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Abstract—Vehicular platooning, a configuration comprising a
leading vehicle and multiple follower vehicles (FVs) seeks to
achieve and maintain specific intervehicle distances (IDs) while
synchronizing FVs with the velocity and acceleration of the lead-
ing vehicle. Prior to attaining a desired stable state, the IDs may
undergo transient fluctuations. While the attainment of internal
stability is pivotal for realizing the intended spacing between
vehicles, it does not inherently guarantee that these transient
fluctuations remain within safe thresholds, thereby mitigating
the risk of collisions. Communication between vehicles has a
critical role in vehicular platooning and significantly influences
these transient distance fluctuations. Consequently, we present
a mapping between the initial conditions and these transient
fluctuations which hinges on the communication topology, as well
as the control parameters. Specifically, our focus is directed to-
wards bidirectional communication topologies (BDCTs), wherein
FVs possess the capability to communicate both with preceding
and subsequent vehicles within the platoon. Investigation of
these mappings illuminates the advantages and disadvantages
of various BDCTs. Notably, we discern that within BDCTs, the
receipt of information from a greater number of vehicles situated
behind may at times hinder the overall performance of the
platoon, resulting in larger deviations from the desired inter-
vehicle distances or the velocity and acceleration of the leading
vehicle. In contrast, information derived from vehicles located
ahead, particularly the leading vehicle itself, serves to enhance
intervehicle distances and thereby contributes significantly to the
safety of the platoon. In conclusion, our theoretical insights are
substantiated through a series of simulations.

Index Terms—Platoon, Stability, Transient Behavior, Forma-
tion Control, Bidirectional Communications

I. INTRODUCTION

A group of vehicles, led by one primary vehicle and
followed by several others, forms what is known as a vehicular
platoon. The primary objective of platooning is twofold: firstly,
to attain and maintain the desired intervehicle distances (IDs),
and secondly, to ensure that the follower vehicles (FVs)
closely mirror the speed and acceleration of the lead vehi-
cle. This collaborative formation brings several advantages.
Firstly, due to the reduced space between vehicles, there is
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a significant decrease in aerodynamic drag between them,
resulting in a substantial reduction in fuel consumption [1],
[2]. Furthermore, the tight spacing of vehicles in a platoon
allows for the accommodation of more vehicles on the road,
thus enhancing highway capacity. Additionally, platooning
systems are designed to enable automated and rapid responses
by follower vehicles to the lead vehicle’s actions, thereby
contributing to the overall safety of drivers [3], [4]. To
achieve these objectives, various spacing policies have been
utilized, including constant time headway [5], nonlinear [6],
delay-based [7], and constant distance [8], [9] policies. This
work focuses on the constant distance policy, which seeks to
establish and sustain fixed distances between adjacent vehicles.
Platoon dynamics encompass considerations of vehicle dynam-
ics, communication topology (CT), distributed controllers, and
spacing policies [10], [11]. In this study, the emphasis is placed
on the longitudinal motion of vehicles and the utilization of
distributed linear controllers [12], [13], [14].

Communication topology, which governs how vehicles ex-
change essential information such as position, velocity, and
acceleration, holds a central position in determining platoon
stability and performance. While existing literature extensively
examines the stability and performance of vehicle platoons
within specific CTs, there is a limited focus on differen-
tiating the impact of CTs on platoon performance. Recent
studies have started addressing this gap. In [15], a general
graph theory framework is applied to explore the impact
of connectivity measures within CTs on the performance of
distributed algorithms. This investigation assesses the ability of
these algorithms to mitigate communication disruptions, detect
cyber-attacks, and uphold resilience against such challenges.
Additionally, [16] delves into the distinctions among three
unidirectional communication topologies (UCTs) and their
implications on stability, robustness, safety, and emissions
within vehicle platoons. In terms of safety analysis, this study
relies on two metrics, maximum time to collision (MTTC)
and deceleration rate to avoid a crash (DRAC), to assess and
contrast the security performance of platoons operating under
the influence of three different UCTs. It is worth mentioning
that in UCTs, vehicles only receive data from vehicles ahead
of them. On the other hand, one aspect of platooning that
has received limited attention in the existing literature is
the transient behavior of IDs, a critical factor closely linked
to platoon safety. It is worth noting that favorable transient
behaviors, as well as steady-state conditions, as studied in
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[17], can significantly contribute to preventing intervehicular
collisions and enhancing the overall safety of platooning.

Therefore, in addition to the roles of controllers, vehicle
features, and initial conditions, communication structures play
a pivotal role in influencing platooning dynamics, particularly
their impact on transient distances between vehicles. This
study thoroughly explores this critical aspect by focusing
on transient intervehicle distance errors (TIDEs). In our
definition, TIDEs quantify momentary deviations in spacing
between neighboring vehicles before their distances align with
the intended values. Our specific investigation centers on
how various bidirectional communication topologies (BDCTs)
affect TIDEs, as these transient distances are paramount in
determining the safety and collision-free operation of pla-
toons. Notably, unlike unidirectional communication topolo-
gies (UCTs), BDCTs enable vehicles following one another to
exchange their current state information with both preceding
and succeeding vehicles. This paper’s contributions can be
summarized as follows:

1) Novel Dynamic Model: We have introduced a novel
closed-loop dynamic model for vehicular platoons, shift-
ing our focus from differences between follower-leader
states to differences among neighboring vehicles. This
approach allows for the relaxation of the requirement for
the leader vehicle’s velocity to remain constant for inter-
vehicle distance convergence of FVs and for followers
to reach their desired velocities and accelerations. As
a result, the key determinant for the convergence lies
solely in achieving internal stability.

2) Analysis of Transient Intervehicle Distances: Our find-
ings indicate that the deviation levels of transient inter-
vehicle distances from their desired values are depend
on crucial parameters such as the leader vehicle’s accel-
eration, initial conditions, control gains, the engine time
constants of follower vehicles (FVs), the number of FVs
in the platoon, and the communication type employed.

3) Analytical Distance Trajectories: We have developed
analytical distance trajectories for each pair of neigh-
boring vehicles, revealing their behavior across different
bidirectional communication topologies (BDCTs).

4) Communication Topology Insights 1: We have high-
lighted the advantages and disadvantages of various
BDCTs. Our observations suggest that, within the do-
main of distributed controllers, the collection of data
from a greater number of vehicles ahead, especially the
leading vehicle, has the potential to reduce the likeli-
hood of breaching safe intervehicle distances in BDCTs.
Although our focus differs from the study in [16],
our findings align with their conclusion, emphasizing
that predecessor-leader-following (PLF) and multiple-
predecessor-leader-following (MPLF) configurations are
notably superior to predecessor-following (PF).

5) Communication Topology Insights 2: Conversely, incor-
porating information from more vehicles behind can
have an adverse impact on intervehicle distances, ele-
vating the risk of breaching the safe spacing between
vehicles.

6) Enhanced Platoon Performance: We have demonstrated
that broadcasting the leader vehicle’s state to other
vehicles has the potential to improve overall platoon per-
formance. This leads to smaller deviations from desired
values during transient states.

7) Simulation Validation: We have provided simulations to
validate our theoretical findings and support our research
contributions.

In summary, our work emphasizes the importance of studying
transient intervehicle distances and their relationship with
various bidirectional communication topologies.

II. NOMENCLATURE

In this paper, the time argument of signals will only be
included if they enhance clarity. To differentiate between
elements within vertical and horizontal vectors, we will utilize
the semicolon and colon symbols, respectively. For instance,
a 3-by-1 vector is symbolized as [.;.;.], while a 1-by-3 vector
takes the form of [.,.,.]. This notation will be consistently
employed throughout the document to improve lucidity and
ease of reading. The following section provides an overview
of the important parameters and variables utilized in this paper:

n Number of follower vehicles
s Laplace variable
ID Intervehicle distance
TID Transient intervehicle distance
TIDE Transient intervehicle distance error
BDCTs Bidirectional communication topologies
FV Follower vehicle
BDL Bidirectional-leader
BD Bidirectional
TBPF Two-bidirectional-predecessor-following
TPSF Two-predecessor-single-following
SPTF Single-predecessor-two-following
xi+1 Position of the (i+1)th vehicle
∆xj

i+1 xi+1−xj

ẋi+1 Velocity (vi+1) of the (i+1)th vehicle
∆ẋj

i+1 ẋi+1−ẋj

ẍi+1 Acceleration (ai+1) of the (i+1)th vehicle
∆ẍj

i+1 ẍi+1−ẍj...
x i+1 Jerk (i+1ג) of the (i+1)th vehicle
∆

...
x j

i+1
...
x i+1−

...
x j

Xi+1 [xi+1;ẋi+1;ẍi+1]
Ẋi+1 [ẋi+1;ẍi+1;

...
x i+1]

x∗
i+1 Desired position of the (i+1)th vehicle

ẋ∗
i+1 Desired velocity of the (i+1)th vehicle

ẍ∗
i+1 Desired acceleration of the (i+1)th vehicle

x̃i+1 xi+1−x∗
i+1

∆p̃i+1
i x̃i−x̃i+1

µ ∆p̃i+1
i (0)

˙̃xi+1 ẋi+1−ẋ∗
i+1

∆ṽi+1
i

˙̃xi− ˙̃xi+1
¨̃xi+1 ẍi+1−ẍ∗

i+1

∆ãi+1
i

¨̃xi−¨̃xi+1...
x̃ i+1

...
x i+1−

...
x ∗

i+1

i+1ג̃∆
i

...
x̃ i−

...
x̃ i+1
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X̃i+1 [x̃i+1; ˙̃xi+1; ¨̃xi+1]
∆X̃i+1

i [∆p̃i+1
i ;∆ṽi+1

i ;∆ãi+1
i ]

∆ ˙̃Xi+1
i [∆ṽi+1

i ;∆ãi+1
i i+1ג̃∆;

i ]
X̃t [X̃1;X̃2;...;X̃n]
∆X̃t [∆X̃1

0;∆X̃2
1;...;∆X̃n

n−1]
τ Engine time-constant of vehicles
di+1
i Desired distance between vehicles i and i+1

Di+1
i Distance between vehicles i and i+1

Li Length of the ith vehicle
ωi+1
i Li+di+1

i

di+1,j Desired position difference between vehicles i+
1 and j

k Coefficient of position errors in the distributed
controller

b Coefficient of velocity errors in the distributed
controller

h Coefficient of acceleration errors in the dis-
tributed controller

K [k,b,h]
zii+1=1 Indicates vehicle i+1 receives information from

vehicle i
zii+1=0 Indicates vehicle i+1 does not receive informa-

tion from vehicle i
Ii+1 Set of vehicles from which the (i+1)th follower

gets information
Ri+1 =Ii+1−{i}
Ri =Ii−{i+1}
αi Vehicles ahead providing info only to ith fol-

lower in pair (i,i+1)
βi Vehicles behind providing info only to (i+1)th

follower in pair (i,i+1)
Mi Vehicles ahead (j≤i) providing info to (i+1)th

follower in pair (i,i+1)
Bi Vehicles behind (j≥i+1) providing info to ith

follower in pair (i,i+1)
Ji Union of Mi and Bi

|.| Cardinality of a set
ki+1 = |Ii+1|k
bi+1 = |Ii+1|b
hi+1 =1+|Ii+1|h
Ki+1 =[ki+1,bi+1,hi+1]
K =[k,b,1+h]

k̄i =|Ji|k
τ

b̄i =|Ji|b
τ

h̄i =1+|Ji|h
τ

ϵi+1 = −1
τa0−ȧ0, a0 is leader acceleration

ϵi+1 = [0;0;ϵi+1]
Vec(.) Concatenates its arguments vertically
Ãt Closed-loop system matrix with X̃t as the pla-

toon’s total state vector
Ã∆t Closed-loop system matrix with ∆X̃t as the

platoon’s total state vector
Ai+1

i System matrix for coupled dynamics of neigh-
boring vehicles

∆p̃i+1
i,zi TIDE of neighboring vehicles i and i+1 excited

by the pair’s initial condition (zero input)
∆p̃i+1

i,zs TIDE of neighboring vehicles i and i+1 when

∆p̃i+1
i (0)=0 (zero state)

∆P̃ = [∆p̃10;∆p̃21;...;∆p̃nn−1]
U(.) The unit step function
µ Initial IDE between adjacent vehicles
∆ũi+1

i Input signal for coupled dynamics of neighbor-
ing vehicles i and i+1

Ψi TIDE of neighboring vehicles i and i+1 excited
by all relevant initial conditions

Ψ [Ψ0;Ψ1;...;Ψn−1]
Q Matrix mapping initial conditions to TIDEs
dsi,i+1 Safe distance between neighboring vehicles

III. PRELIMINARIES

A. Bidirectional Communication Topologies (BDCTs)
Fig. 1 displays common BDCTs employed in vehicle pla-

tooning. In this context, each follower vehicle (FV) pos-
sesses the ability to communicate its state, including posi-
tion, velocity, and acceleration, with both the vehicles ahead
and those behind. This interplay establishes a bidirectional
flow of communication across all vehicles. Subsequently, to
maintain conciseness, unless specifically stated otherwise, we
will collectively denote the state information of each vehicle,
comprising its position, velocity, and acceleration, as simply
‘information’.

Fig. 1: Exemplification of different common BDCTs between
vehicles. The leading vehicle (referred to as the leader) is
designated as 0, while the FVs are labeled from 1 to 5.

In the depicted bidirectional-leader (BDL) topology in Fig.
1, each FV receives information from the leader vehicle.
Simultaneously, every FV exchanges information with both
its immediate succeeding and preceding vehicles. Similarly,
within the bidirectional (BD) topology, each FV participates
in information exchange with both its following and preced-
ing vehicles. In the two-bidirectional-predecessor-following
(TBPF) topology, each FV communicates with its two imme-
diate followers and two immediate predecessors. In the two-
predecessor-single-following (TPSF) topology, each follower
vehicle (FV) obtains information from its two immediate
predecessors and one immediate follower. Also, each FV
conveys its own state to its two immediate followers and
one immediate preceding vehicle. In the single-predecessor-
two-following (SPTF) topology, each FV acquires information
from its two immediate followers and one immediate predeces-
sor. Furthermore, each FV sends its state to its two immediate
predecessors and one immediate following vehicles.
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Consider the platoon shown in Fig. 1 and, in preparation for
later use, let for the pairwise vehicles (i,i+1) where i ranges
from 0 to n−1 (with n=5 for the showcased platoon), the
following sets be defined as:

1) Ii+1: Vehicles from which the (i+1)th follower gets
information. For example, in TPSF topology for pair
(2,3), I3 is {1,2,4}.

2) Ii: Vehicles from which the ith follower obtains infor-
mation. In TPSF topology for pair (2,3), I2 is {0,1,3}.

3) Ri+1: Vehicles, excluding vehicle i, providing informa-
tion to the (i+1)th follower. In SPTF topology for pair
(2,3), R3 is {4,5}.

4) Ri: Vehicles, excluding vehicle i+1, supplying informa-
tion to the ith follower. In SPTF topology for pair (2,3),
R2 is {1,4}.

We also use zji to represent the information linkage between
vehicles i and j, where zji=1 means vehicle i gets information
from vehicle j, and zji=0 means it does not. For TPSF
topology, examples are z13=1 and z14=0 (Figure 1).

B. Representation of Constant and Changing Distances
We use a left-to-right direction for vehicle movement,

designated as → for positive direction, and ← for negative
direction. Constant lengths or distances are represented by
↔. In Figure 2, Li and Li+1 indicate vehicle lengths, while
di+1
i represents the desired constant gap between them. For

instance, arbitrary variable distances s1, s2, s3, and s4 follow
the formulas: s1=xi−xi+1, s2=xi+1−(xi−Li), s3=xi+1, and
s4=xi. Here, xi and xi+1 refer to the front-side positions of
the vehicles.

Fig. 2: Illustrating adjacent vehicles: Vehicle i+1 as the
follower and vehicle i as the predecessor, showing constant
and changing distances.

C. Vehicles Dynamics and ‘Follower-Leader’ State Errors
We make the assumption that the leading vehicle does not

undergo any control process. Instead, the position, velocity,
and acceleration of the leading vehicle are utilized to govern
the behavior of the subsequent vehicles. In this context, each
following vehicle’s behavior within the platoon is described
mathematically using a third-order linear model [18], [12],
[14], [19], [20], [21], [22], [23], [24], [25]. This model is
defined as:

ẋi+1=vi+1

v̇i+1=ai+1 i=0,...,n−1

ȧi+1=−1
τai+1+

1
τui+1

(1)

Here, ai+1, vi+1, and τ represent the acceleration, veloc-
ity, and engine time constant of the (i+1)th follower. Let
Xi+1≜[xi+1;ẋi+1;ẍi+1] define the state vector of the (i+1)th

follower, where ẋi+1=vi+1 and ẍi+1=ai+1. Consequently, for
i=0,...,n−1, and given the equation (1), the state-space model
for the (i+1)th follower can be represented as:

Ẋi+1=

0 1 0

0 0 1

0 0 −1
τ


︸ ︷︷ ︸

≜A

Xi+1+

00
1
τ


︸︷︷︸
≜B

ui+1
(2)

The controller ui+1 will be discussed subsequently. For each
index i=0,...,n−1, the desired position denoted as x∗

i+1,
desired velocity denoted as ẋ∗

i+1, and desired acceleration
denoted as ẍ∗

i+1 of the (i+1)th follower with respect to the
state of the leader vehicle are defined as follows:

x∗
i+1≜x0−

i∑
κ=0

(Lκ+dκ+1
κ ), ẋ∗

i+1=v0, and ẍ∗
i+1=a0 (3)

regarding which let the desired state vector of the (i+1)th

follower be denoted as X∗
i+1≜[x∗

i+1;ẋ
∗
i+1;ẍ

∗
i+1]. It is important

to observe that our specified reference values in (3) are in
contrast to those presented in [18], [12], [14], where ẍ∗

i+1

was set to 0. Through these considerations, the desired state
of the followers are calculated with respect to the state of
the leader vehicle. Therefore, let ’follower-leader’ state error
of the (i+1)th follower be defined as X̃i+1≜Xi+1−X∗

i+1=
[x̃i+1; ˙̃xi+1; ¨̃xi+1] where x̃i+1=xi+1−x∗

i+1, ˙̃xi+1=ẋi+1−ẋ∗
i+1,

and ¨̃xi+1=ẍi+1−ẍ∗
i+1. Illustrated in Fig. 3 is a vehicular

platoon, where the desired positions and the ’follower-leader’
position errors, denoted as x̃i+1, are showcased for each
follower. This presentation spans the range of i=0,...,n−1
(with n=5 in this instance). Since state errors are calculated
relative to the leading vehicle, we have x̃0= ˙̃x0=¨̃x0=0.

D. Platoon Targeted-Kinematics, and Controllers

The primary goal of the controller ui+1 in (2) is to achieve
synchronization between the velocities and accelerations of the
follower vehicles and those of the leading vehicle. Addition-
ally, it aims to maintain desired distances between adjacent
vehicles, denoted as di+1

i . To put it more straightforwardly,
for each value of index i within the range from 0 to n−1, the
controller has two main aims: firstly, to eliminate the ’follower-
leader’ state errors, and secondly, to align the velocity vi+1

and acceleration ai+1 with the velocity and acceleration of
the leading vehicle, indicated as v0 and a0, respectively. To
accomplish this dual objective, a distributed linear control law
[26] is utilized. The control law can be expressed using the
following equations:

ui+1=−
∑

j∈Ii+1

k(∆xj
i+1−di+1,j)+b∆ẋj

i+1+h∆ẍj
i+1

di+1,j≜−sgn(i+1−j)
max(i+1,j)−1∑
κ=min(i+1,j)

Lκ+dκ+1
κ

(4)
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Fig. 3: Desired positions and ‘follower-leader’ position errors of the follower vehicles.

where ∆xj
i+1≜xi+1−xj, ∆ẋj

i+1≜ẋi+1−ẋj, and ∆ẍj
i+1≜

ẍi+1−ẍj. Considering that xi+1−xj−di+1,j=x̃i+1−x̃j,
ẋi+1−ẋj= ˙̃xi+1− ˙̃xj, and ẍi+1−ẍj=¨̃xi+1−¨̃xj, the controller
(4) can be reformulated as:

ui+1=−
∑

j∈Ii+1

K
(
X̃i+1−X̃j

)
=−

∑
j∈Ii+1

K∆X̃j
i+1 (5)

in which ∆X̃j
i+1≜X̃i+1−X̃j and the vector K≜[k,b,h] is

introduced as the control-gain vector, which quantifies the
impact of relative measurements between the (i+1)th follower
and the vehicles transmitting information to it.

E. Platoon Dynamics, and Internal Stability
To find the platoon closed-loop dynamics, first noting that

ẍi+1=¨̃xi+1+a0 and ...
x i+1=

...
x̃ i+1+ȧ0, and plugging (5) in (1),

for i=0,...,n−1, yields
...
x̃ i+1=−

1

τ
Ki+1X̃i+1+

∑
j∈Ii+1

1

τ
KX̃j+ϵi+1 (6)

in which ϵi+1≜−1
τa0(t)−ȧ0(t) and Ki+1≜[ki+1,bi+1,hi+1]

such that

ki+1≜|Ii+1|k, bi+1≜|Ii+1|b, hi+1≜1+|Ii+1|h (7)

where |Ii+1| denotes the cardinality of the set Ii+1. Now,
considering (6), knowing x̃0= ˙̃x0=¨̃x0=0, and defining the
platoon’s total ‘follower-leader’ state-error vector by X̃t≜
[X̃1;X̃2;...;X̃n], then the platoon’s closed-loop state-space
dynamic model can be compactly characterized by

˙̃Xt=[In⊗A−P⊗BK]︸ ︷︷ ︸
≜At

X̃t+ I3n︸︷︷︸
≜Bt

Vec(ϵ1,ϵ2,...,ϵn)︸ ︷︷ ︸
≜ut

(8)

in which Vec(ϵ1,ϵ2,...,ϵn)=[ϵ1;ϵ2,...;ϵn] where for i=
0,...,n−1, ϵi+1≜[0;0;ϵi+1], I3n is the identity matrix of size
3n, and P∈Rn×n whose elements pκj are according to

pκj=


|Iκ| if κ=j

0 if zjκ=0

−1 if zjκ=1

(9)

where κ,j=1,...,n and |Iκ| shows the cardinality of the set Iκ.

Remark 1: Given (9) and Fig. 1, for BDCTs: BDL, BD
and TBPF, since the communication between followers is
undirected, i.e., j∈Ii⇐⇒i∈Ij, i,j=1,...,n−1, then the matrix
P has only real eigenvalues (λi, i=1,...,n) [12]. Also, for
BDCTs: TPSF and SPTF, the matrix P has combination of real
(λ̄i, i=1,...,l) and conjugate complex (σi±jωi, i=1,...,n−l

2 )
eigenvalues [14].

Remark 2: For those BDCTs in which the matrix P has
only real eigenvalues, the platoon dynamics (8) would be
asymptotically stable if and only if the resultant matrices

A−λiBK (10)

are all Hurwitz, i.e., their eigenvalues are all negative [12].
Note that λi; i=1,...,n−1, denote the eigenvalues of the
matrix P. Given that k,b,h>0, using Routh-Hurwitz stability
criterion, the following condition can be found for the internal
stability of the platoon:

b>
kτ

1+λminh
(11)

where λmin=mini{λi}.
Remark 3: For those BDCTs in which the eigenvalues of

the matrix P are combination of real and conjugate complex
values, the platoon dynamics (8) would be asymptotically
stable if and only if the following resultant matrices

1)A−λ̄iBK i=1,...,l

2)I2⊗A−

[
σi ωi

ωi σi

]
⊗BK i=1,...,n−l

2

(12)

are all Hurwitz, i.e., their eigenvalues are all negative [14].
Note that in (12), the second matrix would result in a charac-
teristic polynomial of degree six.

Remark 4: Internal stability in platooning ensures that ve-
hicle states (positions, velocities, and accelerations) remain
bounded over time for any bounded input. However, it does
not guarantee collision-free distances between vehicles, as we
will show with examples. Meeting internal stability conditions
is crucial for stable platoon behavior but does not always
prevent collisions or unsafe distances caused by control gains
that meet these conditions. In simpler terms, relying solely
on an internally stable platoon will not guarantee favorable
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transient spacing between vehicles or even transient speeds
and accelerations of the FVs. To reiterate, ’transient’ simply
pertains to the duration of trajectories before they reach their
desired values.

Remark 5: Considering (8), when a0(t)=0, we arrive at
˙̃Xt=AtX̃t. Ensuring the internal stability conditions are met

will lead to X̃t converging to zero in a steady state, which
implies that xi+1(t)=x∗

i+1(t), ẋi+1(t)=ẋ∗
i+1(t), and ẍi+1(t)=

ẍ∗
i+1(t) for i=0,...,n−1. However, if a0 ̸=0, the control in-

put ut will impact the convergence of IDs as well as the
follower’s velocities and accelerations toward their desired
values. Nevertheless, we will demonstrate that by employing a
state coordinate transformation, the new states associated with
neighboring FVs, become independent of the leader vehicle’s
acceleration and jerk trajectories. Consequently, even if a0 ̸=0,
satisfying the internal stability conditions will still be sufficient
for achieving convergence of IDs between FVs, velocities, and
accelerations to their desired values.

IV. STATE COORDINATE TRANSFORMATION

Highlighting the platoon’s dynamics, the closed-loop dy-
namics (8) emerges through the incorporation of established
state errors between the ’follower’ and ’leader’ units. These
errors are denoted as X̃i+1 where i=0,...,n−1, and their
visual representation (the position component) can be observed
in Fig. 3. Nevertheless, achieving internal stability does not
inherently safeguard against momentary variable distances
among neighboring vehicles dropping below a safe threshold
before attaining a desired intervehicle spacing. On the other
hand, the ‘follower-leader’ state errors do not provide direct
information about the state differences between adjacent vehi-
cles. As such and as far as safety and collision concerned, we
need to have a direct formulation for distance between every
neighboring vehicles.

Adding to this, the visual representation of ’follower-
leader’ position errors, as evident in Fig. 3, not only lacks
an intuitive portrayal of distances between adjacent vehicles
but also inadequately facilitates direct analysis of transient
intervehicle distances (TIDs). To establish a comprehensive
framework surpassing internal stability considerations and
fostering an intuitive TIDs examination, we undertake a trans-
formation of previous state coordinates from ’follower-leader’
errors to ’follower-predecessor’ errors. This transformation
yields ’follower-predecessor’ errors derived from consecutive
’follower-leader’ errors, exemplified in Fig. 4. An instance of
this is the ’follower-predecessor’ error between followers 1
and 2, derived from the ’follower#1-leader’ and ’follower#2-
leader’ pairs.

According to this coordinate transformation, we introduce
coupled position, velocity, acceleration, and jerk errors be-
tween neighboring vehicles i and i+1 as follows: 1. Cou-
pled position error: Denoted as ∆p̃i+1

i ≜x̃i−x̃i+1, representing
the difference in position errors. 2. Coupled velocity error:
Denoted as ∆ṽi+1

i ≜ ˙̃xi− ˙̃xi+1, signifying the difference in
velocity errors. 3. Coupled acceleration error: Denoted as
∆ãi+1

i ≜ ¨̃xi−¨̃xi+1, representing the difference in acceleration
errors. 4. Coupled jerk error: Denoted as i+1ג̃∆

i ≜
...
x̃ i−

...
x̃ i+1,

indicating the difference in jerk errors. With these formula-
tions, the ’follower-predecessor’ state error and its derivative
for neighboring vehicles i and i+1 can be expressed as
follows:

∆X̃i+1
i ≜X̃i−X̃i+1≜

[
∆p̃i+1

i ;∆ṽi+1
i ;∆ãi+1

i

]
∆ ˙̃Xi+1

i ≜ ˙̃Xi− ˙̃Xi+1≜
[
∆ṽi+1

i ;∆ãi+1
i i+1ג̃∆;

i

] (13)

Using these error terms, we derive the coupled distance
dynamics governing neighboring vehicles in BDCTs. We will
refer to ∆p̃i+1

i (.) as the transient intervehicle distance error
(TIDE) between vehicles i and i+1 in both the time and
Laplace domains (please see Fig. 5 for visual presentation of
coupled position errors). Importantly, for instance, ’follower-
predecessor’ state errors between vehicles i and j (where j>i)
can be expressed as ∆X̃j

i≜X̃i−X̃j.

V. PLATOON DISTANCE DYNAMIC MODEL

In this section, we present an alternative dynamic model
based on (8), sharing the previously mentioned internal sta-
bility conditions (Remarks 2-3). This model enables the ex-
amination of TIDEs and the determination of control gains to
prevent collisions and maintain safe spacing between vehicles.
To find the coupled dynamics of pairwise neighboring vehicles
i and i+1, we need i+1ג̃∆

i for i=0,1,...,n−1.
Theorem 1: For i=0,...,n−1, the coupled jerk error be-

tween neighboring vehicles i and i+1 under BDCTs (Fig. 3)
is given by:

i+1ג̃∆
i =−1

τ
Ji∆X̃i+1

i +
1

τ
K

∑
j∈αi

i−1∑
κ=j

∆X̃κ+1
κ

+
1

τ
K

∑
j∈βi

j−1∑
κ=i+1

∆X̃κ+1
κ −U(0.5−i)ϵi+1

(14)

In this equation, U(.) is the unit step function, and Ji is defined
as [|Ji|k, |Ji|b, 1+|Ji|h], where |Ji| is determined as follows:

|Ji|=


|Ii| if βi=∅ & i ̸=0

1 if i=0

|Ii+1| if βi ̸=∅ & i ̸=0

(15)

The sets αi and βi are defined as αi≜{j∈Ri | zji=1 &
zji+1=0 & j<i} and βi≜{j∈Ri+1 | zji+1=1 & zji=0 & j>
i+1}, respectively. Refer to Table I for sets αi, βi, and |Ii+1|
values for the platoon under BDCTs (Fig. 1).

Proof: For i=1,...,n−1, using (6), we have{ ...
x̃ i=−1

τKiX̃i+
1
τ

∑
j∈IiKX̃j+ϵi

...
x̃ i+1=−1

τKi+1X̃i+1+
1
τ

∑
j∈Ii+1

KX̃j+ϵi+1

(16)

Therefore, given ϵi=ϵi+1 and i+1ג̃∆
i ≜

...
x̃ i−

...
x̃ i+1, we get

i+1ג̃∆
i =−1

τ
Ki∆X̃i+1

i −
1

τ
(Ki−Ki+1)X̃i+1

+
∑
j∈Ii

1

τ
KX̃j−

∑
j∈Ii+1

1

τ
KX̃j

(17)



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 7

Fig. 4: State coordinate transformation from ‘follower-leader’ errors to ‘follower-predecessor’ errors.

Fig. 5: Desired positions and ‘follower-predecessor’ position errors of the follower vehicles.

Since −1
τ(Ki−Ki+1)=

∑
j∈Ii+1

1
τK−

∑
j∈Ii

1
τK then (17) can

be rewritten as

i+1ג̃∆
i =−1

τ
Ki∆X̃i+1

i +
∑
j∈Ii

1

τ
K∆X̃i+1

j −
∑

j∈Ii+1

1

τ
K∆X̃i+1

j

(18)
Also, as X̃j−X̃i+1=X̃j−X̃i+X̃i−X̃i+1, (18) can be refor-

mulated as

i+1ג̃∆
i =

1

τ

−(Ki+K)+
∑
j∈Ri

K−
∑

j∈Ri+1

K

∆X̃i+1
i

+
∑
j∈Ri

1

τ
K∆X̃i

j−
∑

j∈Ri+1

1

τ
K∆X̃i

j

(19)

Note that for the given BDCTs we have Ii=Ri∪{i+1} and
Ii+1=Ri+1∪{i}. Splitting j∈Ri and j∈Ri+1 in two parts, i.e.,
j<i and j>i+1, and using the fact that for part j>i+1, we
have Xj−X̃i=Xj−X̃i+1−

(
X̃i−X̃i+1

)
, (19) can be reformu-

lated as

i+1ג̃∆
i =

1

τ

−(Ki+K)+
∑

j∈Ri<i

K−
∑

j∈Ri+1<i

K

∆X̃i+1
i

+
∑

j∈Ri<i

1

τ
K∆X̃i

j−
∑

j∈Ri+1<i

1

τ
K∆X̃i

j

+
∑

j∈Ri+1>i+1

1

τ
K∆X̃j

i+1−
∑

j∈Ri>i+1

1

τ
K∆X̃j

i+1

(20)
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TABLE I: Sets αi and βi, and values of |Ii+1| and |Ji| for the platoon and BDCTs given in Fig. 1.

Pairs: (0,1) (1,2) (2,3) (3,4) (4,5)

{α0,β0} & |I1| & |J0| {α1,β1} & |I2| & |J1| {α2,β2} & |I3| & |J2| {α3,β3} & |I4| & |J3| {α4,β4} & |I5| & |J4|

BDL {∅,{2}} & 2 & 1 {∅,{3}} & 3 & 3 {{1},{4}} & 3 & 3 {{2},{5}} & 3 & 3 {{3},∅} & 2 & 3
BD {∅,{2}} & 2 & 1 {{0},{3}} & 2 & 2 {{1},{4}} & 2 & 2 {{2},{5}} & 2 & 2 {{3},∅} & 1 & 2

TBPF {∅,{2,3}} & 3 & 1 {∅,{4}} & 4 & 4 {{0},{5}} & 4 & 4 {{1},∅} & 3 & 4 {{2},∅} & 2 & 3
TPSF {∅,{2}} & 2 & 1 {∅,{3}} & 3 & 3 {{0},{4}} & 3 & 3 {{1},{5}} & 3 & 3 {{2},∅} & 2 & 3
SPTF {∅,{2,3}} & 3 & 1 {{0},{4}} & 3 & 3 {{1},{5}} & 3 & 3 {{2},∅} & 2 & 3 {{3},∅} & 1 & 2

Remark 6: In the context of the provided BDCTs, when
we examine any pair (i,i+1), one of the following conditions
holds: 1. Both the ith and (i+1)th vehicles receive information
from vehicles either ahead or behind them. 2. Only the ith

vehicle receives information from specific vehicles ahead,
while the (i+1)th vehicle does not. 3. Only the (i+1)th

vehicle acquires information from specific vehicles behind,
while the ith vehicle does not. For instance, considering the
pair (2,3) in the TPSF topology shown in Fig. 1, both vehicles
2 and 3 receive information from vehicle 1. Vehicle 2 obtains
information from the leader vehicle, while vehicle 3 does not.
Additionally, vehicle 3 receives information from vehicle 4,
and vehicle 2 does not.
Given Remark 6, and sets αi and βi, (20) can be simplified to

i+1ג̃∆
i =

1

τ

−(Ki+K)+
∑
j∈αi

K

∆X̃i+1
i +

∑
j∈αi

1

τ
K∆X̃i

j

+
∑
j∈βi

1

τ
K∆X̃j

i+1

(21)

Having |αi| as the cardinality of the set αi, (21) can be
reformulated as

i+1ג̃∆
i =−1

τ
(Ki+K−|αi|K)∆X̃i+1

i +
∑
j∈αi

1

τ
K∆X̃i

j

+
∑
j∈βi

1

τ
K∆X̃j

i+1

(22)

On the other hand, for i=1,...,n−1 and BDCTs, we have{
|Ii+1|=|Ii|−1 & |αi|=1 if βi=∅

|Ii+1|=|Ii|+(1−|αi|) & |βi|=1 if βi ̸=∅
(23)

which implies that

Ki+K−|αi|K=

{
Ki if βi=∅

Ki+1 if βi ̸=∅
(24)

Therefore, given (23), (22) can be rewritten as

i+1ג̃∆
i =



−1
τKi∆X̃i+1

i +
∑

j∈αi

1
τK∆X̃i

j; βi=∅

−1
τ
Ki+1∆X̃i+1

i +
∑
j∈αi

1

τ
K∆X̃i

j

+
∑
j∈βi

1

τ
K∆X̃j

i+1

; βi ̸=∅
(25)

Now, given that for the pair (i,i+1), ∆X̃i
j and ∆X̃j

i+1 can be
rewritten in the following form:

{
∆X̃i

j=
∑i−1

κ=j∆X̃κ+1
κ ; j<i

∆X̃j
i+1=

∑j−1
κ=i+1∆X̃κ+1

κ ; j>i+1
(26)

then substituting (26) into (25) yields

i+1ג̃∆
i =



−1
τKi∆X̃i+1

i +1
τK

∑
j∈αi

∑i−1
κ=j∆X̃κ+1

κ ; βi=∅

−1
τ
Ki+1∆X̃i+1

i +
1

τ
K

∑
j∈αi

i−1∑
κ=j

∆X̃κ+1
κ

+
1

τ
K

∑
j∈βi

j−1∑
κ=i+1

∆X̃κ+1
κ

; βi ̸=∅

(27)
Now, let us study the pair (0,1). For the given BDCTs, given
that X̃0=0 we have

−=10ג̃∆
1

τ
K1∆X̃1

0−
1

τ

∑
j∈R1

KX̃j−ϵ1

=−1
τ
K1∆X̃1

0+
1

τ

∑
j∈R1≥2

K
(
∆X̃1

0+∆X̃j
1

)
−ϵ1

=−1
τ
(K1−|β0|K)∆X̃1

0+
1

τ

∑
j∈β0

K∆X̃j
1−ϵ1

(28)

where β0≜{j∈R1|j≥2}. Also, for the pair (0,1), since |β0|=
|I1|−(1−|α0|), then K1−|β0|K=K, where K≜[k,b,1+h].
Therefore, (28) can be rewritten as

−=10ג̃∆
1

τ
K∆X̃1

0+
1

τ
K

∑
j∈β0

j−1∑
κ=1

∆X̃κ+1
κ −ϵ1 (29)

Subsequently (27) and (29) can be unified as a single for-
mula. Let the set Ji be defined as Ji≜{j | j≤i & zji+1=1}∪
{j | j≥i+1 & zji=1}; i=0,...,n−1. For i=1,...,n−1, first we
split the set Ji in two sets: Mi≜{j | j≤i & zji+1=1} and
Bi≜{j | j≥i+1 & zji=1}, such that Ji=Mi∪Bi. Figs. 6a-6b
depicts these sets, respectively.
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(a) Mi≜{j | j≤i & zji+1=1} which is depicted with solid green
arrows. The dashed black arrow represents the followers Ii+1−Mi

from which the (i+1)th follower receives information.

(b) Bi≜{j | j≥i+1 & zji=1} which is depicted with solid purple
arrows.

Fig. 6: Illustration of sets Mi and Bi

Regarding the definition βi≜{j∈Ri+1 | zji+1=1 & zji=0 &
j>i+1}, we have two cases for the pair (i,i+1); i=1,...,n−1:

Case 1: βi=∅
Having βi=∅ implies that the followers behind from which the
(i+1)th follower receives information (the followers Ii+1−
Mi, see Fig. 6a), also send information to the ith follower.
Therefore, the set Bi (see Fig. 6b) can be obtained as Bi=
{i+1}∪(Ii+1−Mi). It is clear that |Ji|=|Mi|+|Bi| in which
|.| denotes the cardinality of the sets. As such, we have |Bi|=
1+|Ii+1|−|Mi| and, therefore, |Ji|=1+|Ii+1|=|Ii| (see (23)).

Case 2: βi ̸=∅
Having βi ̸=∅ implies that the followers behind (other than
the (i+1)th follower) from which the ith follower re-
ceives information are only Ii+1−Mi−βi. Therefore, Bi=
{i+1}∪(Ii+1−Mi−βi), and thus |Bi|=1+|Ii+1|−|Mi|−|βi|
and |Ji|=|Mi|+|Bi|=1+|Ii+1|−|βi|=|Ii+1| (see (23)).

Finally, given the definition of the set Ji, we always have
J0={0} and therefore |J0|=1. Thus, for i=0,...,n−1, (27)
and (29) can be unified and the unified coupled jerk error
between the neighboring vehicles i and i+1 under the BDCTs
given in Fig. 3 would be according to (14). Therefore, the
proof completed.

Theorem 2: The state errors of ‘follower-leader’ pairs and
the state errors of neighboring ‘follower-predecessor’ pairs are
governed by a shared internal stability condition.

Proof: Considering (14), regarding the facts that
d/dt{∆p̃i+1

i }=∆ṽi+1
i and d/dt{∆ṽi+1

i }=∆ãi+1
i , assuming

∆ỹi+1
i =∆p̃i+1

i as the output of the pairs coupled dynamics,
then for i=0,...,n−1, the state-space model for the pair
(i,i+1) can be presented as

{
∆ ˙̃Xi+1

i =Ai+1
i ∆X̃i+1

i +Bi+1
i ∆ũi+1

i

∆ỹi+1
i =Ci+1

i ∆X̃i+1
i

(30)

where Ci+1
i =[1,0,0], Bi+1

i =B, and Ai+1
i ∈R3×3 and ũi+1

i ∈R
are

Ai+1
i =

 0 1 0

0 0 1

−|Ji|k
τ −|Ji|b

τ −1+|Ji|h
τ

 (31)

and

∆ũi+1
i =K

∑
j∈αi

i−1∑
κ=j

X̃κ+1
κ +K

∑
j∈βi

j−1∑
κ=i+1

X̃κ+1
κ −U(0.5−i)ϵi+1

(32)
respectively. Note that that the sets Ji, αi and βi are
mutually disjoint, i.e., Ji∩αi=∅, Ji∩βi=∅ and αi∩βi=∅.
Also, always α0=∅ and βn−1=∅. Defining ∆X̃t∈R3n×1=
[∆X̃1

0;∆X̃2
1;...,∆X̃n

n−1], applying i=0,...,n−1 to the first re-
lation in (30), the stacked resultant relations can be compactly
shown as

∆ ˙̃Xt=
[
In⊗A−P̄⊗BK

]︸ ︷︷ ︸
≜Ãt∆

∆X̃t+I3nVec(-ϵ1,0,...,0) (33)

where 0≜[0;0;0], and P̄∈Rn×n whose elements, p̄ij, are
according to

p̄ij=


−|Sj∩αi−1| if j<i

|Ji−1| if j=i

−|Vj∩βi−1| if j>i

(34)

where |.| denotes the cardinality of the relevant sets, Sj≜
{j−1,j−2,...,0} and Vj≜{j,j+1,...,n}. Also, p̄ij=0 for the
cases Sj∩αi−1=∅ and Vj∩βi−1=∅. Fig. 7, illustrates the
platoon dynamics (8) which has been developed by using
the ‘follower-leader’ state errors, and the alternative dynamics
(33) which obtained after state coordinate transformation and
utilizing neighboring ‘follower-predecessor’ state errors.

Following (9) and (34), for any BDCT depicted in Fig. 1,
the eigenvalues of the matrices P and P̄ are identical. For
instance, for the case of having five followers and using TBPF
topology, the matrices are

P=



3 −1 −1 0 0

−1 4 −1 −1 0

−1 −1 4 −1 −1

0 −1 −1 3 −1

0 0 −1 −1 2

, P̄=



1 −2 −1 0 0

0 4 −1 −1 0

−1 −1 4 −1 −1

0 −1 −1 4 0

0 0 −1 −1 3


(35)

both of which have eigenvalues: 0.2935,2.1324,3.3900,5.0000
and 5.1841 and thus are similar matrices. Please check Link
for matrices P and P̄ of the other BDCTs. Considering (8),
(33), and the fact that a0(t) is bounded, since the system
matrices Ãt and Ãt∆ are in similar formats as

Ãt=[In⊗A−P⊗BK] (36a)

Ãt∆=
[
In⊗A−P̄⊗BK

]
(36b)

and regarding the property that P and P̄ are similar, dynamics
(33) can be utilized instead of (8) for internal stability analysis.
Therefore, the two cases mentioned earlier in the Remarks 2-3
are valid for the matrix P̄ as well. Thus the proof completed.

VI. TRANSIENT INTERVEHICLE DISTANCE ERRORS
(TIDES)

Given (14) and BDCTs in Fig. 1, there is a coupling between
the pair (i,i+1) and the pairs in the set

(
∪j∈αi

∪i−1
κ=jζκ

)
∪

https://docs.google.com/document/d/1FGiBLojp-clM8jYZYRXj510I0zCW0KaQ/edit?usp=sharing&ouid=110176483794912636620&rtpof=true&sd=true
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Fig. 7: Illustration of platoon dynamics with ‘follower-leader’ and neighboring ‘follower-predecessor’ state errors.

(
∪j∈βi

∪j−1
κ=i+1ζκ

)
in which the set ζκ is defined as ζκ≜

{(κ,κ+1)}. Note that the sets αi and βi are not empty sets
at the same time. For i=0,...,n−1, assuming ∆ṽi+1

i (0)=
∆ãi+1

i (0)=0, and all initial TIDEs are equal to µ, i.e.,
∆p̃i+1

i (0)=µ, in Laplacian domain we have

∆X̃i+1
i (s)=T1∆p̃i+1

i (s)−T2µ (37)

where T1≜
[
1;s;s2

]
and T2≜[0;1;s]. Given (30), ∆p̃i+1

i (s),
for i=0,...,n−1, would be the summation of zero-state
(∆X̃i+1

i (0)=0) response and zero-input (∆ũi+1
i =0) response.

Theorem 3: Given (15), (30), and (37), TIDE between
neighboring vehicles would be according to

∆p̃i+1
i (s)=Ψi(s)+Hi(s)

∑
j∈αi

i−1∑
κ=j

∆p̃κ+1
κ (s)

+Hi(s)
∑
j∈βi

j−1∑
κ=i+1

∆p̃κ+1
κ (s)+

U(0.5−i)(1+τs)a0(s)

τ(τs3+(1+h)s2+bs+k)

(38)

where

Hi(s)=
h
τs

2+b
τs+

k
τ

s3+h̄is2+b̄is+k̄i
; αi ̸=∅ or βi ̸=∅ (39)

and

Ψi(s)=
µ
(
s2+1+(|Ji|−γi)h

τ s+(|Ji|−γi)b
τ

)
s3+h̄is2+b̄is+k̄i

; i=0,...,n−1 (40)

in which h̄i=
1+|Ji|h

τ , b̄i=
|Ji|b
τ , k̄i=

|Ji|k
τ , and γi=

∑
j∈αi

(i−j)+∑
j∈βi

(j−i−1).

Proof: Given (30), the zero-input response, let be defined
as ∆p̃i+1

i,zi(s), would be according to

∆p̃i+1
i,zi(s)=Ci+1

i

(
sI3−Ai+1

i

)−1
∆X̃i+1

i (0)=
µ
(
s2+h̄is+b̄i

)
s3+h̄is2+b̄is+k̄i

(41)

where I3 is the identity matrix of size 3. Also, the zero-state
response, let be defined as ∆p̃i+1

i,zs(s), would be

∆p̃i+1
i,zs(s)=Gi+1

i (s)∆ũi+1
i (s) (42)

in which given (32) and (37) we have Gi+1
i (s)=

Ci+1
i

(
sI3−Ai+1

i

)−1
B and

∆ũi+1
i (s)=

U(0.5−i)(1+τs)a0(s)

τ
+∆̄ũi+1

i (s) (43)

where

∆̄ũi+1
i (s)=KT1

∑
j∈αi

i−1∑
κ=j

∆p̃κ+1
κ (s)−KT2

∑
j∈αi

i−1∑
κ=j

µ

+KT1

∑
j∈βi

j−1∑
κ=i+1

∆p̃κ+1
κ (s)−KT2

∑
j∈βi

j−1∑
κ=i+1

µ

(44)

Thus Gi+1
i (s)=1

τ

(
s3+h̄is

2+b̄is+k̄i
)−1

and simplifying (44)
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results in

∆̄ũi+1
i (s)=

(
hs2+bs+k

)
×

∑
j∈αi

i−1∑
κ=j

∆p̃κ+1
κ (s)+

∑
j∈βi

j−1∑
κ=i+1

∆p̃κ+1
κ (s)


−(hs+b)

∑
j∈αi

i−1∑
κ=j

µ+
∑
j∈βi

j−1∑
κ=i+1

µ


(45)

using which and substituting ∆ũi+1
i (s), (43), into (42) yields

∆p̃i+1
i,zs(s)=

U(0.5−i)(1+τs)a0(s)

τ(τs3+(1+h)s2+bs+k)
+

h
τs

2+b
τs+

k
τ

s3+h̄is2+b̄is+k̄i

×

∑
j∈αi

i−1∑
κ=j

∆p̃κ+1
κ (s)+

∑
j∈βi

j−1∑
κ=i+1

∆p̃κ+1
κ (s)


−
µ
(∑

j∈αi
(i−j)+

∑
j∈βi

(j−i−1)
)(

h
τs+

b
τ

)
s3+h̄is2+b̄is+k̄i

(46)

Therefore, given (41) and (46) we have ∆p̃i+1
i (s)=∆p̃i+1

i,zi(s)+

∆p̃i+1
i,zs(s) which is equal to (38). Therefore, the proof com-

pleted.

A. Mapping Between TIDEs and Initial Conditions
Calculating (38) for i=0,...,n−1 and stacking them to-

gether, after some mathematical manipulation, it is possible
to reformulate (38) in the following compact form:

∆P̃(s)=Q−1(s)(Ψ(s)+U(s)) (47)

such that ∆P̃(s)≜
[
∆p̃10(s);∆p̃21(s);...;∆p̃nn−1(s)

]
, Ψ(s)≜

[Ψ0(s);Ψ1(s);...;Ψn−1(s)], and Q(s)∈Cn×n whose elements
are defined as

qij(s)=

{
1 if i=j

p̄ijHi−1(s) if i ̸=j
(48)

where p̄ij are defined in (34). Also, U(s)∈Cn×1 such that
U(s)≜[ (1+τs)a0(s)

τ(τs3+(1+h)s2+bs+k);0;...;0]. Therefore, if we define
the elements of Q−1(s) as Q−1

(i+1)j(s), then exploring (47)
yields

∆p̃i+1
i (s)=

n∑
j=1

Q−1
(i+1)j(s)Ψj−1(s)

+
U(0.5−i)Q−1

11 (s)(1+τs)a0(s)

τ(τs3+(1+h)s2+bs+k)

(49)

B. Different Scenarios for TIDEs
Given (49), it follows that ∆p̃i+1

i (t) represents the impulse
response of ∆p̃i+1

i (s), or equivalently the inverse Laplace
transform of ∆p̃i+1

i (s). Consequently, for a given K=[k,b,h],
the appropriate control gains necessary to ensure safe and
collision-free distances can be determined based on the re-
lationship between TIDEs, safe and desired IDs. The different
scenario are illustrated in Fig. 8. If ∆p̃i+1

i (t)>−(di+1
i −dsi,i+1)

holds during the travel time (TT), it leads to a stable-safe
distance over TT (cases a and b). Similarly, when ∆p̃i+1

i (t)>
−di+1

i holds within the TT, and ∆p̃i+1
i (t)<−(di+1

i −dsi,i+1)
occurs during TT, it results in a stable-unsafe distance over
TT (case c). Conversely, if ∆p̃i+1

i (t)≤−di+1
i takes place over

the TT, it leads to a stable-collision occurrence within platoon
(case d). Note that, in Fig. 8, Di+1

i (t)=xi(t)−xi+1(t)−Li=
∆p̃i+1

i (t)+di+1
i exhibits the real distance between neighboring

vehicles i and i+1. Please observe that when ∆p̃i+1
i (t) con-

verges to zero, signifying a stable platoon, the actual distance
between adjacent vehicles will also converge to the desired
values.

(a)

(b)

(c)

(d)

Fig. 8: Portraying different situations featuring transient inter-
vehicle distance errors (TIDEs) among neighboring vehicles.

VII. SIMULATIONS AND RESULTS

In this section, we present simulation results that serve
to validate the theoretical findings. To do so, we consider
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Fig. 9: Control Gain Categories: Unstable (red), Stable-Collision (yellow), Stable-Unsafe (blue), and Stable-Safe (green).
Desired and safe distances between neighboring vehicles: 5m and 3m, respectively.

a platoon comprising one leader and five followers, with a
constant distance policy set at 5m. Within the simulations, all
vehicles begin with initial velocities and accelerations set to
zero. Their lengths are uniform at 4m. Furthermore, the safe
distance between vehicles is set at 3m, denoted as dsi,i+1=3m.

A. Comparing BDCTs Based on TIDE Performance
In the provided BDCTs (see Fig. 1), stability analysis

reveals that BDL, BD, and TBPF topologies exhibit real
eigenvalues in their matrices P and P̄ (defined in (9) and
(34)), while TPSF and SPTF topologies feature a mix of
real and conjugate complex eigenvalues. For simulations, let
control gains k and b vary between 0.1 and 19.6 (with 0.5
increments). Also, we assume that τ=1, h=4, and the absolute
value of leader’s acceleration over travel time is 8m/s2.
Unstable control gains are identified when stability conditions
are not met, while stable control gains are those satisfying the
conditions.

Further analysis, using (49) and the approach detailed in
the ’Different Scenarios for TIDEs’ subsection of the pre-
vious section, reveals which control gains lead to unstable,
stable-collision, stable-unsafe, or stable-safe distances between
neighboring vehicles. These findings are visually represented
in Fig. 9, with red indicating unstable, yellow for stable-
collision, blue for stable-unsafe, and green for stable-safe
gains. Referring to Fig. 9, several noteworthy conclusions can
be made:

1) BDL Reigns Supreme: BDL topology emerges as the
front-runner, boasting larger stable and stable-safe areas,
indicating its superior performance in platoon control.

2) Leader Broadcasting: Broadcasting the leader’s state,
as demonstrated in the BDL topology, significantly ele-
vates platoon performance compared to the conventional
BD topology.

3) SPTF’s Limitations: SPTF displays limitations, with
the smallest stable area and the largest stable-collision
area, suggesting challenges in maintaining platoon sta-
bility.

4) BD vs. SPTF: Despite SPTF providing more informa-
tion from vehicles behind, BD outperforms it, highlight-
ing the impact of information sources on performance.

5) TPSF’s Advantage: TPSF outperforms TBPF, even
though TBPF offers additional information from vehi-
cles behind, emphasizing the significance of information
exchange with vehicles ahead.

6) Information from Rear Impacts Performance: The
introduction of extra information from vehicles behind,
beyond the immediate follower, is associated with a
degradation in platoon performance.

7) BD, TPSF, SPTF Comparison: TPSF, with additional
information from vehicles ahead, enhances performance
compared to BD. Conversely, SPTF, with extra rearward
information, diminishes performance.

8) BDL vs. TPSF Parity: BDL and TPSF exhibit com-
parable performance levels. However, it appears that
performance could further improve if the additional
information from vehicles ahead originates from the
leader vehicle.
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Fig. 10: Leader’s velocity and acceleration.

B. Analysis Validation for TIDE Study
Consider time interval t1i≤ti<t2i during which the leader

vehicle’s acceleration remains constant at a0i . Therefore, for
each time interval we can apply basic physics principles to
find its velocity (v0i ) and position (x0

i ):

v0i (t)=a0i(t−t1i)+v0i (t
1
i)

x0
i(t)=

1

2
a0i(t−t1i)2+v0i (t−t1i)+x0

i(t
1
i)

(50)

Fig. 10 depicts an arbitrary acceleration and the associated
velocity trajectories we have considered for the leader vehicle
for the simulations. Considering (8), and assuming a sampling
time of ∆t, we can calculate the updated X̃t(t+∆t) as
follows:

X̃t(t+∆t)=
(
I3n+Ãt∆t

)
X̃t(t)+∆tVec(ϵ1,ϵ2,...,ϵn) (51)

Here, I3n is the identity matrix of size 3n. Now, Given the
acceleration trajectory of leader vehicle, using (3), and noting
that X̃i+1(t)=Xi+1(t)−X∗

i+1(t), other than TIDEs, we can
find the follower vehicles’ position, velocity and acceleration
trajectories. The communication topology is considered to be
the BDL topology, and the initial positions are selected as
xi(0)=−17×i m, i=0,1,...,5, where given di+1

i =5m, and
di+1
i,s =3m, the initial TIDE between neighboring vehicles

would be ∆p̃i+1
i (0)=8m. Additionally, we employ a sampling

time of 0.01s. The simulation time is established as 100s,
though for the sake of clarity in presentation, results may be
shown for time intervals less than 100s.

Associated TIDE trajectories of selected points from the
BDL topology (Fig. 9) are illustrated in Fig. 11:

1) K=[16.1,3.1,4] (from the unstable area), error trajecto-
ries diverge, rendering the platoon unstable.

2) K=[9.1,3.6,4] (from the stable-collision area) results in
converging error trajectories, but some cross the red-
dashed line (−5m error), indicating collisions.

3) K=[15.6,10.1,4] (from the stable-unsafe area) leads to
converging error trajectories, with some crossing the
blue-red line (−2m error), signifying violations of the
safe distance.

4) K=[6.6,17.6,4] (from the stable-safe area) results in
converging trajectories that do not cross the red-dashed

(collision) or blue-dashed (safe distance) lines, ensuring
the maintenance of a safe distance between vehicles.

Therefore, the error trajectories validate the identified unstable,
stable-collision, stable-unsafe, and stable-safe areas from the
provided analysis elaborated on in Section VII.

Fig. 11: ∆p̃i+1
i (t) trajectories of selected points from the BDL

topology (see Fig. 9).

C. Tracking Performance
Platooning aims to achieve two vital objectives: 1) aligning

followers with the leader’s velocity and acceleration, and 2)
ensuring IDs converge to preset values, assumed here to be
5m. In our demonstration within the BDL topology, we have
chosen representative K points from each stability region (see
Fig. 9). Fig. 12 displays position, velocity, and acceleration
trajectories for i=1,...,5 at these selected points. Within stable
regions (yellow, blue, and green areas), we observe velocities
and accelerations converging to match the leader’s values.
The convergence times vary among points, with the stable-
safe point showing the quickest convergence and the stable-
collision point the slowest.

In line with our explanation in the ’Different Scenarios for
TIDEs’ section, selected points within stable regions demon-
strate error convergence to zero, ensuring attainment of the
predefined desired distances between neighboring vehicles.

D. High-Fidelity Simulation of Truck Platooning
We have assessed the controller’s performance and com-

munication topologies in realistic vehicle platooning using



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 14

Fig. 12: Velocity, acceleration and position trajectories for BDL topology under control gains K=[9.1,3.6,4] (stable-collision),
K=[15.6,10.1,4] (stable-unsafe) and K=[6.6,17.6,4] (stable-safe), respectively.

MATLAB’s Vehicle Dynamics Blockset for simulation, em-
ploying both BDL and BD communications. Each vehicle’s
dynamics in the platooning setup encompassed key aspects,
including vehicle geometry, suspension, tire, powertrain, and
steering/braking systems. The platooning controller governed
acceleration input for each vehicle, maintaining a fixed steer-
ing angle of zero degrees, focusing on longitudinal control.

In addition to the intricate components of vehicle dynamics
modeling, the platooning scenario also integrates vehicle-to-
vehicle (V2V) communication for deployment. In the realm of
communication modeling, each vehicle within the platoon is
equipped with V2V transmitters and receivers. Specifically, we
configure the communication model to utilize BDL and BD
communication protocols. The transmitters are responsible for
transmitting basic safety messages (BSMs) containing pose
information, while the receivers within the platoon’s follow-
ers intercept and extract this valuable data from the BSMs.
Subsequently, the information obtained by the receivers of the
platoon followers is employed by their respective controllers
to compute the necessary acceleration for maintaining the de-
sired following distance from the lead vehicle and effectively
tracking its movements.

The platooning setup includes one leader and four followers.
Each follower has a platooning controller (specified in (4))
that regulates longitudinal controls to maintain a constant
spacing from the preceding vehicle while following the lead
vehicle. The inbuilt vehicle dynamics are modeled using a
six degrees of freedom tractor-trailer system, representing a
three-axle tractor towing a three-axle trailer through a hitch.
Both the tractor and trailer have individual models for their

vehicle body, wheels, and suspension. The vehicle lengths are
set at 17.2m, and the safe and desired intervehicle spacing
are established at 7m and 3m. Identical control gains are
applied to each follower vehicle, defined as K=[20,25,4].
Additionally, the initial positions for the trucks are initialized
as xi(0)=−32×i for i=0 to 4.

Figs.13a and 13b illustrate the vehicle velocities under BDL
and BD topologies. This simulation emphasizes the substan-
tial enhancement in velocity tracking for follower vehicles
achieved through the broadcast of the leader vehicle’s state.
Additionally, in Figs. 14a and 14b, the desired and safe
distances between vehicles, as well as the actual distances
between adjacent vehicles in the platoon, are presented. This
simulation outcome further underscores the improved platoon
performance in coordinating vehicles with the desired inter-
vehicle distances, resulting from the broadcast of the leader
vehicle’s state. It is noteworthy that in the BDL topology, the
distances between vehicles consistently remain above the safe
distance threshold, while in the BD topology, the distance
between the leader and the first follower has breached the
safe distance threshold. Fig. 15 shows the corresponding
truck platooning at times t=0s and t=50s. Please note that
an associated simulation video accompanies these results as
pointed out to in Fig. 15.

VIII. CONCLUSION

While guaranteeing internal stability is essential for achiev-
ing desirable steady-state performance, it cannot ensure fa-
vorable transient dynamics of intervehicle distances among
adjacent vehicles. To address this, we introduced a novel
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(a) Vehicles’ velocities under BDL topology

(b) Vehicles’ velocities under BD topology

Fig. 13: Illustrating the beneficial impact of broadcasting the
state of the leader vehicle to FVs.

(a) Distance between trucks under BDL topology

(b) Distance between trucks under BD topology

Fig. 14: Illustrating the beneficial impact of broadcasting the
state of the leader vehicle to FVs.

closed-loop distance dynamic model for platoons, shifting our
focus from follower-leader state differences to neighboring-
vehicle state differences.

Through this innovative dynamic model, we not only as-
sessed system stability but also conducted transient inter-
vehicle distance analysis for adjacent vehicles. Considering
the leader vehicle’s state, and based on initial conditions,
vehicle’s engine time constants, the number of vehicles,
and communication type, we analytically determined distance
trajectories between each pair of neighboring vehicles. Our

Fig. 15: Truck Platooning under BDL topology. States of
platoon at t=0s and t=50s. Please check the link https:
//youtu.be/rxQ-XsYFaEM?si=uJITOoELSiFWvoEH to watch
the simulation video for BDL case.

exploration of various control gains allowed us to investigate
how distance trajectories behave across different bidirectional
communication topologies (BDCTs).

These investigations highlighted the advantages and disad-
vantages of different BDCTs. Notably, our findings indicated
that within BDCTs and with a given control gain, receiving
information from vehicles far behind may adversely impact
platoon performance. Conversely, obtaining information from
vehicles far ahead can enhance TIDs, ensuring they remain
within a safe range. Furthermore, we demonstrated that broad-
casting the leader vehicle’s state to other vehicles holds the
potential to enhance overall platoon performance. Finally, sim-
ulations are provided to substantiate the theoretical finding.
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“Heavy-duty vehicle platooning for sustainable freight transportation:
A cooperative method to enhance safety and efficiency,” IEEE Control
Systems Magazine, vol. 35, no. 6, pp. 34–56, 2015.

[2] C. Bonnet and H. Fritz, “Fuel consumption reduction in a platoon:
Experimental results with two electronically coupled trucks at close
spacing,” SAE Technical Paper, Tech. Rep., 2000.

[3] S. E. Shladover, D. Su, and X.-Y. Lu, “Impacts of cooperative adaptive
cruise control on freeway traffic flow,” Transportation Research Record,
vol. 2324, no. 1, pp. 63–70, 2012.

[4] F.-Y. Wang, “Parallel control and management for intelligent trans-
portation systems: Concepts, architectures, and applications,” IEEE
Transactions on Intelligent Transportation Systems, vol. 11, no. 3, pp.
630–638, 2010.

[5] J. Zhou and H. Peng, “Range policy of adaptive cruise control vehicles
for improved flow stability and string stability,” IEEE Transactions on
intelligent transportation systems, vol. 6, no. 2, pp. 229–237, 2005.

[6] G. Orosz, “Connected cruise control: modelling, delay effects, and
nonlinear behaviour,” Vehicle System Dynamics, vol. 54, no. 8, pp. 1147–
1176, 2016.

[7] B. Besselink and K. H. Johansson, “String stability and a delay-based
spacing policy for vehicle platoons subject to disturbances,” IEEE
Transactions on Automatic Control, vol. 62, no. 9, pp. 4376–4391, 2017.

https://youtu.be/rxQ-XsYFaEM?si=uJITOoELSiFWvoEH
https://youtu.be/rxQ-XsYFaEM?si=uJITOoELSiFWvoEH


IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 16

[8] P. A. Ioannou and C.-C. Chien, “Autonomous intelligent cruise control,”
IEEE Transactions on Vehicular technology, vol. 42, no. 4, pp. 657–672,
1993.

[9] D. Swaroop and J. K. Hedrick, “Constant spacing strategies for platoon-
ing in automated highway systems,” 1999.

[10] S. S. Stankovic, M. J. Stanojevic, and D. D. Siljak, “Decentralized
overlapping control of a platoon of vehicles,” IEEE Transactions on
Control Systems Technology, vol. 8, no. 5, pp. 816–832, 2000.

[11] P. Seiler, A. Pant, and K. Hedrick, “Disturbance propagation in vehicle
strings,” IEEE Transactions on automatic control, vol. 49, no. 10, pp.
1835–1842, 2004.

[12] Y. Zheng, S. E. Li, J. Wang, D. Cao, and K. Li, “Stability and scalability
of homogeneous vehicular platoon: Study on the influence of informa-
tion flow topologies,” IEEE Transactions on intelligent transportation
systems, vol. 17, no. 1, pp. 14–26, 2015.

[13] A. Ghasemi, R. Kazemi, and S. Azadi, “Stable decentralized control of
a platoon of vehicles with heterogeneous information feedback,” IEEE
Transactions on Vehicular Technology, vol. 62, no. 9, pp. 4299–4308,
2013.

[14] S. E. Li, X. Qin, Y. Zheng, J. Wang, K. Li, and H. Zhang, “Distributed
platoon control under topologies with complex eigenvalues: Stability
analysis and controller synthesis,” IEEE Transactions on Control Sys-
tems Technology, vol. 27, no. 1, pp. 206–220, 2017.

[15] M. Pirani, S. Baldi, and K. H. Johansson, “Impact of network topology
on the resilience of vehicle platoons,” IEEE Transactions on Intelligent
Transportation Systems, 2022.

[16] T. Ruan, H. Wang, L. Zhou, Y. Zhang, C. Dong, and Z. Zuo, “Impacts of
information flow topology on traffic dynamics of cav-mv heterogeneous
flow,” IEEE Transactions on Intelligent Transportation Systems, 2022.

[17] C. K. Verginis, C. P. Bechlioulis, D. V. Dimarogonas, and K. J.
Kyriakopoulos, “Robust distributed control protocols for large vehicular
platoons with prescribed transient and steady-state performance,” IEEE
Transactions on Control Systems Technology, vol. 26, no. 1, pp. 299–
304, 2017.

[18] Y. Zheng, S. E. Li, K. Li, and L.-Y. Wang, “Stability margin im-
provement of vehicular platoon considering undirected topology and
asymmetric control,” IEEE Transactions on Control Systems Technology,
vol. 24, no. 4, pp. 1253–1265, 2015.

[19] A. Liu, T. Li, Y. Gu, and H. Dai, “Cooperative extended state observer
based control of vehicle platoons with arbitrarily small time headway,”
Automatica, vol. 129, p. 109678, 2021.

[20] X. Ge, S. Xiao, Q.-L. Han, X.-M. Zhang, and D. Ding, “Dynamic event-
triggered scheduling and platooning control co-design for automated
vehicles over vehicular ad-hoc networks,” IEEE/CAA Journal of Auto-
matica Sinica, vol. 9, no. 1, pp. 31–46, 2021.

[21] X. Ge, Q.-L. Han, J. Wang, and X.-M. Zhang, “Scalable and resilient
platooning control of cooperative automated vehicles,” IEEE Transac-
tions on Vehicular Technology, vol. 71, no. 4, pp. 3595–3608, 2022.

[22] J. Lan, D. Zhao, and D. Tian, “Data-driven robust predictive control for
mixed vehicle platoons using noisy measurement,” IEEE Transactions
on Intelligent Transportation Systems, 2021.

[23] D. Huang, S. Li, Z. Zhang, Y. Liu, and B. Mi, “Design and analysis of
longitudinal controller for the platoon with time-varying delay,” IEEE
Transactions on Intelligent Transportation Systems, 2022.

[24] G. Yu, P. K. Wong, W. Huang, J. Zhao, X.-B. Wang, and Z.-X. Yang,
“Distributed adaptive consensus protocol for connected vehicle platoon
with heterogeneous time-varying delays and switching topologies,” IEEE
Transactions on Intelligent Transportation Systems, 2022.

[25] S. Wen and G. Guo, “Sampled-data control for connected vehicles
with markovian switching topologies and communication delay,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21, no. 7, pp.
2930–2942, 2019.

[26] A. Zakerimanesh, T. Qiu, and M. Tavakoli, “Heterogeneous vehicular
platooning with stable decentralized linear feedback control,” in 2021
IEEE International Conference on Autonomous Systems (ICAS). IEEE,
2021, pp. 1–5.

Amir Zakerimanesh (Graduate Student Member,
IEEE) was born in Tabriz, Iran. He received his
B.Sc. and M.Sc. degrees in electrical engineering
(control-system) from the Faculty of Electrical and
Computer Engineering, University of Tabriz, Tabriz,
Iran, in 2012 and 2015, respectively. He is currently
pursuing the Ph.D. degree in electrical engineering
with the University of Alberta, Edmonton, AB,
Canada. His research interests include control theory,
machine learning, robotics, computer vision, and
intelligent transportation systems.

Tony Z. Qiu (Member, IEEE) received the B.Sc. and
M.Sc. degrees from Tsinghua University, China, in
2001 and 2003, respectively, and the Ph.D. degree
from the University of Wisconsin-Madison in 2007.
Since joining the University of Alberta (U of A)
in 2009, he founded the Intelligent Transportation
Systems (ITS) Research Laboratory, now called the
Centre for Smart Transportation (CST). He is also
the Scientific Director of the Autonomous Systems
Initiative (ASI), a multi-million dollar Campus Al-
berta Research Program focused on developing arti-

ficial intelligence and automated systems. From 2008 to 2009, he worked as
a Post-Doctoral Researcher with California PATH Program at the University
of California at Berkeley, Berkeley. He is currently a Professor with the
Department of Civil and Environmental Engineering, U of A, and holds
both the Canada Research Chair in Cooperative Transportation Systems and
the NSERC Industrial Research Chair in Intelligent Transportation Systems
positions. Through his leadership of the CST, he is working to foster
Canadian competitiveness in connected vehicle (CV) technology and research
by developing Canada’s first CV testbed, ACTIVE-AURORA, a network of
six on-road and in-lab testbeds equipped and linked with CV technology.
ACTIVE-AURORA provides an ITS and CV testing ground and a multi-
institutional collaboration platform. In addition to having completed over 41
research projects totaling more than 6,000,000 in funding, he has published
over 160 journals and conference papers, several of which have been chosen
for best paper awards. His research focuses on developing analytical models
to evaluate and optimize large and complex ITS networks and develop support
tools for the agencies that manage these systems. Dr. Qiu has received the
2013 Minister’s Award of Excellence in Process Innovation, the 2015 Faculty
of Engineering Research Award from the University of Alberta, an award
at the 2016 ITS Canada Annual Conference for research collaboration with
the City of Edmonton, and the Young ITS Canada Leadership Award for his
contributions to the advancement of intelligent transportation systems in June
2019.

Mahdi Tavakoli (Senior Member, IEEE) is pro-
fessor of Electrical and Computer Engineering and
Senior University of Alberta Engineering Research
Chair in Healthcare Robotics. He received his BSc
and MSc degrees in Electrical Engineering from
Ferdowsi University and K.N. Toosi University, Iran,
in 1996 and 1999, respectively. He received his
PhD degree in Electrical and Computer Engineering
from the University of Western Ontario, Canada, in
2005. In 2006, he was a post-doctoral researcher
at Canadian Surgical Technologies and Advanced

Robotics (CSTAR), Canada. In 2007-2008, he was an NSERC Post-Doctoral
Fellow at Harvard University, USA. Dr. Tavakoli’s research interests broadly
involve the areas of robotics and systems control. Specifically, his research
focuses on haptics and teleoperation control, medical robotics, and image-
guided surgery. Dr. Tavakoli is the lead author of Haptics for Teleoperated
Surgical Robotic Systems (World Scientific, 2008). He is a Senior Member
of IEEE, Specialty Chief Editor for Frontiers in Robotics and AI (Robot
Design Section), and an Associate Editor for the International Journal of
Robotics Research, IEEE Transactions on Medical Robotics and Bionics,
IEEE Robotics and Automation Letters, IEEE TMECH/AIM Emerging Topics
Focused Section, and Journal of Medical Robotics Research.


	Introduction
	blueNomenclature
	Nomenclature
	bluePreliminaries
	blueBidirectional Communication Topologies (BDCTs)
	blueRepresentation of Constant and Changing Distances
	blueVehicles Dynamics and `Follower-Leader' State Errors
	bluePlatoon Targeted-Kinematics, and Controllers
	bluePlatoon Dynamics, and Internal Stability

	blueState Coordinate Transformation
	bluePlatoon Distance Dynamic model
	blueTransient Intervehicle Distance Errors (TIDEs)
	blueMapping Between TIDEs and Initial Conditions
	blueDifferent Scenarios for TIDEs

	blueSimulations and Results
	blueComparing BDCTs Based on TIDE Performance
	blueAnalysis Validation for TIDE Study
	blueTracking Performance
	blueHigh-Fidelity Simulation of Truck Platooning

	blueConclusion
	References
	Biographies
	Amir Zakerimanesh
	Tony Z. Qiu
	Mahdi Tavakoli


