(tj)).

Then, we have that E
{
∥x̃(tl)∥2

}
≤ cθ(tl−tj)∥x̃⋆(tj)∥2, where c > 0. Since

x ∈ x̃⊕Z, it follows that

E
{
∥x(t)∥2

}
≤ δθt∥x(0)∥2, t ∈ Z>0 (4.49)

for initial state x(0), where δ > 0.

If the triggering condition is satisfied, i.e., ξtl = 1, then a new solution

(x̃⋆(tl), ũ
⋆(tl)) and an optimal cost J⋆N(x(tl)) can be obtained, and J⋆N(x(tl))

satisfies

J⋆N(x(tl))− J⋆N(x(tj)) ≤ JN(x(tl))− J⋆N(x(tj)). (4.50)

Combining (4.50) with (4.47), we also have (4.49). According to Definition 4.1,

the exponential mean-square stability of the closed-loop system is guaranteed.

�

4.4 Stochastic Event-Triggered LMI-Based M-

PC Design

Based on the stochastic event-triggered scheme proposed in Section 4.2,

LMI-based MPC is to be developed in this section.

4.4.1 LMI-Based MPC Design

In this subsection, we will use the concept of quadratic boundedness to

address the recursive feasibility and stability issues arisen from stochastic event

verification and triggering.

Definition 4.2. [86] The system in (2.1) with Lyapunov matrix P ≻ 0 is

quadratically bounded if x(t)TPx(t) ≥ 1 implies that x(t+ 1)TPx(t + 1) ≤

x(t)TPx(t), t ∈ Z+.
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The following two lemmas will be used later to show a robust positively

invariant set.

Lemma 4.4. [86] The system in (2.1) with Lyapunov matrix P ≻ 0 is quadrat-

ically bounded if x(t)TPx(t) ≥ 1
ω̄
ω(t)Tω(t) implies that x(t+ 1)TPx(t + 1) ≤

x(t)TPx(t), t ∈ Z+.

Lemma 4.5. [86] The following facts are equivalent: (i) The system in (2.1) is

quadratically bounded with Lyapunov matrix P . (ii) The set Φ , {x|xTPx ≤

1} is a robust positively invariant set.

With LMI-based MPC, the solution of the optimization problem is no

longer an optimal control sequence as tube-based MPC, but a feedback gain.

Hence, the local controller and corresponding terminal set are removed since

all the control actions in the whole infinite horizon are determined based on

this solved feedback gain. According to the triggering indicator, the structure

of the robust event-triggered MPC controller is given by

uL(i|t) =

{
K1(t)x(i|t), if ξ(i|t) = 1,

K0(t)x(i|t), if ξ(i|t) = 0
(4.51)

for i, t ∈ Z+, where K0(t) and K1(t) will be designed later; the subscript L

is used to emphasize the variables related to LMI-based MPC. Different from

(4.33), we consider a cost function related to the actual state x(i|t) as

VL(x(i|t)) = x(i|t)TΩξ(i|t)x(i|t), i, t ∈ Z+

and an infinite performance cost

J∞(t) , E
{ ∞∑

i=0

(
l(x(i|t), u(i|t))− ςω(i|t)Tω(i|t)

)}
,

where ς > 0 is a prescribed weight associated with disturbances and sufficiently

small. This type of performance cost was first proposed for the systems with

bounded disturbances in [87], which differs from (4.42) in tube-based MPC.

Then, the following theorem gives a suboptimal design of K0(t) and K1(t) to

minimize J∞(t) and a related performance bound.
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Theorem 4.4. Under the stochastic event-triggered scheme in (4.2) and (4.3),

if there exist scalars γ, ϑ, matrices Ω̄0 ≻ 0, Ω̄1 ≻ 0, U ≻ 0, X ≻ 0, Y0, Y1

such that

min
γ,ϑ,Ω̄0,Ω̄1,Y0,Y1,U,X

γ

s.t.


Ω̄1 ∗ ∗ ∗ ∗
0 ϑI ∗ ∗ ∗ ∗

AΩ̄1 +BY1 γI β−1
0 Ω̄0 ∗ ∗ ∗

AΩ̄1 +BY1 γI 0 (1− β0)
−1Ω̄1 ∗ ∗

Ω̄1 0 0 0 γQ−1 ∗
Y1 0 0 0 0 γR−1

 ≽ 0, (4.52a)


Ω̄0 ∗ ∗ ∗ ∗
0 ϑI ∗ ∗ ∗ ∗

AΩ̄0 +BY0 γI (1− α0)
−1Ω̄0 ∗ ∗ ∗

AΩ̄0 +BY0 γI 0 α−1
0 Ω̄1 ∗ ∗

Ω̄0 0 0 0 γQ−1 ∗
Y0 0 0 0 0 γR−1

 ≽ 0, (4.52b)

Ω̄0 ≽ Ω̄1, (4.52c)[
1 ∗

x(tj) Ω̄1

]
≽ 0, (4.52d) (1− ε)Ω̄1 ∗ ∗

0 ε
ω̄
I ∗

AΩ̄1 +BY1 I Ω̄1

 ≽ 0, (4.52e)

[
U ∗
Y T
s Ω̄s

]
≽ 0, U [ℓℓ] ≼ (ū[ℓ])2,

(ℓ = 1, 2, · · · , nu; s = 0, 1), (4.52f) 1
1+ω̄

X ∗ ∗
(AΩ̄s +BYs)

T Ω̄s ∗
I 0 I

 ≽ 0, X [ιι] ≼ (x̄[ι])2,

(ι = 1, 2, · · · , nx; s = 0, 1), (4.52g)

then J∞(t) ≤ γ(t), and desirable weighting matrices in the triggering function

in (4.6) and corresponding controller gains are given by

Ω0 = γΩ̄−1
0 , Ω1 = γΩ̄−1

1 , K0 = Y0Ω̄
−1
0 , K1 = Y1Ω̄

−1
1 .

Proof. To guarantee closed-loop stability of the proposed LMI-based MPC,

two cases should be considered under the stochastic event-triggered scheme in
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(4.2) and (4.3) at t ∈ Z+: ξt = 1 and ξt = 0. For ξt = 1, by using the Schur

complement equivalence with Y1 , K1Ω̄1, equation (4.52a) can be written as[
Ω̄1 − γ−1Ω̄T

1QΩ̄1 − γ−1(K1Ω̄1)
TRK1Ω̄1 0

0 ϑI

]
− [(AΩ̄1 +BK1Ω̄1) γI]

T(β0Ω̄
−1
0 + (1− β0)Ω̄

−1
1 )

× [(AΩ̄1 +BK1Ω̄1) γI] ≽ 0. (4.53)

Substituting Ω̄0 , γΩ−1
0 , Ω̄1 , γΩ−1

1 , and ϑ , γς into (4.53), and pre- and

post-multiplying it by diag{γ− 1
2Ω1, γ

− 1
2 I} yield that[

Ω1 − (Q+KT
1 RK1) 0

0 ςI

]
− [(A+BK1) I]

T

× (β0Ω0 + (1− β0)Ω1)[(A+BK1) I] ≽ 0. (4.54)

For ξt = 0, by using the Schur complement equivalence with Y0 , K0Ω̄0,

equation (4.52b) can be written as[
Ω̄0 − γ−1Ω̄T

0QΩ̄0 − γ−1(K0Ω̄0)
TRK0Ω̄0 0

0 ϑI

]
− [(AΩ̄0 +BK0Ω̄0) γI]

T((1− α0)Ω̄
−1
0 + α0Ω̄

−1
1 )

× [(AΩ̄0 +BK0Ω̄0) γI] ≽ 0. (4.55)

Substituting Ω̄0 = γΩ−1
0 , Ω̄1 = γΩ−1

1 , and ϑ = γς into (4.55), and pre- and

post-multiplying it by diag{γ− 1
2Ω0, γ

− 1
2 I} yield that[

Ω0 − (Q+KT
0 RK0) 0

0 ςI

]
− [(A+BK0) I]

T

× ((1− α0)Ω0 + α0Ω1)[(A+BK0) I] ≽ 0. (4.56)

For (4.52c), substituting Ω̄0 = γΩ−1
0 and Ω̄1 = γΩ−1

1 into it, we have that

Ω1 ≽ Ω0. (4.57)

Then, pre- and post-multiplying (4.54) and (4.56) by [x(i|t)T ω(i|t)T]T and

its transpose, and combining them with (4.57), the following condition can be

guaranteed for the monotonicity of performance cost J∞(t) and closed-loop

stability:

E
{
VL(x(i+ 1|t))− VL(x(i|t))

}
≤ −E

{
l(x(i|t), u(i|t))− ςω(i|t)Tω(i|t)

}
,

(4.58)
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where i, t ∈ Z+. By summing (4.58) from i = 0 to i = ∞, we have that

E
{
VL(x(∞|t))− VL(x(t))

}
≤ −E

{ ∞∑
i=0

(
l(x(i|t), u(i|t))− ςω(i|t)Tω(i|t)

)}
,

where x(t) = x(0|t). Consequently, we have that

J∞(t) ≤ E
{
VL(x(t))

}
, t ∈ Z+. (4.59)

Note that the optimization problem in (4.52) should be solved at triggering

instants only, i.e., ξtj = 1. That is, E
{
VL(x(tj))

}
= x(tj)

TΩ1x(tj) at the

triggering instant tj. Let Ω̄1 = γΩ−1
1 , then (4.52d) can be written as

x(tj)
TΩ1x(tj) ≤ γ(tj),

where γ(tj) is regarded as an upper bound of J∞(tj), then (4.59) is guaranteed

at t = tj. To guarantee it at t ∈ Z>tj , for (4.52e), using the Schur complement

equivalence with Y1 = K1Ω̄1, we have that[
(1− ε)Ω̄1 0

0 ε
ω̄
I

]
− [AΩ̄1 +BK1Ω̄1 I]

TΩ̄−1
1 [AΩ̄1 +BK1Ω̄1 I] ≽ 0. (4.60)

Substituting Ω̄1 = γΩ−1
1 into (4.60), and pre- and post-multiplying it by

diag{γ−1Ω1, I} yield that[
(1− ε) 1

γ
Ω1 0

0 ε
ω̄
I

]
− [A+BK1 I]

T 1

γ
Ω1[A+BK1 I] ≽ 0. (4.61)

Consider x(1|t) = Ax(t)+BuL(x(t))+ω(t), t ∈ Z+. Invoking the S-procedure,

if and only if (4.61) is satisfied with 0 < ε < 1, then the following condition

is guaranteed

1

γ
x(t)TΩ1x(t) ≥

1

ω̄
ω(t)Tω(t) =⇒ 1

γ
x(1|t)TΩ1x(1|t) ≤

1

γ
x(t)TΩ1x(t).

Then, according to Lemmas (4.4)-(4.4), XL , {x|xTΩ1x ≤ γ} is a robust

positively invariant set. That is, equation (4.52d) satisfying for t ∈ Z>tj .

Thus, equation (4.59) is guaranteed by (4.52d) and (4.52e).

For (4.52f), using the Schur complement equivalence, we have that(
YsΩ̄

−1
s Y T

s

)[ℓℓ] ≤ (ū[ℓ])2, (4.62)
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where ℓ = 1, 2, · · · , nu; s = 0, 1. From (4.52c)-(4.52e), it follows that

x(i|tj)TΩ̄−1
0 x(i|tj) ≤ x(i|tj)TΩ̄−1

1 x(i|tj) ≤ 1, i ∈ Z+.

Using the Cauchy-Schwarz inequality, it is shown that

(
YsΩ̄

−1
s Y T

s

)[ℓℓ]
=

∥∥∥∥(YsΩ̄− 1
2

s

)[ℓ]
∥∥∥∥2

≥
∥∥∥∥(YsΩ̄− 1

2
s

)[ℓ]
∥∥∥∥2 ∥∥∥∥(Ω̄− 1

2
s x(i|tj)

)[ℓ]
∥∥∥∥2

≥
∣∣∣(YsΩ̄−1

s x(i|tj)
)[ℓ]∣∣∣2 = ∣∣u(i|tj)[ℓ]∣∣2 . (4.63)

Combining (4.62) and (4.63), the input constraint in (4.1) is guaranteed. Like-

wise, the state constraint in (4.1) is guaranteed by (4.52g). �

Different from the tube-based MPC designed in Section 4.3, Ω0 and Ω1 here

need to be updated on-line through the optimization problem in (4.52) at each

triggering instant. It is seen from (4.52d) (x(tj) is related to the disturbances)

and (4.52e) (ω̄ is the upper bound of ∥ω∥2), that Ω0 and Ω1 are able to directly

reflect uncertain disturbances in (4.6). Hence, a “closed-loop” connection is

also built between the checking function µ and uncertain disturbances through

the triggering function g, the triggering indicator ξtl , and the updating law

for Markov transition probabilities in (4.11).

Remark 4.3. It is stressed here that only initial values α0 and β0 are used in

the optimization problem in (4.52), rather than αtl and βtl which are dependent

on tl, since there is a conflict between recursive feasibility of the LMI-based

MPC optimization problem in (4.52) and the updating law for αtl and βtl.

How to design more general αtl and βtl to reduce this conservatism is a highly

interesting but challenging problem, which is left for further investigation.

Remark 4.4. There are two reasons for considering both tube-based and LMI-

based MPC approaches. The first and most important one is to show the gen-

erality of the proposed event-triggered scheme that such a novel event-triggered
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scheme can be implemented by these two robust MPC approaches and the com-

pleteness of the research work. Secondly, as the computational burden of deter-

mining Minkowski sums and convex hulls is scaling rapidly with respect to the

dimension of the system, the tube-based MPC approach proposed here may not

work efficiently for high-order systems. By contrast, the proposed LMI-based

MPC approach is much less computational demanding due to the numerical

tractability of LMIs, although some conservatism is inevitably introduced by

the worst-case performance cost in LMIs. Hence, the two proposed stochastic

event-triggered robust MPC approaches are complementary and some numer-

ical evaluations are provided to show this in the simulation.

4.4.2 Recursive Feasibility and Stability Analysis

Theorem 4.5. Suppose that Υ⋆(tj) , {γ⋆(tj), ϑ⋆(tj), Ω̄⋆
0(tj), Ω̄

⋆
1(tj), Y

⋆
0 (tj),

Y ⋆
1 (tj), U

⋆(tj), X
⋆(tj)} is the optimal solution of the optimization problem in

(4.52) at any triggering instant tj. Then, for the system in (2.1), if the event-

triggered controller is designed as in (4.51) with the stochastic event-triggered

scheme in (4.2) and (4.3), Υ⋆(tj) is feasible at the triggering instant tj+1.

Moreover, the closed-loop system is exponentially mean-square stable.

Proof. (Recursive feasibility) According to Theorem 4.4, only (4.52d) is de-

pendent on the state x(tj+1), hence, to prove recursive feasibility, we just

need to prove that x(tj+1)
TΩ̄⋆

1(tj)
−1x(tj+1) ≤ 1. Since (4.52d) and (4.52e)

can guarantee that XL is a robust positively invariant set, we have that

x(tj+1)
TΩ⋆

1(tj)x(tj+1) ≤ γ(tj), where Ω⋆
1(tj) = γ⋆(tj)Ω̄

⋆
1(tj)

−1, which implies

that (4.52d) is satisfied at the triggering instant tj+1. Hence, Υ
⋆(tj) is feasible

at the triggering instant tj+1.

(Stability) Since recursive feasibility of the optimization problem in (4.52)

is guaranteed based on the above analysis, equation (4.58) is always satisfied

by (4.52a)-(4.52c). Then, at the checking instant tl ∈ Z>tj , if the triggering
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condition is not satisfied, i.e., ξtl = 0, there must exist 0 < ϵ < 1 satisfying

E
{
VL(x(tj + 1) | ξtj = 1)

}
≤ ϵV ⋆

L (x(tj)),

...

E
{
VL(x(tl) | ξtl−1 = 0)

}
≤ ϵVL(x(tl − 1)).

It follows that

E
{
∥x(tl)∥2

}
≤ τϵ(tl−tj)∥x(tj)∥2. (4.64)

where τ > 0. Furthermore, we have that E
{
∥x(t)∥2

}
≤ τϵt∥x(0)∥2, t ∈ Z>0 for

initial state x(0). If the triggering condition is satisfied, i.e., ξtl = 1, equation

(4.64) is still guaranteed since V ⋆
L (x(tl)) − V ⋆

L (x(tj)) ≤ VL(x(tl)) − V ⋆
L (x(tj)).

Hence, according to Definition 4.1, the exponential mean-square stability of

the closed-loop system is guaranteed. �

4.5 Simulation Examples

In this section, three examples are used to show the advantages of the

proposed stochastic event-triggered robust MPC approaches. For each exam-

ple, we execute a Monte Carlo simulation with 1000 samples. To show the

results, let ∆̄ represent the average inter-execution time, T̄1 represent the av-

erage number of ξtl = 1 and µ̄11 represent the corresponding average waiting

time, and T̄0 represent the average number of ξtl = 0 and µ̄01 represent the

corresponding average waiting time.

Example 4.1. Consider the cart and spring-damper system in [88]. The

discrete-time model of this system is given by[
x1(t+ 1)
x2(t+ 1)

]
=

[
1 Tc

−Tc k0M e
−x1(t) 1− hd

k0
M

] [
x1(t)
x2(t)

]
+

[
0
Tc
M

]
u(t) +

[
ω1(t)
ω2(t)

]
.

(4.65)

The mass of the cart is M = 1.0 kg; the spring linear factor is k0 = 0.33

N/m; the damper factor is hd = 1.1 Ns/m; the sampling period is Tc = 0.4

s; the prediction horizon is N = 4. The state and control input constraints
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Table 4.1: Average inter-execution time ∆̄ and performance cost J̄

θ = 0.2 θ = 0.6

∆̄ J̄ ∆̄ J̄

LMI-based MPC 1.81 1.1372 2.31 1.1897
Tube-based MPC 2.12 0.9817 2.75 0.9935
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Figure 4.4: Triggering instants of the proposed LMI-based MPC.
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Figure 4.5: Triggering instants of the proposed tube-based MPC.

are given as |x1| ≤ 2.56 m and |u| ≤ 4.5 N; the disturbance constraint set is

W = [−0.2, 0.2] × [−0.2, 0.2] and thus ω̄ = 0.08. The nonlinear function in

(4.65) is linearized at the equilibrium point xeq = [0, 0]T. With tube-based

MPC, a local feedback control is designed as KT = [−1.1575 0.9481] by using

the LQR technique with weighting matrices Q = I2 and R = I. Set the Hill

coefficient n = 1, the initial transition probabilities α0 = 0.8 and β0 = 0.3,

and the simulation step Tsim = 40.

To show the effects of the triggering parameter θ on the inter-execution

time and control performance, different values of θ are considered and the

results are presented in Table 4.1. It is clear that, for a larger θ, the average

inter-execution time is longer with slight control performance loss. Further-

more, tube-based MPC outperforms LMI-based MPC in terms of the inter-
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Table 4.2: Triggering results with θ = 0.2

LMI-based MPC Tube-based MPC

T̄1 = 20.55 µ̄11 = 1.64 T̄1 = 18.25 µ̄11 = 1.81
T̄0 = 3.23 µ̄01 = 1.65 T̄0 = 4.58 µ̄01 = 1.76

execution time and control performance since it utilizes a robust positively

invariant set containing all uncertainties instead of considering a min-max ap-

proach, namely, minimizing the worst-case performance cost with the upper

bound of disturbances in the LMI-based MPC. The distributions of checking

and triggering instants with θ = 0.2 in one of realizations are shown in Fig-

ures. 4.4-4.5. Most of checking instants are triggering instants, which shows

the accuracy of the designed estimation strategy of checking instants. The

triggering results are concluded in Table 4.2. Taken together, the results in

this example verify that the proposed stochastic triggering strategy effectively

links event verification and triggering to achieve adaptive waiting time.

Example 4.2. Consider the seventh-order Aircraft Model 6 provided in

[84]. The sampling period is Tc = 0.2; the prediction horizon is N = 8;

the initial state is x(0) = [−1.29, 3.76,−2.15, 0.83, 1.05, 0.58,−0.95]T; the

triggering parameter θ = 0.2.

Table 4.3: Running results

Average computation time Running results

LMI-based MPC 6.82 seconds succeed
Tube-based MPC more than 72 hours fail

For this high-order system, we try to exploit the proposed stochastic event-

triggered tube-based MPC and LMI-based MPC. The running results are

shown in Table 4.3. Together with Figure 4.6, it is seen that the proposed

LMI-based MPC is able to handle large systems with less computational re-

sources, and drive the system to a neighborhood of the origin in the presence

of disturbances. However, as mentioned in Remark 4.4, it is very difficult to

implement a tube-based model predictive controller due to the computational
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Figure 4.6: State trajectories of the proposed LMI-based MPC.

complexity associated with the robust positively invariant set. In this sense,

tube-based MPC fails for this example.

Example 4.3. Consider the linear system as in (3.31). The simulation

step is Tsim = 30; the prediction horizon is N = 6; the upper bound of

disturbances is ω̄ = 0.729; the initial state is x(0) = [−21, 1]T; the triggering

parameter θ = 0.3.

To show the advantage of the proposed stochastic event-triggered scheme,

comparisons with the existing methods in [60] and [89] are carried out. The

average inter-execution time ∆̄ and performance cost J̄ are shown in Table

4.4. It is seen that the two proposed event-triggered robust MPC approaches

obtain longer inter-execution times, although the proposed LMI-based MPC

shows some conservatism on control performance. The triggering results are

concluded in Table 4.5. As shown in (4.5), the triggering condition needs to

be checked at each sampling instant, and thus µ̄11 and µ̄01 for [60] can be

set to “1”. As for self-triggered MPC, the event verification is removed, µ̄11

for [89] can be regarded as the same as ∆̄ and µ̄01 is not considered. Table

4.5 shows that the proposed stochastic event-triggered scheme in (4.2) and

(4.3) removes persistent monitoring of the triggering condition and achieves

adaptive waiting time for the subsequent event verification and triggering.
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Table 4.4: Comparison results with existing results

∆̄ J̄

Stochastic LMI-based MPC 2.01 70.41
Stochastic tube-based MPC 2.11 43.40
Event-triggered MPC in [60] 1.07 45.19
Self-triggered MPC in [89] 1.88 53.84

Table 4.5: Triggering results

T̄1 µ̄11 T̄0 µ̄01

Stochastic LMI-based MPC 14.94 1.57 4.45 1.60
Stochastic tube-based MPC 14.22 1.58 4.97 1.59
Event-triggered MPC in [60] 28.04 1.00 2.56 1.00
Self-triggered MPC in [89] 15.96 1.88 - -

4.6 Summary

In this chapter, a novel stochastic triggering strategy for both tube-based

MPC and LMI-based MPC has been proposed. A Markov chain with updating

transition probabilities has been designed to link event verification with action

triggering, and thus removing persistent monitoring and verification in con-

ventional event-triggered schemes and improving the flexibility and robustness

of self-triggered schemes. Recursive feasibility and closed-loop robust stability

of both tube-based MPC and LMI-based MPC have been proved. Finally, the

comparison simulation results have verified the effectiveness of the proposed

stochastic triggering strategy.
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Chapter 5

Event-Triggered Robust MPC:
A Data-Driven Approach∗

This chapter investigates an event-triggered robust data-driven MPC for

unknown systems, which is totally different from last three chapters under

known system models. With initially measured input-output data, we target

at constructing a terminal inequality constraint to complete the analysis of

recursive feasibility and closed-loop stability in a data-driven case, and de-

signing an event-triggered scheme to reduce resource consumption. According

to Willems’ fundamental lemma from behavioral systems theory in [72], a

data-driven prediction model is generated and a terminal set is designed for

the MPC optimization problem without any prior identification. By moni-

toring a feedback from the robust data-driven MPC controller to the event

trigger, a mismatch between the data-driven model and the original plant is

detected, and both deterministic and stochastic criteria are provided to select

the threshold of the event-triggered scheme, respectively.

This chapter is organized as follows. Section 5.1 describes the system model

and formulates an event-triggered robust data-driven MPC problem. Section

5.2 designs a terminal set for the data-driven MPC optimization problem. Sec-

tion 5.3 provides both deterministic and stochastic event-triggered schemes.

Section 5.4 analyzes recursive feasibility and stability. Section 5.5 verifies the

∗A version of this chapter has been submitted to IEEE Transactions on Automatic Control
as: Li Deng, Zhan Shu, and Tongwen Chen, Event-triggered robust MPC with terminal
inequality constraints: A data-driven approach, Aug. 2022.
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proposed approach by numerical examples. Section 5.6 concludes this chapter.

5.1 Problem Formulation

Consider the following linear discrete-time system:

x(t+ 1) = Ax(t) + Bu(t), (5.1a)

y(t) = Cx(t) +Du(t), (5.1b)

ỹ(t) = y(t) + ω(t), (5.1c)

where x(t) ∈ Rnx is the system state, u(t) ∈ Rnu is the control input,

y(t) ∈ Rny is the output of the plant, and ỹ(t) is the output measurement

with the additive stochastic noise ω(t) ∈ Rny at instant t ∈ Z, respectively.

Assume that the matrix pair (A,B) is controllable and the matrix pair (A,C)

is observable. This work mainly focuses on the case that all system matrices

are unknown and only input-output data samples are available.

Assumption 5.1. The noise ω(t) is independently and identically distributed

and satisfies ∥ω(t)∥2 ≤ ω̄, where ω̄ ∈ R>0.

System (5.1) is subject to the following input and output constraints:

u ∈ U , y ∈ Y , (5.2)

where Y , {y ∈ Rny | Hyy ≼ hy}, U , {u ∈ Rnu | Huu ≼ hu}, and

Hy ∈ Rly×ny , Hu ∈ Rlu×nu , hy ∈ Rly , and hu ∈ Rlu are known matrices and

vectors.

To avoid the state estimation and use available input-output data directly,

we recall the input-output representation of system (5.1) as in [90]:

y(t) +
n∑
i=1

aiy(t− i) =
n∑
i=1

biu(t− i),

where n ∈ Z≥nx represents the system order; ai, bi ∈ R are the coefficients of

y(t − i) and u(t − i), respectively. Then, an input-output state-space model
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with additive stochastic noises is obtained as

z(t+ 1) = Âz(t) + B̂u(t), (5.3a)

z̃(t) = z(t) +

[
ω[t−n,t−1]

0nun

]
, (5.3b)

where ω[t−n,t−1] ,
[
ωT
t−n . . . ωT

t−1

]T
; z(t) =

[
y[t−n,t−1]

u[t−n,t−1]

]
is an augmented

state related to the past n-step input-output data; system matrices Â ∈

Rn(ny+nu)×n(ny+nu) and B̂ ∈ Rn(ny+nu)×nu are unknown.

In this work, a robust MPC using a data-driven approach will be designed

to handle the constraints in (5.2). Commonly, classical model-based MPC is

always dependent on the following prediction model corresponding to (5.3a)

to predict future trajectories:

z̄(t+ 1) =Âz̄(t) + B̂ū(t), (5.4)

where z̄(t) =

[
ȳ[t−n,t−1]

ū[t−n,t−1]

]
is an augmented predicted state related to the past

n-step predicted input-output data. Since Â and B̂ are unknown and only

input-output measurements are available, it is impossible to use prediction

model (5.4) directly in a data-driven optimization problem. Hence, we will

have the aid of the following definition and lemma regarding persistence of

excitation to construct a non-parametric predictive model based on available

input-output data.

Definition 5.1. [72] A sequence u[i,i+L−1], i ∈ Z with ui ∈ Rnu is said to be

persistently exciting of order L̃ if rank(Ui,L̃,L−L̃+1) = nuL̃, where Ui,L̃,L−L̃+1 is

the Hankel matrix associated to u[i,i+L−1] and

Ui,L̃,L−L̃+1 ,


ui ui+1 · · · ui+L−L̃
ui+1 ui+2 · · · uL−L̃+1
...

...
. . .

...
ui+L̃−1 ui+L̃ · · · ui+L−1


with L̃, L ∈ Z>0 and L̃ ≤ L.
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Lemma 5.1. [72] Suppose {uo[0,L−1], y
o
[0,L−1]} is a trajectory of system (5.1)

and U0,L̃,L−L̃+1 and Y0,L̃,L−L̃+1 are the corresponding Hankel matrices, where

uo[0,L−1] is persistently exciting of order L̃. Then, {u[0,L̃−1], y[0,L̃−1]} is a tra-

jectory of this system if and only if there exists g ∈ RL−L̃+1 such that[
u[0,L̃−1]

y[0,L̃−1]

]
=

[
U0,L̃,L−L̃+1

Y0,L̃,L−L̃+1

]
g. (5.5)

Lemma 5.1 indicates that all trajectories with length L̃ of system (5.1)

can be obtained from linear combinations of their past trajectories. This is

an appealing data-driven characterization for system (5.1) without any prior

identification. Let {uo[−n,L−n−1], ỹ
o
[−n,L−n−1]} be the collected past input-output

data of system (5.1). To employ Lemma 5.1 for robust data-driven MPC

with the prediction horizon N , according to Definition 5.1, the input data

uo[−n,L−n−1] are supposed to satisfy the following assumption.

Assumption 5.2. The input data uo[−n,L−n−1] is persistently exciting of order

N + n.

With available past data {uo[−n,L−n−1], ỹ
o
[−n,L−n−1]}, Assumption 5.2 guar-

antees that Hankel matrices U−n,n+N,L−(n+N)+1 and Ỹ−n,n+N,L−(n+N)+1 have

full row rank. Then, we can use these data to generate a prediction trajectory

by Lemma 5.1 later.

It is well-known that terminal constraints play an important role in re-

cursive feasibility and stability of MPC. However, it is very challenging to

construct some terminal ingredients without the knowledge of a model. This

is the main reason why most data-driven MPC approaches cannot guarantee

the recursive feasibility and closed-loop stability ([73, 74, 75]). Very recently,

by utilizing terminal equality constraints, a new data-driven MPC approach

has been proposed in [76] such that recursive feasibility and closed-loop stabil-

ity can be analyzed theoretically. However, the implementation of a terminal

equality constraint is rather restrictive. As it is generally easier to drive a

state to a specified set than into a specified point, we relax a terminal equali-

ty constraint into a terminal inequality constraint for the robust data-driven
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MPC optimization problem formulated by:

min
ū[−n,N−1](t),ȳ[−n,N−1](t),g(t),ε[−n,N−1](t)

J(z̃(t))

s.t.

[
ū[−n,N−1](t)

ȳ[−n,N−1](t) + ε[−n,N−1](t)

]
=

[
U−n,n+N,L−(n+N)+1

Ỹ−n,n+N,L−(n+N)+1

]
g(t) (5.6a)[

ȳ[−n,−1](t)
ū[−n,−1](t)

]
= z̃(t) (5.6b)

ūi(t) ∈ U , i ∈ Z[0,N−1] (5.6c)

ȳi(t) ∈ Y , i ∈ Z[0,N−1] (5.6d)[
ȳ[N−n,N−1](t)
ū[N−n,N−1](t)

]
∈ Zf (5.6e)

where ūi(t) is the predicted control input at t+ i and ū(t) = ū0(t); ȳi(t) is the

predicted output at t + i and ȳ(t) = ȳ0(t); the prediction horizon N should

satisfy N ∈ Z≥n. A data-driven model in (5.6a) is used to replace classical

prediction model (5.4) and predict input-output behavior based on Lemma

5.1. The available output measurement ỹo[−n,L−n−1] is subject to bounded ad-

ditive noises, which implies that the Hankel matrices U−n,n+N,L−(n+N)+1 and

Ỹ−n,n+N,L−(n+N)+1 may not span the trajectory space strictly. Thus, to im-

prove the prediction accuracy, a slack variable ε[−n,N−1](t) in (5.6a) is intro-

duced to compensate the noisy part and guarantee the feasibility of this op-

timization problem. Equation (5.6b) is regarded as the initial condition since

z̃(t) consists of past n-step input-output measurements u[t−n,t−1], ỹ[t−n,t−1].

Equations (5.6c) and (5.6d) are input and output constraints. Equation (5.6e)

is the terminal inequality constraint, where Zf is a terminal set to be designed.

As will be seen later, the inequality constraint in (5.6e) can lead to a larger

feasible region and a lower bound for the prediction horizon than a terminal

equality constraint.

The cost function is defined as

J(z̃(t)) =
N−1∑
i=0

l(ūi−1(t), ȳi−1(t)) + V (z̄N(t)) + λε∥ε[−n,N−1](t)∥2 + λgω̄∥g(t)∥2,

where l(ūi(t), ȳi(t)) , ȳi(t)
TQȳi(t) + ūi(t)

TRūi(t) with Q ≻ 0 and R ≻ 0;

z̄N(t) =

[
ȳ[N−n,N−1](t)
ū[N−n,N−1](t)

]
and V (z̄N(t)) is a terminal cost to be designed;
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λε, λg ∈ R>0 are given weights for regularization terms ∥ε[−n,N−1](t)∥2 and

∥g(t)∥2.

Remark 5.1. When the output measurements are corrupted by noises, the

optimization problem in (5.6) may become infeasible if the form of (5.5) is

directly used for prediction. Hence, the slack variable ε[−n,N−1](t) is introduced

to ensure feasibility of (5.6) at all instants.

Seen from (5.6), the proposed robust data-driven MPC is able to guarantee

input and output constraints (5.2) for unknown system (5.1) without any prior

identification, but it may introduce heavier computational burden and thus

require more computational resources than that of the model-based MPC due

to the introduction of a large amount of data. As a matter of fact, if the

latest solved control sequence of the robust data-driven MPC controller could

regulate the system well, it is unnecessary to solve the optimization problem in

(5.6) again. Hence, an event-triggered scheme is introduced below to reduce

the number of times of solving (5.6), leading to the reduction of resource

consumption.

Define the output error as e(t) , ỹ(t)− ȳ(t). If the predicted output ȳ(t)

actually coincides with the actual output y(t) of the original plant, that is,

e(t) tending to ω(t), it indicates that the data-driven model in (5.6a) is nearly

consistent with the original system in (5.1) and the current control action

u(t) could regulate the system well. Hence, the key idea of our design is that

the event verification should be dependent on the deviation of the predicted

output ȳ from the actual output y, namely, the output error e. To this end,

define an appropriate triggering function φ : Rny → R related to e. Then, the

event-triggered condition is formulated by

φ(e(t)) > κ⇐⇒ ξ(t) = 1, (5.7)

where κ is a triggering threshold to be designed based on the known infor-

mation of noises; ξ(t) is a binary triggering indicator. Denote the triggering

instant sequence {tj : j ∈ Z+} ⊆ Z+. Accordingly, the triggering instant is
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..Unknown plant
z(t + 1) = Âz(t) + B̂u(t)

. Sensor
ỹ(t) = y(t) + ω(t)

.

Local controller
uloc(t) = Klocz̃(t)

.

Data-driven MPC (5.6)

.

Event trigger

.

Buffer

.

uloc(t)
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y(t)
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umpc(t)
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ξ(t) = 1
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ỹ(t)
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ȳ(t)

.

∆j ≥ N

Figure 5.1: Architecture of the proposed event-triggered data-driven MPC.

generated by

tj+1 = min{t ∈ Z>tj | φ(e(t)) > κ},

where t0 = 0 as j = 0.

Define the inter-execution time between triggering instants tj and tj+1 as

∆j , tj+1 − tj, j ∈ Z+. In most existing event-triggered MPC, to preserve

the optimality and closed-loop stability, the inter-execution time is always

limited in the prediction horizon N , i.e., if the inter-execution time exceeds

N , then the event is triggered automatically at this instant. To remove this

limitation without losing closed-loop stability, an extra local controller applied

for ∆j ≥ N , is embedded in the event-triggered control structure:

uloc(t) = Klocz̃(t), (5.8)

where Kloc is a local controller gain to be designed. Accordingly, the designed

event-triggered controller is of the form

u(t) =

{
umpc(t), tj ≤ t < tj +N,

uloc(t), tj +N ≤ t < tj+1,
(5.9)

where umpc(t) represents the robust data-driven MPC controller.

The control architecture of the proposed event-triggered robust data-driven

MPC is illustrated in Figure 5.1. The designed event trigger controls an inner

loop and an outer loop: If φ(e(t)) > κ, the outer loop will start to work and

the robust data-driven MPC controller will solve the optimization problem in
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(5.6); else, the robust data-driven MPC controller will transmit its feasible

control to the plant when ∆j < N , or the buffer will transmit z̃(t) to the local

controller and the inner loop will start to work when ∆j ≥ N .

The main objective of this chapter is to design robust data-driven MPC

controller umpc together with the corresponding terminal set Zf and an extra

local controller uloc by using measured input-output data only, and form a

feedback from the robust data-driven MPC controller to the event trigger

such that the event-triggered condition in (5.7) is carefully generated and the

corresponding event-triggered controller in (5.9) is synthesized to save the

on-line computational resources.

5.2 Terminal Set Zf Design

In this section, a suitable terminal set Zf will be constructed for the ro-

bust data-driven MPC optimization problem in (5.6) based on available data

{uo[−n,L−n−1], ỹ
o
[−n,L−n−1]}. Define the terminal cost as: V (z̄) = z̄TP z̄, and the

form of the terminal set as:

Zf , {z̄ ∈ Rny × · · · × Rny︸ ︷︷ ︸
n

×Rnu × · · · × Rnu︸ ︷︷ ︸
n

|z̄TP z̄ ≤ α},

where P ≻ 0 is a terminal weighting matrix and α ∈ R>0 is to be designed.

According to model-based robust MPC, to guarantee the stability, P should

be designed such that the following condition holds

(Â+ B̂K̂)TP (Â+ B̂K̂)− P ≼ −(Q+ K̂TRK̂), (5.10)

where Q = diag{Q, . . . , Q︸ ︷︷ ︸
n

, R, . . . , R︸ ︷︷ ︸
n

}; K̂ ∈ Rnu×n(ny+nu) is a terminal control

gain to be constructed. Since Â and B̂ are unknown in robust data-driven

MPC, it is impossible to directly use (5.10) to find a suitable P . Hence, the

key to overcome this issue is to avoid the need of these unknown system matri-

ces or to find their equivalent representations with available data {uo[−n,L−n−1],

ỹo[−n,L−n−1]}. Based on persistently exciting data, reference [91] provided some
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data-dependent representations of linear systems without any explicit system

matrix identification, which paves a way to solve this issue of our work. Mo-

tivated by [91], we can derive a data-based closed-loop representation as will

be shown in the first subsection. Accordingly, the terminal weighting matrix

P and control gain K̂ will be designed and the corresponding terminal set will

be determined in the later subsections.

Before proceeding, we present the following lemma, which is a useful tool

to facilitate our discussion.

Lemma 5.2. [92] For arbitrary matrices X1, X2, E with E ≻ 0 and a scalar

δ > 0, it is true that X1EX
T
2 +X2EX

T
1 ≼ δX1EX

T
1 + δ−1X2EX

T
2 .

5.2.1 Data-Based Closed-Loop Representation

To construct a data-based closed-loop representation, it is unnecessary

to use all available data to increase the computational burden. We can

pick {uo[ρ1−n,ρ1−n+L1−1], ỹ
o
[ρ1−n,ρ1−n+L1−1]} from available data {uo[−n,L−n−1],

ỹo[−n,L−n−1]}, where L1 ∈ Z≥nu+(ny+nu)n and ρ1 ∈ Z[0,L−L1]. Note that all

available data are used when ρ1 = 0 and L1 = L. Then, we have the following

two Hankel matrices

Z̃ρ1,L1 = Zρ1,L1 +

[
Wρ1−n,n,L1

0nun×L1

]
, (5.11)

Z̃ρ1+1,L1 = Zρ1+1,L1 +

[
Wρ1−n+1,n,L1

0nun×L1

]
, (5.12)

where Zρ1,L1 =

[
Yρ1−n,n,L1

Uρ1−n,n,L1

]
. Regarding the picked data {uo[ρ1−n,ρ1−n+L1−1],

ỹo[ρ1−n,ρ1−n+L1−1]}, we have the following assumption, which shows a natural

requirement that the information loss caused by noise is not significant. In this

case, we can use the data to generate a data-based closed-loop representation.

Assumption 5.3. There exist scalars γ1 > 0 and γ2 > 0 such that 0nu×L1[
Wρ1−n,n,L1

0nun×L1

] 0nu×L1[
Wρ1−n,n,L1

0nun×L1

]T

≼ γ1

[
Uρ1,L1

Z̃ρ1,L1

] [
Uρ1,L1

Z̃ρ1,L1

]T
, (5.13)
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[
Wρ1−n+1,n,L1

0nun×L1

] [
Wρ1−n+1,n,L1

0nun×L1

]T
≼ γ2Z̃ρ1+1,L1Z̃

T
ρ1+1,L1

, (5.14)

where Uρ1,L1 = Uρ1,L̃,L1
with L̃ = 1.

Motivated by the remarkable results in [91], an equivalent representation

of Â+ B̂K̂ can be obtained as in the following lemma.

Lemma 5.3. For the picked data {uo[ρ1−n,ρ1−n+L1−1], ỹ
o
[ρ1−n,ρ1−n+L1−1]} with

Assumption 5.2, system (5.3a) with a control law u = K̂z can be parameterized

as:

Â+ B̂K̂ = (Z̃ρ1+1,L1 +Mρ1,L1)G, (5.15)

where G ∈ RL1×n(ny+nu) satisfies[
K̂

In(ny+nu)

]
=

[
Uρ1,L1G

Z̃ρ1,L1G

]
(5.16)

and Mρ1,L1 , Â

[
Wρ1−n,n,L1

0nun×L1

]
−
[
Wρ1−n+1,n,L1

0nun×L1

]
.

Proof. Under Assumption 5.2, for any given K̂, there exists G ∈ RL1×n(ny+nu)

satisfying (5.16) (by Rouché-Capelli theorem in [93]). Then, we have that

Â+ B̂K̂ =
[
B̂ Â

] [ K̂
In(ny+nu)

]
=

[
B̂ Â

] [Uρ1,L1G

Z̃ρ1,L1G

]

=
[
B̂ Â

]  Uρ1,L1G[
Yρ1−n,n,L1

Uρ1−n,n,L1

]
G+

[
Wρ1−n,n,L1

0nun×L1

]
G


=

(
Zρ1+1,L1 + Â

[
Wρ1−n,n,L1

0nun×L1

])
G

= (Z̃ρ1+1,L1 +Mρ1,L1)G.

�

Although a suitable representation of Â + B̂K̂ is obtained in Lemma 5.3,

it is difficult to know Mρ1,L1 in (5.15) since the noise data {ωo[ρ1−n,ρ1−n+L1−1]}

are unavailable. Hence, we provide the following lemma to deal with Mρ1,L1

based on Assumption 5.3.
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Lemma 5.4. Under Assumptions 5.2-5.3, there exist scalars γ1 < δ1 < 1 and

δ2 > 0 such that

Mρ1,L1M
T
ρ1,L1

≼ γ3Z̃ρ1+1,L1Z̃
T
ρ1+1,L1

, (5.17)

where γ3 = γ4+γ5γ2, γ4 =
(1+δ2)

(1−δ1)(δ1−γ1) , and γ5 = (1+δ−1
2 )+ δ1γ1(1+δ2)

(1−δ1)(δ1−γ1)(1−δ1γ1) .

Proof. By pre- and post-multiplying (5.13) by [B̂ Â] and its transpose, we

have that

Â

[
Wρ1−n,n,L1

0nun×L1

] [
Wρ1−n,n,L1

0nun×L1

]T
ÂT ≼ γ1Sρ1,L1S

T
ρ1,L1

, (5.18)

where Sρ1,L1 , ÂZ̃ρ1,L1 + B̂Uρ1,L1 . By applying Lemma 5.2, (5.18) can be

rewritten as

(
δ1
γ1

− 1)Â

[
Wρ1−n,n,L1

0nun×L1

] [
Wρ1−n,n,L1

0nun×L1

]T
ÂT

≼ δ1Sρ1,L1S
T
ρ1,L1

− Â

[
Wρ1−n,n,L1

0nun×L1

] [
Wρ1−n,n,L1

0nun×L1

]T
ÂT

=
δ1

1− δ1

(
Sρ1,L1S

T
ρ1,L1

+ Â

[
Wρ1−n,n,L1

0nun×L1

] [
Wρ1−n,n,L1

0nun×L1

]T
ÂT

)
− δ1

1− δ1

(
δ1Sρ1,L1S

T
ρ1,L1

+ δ−1
1 Â

[
Wρ1−n,n,L1

0nun×L1

] [
Wρ1−n,n,L1

0nun×L1

]T
ÂT

)
≼ δ1

1− δ1

(
Sρ1,L1S

T
ρ1,L1

+ Â

[
Wρ1−n,n,L1

0nun×L1

] [
Wρ1−n,n,L1

0nun×L1

]T
ÂT

)
− δ1

1− δ1

(
Sρ1,L1

[
Wρ1−n,n,L1

0nun×L1

]T
ÂT + Â

[
Wρ1−n,n,L1

0nun×L1

]
ST
ρ1,L1

)
=

δ1
1− δ1

Zρ1+1,L1Z
T
ρ1+1,L1

,

where γ1 < δ1 < 1. Then, we have that

Â

[
Wρ1−n,n,L1

0nun×L1

] [
Wρ1−n,n,L1

0nun×L1

]T
ÂT ≼ γ4Zρ1+1,L1Z

T
ρ1+1,L1

. (5.19)

98



Combining (5.14) and (5.19) and applying Lemma 5.2 with δ2 > 0 yield that

Mρ1,L1M
T
ρ1,L1

≼ (1 + δ2)Â

[
Wρ1−n,n,L1

0nun×L1

] [
Wρ1−n,n,L1

0nun×L1

]T
ÂT

+ (1 + δ−1
2 )

[
Wρ1−n+1,n,L1

0nun×L1

] [
Wρ1−n+1,n,L1

0nun×L1

]T
≼ γ4

(
(1− (1− δ1γ1))Zρ1+1,L1Z

T
ρ1+1,L1

+ (1− (1− δ1γ1)
−1)

[
Wρ1−n+1,n,L1

0nun×L1

] [
Wρ1−n+1,n,L1

0nun×L1

]T)
+ γ5

[
Wρ1−n+1,n,L1

0nun×L1

] [
Wρ1−n+1,n,L1

0nun×L1

]T
≼ γ4Z̃ρ1+1,L1Z̃

T
ρ1+1,L1

+ γ5γ2Z̃ρ1+1,L1Z̃
T
ρ1+1,L1

= γ3Z̃ρ1+1,L1Z̃
T
ρ1+1,L1

.

This completes the proof. �

5.2.2 Terminal Weighting Matrix P and Control Gain
K̂

The following theorem gives the desirable terminal weighting matrix P and

the corresponding terminal control gain K̂.

Theorem 5.1. Under Assumptions 5.2-5.3, for a given scalar δ3 > 0, if there

exist matrices F , P̄ ≻ 0, and H̄ ≻ 0 such that[
P̄ − (1 + δ−1

3 )γ3Z̃ρ1+1,L1Z̃
T
ρ1+1,L1

Z̃ρ1+1,L1F

(Z̃ρ1+1,L1F )
T (1 + δ3)

−1H̄

]
≽ 0 (5.20a)[

IL1 F
FT H̄

]
≽ 0 (5.20b) H̄ H̄T (Uρ1,L1F )

T

H̄ Q−1 0
Uρ1,L1F 0 R−1

 ≽ 0 (5.20c)

H̄ ≽ 2P̄ (5.20d)

H̄ = Z̃ρ1,L1F (5.20e)

then (5.10) is satisfied with P = P̄−1 and G = FH̄−1, and the terminal control
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gain is given by

K̂ = Uρ1,L1FH̄
−1. (5.21)

Proof. For (5.20a), using the Schur complement and substituting F = GH̄

and P̄ = P−1 yield that

(1 + δ3)(Z̃ρ1+1,L1G)H̄(Z̃ρ1+1,L1G)
T + (1 + δ−1

3 )γ3Z̃ρ1+1,L1Z̃
T
ρ1+1,L1

− P−1 ≼ 0.

(5.22)

According to (5.20b), GH̄GT ≼ IL1 holds. Then, combining it with (5.17)

in Lemma 5.4 yields that (Mρ1,L1G)H̄(Mρ1,L1G)
T ≼ γ3Z̃ρ1+1,L1Z̃

T
ρ1+1,L1

, which

implies that (5.22) can guarantee that

(1 + δ3)(Z̃ρ1+1,L1G)H̄(Z̃ρ1+1,L1G)
T + (1 + δ−1

3 )(Mρ1,L1G)H̄(Mρ1,L1G)
T

− P−1 ≼ 0. (5.23)

Then, applying Lemma 5.2 to (5.23) yields that

((Z̃ρ1+1,L1 +Mρ1,L1)G)H̄((Z̃ρ1+1,L1 +Mρ1,L1)G)
T − P−1 ≼ 0. (5.24)

For (5.20c), using the Schur complement yields that

H̄ ≽ H̄TQH̄ + (Uρ1,L1F )
TRUρ1,L1F. (5.25)

Pre- and post-multiplying (5.25) by (H̄−1)T and its transpose, and substituting

(5.21) into it yield that

H̄−1 ≽ Q+ (Uρ1,L1FH̄
−1)TRUρ1,L1FH̄

−1 = Q+ K̂TRK̂. (5.26)

According to (5.20d), H̄−1 ≼ P−H̄−1 holds. Together with (5.26), it indicates

that (P − Q − K̂TRK̂)−1 ≼ H̄. Combining this with (5.24), the following

condition is guaranteed:

((Z̃ρ1+1,L1 +Mρ1,L1)G)(P −Q− K̂TRK̂)−1((Z̃ρ1+1,L1 +Mρ1,L1)G)
T

− P−1 ≼ 0. (5.27)
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Using the Schur complement, equation (5.27) is equivalent to

((Z̃ρ1+1,L1 +Mρ1,L1)G)
TP ((Z̃ρ1+1,L1 +Mρ1,L1)G)− (P −Q− K̂TRK̂) ≼ 0.

According to Lemma 5.3, i.e., Â+B̂K̂ = (Z̃ρ1+1,L1+Mρ1,L1)G, equation (5.10)

is guaranteed. In addition, equations (5.20e) and (5.21) are consistent with

(5.16). �

Remark 5.2. Theorem 5.1 involves two important parameters: δ3 and γ3. It is

seen from Lemma 5.4 that γ3 is related to δ1, δ2, γ1, and γ2. Although selecting

different parameters may lead to different terminal sets, no big difference on

the entire control performance would be caused as these sets work on terminal

states only. Hence, here, we are not excessively concerned with the value

comparison between these parameters.

5.2.3 The Value of α

Based on the designed terminal weighting matrix P and control gain K̂, α

can be obtained by the method in [94] as follows:

max
α

α

s.t. ∥P (− 1
2
)HT

z,ℓ∥2α ≤ h2z,ℓ, ℓ = 1, . . . , n(ly + lu) (5.28a)

∥P (− 1
2
)K̂THT

u,j∥2α ≤ h2u,j, j = 1, . . . , lu (5.28b)

where Hz = diag{Hy, . . . , Hy︸ ︷︷ ︸
n

, Hu, . . . , Hu︸ ︷︷ ︸
n

} and hz = [hy; . . . ;hy︸ ︷︷ ︸
n

;hu; . . . ;hu︸ ︷︷ ︸
n

];

Hz,ℓ and hz,ℓ correspond to the ℓth row of Hz and hz, respectively. Since

problem (5.28) is a linear program with one variable α, a variety of efficient

solution methods are available to solve it and α is easy to obtain.

5.2.4 Terminal Inequality Constraint

Define a feasible region of the optimization problem in (5.6) as:

F(Zf , N) ={z̄0 ∈ Rny × · · · × Rny︸ ︷︷ ︸
n

×Rnu × · · · × Rnu︸ ︷︷ ︸
n

| there exists ūi ∈ U ,

i ∈ Z[0,N−1] such that ȳi ∈ Y and z̄N ∈ Zf}.
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Given a terminal equality set

Z0 ,{z̄ ∈ Rny × · · · × Rny︸ ︷︷ ︸
n

×Rnu × · · · × Rnu︸ ︷︷ ︸
n

| z̄ = 0n(ny+nu)×1},

the corresponding feasible region with the terminal equality constraint is

F(Z0, N). Obviously, Z0 ⊆ Zf . Then, we have the following two proposi-

tions to show the advantages of terminal inequality constraints over terminal

equality counterparts.

Proposition 5.1. Consider a terminal equality set Z0 and a terminal in-

equality set Zf with Z0 ⊆ Zf . If there exist two feasible regions F(Z0, N)

and F(Zf , N) with the same prediction horizon N ∈ Z≥n, then it holds that

F(Z0, N) ⊆ F(Zf , N).

Proof. For every initial state z̄t ∈ F(Z0, N), z̄t can be steered to Z0 in N

steps. Since Z0 ⊆ Zf , z̄t can also be steered to Zf in N steps, which implies

that the optimization problem with the terminal set Zf is feasible with the

initial state z̄t. Hence, z̄t ∈ F(Zf , N). This proves that F(Z0, N) ⊆ F(Zf , N)

because z̄t ∈ F(Z0, N) is arbitrary. �

Proposition 5.2. Consider a terminal equality set Z0 and a terminal inequal-

ity set Zf with Z0 ⊆ Zf . For two feasible regions F(Z0, N0) and F(Zf , Nf ),

where N0 ∈ Z≥N0, Nf ∈ Z≥Nf
, and N0 and Nf are the minimum lower bounds

of N0 and Nf , respectively, it holds that N0 ≥ Nf . Specifically, N0 = Nf if

and only if F(Z0, Nf ) exists.

Proof. According to Proposition 5.1, since Z0 ⊆ Zf , F(Zf , N0) always exists

and it holds that F(Z0, N0) ⊆ F(Zf , N0), which implies that Nf ∈ Z≥N0 .

Since Nf is the minimum lower bound of Nf , we have Z≥N0 ⊆ Z≥Nf
. Hence,

N0 ≥ Nf .

Two cases should be considered for F(Z0, Nf ) under the condition Z0 ⊆

Zf . First, there is no such an initial state z̄t ∈ F(Zf , Nf ) that can be steered

to Z0 in Nf steps, i.e., F(Z0, Nf ) does not exist, which implies that Nf < N0.

Second, there exist some initial states z̄t ∈ F(Zf , Nf ) that can be steered
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to Z0 in Nf steps, i.e., F(Z0, Nf ) exists, which implies that N0 ∈ Z≥Nf
.

Since N0 is the minimum lower bound of N0, we have Z≥Nf
⊆ Z≥N0 . Note

that Z≥N0 ⊆ Z≥Nf
always holds. Hence, Nf = N0 if and only if F(Z0, Nf )

exists. �

Propositions 5.1 and 5.2 indicate that compared with a terminal equality

constraint, a terminal inequality constraint can lead to a larger feasible region

and a lower bound for the prediction horizon N .

Remark 5.3. In the above analysis, we just consider a terminal equality con-

straint with the origin. We can also consider a more general case for a desired

equilibrium z̄e. That is to define a terminal inequality set as

Zf ,{z̄ ∈ Rny × · · · × Rny︸ ︷︷ ︸
n

×Rnu × · · · × Rnu︸ ︷︷ ︸
n

| (z̄ − z̄e)TP (z̄ − z̄e) ≤ α}

and the corresponding terminal equality set as

Z0 , {z̄ ∈ Rny × · · · × Rny︸ ︷︷ ︸
n

×Rnu × · · · × Rnu︸ ︷︷ ︸
n

| z̄ = z̄e}.

Similar results can also be obtained as Propositions 5.1-5.2 for these two ter-

minal sets.

5.3 Event-Triggered Scheme Design

Most existing event-triggered schemes are derived and implemented based

on an explicit model of the plant, and studies based on data-driven approaches

remain few. If we extend model-based event-triggered schemes directly, it

may not work well due to the unavoidable mismatch between the data-driven

model and the original plant. The n-step strategy proposed in [76], that is,

solving the data-driven MPC optimization problem for every n-step regardless

of this mismatch, has the same problem. Specifically, if there is a significant

mismatch between the data-driven model and the original plant, even if the

optimization problem can be solved, the obtained predicted trajectory usually

does not satisfy the dynamics of the original system. Hence, in a data-driven
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framework, we need to design a novel event-triggered scheme that can not only

take this mismatch into consideration, but also save computational resources

effectively, which is undoubtedly a great challenge.

Seen from Figure 5.1, there is a feedback from the robust data-driven

MPC controller to the event trigger which can be used to characterize the

mismatch between the data-driven model and the original plant, namely, the

output error e(t). As mentioned in Section 5.1, if e(t) actually coincides with

the actual noise ω(t), then it indicates that the data-driven model is nearly

consistent with the original plant. Thus, the output error e(t) can be regarded

as an empirically observed counterpart of the actual noise ω(t) and we can

link this connection to the event verification. Although true noises in the

control process are unknown to both controller and event trigger, we can use

Assumption 5.1 on noises to design the event trigger in (5.7) to decide when

to solve (5.6).

5.3.1 Triggering Threshold

Define the triggering function as φ(e(t)) = ∥e(t)∥, which can be regarded

as an empirical index related to noises and is sampled from the control process.

Comparatively, the theoretical index is φ(ω(t)) = ∥ω(t)∥, which is a random

variable because ω(t) is assumed to be independently and identically distribut-

ed. Hence, by checking if empirically observed indexes φ(e(t)) coincide with

theoretically derived properties, we are able to detect significant mismatches

between the data-driven model and the original plant. Accordingly, based on

Assumption 5.1, we can construct both deterministic and stochastic criteria

to select the triggering threshold κ in (5.7).

First, if there is no access to any information of stochastic distribution

of noises, a deterministic event-triggered condition can be considered, i.e.,

directly pre-specifying the threshold κ based on the condition ∥ω(t)∥2 ≤ ω̄:

0 ≤ κ ≤
√
ω̄ + ϵ, (5.29)

where ϵ ≥ 0 is a prescribed scalar which is used to compensate for tracking or
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other unknown errors.

Second, if some information about stochastic distribution of noises is known,

a stochastic event-triggered condition can be generated to choose κ from a s-

tatistical point of view such that

P(∥e(t)∥ > κ) < η, (5.30)

i.e., the probability of triggering is less than a desired confidence level η. We

are able to adopt the following Markov’s inequality to design κ in (5.30).

Lemma 5.5. [82] If X is a random variable with E(∥X∥r) < ∞ for r > 0

and κ > 0, then

P(∥X∥ > κ) ≤ E(∥X∥r)
κr

.

According to Lemma 5.5, if we can derive the mean, variance, or higher

moments of the random variable ∥ω(t)∥ based on known information of noises,

given a desired confidence level η, the threshold κ can be designed by

κ = r

√
E(∥ω(t)∥r)

η
, (5.31)

where the parameter r represents the r-th moment of ∥ω(t)∥ and can be se-

lected based on known information of noises.

As the event-triggered condition is dependent on the output errors, the

feedback from the robust data-driven MPC controller to the event trigger

plays a significant role in our design. Note that this feedback not only affects

the event verification, but also can be used to tune parameters λε and λg of

the robust data-driven MPC optimization problem in (5.6) manually, since an

inappropriate λε or λg may lead to large output errors.

5.3.2 Event-Triggered Controller

The event-triggered controller in (5.9) to be designed consists of a robust

MPC controller and a local controller. At the triggering instant tj, the robust

data-driven MPC optimization problem is solved and the optimal solution
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{ū⋆[−n,N−1](tj), ȳ
⋆
[−n,N−1](tj), g

⋆(tj), ε
⋆
[−n,N−1](tj)} is obtained. Then, for tj ≤

t < tj + N , the control input applied to the plant is u(t) = ū⋆t−tj(tj); for

tj+N ≤ t < tj+1, namely, ∆j ≥ N , the local controller in (5.8) starts to work.

To guarantee recursive feasibility of robust data-driven MPC and stability of

the system, the local controller gain is determined by the terminal control

gain of robust MPC, namely, Kloc = K̂. Consequently, the event-triggered

controller is designed by

u(t) =

{
ū⋆t−tj(tj), tj ≤ t < tj +N,

K̂z̃(t), tj +N ≤ t < tj+1.
(5.32)

Note that the local controller works for ∆j ≥ N only. If the triggering

threshold κ is sufficiently small or the prediction horizon N is sufficiently large,

then it is impossible that the inter-execution time ∆j exceeds the prediction

horizon N and thus the local controller may never be used.

5.4 Recursive Feasibility and Stability Analy-

sis

In this section, recursive feasibility of the proposed event-triggered robust

data-driven MPC and stability of the system in (5.3) are analyzed. The analy-

sis of recursive feasibility is based on the solutions of the optimization problem

after a period of time. Assume that the data-driven MPC controller can store

all predicted data. At t ∈ Z>0, pick {ū[ρ2−n,ρ2−n+L2−1], ȳ[ρ2−n,ρ2−n+L2−1]} from

past predicted data, where L2 ∈ Z≥nu+(ny+nu)n and ρ2 ∈ Z[n,t−L2+1], and ob-

tain the associated Hankel matrices Ūρ2,L2 and Z̄ρ2,L2 . Then, we provide the

following lemma for the prediction model in (5.4).

Lemma 5.6. Let

[
Ūρ2,L2

Z̄ρ2,L2

]
be full-row rank. The prediction model in (5.4)

with a state feedback ū = K̂z̄ has an equivalent representation:

z̄(t+ 1) = Ξz̄(t), (5.33)

where Ξ , Z̄ρ2+1,L2

[
Ūρ2,L2

Z̄ρ2,L2

]† [
Uρ1,L1G

Z̃ρ1,L1G

]
.
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Proof. According to Theorem 1 in [91], we have the following representation

for unknown system matrices:

[B̂ Â] = Z̄ρ2+1,L2

[
Ūρ2,L2

Z̄ρ2,L2

]†
. (5.34)

Then, substituting ū = K̂z̄, (5.34), and (5.16) into (5.4) yields (5.33). �

Remark 5.4. Although both (5.15) and (5.33) show an equivalent represen-

tation of Â+ B̂K̂, they have different roles: (5.15) is helpful to the design of

the terminal set with available data and cannot be calculated since Mρ1,L1 is

unknown; while (5.33) is used for the analysis of recursive feasibility after the

whole design is completed, and can be calculated with the predicted data.

At t ∈ Z>tj , by using (5.33), the candidate predicted output ȳ[0,N−1](t)

and input ū[0,N−1](t) can be constructed based on the latest optimal solution

{ū⋆[0,N−1](tj), ȳ
⋆
[0,N−1](tj)}. If ∆j < N , we have that

ȳi(tj+1) =

{
ȳ⋆i+∆j

(tj), i ∈ Z[0,N−1−∆j ],

ΛyΞ
∆j−N+i+1z̄⋆N(tj), i ∈ Z[N−∆j ,N−1],

ūi(tj+1) =

{
ū⋆i+∆j

(tj), i ∈ Z[0,N−1−∆j ],

K̂Ξ∆j−N+iz̄⋆N(tj), i ∈ Z[N−∆j ,N−1],

(5.35)

where Λy = [0ny×ny(n−1) Iny 0ny×nun]. If ∆j ≥ N , we have{
ȳi(tj+1) = ΛyΞ

∆j−N+i+1z̄⋆N(tj),

ūi(tj+1) = K̂Ξ∆j−N+iz̄⋆N(tj),
i ∈ Z[0,N−1]. (5.36)

5.4.1 Recursive Feasibility

Theorem 5.2. Under Assumptions 5.1-5.3, if the optimization problem in

(5.6) is feasible at tj, then it is feasible at tj+1.

Proof. Based on the optimal solution of the triggering instant tj, a feasi-

ble candidate solution {ū[−n,N−1](tj+1), ȳ[−n,N−1](tj+1), g(tj+1), ε[−n,N−1](tj+1)}

can be constructed at tj+1. For i ∈ Z[−n,−1], ȳi(tj+1) = ȳ⋆i+∆j
(tj) + e(tj+1 + i)
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and ūi(tj+1) = ū⋆i+∆j
(tj) such that constraint (5.6b) is satisfied. Then, accord-

ing to (5.35) or (5.36), ȳ[0,N−1](tj+1) and ū[0,N−1](tj+1) are constructed and

satisfy that

[
ū[−n,N−1](tj+1)
ȳ[−n,N−1](tj+1)

]
= Ω∆j

[
ū⋆[−n,N−1](tj)

ȳ⋆[−n,N−1](tj)

]
+

 0(n+N)nu×1[
e[tj+1−n,tj+1−1]

0Nny×1

] , (5.37)

where

Ω=


[0(n+N−1)nu×nu I(n+N−1)nu 0(n+N−1)nu×(n+N)ny ]

K̂Λyu
[0(n+N−1)ny×(n+N)nu 0(n+N−1)ny×ny I(n+N−1)ny ]

ΛyΞΛyu

 ,
Λyu =

[
0nyn×(n+N)nu [0nyn×Nny Inyn]

[0nun×Nnu Inun] 0nun×(n+N)ny

]
.

Assumption 5.2 indicates that the matrix

[
U−n,n+N,L−(n+N)+1

Ỹ−n,n+N,L−(n+N)+1

]
has full row

rank, thus it admits a right inverse. Accordingly, ε[−n,N−1](tj+1) and g(tj+1)

are chosen as

ε[−n,N−1](tj+1) = ΛεΩ
∆j

[
0(n+N)nu×1

ε⋆[−n,N−1](tj)

]
, (5.38)

g(tj+1) =

[
U−n,n+N,L−(n+N)+1

Ỹ−n,n+N,L−(n+N)+1

]†(
Ω∆j

[
U−n,n+N,L−(n+N)+1

Ỹ−n,n+N,L−(n+N)+1

]

g⋆(tj) +

−ΛgΩ
∆j

[
0(n+N)nu×1

ε⋆[−n,N−1](tj)

]
[
e[tj+1−n,tj+1−1]

0Nny×1

]
)

, (5.39)

where Λε = [0(n+N)ny×(n+N)nu I(n+N)ny ] and Λg = [I(n+N)nu 0(n+N)nu×(n+N)ny ].

Combining (5.37), (5.38), and (5.39) indicates that constraint (5.6a) is guar-

anteed.

If ∆j < N , for i ∈ Z[0,N−1−∆j ], since ū
⋆
i+∆j

(tj) ∈ U and ȳ⋆i+∆j
(tj) ∈ Y , it

follows ūi(tj+1) ∈ U and ȳi(tj+1) ∈ Y . For i ∈ Z[N−∆j ,N−1], since z̄
⋆
N(tj) ∈ Zf ,

we have that z̄⋆N(tj)
T(Â + B̂K̂)TP (Â + B̂K̂)z̄⋆N(tj) ≤ z̄⋆N(tj)

TP z̄⋆N(tj), which

implies that constraint (5.6e) is guaranteed. Combining it with (5.28a) yields

108



that

∥P (− 1
2
)HT

z,ℓ∥2α = ∥P (− 1
2
)HT

z,ℓ∥2∥z̄⋆N(tj)TP
1
2∥2

≥ ∥Hz,ℓz̄
⋆
N(tj)∥2, ℓ = 1, . . . , n(ly + lu),

which implies thatHyȳi(tj+1) ≤ hy. According to (5.28b), we haveHuūi(tj+1) ≤

hu. Hence, constraints (5.6c) and (5.6d) are guaranteed. If ∆j ≥ N , according

to (5.36), similar results are obtained to guarantee constraints (5.6c)-(5.6e).

Therefore, at tj+1, the optimization problem in (5.6) is feasible with the con-

structed candidate solution. �

5.4.2 Input-to-State Stability

To analyze the stability, a variant of definition on input-to-state stability in

[95] is given. Before proceeding, we need to introduce the following notations:

A function σ: R≥0 → R≥0 is a K function if it is continuous, strictly increasing,

and σ(0) = 0; A function β is a K∞ function if it is a K function and β(x) → ∞

as x→ ∞.

Definition 5.2. System (5.3) with data-driven model (5.6a) is input-to-state

stable (ISS) with e(t) and g(t) as the inputs, if there exist a positive definite

function J(z̃(t)), K∞ functions β1, β2, and β3, and K functions σ1 and σ2

such that β1(∥z̃(t)∥) ≤ J(z̃(t)) ≤ β2(∥z̃(t)∥) and J(z̃(t + 1)) − J(z̃(t)) ≤

−β3(∥z̃(t)∥) + σ1(∥e(t)∥) + σ2(∥g(t)∥).

Theorem 5.3. Under Assumptions 5.1-5.3, system (5.3) with data-driven

model (5.6a) is ISS under the event-triggered condition in (5.7).

Proof. According to the candidate solution, the candidate cost J(z̃(tj+1)) can
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be derived by

J(z̃(tj+1)) =J
⋆(z̃(tj))−

N−1∑
i=0

l(ū⋆i−1(tj), ȳ
⋆
i−1(tj))− V (z̄⋆N(tj))

+
N−1∑
i=0

l(ūi−1(tj+1), ȳi−1(tj+1)) + V (z̄N(tj+1))

+ λε(∥ε[−n,N−1](tj+1)∥2 − ∥ε⋆[−n,N−1](tj)∥2)

+ λgω̄(∥g(tj+1)∥2 − ∥g⋆(tj)∥2). (5.40)

Firstly, we need to derive some useful bounds for the terms in (5.40). Accord-

ingly, input-to-state stability will be proved.

1) Bound of ∥ε⋆[−n,N−1](tj)∥2

At the triggering instant tj, since Ỹ−n,n+N,L−(n+N)+1 = Y−n,n+N,L−(n+N)+1+

W−n,n+N,L−(n+N)+1 and the predicted output ȳ⋆[−n,N−1](tj) is assumed to satisfy

ȳ⋆[−n,N−1](tj) = Y−n,n+N,L−(n+N)+1g
⋆(tj). According to (5.6a) and (5.6b), we

have that[
ε⋆[−n,−1](tj)

ε⋆[0,N−1](tj)

]
=

[
Ỹ−n,n,L−(n+N)+1

Ỹ0,N,L−(n+N)+1

]
g⋆(tj)−

[
ỹ[tj−n,tj−1]

ȳ⋆[0,N−1](tj)

]
=

[
W−n,n,L−(n+N)+1g

⋆(tj)− e[tj−n,tj−1]

W0,N,L−(n+N)+1g
⋆(tj)

]
, (5.41)

which demonstrates that the slack variable ε[−n,N−1](tj) can account for the

noisy part. Since ∥Wi,L−(n+N)+1∥2 ≤ trace(Wi,L−(n+N)+1W
T
i,L−(n+N)+1) = (L−

(n+N) + 1)ω̄, i ∈ Z, by applying Lemma 5.2 to (5.41), we have that

∥ε⋆[−n,N−1](tj)∥2 ≤((1 + δ4)n+N)(L− (n+N) + 1)ω̄∥g⋆(tj)∥2

+ (1 + δ−1
4 )∥e[tj−n,tj−1]∥2. (5.42)

2) Bound of ∥ε[−n,N−1](tj+1)∥2 − ∥ε⋆[−n,N−1](tj)∥2

According to (5.38), we have that

∥ε[−n,N−1](tj+1)∥2 ≤ ∥Ω∆j∥2∥ε⋆[−n,N−1](tj)∥2.

Since (5.10) is guaranteed, it follows that lim∆j→∞ ∥Ξ∆j∥2 = 0, which implies

that lim∆j→∞ ∥Ω∆j∥2 = 0. Note that ∥Ω∥2 ≥ 1 since “1” is a singular value of

110



Ω and ∥Λε∥2 = 1. Hence, there must exist θ ∈ Z≥1 such that ∥Ωθ∥2 ≥ 1 and

∥Ωθ∥2 ≥ ∥Ω∆j∥2 for all ∆j ∈ Z≥1. Hence, we have that

∥ε[−n,N−1](tj+1)∥2 − ∥ε⋆[−n,N−1](tj)∥2 ≤ (∥Ωθ∥2 − 1)∥ε⋆[−n,N−1](tj)∥2. (5.43)

3) Bound of ∥g(tj+1)∥2 − ∥g⋆(tj)∥2

According to (5.39), we have

∥g(tj+1)∥2 ≤
µ1

µ2

(1 + δ5)∥Ωθ∥2∥g⋆(tj)∥2 +
1

µ2

(1 + δ−1
5 )∥Ω∆j∥2

× ∥ε⋆[−n,N−1](tj)∥2 +
1

µ2

(1 + δ−1
5 )∥Â∆j∥2∥e[tj−n,tj−1]∥2, (5.44)

where Â is obtained by (5.34), and[
e[tj+1−n,tj+1−1]

0nnu×1

]
= Â∆j

[
e[tj−n,tj−1]

0nnu×1

]
,

µ1 = λmax

([
U−n,n+N,L−(n+N)+1

Ỹ−n,n+N,L−(n+N)+1

] [
U−n,n+N,L−(n+N)+1

Ỹ−n,n+N,L−(n+N)+1

]T)
,

µ2 = λmin

([
U−n,n+N,L−(n+N)+1

Ỹ−n,n+N,L−(n+N)+1

] [
U−n,n+N,L−(n+N)+1

Ỹ−n,n+N,L−(n+N)+1

]T )
.

Note that µ1
µ2
∥Ωθ∥2 ≥ 1 and ∥Λg∥2 = 1.

4) Bound of V (z̄N(tj+1))− V (z̄N(tj))

Since z̄N(tj+1) = Ξ∆j z̄⋆N(tj), combining this with (5.10) and (5.33) yields

that

V (z̄N(tj+1))− V (z̄N(tj)) ≤ −
~−1∑
i=0

z̄N(tj)
TΞi

T
(Q+ K̂TRK̂)Ξiz̄N(tj)

≤ −
~−1∑
i=0

l(ūN−i−1(tj+1), ȳN−i−1(tj+1)), (5.45)

where ~ , min{N,∆j}.

5) ISS

Let G = diag{0ny×ny , . . . ,0ny×ny︸ ︷︷ ︸
n−1

, Q,0nu×nu , . . . ,0nu×nu︸ ︷︷ ︸
n−1

, R}. Then, we have

that l(ū⋆i−1(tj), ȳ
⋆
i−1(tj)) = z̄⋆i (tj)

TGz̄⋆i (tj). Accordingly, there exists a q > 0

such that l(ū⋆i−1(tj), ȳ
⋆
i−1(tj)) ≥ q∥z̄⋆i (tj)∥2. According to (5.6a) and (5.6b),
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we have that z̄⋆0(tj) = z̃(tj) and ȳ−1(tj+1) = Ỹ−1,L−(n+N)+1g(tj+1)− ε−1(tj+1).

Note that the optimal cost at the triggering instant tj+1 satisfies J
⋆(z̃(tj+1)) ≤

J(z̃(tj+1)). Then, substituting (5.42), (5.43), (5.44), and (5.45) into (5.40)

yields that

J⋆(z̃(tj+1))− J⋆(z̃(tj))

≤ −q∥z̃⋆(tj)∥2 + ψ1∥e[tj−n,tj−1]∥2 + ψ2∥g⋆(tj)∥2, (5.46)

where

ψ1 =
1

µ2

(ψ3 + λgω̄)(1 + δ−1
5 )∥Â∆j∥2 + ψ4(1 + δ−1

4 ),

ψ2 =
µ1

µ2

(ψ3 + λgω̄)(1 + δ5)∥Ωθ∥2 + ψ5 − λgω̄,

ψ3 = (1 + δ6)λmax(Q)∥Ỹ−1,L−(n+N)+1∥2,

ψ4 =
1

µ2

(ψ3 + λgω̄)(1 + δ−1
5 )∥Ω∆j∥2 + ((1 + δ−1

6 )λmax(Q) + λε)∥Ωθ∥2 − λε,

ψ5 = ψ4((1 + δ4)n+N)(L− (n+N) + 1)ω̄.

According to Definition 2, system (5.3) with data-driven model (5.6a) is ISS.

�

5.5 Simulation Example

Example 5.1. Consider the four tank system provided in [76]:

x(t+ 1) =


0.921 0 0.041 0
0 0.918 0 0.033
0 0 0.924 0
0 0 0 0.937

 x(t) +

0.017 0.001
0.001 0.023
0 0.061

0.072 0

 u(t)
y(t) =

[
1 0 0 0
0 1 0 0

]
x(t).

An input-output trajectory of length L = 400 is measured, where the input is

chosen randomly from the unit interval and the output is subject to uniformly

distributed noises in [−0.002, 0.002]2; the simulation step is Tsim = 200; the

control goal is to track the setpoints: ys = [0.65; 0.77] and us = [1; 1]. We

execute a Monte Carlo simulation with 100 samples. To verify the effectiveness
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Figure 5.2: Feasible regions with different terminal constraints.
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Figure 5.3: Evolutions of J with different terminal constraints.

of the proposed approach, we compare it with a multistep data-driven MPC

strategy with a terminal equality constraint in [76] and have the two following

groups of comparisons.

A. A terminal inequality constraint vs. a terminal equality con-

straint

To construct a terminal inequality constraint, we pick some data with

L1 = 200 and ρ1 = 0 from the initial input-output trajectory, and choose

γ1 = 0.08, γ2 = 10, δ1 = 0.5, and δ2 = 0.1. Then, by solving problems

(5.20) and (5.28) off-line, the terminal ingredients are obtained. Although

the introduction of the slack variable ε[−n,N−1](t) ensures the feasibility of

the optimization problem in (5.6) at all instants, it also lowers the effects of

terminal constraints on the feasibility of (5.6). Hence, to focus on such effects,

we firstly select a feasible ε[−n,N−1](t) by solving (5.6) and then depict the
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Figure 5.4: Output trajectories with different triggering strategies.
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Figure 5.5: Control input trajectories with different triggering strategies.
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Figure 5.6: Evolutions of J with different triggering strategies.

feasible regions for different terminal constraints, respectively, which are shown

in Figure 5.2. It is seen that the feasible region with a terminal inequality

constraint is larger than that with a terminal equality constraint. Seen from

Figure 5.3, the evolution of the performance cost J of the optimization problem
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Event-triggered data-driven MPC n-step data-driven MPC in [10]
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Figure 5.7: Average inter-execution time comparison.
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Figure 5.8: Performance cost comparison.

with a terminal inequality constraint is better.

B. Event-triggered scheme vs. n-step strategy

To show the advantages of the proposed event-triggered scheme over the

multistep strategy provided in [76], the deterministic event-triggered scheme

in (5.29) with κ = 0.03 is considered. Seen from Figures 5.4-5.6, the n-step

strategy in [76] provides worse control performance and causes wider fluctu-

ations of outputs before the system is controlled well; by using the designed

event-triggered scheme, the optimization problem is solved frequently at the

beginning and then the number of triggering instants become decreasing after

the system is in good control, while the instants of solving the optimization

problem in the n-step strategy are fixed, which reflects the flexibility of the

proposed approach. Box plots in Figures 5.7-5.8 are used to show average

inter-execution times and control performance costs, which implies that the
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proposed event-triggered data-driven MPC controller can obtain a longer av-

erage inter-execution time and better control performance than that in [76].

5.6 Summary

In this chapter, an event-triggered robust MPC approach with a terminal

inequality constraint has been proposed for unknown systems by using ini-

tially measured input-output data only. Compared with a terminal equality

constraint, the constructed terminal inequality constraint for the data-driven

MPC optimization problem can lead to a larger feasible region and a low-

er bound for the prediction horizon, and simplify the analysis of recursive

feasibility and input-to-state stability. An event-triggered scheme has been

designed to trigger the solution of the data-driven MPC optimization problem

when necessary, leading to the reduction of resource consumption. Simulation

results have verified the effectiveness of the proposed approach.

116



Chapter 6

An Application to Constrained
Queueing Networks ∗

This chapter investigates an event-triggered stochastic MPC approach for

the scheduling problem of constrained queueing networks. Motivated by the

idea of event verification in Chapter 4, a novel event-triggered scheme combin-

ing event checking and triggering with the arrival frequency and the number

of new packets is designed to achieve non-persistent event monitoring and ver-

ification. Under this scheme, a stochastic MPC optimization problem which

considers the constituency and positiveness constraints, the dynamic topolo-

gy, and the stochasticity in packet arrival is solved when necessary, leading

to reduced computational burden and improved utilization of communication

resources. With a constructed stability region of arrival rates, the stability

of queueing networks is discussed by the relation between the inter-execution

time and objective function.

This chapter is organized as follows. Section 6.1 describes a queueing

network with constraints and formulates a control strategy for the scheduling

problem. Section 6.2 designs an event-triggered stochastic MPC approach.

Section 6.3 discusses the stability of queueing networks. Section 6.4 verifies

the proposed approach by numerical examples. Section 6.5 concludes this

chapter.

∗A version of this chapter has been submitted to IEEE Transactions on Network Science
and Engineering as: Li Deng, Zhan Shu, and Tongwen Chen, Event-triggered stochastic
model predictive control for constrained queueing networks, Jun. 2023.
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6.1 Problem Formulation

Consider a discrete-time, packet-level network consisting of nq queues and

nu links:

q(t+ 1) = q(t) + R(t)u(t) + a(t), (6.1)

where q(t) ∈ Z+nq is the queue vector which includes the number of packets

waiting in each queue in time slot t ∈ Z+, namely, q(t)[i], i = 1, 2, . . . , nq

represents the length of ith queue; u(t) ∈ {0, 1}nu is the binary control vector

and {0, 1}nu represents the set of nu-dimensional vectors with elements being

0 or 1; a(t) ∈ Z+nq is a stochastic arrival vector and ā , E{a(t)} is called

the arrival rate; R(t) ∈ Znq×nu is the routing matrix that reflects the number

of packets received from or sent to other queues or leaving the queue system

in time slot t. In practice, not every communication link could be activated

during the same time slot due to some limitations, such as resources and

reliability. Hence, the control vector u(t) is used to activate some suitable

links and make rational use of resources, that is, activating some columns of

R(t). As a result, some columns of R(t) are set to 0, whereas others are the

same as in R(t).

6.1.1 Constraints

Due to the complexity of queueing networks, the link activation process,

network topology, and queue lengths are subject to the following constraints:

• Constituency constraint:

Cu(t) ≤ c, (6.2)

where C ∈ Z+nc×nu and c ∈ Z+nc . Some links may not be activat-

ed simultaneously because they share the same channels. Hence, this

constraint is used to prohibit these links from being activated simulta-

neously.
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• Dynamic topology: The routing matrix R(t) is time-varying, which is

governed by an irreducible and aperiodic discrete-time Markov chain

(DTMC) in combination with a Bernoulli trial. A diagonal weight ma-

trix M(t) ∈ {0, 1}nu×nu is introduced to describe the success probability

of activated communication links and each diagonal element of M(t)

is Bernoulli distributed, i.e., M(t) ∼ B(Wr(t)) and E{M(t)} = Wr(t),

whereWr(t) is picked from a predetermined set {W1, . . . ,Wnr} and r(t) ∈

DTMC(Υ, P, r(0)) with a Markov state set Υ = {1, . . . , nr}, a transition

probability matrix P , and an initial state r(0). Accordingly, a dynamic

topology is described by

R(t) = RM(t) (6.3)

subject to M(t) ∼ B(Wr(t))

Wr(t) ∈ {W1, . . . ,Wnr}

r(t) ∈ DTMC(Υ, P, r(0)),

where R is an invariant matrix containing all possible communication

routes among queues and satisfies
∑nq

ℓ=1(R1nu)
[ℓ] < 0; 1n represents n-

dimensional column vector with all elements being 1.

• Positiveness constraint: For any time slot t ∈ Z+, q(t) ≥ 0 should be

guaranteed. As one single packet can only traverse one single link in

a time slot, to avoid that the system routes a single packet through

multiple queues in a time slot, the maximum number of packets leaving

from each queue should be less than the total packets in this queue, that

is,

− R̃(t)u(t) ≤ q(t), (6.4)

where R̃(t) is equal to R(t) without its positive elements, i.e., all positive

elements of R(t) are set to zero.
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Figure 6.1: An example of a queueing network.

For illustration, we refer to a network composed of 2 arrivals, 3 nodes, and

4 links in Figure 6.1. It is shown that

R =

−τ1 −τ2 0 0
τ1 0 −τ3 0
0 τ2 τ3 −τ4

 .
If it is required that the first link and second link cannot be activated in the

same time slot, then the constituency matrices can be determined by

C = [1 1 0 0], c = 1.

Consider the dynamic topology of this network with the following matrices:

P =

[
0.2 0.8
0.5 0.5

]
, Υ = {1, 2},

W1 = diag{1, 0, 1, 0}, W2 = diag{0.9, 0.1, 0.3, 0.6}.

It indicates that, in time slot t, if r(t) = 1, thenM(t) ∼ B(W1), implying that

the success probabilities of routing packets follow the corresponding diagonal

element of W1, for example, the success probability that the first queue sends

τ1 packets to the second queue is 1 if the 1st link is activated and the success

probability that the first queue sends τ2 packets to the third queue is 0 even

if the 2nd link is activated; for the next time slot t + 1, the probability from

“r(t) = 1” to “r(t + 1) = 1” is 0.2 and the probability from “r(t) = 1” to

“r(t+ 1) = 2” is 0.8 according to the transition probability matrix P .

6.1.2 Control Strategy

To deal with constraints (6.2)-(6.4) of the queueing network in (6.1), MPC

is applied to generate dynamic link activation schedules in each time slot. Let
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N ∈ Z+
≥1 be the prediction horizon of MPC. To reduce the computational

burden brought by MPC and improve utilization of communication resources,

an event-triggered scheme with an adaptive checking strategy dependent on

new arrival is constructed to decide whether the MPC optimization problem

should be solved or not in time slot t, different from the commonly used event-

triggered scheme with a persistent event verification.

Denote the checking time slot sequence as {tl : l ∈ Z+} ⊆ Z+. Given a

checking time slot tl, we introduce a waiting horizon µ : Z+ → Z+
[1,N ], to

determine the next checking time slot, that is,

tl+1 = tl + µ(tl), (6.5)

where t0 = 0 as l = 0. The waiting horizon µ(tl) is to be designed based on

the arrival frequency of new packets.

Define a queue error e(t) , q(t) − q(t − 1) and an appropriate triggering

function φ : Z+nq → Z+ related to e. Denote the triggering time slot sequence

as {tj : j ∈ Z+} ⊆ Z+. Accordingly, the triggering time slot is generated by

tj+1 = min{t ∈ Z+
(tj ,tj+N ] | φ(e(tl)) > 0}, (6.6)

where t0 = 0 as j = 0. Here, the prediction horizon N is set as the upper

bound of the inter-execution time, which is essential in event-triggered MPC

to preserve the optimality and stability.

Then, an event-triggered controller κ : Z+ × Z+nq × Υ → {0, 1}nu to be

designed is of the form

u(t) = κ(tj, q(t), r(t)), t ∈ Z+
[tj ,tj+1). (6.7)

The control structure with the proposed approach is illustrated in Figure

6.2. The designed event trigger consisting of two parts is connected with

the queueing network and locally implemented. In the ‘Packet monitoring’

part, whether the current time slot t is the checking time slot tl or not is

determined. If it is, i.e., t = tl, then the triggering condition will be checked;

else, a feasible control decision constructed by the optimal solution of the
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Figure 6.2: Architecture with the proposed event-triggered scheme.

optimization problem in triggering time slot tj and stored in the ‘Controller’

will be applied. In the ‘Event verification’ part, if the triggering condition

is satisfied, the optimization problem will be solved by the ‘MPC optimizer’;

else, the feasible control decision will be executed.

To improve resource utilization while processing more packets for a con-

strained queueing network with a dynamic topology, this chapter is to design

an event-triggered MPC approach involving the waiting horizon µ and corre-

sponding triggering function φ such that the triggering condition is checked

in some specific time slots and the control decision is optimized accordingly

through an on-line stochastic optimization problem if the condition is satisfied

in these time slots.

6.2 Main Results

As we know, MPC needs to solve the optimization problem in each time

slot and only the first element of the optimal control sequence is applied to

the system, which indeed requires much computational resources. Hence, we

plan to design an event-triggered scheme with an adaptive checking strategy

to decide when necessary to solve the MPC optimization problem, leading to

reduction of the computational burden brought by MPC and improvement of

utilization of communication resources.
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6.2.1 MPC Optimization Problem

To incorporate a dynamic topology into the MPC optimization problem,

for the current time slot t with a Markov state r(t), the expected future routing

matrix in time slot t+ ℓ is expressed by

R̂ℓ(r(t)) , E{R(t+ ℓ) | r(t)} = ((P ℓ)[r(t)] ⊗ Inq)


RW1

RW2
...

RWnr

 , (6.8)

where the symbol ⊗ denotes the Kronecker product. In [96], a quadratic

objective function was considered, which increased the complexity for the

MPC optimization problem and stability analysis. Hence, in this work, to

reduce the complexity of it, a linear objective function is defined according to

the positiveness of q(t):

J(q(t), r(t)) , E
{ N∑

ℓ=1

qℓ(t)
Tγ

}
, (6.9)

where qℓ(t) is the predicted queue in time slot t + ℓ and q(t) = q0(t); γ is a

weighting vector with positive elements and satisfies (R1nu)
T
γ < 0. Naturally,

this linear objective function shows clear physical significance, as minimizing

J indicates minimizing the amount of packets in the queueing network, which

forces the control decision to process as many packets as possible. Substituting

(6.1) and (6.8) into (6.9) yields that

J(q(t), r(t)) =
(
Nq(t) +

N∑
ℓ=1

ℓā
)T
γ + Ĵ(q(t), r(t)),

where

Ĵ(q(t), r(t)) ,
N−1∑
ℓ=0

(N − ℓ)(R̂ℓ(r(t))uℓ(t))
Tγ.

It is seen that in time slot t, Nq(t) and
∑N

ℓ=1 ℓā are deterministic and do

not depend on the control decision u(t), which indicates that these two terms

have no effect on the minimization of J(q(t), r(t)). Hence, the minimization
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problem of J(q(t), r(t)) is equal to minimize Ĵ(q(t), r(t)). Then, a stochastic

MPC optimization problem for the queueing network in (6.1) with constraints

(6.2)-(6.4) is formulated by

min
u(t)

Ĵ(q(t), r(t))

(C ⊗ IN)u(t) ≤ c⊗ 1N (6.10a)

u(t) ∈ {0, 1}nu·N (6.10b)

−


R̃0(r(t))

R̂0(r(t)) R̃1(r(t))
...

...
. . .

R̂0(r(t)) R̂1(r(t)) · · · R̃N−1(r(t))

u(t) ≤


q(t)

q(t) + ā
...

q(t) + (N − 1)ā


(6.10c)

where u(t) ,
[
u0(t)

T u1(t)
T · · · uN−1(t)

T
]T
; R̃ℓ(r(t)) is equal to R̂ℓ(r(t))

without its positive elements, i.e., all positive elements of R̂ℓ(r(t)) are set to

zero. Equation (6.10a) is the constituency constraint as in (6.2) and (6.10b)

is the binary condition on the whole control sequence u(t). It is seen that the

positiveness constraint in (6.4) neglects all information of the current arrival

packets, namely, setting a(t) = 0, which can guarantee q1(t) ≥ 0 farthest.

If we continue to neglect the arrival packets in the future queue vectors, it

is too conservative. Hence, for ℓ = 2, 3, . . . , N , we consider soft constraints

E{qℓ(t) | q(t), r(t)} ≥ 0. Then, the positiveness constraints on queue vectors

of the future N time slots can be expressed by

q(t) + R̃0(r(t))u0(t) ≥ 0

q(t) + R̂0(r(t))u0(t) + R̃1(r(t))u1(t) + ā ≥ 0

...

q(t) + R̂0(r(t))u0(t) + · · ·+ R̃N−1(r(t))uN−1(t) + (N − 1)ā ≥ 0

Consequently, we obtain positiveness constraint (6.10c).

According to (6.10), the optimal control sequence is obtained by

u⋆(t) = arg min
u(t)

Ĵ(q(t), r(t)). (6.11)
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6.2.2 Event-Triggered Scheme with An Adaptive Check-
ing Strategy

In most existing event-triggered schemes, the event-triggered condition is

checked in each time slot no matter how the system changes, undoubtedly

showing some conservatism. For a queue network, if there are few or no

new packets arrived in some time slots, feasible control decisions of the latest

optimal solutions may regulate the system well and it is unnecessary to check

the event-triggered condition and solve the MPC optimization problem in

these time slots. To achieve this idea, we try to design an adaptive checking

strategy for the event-triggered scheme. Since a control decision is largely

affected by new arrivals, the idea of designing the event-triggered scheme in

(6.5) and (6.6) will take this influence into account. To this end, we use the

arrival frequency and the number of new packets to construct the waiting

horizon µ and the triggering function φ, respectively.

6.2.2.1 Waiting Horizon

Given a positive integer H, for each element of the arrival vector, namely,

a(t)[i], i = 1, 2, . . . , nq, define a binary vector σ(t)i ∈ {0, 1}H and each element

of it represents the status of new packets arrival in past H time slots, i.e., if

there is any packet arrived in time slot t−l, l = 0, 1, . . . , H−1, then σ(t)
[l]
i = 1;

otherwise, σ(t)
[l]
i = 0. Then, we present the following assumption.

Assumption 6.1. There is at least one queue that receives the new arrival

packets in past H time slots.

Note that we only consider the non-zero elements of the average arrival

vector, that is, ā[i] ̸= 0, i = 1, 2, . . . , nq. Then, for a suitable H, Assumption

6.1 is easy to satisfy.

Accordingly, in the checking time slot tl, the frequency of new arrivals in

the ith queue in past H time slots is obtained by

µ̂(tl)i =
H

σ(tl)Ti σ(tl)i
, (6.12)
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where σ(tl)
T
i σ(tl)i reflects the total arrival times of new packets in past H time

slots. Then, a waiting horizon for the next checking time slot is estimated by

µ(tl) = min
{
min{⌊µ̂(tl)1⌋, · · · , ⌊µ̂(tl)nq⌋}, N

}
. (6.13)

That is, the waiting horizon µ(tl) is generated based on the minimum frequen-

cy of new arrivals in all queues. Specifically, if new packets arrive frequently,

then the waiting horizon is short; otherwise, the waiting horizon is long.

Lemma 6.1. For given initial values H and N , under Assumption 6.1, the

waiting horizon satisfies

1 ≤ µ(tl) ≤ min{N,H}. (6.14)

Proof. According to Assumption 6.1, we have that min{⌊µ̂(tl)1⌋, · · · , ⌊µ̂(tl)nq⌋}

≤ H. For the ith queue, in past H time slots, the maximum number of arrival

times is H, i.e., max{σ(tl)Ti σ(tl)i} = H, thus it holds that ⌊µ̂(tl)i⌋ ≥ 1. Hence,

we have that

1 ≤ min{⌊µ̂(tl)1⌋, · · · , ⌊µ̂(tl)nq⌋} ≤ H.

Combining it with (6.13) yields that (6.14). �

6.2.2.2 Triggering Function

The triggering function is constructed by

φ(e(tl)) = e(tl)
Tγ. (6.15)

Since

e(tl) = R(tl − 1)u(tl − 1) + a(tl − 1), (6.16)

the triggering function is dependent on the packet variations of queues, that

is, the sum of errors between leaving and entering packets in these queues.

In time slot t, if φ(e(t)) > 0, then it is necessary to solve the optimization

problem to obtain an optimal control decision; else, it is unnecessary to solve

the optimization problem and the feasible control can be used.
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From (6.13) and (6.15), instead of checking the triggering condition in

each time slot as in a traditional event-triggered scheme, the proposed event-

triggered scheme can adapt to check it according to the arrival frequency of

new packets, which is more flexible. This scheme does not only reasonably

schedule packets with limited resources, but also as a novel feature, adaptively

predict a waiting horizon for the next checking time slot.

6.2.2.3 Inter-Execution Time

Define ∆j , tj+1 − tj, j ∈ Z+ as the inter-execution time between the

triggering time slot tj and tj+1. Then, we have the following theorem to

quantify it.

Theorem 6.1. Under the designed event-triggered scheme in (6.5) and (6.6),

in the checking time slot tl ∈ Z+
(tj ,tj+1], if tj+1 = tl, then the inter-execution

time satisfies

∆j =

{
µ(tj) +

∑δ
s=1 µ(tl−s), if δ ∈ Z+

≥1,

µ(tj), otherwise.
(6.17)

Moreover, we have that

1 ≤ ∆j ≤ N, j ∈ Z+. (6.18)

Proof. In the checking time slot tl ∈ Z+
(tj ,tj+1], we need to consider two cases

as in Figure 6.3.

Case 1

µ(tj)

•
tj

︷ ︸︸ ︷•
tl

Case 2

µ(tj)

•
tj

︷ ︸︸ ︷•
tl−δ

µ(tl−δ)︷ ︸︸ ︷•
tl−δ+1

· · · · · ·
µ(tl−1)

•
tl−1

︷ ︸︸ ︷•
tl

Figure 6.3: Illustration of inter-execution time.

For case 1, tj = tl−1 and tj+1 = tl, then

∆j = tl − tj = µ(tj).
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For case 2, tj = tl−δ−1 and tj+1 = tl, then

∆j = tl − tj =µ(tj) + µ(tl−δ) + · · ·+ µ(tl−1).

Combining the above two cases yields (6.17). Accordingly, we have that ∆j ≥

µ(tj). Seen from (6.6), N is the upper bound of ∆j. Hence, we have (6.18). �

Remark 6.1. The parameters H and N are crucial in the implementation

of the designed event-triggered scheme. A bigger value of H may make the

estimation of the waiting horizon more accurate, but it should not be too big

which may not reflect the latest status of packet arrival. A bigger value of the

MPC prediction horizon N will lead to better control performance but larger

computational burden. However, the effects of them on the designed event-

triggered scheme is challenging to quantify, which is left for future research.

6.2.3 Event-Triggered Controller

Under the designed event-triggered scheme in (6.5) and (6.6), the event-

triggered MPC controller in (6.7) is designed by

u(t) = u⋆t−tj(tj), t ∈ Z+
[tj ,tj+1). (6.19)

It indicates that, in the time slot t ∈ Z+
>tj , if the event-triggered condition

in (6.6) is not satisfied, then a feasible control decision u⋆t−tj(tj) would be

applied; else, the MPC optimization problem in (6.10) would be solved and a

new control sequence u⋆(t) would be obtained.

It is seen that the MPC optimization problem in (6.10) is essentially a

stochastic problem, which means that ut−tj(tj) in (6.19) may not be able

to guarantee the positiveness constraint of the queue vector q(t). Hence, a

positive requirement is incorporated into the queueing network in (6.1) to

avoid q(t) < 0:

q(t+ 1)[i] = max{(q(t) + R(t)u(t) + a(t))[i], 0}, i = 1, . . . , nq, (6.20)

which implies that the length of the ith queue would be forced to be zero if it

would become negative after using the feasible control decision u⋆t−tj(tj).
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Remark 6.2. Note that due to the stochasticity of a dynamic topology, not

only the event-triggered MPC controller in (6.19) but also many max-weight

policies in [97, 98, 99] cannot absolutely guarantee the positiveness constraint.

Hence, it is indeed necessary to incorporate (6.20).

6.3 Stability of Queueing Networks

A queueing network is stable if its queue vector reaches a steady state and

does not blow to infinity. Generally, stability cannot always be guaranteed

for any arrival rates. As stated in [100], for a control policy, there exists a

stability region of arrival rates for which the system is stable under this policy.

Definition 6.1. The queueing network in (6.1) with a dynamic topology is

stable if there exists a function J : Z+nq ×Υ → Z+ such that

E{J(q(t+ 1), r(t+ 1)) | q(t)} <∞

for all ā ∈ A, where A is called the stability region.

Lemma 6.2. [101, Section 1.8.1] If X1, X2, X3, . . . are independent and

identically distributed with finite mean, and T is a stopping time with E{T} <

∞, then
∑T

j=1 E
{
Xj

}
= E

{
T
}
E
{
X1

}
, where a stopping time is a random

variable whose value is completely determined by the past and present events

of the stochastic process X1, X2, X3, . . . , that is, T = n being determined by

X1, . . . , Xn.

6.3.1 Stability Region

The designed control policy can stabilize the system for a given arrival rate

ā if it can compensate the arrival rate on average:

lim
ℓ→∞

1

ℓ

ℓ∑
t=1

(q(t+ 1)− q(t))Tγ = lim
ℓ→∞

1

ℓ

ℓ∑
t=1

(R(t)u(t) + a(t))Tγ

= lim
ℓ→∞

1

ℓ

ℓ∑
t=1

(R(t)u(t))Tγ + āTγ

= 0. (6.21)
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Since the designed event-triggered MPC controller in (6.19) can guarantee

constituency constraint (6.2), it indicates that all possible control decisions

fall into the following set:

U , {u ∈ {0, 1}nu | Cu ≤ c}.

Consider this constraint set and the dynamic topology into (6.21) and then

we have that

lim
ℓ→∞

1

ℓ

ℓ∑
t=1

R(t)u(t) =
∑
i∈Υ

πiRWiυ, υ ∈ Conv(U), (6.22)

where Conv(U) represents the convex hull of U and 0 ≤ πi ≤ 1 is the steady

state probability of r(t) = i, i ∈ Υ. According to (6.21) and (6.22), we define

the following stability region:

A ,
{
ā ∈ Z+nq |

(∑
i∈Υ

πiRWiυ + ā

)T

γ ≤ 0, υ ∈ Conv(U)
}
. (6.23)

Seen from (6.23), the stability region is decided by the weighting vector γ in

(6.9) and the properties of the queueing network, such as the constituency

constraint in (6.2) and the dynamic topology in (6.3).

6.3.2 Terminal Feasible Control Set

According to the designed stability region, we have the following lemma,

which is useful to construct a suitable feasible solution and discuss the stability.

Lemma 6.3. For a specified ā ∈ A, if the prediction horizon N can satisfy

R̂N(r(t)) =
∑
i∈Υ

πiRWi (6.24)

for any r(t) = i, i ∈ Υ, then there exists a terminal control set such that

V ,
{
υ ∈ Conv(U) |

(
R̂N(r(t))υ + ā

)T
γ ≤ 0

}
. (6.25)
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Proof. According to (6.23), for a specified ā ∈ A, there exists a control set

such that {
υ ∈ Conv(U) |

(∑
i∈Υ

πiRWiυ + ā

)T

γ ≤ 0

}
. (6.26)

Substituting (6.24) into (6.26) yields (6.25). �

In the triggering time slot tj, suppose that u
⋆(tj) is the optimal solution of

the optimization problem in (6.10). Then, in the time slot t ∈ Z+
(tj ,tj+1], a fea-

sible control sequence can be constructed as u(t) ,
[
u0(t)

T · · · uN−1(t)
T
]T
,

where

uℓ(t) =

{
u⋆ℓ+(t−tj)(tj), ℓ ∈ N[0,N−1−(t−tj)],

υ(qℓ+(t−tj)(tj)), ℓ ∈ N[N−(t−tj),N−1],
(6.27)

υ(qℓ(tj)) , arg min
υ∈V

(R̂ℓ(r(tj))υ + ā)Tγ. (6.28)

Hence, υ(qℓ(tj)) in (6.28) can be regarded as a terminal feasible control strat-

egy.

6.3.3 Stability Analysis

The stability of the queueing network in (6.1) is discussed by the relation

between the inter-execution time and objective function, which is shown in

the following theorem.

Theorem 6.2. Given the prediction horizon N satisfying (6.24), under the

designed event-triggered scheme in (6.5) and (6.6), the queueing network in

(6.1) with a dynamic topology is stable for all ā ∈ A by the designed event-

triggered MPC controller in (6.19).

Proof. In the triggering time slot tj, suppose that J⋆(q(tj), r(tj)) is the op-

timal objective value obtained by solving the optimization problem in (6.10).

Then, in the next triggering time slot tj+1, a feasible value J(q(tj+1), r(tj+1))

can be constructed based on the feasible control sequence in (6.27). Then, con-

sider the expectation of the difference between J(q(tj+1), r(tj+1)) and J
⋆(q(tj),
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r(tj)) conditioned on q(tj):

E{J(q(tj+1), r(tj+1))− J⋆(q(tj), r(tj)) | q(tj)}

= E
{
N
(
q(tj+1)− q(tj)

)T
γ −

∆j−1∑
ℓ=0

(N − ℓ)
(
R̂ℓ(r(tj))u

⋆
ℓ(tj) + a(tj + ℓ)

)T
γ

| q(tj)
}
+

N−1−∆j∑
ℓ=0

E
{
∆j

(
R̂ℓ+∆j

(r(tj))u
⋆
ℓ+∆j

(tj) + a(tj + ℓ+∆j)
)T
γ | q(tj)

}
+

N−1∑
ℓ=N−∆j

E
{
(N − ℓ)

(
R̂ℓ+∆j

(r(tj))υ(qℓ+∆j
(tj)) + a(tj + ℓ+∆j)

)T
γ | q(tj)

}
.

(6.29)

Since q(tj+1) = q(tj) +
∑∆j−1

ℓ=0 R̂ℓ(r(tj))u
⋆
ℓ(tj) + a(tj + ℓ), we have that

E
{
N
(
q(tj+1)− q(tj)

)T
γ −

∆j−1∑
ℓ=0

(N − ℓ)
(
R̂ℓ(r(tj))u

⋆
ℓ(tj) + a(tj + ℓ)

)T
γ | q(tj)

}

=

∆j−1∑
ℓ=1

E
{
ℓ
(
R̂ℓ(r(tj))u

⋆
ℓ(tj) + a(tj + ℓ)

)T
γ | q(tj)

}
. (6.30)

Since (R1nu)
T
γ < 0, it follows that

(
R̂ℓ(r(tj))u

⋆
ℓ(tj)

)T
γ ≤ 0, ℓ ∈ Z+.

Then, for the optimal solution u⋆(t), there exists 0 ≤ ρ ≤ −(R1nu)
T
γ such

that

max
ℓ=1,...,N−1

(
R̂ℓ(r(tj))u

⋆
ℓ(tj)

)T
γ = −ρ. (6.31)

Since the triggering condition is not satisfied between two triggering time slots,

together with (6.15) and (6.16) yields that

(
R̂ℓ(r(tj))u

⋆
ℓ(tj) + a(tj + ℓ)

)T
γ ≤ 0, ℓ = 0, . . . ,∆j − 2. (6.32)
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Then, we have that

∆j−1∑
ℓ=1

E
{
ℓ
(
R̂ℓ(r(tj))u

⋆
ℓ(tj) + a(tj + ℓ)

)T
γ | q(tj)

}
=

∆j−2∑
ℓ=1

E
{
ℓ
(
R̂ℓ(r(tj))u

⋆
ℓ(tj) + a(tj + ℓ)

)T
γ | q(tj)

}
+ E

{
(∆j − 1)

(
R̂∆j−1(r(tj))u

⋆
∆j−1(tj) + a(tj +∆j − 1)

)T
γ | q(tj)

}
≤ 0− (∆̄− 1)ρ+ (∆̄− 1)āTγ. (6.33)

where ∆̄ , E{∆j}. Based on (6.31), by Lemma 6.2, we have that

N−1−∆j∑
ℓ=0

E
{
∆j

(
R̂ℓ+∆j

(r(tj))u
⋆
ℓ+∆j

(tj) + a(tj + ℓ+∆j)
)T
γ | q(tj)

}
≤ E

{
(N −∆j)}E

{
∆j

}
(−ρ+ āTγ)

= (N∆̄− ∆̄2)(−ρ+ āTγ). (6.34)

With the prediction horizon N satisfying (6.24), combining (6.25) and (6.28)

yields that

N−1∑
ℓ=N−∆j

E
{
(N − ℓ)

(
R̂ℓ+∆j

(r(tj))υ(qℓ+∆j
(tj)) + a(tj + ℓ+∆j)

)T
γ | q(tj)

}
≤ 0.

(6.35)

Note that J⋆(q(tj+1), r(tj+1)) ≤ J(q(tj+1), r(tj+1)). Then, substituting (6.30),

(6.33), (6.34), and (6.35) into (6.29) yields that

E{J⋆(q(tj+1), r(tj+1))− J⋆(q(tj), r(tj)) | q(tj)}

≤ (N∆̄− ∆̄2 + ∆̄− 1)(−ρ+ āTγ). (6.36)

Seen from (6.36), it seems that ρ would be very small if J⋆(q(tj), r(tj)) is

sufficiently large. Note that, as J⋆(q(tj), r(tj)) increases, q(tj)
Tγ increases

as well, which implies that constraint (6.10c) in the optimization problem is

certainly satisfied, that is,

q(tj)
Tγ ≥ −

(N−2∑
ℓ=0

(
R̂ℓ(r(tj))uℓ(tj)

)T
γ

)
−

(
R̃N−1(r(tj))uN−1(tj)

)T
γ

− (N − 1)āTγ

≥ Nρ− (N − 1)āTγ. (6.37)
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Since the objective of the optimization problem in (6.10) is to minimize

Ĵ(q(tj), r(tj)), it indicates that max
ℓ=1,...,N−1

(
R̂ℓ(r(tj))u

⋆
ℓ(tj)

)T
γ would become

as small as possible to process more packets if q(tj)
Tγ is sufficiently large.

Hence, instead of becoming small, ρ would become as large as possible if

J⋆(q(tj), r(tj)) is sufficiently large. In this case, there exists an ϵ ≥ 0 such

that

E{J⋆(q(tj+1), r(tj+1))− J⋆(q(tj), r(tj)) | q(tj)} ≤ −ϵ,

if q(tj)
Tγ ≥ Nρ− (N − 1)āTγ,

where ρ = ϵ
(N∆̄−∆̄2+∆̄−1)

+ āTγ. Then, there exists a scalar 0 < ξ ≤ 1 satisfying

E{J⋆(q(tj+1), r(tj+1)) | q(tj)} ≤ ξJ⋆(q(tj), r(tj)),

if q(tj)
Tγ ≥ Nρ− (N − 1)āTγ,

which indicates that

E{J⋆(q(tj+1)) | q(tj)} <∞. (6.38)

Note that if ρ is small which implies that q(tj)
Tγ <∞ for ā ∈ A, then (6.38)

is certainly guaranteed. Since the triggering condition is not satisfied between

two triggering time slots, i.e., e(t)Tγ ≤ 0, t ∈ Z+
(tj ,tj+1), we have that

E{J⋆(q(t+ 1)) | q(tj)} <∞, t ∈ Z+
(tj ,tj+1)

Combining this with (6.38), according to Definition 6.1, the queueing network

in (6.1) with a dynamic topology is stable for all ā ∈ A by the designed

event-triggered MPC controller in (6.19). �

Remark 6.3. Since we focus on the expectation of the difference of the ob-

jective function between two triggering time slots, to simplify the analysis

and avoid the confusion, we ignore the extreme cases (namely, ∆j = 1 and

∆j = N) in the proof of Theorem 6.2. If ∆j = 1 or ∆j = N , then some terms

including ∆j−2 or N−1−∆j would be removed and (6.36) is still guaranteed.
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6.4 Simulation Examples

In this section, two examples are used to show the advantages of the pro-

posed approach and each example is executed by a Monte Carlo simulation

with 100 samples.

..E. F.

G

.

H

. M.

Class 1

.

Class 2

.
τ1.

τ2

.
τ3

.

τ5

.

τ4

Figure 6.4: Airport scheduling.

Example 6.1. This example is concerned with an airport scheduling

problem. Figure 6.4 is a schematic showing two classes of customers who

wish to travel from different airports (E, F) to a common destination M. To

avoid airport congestion problems, we should consider the variability and the

finite number of flight seats between airports, and then make optimal control

decisions to allow customers to the destination M as many as possible.

A queueing network model can be used to describe this process. Let the

queue vector represent the number of customers at different airports, namely,

q = [qE qF qG qH ]
T. Once customers arrive at the destination and then leave,

so it is no need to consider airport M in the queue vector. Seen from Figure

6.4, the routing matrix is obtained as

R =


−τ1 0 0 0
τ1 −τ2 −τ3 0
0 τ2 0 −τ4
0 0 τ3 −τ5

 ,
where τ1 = 2, τ2 = 3, τ3 = 5, τ4 = 5, and τ5 = 3. The variability and the

finite number of flight seats between airports are described by the constituency
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Figure 6.5: Stability region.
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Figure 6.6: The number of customers at airports in one realization.

constraint and a dynamic topology of this model, which are given by

C =

[
1 1 1 0
0 1 1 1

]
, c =

[
2
2

]
, P =

0.5 0.3 0.2
0.4 0.3 0.3
0.2 0.6 0.2

 ,
W1 = diag{0.9, 0.6, 0.3, 0.8}, W2 = diag{0.3, 1, 0.7, 0.1},

W3 = diag{0.5, 0.7, 0.5, 0.9}.

The parameters of the proposed approach are selected as follows: γ = [2 1 1 1]T,

N = 9, and H = 6. The initial queue vector is q(0) = [4 0 2 2]T. The simula-

tion step is Tstep = 200.

Seen from Figure 6.4, the two customer classes consist of an arrival vec-

tor. Assume this arrival vector be Poisson distribution. According to (6.23),
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Figure 6.7: Evolution of J⋆(q(tj)) in one realization.
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Figure 6.8: Checking time slots in one realization.

the stability region A with respect to ā[1] and ā[2] is depicted in Figure 6.5,

which includes all possible values of ā[1] and ā[2] for which this system is

stable. To show the effects of this stability region on the control perfor-

mance and the designed event-triggered scheme, we consider an unstable point

ā = [2 4 0 0]T /∈ A for t ≤ 50 and a stable point ā = [0.8 1 0 0]T ∈ A for t > 50.

The trajectories of the number of customers at airports in one realization are

shown in Figure 6.6. It is seen that, the number of customers at airports E,

F presents an increasing trend with an unstable arrival rate and then shows

a decreasing trend if a stable arrival rate is considered while the number of

customers at airports G, H keeps comparatively stable. Figure 6.7 depicts

the evolution of J⋆(q(tj)) in one realization, which shows that there are more

than 80 events triggered and the objective value shows a similar trend as the

number of customers at airports E, F since it is largely dependent on qE and
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Table 6.1: Triggering results for t ∈ [50, 200]

∆̄ µ̄ J̄diff

3.36 1.88 −18.88

qF . The triggering results for t ∈ [50, 200] are presented in Table 6.1, where

Jdiff represents the average difference of optimal objective functions between

two triggering time slots in one realization:

Jdiff =
1

Tevent

Tevent−1∑
j=0

(J⋆(q(tj+1))− J⋆(q(tj)),

Tevent represents the number of triggered events, J̄diff represents the average

value of Jdiff in all realizations, ∆̄ is the average inter-execution time, and µ̄

is the average waiting horizon to check the triggering condition. The results

in this table verify that the stability can be guaranteed for ā ∈ A. Figure

6.8 depicts the checking time slots. It is observed that the waiting horizon is

always equal to 1 when a large arrival rate is considered while it would become

longer when the arrival rate is small. Therefore, the designed triggering scheme

can estimate a waiting horizon and adapt to check the triggering condition

according to the arrival frequency so that to avoid some unnecessary checkings,

which is different from most commonly used triggering schemes that need to

check the triggering condition in each time slot no matter how low the arrival

rate is.
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....

Station 4

....

q[1]

.

q[2]

.

q[3]

.a[1] .
τ1.

τ2

.

τ3

.

q[4]

.

τ4

Figure 6.9: A product line.

Example 6.2. A product line with 4 stations, 4 buffers, and 4 links shown

in Figure 6.9 is a queueing network. A raw material arrival stream which

characterizes different product demands, will visit the first station, then the
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second, and so on until it is processed by the last station and leaves the system.

All stations can work asynchronously according to link activation. Seen from

Figure 6.9, we can obtain the following routing matrix:

R =


−τ1 0 0 0
τ1 −τ2 0 0
0 τ2 −τ3 0
0 0 τ3 −τ4

 .
It is required that the second link and fourth link cannot be activated in

the same time slot, which means that the constituency constraint is given by

C = [0 1 0 1] and c = 1. For the dynamic topology, a transition probability

matrix of DTMC and all diagonal weight matrices of describing the success

probability of each activated communication link are given as follows:

P =


0.2 0.1 0.5 0.2
0.5 0.2 0 0.3
0.1 0.4 0.3 0.2
0 0.2 0.2 0.6

 ,
W1 = diag{1, 1, 1, 1}, W2 = diag{0.6, 0.4, 0.1, 0.5},

W3 = diag{0.1, 0.9, 0.8, 0.9},W4 = diag{0.2, 0.3, 0.2, 1}.

The parameters of the routing matrix are τ1 = 5, τ2 = 10, τ3 = 5, and τ4 = 10.

Set N = 13, γ = [1 1 1 1]T, and H = 8. The simulation step is Tstep = 200.

According to (6.23), we know that the raw material arrival stream should

satisfy 0 ≤ ā[1] ≤ 8.63. The raw material arrival stream is assumed to be

Poisson distribution with ā[1] = 2. Assume that initially all queues are empty.

In this example, we compare MPC approaches with the max-weight policy

in [97]. Figures 6.10-6.11 depict the trajectories of buffers and total amount

of materials in all buffers in one realization, respectively. It is seen that, MPC

approaches show a much slower growth than the max-weight policy in [97],

which implies that MPC approaches provide better control decisions to process

more materials than the max-weight policy in [97] since MPC is able to avoid

the myopic problem of max-weight policy.

To compare and evaluate these three approaches, namely, classical MPC,

the proposed event-triggered MPC, and the max-weight policy in [97], a com-
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Figure 6.10: Trajectories of buffers in one realization.

Table 6.2: Comparison results with [97]

∆̄ CPI

MPC 1 1.34×104

Event-triggered MPC with adaptive checking 1.52 0.73×104

Max-weight policy in [97] 1 0.79×104

prehensive performance index (CPI) is calculated by

CPI =
Q̄T̄com
∆̄

,

where Q̄ is the average value of Q (namely, total amount of materials in all

buffers at t = 200) and T̄com is the average computation time in 100 real-

izations. Naturally, a larger ∆̄, a smaller Q̄, and a smaller T̄com indicate a

better approach. Roughly, the smaller the CPI is, the better the approach is.

Table 6.2 provides comparison results with classical MPC and the max-weight

policy in [97]. Among them, the proposed event-triggered MPC can obtain

the best CPI, which implies that it has the best comprehensive performance.

Taken together, the proposed strategy can not only require less computation-

al resources than classical MPC, but also process more materials than the

max-weight policy in [97].
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Figure 6.11: The amount of materials in all buffers in one realization.

6.5 Summary

In this chapter, an event-triggered stochastic MPC approach has been

proposed for the scheduling problem of constrained queueing networks with a

dynamic topology. A novel event-triggered scheme combining event checking

and triggering with the arrival frequency and the number of new packets, has

been designed to achieve adaptive and non-persistent event monitoring and

verification, which can decide when it is necessary to solve the stochastic MPC

optimization problem with constituency and positiveness constraints, leading

to reduced computational burden and improved utilization of communication

resources. The stability of queueing networks has been analyzed according to

the relation between the inter-execution time and objective function. Simula-

tion results have shown the benefits of the proposed approach.
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Chapter 7

Conclusions and Future Work

In this chapter, remarks are provided to conclude this thesis, and then

some potential research directions are pointed out for future work.

7.1 Conclusions

This thesis focuses on the design of event-triggered robust MPC to reduce

computational burden as well as guarantee recursive feasibility and robust

stability for linear time-invariant systems with bounded disturbances. The

outcomes of the studies in this thesis are summarized as follows:

1. In Chapter 2, an event-triggered tube-based MPC approach based on

the concept of minimal robust positively invariant sets has been pro-

posed. According to the known probability distribution of bounded

disturbances, an event-triggered condition dependent on the state er-

ror between the predicted state and the actual state has been derived

to achieve a prescribed expectation of inter-execution times, while not

sacrificing the quadratic performance significantly.

2. In Chapter 3, based on the distances between actual states and a robust

positively invariant set, an event trigger including two-step checks has

been designed to ensure necessary events, resulting in a larger average

inter-execution time. The effects of designed parameters on the inter-

execution time have been analyzed. The designed two-step triggering
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scheme has been extended to multi-agent systems and the consensus

among all agents has been achieved.

3. In Chapter 4, a stochastic triggering strategy for both tube-based M-

PC and LMI-based MPC has been proposed. The designed strategy has

linked event verification with action triggering, and thus removing persis-

tent monitoring and verification in conventional event-triggered schemes

and improving the flexibility and robustness of self-triggered schemes.

Recursive feasibility and closed-loop robust stability of both tube-based

MPC and LMI-based MPC have been proved.

4. In Chapter 5, an event-triggered data-driven MPC design with a termi-

nal inequality constraint has been investigated for unknown systems with

initially measured input-output data. Compared with terminal equality

constraints, the constructed terminal inequality constraint for the data-

driven MPC optimization problem can lead to a larger feasible region

and simplify the analysis of recursive feasibility and stability. According

to a mismatch between the data-driven model and the original plant,

an event-triggered scheme with a local controller has been designed to

trigger the solution of the data-driven MPC optimization problem when

necessary, reducing resource consumption.

5. In Chapter 6, an event-triggered stochastic MPC approach has been

applied for the scheduling problem of constrained queueing networks

with a dynamic topology. Combining event checking and triggering with

the arrival frequency and the number of new packets, an event-triggered

scheme has been designed to achieve adaptive and non-persistent event

monitoring and verification, leading to reduced computational burden

and improved utilization of communication resources. The stability of

queueing networks has been analyzed according to the relation between

the inter-execution time and objective function.
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For all proposed approaches, the effectiveness has been demonstrated by

numerical examples and the theoretical analysis of recursive feasibility and

robust stability has been provided.

7.2 Future Work

Based on the obtained results in this thesis, some extension work can be

considered as follows:

1. Improve the analysis of the event-triggered scheme with event verifica-

tion in Chapter 4. There are two topics for future research. One is to

consider Markov transition probabilities αtl and βtl into MPC optimiza-

tion problems to reduce the conservatism. In Chapter 4, only initial

values α0 and β0 are used in the optimization problem in (4.52), rather

than αtl and βtl which are dependent on tl, since there is a conflict be-

tween recursive feasibility of the LMI-based MPC optimization problem

in (4.52) and the updating law for αtl and βtl . Another topic, which

would be highly meaningful but also challenging, is to analyze the re-

lation between the performance cost and inter-execution time based on

the designed Markov chain.

2. Study more effective data-driven predictive models for robust data-driven

MPC. Although some results about data-driven MPC have been ob-

tained in Chapter 5, they are preliminary. There are decision variables

on both sides of the equation in (5.6a), which may make the predicted

states deviate too much from the actual states. A data-driven predictive

model with less decision variables may make the predicted states clos-

er to the actual states and reduce computational burden, which needs

further investigation.

The future research directions on the improvement of event-triggered con-

trol and MPC are summarized with the following aspects:
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1. Combine MPC and reinforcement learning algorithms. Most existing

data-driven MPC approaches require that the input data should be per-

sistently exciting, which is a strong assumption. Reinforcement learning

may be a good choice to remove this data requirement and improve

the accuracy of prediction models. For MPC, reinforcement learning

can be used to tune the uncertain parameters of MPC, thus improving

control performance. For reinforcement learning, MPC can be used as

a function approximator to provide safety and stability guarantees of

learning. Hence, the combination of MPC and reinforcement learning is

an interesting area of research and deserves further study.

2. Develop event-triggered learning methods. Two aspects can be consid-

ered. On the one hand, it is difficult for event-triggered control to choose

suitable triggering parameters when the system is uncertain or complex.

With some advanced learning algorithms, it is possible to learn an opti-

mal event-triggered scheme or update triggering parameters adaptively.

On the other hand, learning regularly and permanently is wasteful from a

resource point of view. In this case, designing an event-triggered scheme

to decide when to learn is worth investigating.
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