
University of Alberta

AN e x e r c i s e i n u s i n g SCL t o c a p t u r e b e h a v i o r a l

DESIGN INTENTIONS IN A WEB APPLICATION

by

Anjan Sen j *

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful­

fillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta

Fall 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-33346-4
Our file Notre reference
ISBN: 978-0-494-33346-4

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I think there is a world market fo r maybe five computers.

- Thomas J. Watson, IBM Chairman, 1943.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To My Mother,

Who brought me to this world.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Many errors in systems are caused by mismatch between the intentions of the de­

signers of the system and the actions of the implementers of the system, even when

they are the same people. This thesis examines how structural aspects of a system

expressed in SCL (Structural Constraint Language) can be used to capture behav­

ioral intentions in a simple web application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1

2 Static and Dynamic Analysis 3

3 Related Work 5

4 The E-Voting System 11

4.1 Business O b je c ts ... 11

4.2 Implementation Issues .. 13

5 Introduction to SCL 14

6 Some Security Questions 22

6.1 Enforcing A rchitecture... 23

6.2 Enforcing Workflow..24

6.3 Enforcing Complex P roperties... 27

7 Qualitative Experience 36

8 Comparison with other testing tool 39

9 Conclusion 42

10 Acknowledgments 44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

4.1 Class Diagram of the Online Voting S y stem 12

5.1 Abstract syntax of S C L .. 15

5.2 Basic types and the subtype re la tio n ... 15

6.1 Administrator Login Page...25

6.2 New Voter Registration..26

6.3 Sequence diagram of one-voter-one-vote scenario 28

6.4 Voter L o g in .. 34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

A web application or webapp is an application that is accessed via world wide web

through a network such as internet. There is huge popularity of webapps due to

the ability of these applications to be updated and maintained without distributing

new softwares to thousands of users distributed over the globe. In our everyday

life we use lots of variations of web applications like webmail, online shopping,

wikipedia, discussion board, weblog, electronic voting and many others. In a typi­

cal scenario, web applications dynamically generate a series of web documents in

some standard format supported by common browsers. While each individual web

page is delivered to the user as a static document, the sequence of web pages can

provide the user with an interactive experience. While there are several probable

variations of web applications, almost all of them contain some generic issues like

form processing, navigation through sequence of web pages, back-end connection

with database, authentication of users, handling of errors generated during execu­

tion flow etc. These are primarily behavior issues. The focus of this thesis is how

well we can use static analysis of structure to ensure proper behavior. We chose

online voting or e-voting as an example application in our investigation because it

provides a domain that is simple enough to implement, yet has sufficiently real be­

havior. In the next few paragraphs we try to point out the specific requirements and

issues o f a typical online voting system that we developed.

In every election process great care is taken to ensure the free, fair and smooth

running of the whole vote casting and counting process. Key aspects of any elec­

tion include issues such as administrative control, integrity and availability of the

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

system, ensuring authenticity of voters but anonymity of votes, and the correct tab­

ulation of the votes. These issues can all be lumped under the fuzzy notion of

security. The idea of conducting elections using commodity hardware and software

over publicly available networks, so called e-voting, raises many security issues.

Technology has always been associated with security, whether it is using ballots

to replace the counting of hands, or the internet to facilitate voting over distance

in space and time. Each technology brings advantages and problems. A particular

technology will have an intended use, that is, the users of the technology have an

idea of how it is to be applied to address a particular problem. It will also have

an actual deployment. Problems in a system arise because the technology is not

deployed as intended (an implementation error), or that the deployment admits use

beyond what the designers intended (an under-specification error). Processes to

evaluate the security of a system (or its correctness in general) are designed to

check that intentions are properly handled throughout the life cycle of the system.

Our focus here is on static analysis of source code, and the particular tool we

describe is called SCL (Structural Constraint Language) [4], SCL can be used to

capture and confirm that the intended properties of the voting system are respected

during the implementation of the system. We hope that the reader of this thesis

should develop some intuition on how to design behavioral features of an online

system in a structured way. And the typical security related questions of e-voting

provide us with the opportunity to examine the behavioral features within a man­

ageable level of domain.

Like most powerful tools, SCL is non-trivial to learn and employ. To appreciate

the strengths and weaknesses of static analysis tools like SCL we need to go into the

gory details of its use. From our experience with different online projects we have

deduced that it is generally difficult to capture all the underlying aspects in a general

domain, There are many potential security intentions of every online application

and trying to apply SCL on all or most o f them is not feasible for our current project.

Therefore, we have decided to investigate an online voting system which definitely

limits the domain to a more specific area of online applications.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Static and Dynamic Analysis

There are two types of program analysis: static and dynamic. To understand the ca­

pabilities of different security analysis tools to we need to understand the difference

between the two approaches. The majority of the web and network application sys­

tems use weak versions of both: dynamic in the form of testing, static in the form

of type-checking. However, both forms have their pros and cons [2]. Both tech­

niques can produce false positives: detecting an error when none exists; and false

negatives: missing an error that is present.

Static analysis tools parse and analyze the source code without running it. Com­

piler optimization and type checking are standard static analyses. Since the static

analysis tools do not execute the source code, they typically perform a conservative

analysis in an attempt to reduce false negatives. In this case conservative approach

simply means an overestimate of the program behavior that is guaranteed to predict

all of the behavior of the program we are interested in. So their results need to

be generalized across any number of executions of program or tool. This imposes

a restriction on the expressiveness of the static tools and causes them to produce

false positives in the output. It might also introduce false negatives as they have to

approximate program behavior to run faster.

On the other hand, dynamic analysis tools, which generally talk about behavior,

execute the program at real time and try to gauge the behavior o f the code over a

number of runs. Unit testing is an standard dynamic analysis tool. There is no need

to abstract or approximate the program behavior as we have the full knowledge of

the program paths followed by the tool and the data used to do the testing. Dynamic

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tools are typically as fast as the actual program execution. However, we might face

the problem of generalization of the input data and the execution paths followed

during the analysis.

To understand the effect of a conservative approach and the notion of false pos­

itive and negative we can think about an example. Lets assume that we are trying

to create a static buffer overrun detection system in a high-level programming lan­

guage like C. In this case a false negative is defined as a real buffer overrun that our

detection system could not find, whereas false positive is the scenario where our

system mistakenly flagged a buffer overrun. As it is computationally intractable to

statically detect buffer overruns, we might need to make a conservative assumption

that there will be very low occurrence of false negative; which means we make

an assumption that the scenario of our detection system missing an actual buffer

overflow is very unlikely to happen.

Both forms of analysis have their usefulness. Each form of analysis observes

a different set of program executions, limited by approximations (static analysis)

or by the input set (dynamic analysis.) Dynamic analysis tools have to worry more

about false negatives, while static analysis tools have to worry more about false pos­

itives. Dynamic analysis is fast, while static analysis is slow. However, it’s often

easier to introduce static analysis early in the development cycle. Some organiza­

tions introduce a fast static analysis as an automatic step in compilation or source

code checking, while using a longer, more in depth dynamic analysis for security

reviews. Having said that the line between static and dynamic analysis is fuzzy.

There are tools which cannot be unequivocally classified as static or dynamic. For

example model checking is not about running the program, rather it is about run­

ning the approximation of the program. As a general rule, we can debate that static

analysis is more concerned about the structure of the code, while dynamic analysis

tries to find the behavior of the code.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Related Work

Web applications have a widespread use in the real world, which makes it con­

venient to discuss their structure. Based on the structure, content, layout and logic

behind development we can classify typical web applications into two classes: static

and dynamic. In the static structure all parts of a web application are stored and ad­

ministered in a publishing server. Triggered by an explicit release or time-based

mechanism the publishing server generates the static web pages only once and

transfer them to the web. From there they are accessible to the users. As the web

page generation is done only once, this approach reduces the server’s load, though

this has very limited usefulness due to the lack of dynamic activity from the users.

On the other hand, when following dynamic structure, web pages are generated on

the fly based on specific user requests to the server of the system. When a request

is sent to the web server from the web browser, the server retrieves the necessary

data from the database (or the file system) and generates the output media, e.g. an

HTML page. In a complex system we might have several languages embedded into

the HTML page. Dynamic web pages usually consist of some HTML code and a

dynamic part, which is code written in another language (may be JSP or Javascript)

that generates HTML. The code that generates HTML can do this based on vari­

ables in a template or on code. The text to be generated may come from a back-end

database. Because o f the presence o f multiple code bases in a web application, we

might need to deal with them structurally, by having well-defined coding conven­

tions.

In any web application the primary intention of the developers is to ensure the

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

security of the system as a whole. And any source code written to implement a web

application plays a major part in analyzing the behavioral design intentions of the

system. Even after installing state of the art firewalls, guarding against off-the-shelf

software patches and protecting the system with heavy encryption, there may be

many loopholes in the structure to attack the system. We shall try to discuss briefly

different possibilities of attacks on a web application.

Some very common types of attacks on a web application are SQL injection,

cross-site scripting, user authorization etc. SQL injection technique exploits a se­

curity vulnerability of the database of a web application when user input from the

front-end is either incorrectly filtered for string escape characters of SQL statements

or the input is not strongly typed. Basically everything doable through SQL on a

database can be done through SQL injection like fetching, modifying and delet­

ing information. Another very worrying problem for developers of web application

is cross-site scripting (XSS). In this problem, the target of attack is actually the

browser of the client side of the application. XSS happens when a web site allows

input from one user to be displayed in the browsers of other users without being

properly filtered. An included javascript may get access to cookies of a client ma­

chine and thus leak the session Id and other personal information of that user to the

intruder. Another type of problem might occur with web application which deals

with user authorization, where authorization is done to check if an user has access

to a particular portion of the system. In a typical web application we might have

various types of user inputs taken at different stages which might reference parts

of the system that have access restrictions depending on the type of the user. The

programmer has to check against the possibility of the incoming data controlled by

an attacker.

Any web application environment contains many of the same development and

operation challenges that we might encounter in a typical cross-platform, distributed

system. As the execution of a web application is split across multiple user environ­

ments, including but not limited to uncontrolled client-side and third-party systems,

we always have to cope with a lack of visibility into the end-to-end behavior of the

program. This causes significant challenges in building and maintaining a reliable

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

web application used by a large and variable user base. As a simple example of

the variable nature of the typical user systems, sending an XML-RPC request re­

quires calling an ActiveX object in IE6, but a native JavaScript object in Firefox.

However the difficulties caused by the variable nature of behavior across different

systems can be overcome by better web service management and careful software

design [6],

Though it is a common practice in software world to apply some kind of formal

analysis like model checking, it has been realized that applying model checking

to the verification of a web application is not always straightforward [1]. Most

of the web applications are full of much complexity in terms of the programming

languages used to develop them and the variation in the client-side system; which

makes is rather difficult to extract models from such an application. As the appli­

cation of model checking on a web based system is no more easier than actually

coding the system, this analysis technique is not used regularly in web applications.

In a typical web application we may need to apply testing in different areas of

the whole system. Starting from the simplest classes, the developers will need to

program test cases to ensure that even the smallest units of the application behave

correctly. Potentially each component can pass the unit tests alone - however the de­

velopers need to make sure that all the different parts work together; in other word

developers might need to perform some sort of integration testing of the system. In

case of web applications, HttpUnit, a test framework based on JUnit, is widely used

as it allows automated test script implementation during testing cycles. But in many

software projects, developers might use some sort of ad-hoc approach to cut down

the development and testing time [14], To meet the short time framework, develop­

ers might need to consider some trade off between the implementation of business

logic and the quality of the product. In case of a web application expecting wide

variety of user base, it is highly imperative for the developers to clarify the basic

requirements of the users. As well as fulfilling these requirements, developers also

have to assess the performance of the system, heavy network loads and different

kinds of clients (hardware, OS, browsers).

When we focus our attention to an specific type of web application like e-voting,

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it is found that significant work is done in discussing the behavior issues related to

the development of such a system. Mercuri et.al. [11] presented a detailed list of

features that should be present in an electronic voting system to make it acceptable

under specific conditions. Some major features listed there are:

[i] separation of voter identity from vote information

[ii] recording and tabulation of vote information

[iii] audit trail of vote record

[iv] provision to produce vote confirmation to voters

[v] authentication of personnel concerned with election process

[vi] security of the whole system from outside influence

We find great insight into e-voting system by going through Neumann’s [12]

thorough study of key security considerations, such as system integrity, account­

ability, availability, and reliability, voter authenticity and data confidentiality etc.

They [12] also mentioned that to be treated as acceptable any voting system must

also conform with whatever election laws may be applicable for the election under

concideration. We also have to ensure that the voting system is run independent

with any other application running concurrently and the ballot images are stored

appropriately in-case of post-election result challenge by any concerned person or

group. Having said that, we also have to consider the fact that there are always

some criteria elements present in the voting system that are inherently unsatisfiable

under the acceptable time and money constraint.

Similar analyses are presented in [9] and [13]. Lauer et.al. [9] presented a com­

parative study between two different e-voting systems, regular internet voting and

direct recording electronic (DRE) voting. They presented the result of a survey car­

ried on both security experts and non-experts about the possible problems in carry­

ing out electronic voting. Whereas the experts’ concerns are system and program­

ming errors followed closely by attempts to hack the system to alter the election

result, the non-experts are mainly concerned with low voter turnout due to public

distrust of e-voting systems. We find a rather pessimistic view about the future of

e-voting in Rubin’s paper [13]. They concluded that even though there is a certain

amount of fraud existing in the current offline voting system, we tend to tolerate this

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as there is no better alternative. The localized nature of the offline system makes

it highly unlikely to propagate the effect of fraud to influence the outcome of an

election beyond a limited area. But in case of electronic voting the possibility of

fraud is higher, specially if the exact same system is deployed over a whole region.

Given the present state of high availability of computers in peoples’ homes, the

vulnerability of the internet due to denial of service attack and the unreliability of

the domain name service, it is concluded in [13] that the technology is not reliable

enough to enable remote electronic voting in public elections.

A security analysis of the source code of a paperless electronic voting system

is provided by Kohno et.al. [7]. They performed an analysis of the April 2002

snapshot of Diebold’s AccuVote-TS 4.3.1 electronic voting system using publicly

available source code. Their analysis detected several problems including unau­

thorized privilege escalation, incorrect use of cryptography, network vulnerabilities

and poor software development process. They proposed the use of voter-verified

audit trail that allows an electronic voting system to produce a paper trail of the

votes for the voters to check and verify before casting their vote. Their argument

in favor of this proposal is that having installed such a trail in the system, the cor­

rectness burden on the voting terminal’s code should be significantly lowered. This

paper trail can also be used to resolve any dispute in the final result.

There is a similar type of electronic voting system review carried out by Univer­

sity of California researchers on several state of California e-voting systems [15].

They conducted security audits of three e-voting systems: Sequoia, Diebold, and

Hart. Serious physical and technical security vulnerabilities were found with all

the three systems. In the Sequoia system, the review team found loopholes that en­

abled them to access the system that calculates the checksum of the data stored in

the disk. They also found problems with Microsoft SQL server 2000 used to store

the data. With the Diebold system, the researchers found significant discrepancies

between the configurations of the machines provided by the vendors and the official

description of the configuration. This particular system was also using a version of

Windows 2000 server that can be easily manipulated by experienced programmers

from outside. The review team concluded that the security mechanism provided by

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the different e-voting systems were inadequate for public use of these systems.

Keller [5] describes important privacy considerations for a prototype voting sys­

tem that includes an open source, PC-based voting machine that prints a voter-

verified paper ballot along with an electronic audit trail. They discussed different

privacy issues inherent in e-voting system. Their discussion amplifies the impor­

tance of careful and thorough planning during system design and implementation

in order to satisfy the delicate privacy concerns. Changes in various aspects of a

voting system, like voter signing-on, navigation across the ballot, checking, chang­

ing and casting vote and the applicability of a paper trail are discussed by Hermson

et.al. [3],

While all the previous papers are concerned with common voting areas like au­

thentication, vote casting, ballot storage and result publication, Laskowski et.al. [8]

investigated a rather less discussed aspect of the system - wording and placement of

instructions on ballot paper. Their study suggests that improper wording and place­

ment of instructions may cause serious implications on voters while casting their

vote. That is, a mismatch between intended and actual use creates a security issue.

Having gone through various discussions and proposals about electronic voting

system, it can be deduced that the current state of the technology is not reliable

enough to replace the offline voting system with a full-fledged e-voting system.

There are plenty of issues concerned with security, availability and acceptance of

the electronic system which need to be answered properly within the limit of accep­

tance to the general public before we can apply e-voting at a large scale.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

The E-Voting System

Our toy system is a prototypical web-delivered voting application. We make the

architectural assumption that users will have HTML/JavaScript compliant browsers

on arbitrary machines connecting over an open network. We assume, unrealisti-

cally, that the underlying hardware and software of users has not been compro­

mised. We are only going to focus on the web services aspects of the voting system:

the server side code and browser side HTML/JavaScript.

During the implementation, we have designed the whole system from ground

up, asking ourselves what we intend to represent as security aspects of the system.

We have come up with some potential security issues which, to us, are vital for

the correct and smooth running of electronic voting. The next sections are used

to describe the high-level design of our system. Later we shall come up with some

potential security questions and describe how SCL may be applied to address those.

We begin with a design of the business objects in the system, which then en­

ables us to develop a high-level overview of the different voting processes it has to

support. This will constitute the informal intentions of our design. To apply SCL,

we then need to capture aspects of our intentions that can be expressed in terms of

the source code.

4.1 Business Objects

In the following discussion, we refer to the whole election system as Election, the

personnel conducting the system as Administrator, all the electorate as Voter, all

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Administrator
A dainld: nuaber

4AdainNaae: s t r in g
-Adai n P ass: s t r i ng
-A u th e n tic a te (in A d a in ld :n u a b e r,in A d a in P a ss:s tr in g ,

out v e r i f ie d : bool can)
-R e g is te rV o te r (in A d a in ld :n u a b e r,in A d a in P a ss:s tr in g ,

in V o te rN a a e :s tr in g ,in V o te rP a s s :s tr in g ,
o u t V o te rld :n u a b e r ,o u t r e g is te re d :b o o le a n ,
o u t v o ted :boolean)

-E n try P o s tf in A d » in ld :n u a b e r,in A d a in P a ss :s tr in g .
in P o s tN a a e :s tH n g ,in Ho_Choice:n u ab e r.
o u t P o s tld :n u a b e r ,o u t c re a ted :b o o lea n)

-R e g is te rC an d id a te (in A d a in ld :n u a b e r,in A d a in P a ss:s tr in g ,
in V o te rId :n u a b e r ,in P o s tld :n u ab e r ,
o u t C a n .Id :n u a b e r,o u t done:boolean)

-U pdateR ecord(in A d a in ld :n u a b e r,in A d a in P a ss:s tr in g ,
i n R e c o rd ld :n u a b er,in RecordTypemuaber)

-C o n d u c tE lec tio n (in A d a in ld :n u a b e r,in A d a in P a ss:s tr in g ,
in S t a r t T i a e : t i a e . i n D u ra tio n itia e)

Voter
- E le c t io n ld : nuaber
-V o te rld : nuaber
4VoterMaae: s t r i ng
•VoterPass: s t r i n g

4 r e g is te r e d : boolean
4 vo ted : boolean

Election
- E le c t io n ld : nuaber

"U E lec tionD ate : t i a e
-A dain ld : nuaberrr

-LoginCin V o te r ld m u a b e r ,in V o te rP a s s :s tr in g ,
out va l i d : bool ean)

-C as tV o te (in V o te rId :n u a b e r ,in V o te rP a s s :s tr in g)

Ballot
-E le c tio n ld : nuaber

4 C re a te B a llo t(in P o s t ld :n u a b e r ,in No.Choice:nuaber)
-C a s t(in E le c tio n ld :n u ab e r)

^produces
1 . .*

Results
- E le c t io n ld : nuaber
-P o s tld ; nuaber
-Can_Id: nuaber
4Post_Cand_Count: nuabe r

Posts 1 . .* Candidates
-E le c t io n ld : nuaber
-P o s tld : nuaber
4PostNaae: s t r in g
4No_Cboice: nuaber
4 C rea ted : boolean

-E le c t io n ld : nuaber
-Can_Id; nuaber
-V o te rld : nuaber
-P o s tld : nuaber

Figure 4.1: Class Diagram of the Online Voting System

the positions canvassed for as Posts (also commonly called positions or offices),

all the people seeking election as Candidates and the web page containing all the

options (about posts and candidates) as Ballot. The final outcome of polling will be

presented in a separate web page called Results. In Fig. 4.1 we present a high-level

class diagram of the whole election system under consideration.

Figure 4.1 shows the relationships among the different business objects from

the client point of view. The composition relationship (drawn with filled diamond)

between Voter and Election represents the idea that there will be no existence of

Voter if there is no Election. The same can be said for the relationships between

Posts-Election, Candidates-Election and Results-Ballot. Also, every Election sys­

tem will include at least one or more Voter, Posts, and Candidates. The one-to-one

relationship between Administrator and Election represents the idea that all the per­

sonnel involved with a particular election conduction duties are considered as one

entity.

In our application, most of the tasks associated with election are handled under

administrative control. These include registration of voters from a pool of eligible

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

persons, creation of posts to be canvassed in the election, registration of eligible

voters as candidates for created posts etc. Once a voting system is made available

online, the eligible, registered voters will be allowed to log into the system and

cast their votes. After casting of votes and gathering voter confirmation about their

choices, the ballot information in stored in the database without any direct connec­

tion to the voter identity. At the termination of voting period, all the collected ballot

information is processed to generate the final result.

4.2 Implementation Issues

The e-voting system consists of a web application server that voters connect to.

On the server-side we used the Tomcat http server, with Java Server Page (JSP)

technology to generate web pages dynamically. All data is stored in the open source

database MySQL. All programming was done in the Eclipse framework. The SCL

processor plugs into Eclipse.

We have to make the pragmatic assumption that all these components actually

work together, so that we can focus on the security aspects of our own code. But

even under this assumption, a simple application is quite complex as it is in a multi

language environment involving languages like Java, JSP, JavaScript, HTML and

SQL. This poses additional challenges to reasoning about security, as implementa­

tion details are diffused over many parts of the system.

Unfortunately this current version of SCL only handles Java; so we can only

address Java code that we have written, or that has been automatically generated

through JSP. Obvious extensions to SCL could handle SQL queries and other static

artifacts. In principal, SCL is not tied to any specific programming language. This

makes it possible to apply the same SCL rules on voting systems developed in

another language, say C++. In our conclusion we will speculate on how SCL could

be applied to multi-linguistic applications.
The next section is dedicated for a brief introduction of SCL as our project drew

heavily on this constraint language. A full introduction is in [4].

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Introduction to SCL

SCL [4] was developed to capture structural relationships between the components

of an object-oriented program. It consists of a specification language for describ­

ing static relationships (or constraints) between code elements, and a checker that

verifies that code satisfies the relationships. The checker is integrated into the de­

velopment environment so that the developer gets immediate feedback about rule

violations.

SCL notations are based on first-order logic containing sets and sequence oper­

ations. The term language of SCL consists of a set of functions reflecting the entity-

relationships in the graph representations of object-oriented programs. We present

a brief introduction of SCL language based on the abstract syntax of Fig. 5.1. All

of the figures and tables presented in this chapter are taken from [4],

At the highest level, SCL specifications consist of sequences of interleaved dec­

larations and formulas. An SCL constraint is a combination of a top-level formula

and all the declarations that it refers to. The value of a variable in SCL is defined

within a certain scope. Each declaration binds a variable to an associated expres­

sion within that scope. Logical formulas are special types of expressions yielding

values of boolean type. Therefore, SCL allows us to define boolean variables with

corresponding formulas as their value expressions.

We can introduce local variables for expressions through a syntactic structure

called a block and there can be at most one associated block for each expression.

Local variables can be used to avoid long or repeated expressions.

To ensure well-defined truth value, every SCL specification is strongly typed.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SCL-spec = Stmt*
Stmt = Decl | Form
Decl = [‘def’] Var ‘as’ Expr
Form = ' ! 1 Form| Form ‘& ’ Form| Form *|* Form|
Form *■>’ Form | Form'<=>’Form | Ex | Univ | Expr
Ex = ‘exist’ BVarJ)ecl+ ‘hold’ Form
Univ = ‘for’ BVar_Decl+ ‘hold’ Form
Expr = Var | Const | Op | Expr_With_Vars
BVarJJecl = Var1: ’ Expr
Expr_With_Vars = ‘[’Decl+‘] ’ Expr
Op = Set_op | Seq.op | Rel | SCL_fct
Set.op = Set_compr [Set.enum | member | cardinality | ...
Set_compr = ‘{’ Expr ‘I’ BVax_Decl+ Form ‘}’
Set_enum = ‘ {’ Expr* ‘} ’
Seq_op = ith (seq, index) | indexOf (ele, seq) |...
Rel = > | >= | < | <= | =
SCL Jet = Str ‘(’ Expr* ‘)’
Const = ‘true’ | ‘false’ | Quoted-string | Integer |‘packages’ ...

Figure 5.1: Abstract syntax of SCL

ExpName

TypeVar Unit

NS CIsFct

sre — sink: sre is a subtype of sink

Figure 5.2: Basic types and the subtype relation

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.1: SCL constructors

Operation Description
class: U nitxStr—>Cls Constructors are used to specify a program

entity. The first arguments specify the program
unit (packages, classes, and functions) where
the entity is defined, followed by details such as
names of the entity. For example, the parameter
-less method m of class C can be specified as
method(ciass(global," C ")," m").
Note that global can be omitted.

var: Unit x Str—>Var
function (method): U nitxStr xType*-> Fct

The fundamental types of SCL are basic (Fig. 5.2) and compound types. Basic

types include Str for string values, Int for integers, Bool for boolean values, Exp for

expressions, Name for named entities, Var for variables, Unit for program units that

organize source code, Type for types, NS for name spaces, Fct for functions and

Cls for classes. Compound types are for sets or sequence of entities , such as set of

classes, or a sequence of parameters.

SCL asserts properties of a program by viewing it as a structure. Such assertions

are defined based on generic constructs from first-order logic and a rich set of total

functions. We present some of the constructs and functions in the tables collected

from [4]. To represent different program entities, SCL uses some constructs shown

in Table 5.1. At the global level, program units like packages, classes and functions

are used to organize the program. Table 5.2 contains functions to examine the

containment relation formed by these program units.Another important aspect of

program is its type information which is shown in Table 5.3. Table 5.4 lists the

operations on expressions.

From Table 5.4, we are going to discuss about one particular function conds

which is used extensively in our project. According to SCL definition of [4], conds.

conds: E x p l —> S et E xp2 returns the set o f expressions (E xp2) that this expres­

sion (E xpl) control-depends on transitively. To simplify this definition we can say

that the existence of expression Expl is dependent upon the existence of expres­

sion Exp2. There is a similar type of control-dependency function written as cd:

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.2: SCL scope operations

Operation Description
classes: Unit —> Set Cls Returns the set of classes defined within a Unit.
exprs: Unit —► Set Exp Returns the set of expressions defined within a Unit.
vars: Unit —> Set Var Returns the set of variables defined within a Unit.
functions (methods): Cls —> Set Fct Returns the set of functions defined within a Cls.
params: Fct —> Seq Var Returns the sequence of parameters of Fct.

Table 5.3: SCL type operations

Operation Description
subclasses: Cls —> Set Cls Returns the set of subclasses of the argument class.
descendants: Cls —► Set Cls Returns the set of descendant classes of the argument class.
type: Exp —► Type Returns the static type of a given expression.
type: Var —>■ Type Returns the type of a given variable.
retumType: Fct —>■ Type Returns the return type of a given function.
class: Type —> Cls Casts a type into a class, returns “undefined” if fails.
isArray: Type —► Bool Returns true if Type is an array type.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.4: SCL expression operations

Operation Description
receiver (primary): Exp —> Exp Returns the receiver of the argument. Returns “undefined” if

no receiver.
args: Exp —> Seq Exp Returns the sequence of arguments of an expression, including

the receiver.
cd: Exp —► Set Exp Returns the set of expressions that transitively control-depend

on this expression.
conds: Exp —► Set Exp Returns the set of expressions that this expression control-

depends on transitively.
dep: ExpxExp —► Bool Returns true if the value of the first expression depends on that

of the second.
uses: Exp —> Set Exp uses(e) returns the set of expressions that contain either

expression e or a variable aliased to e.
function (method): Exp —► Fct Returns the function that a given expression is statically bound

to.
var: Exp —> Var Returns the variable that a given expression is statically bound

to. Returns “undefined” if not a variable.
refd: Exp - » Name If the argument is a reference expression, returns the referred

entity. Otherwise, “undefined”.
literalType: Exp —> Type If the argument is a reference to a type name, returns the type.

Otherwise, “undefined”.
int: Exp —> Int Returns the integer value if the expression is an integer constant,

otherwise, “undefined”.
isLiteralNull: Exp —► Bool Returns true if the expression is the null pointer (0 for C++).

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Expl —> Set Exp2 where the existence of expression Exp2 is dependent upon the

existence of expression Expl.

In the next paragraph we are going to present a simple example of SCL usage

on Java language. It illustrates how structure can be used to give some insight into

behavior.

Our example is concerned about the application of 2-D array. Let us check the

following Java code (ArrayTest.java in com package):

1 p u b lic c la s s A rray test {
2 p u b lic s t a t i c void m ain (S trin g [] args) {
3 in t a [] []= {{1,2 ,3},{4,5}};
4 in t i , j ,k = 0 ;
5 f o r(i= 0 ; i< a . le n g th ; i++)
6 fo r (j= 0 ;j< a [i] .len g th ; j++) (LI)
7 //fo r (j= 0 ;j< a .le n g th ;j+ +) (L2)
8 k = k+a[i] [j] ;
9 S y s te m .o u t.p r in tln (k);
10 }
11 }

Going through this small Java code snippet, it is evident that to correctly access

the second dimension of a 2-D array, we should use L I rather than L2. But if we

do use L2 and try to execute the code, there will not be any error message from the

compiler; as there is no syntax error with L2. But if the programmer intention is

to calculate the correct summation of all the values in a 2-D array, we have to use

LI. SCL can help us in this type of situation by determining whether or not the

appropriate indexes are used to access an array. We have to check that during the

second array access through the fo r loop we are reusing the first index (in this case

i). We use the It [less than] operator of SCL to find out the loop. A probable SCL

rule looks like this:
SCL Rule: Check Illegal Array Access

1 def c as c la s s ("com .A rraytest")
2
3 for m: methods(c), e: exprs(m) holds
4 [def f i r s t in d e x as v a r (i th (a r g s (e) , 0)) ; (PI)
5 def f i r s t l e n g th as ith C a rg s (e) ,1);
6 def f i r s t a r r a y as v a r (i th (a r g s (f i r s t l e n g th) , 0))]
7 (
8 m ethod(e)= lt & isD e f in e d (f irs ta rra y) & m e th o d (firs tlen g th)= fie ld access

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 =>
10 ex el: cd(e) holds // there must exist j < a[i].length (P2)
11 [def secondindex as var(ith(args(el),0)); (P3)
12 def secondrhs as ith(args(el),1);
13 def lhsofsecondrhs as ith(args(secondrhs),0);
14 def secondarray as var(ith(args(lhsofsecondrhs),0));
15 def repeatindex as var(ith(args(lhsofsecondrhs),1))]
16 (
17 method(el)=lt
18 ft method(lhsofsecondrhs)=arrayaccess (P4)
19 ft method(secondrhs)=fieldaccess
20 ft secondarray = firstarray
21)
22 ft
23 for el: cd(e) holds // for all j < a[i].length (PS)
24 [def secondindex as var(ith(args(el),0)); (P6)
25 def secondrhs as ith(args(el),1);
26 def lhsofsecondrhs as ith(args(secondrhs),0);
27 def secondarray as var(ith(args(lhsofsecondrhs),0));
28 def repeatindex as var(ith(args(lhsofsecondrhs),1))]
29 (
30 method(el)=lt
31 ft method (lhsof secondrhs) =arrayaccess (P7)
32 ft method(secondrhs)=fieldaccess
33 ft secondarray = firstarray
34 =>
35 repeatindex =firstindex
36)
37) otherwise error(«e», "subscripts error !!!!")

In this rule, the first part (PI) is used to define the array and the index to access

the first dimension of this array. After that we move to P2 where we check the

existence of an expression with two indices (i and j), where j is the second index

different from the first one (i). P3 defines the second index and separates the differ­

ent part of the expression checked in P2. In P4 we make sure that the same array

name is used for both the array access operation, because otherwise all the checking

will make no sense. Parts from P2 to P4 are checking the existence of the second

array access. After that we have to check that for any such array access we actually

do reuse the first index. P6 does the same thing as P3. Then we move to P7 where

the reuse of first index in the second array access is verified. As pointed out before,

without the reuse of index the complier will not issue any error message as syntac­

tically we do not have to reuse the index. But to correctly calculate the summation

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of a 2-D array (which should ideally be the intention of the programmer) we need

to ensure that we reuse the first index.

As shown in this example SCL is useful to investigate issues which might oth­

erwise be overlooked and generate incorrect result. Having looked into the SCL

language from a very high-level of discussion we can now concentrate on how this

may come handy in an online voting system.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Some Security Questions

The seemingly straightforward online voting system is riddled with many security

issues. The supervisor handles the tasks of registration of voters and candidates

and creation of posts. So we have to make sure that the identity of the supervisor

is properly validated. Once that is done, we have to ensure that all the necessary

preconditions are satisfied while performing the other operations. For example, no

person should be allowed to register as a voter more than once. The same is true

when the supervisor tries to create a new post. Before any person is registered as

a candidate, it should be checked whether that person is an eligible voter or not.

There are issues in the vote casting phase also. We have to check the identity of

every person trying to log in as a potential voter besides making sure that no person

is allowed to vote more than once and no eligible voter is deprived of the right to

cast his/her vote. While storing ballot information, necessary precautions must be

taken to ensure the anonymity of the voter. Since a full security audit is beyond the

scope of this project, we selected three problems that represent different kinds of

questions one might ask.

1. Enforcing architecture through checking against illegal class access in code,

2. Enforcing workflow by ensuring the correct order of class access

3. Enforcing complex properties by checking that all the necessary precondi­

tions are verified before an object is created within code

Before going into the details of theses security questions we want to point out

the procedures that are followed during our system development. While we were

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

working on the system we always had to think about the structure and workflow of

the source code because the specific type of SCL rules that we want to use have a

very close relationship with the program. We need to think about what functions or

procedures we are going to use in the program that will represent the programmer

intents depicted by the design of the system. At the same time we need to maintain

a very close eye on how to actually test these representations of intentions through

SCL. SCL checking is too narrow in the sense that it has to strictly follow the exact

design flows of the program. In other words, what can be tested using SCL is

dependent too much on the design of the system. Even if we alter the design of

a portion of the system without altering its behavior or outcome, we may need to

change the structure of SCL tests that we created earlier for that specific part of the

system. Because of this restriction indirectly imposed on our system by SCL tool,

we had to come up with the SCL rules at the same time we program the system.

During the development phase our first tactic was to come up with a design to

represent the flow of execution for a certain function that we want to implement.

After that we write the program needed for correct implementation according to

our design; besides writing the SCL testing codes. If any change in the design of

a part of the system is needed later we try to modify the corresponding part of the

program and the SCL code side by side.

6.1 Enforcing Architecture

The architecture of an application has a significant impact on security. Good de­

sign can ensure that some security properties are immediate consequences of the

architecture. For example, if two classes cannot communicate directly, then any

information flow between them has to be via an intermediary class or external data

structure. As a general rule, the less communication between classes the easier it is

to deal with security. We want to restrict certain classes from talking to each other

at all - for example the Candidate class should not have access to the Administrator

class. Other communication should always have to pass through a gatekeeper class.

SCL rules that apply globally to the application can be used to enforce architectural

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decisions.

[SCR1J SCL Rule : Check Illegal Class Access

Intent: This rule that says that the only method calls that a business class other

than Election can make are to methods in Election.
Rule:

1 def p as package("e le c tio n , j s p 11);
2 def c o n tro lle r as c la s s (p , "A dm inistrator");
3 def serv an ts as { x I x :c la sse s (p) x != co n tro lle r}
4 fo r c: serv an ts [
5 def o thers as { s I s :se rv a n ts s != c }]
6 m: m ethods(c), e: exprs(m) (
7 method(e) => ! in (e , m ethods(others))
8) ;

Evaluation: This rule begins by defining p as the package containing all the

election business classes, and identifies controller as the class with responsibility

for controlling the application. The servants are defined as all the other business

classes. The rule says that no servant class should ever call another servant class.

The rule is read as, for every servant class c, define others as the other servant

classes, then for every method m in c and for every expression e in of m if the ex-

' pression is a method then it must not be in the possible methods of another servant.

To simplify our exposition, Ballot and Results are not permitted to communi­

cate, we do allow servants to talk to the controller, and we allow backdoor commu­

nication via classes that are not business classes in the voting application.

6.2 Enforcing Workflow

The next case we consider relates to workflow. We want to ensure that only an

authenticated administrator can access the admin functions page. If we assume that

only a page redirect can cause the admin functions page to be generated, then we

would like to say that every admin page redirect is guarded by an authentication.
The typical login page takes the admin user name and password and checks

them against the database. The Java code snippet of Code 1 is employed to do that.
Here we are checking that the submitted admin usemame-password combination
is valid. Then we proceed to the voter registration page whose interface looks like
Fig. 6.2.
Code 1. Administrator Login Code

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

'^jNswTjb % Administrator Login

HOME!!

PHASE m U YOUl NAME iPASSWRD

Administrator Name
anjan

Subm it Query |

□
Figure 6.1: Administrator Login Page

2 if (request.getParameter("SUBMITTED") != null) {
3 Admin a = Admin.findAdmin(request.getParameter ("adname"),
request.getParameter("adpass"));

4 if (a == null) {
5 error = "No such Admin found, try again..";
6 }
7 else {
8 sendRedirect("adminfunction.jsp") ;
9 }
10 }

What we intend in this rule is that no page ever generates a redirect to the admin

functions page unless the redirect is guarded by a successful admin login. Note,

this rule implies that the administrator has to re-authenticate every time they leave

the admin page.

This is a case where the structure of the JSP code implies a structure on the web

pages, which implies a structure on the navigation, which then implies restrictions

on the workflow. This subtle chain of dependencies is a weakness of using structure

to enforce behaviour. An SCL rule like the following can be applied to enforce

the dependency of administrator function page being loaded under the control of

findAdmin function of Administrator class:

[SCR2J

Intent: SCL Rule to Check Conditional Dependency

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sf} New Tab [^ Create New Voter

" HOMEH______________
Election: | Select One

Person: | Select One ~H

Voter User Name: asen
Voter Password:

Submit Query

B
Figure 6.2: New Voter Registration

Rule:

1 e: exprs(Administrator) holds
2 ((name(method(e))="sendRedirect("adminfunction.jsp")")
3 =>
4 ex ce: conds(e) holds (name(method(ce))="Admin.findAdmin"

)
5)

Evaluation: This rule checks to make sure that the execution of sendRedirect

function comes under the control offindAdmin function of Administrator class. One

weakness of this rule is that it can only check the presence of sendRedirect under

findAdmin, but it cannot check the presence of any parameter required by either of

these two functions.

The login process in Code 1 is typical of JSP web forms. A web page is first

fetched by the client browser through a GET http request. When the user selects

a control on the form (usually a submit button of some flavour), the page data is

sent back to the server via a http POST request. In the JSP world, the incoming

request is stored in the request object, and the various fields of submitted form are

accessed through the getParameter method. The intended structure of the code for

a form is that of a fetch and inspection of a form field associated with a control

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(SUBMITTED in this case), followed by fetching and acting on the values of fields

in the form. These typical patterns can be encoded in SCL, and can be used to

detect omissions from form handling code.

6.3 Enforcing Complex Properties

To discuss this property, we investigate the ’One-Voter-One-Vote’ rule.

In our proposed voting system, registration of eligible voters is performed under

administrative control. There is an externally supplied list of all the eligible persons

and the voters are selected from that list. Every voter is assigned a unique combi­

nation of user name and password for a particular election to ensure that no voter

is registered more than once. Having said that, the same person may be registered

as an eligible voter for more than one election. During the vote-casting phase, reg­

istered voters log into the system and cast their votes. We can divide this scenario

into several steps for thorough discussion.

Steps involved in one-voter-one-vote scenario:

Step 1- Registration from Population List:

We are provided with a population list of eligible persons to vote. Our system as­

sumes the correctness of this supplied list. The registration process is handled under

administrative control, but we have already ensured the authenticity of the adminis­

trator through the workflow above. During registration, there should be checking to

avoid erroneous transaction, e.g. duplicate voter, non-unique user name-password

combination etc. We have to simultaneously make sure that no eligible person is

deprived of registration.

Step 2- Vote Casting:
Before casting his/her vote, every registered voter has to log into the system using

the pre-specified user name-password combination for a particular election. We

have to ensure the authenticity of the voter and also check against any attempt of

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Person Administrator Voter
--------- ----------

Ballot
-------------------- 1------ 1------

function: RegisterVoter

{(requirement*
personname
electionname
username
password

function: Login

{(requirement*
electionname
username
password

login ok, not voted

function: CreateBallot

function: Castvote

Figure 6.3: Sequence diagram of one-voter-one-vote scenario

multiple vote casting. The rules for voter login are similar to the admin login rules,

except that we want to ensure that any redirect to the ballot page is guarded by both

a valid user login, a check that they are eligible to vote, and they have not already

voted.

In Figure 6.3 we present a high-level sequence diagram for the one-voter-one-

vote scenario. In the next few paragraphs, there will be step-by-step evaluation of

the different steps.

One-Voter-One-Vote Scenario

Step 1- Voter Registration from Population List:

Once logged on, the administrator has the option to register a person for a par­

ticular election. We select the person from an externally supplied list. The interface

of Fig. 6.2 provides the opportunity to populate the Election and Person lists from

the database. The following JSP code snippet is employed to do the caching of

drop-down lists using an iterator that goes through every entry in the corresponding

tables of the Election and Person classes in the database:

1 <form method=post action="add_voter.jsp">
2 <input type="HIDDEN" name="SUBMITTED" value="T">

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Election: <SELECT NAME="electioimame">
4 <0PTI0N VALUE="NEW Election">Select One
5 <%
6 Election. loadAHElectionsO ;
7 Iterator it = Election.getElections();
8 while(it.hasNext()){
9 Election elt = (Election) it.nextO;
10 °/„>
11 <0PTI0N VALUE="<%= elt.getElectionName()7„>" ><7„= elt.getElectionID()%>:<7.
elt .getElectionNameO %>
12 <7, } 7.>
13 </SELECT>
14 <p><p>
15 Person: <SELECT NAME="personname">
16 <0PTI0N VALUE="NEW Voter">Select One
17 <7,
18 Person. loadAHPersons () ;
19 Iterator itl = Person.getPersons();
20 while(itl.hasNext()){
21 Person psn = (Person) itl.nextO;
22 7.>
23 <0PTI0N VALUE="<7.= psn.getName()7.>" ><7.= psn.getPersonID()7.>:<7.=
psn. getName () 7»>

24 <7. } 7o>
25 </SELECT>

This code sample involves quite a few steps, like: (a) we need to check the

existence of a method (“loadAll” in this case) that loads every entry of a particular

table, (b) we need to check the presence of an iterator function that goes through

every loaded entry and (c) we need to select the appropriate value from the uploaded

list.

In addition to selecting appropriate election and person names, we also have to

provide a username and password during registration. These are going to be used by

the voters during the vote-casting phase. When we try to post this information to the

database we have to ensure the uniqueness of user-name-password data. We also

have to ensure that the same person is not registered more than once for a particular

election, as in Code 2.

In this portion of code, after checking that all the required data is correctly sub­

mitted, we go forward to create a new voter record in the database. While receiving

inputs for voter registration there are several points where SCL can be applied to

ensure that the intended scenarios are correctly represented within the code. First,

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we have to make sure that our code receives inputs for all the required parameters

from the user interface. In this case, new voter registration requires four different

inputs from user: username, password, electionname, and personname. We have to

ensure that (i) we receive the inputs after the SUBMIT button is pressed and (ii) we

receive inputs for all the four parameters.

Code 2. Voter Registration Code

1 if (request.getParameter("SUBMITTED") != null) {
2 newvoter.setUserName("username");
3 newvoter.setPassword("password");
4 newvoter.setElectionName("electionname");
5 newvoter.setPersonName("personname");
6 try {
7 if (newvoter.validateVoterO) {
8 newvoter.createVoter();
9 response.sendRedirect("votercreate.jsp");
10 }
11 } catch (com.DuplicateUserNameException e) {
12 newvoter.addFieldError("username", ":This User Name already
in use.
");

13 }
14 }

This is again typical of web forms. The code that processes the form must fetch

each of the fields from the form and then set the corresponding attribute in the object

being manipulated.

Intent: In SCL rule [SRC3] below, the first task is to define some simplify­

ing variables. The add-Voter variable is defined as being the class add-Voter Jsp

within the package jsp. This class, for the purpose of handling Http built-in func­

tions, needs to extend the classes HttpServletRequest and HttpServletResponse of

javax.servlet.http package. SCL considers these two classes as a parameter to our

class add-Voter and we declare them using names HttpServletRequest and HttpServle­

tResponse respectively. While we define the variable jspServeiceVoter we declare

this variable as a method of the class add .Voter using HttpServletRequest and HttpServle­

tResponse as parameters.

Once these variables are defined, we can state field-by-field rules for all the four

parameters in question for the voter registration task.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

According to our project design, when we check whether we have received the

input for username we have to make sure that:

[i] username input is received after a call to the getParameter(”SUBMITTED”)

function which represents the action of clicking the ’’SUBMIT” button (in other

words this means that the existence of setUserName() function should be dependent

upon the existence of getParameterQ function)

[ii]we have called the setUserName(”username”) function (we need this because

even if we do not call the setUserNameQ function at all there will not be an error

message from SCL)

Rule: The SCL rule to express these two conditions looks like this:

[SCR3] SCL Rule : Check all the required inputs are correctly accepted by code
II Define some class variables to be used by SCL rules
1 adcLVoter as class ("jsp.add_Voter_jsp")
2 HttpServletRequest as class("javax.servlet.http.HttpServletRequest")
3 HttpServletResponse as class("javax.servlet.http.HttpServletResponse")
4 jspServiceVoter as method (add.Voter, "_jspService", HttpServletRequest,
HttpServletResponse)

// part[i]: input for User Name comes under the control of getParameter() function

1 e: exprs(jspServiceVoter) holds
2 ((name(method(e))="setUserName")
3 =>
4 ex ce: conds(e) holds (name(method(ce))="getParameter")
5)

// part[ii]: this checks whether there is actually a call to the setUserName() function

1 exist e: exprs(jspServiceVoter) holds
2 name(method(e))="setUserName"
3 error («add_Voter, jspServiceVoter», "This method should have
called

4 setUserNameO.") // 1st of the four parameters is provided

Evaluation: Application of these two parts ([i] and [ii]) of [SCR3] ensures

that we always call the setUserNameQ function under the control of getParameterQ

function. The same type of checking can be applied to the other three parameters:

password, electionname and personname.

[SCR3 contd.] SCL Rule contd.: Check all the required inputs are correctly ac­

cepted by code

II input for Password

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://http.HttpServletRequest
http://http.HttpServletResponse

le: exprs(jspServiceVoter) holds ((name(method(e))="setPassword")
2 = >
3 ex ce: conds(e) holds (name(method(ce))="getParameter")
4) // part[i]

1 exist e: exprs(jspServiceVoter) holds
2 name(method(e))="setPassword"
3 error («add_Voter, jspServiceVoter», "This method should have
called

4 setPasswordO . ") // part[ii]

// input for Election Name

le: exprs(jspServiceVoter) holds ((name(method(e))="setElectionName")
2 = >
3 ex ce: conds(e) holds (name(method(ce))="getParameter")
4) // part[i]

1 exist e: exprs(jspServiceVoter) holds
2 name(method(e))="setElecti onName"
3 error («add_Voter, jspServiceVoter», "This method should have
called

4 setElectionNameO .") // part[ii]

// input for Person Name

ie: exprs(jspServiceVoter) holds ((name(method(e))="setPersonName")
2 = >
3 ex ce: conds(e) holds (name(method(ce))="getParameter")
4) // part[i]

1 exist e: exprs(jspServiceVoter) holds
2 name(method(e))="setPersonName"
3 error («add_Voter, jspServiceVoter», "This method should have
called

4 setPersonNameO .") // partCii]

Inspecting these rules we find a general pattern where we have to make sure

that a particular function (dependent) is called under the control of another function

(independent). We can generalize rules like these in this way in SCL:

Intent: Generalized SCL rule.

Rule: [SCR4] Generalization o f SCL rule to checkfunctional dependency

1 CheckFunctionDependency(Classl, M_dependent, M_independent)
as

2 (

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 e: exprs(Classl) holds
4 (name(method(e))=M_dependent
5 =>
6 exist ce: conds(e) holds name(method(ce))=M_independent
7)
8 &
9 (exist e: exprs(Classl) holds
10 name(method(e))=M_dependent
11)
12)

Later, by providing necessary parameters we can use this generalized rule:
[SCR5]

1 p: packages, c: classes(p) holds
2 (
3 (c)="add_Voter"
4 =>
5 CheckFunctionDependency(c, "setUserName", "getParameter")
6)
7 error(«c», "Correct Parameter setting method is not called")

Evaluation: After all the necessary voter registration information is accepted

we validate the supplied data before moving onto the database. This is achieved by

calling the createVoter function under the control of the validateVoter function. We

can utilize the parameterized general function declared in the previous paragraph

by providing the corresponding function name:

Intent: Use the generalized SCL rule for specific conditions.
Rule: [SCR6]

1 p: packages, c: classes(p) holds
2 (
3 (c)="add_Voter"
4 =>
5 CheckFunctionDependency(c, "createVoter", "validateVoter")
6)
7 error(«c», "Correct Parameter setting method is not called")

Evaluation: Having achieved all the preconditions of receiving inputs from

the user interface, we try to create a new voter record in the database. In this

stage our primary intention is to make sure that no voter is registered more than

once. We query the database with the supplied voter information before posting it

to the record. The database is queried with the supplied voter information to check

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n Neil Tab [^ V W if Login

HOME!!

; PUtASE m£KYOVRKk<W !tm ,VarN Am*

Election: 11:GSA Election j

User Name jasen

Password p*
Submit Query (

□
Figure 6.4: Voter Login

whether any existing record matches with the new one. If not, we proceed to store

the supplied information in the database. Our parameterized function can be applied

again at this stage to make sure that the findVoter function is called from within the

createVoter function.

Assuming that every checking stage is successful a new voter record is created

for a particular election. When the vote casting phase of that election is initiated,

registered voters log into the system using their pre-recorded information to cast

vote. This leads us to the Step 2 of the one-voter-one-vote scenario.

One-Voter-One-Vote Scenario

Step 2- Vote Casting:

When the vote casting is started, every eligible voter has to log into the system

with their pre-recorded usemame-password combination for a particular election.

We used the interface of Fig. 6.4 for voter login. Here, to populate the list of

Election we applied the same principle used during Step 1 to populate Election

and Person lists. When the required information for voter login is submitted, we

query the database to ensure the existence of the voter record. At the same time we

check whether a voter has already voted for a particular election.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This voter authentication phase [Code 3] is similar to the previous examples be­

cause we move towards querying the database after we receive inputs from the user

which, in this case, is the voter trying to cast their vote. Here, the findVoter function

authenticates the supplied voter information and the checkVoted function checks

whether this particular voter cast his/her vote already. We can apply the previous

parameterized function by considering that both the findVoter and the checkVoted

functions are dependent upon the existence of the getParameter function. Upon

success of these checks, the voter is provided with the ballot page for casting their

vote.

Code 3. Voter Authentication

1 if(request.getParameter("SUBMITTED") != null) {
2 name = request.getParameter("username");
3 if(findVoter(request.getParameter("username"), request.getParameter("password"),
request.getParameter("electionname")) == null)

4 {
5 error = "No such Voter found, try aLgain..";
6 }
7 else {
8 if(checkVoted(request.getParameter("username"), request.getParameter("password"))
9 {
10 out.write("<p>WELCOME<p> To CAST VOTE : <a href="voterlogin.jsp?usemamename=");
11 out.print(name);
12 out.write(>CLICK HERE
);
13 return;
14 }
15 else
16 {
17 out.write("<p>SORRY, You Have Already Voted...<p> To TRY AGAIN
: CLICK HERE
");

18 return; } } }

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Qualitative Experience

As we worked with both Java code and SCL rules for our project we observed the

following.

While we were working on our project, there are several issues that we found

difficult or impossible to represent in SCL. If we revisit the example of calling a

function with parameters [Code 1 and SCR2], it is evident that we cannot check

the actual parameters supplied through the Java function call. We can only check

whether or not the function sendRedirect is dependent on the function findAdmin.

But there is no way with SCL to check whether the findAdmin function is called with

the right parameter. If we extend this further, SCL is also unable to check the effect

of any data supplied by a function call on the underlying database. For example

when we apply SCL rules for voter registration we can only check whether the

appropriate function calls are made, but we cannot check the effect of the supplied

parameter on the underlying database. This is a significant limitation of SCL.

There is another issue connected with the dependency checking that might be

of interest. When we try to check functional dependency, we have to ensure that

the dependent function is under the control of the independent one via any of if, for,

while or such other controller. We cannot check if a particular function call comes

after another one if the former one is not conditionally dependent on the later one.

This limitation of SCL actually presents us with a kind of standard SCL pattern

where we need to use the SCL conditional dependency operators for a block in our

program enclosed by these controllers. Or in other words, using SCL conditional

dependency operators somewhere in the testing code means that portion of SCL

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

code corresponds to a block of source code enclosed in some type of controller.

This inability of SCL to check functional ordering applies to any part of the

source code. SCL will give us the information about whether a particular function

is present within a block of code, but there is no mechanism in SCL to verify the

exact moment of its execution within the whole block. This might cause some im­

plications in SCL checking when two functions (say, f 1 and f2) are not conditionally

dependent but there should be a certain order of their execution. Say, we want to

verify the presence of both the functions in a block of code. At the same time, there

is a requirement that f2 is executed after f 1. We can apply SCL only to test their

presence, not their order of presence in the code.

Because they are structural, the creation of SCL rules and the writing of Java

code occur simultaneously. We found that attempting to create the SCL rule tended

to influence our design. We are going to present an interesting scenario where the

inability of SCL to check the order of execution of functions actually prompted us

to change the design of code. Let us investigate the vote casting scenario where

the precondition is that the person attempting to cast vote must not have done so

before. After this checking is done we need to store his/her vote information in the

database and then mark him/her as already voted to prevent any duplicate vote. One

possible vote casting scenario might look like this:

1 public class Voter {
2 public void CastVote(voterID, voteData) {
3 if (checkVoted(voterlD)) return;
4 saveVote(voteData);
5 setVoted(voterID);
6 otherFunctionl();
7 otherFunction2();
8 }
9 }

Here, we can apply SCL only to check the presence of the two functions saveVote

and setVoted, not to check their order o f execution. But to replicate the actual vote

casting steps, we should ideally execute them in order without any other function

like otherFunctionl or otherFunction2 being executed in between them. In other

word, the two vote related functions within the CastVote function should be atomic.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

But SCL has no mechanism to guarantee the atomic execution. This forces us to

modify the code a little bit where we replace the two concerned functions with a

new function which actually calls them separately. Then SCL will be able to test

the presence of the new function. Our modified code might look like this:

1 public class Voter {
2 private void commitVotefvoterlD, voteData) {
3 saveVote(voteData);
4 setVoted(voterID);
5 }
6 private void CastVote(voterID, voteData) {
7 if (checkVoted(voterID)) return;
8 cominitVote(voterID, voteData);
9 otherFunctionl();
10 otherFunction2();
11 }
12 }

SCL can check the presence of the commitVote function which has only the two

required functions within it. So, by checking the existence of commitVote function

through SCL, we are testing the atomic behavior of the two other functions. That is,

SCL forced us to write a function that encapsulates the atomic operation - a good

design rule in any system. There are many similar design rules, such as one exit

from a loop, that use a convention on program structure to help the reader in their

understanding of program behavior.

This example illustrates the fact that thinking about a SCL rule forces you to

think about what the structure says about the behavior of the code, since intentions

are ultimately behavioral. This has much the same effect as a requirements review

and leads to earlier detection of specification errors.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Comparison with other testing tool

One of the most potent disadvantages of SCL is that it is basically a static testing

tool. In this project of ours we do a lot of database access, which means the state of

the database is bound to change during runtime. This leaves us with no option but

to use other testing techniques that are dynamic in the sense that they are able to test

the real-time change of database. Here comes the applicability of unit testing. In

the unit testing methodology we have to ensure that all the functions or procedures

within a given class execute properly and produce the correct output (if any) under

every possible set of input parameters. To compare the unit testing rules with the

SCL rules described earlier let us consider how we are going to apply unit testing

for the new voter registration function. In our project we wrote our own unit testing

codes which simulate the behavior of the standard JUnit testing tool. Writing our

own test code gave us the flexibility to execute and test the behavior of various parts

of the system according to our design flow. In fact, within an specific test suite that

we wrote we called several small functions to perform a sequence of operations;

which gave us the flavor of a controlled integration test of the system. For example

in the following test script of voter registration, at first we executed the functions to

set different parameters, followed by the validation of the parameters, creation of

the record in the database and then we tried to create duplicate record.

Unit Testing Code : Voter Registration

1 Voter v = new VoterO;
2 v.setUserName("user1");
3 v . setPassword ("passwordl11) ;

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 v.setElectionNameC'GSA Election");
5 v.setPersonNameO'personl");
6 if (v.validateVoter()) System.out.printlnC"Input Validated");
7 try {
8 v.createVoter();
9 System.out.println("Test Pass: Create Voter");
10 }
11 catch (Exception e) {
12 System.out.printlnC"Test Fail: Could Not Create Voter");
13 }
14 try {
15 v.createVoter();
16 System.out.printlnC"Test Fail: Could Create Duplicate Voter");
17 }
18 catch (DuplicateUserNameException e) {
19 System.out.printIn("Test Pass: Exception Thrown and Caught
When Create Duplicate Voter");

20 }

Output produced by this testing code when the java code is run by ant build tool:

1 adtest:
2 [java] Turbine: initO Ready to Rumble!
3 [java] Input Validated
4 [java] Test Pass: Create Voter
5 [java] Voter is: com.polling.admin.Voter@ac4d3b
6 [java] Voter User Name is: userl
7 [java] Voter Password is: passwordl
8 [java] Test Pass: Exception Thrown and Caught When Create
Duplicate Voter

The obvious difference between this testing rule and the SCL rule shown before

[SCR3] is that we can provide real input to the database for testing with unit test.

This enables us to inspect the run-time behavior of our source code when the state

of the database is changed dynamically. This fact is significant in the sense that it

clearly shows the inability of SCL to be effective for dynamic testing.

Having said that, we can apply SCL side-by-side unit testing to identify poten­

tial tests. In the above example, before writing unit testing, we can apply some

SCL rules that will identify which functions to unit test. By applying SCL, we

can make sure that all the parameter setting functions (like setllserName, setPass-

word, setElectionName, setPersonName) are executed correctly. Then we can ap­

ply unit testing rules to check the effect of the supplied parameters to the underlying

database. SCL alone cannot check the effect of parameters on the system. But once

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we check the flow of operation through SCL, we can apply small unit tests within

this flow to validate the effect of user-supplied data on the whole system.

This ability of SCL to uncover the flow of execution makes SCL a good aid for

white box testing. We know white box testing normally tests paths within a unit or

block of code. But it can also test paths between units during integration test. So

SCL will give us the test paths needed for white box testing by checking the flow

of operation within the system.

But even this cooperation between SCL and other testing methods is not suf­

ficient in some cases. If, by any chance, the voter registration steps are executed

more than once in the source code, the previous idea of applying SCL along with

other tool might not be good enough to detect the duplicate occurrence of the same

step. To avoid a scenario like this we may need to employ manual code inspection.

SCL can also help us detect the inadequacy of some tests dependent on specific

preconditions. For example, if we test an execution flow which requires the fulfill­

ment of an assumption like two different classes within the system cannot access

each other and that assumption is somehow broken in the code, SCL can help us

detect the illegal class access. Finding these types of violations within the source

code can be done by SCL; which will enable us to re-design the existing test code.

We can confidently deduce that SCL, at its current state, is strong enough to

check the existence of pre-specified user intents in the source code. But when it

comes to evaluating the dynamic behavior of a bunch of code we cannot rely on

SCL; rather we have to use different testing techniques, like the manual unit testing

codes as discussed in the previous paragraph or an standard testing tool like JUnit.

Having said that, our experience with SCL gives us the confidence that it can help

us to design test scripts suitable for JMeter testing by checking that certain testing

assumptions still hold. JMeter is a widely used testing tool which can help us

perform integration, stress, and load test. But to apply JMeter for these types of

tests we need to come up with some testing scripts suitable for JMeter that will

simulate the behavior of a sequence of actions performed over the system. SCL

might tell us how many and which cases should be tested within a block of code

which will give us a clear strategy while creating test scripts for JMeter.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9

Conclusion

Capturing intentions through the static analysis of source code is just one more tool

to address security. Application behavior is yet another aspect of security issues.

For example, incorrect exception handling can expose a system to attacks. These

kinds of analyses require dynamic analysis tools, such as those developed by Li,

Hoover, and Rudnicki [10]. Just as moving from paper to electronic ballots creates

an enormous increase in implementation complexity, we should expect our tools

for analysing security issues to do the same. Our experimentations with web-based

voting system give us the confidence that an static source code analysis tool like

SCL is useful enough to capture pre-specified user intents in the source code. At

the same time we should apply other testing tools or approaches like unit testing

to judge the dynamic behavior of the code. Due to the limitations of SCL expres­

siveness concerning flow of execution and the strict dependency of SCL rules on

the design of the system, we recommend an approach where we start with a well-

planned design of the system to correctly express programmer intents. Then the

programmer should concentrate on developing his system alongside the SCL test­

ing code, while conforming to the design strictly. This will enable the programmer

to come up with the system that is following both the design constraints and the

SCL regulations. Any modifications carried on the design because of any change in

user intents should be reflected by the simultaneous alterations o f the source code

and the SCL rules corresponding to that code.

We have developed the idea that SCL, at its current state, is not good enough

for a real-time analysis of the program; its applicability is limited to the static case

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which enables us to verify the program structure and to enforce some complex prop­

erties. With the introduction of dynamic testing capabilities, SCL can be applied as

a tool good enough for both static and dynamic analysis of program.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 10

Acknowledgments

We are grateful to Daqing Hou (d h o u @ c la rk so n . edu) for access to and help

with SCL. This research was supported by a Natural Sciences and Engineering

Research Council of Canada Discovery grant.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Beer, I., Eisner, C.: The Temporal Logic Sugar 13th International Conference

on Computer Aided Verification, LNCS, Vol. 2102, pp. 363-367.

[2] Ernst, M.: Ststic and Dynamic Analysis: synergy and duality. Workshop on

Dynamic Analysis, May 9, 2003.

[3] Hermson, P., Niemi, R., Hanmer, M., Bederson, B., Conrad, F., Traugott, M.:

The Importance o f Usability Testing o f Voting Systems. Electronic Voting Tech­

nology Workshop, August 1, 2006.

[4] Hou, D., Hoover, H.J.: Using SCL to Specify and Check Design Intent in Source

Code, IEEE Transactions on Software Engineering, Vol 32, Number 6, June

2006, pp 404-423.

[5] Keller, A., Mertz, D., Hall, J., Urken, A.: Privacy Issues in an Electronic Voting

Machine. ACM workshop on Privacy in the Electronic Society, 2004.

[6] Kicimen, E., Wang, H.: Live Monitoring: Using Adaptive Instrumentation and

Analysis to Debug and Maintain Web Applications. 11th Workshop on Hot Top­

ics in Operating Systems, San Diego, May 7-9, 2007.

[7] Kohno, T., Stubblefield, A., Rubin, A., Wallach, D.: Analysis o f an Electronic

Voting System. IEEE Symposium on Security and Privacy, 2004.

[8] Laskowski, S., Redish, J.: Making Ballot Language Understandable to Voters.

Electronic Voting Technology Workshop, August 1,2006.

[9] Lauer, T.: The Risk o f e-Voting. Electronic Journal of e-Govemment, 2004.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[10] Li, X., Hoover, H.J., Rudnicki, R Towards Automatic Exception Safety Verifi­

cation, Proceedings of the 14th International Symposium on Formal Methods.

Aug 21-27, 2006, Hamilton, Ontario, Canada, pp 396-411. Springer, LNCS

4085.

[11] Mercuri, R.: Generic Security Assessment Questions.

www.notablesoftware .com.

[12] Neumann, P.: Security Criteria for Electronic Voting. 16th National Computer

Security Conference, Maryland, September 1993.

[13] Rubin, A.: Security Considerations for Remote Electronic Voting over the

Internet. Communications of the ACM, Vol 45, Issue 12, December 2002.

[14] Sampio, A., Vasconcelos, A., Sampio, P.: Towards Reconciling Quality and

Agility in Web Application Development. International Workshop on Web Qual­

ity, Munich, July 27,2004.

[15] California Voting Systems Review, www.sos.ca.gov/elections/elections_vsr.htm.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.notablesoftware
http://www.sos.ca.gov/elections/elections_vsr.htm

