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Abstract Discrete-time random walks and their extensions are common tools for an-7

alyzing animal movement data. In these analyses, resolution of temporal discretiza-8

tion is a critical feature. Ideally, a model both mirrors the relevant temporal scale9

of the biological process of interest and matches the data sampling rate. Challenges10

arise when resolution of data is too coarse due to technological constraints, or when11

we wish to extrapolate results or compare results obtained from data with different12

resolutions. Drawing loosely on the concept of robustness in statistics, we propose a13

rigorous mathematical framework for studying movement models’ robustness against14

changes in temporal resolution. In this framework, we define varying levels of robust-15

ness as formal model properties, focusing on random walk models with spatially-16

explicit component. With the new framework, we can investigate whether models17

can validly be applied to data across varying temporal resolutions and how we can18

account for these different resolutions in statistical inference results. We apply the19

new framework to movement-based resource selection models, demonstrating both20

analytical and numerical calculations, as well as a Monte Carlo simulation approach.21

While exact robustness is rare, the concept of approximate robustness provides a22

promising new direction for analyzing movement models.23
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1 Introduction27

Major advances in tracking technology during the last decades have made large28

datasets of animal movement available to ecologists, and analyses of data have be-29

come widespread in ecology. These analyses have shed light on mechanisms that30

underly fundamental processes such as migration (Robinson et al 2009; Costa et al31

2012), navigation (Tsoar et al 2011; Benhamou et al 2011), or home range behaviour32

and territoriality (Borger et al 2008; Potts and Lewis 2014; Giuggioli and Kenkre33

2014). They have helped to identify conservation goals by revealing habitat prefer-34

ences and critical environmental features for populations (Sawyer et al 2009; Colchero35

et al 2010; Ito et al 2013; Masden et al 2012), as well as the role of important mutu-36

alistic interactions between mobile animals and immobile plants (Côrtes and Uriarte37

2013; Mueller et al 2014). These are only few of the many facets of movement ecol-38

ogy.39

Mathematical and statistical models provide a framework for studying movement40

(Schick et al 2008; Smouse et al 2010; Langrock et al 2013). When linking models41

to data, we can estimate model parameters and identify best-fitting models, thus in-42

ferring unknown quantities or mechanisms in movement behaviour. Although move-43

ment itself is a continuous process, many individual-based movement models treat44

time as a discrete variable, viewing movement as a series of locations in space, or45

equivalently as a series of steps (Turchin 1998; McClintock et al 2014). This may46

largely be ascribed to data being available in this format. Discrete-time models may47

thus be an intuitive first choice to describe a sampled movement path. However, there48

may be more reasons to use discrete-time models. The continuous movement path of49

an animal may consist of various behaviours at different scales (Johnson et al 2002;50

Benhamou 2013). Using a discrete-time model at the scale of interest allows us to51

focus on the behavioural mechanisms at that scale, while, for example, combining52

other unknown processes as stochastic effects. Also, the choice of time formulation53

in a movement model can have side effects that impact inference results. For exam-54

ple, McClintock et al (2014) demonstrated that using a continuous-time Ornstein-55

Uhlenbeck process in a hierarchical model for identifying behavioural states led to56

difficulties discriminating between states, due to an inherent correlation between the57

variables step length and bearing in the Ornstein-Uhlenbeck process.58

When linking discrete-time models to data, the temporal resolution of the dis-59

cretization is a critical feature that must be chosen with care. Different time scales60

may come into play and need to be consolidated. On the one hand, a time scale is61

given by the biological process of interest. For example, we may be interested in in-62

ferring behavioural mechanisms of a movement process and thus need to consider63

the time scale at which these mechanisms are relevant. The discretization of a model64

should represent this scale appropriately. On the other hand, a different time scale65

may be given by the data collection rate. In practice, the sampling rate of data is66

subject to technological constraints. One of the major limitations of electronic tag-67

ging devices such as Argos or GPS tags is battery life, imposing a tradeoff between68

measurement rate and total deployment time (Ryan et al 2004; Breed et al 2011).69

Also, to avoid a large noise to signal ratio, the time interval should be chosen so that70

measurement error relative to distance travelled during a time interval is small (Ryan71
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et al 2004). For slow moving animals and depending on the accuracy of the tagging72

device, a minimum time interval of an hour may be necessary (Jerde and Visscher73

2005). Therefore, the resolution of the data may not always match the time scale of74

the behavioural process of interest. In this case, it becomes a challenge for a model75

to overcome the conflict.76

A related problem is that sampling rate can affect data analysis results (Codling77

and Hill 2005; Rowcliffe et al 2012; Postlethwaite and Dennis 2013). A common78

measure calculated from raw movement data is the total distance travelled, which79

can provide useful information about an animal’s energetic expenditures. It is well80

documented that this quantity is highly influenced by the sampling rate of the data81

(Ryan et al 2004; Mills et al 2006; Tanferna et al 2012; Rowcliffe et al 2012). A82

range of studies demonstrated that other fundamental movement characteristics vary83

with data sampling frequency as well, for example path sinuosity and apparent speed84

(Codling and Hill 2005), movement rate and turning angle (Postlethwaite and Dennis85

2013), and estimates of territory size (Mills et al 2006). One of the main problems86

underlying these effects is information loss when subsampling a movement path. This87

also impairs our capacity to correctly estimate behavioural states through hierarchical88

modelling approaches that have become widespread in movement analyses (Breed89

et al 2011; Rowcliffe et al 2012). These findings demonstrate that great care is needed90

when extrapolating movement analysis results beyond the temporal scale of a study.91

Comparisons of results may not be appropriate if the temporal resolution of the data92

varies too much, but it is unclear what constitutes ‘too much’.93

Despite the evidence of the extent of the problem, little is known about how94

to solve it. Previous approaches have been mainly empirical, using very fine scale95

data or synthetic data from simulations, which are subsampled at various resolutions.96

Movement characteristics calculated at these varying sampling rates are then com-97

pared to the values based on the full data, which represent the ‘true’ values. Some98

studies have fitted functions to the relationships of movement characteristics and sam-99

pling rate (Pépin et al 2004; Codling and Hill 2005; Mills et al 2006). These empir-100

ically obtained functions may be used to correct movement characteristics for sam-101

pling rate. While correction factors derived from movement data remain situation-102

specific and cannot easily be applied across species (Ryan et al 2004; Rowcliffe et al103

2012), we can obtain more general results by analyzing the effects of sampling rate104

at the level of the model (Codling and Hill 2005; Rosser et al 2013). Often, important105

characteristics of movement can be well captured by models, and therefore analyzing106

the properties of models can provide more general insights. However, only few such107

studies exist. An approach to circumvent the problem of scale-dependent statistical108

inference has been taken by Fleming et al (2014), who use the semivariance function109

of a stochastic movement process to identify multiple movement modes acting at dif-110

ferent temporal scales. The method takes into account all possible time lags between111

observations. However, there are limitations as to the movement processes that can112

be included in this analysis (Fleming et al 2014).113

Here, we present a rigorous framework for studying how movement models react114

to changes in sampling rate, and we use this framework to analyze a class of models115

based on random walks. With our analysis, we seek to understand whether, and how,116

models can help to compensate mismatching temporal scales between different data117
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sets or between data and behavioural process of interest. The framework is based118

on the movement model robustness presented in Schlägel and Lewis (2016), where119

we analyzed classic random walks. Here we extend this to spatially-explicit random120

walks, as for example used in resource-selection studies (Forester et al 2009; Potts121

et al 2014). We investigate whether there are models that can validly be applied to122

data with different temporal resolutions and how we can account for the differences123

in resolutions in our interpretation of statistical inference results. In particular, we124

are interested in how model parameters, and their estimates, change as we decrease125

the temporal resolution. While estimates may change due to a shift in behavioural126

scale, which we always need to be aware of, we are interested in the changes that127

arise from the method, that is the model. Our framework is related to the statistical128

concept of robustness, which aims at safeguarding statistical procedures against vio-129

lations of model assumptions (Hampel 1986; Huber and Ronchetti 2009). Often, such130

violations refer to deviations from assumed probability distributions (e.g. Normal er-131

rors), which may result in outliers, misspecified relationships between response and132

explanatory variables in regression analyses, or violations of the common indepen-133

dence assumption. In this paper, we define robustness of movement models against134

changes in temporal discretization. In our framework, we treat robustness as a formal135

property of a model, namely the movement model. If a model has this property, it136

can be applied to data with varying resolutions. Additionally, while model parame-137

ters do not stay the same, they change systematically and can be translated between138

resolutions.139

As a cautionary note, we emphasize that the purpose of our paper is to highlight140

the sensitivity of movement data analyses based on discrete-time models to temporal141

resolution and to explore potential remedies. There will always be limitations as to142

the mismatch in resolution between process and data that a model can handle. As143

data becomes coarser behavioural detail is lost, and a model that is suitable at a fine144

scale, e.g. the scale of area-restricted search, is most likely unsuitable at a larger scale,145

e.g. the scale of patch selection (Benhamou 2013). Our analysis is directed towards146

a better and more precise understanding of the impact of temporal discretization on147

movement analyses, in particular when it is still reasonable to assume that the data’s148

resolution is still within the scale of interest (e.g. 15-minute data versus 4-hour data149

for a large mammal). In our study of simple random walks, we found that movement150

model robustness is a very strong condition (Schlägel and Lewis 2016). Therefore, we151

here extend our framework to include approximate robustness, which slightly relaxes152

the assumptions of exact robustness.153

Our paper is outlined as follows. In section 2, we define what we mean by a154

movement model to be robust against changes in temporal resolution. We provide155

three different definitions, varying in their strength of conditions. In section 3, we156

present different approaches how the definitions can be used to analyze robustness157

of movement models. Depending on models’ complexity and preexisting informa-158

tion, we can use formal analytical methods, numerical calculations, as well as Monte159

Carlo and simulation approaches. We use these approaches to examine robustness of160

spatially-explicit random walks and resource-selection models, and we summarize161

our findings in section 4. In section 5, we discuss the relevance of our robustness162
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framework for statistical inference and also draw specific conclusions for spatially-163

explicit resource-selection models.164

2 Robustness of Markovian movement models165

We consider movement models that are discrete-time Markov processes of the form166

(XXXt , t ∈ T ), where XXXt ∈ R
2 is an individual’s location and T = {0,τ,2τ, . . .} is a set167

of regularly spaced times. This means that we assume that the time interval τ > 0168

between two successive location measurements is fixed. Such data often arise from169

terrestrial animals fitted with GPS devices (Frair et al 2010). The time interval τ of170

the model is usually specified by the resolution of the data. We denote the one-step171

transition density for the probability of moving from location yyy to xxx between times172

t − τ and t by pt−τ,t(xxx|yyy,θθθ), where θθθ ∈ ΘΘΘ is a vector of model parameters. This173

notation highlights that the transition density can be time-heterogeneous.174

We consider sub-models that consist of every nth location of the original model

for n ∈ N. The transition density of the nth sub-model for the probability of mov-

ing from location y to x between times t − nτ and t is denoted by pt−nτ,t(xxx|yyy,θθθ);
compare Fig. 1. A priori, the function pt−nτ,t can have an entirely different form

than pt−τ,t and may correspond to a different probability distribution. However, via

the Chapman-Kolmogorov equation, the n-step transition density can be written as a

marginal density,

pt−nτ,t(xxxt |xxxt−nτ ,θθθ)

=
∫
R2×···×R2

pjoint(xxxt ,xxxt−τ , . . . ,xxxt−(n−1)τ |xxxt−nτ ,θθθ)dxxxt−τ . . .dxxxt−(n−1)τ , (1)

where we marginalize over all intermediate locations visited between times t − nτ
and t. For simplicity, we use the general subscript ‘joint’ to denote any joint density

of multiple locations. From the notation of the locations it is clear which joint density

is meant. The Markov property of the model allows us to stepwise split up the joint

density as follows

pjoint(xxxt ,xxxt−τ , . . . ,xxxt−(n−1)τ |xxxt−nτ ,θθθ)

= pt−τ,t(xxxt |xxxt−τ ,θθθ) pjoint(xxxt−τ , . . . ,xxxt−(n−1)τ |xxxt−nτ ,θθθ). (2)

We can continue this until we obtain

pt−nτ,t(xxxt |xxxt−nτ ,θθθ)

=
∫
R2×···×R2

n−1

∏
k=1

pt−kτ,t−(k−1)τ(xxxt−(k−1)τ |xxxt−kτ ,θθθ)dxxxt−τ . . .dxxxt−(n−1)τ . (3)

Therefore, we can use the one-step densities to calculate the n-step density; compare175

Fig. 1. For statistical inference, and thus for our robustness concept, the model pa-176

rameter vector θθθ plays a crucial role. Although the n-step density may belong to a177

different distribution than the one-step density, equation (3) justifies that we use the178

same parameter θθθ in the notation of the n-step density as in the one-step density.179

We define robustness in terms of the one-step and n-step densities of a model.180
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Definition 1 (Robustness of degree n) Let n ∈ N be finite. A movement model of181

the above type is robust of degree n if there exists an injective function gn : ΘΘΘ → ΘΘΘ182

such that183

pt−nτ,t(xxx|yyy,θθθ) = pt−τ,t(xxx|yyy,gn(θθθ)) for all t ∈ T and xxx,yyy ∈ R
2. (4)

This definition requires that the n-step densities are of the same functional form as the184

one-step transitions, where parameters of the model are appropriately transformed185

via the function gn. This means that if a model is robust, the nth sub-model is in186

fact the same as the original model but with systematically adjusted parameters. The187

parameter transformation gn allows us to extrapolate the original parameter θθθ to the188

coarser temporal discretization of the nth sub-model. Additionally, we can use the189

nth sub-model to infer the parameter θθθ of the original model, because we can invert190

gn(θθθ). Note, however, that this rests on the assumption that the original model defines191

the process of interest. If, instead we start at the coarser resolution, we would also192

need surjectivity of the function gn to conclude the existence of the finer model.193

Robustness of degree n has important implications. Given a behavioural process194

of interest, described by a robust model with parameter θθθ , we can apply the model195

not only to data with matching temporal resolution τ but also to coarser data with196

resolution nτ (e.g. double time interval for n = 2). The parameter estimate ψψψ that197

we obtain from the coarser data is in fact an estimate of gn(θθθ). From this, we can198

infer the value of θθθ via θθθ = g−1
n (ψψψ). Additionally, robustness allows us to compare199

studies pertaining to the same behavioural process but using data sets with different200

resolutions. If θθθ is the estimate based on the finer data, it can be extrapolated to the201

coarser scale via the parameter transformation gn(θθθ), for all degrees n for which the202

model is robust.203

Robustness as in Definition 1 is a strong condition that we do not expect to hold204

but in few special cases of the density pt−τ,t(xxx|yyy,θθθ). However, equation (4) may hold205

up to a function v(xxx,yyy), where v is a bounded function that could also depend on n206

or τ . For practical applications, such approximate or asymptotic robustness may be207

sufficient. Therefore, we provide two additional definitions.208

Definition 2 (Asymptotic robustness of degree n) Let n ∈N be finite. A movement209

model of the above type is said to be asymptotically robust of degree n if there exists210

an injective function gn : ΘΘΘ → ΘΘΘ and a function v : R2 ×R
2 ×R

+ → R
+ with the211

property v(xxx,yyy;τ)−1 = O(τ) on R
2 ×R

2 ×R
+, such that212

pt−nτ,t(xxx|yyy,θθθ) = pt−τ,t(xxx|yyy,gn(θθθ))v(xxx,yyy;τ) for all t ∈ T and xxx,yyy ∈ R
2. (5)

Here, O denotes the Landau symbol for the order of a function. If a model is asymp-213

totically robust, the n-step densities are not exactly the same as the one-step densities,214

as was required in Definition 1. However, the discrepancy between the densities is215

bounded by a function that is proportional to τ . More precisely, for an asymptotically216

robust model we have217

1−Cτ ≤ pt−nτ,t(xxx|yyy,θθθ)
pt−τ,t(xxx|yyy,gn(θθθ))

≤ 1+Cτ (6)
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for all xxx, yyy and θθθ , for some constant C > 0. Therefore, if the time interval τ of the218

model is sufficiently small, the n-step density will closely resemble the one-step den-219

sity with appropriately adjusted parameters. Asymptotic robustness of degree n im-220

plies that robustness of degree n is achieved as τ → 0, that is when the time interval τ221

approaches zero.222

In applications, the time interval τ may not be chosen sufficiently small for Def-223

inition 2 to be useful. Therefore, we give a variation of Definition 2, in which the224

function v does not depend on τ .225

Definition 3 (Approximate robustness of magnitude δ and degree n) Let n ∈ N226

be finite. A movement model of the above type is said to be approximately robust227

of magnitude δ and degree n if there exists an injective function gn : ΘΘΘ → ΘΘΘ and a228

function v : R2 ×R
2 → R

+ with the property 0 < 1− δ ≤ v(xxx,yyy) ≤ 1+ δ for all xxx,229

yyy ∈ R
2, for a δ > 0, such that230

pt−nτ,t(xxx|yyy,θθθ) = pt−τ,t(xxx|yyy,gn(θθθ))v(xxx,yyy) for all t ∈ T and xxx,yyy ∈ R
2. (7)

Analogously to equation (6), condition (7) can be written as231

1−δ ≤ pt−nτ,t(xxx|yyy,θθθ)
pt−τ,t(xxx|yyy,gn(θθθ))

≤ 1+δ . (8)

In fact, we may consider two different types of magnitudes. Setting232

v(xxx,yyy) :=
pt−nτ,t(xxx|yyy,θθθ)

pt−τ,t(xxx|yyy,gn(θθθ))
, (9)

this function depends a priori on the parameters, that is we have v(xxx,yyy;θθθ), and the233

magnitude is δθθθ . If maxθθθ δθθθ exists, then this is the overall magnitude for the model234

with all possible parameter values. The magnitude determines how close n-step densi-235

ties are to the parameter-adjusted one-step densities. If δ is small, then the correction236

function v is close to one everywhere, and thus the n-step density has similar values237

as the one-step density over its entire domain.238

Asymptotic and approximate robustness have similar implications for inference239

as robustness, but only approximately. The quality of the approximation depends on τ240

or the magnitude δ . Suppose we wish to estimate parameters of a behavioural process241

that we formulate in a model. Suppose we consider the time interval τ as suitable242

for the process. If the model is robust of degree n, we can use data not only at the243

matching scale but also at a coarser scale. For example, if the model is robust of244

degree 2, we can use data obtained at time interval 2τ . Because the model is also245

valid for the coarser scale, we can translate parameter estimates between the scales246

via the function gn. If a model is asymptotically or approximately robust, the model247

is not exactly but still approximately valid for the coarser scale. To see this, consider248

the likelihood function249

L1(θθθ |{xxx0,xxxτ ,xxx2τ , . . . ,}) = ∏
t∈{τ,2τ,...}

pt−τ,t(xxxt |xxxt−τ ,θθθ). (10)
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If a model is robust of degree n, the likelihood for data at time interval nτ is250

Ln(θθθ |{xxx0,xxxnτ ,xxx(n+1)τ , . . . ,}) = ∏
t∈{nτ,(n+1)τ,...}

pt−nτ,t(xxxt |xxxt−nτ ,θθθ)

= L1(gn(θθθ)|{xxx0,xxxnτ ,xxx(n+1)τ , . . . ,}).
(11)

If a model is asymptotically robust, we have instead251

L1(gn(θθθ)) · (1−Cτ +O(τ2))≤ Ln(θθθ)≤ L1(gn(θθθ)) · (1+Cτ +O(τ2)), (12)

omitting the notation of the data, which is the same as in equation (11). Analogously,252

for approximate robustness we have253

L1(gn(θθθ)) · (1−δ +O(δ 2))≤ Ln(θθθ)≤ L1(gn(θθθ)) · (1+Cδ +O(δ 2)). (13)

Therefore, if a model is asymptotically or approximately robust of degree n, we254

may loosely write Ln(θθθ) ≈ L1(gn(θθθ)), that is the likelihood functions based on data255

at time interval τ and on data at interval nτ are approximately the same. Thus, if data256

at time interval τ is not available, we can analyze data at time interval nτ instead,257

using the likelihood L1 of the original model. Parameter estimates obtained in this258

way can be translated to the scale τ by using the inverse parameter transformation259

g−1
n . Such results from statistical inference based on L1 may be close to results based260

on the correct Ln, which may be difficult to compute. How close results are depends261

on the quality of the approximations in Definitions 2 and 3 via τ or δ . For example,262

if a model is approximately robust with a very small magnitude δ , the likelihood L1263

will describe data at time interval nτ almost as well as Ln.264

3 Analyzing spatially-explicit random walks265

We used the robustness definitions to analyze spatially-explicit random walk mod-266

els. These models merge general movement tendencies of an individual with deci-267

sions based on specific characteristics of locations, such as environmental features268

and available resources. We investigated how the models react when applied to data269

with increasingly coarser temporal resolution.270

Our robustness definitions have two key features. First, the one-step transition271

densities of the model and the n-step densities of the sub-models need to have the272

same form. Second, model parameters, which are parameters of the densities, need273

to be transformed by a known function gn. We can assume different approaches to274

investigate robustness properties of a model, depending on whether we have a can-275

didate for the parameter transformation gn or not. If prior knowledge allows us to276

investigate robustness for a given or hypothesized parameter transformation, we can277

calculate and compare the n-step density pt−nτ,t(xxx|yyy,θθθ) and the parameter-adjusted278

one-step density pt−τ,t(xxx|yyy,gn(θθθ)). By showing equality of the two densities, we can279

verify robustness. For complex models, analytical calculations may be difficult, or280

even impossible. In these cases, we may resort to numerical calculations, especially281

when approximate robustness is sufficient.282
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In many situations, we may not know gn a priori, nor have any anticipation. Or,283

we may have tested robustness for a hypothesized parameter transformation but got284

poor results. In these cases, we need to establish some information on possible forms285

of the parameter transformation. Additionally, for complex models, numerical cal-286

culation of the high-dimensional integral required for the n-step density (compare287

equation (3)) may become inaccurate. A solution is then to draw on the ideas of288

Monte Carlo sampling. Monte Carlo methods and simulations are useful when prob-289

ability densities are difficult to compute in closed-form but can conveniently be sam-290

pled from (e.g., Robert and Casella 2000). In the following, we demonstrate both291

approaches for analyzing movement models’ robustness.292

3.1 Analytical and numerical approach293

Spatially-explicit random walks can be created by merging two elements in the tran-294

sition density of the model. One component is the general movement kernel kθθθ 1
(x;y),295

which can be the transition density of any standard random walk, describing the prob-296

ability that an individual takes a step from y to x if there were no environmental in-297

formation available. A second part of the model, given by the weighting function298

wθθθ 2
(x), rates each possible step based on the location x. The transition densities of299

the full model takes the form300

pt−τ,t(x|y,θθθ 1,θθθ 2) =
kθθθ 1

(x;y)wθθθ 2
(x)∫

R
kθθθ 1

(z;y)wθθθ 2
(z)dz

. (14)

The integral in the denominator serves as a normalization constant.301

For simplicity, we restricted our analysis to the one-dimensional case, that is we302

assumed that Xt ∈ R. We further focused on Gaussian kernels kθθθ 1
(x;y) = kσ (x;y),303

where kσ (x;y) is a Gaussian density with mean y and standard deviation σ . The304

weighting function wθθθ 222
(x) was assumed to be positive everywhere to ensure that305

equation (14) defines a density. In the following we simply use θθθ for the parameter306

vector of the weighting function, or, when it is clear which parameters refer to the307

weighting function, we drop the subscript for the parameter in the notation of the308

weighting function entirely.309

Note that the transition density (14) does not depend on time explicitly. Still, as310

the individual moves through space over time, the centre location y of the kernel311

shifts. Although the kernel is a function of the distance ‖x− y‖ only, the weighting312

function adds a spatially explicit component. Therefore, unless the individual remains313

at the same location, the transition kernel effectively changes at every time step. In314

the following, we omit the time-related subscript in the notation of the density and315

simply write p1 for the transition density (14) and pn for the n-step density. The time316

interval of the original process is always assumed to be τ . The distinction between317

one-step and n-step density is still important, because the n-step density is in fact an318

integral over multiple one-step densities; compare equation (3).319

We investigated whether we could find weighting functions wθθθ (x) such that the320

model with transition density (14) is robust, asymptotically robust or approximately321
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robust. We started by verifying Definition 1 for simple cases of the weighting func-322

tion for a fixed parameter transformation gn. As highlighted above, the parameter323

transformation is a key element, translating parameters between different temporal324

resolutions. For the parameter of the Gaussian movement kernel kσ , we obtained a325

candidate for the transformation based on the linearity of the Gaussian distribution.326

If we only consider the kernel kσ , we have a simple random walk with normally dis-327

tributed steps between locations. The n-step density (3) is then the density of a sum328

of n normally distributed random variables, which is again normal with standard de-329

viation
√

nσ . Therefore, we assumed that the transformation of the kernel’s standard330

deviation was given by gn(σ) =
√

nσ . For the parameters of the weighting function331

we assumed that they remain unaffected, that is gn(θθθ) = θθθ . This is an ideal property332

for a weighting function, as it guarantees validity of inference results across different333

sampling rates without further translation.334

In a next step, we used the same parameter transformation gn(σ ,θθθ) = (
√

nσ ,θθθ)335

to establish conditions on the weighting function such that the model is asymptot-336

ically robust. For this, we assumed that the parameter of the kernel, the standard337

deviation, was influenced by the time interval τ , that is σ = σ(τ). This reflects that338

an individual may travel larger distances during longer time intervals. Because of339

the linearity of the Gaussian distribution, we assumed the relationship σ(τ) =
√

τω ,340

for some ω > 0. For certain conditions on the weighting function, we verified Defini-341

tion 2 analytically for the robustness degree n= 2 by calculating the function v(x,y;τ)342

and placing bounds on it.343

As alternative to an analytical approach, we can calculate the ratio of two-step344

and one-step density numerically to see whether we can find a function v(x,y;τ) ac-345

cording to Definition 2 for the degree n = 2. Define δ (τ) := maxx,y |v(x,y;τ)− 1|.346

Note that since step densities depend on τ through σ(τ), we may equivalently con-347

sider δ (σ). If this is independent of the other parameters θθθ , we can obtain the bound348

on v as δ := maxσ δ (σ), if this maximum exists. More generally, we can consider349

v(x,y,σ ,θθθ) and calculate δθθθ (σ) := maxx,y |v(x,y;σ ,θθθ)−1|. This δθθθ (σ) is the mag-350

nitude of approximate robustness (degree 2) for a model with a fixed weighting func-351

tion, including parameter values. An overall magnitude for the family of models con-352

sisting of the model for all parameter values can be obtained as δ := maxσ ,θθθ δθθθ (σ).353

We demonstrate these two numerical approaches with an example weighting func-354

tion.355

3.2 Simulation approach356

3.2.1 Resource selection models357

Resource selection analyses link animal location data and environmental variables to358

understand animals’ space-use patterns in relation to their habitat. These studies pro-359

vide insight into species’ preferences or avoidance of habitat characteristics, which is360

important information for wildlife management and conservation purposes (Hebble-361

white and Merrill 2008; Latham et al 2011; Squires et al 2013). Central methodologi-362

cal elements are resource selection functions (RSF) and resource selection probability363
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functions (RSPF), describing the probability of selection of certain units (e.g. pixels364

of land) by an organism based on environmental covariates (Manly et al 2002; Boyce365

et al 2002; Lele and Keim 2006). RSF and RSPF have been used on their own in a366

mere statistical framework (Boyce et al 2002; Courbin et al 2013), incorporated into367

spatially-explicit models (Rhodes et al 2005; Aarts et al 2011), and become part of368

mechanistic movement models (Moorcroft and Barnett 2008; Potts et al 2014)). We369

refer to Lele et al (2013) for details about the distinction of RSF and RSPF and use370

RSF as a general term for both concepts, unless otherwise stated.371

We include resource selection in the spatially-explicit random walk with transi-372

tion density (14) by letting the weighting function take the form of an RSF, wθθθ (x) =373

wθθθ (rrr(x)), where rrr(x) = (r1(x), . . . ,rn(x)) is a vector of resource covariates at location374

x. Each r j is a function over space, representing resource covariates such as elevation,375

biomass measures, land cover type, and much more. The transition density becomes376

p1(x|y,σ ,θθθ) =
kσ (x;y)wθθθ (rrr(x))∫

R
kσ (z;y)wθθθ (rrr(z))dz

. (15)

In practice, geographical information is spatially discrete, and therefore the normal-377

izing integral in equation (15) becomes a sum over pixels, or cells, of land. Note that378

we still restrict our attention to one-dimensional models.379

The RSF can take various forms, and here we consider the two most commonly

used ones (Manly et al 2002; Lele and Keim 2006), the exponential RSF,

wexp(rrr(x)) = exp(βββ · rrr(x)) (16)

and the logistic function,

wlog(rrr(x)) =
exp(α +βββ · rrr(x))

1+ exp(α +βββ · rrr(x)) . (17)

The vector βββ comprises all selection parameters with respect to resource covariates380

rrr. A higher selection parameter means stronger selection with respect to the corre-381

sponding resource. In the logistic form, α is an intercept parameter, which can shift382

the inflection point of the logistic function away from zero. The inflection point is383

the point where the logistic function attains a value of 0.5, that is where the probabil-384

ity of selecting a resource is 50%. If the exponential form (16) is used, an intercept385

similarly to the one used in equation (17) is not identifiable, because it cancels in the386

definition of the transition density (15). Therefore we have omitted it in equation (16).387

The function wlog has range (0,1) and can therefore be used to describe probabilities.388

This means that this form can be used as RSPF, which for a given location y specifies389

the probability that an animal selects this location, given the covariate values of the390

location. In contrast, the exponential RSF can only specify values proportional to this391

probability, with unknown proportionality constant (Lele et al 2013).392
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3.2.2 Sampling models and sub-models393

We examined the two models with weighting functions wexp and wlog for their ro-394

bustness. Because the weighting functions depend on space through environmental395

information rrr they are highly non-linear, and therefore the transition densities are396

difficult to examine analytically. Sampling probability distributions is a convenient397

work around and has the additional advantage that we can control parameters and iso-398

late processes of interest. We thus simulated sample trajectories from the model with399

transition densities (15). The joint density of a movement trajectory (x1, . . . ,xN)∈R
N

400

of length N ∈ N is given by401

pjoint(x1, . . . ,xN ,θθθ) = p1(x1,θθθ)
N

∏
t=2

p1(xt |xt−1,θθθ). (18)

Thus, we sampled successively from the transition densities to obtain a full movement402

trajectory. We obtained samples from the subprocess xxxn = (x1,xn+1, . . .) consisting of403

every nth location by subsampling the full trajectories. These subsamples represent404

samples from the model with transition densities being the n-step densities pn(·|·,θθθ).405

Because the models rely on environmental data, we simulated resource land-406

scapes as realizations of Gaussian random fields with exponential covariance model407

(Haran 2011; Schlather et al 2013). This resulted in spatially correlated resource land-408

scapes, thus ensuring realism; compare Fig. 1 in Online Resource 1. The sampled409

movement trajectories were based on these simulated landscapes. To avoid confound-410

ing effects and to keep results as clear as possible, we assumed that the weighting411

function was based on only one resource r, thus we have wθθθ (r(x)). With the expo-412

nential covariance model, we assumed that the covariance of resource values at two413

different locations is given by414

Cov(r(x),r(y)) = exp
( |x− y|

s

)
, (19)

where s affects the decrease of the spatial autocorrelation with increasing distance.415

We sampled trajectories for varying parameter values. We used σ ∈ {5,6,7} and416

β ∈ {0.5,1,1.5,2} in all combinations. In the model with logistic RSF wlog, we fur-417

ther combined the values α ∈{−1,−0.5,0,0.5,1} with all other parameters. For each418

parameter combination, we sampled 16 trajectories for 15,000 time steps each; com-419

pare Fig. 2,3 in Online Resource 1. For each of the 16 trajectories, we used a different420

resource landscape, repeating the same set of resource landscapes across different pa-421

rameter combinations. The 16 landscapes were generated with varying spatial auto-422

correlation, s ranging between 200–500. This led to a total of 192 sampled trajectories423

for the model with exponential RSF and 960 trajectories for the model with logistic424

RSF. We subsample every trajectory at levels n = 1, . . . ,15, leaving 1000 steps for the425

coarsest time series. The subsample for n = 1 is the original trajectory.426

3.2.3 Analyzing parameters427

While the simulated trajectories represent samples from the original model with tran-428

sition densities p1(·|·,θθθ), the subsamples of the full trajectories provide us with sam-429

ples from the sub-models with n-step densities pn(·|·,θθθ). To learn about the model’s430



Robustness of discrete-time movement models 13

robustness properties, we need to test whether the subsamples reconcile with the431

parameter-adjusted one-step densities p1(·|·,gn(θθθ)) for some parameter transforma-432

tion gn. For a given parameter transformation, we can achieve this by analyzing the433

fit of the model with transitions p1(·|·,gn(θθθ)) with the subsamples. When gn is un-434

known, or when the fit for a hypothesized gn is poor, we first need to investigate the435

behaviour of the parameters under subsampling to see whether we can find a function436

gn as required by our robustness definitions.437

Here, we both tested a priori expectations on the parameter transformation and438

searched for better alternatives. We estimated parameters for all trajectories and their439

subsamples using maximum likelihood optimization. The likelihood function for the440

full trajectories is given in equation (18). For subsamples, we applied the same model,441

although we did not know whether subsamples of trajectories followed the same442

(parameter-adjusted) process as full trajectories. We expected parameter estimates443

for the full trajectories to be close to the values that we used during the simulations.444

We call these the ‘true values’, although deviations in the simulations are possible, be-445

cause simulated trajectories are realizations of stochastic processes. Our main interest446

are parameter estimates for the subsamples. To distinguish estimates from underlying447

true parameters, we denote the estimate with a hat, e.g. σ̂ . Ideally, the parameters of448

the subsamples should follow some function gn(σ ,α,β ), and so should the estimates.449

To see whether such a function exists, we fitted non-linear regression models to the450

relationship of parameter estimates of subsamples and the subsampling amount n.451

For each parameter, we fitted two models. One model was more restrictive and repre-452

sented a priori expectations, whereas the other model had an additional free parameter453

that allowed more flexibility for the parameter transformation.454

The general movement kernel k has one parameter, the standard deviation σ of455

the Gaussian distribution. This kernel describes the general movement tendencies of456

the animal, and σ influences the distance covered in each step. With increasing sub-457

sampling, the temporal resolution of the movement path becomes coarser, and we458

thus expected the standard deviation of the kernel to increase. Each step in a sub-459

sample is in fact the accumulated result of one or several steps in the full trajectory.460

If the kernel is the only force driving the movement, the linearity of the Gaussian461

distribution caused us to expect the standard deviation of the kernel to increase as462 √
nσ ; compare section 3.1. With additional resource selection, however, there may463

be deviations from this behaviour.464

For the resource selection parameters α and β , an ideal behaviour would be that465

they remain unaffected by the subsampling, analogously to our assumptions in sec-466

tion 3.1. In our model, we assume that each step is influenced by the RSF. One of the467

underlying assumptions of a traditional RSF is that it gives weights to locations in-468

dependently of the values of other locations, which means each location is weighted469

by its present resource only, without consideration of alternative locations. There-470

fore, resource selection parameters should be independent of the temporal resolution471

of the data. However, within the spatially-explicit movement framework, resource472

selection always occurs in the context of the current location and the available sur-473

rounding area as defined by the general movement kernel. Therefore, a change in the474

movement kernel due to increased subsampling may be accompanied by a change in475

resource selection parameters.476
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We fitted the non-linear regression models to the parameter estimates separately477

for each parameter combination. This means that in each regression, we fitted esti-478

mates of 16 trajectories and their subsamples. Because of our previous considerations479

about the kernel parameter σ , we assumed a power relationship between the estimate480

σ̂ and the subsampling amount n, stratified by trajectories. We chose the stratification481

because trajectories were simulated on different landscapes. Also, for the resource482

selection parameters, especially when their true values were close to zero, estimates483

could vary between being positive and negative. In these cases, the stratification al-484

lowed for flexibility. The model for the estimate of the nth subsample of trajectory i485

is486

σ̂i,n = σ̂i,1 ·nb + ε, 1 ≤ n ≤ 15, 1 ≤ i ≤ 16, (20)

where the error term ε is normally distributed with mean zero and positive standard487

deviation ζ . The maximum likelihood estimate of b should ideally be close to 0.5,488

however as noted above, it may deviate from this value because of resource-selection489

mechanisms. To test whether b differs from 0.5, we used model selection via AIC490

between the model in equation (20) and the model in which we fixed b = 0.5.491

Model choice for the resource selection parameters was less clear. Visual inspec-492

tion of the estimates, preliminary fits with varying models and inspection of residuals493

suggested a power law for the parameter β as well. We thus fitted the following494

model,495

β̂i,n = β̂i,1 ·nb + ε, 1 ≤ n ≤ 15, 1 ≤ i ≤ 16. (21)

We compared the fit of this model with the model in which we assumed that subsam-496

pling does not change the estimate by setting b = 0.497

For the intercept parameter α in the logistic form of the resource selection func-498

tion, we chose a linear model,499

α̂i,n = α̂i,1 +b(n−1)+ ε, 1 ≤ n ≤ 15, 1 ≤ i ≤ 16. (22)

Inspection of residuals suggested that in some cases the relationship between α̂ and500

n was non-linear. However, a power-law model or other non-linear relationships were501

not consistently more suitable either. Therefore we remained with the simpler, the502

linear, model, noting that this is a mainly illustrative analysis.503

3.2.4 Calculating approximate robustness504

To accompany the simulation analysis, we examined approximate robustness proper-505

ties of the two models with exponential and logistic RSF. We focused on approx-506

imate robustness of degree 2, and we tested the ideal parameter transformations507

g2(σ ,β ) = (
√

2σ ,β ) and g2(σ ,α,β ) = (
√

2σ ,α,β ) for wexp and wlog, respectively.508

We numerically calculated a magnitude δ = maxx,y(|v(x,y)− 1|) for every possible509

scenario that we used in the previous section. This means that we calculated a magni-510

tude for each combination of the parameters σ , β , and α (in case of the logistic RSF)511

and for each of the 16 simulated resource landscapes. We may therefore think of δ512

as δ (σ ,α,β , i), for 1 ≤ i ≤ 16; compare Fig. 2 We examined whether magnitudes513

were influenced by parameter values and specific characteristics of the landscapes,514
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such as their spatial autocorrelation and their overall variation Var(r(x)) over the spa-515

tial domain. We further calculated an overall maximum maxσ ,α,β ,i δ (σ ,α,β , i). We516

compared results between the model with exponential RSF, wexp, and logistic RSF,517

wlog.518

4 Results519

4.1 Analytical and numerical results520

We found few special cases of weighting functions wθθθ that, together with the Gaus-521

sian kernel kσ , resulted in a robust movement model according to Definition 1.522

The simplest case was a constant weighting function. Such a weighting function523

reduces equation (14) to the case of a homogeneous environment, where only general524

movement tendencies play a role, but no environmental information. The model is525

then a simple random walk with normally distributed steps between locations. Be-526

cause of the linearity of the normal distribution, the model is robust of degree n for527

all n ∈ N for the assumed parameter transformation gn(σ) =
√

nσ ; compare also528

Theorem 2 for parameters a = b = 0.529

A natural next step was to consider a linear weighting function. However, a lin-530

ear weighting function violates the assumption of being strictly positive everywhere.531

If in equation (14) the current location y is the point at which w becomes zero, the532

normalization integral vanishes. Also, equation (14) can become negative and thus533

cease to be a valid density function. Still, we could draw on the linearity of the ex-534

pectation of a random variable to look into this further. The normalization constant in535

the transition density (14) can be viewed as an expectation of the form E(w(Z)) for536

a normally distributed random variable Z with mean y. Therefore, if the function w is537

linear, the normalization constant reduces to w(y). Equation (14) then becomes538

p1(x|y,σ ,θθθ) = kσ (x;y)
wθθθ (x)
wθθθ (y)

. (23)

The right-hand side of the equation is positive whenever x and y are either both neg-539

ative or both positive. If movement only occurs in the domain where the weighting540

function is positive the model is robustness within this domain. The details of the541

proof can be found in Appendix A.542

Theorem 1 (Linear weighting function) Let w be a linear function w(x) = ax+b,543

for a,b ∈ R. Let I ⊂ R be the interval where w > 0. For the restricted domain I ,544

the movement model with transition densities (14) is robust of degree n for all n ∈ N.545

The parameter transformation is given by gn(σ ,a,b) = (
√

nσ ,a,b).546

We found another special case to be given by an exponential weighting function.547

Here, no restriction on the domain is necessary. Again, see Appendix A for details of548

the proof.549

Theorem 2 (Exponential weighting function) Let w be an exponential function of550

the form w(x) = Ceax+b for C,a,b ∈ R. Then the movement model with transition551



16 Ulrike E. Schlägel, Mark A. Lewis

densities (14) is robust of degree n for all n ∈ N with parameter transformation552

gn(σ ,C,a,b) = (
√

nσ ,C,a,b).553

The above two Theorems show that it is possible to verify exact robustness with554

the ideal parameter transformation gn(σ ,θθθ) = (
√

nσ ,θθθ) for certain weighting func-555

tions. However, the cases are very restrictive, and robustness will fail for many other,556

and especially more complex, weighting functions.557

We could additionally establish asymptotic robustness for more general condi-558

tions on the weighting function. The main result is summarized in the following the-559

orem. For a detailed proof of the theorem, see Appendix B.560

Theorem 3 (Asymptotic robustness of degree 2) Let wθθθ be continuous and bounded561

away from zero. Let wθθθ further be twice differentiable with bounded second deriva-562

tive. Then the model with transition densities (14) is asymptotically robust of degree563

2 with parameter transformation g2(σ ,θθθ) = (
√

2σ ,θθθ).564

Thus, if the weighting function is well-behaved according to the theorem, we can565

place a bound on the factor by which the one- and two-step density vary; compare566

equation (6). This bound is of order τ , such that the discrepancy between one- and567

two-step density decreases with the time interval.568

Example 1 (Asymptotic robustness of degree 2) As a simple example, consider the569

weighting function w(x) = sin(αx)+β for α > 0 and β > 1. The choice of β guar-570

antees that the weighting function is positive everywhere. The function w is bounded571

between 0 < β −1 ≤ w(x)≤ β +1 for all x ∈R, and its second derivative is bounded572

by |w′′(x)|= α2. Therefore, Theorem 3 holds.573

The proof of Theorem 3 is constructive in the sense that it provides us with a574

constant C for equation (6) in terms of the bounds on w and w′′. However, this con-575

stant may be rather large and does not necessarily provide the closest bound on the576

function v. Therefore, it can be informative to calculate approximate robustness nu-577

merically.578

Example 2 (Approximate robustness of degree 2) We continue the above example579

with weighting function w(x) = sin(αx)+β for α > 0 and β > 1. We calculated the580

function v(x,y;σ ,α,β ) from Definition 3 numerically, using different values of α581

and β (Fig. 3a). From this, we obtained δα,β (σ) (Fig. 3b), which is the magnitude of582

approximate robustness (degree 2) for the model with specific weighting function (i.e.583

with specific parameters); compare Fig. 2. In each case, after reaching a maximum584

the function vanishes for increasing σ . Therefore it appears that we can find δα,β :=585

maxσ δα,β (σ). The wavelength of the sine curve, determined by α , and the intercept586

β have different effects on the function δα,β (σ). While α shifts the curve, β changes587

the height of the peak (Fig. 3b). Therefore, it appears that δα,β is independent of α588

and decreases for larger β . For the weighting function to be positive, β needs to be589

larger than one. For β = 1, the function δα,β has a maximum at one. From these590

considerations, we can conclude that maxα,β δα,β = 1. This is the overall magnitude591

of approximate robustness (degree 2) for the family of weighting functions w(x) =592

sin(αx)+β , α > 0, β > 1; compare Fig. 2 As a word of caution, we note that we593
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only calculated δα,β for a fixed number of parameter values and only within finite594

intervals for x and y, and therefore results may be limited to these ranges.595

In the region where δ (σ) peaks, the approximation of the parameter-adjusted596

one-step density p1(x|y,
√

2σ ,α,β ) to the actual two-step density p2(x|y,σ ,α,β ) is597

only rough. However, for larger values of σ , and independent of α and β , the func-598

tion δα,β (σ) seems to vanish, which means that the approximation is good and the599

discrepancy between two- and one-step densities may be neglected. From Theorem 3,600

we would have been able to conclude that δα,β (σ(τ)) is bounded by Cτ , for a con-601

stant C > 0, for all α > 0 and β > 1. As we can see from the steep initial slope of602

δα,β (σ), especially for higher values of α , the constant C would need to be rather603

large (Fig. 3b). The calculations of approximate robustness could additionally show604

that the bound on v(x,y) is in fact much smaller.605

4.2 Simulation results606

4.2.1 Results for parameter estimates607

When analyzing parameter estimates from the simulated trajectories and their sub-608

samples, we found a difference in the behaviour of parameters between the exponen-609

tial and the logistic form of the RSF. Generally, subsampling had less effect on the610

value of parameter estimates using the logistic form, and the behaviour of estimates611

agreed closer with our expectations.612

For both RSF, estimates σ̂ showed a good fit with the power-law model. When613

we used the exponential RSF, the estimated power b ranged from 0.45 to 0.5 for614

varying parameter combinations, thus deviating from expected behaviour for some615

parameter combinations (Fig. 4a). For small selection parameter β , the estimate σ̂616

showed the expected increase as σ̂
√

n. With increasingly strong selection, i.e. higher617

value of β , estimates σ̂ became smaller with increased subsampling relative to the618

ideal relationship. An increase in σ did not influence the fit other than leading to619

a larger residual standard error ζ̂ , which is to be expected because of the overall620

larger values of the dependant variable. In contrast, when using the logistic RSF, the621

estimated power b differed only very slightly from 0.5 and in some cases, the simpler622

model with fixed b was preferred by model selection right away (Fig. 4b).623

The behaviour of the resource-selection parameter β also differed between expo-624

nential and logistic RSF. For the exponential RSF, β̂ showed a clear increase with625

increased subsampling, fitted well by our power-law model (Fig. 5a). The power b626

remained similar (ranging 0.105–0.124) across parameter combinations, increasing627

slightly with larger σ (Fig. 5b). For the logistic RSF, estimates β̂ generally remained628

closer to the original values for n = 1 (Fig. 5c,d). In most cases, model selection via629

AIC preferred the power-law model to the ideal constant relationship, however, the630

estimated values of the power b are small, with 53 out of 60 values being below 0.1631

(total range 0–0.156, with one exceptional negative value b = −0.041). There was a632

tendency of b to be smaller and more concentrated under stronger selection (Fig. 5d).633

Estimates of the intercept α in the logistic RSF showed a slight decline with634

increased subsampling in most cases (Fig. 6). This decreasing trend existed no matter635
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whether α was positive, negative, or zero. In general, slopes of the linear fit were636

all close to zero (ranging -0.047–0.058), and in a few cases the null model with b =637

0 was chosen. We found a trend in the realized intercept values in the simulated638

trajectories. With stronger effect of selection (larger β ), the intercept estimate α̂ of639

original trajectories (n = 1) was stronger concentrated around the true underlying640

value, which subsequently lead to a stronger concentration of estimates of subsamples641

(Fig. 6).642

4.2.2 Results about approximate robustness643

When comparing magnitudes δ (σ ,α,β , i) of approximate robustness (degree 2) be-644

tween the two models with exponential and logistic RSF, we found lower magnitudes645

for the model with logistic function wlog. Magnitudes for the model with exponential646

RSF ranged between 0.067 and 1.82, whereas those for the model with logistic RSF647

ranged between 0.02 and 1.19. The 5% quantile, the median and the 0.95% quantile648

were [0.092,0.34,0.97] (exponential RSF) and [0.046,0.21,0.64] (logistic RSF).649

We found that especially the selection parameter β had a strong influence on650

magnitudes, higher values of β leading to higher magnitudes (Fig. 7). For the model651

with exponential RSF, there was a tendency that weighting functions whose underly-652

ing landscapes had higher variation Var(r(x)) lead to smaller magnitudes (Fig. 7a).653

However, we did not find an effect of the parameter s that was used in the simulations654

to influence the spatial autocorrelation of the landscapes. The model with logistic655

RSF did not show such an effect of landscape variation. The logistic model had the656

additional intercept parameter α . We found that higher values of α tended to result657

in lower magnitudes (Fig. 7b).658

5 Discussion659

We have proposed a new rigorous framework for analyzing movement models’ ca-660

pacities to compensate for varying temporal discretization of data. Our framework661

comprises three definitions of varying strength for robustness of discrete-time move-662

ment models. Generally, if a model is robust, it can overcome problems of mismatch-663

ing temporal scales between different data sets or between data and biological ques-664

tions. Because our robustness is a very strong condition that holds only for very few665

and generally more simple models, we have introduced the additional concepts of666

asymptotic and, most importantly, approximate robustness. While for many move-667

ment models it is difficult, or even impossible, to examine the transition densities668

and their marginals analytically, approximate robustness properties of a model can be669

calculated numerically also for analytically intractable models. Therefore, we believe670

that especially approximate robustness will prove a useful new concept for movement671

analyses.672

We have formulated our robustness definitions in terms of the transition densi-673

ties of Markov models, because these models are often fitted to movement data with674

likelihood-based methods of statistical inference. For the considered models, we can675

obtain the likelihood function by multiplying the transition densities of subsequent676
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steps. If a model is robust, the transition densities keep their functional form across677

varying temporal scales, and parameters are transformed via a well-defined func-678

tion gn. The likelihood function therefore remains the same but will yield different679

parameter estimates. However, if the parameter transformation is known, estimates680

from one scale can be translated to estimates at other scales. If a model is only ap-681

proximately robust, the likelihood function will not remain exactly but at least ap-682

proximately the same under a change of scale. Depending on the magnitude of the683

approximate robustness, the approximation of the likelihood function may be suffi-684

ciently good to allow parameter estimates to be reasonably comparable for different685

scales, especially if the difference in scales is small.686

5.1 Relationship of the framework to statistical robustness687

Our concept of robustness for discrete-time movement models is related to the formal688

concept of robustness in statistics. Generally speaking, robust methods in statistics689

acknowledge that models are approximations to reality and seek to protect outcomes690

of statistical procedures (e.g. hypothesis testing, estimation) against deviations from691

the underlying model assumptions. Classic examples are the arithmetic mean and692

median as estimates of a population mean: while the median is robust against out-693

liers the mean is not (e.g. Hampel 1986). Often, robustness is viewed in the context694

of deviations from assumed probability distributions (distributional robustness; e.g.695

Huber and Ronchetti 2009). For example, data may be contaminated by few observa-696

tions with heavier tailed distribution than the majority of the observations. In regres-697

sion analyses, robustness may also relate to the homoscedasticity assumption or the698

functional form of the response function (Wiens 2000; Wilcox 2012). Additionally,699

robustness has been considered when the assumption of independence is violated and700

instead observations are correlated (Hampel 1986; Wiens and Zhou 1996). In our pa-701

per, we consider robustness in the context of discrete-time movement models with702

respect to assumptions about the temporal discretization. In view of statistical robust-703

ness, we study violations against the assumption that the temporal resolution of our704

movement model, a stochastic process, matches the resolution of the data, when in705

fact the data is only a subsample of the assumed process.706

There is also a difference between our robustness of movement models and the707

well-established robustness in statistics. In our framework, robustness is a direct prop-708

erty of a model. In contrast, classical robustness in statistics is defined for objects such709

as estimators, test-statistics, or more generally, functionals (real-valued functions of710

distributions) (Hampel 1971, 1986). For the type of models we have considered here,711

parameter estimates cannot be obtained analytically but through numerical optimiza-712

tion of the likelihood function. The likelihood function is build by the model’s transi-713

tion densities, and thus we have defined robustness at a very basic level. A possibility714

for future research is to investigate whether some of the formal concepts of statistical715

robustness can be applied to our framework to add further insight. With our paper,716

we provide a new perspective for studying effects of temporal discretization of move-717

ment processes, and we hope to encourage further research.718
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5.2 Discussion of analytical results719

Our analytical investigations indicate that robustness is a rare property among move-720

ment models, especially when behavioural mechanisms such as resource selection are721

added. Therefore, if we apply models to data without considering this issue, we are722

in danger of misinterpreting results and drawing erroneous conclusions. However,723

our analysis also shows positive prospects with respect to approximate robustness.724

Theorem 1 suggests that in slowly varying environments that produce locally linear725

weighting functions we may find some robustness. Theorem 3 and the following ex-726

amples show that certain smoothness and boundedness conditions on the weighting727

function can lead to approximate robustness. In addition, Example 2 further demon-728

strates that approximate robustness can be investigated numerically on a case-by-case729

basis. We have illustrated this with a smooth weighting function w(x) that is a direct730

function of space. In data applications, an animal’s preferences for locations usually731

do not depend on space per se but rather through the type of habitat and available732

resources, and the weighting function will be less regular. In our simulation study,733

we have therefore presented a case with a more realistic model.734

5.3 Discussion of resource selection simulation study735

While it is difficult to analyze the transition densities and resulting n-step densi-736

ties with analytical calculations, we have demonstrated with the simulation approach737

how we can still investigate robustness properties of complex models. Sampling from738

probability distributions instead of calculating them is the key idea of Monte Carlo739

methods. We have used this method to examine sub-models that have the n-step den-740

sities as transition densities. With this we obtained the parameter transformation gn.741

Our approach differs from previous studies that have used subsamples of fine-scale742

data to establish an empirical relationship between sampling interval and movement743

characteristics (Pépin et al 2004; Ryan et al 2004; Rowcliffe et al 2012). When using744

data, it can be difficult to tease apart effects that result from the methodology and ef-745

fects of actual behavioural changes at different scales. Analyzing model properties as746

we have proposed here allows us to identify those effects of temporal discretization747

that are attributable to the methodology.748

In our demonstration of the simulation approach, we analyzed spatially-explicit749

resource selection models. These models have an advantage over traditional resource-750

selection and step-selection functions. In the traditional, regression-type approach,751

observed movement steps are compared to potential steps that are obtained separately752

from an empirical movement kernel (Fortin et al 2005; Forester et al 2009). In this753

approach, movement and resource-selection are treated independently, although it is754

highly likely that both influence each other. In contrast, when fitting the full random755

walk with resource selection to data by using the likelihood function (18), we can756

simultaneously estimate parameters both of the general movement kernel and the757

weighting function, that is the RSF.758

In our analysis of the resource-selection model, we observed systematic trends759

in values of parameter estimates with changing temporal discretization of movement760
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trajectories. The main purpose was not to analyze these relationships in full detail761

but to illustrate that they occur and thus must not be neglected. Comparing the expo-762

nential and logistic form of the spatially-explicit resource selection model, we found763

that estimates varied more with increased subsampling when the exponential RSF764

was used, compared to the logistic RSF. Using the exponential RSF, estimates of the765

kernel standard deviation σ decreased with increased subsampling compared to the766

ideal relationship
√

nσ . On the other hand, using the logistic RSF, σ followed the767

ideal relationship that would occur for a purely Gaussian process very closely, even768

under additional influence of resource selection. The estimated strength of resource769

selection, indicated by β , increased with the subsampling amount. While this effect770

was strongly pronounced for the model with exponential RSF, it was only weak for771

the logistic RSF. Therefore, if using the logistic RSF, one may expect to obtain similar772

inference results across varying temporal discretization.773

When we calculated the magnitudes of approximate robustness for the models774

used in the simulations, we found that those were in line with the results for the pa-775

rameter estimates. Overall, the model with logistic RSF had better robustness prop-776

erties than the model with exponential RSF. We also found a matching trend for the777

movement parameter σ with varying true values of β . Estimates of σ were closer778

to the expected behaviour for weaker resource-selection parameters. This was also779

reflected in magnitudes of approximate robustness. If selection was weaker in the780

original model, the model exhibited better robustness properties. These results sug-781

gest that numerical calculations of approximate robustness can assist our expecta-782

tions about changes in parameter estimates. On the other hand, although parameter783

estimates of the weighting function showed a clear difference in behaviour when784

comparing between the exponential and logistic RSF, differences within one model785

between different parameter combinations were less clear. More analyses would be786

required to entangle more detailed effects.787

Overall, the results from the simulations suggest that depending on the resolution788

of movement data, we may misinterpret animals’ movement tendencies and also may789

overestimate resource selection effects. It is therefore important that we are aware790

of the changes to statistical inference that can arise merely from the methodology.791

Here, we have seen that changes in inference results were stronger for the resource792

selection model with exponential RSF compared to the logistic RSF. A possible ex-793

planation may be the additional intercept in the logistic RSF. With increased sub-794

sampling, estimates of α tended to decrease, possibly counteracting the increase in795

estimates β̂ . This could have led to more stability for the parameter σ of the general796

movement kernel. However, this may not explain why resource selection parameters797

generally varied less themselves compared to the exponential RSF. Another possi-798

bility is that the different form of the RSFs causes their different behaviour. While799

the exponential form of the RSF greatly enhances differences in landscape values,800

the logistic RSF is restricted to values in the interval (0,1). Theorem 3 suggests that801

variation in the rate of change of the weighting function influences robustness prop-802

erties. Thus the logistic RSF may produce more stable inference results for varying803

temporal resolutions. Lele and Keim (2006) suggested several alternatives to the ex-804

ponential RSF. Our study case showed that the choice of resource selection functions805
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can have implications for statistical inference and we encourage to choose resource806

selection functions more deliberately.807

5.4 Concluding remarks808

With our study we have illustrated that the concept of robustness and its parameter809

transformation gn can help to bridge the gap between different temporal resolutions810

of data. For example, in the resource-selection model with exponential RSF, we found811

that with increased subsampling estimates of the resource selection parameter β devi-812

ated strongly from the original values, however, the increase in β̂ could be fitted with813

a power-relationship. Thus, using the idea of Monte Carlo sampling, we were able814

to obtain a parameter transformation gn that links parameter values between different815

temporal resolutions. Using such transformations when comparing results obtained816

from data with different temporal resolutions could greatly improve our statistical817

inference, leading to a better understanding of movement behaviour.818

At the same time, we would like to reiterate that robustness of movement mod-819

els cannot replace careful design of movement studies and data collection. To obtain820

reliable results, it is crucial to acquire movement data with a resolution that is fine821

enough to hold information about the behavioural process of interest. Our robustness822

concept can then be used to mitigate between different resolutions within this tem-823

poral scale of interest. Additionally, robustness considerations should not trump bio-824

logically meaningful model properties. For example, in many situations a scale-free825

random walk may not be a suitable model (James et al 2011; Pyke 2015) although826

it is robust (Schlägel and Lewis 2016). We therefore emphasize the importance of827

careful model choice while adding the framework of movement model robustness as828

a new tool to evaluate models’ sensitivity to temporal discretization. With our study,829

we hope to deepen our insight into the problem and to encourage further research.830
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Fig. 1 The second sub-model consists of every second location. The transition densities of the sub-model,

which we refer to as 2-step densities, are the marginals over the two intermediate one-step densities of the

original model

Fig. 2 Steps for calculating the magnitude of approximate robustness of degree 2 for a given model, where

σ is the parameter of the movement kernel, and α and β are parameters of the weighting function. The

one-step density p1 can, for example, be equation (14) with the weighting function from Example 2, or the

resource selection model (15) with weighting function (16) or (17). When the resource selection model is

used, the flowchart shows the calculation of the magnitude for one specific resource landscape r(x). When

calculating an overall magnitude, practically we do this for a subset of the parameter space
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Fig. 3 Panel a): Numerical calculation of the function v(x,y), which is the ratio of two-step den-

sity pt−2τ,t(x|y,σ ,α,β ) and one-step density pt−τ,t(x|y,g2(σ ,α,β )), for the weighting function w(x) =
β + sin(αx). Parameter values are σ = 1, α = 1, β = 2. The function v(x,y) varies roughly between 0.72

and 1.31. Panel b): Numerical calculation of δ (σ) := maxx,y |v(x,y;σ)− 1| for the weighting function

w(x) = β + sin(αx) for varying values of α and β . The parameter α , which determines the wavelength

of the sine, shifts the curve δ (σ) and varies the skewing, while retaining the height of the maximum. The

parameter β in contrast changes height of the maximum, which is the magnitude δ of the approximate

robustness



Robustness of discrete-time movement models 25

0.493 <  b < 0.498 0.486 <  b < 0.490

0.473 <  b < 0.477 0.453 <  b < 0.466

β = 0.5 β = 1

β = 1.5 β = 2
1

2

3

4

1

2

3

4

4 8 12 4 8 12

subsample

pa
ra

m
et

er
 σ

0.496 <  b < 0.501 0.492 <  b < 0.500

0.491 <  b < 0.499 0.489 <  b < 0.500

β = 0.5 β = 1

β = 1.5 β = 2
1

2

3

4

1

2

3

4

4 8 12 4 8 12

subsample

pa
ra

m
et

er
 σ

estimates

Fitted model

b=0.5 (fixed)

b estimated

a)

b)

Fig. 4 Values of σ against increasing subsampling amount n. Estimates σ̂ (gray dots) were fitted with a

power-relationship, stratified by trajectories, and separately for several combinations of true parameter val-

ues (σ , β , and α for the model with logistic RSF). The power b was either fixed at 0.5 (ideal relationship;

upper orange lines) or flexible and estimated (lower blue lines). The noted range of b refers to variation for

different parameter combinations. Estimates and predictions are standardized by the corresponding true

value. Panel a): Model with exponential RSF. With increasing value of β , estimates σ̂ tended to increase

less with subsampling compared to the ideal relationship. Panel b): Model with logistic RSF. The fitted

power-relationship was very close to the ideal relationship, such that lines indicating the ideal relationship

are overlaid by lines showing the fitted relationship
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Fig. 5 Simulation results for the resource selection parameter β for the model with exponential RSF (pan-

els a,b) and logistic RSF (panels c,d). Panels a) and c): Estimates β̂ (gray dots) for increasing subsampling

amount n were fitted with a power-relationship, stratified by trajectories, and separately for several com-

binations of true parameter values (σ , β , and α for the model with logistic RSF). The power b was either

fixed at zero, representing the assumption that resource-selection parameters do not change with changing

temporal resolution (ideal relationship; straight orange lines), or flexible and estimated (curved blue lines).

Estimates and predictions are standardized by the corresponding true value. In panel c), only estimates and

predictions for α = 0, β = 1 are shown. Panel b): For the exponential RSF, the estimated power b was

always above 0.1 and tended to increase with σ . Panel d): For the logistic RSF, the estimated power b was

mainly below 0.1 and tended to decrease and concentrate more for increasing β
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Fig. 6 For the model with logistic RSF, values of α against increasing subsampling amount n. Estimates

were fitted with a linear relationship, stratified by trajectories, and separately for several combinations of

true parameter values (σ , β , and α for the model with logistic RSF). The slope b was either fixed at zero,

representing the assumption that resource-selection parameters do not change with changing temporal

resolution (ideal relationship; straight orange lines), or flexible and estimated (blue lines). Estimates and

predictions are standardized by the corresponding true value and only shown for α = 0.5. The noted range

of b refers to variation for different parameter combinations
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Fig. 7 Magnitudes of approximate robustness for the study case models with resource selection. The plots

depict δ for varying values of σ and selection parameter β (dots). Lines join values for the same landscape

i, 1 ≤ i ≤ 16. Panel a): Magnitudes for the model exponential RSF. Values of δ tend to be lower for

landscapes with less variation Var(r(x)). Panel b): Magnitudes for the model with logistic RSF. Values of

δ tend to be lower for higher values of the additional intercept parameter α
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A Proofs of results about exact robustness963

Proof (Theorem 1) First, note that for any standard deviation of the kernel, σ , the integral
∫
R

kσ (y;x)w(y)dy
reduces to the weighting function evaluated at the kernel’s mean,

∫
R

kσ (y;x)w(y)dy =
∫
R

kσ (y;x)(ay+b)dy =
∫
R

kσ (y;x)(a(y− x+ x)+b)dy

= (ax+b)
∫
R

kσ (y;x)dy+a
∫
R

kσ (y;x)(y− x)dy = ax+b = w(x), (24)

because kσ (·|y) is a Gaussian density integrating to 1 and with vanishing first central moment. If we964

consider w as a linear transformation of a Normally distributed random variable with mean x, then equa-965

tion (24) reflects a special case of Jensen’s inequality, in which equality holds.966

We now show robustness of degree n with parameter transformation gn(σ ,a,b)= (
√

nσ ,a,b) by induction.967

For n = 1, we have the trivial transformation g1(σ ,a,b) = (σ ,a,b), and there is nothing to show for968

robustness of degree 1.969

We assume that robustness or degree n holds, that is we have the relationship970

pn(xn|x0,σ ,a,b) = p1(xn|x0,
√

nσ ,a,b). (25)

for all xn,x0 ∈ R. For n+1, we use the Chapman-Kolmogorov equation and Markov property and obtain

pn+1(xn+1|x0,σ ,a,b) =
∫
Rn

n+1

∏
k=1

p1(xk|xk−1,σ ,a,b)dx1 . . .dxn

=
∫
R

p1(xn+1|xn,σ ,a,b)

(∫
Rn−1

n

∏
k=1

p1(xk|xk−1,σ ,a,b)dx1 . . .dxn−1

)
dxn

=
∫
R

p1(xn+1|xn,σ ,a,b) pn(xn|x0,σ ,a,b)dxn

=
∫
R

p1(xn+1|xn,σ ,a,b) p1(xn|x0,
√

nσ ,a,b)dxn, (26)
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where the last step follows by induction. We can now insert the model’s step probabilities and use equa-

tion (24) to further calculate,

pn+1(xn+1|x0,σ ,a,b) =
∫
R

kσ (xn+1;xn)w(xn+1)∫
R

kσ (y;xn)w(y)dy

k√nσ (xn;x0)w(xn)∫
R

k√nσ (y;x0)w(y)dy
dxn

=
∫
R

kσ (xn+1;xn)w(xn+1)

w(xn)

k√nσ (xn;x0)w(xn)

w(x0)
dxn

=
w(xn+1)

w(x0)

∫
R

kσ (xn+1;xn)k√nσ (xn;x0)dz. (27)

Note that we have assumed that all movement steps are within the domain I , where the weighting function971

is positive. Since kσ (xn+1;xn) = kσ (xn+1 − xn;0), the integral in the last expression is the convolution of972

two Gaussian densities with variances σ2 and nσ2 and with means 0 and x0, respectively. Because of973

the linearity of Gaussian random variables, this is again a Gaussian density with mean x0 and variance974

(n+ 1)σ2. Because equation (24) holds for the kernel with any standard deviation, we can rewrite the975

denominator as w(x0) =
∫
R

k√n+1σ (y;x0)w(y)dy. Thus,976

pn+1(xn+1|x0,σ ,a,b) =
k√n+1σ (xn+1;x0)w(xn+1)∫
R

k√n+1σ (y;x0)w(y)dy
= p1(xn+1|x0,

√
n+1σ ,a,b). (28)


�

Proof (Theorem 2) We proceed analogously to the previous proof. The integral of weighting function and

kernel with arbitrary standard deviation σ and mean x is here given by

∫
R

kσ (y;x)w(y)dy =
∫
R

kσ (y;x)Ceay+b dy

=
C√
2πσ

∫
R

exp

(
− (y− x)2

2σ2
+ay+b

)
dy.

By completing the square and using substitution u = 1√
2σ

(y− x−aσ2) we obtain

∫
R

kσ (y;x)w(y)dy =
C√
2πσ

e
a2σ2

2 +ax+b
∫
R

exp

(
−
(

y− x−aσ2

√
2σ

)2
)

dy

=
C√
2πσ

e
a2σ2

2 +ax+b
∫
R

exp
(−u2

)√
2σ du.

The final integral reduces to
√

2πσ , and therefore,

∫
R

kσ (y;x)w(y)dy =C e
a2σ2

2 +ax+b. (29)
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Again, we prove robustness of degree n by induction, using parameter transformation gn(σ ,C,a,b) =
(
√

nσ ,C,a,b). In the induction step, we obtain, with help of equation (29),

pn+1(xn+1|x0,σ ,a,b) =
∫
R

kσ (xn+1;xn)Ceaxn+1+b∫
R

kσ (y;xn)Ceay+b dy

k√nσ (xn;x0)Ceaxn+b∫
R

k√nσ (y;x0)Ceay+b dy
dxn

=
∫
R

kσ (xn+1;xn)Ceaxn+1+b

Ce
a2σ2

2 +axn+b

k√nσ (xn;x0)Ceaxn+b

Ce
na2σ2

2 +ax0+b
dxn

=
exn+1

e
(n+1)a2σ2

2 +ax0

∫
R

kσ (xn+1;xn)k√nσ (xn;x0)dz

=
exn+1

e
(n+1)a2σ2

2 +ax0

k√n+1σ (xn+1;x0).

=
k√n+1σ (xn+1;x0)Ceaxn+1+b∫
R

k√n+1σ (y;x0)Ceay+b dy

= p1(xn+1|x0,
√

n+1σ ,a,b) (30)


�

B Proof of result about asymptotic robustness977

To highlight the main steps necessary to prove Theorem 3, we establish a series of intermediate results. As978

a first step, we show that the 2-step transition density can be broken up into a product of the form (5) in979

Definition 2.980

Proposition 1 The 2-step transition density of model with transitions (14) can be written as981

p2(xt |xt−2τ ,σ ,θθθ) = p1(xt |xt−2τ ,
√

2σ ,θθθ) · v(xt ,xt−2τ ;τ), (31)

where the function v is given by982

v(xt ,xt−2τ ;τ) =
∫
R

k√2σ (y;x)wθθθ (y)dy∫
R

kσ (y;x)wθθθ (y)dy

∫
R

k σ√
2

(
z;

1

2
(xt + xt−2τ )

) wθθθ (z)∫
R

kσ (y;z)wθθθ (y)dy
dz. (32)

Note that v depends on τ through σ . For later convenience, we define

Q(x;τ) :=

∫
R

k√2σ (y;x)wθθθ (y)dy∫
R

kσ (y;x)wθθθ (y)dy
(33)

I(x1,x2;τ) :=
∫
R

k σ√
2

(
z;

1

2
(x1 + x2)

) wθθθ (z)∫
R

kσ (y;z)wθθθ (y)dy
dz. (34)

Proof The proposition can be shown with a straightforward calculation. The 2-step transition density is

given by

p2(xt |xt−2τ ,σ ,θθθ) (35)

=
∫
R

kσ (xt ;z)wθθθ (xt)∫
R

kσ (y;z)wθθθ (y)dy
kσ (z;xt−2τ )wθθθ (z)∫

R
kσ (y;xt−2τ )wθθθ (y)dy

dz (36)

=
wθθθ (xt)∫

R
kσ (y;xt−2τ )wθθθ (y)dy

∫
R

kσ (xt ;z)kσ (z;xt−2τ )
wθθθ (z)∫

R
kσ (y;z)wθθθ (y)dy

dz. (37)
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Tthe product of the two Gaussian densities in the integrand can be transformed as follows983

kσ (xt ;z)kσ (z;xt−2τ ) = k√2σ (xt ;xt−2τ )k σ√
2

(
z;

1

2
(xt + xt−2τ )

)
. (38)

The two-step density therefore becomes

p2(xt |xt−2τ ,σ ,θθθ)

=
k√2σ (xt ;xt−2τ )wθθθ (xt)∫
R

kσ (y;xt−2τ )wθθθ (y)dy

∫
R

k σ√
2

(
z;

1

2
(xt + xt−2τ )

) wθθθ (z)∫
R

kσ (y;z)wθθθ (y)dy
dz. (39)

The numerator of the first factor is the desired one-step density up to appropriate normalization. If we ex-

tend by the required normalization constant
∫
R

k√2σ (y;xt−2τ )wθθθ (y)dy, we obtain equations (31) and (32).


�
We are now left to show that the function v− 1 is in the order of τ on its entire domain R

2 ×R
+. In984

particular, this means that for any fixed τ∗, the function v(x1,x2;τ∗)− 1 is bounded on R
2 via cτ∗ for a985

constant c. It turns out to be helpful to analyze v separately on R
2 × (0,τ0) and R

2 × [τ0,∞) for some τ0.986

Because the proof is simpler for large τ , we present this result first.987

Lemma 1 Let w be continuous and bounded away from zero, that is there exist L and U such that 0 < L ≤988

wθθθ (x)≤U for all x ∈ R. Let w further be twice differentiable on R with |w′′(x)|< M for some M and all989

x ∈ R. For any τ0 > 0, we have v(x1,x2, ;τ)−1 = O(τ) on R
2 × [τ0,∞).990

Proof Let τ0 be a number away from zero and fixed. Our goal is to establish bounds on the functions Q and991

I, as defined in (33) and (34), and to use these to place a bound on v−1. Because w is twice differentiable992

we can apply Taylor’s theorem to obtain a linear approximation for w using any point x ∈ R,993

wθθθ (y) = wθθθ (x)+w′(x)(y− x)+R(y), (40)

where R(y) is the remainder term. This leads to994 ∫
R

kσ (y;x)wθθθ (y)dy = wθθθ (x)
∫
R

kσ (y;x)dy+w′(x)
∫
R

kσ (y;x)(y− x)dy+
∫
R

kσ (y;x)R(y)dy, (41)

where the first term on the RHS becomes wθθθ (x), because the kernel integrates to 1, and the integral in995

the second term is the first central moment of the kernel, hence vanishes. The remainder R(y), using the996

Lagrange form, is given by R(y) = w′′(ξ )
2 (y−x)2, for some ξ between x2 and y. Since the second derivative997

of w is assumed to be globally bounded, we have |R(y)| ≤ M
2 (y− x)2. We use this to place bounds on the998

third term, recognizing that the remaining integral
∫
R

kσ (y;x)(y− x)2 dy is the second central moment of999

the Gaussian kernel kσ , which is given by its variance σ2 = ω2τ . Therefore,1000

wθθθ (x)−
M
2

ω2τ ≤
∫
R

kσ (y;x)wθθθ (y)dy ≤ wθθθ (x)+
M
2

ω2τ. (42)

In general, the lower bound can be arbitrarily close to zero, therefore we cannot simply invert this inequal-1001

ity to obtain an estimate on the inverse of the integral. Instead, we use the bounds on w and again the fact1002 ∫
R

kσ (y;x)dy = 1 for any σ and any x ∈ R to establish1003

0 < L ≤
∫
R

kσ (y;x)wθθθ (y)dy ≤U, (43)

which can be inverted. Since inequalities (42) and (43) hold for any σ and any x ∈ R, they allow us to1004

place bounds on both Q and I. For Q, we obtain1005

1

U

(
wθθθ (x)−Mω2τ

)≤ Q(x;τ)≤ 1

L

(
wθθθ (x)+Mω2τ

)
(44)

for all x ∈ R, τ ∈ R
+. We can avoid the dependency of the bounds on x by again invoking the bounds on1006

w,1007

1

U

(
L−Mω2τ

)≤ Q(x)≤ 1

L

(
U +Mω2τ

)
. (45)
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For the function I, we only make use of the bounds on w and inequality (43) and get1008

0 <
L
U

≤ I(x1,x2;τ)≤ U
L

(46)

for all x1,x2 ∈ R, τ ∈ R
+. We can now continue to calculate v−1. An upper bound is immediately given1009

by1010

v(x1,x2;τ)−1 = Q(x1;τ) I(x1,x2;τ)−1 ≤ U2 −L2

L2
+

MU
L2

ω2τ. (47)

With only few more additional steps, we obtain a lower bound by simply drawing upon L ≤U , its squared1011

version and its inverse,1012

−(
v(x1,x2;τ)−1

)≤ U2 −L2

U2
+

ML
U2

ω2τ ≤ U2 −L2

L2
+

MU
L2

ω2τ. (48)

Define C := U2−L2

L2τ0
+ MU

L2 ω2 for the τ0 chosen up front. Then,

|v(x1,x2;τ)−1| ≤ U2 −L2

L2
+

MU
L2

ω2τ −Cτ +Cτ (49)

=
U2 −L2

L2
− U2 −L2

L2τ0
τ +Cτ (50)

=

(
1− τ

τ0

)
U2 −L2

L2
+Cτ. (51)

The product on the RHS is non-positive for τ ≥ τ0, and hence |v(x1,x2;τ)−1| ≤Cτ for all R2 × [τ0,∞).

�

The bounds on Q and I, and thus v− 1, established in the preceding proof are not sufficient to conclude1013

the result as τ → 0, unless L =U , which is the trivial case of a constant weighting function. More suitable1014

bounds, however, can be found if inequality (42) can be inverted. This can be achieved by assuming τ to1015

be small enough.1016

Lemma 2 Let w be continuous and bounded away from zero, that is there exist L and U such that 0 < L ≤1017

wθθθ (x)≤U for all x ∈ R. Let w further be twice differentiable on R with |w′′(x)|< M for some M and all1018

x ∈ R. Let τ0 =
2L

Mω2 . Then v(x1,x2, ;τ)−1 = O(τ) on R
2 × (0,τ0).1019

Proof Here we develop bounds on Q and I such that both Q−1 and I−1 are in the order of τ . Let τ ≤ τ01020

for τ0 as defined in the lemma. Then the lower bound of equation (42) is bounded away from zero,1021

wθθθ (x)−
M
2

ω2τ ≥ wθθθ (x)−
M
2

ω2τ0 > wθθθ (x)−
M
2

ω2 2L
Mω2

= wθθθ (x)−L ≥ 0. (52)

Hence we can invert the inequality (42) and obtain1022

wθθθ (x)−Mω2τ
wθθθ (x)+ M

2 ω2τ
≤ Q(x;τ)≤ wθθθ (x)+Mω2τ

wθθθ (x)− M
2 ω2τ

. (53)

Note that the values in the numerators and denominators differ slightly because the variances of the kernel1023

k in the numerator and denominator of Q differ by a factor of 2.1024

Since 2wθθθ (x)−Mω2τ ≥ 2L−Mω2τ0 > 0, we can conclude1025

Q(x;τ)−1 ≤ wθθθ (x)+Mω2τ −wθθθ (x)− M
2 ω2τ

wθθθ (x)− M
2 ω2τ

=
Mω2τ

2wθθθ (x)−Mω2τ
≤ Mω2τ

2L−Mω2τ0
, (54)

for all x ∈ R and τ < τ0. Using 2wθθθ (x)+Mω2τ ≥ 2wθθθ (x)≥ 2L, we similarly obtain,1026

−(Q(x;τ)−1)≤ 3Mω2τ
2wθθθ (x)+Mω2τ

≤ 3M
2L

ω2τ (55)
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for all x ∈ R and τ < τ0. If we set C1 := max
(

Mω2

2L−2ω2τ0
, 3Mω2

2L

)
, it follows that |Q(x;τ)−1| ≤C1τ on1027

R
2 × (0,τ0).1028

Using analogous arguments as before, we can fine an find an upper bound on I,

I(x1,x2;τ) =
∫
R

k σ√
2

(
z;

1

2
(x1 + x2)

) wθθθ (z)∫
R

kσ (y;z)wθθθ (y)dy
dz (56)

≤
∫
R

k σ√
2

(
z;

1

2
(x1 + x2)

) wθθθ (z)
wθθθ (z)− M

2 ω2τ
dz (57)

=
∫
R

k σ√
2

(
z;

1

2
(x1 + x2)

) wθθθ (z)− M
2 ω2τ + M

2 ω2τ
wθθθ (z)− M

2 ω2τ
dz (58)

=
∫
R

k σ√
2

(
z;

1

2
(x1 + x2)

)
dz+

∫
R

k σ√
2

(
z;

1

2
(x1 + x2)

) M
2 ω2τ

wθθθ (z)− M
2 ω2τ

dz (59)

≤ 1+
∫
R

k σ√
2

(
z;

1

2
(x1 + x2)

) M
2 ω2τ

L− M
2 ω2τ0

dz = 1+
Mω2τ

2L−Mω2τ0
. (60)

A lower bound is given by

I(x1,x2;τ)≥
∫
R

k σ√
2

(
z;

1

2
(x1 + x2)

) wθθθ (z)
wθθθ (z)+ M

2 ω2τ
dz (61)

= 1−
∫
R

k σ√
2

(
z;

1

2
(x1 + x2)

) M
2 ω2τ

wθθθ (z)+ M
2 ω2τ

dz ≥ 1− Mω2τ
2L

. (62)

Setting C2 := Mω2τ
2L−Mω2τ0

, we obtain |I(x1,x2;τ)−1| ≤C2τ on R
2 × (0,τ0).1029

We can now estimate v−1 as follows,

|v(x1,x2;τ)−1|= |Qτ Iτ −1| ≤ |Qτ −1| |Iτ −1|+ |Qτ −1|+ |Iτ −1| (63)

≤C1 C2τ2 +(C1 +C2)τ ≤ (
C1 C2τ0 +C1 +C2

)
τ, (64)

for all x1,x2 ∈ R and all τ < τ0. 
�

Lemmata 1 and 2, together with proposition 1 prove Theorem 3.1030


