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Abstract

This paper presents a game theoretic model of a sequentialitgagdocation process in a congestible
transportation system. In this particular application, we stigate the governing principles at work in how
airlines will time their requests for en route resources uodeacity shortfalls and uncertain conditions, when
flights are not able to take their preferred route at thesferred departure time slot due to the shortfalls. We
examine a sequential “First Submitted First Assigned” @jSfapacity allocation process within an en route air
traffic flow management (ATFM) program such as the Coltative Trajectory Options Program (CTOP),
which is a Federal Aviation Administration initiative thatngito manage en route capacity constraints brought
on by inclement weather and capacity/demand imbalances. In the i®Eéss, flights are assigned the best
available routes and slots available at the time flightraipes submit their preference requests during the
planning period, in a sequential manner. Because flight operatopet®mith one another for resources, in such
an allocation process they would be expected to make their requesdslyaas possible. However, because
weather and traffic conditions — and therefore, the values of resodrcan change significantly, flight operators
may prefer to request resources later in the process raidueretrlier. We use a game theoretic setup to
understand how flight operators might tradeoff these conflicts dnmose an optimal time to submit their
preferences for their flights, as submission times are cotimpetesponses by flight operators looking to
maximize their benefits. We first develop a loss function tegitures the expected utility of submitting
preferences under uncertainty about operating conditions. Then, eptedcmodel of the FSFA process is
constructed using a simultaneous incomplete information gamee iyt operators compete for the “prizes”
of having submitted their inputs before others. A numerical seggrformed in which it is demonstrated that
preference submission times are heavily influenced by the ajenacertainty surrounding weather and
operational conditions of the ATFM program, and each flight epesainternal ability to handle this
uncertainty. A key finding is that, in many of the scenarios ptedean optimal strategy for a flight operator is
to submit their preferences at the very beginning of the planp@ngd. If air traffic managers could expect to
receive more submissions at the beginning of the planning péneycould more easily coordinate the ATFM
program with other ATFM programs taking place or scheduled te pd#ce, and they would have more
opportunity to call another FSFA allocation route before the MTfogram begins, should conditions change
enough to warrant this. Outputs of the model may provide some parsggats to flight operators in planning
submission strategies within competitive allocation processels as FSFA. Also, this work may have a broader
application to other sequential resource allocation strategithin congestible and controlled transportation
systems.
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List of acronyms

AFP
ATFM
CDM
CTOP
FAA
FCA
GDP
NAS
RBS
TOS

Airspace Flow Program

Air Traffic Flow Management
Collaborative Decision Making
Collaborative Trajectory Options Program
Federal Aviation Administration

Flow Constrained Area

Ground Delay Program

National Airspace System
Ration-by-Schedule

Trajectory Options Set

List of notation

Vs

Vrl*
Un,s (t)
Ynr(s) (t)

Pn,s(t)
w(t)
k

Ly ()
L (0)
E[m,]

Rx|tn

Utility of slot s to a flightn, wheres € [1,S] and includes all available slots in the en route
ATFM program

Utility of the highest utility slot to flight

Estimated utility of slos ton at timet

Stochastic term representing imprecise knowledge about the route conditions of aqodati
slot att, distributed type 1 extreme value (Gumbel)

Probability ofn choosing slot at timet

Scale parameter ¢f, . (t)

Parameter capturing the unpredictability of weather and tpgraonditions of an en route
ATFM program

n’s loss in (true) utility resulting from its decisionstat

= L, (t)/L7**, whereL7'** is the maximum loss possible fo(due to incomplete information)
Expected payoff

True utility thatn gains by submitting t and beingxth in the submission order, relative to the
utility of submitting lastR(N)

Cost (due to uncertainty) incurs in making a preference submission at time

Timen submits during the planning period as a proportion of the totelMAprogram planning
period(T), such thaty,, = (T —t,,)/T

n’s uncertainty level, which determines the rate at whichuncertainty decreases during the
planning periodh,, ~U (hpmin, Rmax)



1. Introduction

This paper presents a game theoretic model of a sequentialitgagdocation process in a congestible
transportation system. We investigate the governing principles at wookvimitines will time their requests for
resources under capacity shortfalls and uncertain conditidren; an Air Traffic Flow Management (ATFM)
program is in place. This particular application involves thecation of constrained en route resources (in the
form of departure time “slots” on specified routes) to flighthen flights are not able to take their preferred
route at their preferred departure time slot. In the “Brgdimitted First Assigned” (FSFA) process, operators of
impacted flights submit their en route resource prefererqueests to air traffic managers during the planning
period, which are then used to allocate the best available randeslots available at the time they make their
request, in a sequential manner. Because flight operators @mjietone another for resources, in such a
sequential allocation mechanism they would be expected to makeetipagsts as early as possible. However,
weather and operating conditions can change significantly, whitimpiact both the true and perceived values
of resources to flight operators over time. Weather will chéioge the set of routes available to a flight, as well
as the relative value of each route. Operating conditions thath@arge include fuel loading requirements,
which in turn depend on planned routes as well as passenger countsetivehiah will shift as airlines work to
minimize ATFM impacts to customers by reassigning and resiting passengers to flights. In addition, crew
shift schedules may also be impacted as crews time oufliglihdelays. As a result of these possible changes,
flight operators may prefer to request resources latenanptocess rather than earlier. Therefore we ask the
guestion: how might uncertainty influence a flight operator’sisitet about when to make their resource
requests in this competitive environment?

The Federal Aviation Administration (FAA) operates ATFM peogs to reduce the scale and cost of
disruptions to flight operators during times of adverse weathgrhaavy traffic demands. ATFM programs
developed to handle problems in the en route airspace have beenuquoésstul in mitigating the costs of
disruptions, although their success has been limited due to inlfteegbin incorporating flight operators’
specific needs and adapting to changing weather and traffic iomsditAs a result, the FAA has recently
implemented a new ATFM program called the Collaborative Gtajg Options Program (CTOP)(FAA, 2014).
CTOP is similar to previous en route ATFM programs in thainits to safely and efficiently meter aircraft flow
through and around capacity constrained airspace regions. HoweveP, diff@s in that it considers flight
operators’ submitted en route resource preferences (delayedudepianes and reroutes) through an electronic
negotiation process when assigning these resources.

Within ATFM programs like CTOP, there are many potential giesifor the processes by which flight
operators can express resource preferences and the rules by which air &madfyera assign available resources.
In the current CTOP, flights are assigned resources usiatparthm that accounts for system constraints, with
slots to fly through the constrained area assigned using RatiScHsdule (RBS)(FAA, 2012). However, the
rules of allocation in that algorithm are somewhat unclean,dslvisory Circular No. 90-115 states, “While a
TOS (Trajectory Options Set) may be submitted at any tihege are many advantages to submitting a TOS
well in advance of a planned flight.”(FAA, 2014). This statemelies that there are operational advantages
for airlines to plan well in advance, rather than actual resvafféred to airlines for submitting early. If such
incentives were to be offered, how would airlines time their submissionden tormaximize their benefits? The
FSFA allocation scheme introduced above is a channel through wischuistion can be explored(Kim &
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Hansen, 2013). However, in Kim & Hansen (2013) it was assunadflipht operators submit complete
resource preference inputs in an arbitrary and random order FSt&, without considering flight operators’
competitive responses to the FSFA allocation rule.

In this paper we investigate the impacts competition mighe lba program outcomes, by presenting a game
theoretic treatment of airline preference submission behavithin the FSFA allocation process. We first
present a loss function that captures the expected benefitsroitthug preferences under uncertainty regarding
operating conditions. We then develop a conceptual model of th& FESBurce preference submission process.
The model is aV-player simultaneous game, where flight operators competegources through their input
submission times and not, for instance, the inputs themselvegpratess can be modeled as a simultaneous
game because flight operators do not know the outcome all@ahtions until the end of the ATFM program
planning period. A flight operator's submission decision is #selt of a tradeoff between the flight operator’s
desire to win a resource of higher utility versus minimizingekel of uncertainty (due to changing weather and
operational conditions) about the utilities of the resources #leass The former encourages flight operators to
submit their preference inputs earlier while the latterldi@ncourage later submissions. Numerical examples
illustrate some potential outcomes this competition may mdAckey outcome is that flight operators will be
motivated to submit their inputs earlier during the planningpdaf operational and weather uncertainty levels
are lower and competition for resources is high. In fact, inyno&ithe examples explored, many operators are
expected to make preference submissions at the very beginning matimeng period. This outcome may be
beneficial to air traffic managers in that first-stagr@ategic planning decisions can be made earlier rather than
later, providing opportunities for later ATFM program revisicarsd better coordination with other ATFM
programs. Flight operators would typically submit early in sibmatwhen they had less uncertainty; however, it
is clear that if early submissions were made under highrtantty, then resource allocations could be highly
suboptimal.

This paper is organized as follows: Section 2 describes ATFMrgre including the Collaborative
Trajectory Options Program (CTOP), and provides a review ofeMiging literature on aviation resource
allocation programs. Section 3 introduces the analysis frameamatkresulting model properties. Section 4
presents numerical results from example model applications, atidrSg provides conclusions and a discussion
of the research.

2. Background

During times of en route capacity shortfalls, flights m@uted, delayed on the ground (at origin airports), and
delayed in the air (Miles-in-Trail) as needed. Prior to 2006ht# were instructed to wait on the ground and/or
reroute around constraints as instructed by FAA airicraftnagers. Multiple Ground Delay Programs (GDPs)
were called to handle en route constraints; this couldltr@suinefficient and inequitable ground delay
allocations, in that ground delays could be assigned to flightsmeddor a GDP airport whether they were
scheduled to fly through the constrained en route airspace .oAmkes could, subject to FAA approval,
reroute their own flights; selected reroutes from adsteth set of playbook routes were assigned(Wilmouth &
Taber, 2005) if airlines did not reroute flights on their own20@6, the Airspace Flow Program (AFP) was
launched. In an AFP, flights scheduled to fly through capacity i@onet airspace are assigned a delayed
departure time on the original filed route, using the Rationdhe8ule (RBS) algorithm. The flight operator can
either accept the delayed departure time, reject it tmteraround the constrained airspace, or cancel the flight

6



O©CO~NOOOTA~AWNPE

DO UIUIUTUUUICIVCIUURNDANRNRNDNARNDNWWWWWWWWWWOWNNNNNNNNNNRPPRPRRRRRRRR
ARANPRPOOOVNONROMNROOOVYOUNRWNROOONNONRONROOONNOUNRWNROOO~NOUNWNEO

altogether. As slots to fly through the constrained airspaceaaaged through flight cancelations and reroutes,
the schedule is compressed such that remaining flights are moweghiher slots as available. Currently, miles-
in-trail restrictions, GDPs, and standardized reroutes contmie used along with AFPs to handle en route
constraints.

The Collaborative Trajectory Options Program (CTOP) is aroete air traffic flow management (ATFM)
initiative that became operational in mid-2014(FAA, 2014). Thegse of CTOP is to more efficiently and
equitably utilize en route capacity during times of capacitytiiier caused by inclement weather and flight
capacity-demand imbalances. It offers flight operators cortibimga of reroute and delayed departure time
options, and allows operators to communicate their preferencasliregythe offered options. CTOP is similar to
earlier ATFM programs in that it aims to safely meterraftdlow through capacity constrained airspace regions
designated Flow Constrained Areas (FCAs). However, unlike ptiograms, it allows flights to be allocated
reroutes and delayed departure times simultaneously, and mablynohcorporates operators’ preferences
regarding the available resources in the resource allocationcthecisi

The CTOP applies RBS to delay and/or reroute flights aetitey points of an FCA(FAA, 2012). RBS is
used to allocate constrained airport capacity to flights d@i@PP by assigning necessary delays in the order
flights are scheduled to arrive at the airport for which ti#PGvas issued. RBS is a well-accepted allocation
scheme that has been used in GDPs since the mid-1990s, andcéigedreextensive attention in both
research(Vossen & Ball, 2005) and practice. Under CTOP, whéntsfligceive their delayed “departure” times
through RBS, flight operators are also notified of the rerout®mrmptavailable. Each reroute option has an
allowed departure time associated with it. Flight operat@sasked to submit a Trajectory Options Set (TOS)
for each flight, which consists of a set of options “weighteith a relative cost. The options in a TOS can
therefore be ranked in any given situation, and the most desaréilable option identified and assigned(FAA,
2014). The FAA will then use the TOS’ in an algorithm that incdudse of RBS to allocate constrained slots
within the FCA(FAA, 2012). The operators may submit edits anaiggsato their TOS during the planning
period, as available options and en route conditions change.

Through its use of RBS and incorporation of flight operator preéexe CTOP actualizes the Collaborative
Decision Making (CDM) concept(FAA, 2012). CDM is a joint goveemtnand industry initiative that aims to
improve ATFM in the National Airspace System by encouraging irdtan sharing between stakeholders. This
information exchange has been shown to greatly benefit ATFM;eveny information exchange within
allocation schemes where airlines must compete for scasminces can also encourage gaming/strategic
behaviors(Ball, Futer, Hoffman, & Sherry, 2002; Hoffman, Burke, Lewiger, & Ball, 2005). As a result,
ATFM programs should be designed to discourage this behavior pdesible, or at least account for it,
whenever it is detrimental to the system.

Resource allocation schemes for en route air traffic managemleich propose a more structured approach
to information exchange and coordination by stakeholders in the&p@IDM, have been considered since the
mid-1990s. Goodhart looked at the incorporation of user preferencdee tent route resource allocation
process(Goodhart, 2000). As an alternative to the application of GDPthémefibre, RBS) for en route resource
allocation(Jakobovits, Krozel, & Penny, 2005), Hoffman et al. (2007) afideBal. (2010) introduced the
Ration-by-Distance (RBD) allocation method. They demonstré@dRBD could be more efficient than RBS
under early GDP cancellation, but less equitable. As atrektiis finding, they introduced an equity-based
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RBD algorithm, which is a constrained version of RBD that irepaan upper bound value on a pre-defined
equity metric. Equity and fairness are important consideratio ATFM program design, as ATFM programs

that promote equitable treatment of airlines are lesg/likeéncourage gaming behavior by a highly competitive
industry (Hoffman, Burke, Lewis, Futer, & Ball, 2005). Failing tonsider equity, as well as potential

competitive behavior, in ATFM program design may be detrimdntan otherwise well-designed program.

Hoffman et al. (2005) proposed a method tailored to addressing thatemmesource allocation problem through

the simultaneous rationing of multiple resources. They digbesgreater efficiency of this strategy compared to
GDPs. Their strategy was also designed to incorporate changingre$erences and real-time operational
decisions by the FAA. Pourtaklo and Ball (2009) propose an algotithequitably allocate airspace slots

specifically within the AFP context using flight operator prafesinformation and randomization.

Market-based methods for rationing constrained airport capaaity been studied extensively (Ball, et al.,
2007; Swaroop, Zou, Ball, & Hansen, 2012), and attention has also beentgien route resource allocation
from a competitive/market-based perspective. Waslander et aBaP@dopose a market mechanism-based
approach in allocating en route resources to competing airlinegyamgorate this rationing mechanism into an
ATFM model. They show that it is in the airlines’ best insete participate in the airspace resource allocation
market; they can do no worse by participating than if they do not participate andredloantral decision maker
to assign them resources without taking their preferencesaaaiount. The resources in this study consisted of
access to airspace sectors during particular time inteatther study (Waslander, Roy, Johari, & Tomlin,
2008b) considers a scheme in which airlines submit maximum lump-sisnfobiresources in a market, which in
turn influences resource prices. They show that a Nash equilibrium and a bound orstreffigiency loss exist
for utility maximizing players that anticipate how their bids affect resource prices. Another study looks at the
implementation of a market for constrained en route or airpastirees, whereby competing airlines can pay for
delay reductions and receive payments for delay increasesdiygtrsiots initially allocated by a first planned
first served policy(Castelli, Pesenti, & Ranieri, 2011). @h#hors show that the resulting slot allocation allows
for all flights to be better off economically, and that it maximizéisiehcy from a social welfare perspective.

There is little published literature on airline resourcguest processing under changing NAS conditions.
Ball et al. (2005) compare the results of a batch-orienteddgerprocess to a fast-response asynchronous
process within the slot credit substitution mechanism. The autiaie that a fast-response process may have
applications beyond airports slots, with a particularly promisipglication in flexible flight planning. Kim
(2011) proposed and compared several different methods of enresotace allocation possible in ATFM
programs (RBS being one of several) that are in line withGB& philosophy. One allocation method
investigated was a sequential method called “First Subnfiitsti Assigned” (FSFA), in which an impacted
flight is assigned the best available resource at the ttimdlight's operator submits the required preference
inputs. When the ATFM program is announced, traffic managers prallidperators of flights scheduled to
enter the FCA with up-to-date information about the constraimgplage (location, start time, duration, etc.) and
the reroute/delay options available. Flight operators are #wnested to submit their resource preferences to
traffic managers at some point before a specified deadtitiee sime of a flight’s preference submission, traffic
managers allocate to that flight the best available resoamsding to their submission information. As a
result, a flight is rewarded for earlier submissions through ihcreased probability of obtaining a desired
resource before their competitors do. However, NAS operatingtmors] and an airline’s actions in response to
these conditions, may change rapidly prior to a flight's scleeldahd/or actual departure time. A flight operator

8
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becomes more certain of its resource valuations closer totdiepéme. As a result, the utility of a flight's
resource assignment will depend on both the resources agaitable time of their preference input submission,
as well as the certainty regarding the preference inputsittetto obtain a resource. The time that the operator
of a flight submits their complete route preference valuesldhmua calculated balance of these two opposing
considerations.

Furthermore, because a flight is assigned the best resourdéblavat the time of their preference
submission in FSFA, flight operators have no incentive to subnrtbful information. They should desire to
submit the most truthful information possible to obtain the Hghaility option available to them; the
competition for resources plays out in the times that fligherators submit, rather than the submission
information itself. Kim & Hansen (2013) assessed the relaibsts of the FSFA scheme under the assumption
that the preference submissions order is random and independdéghtobperator characteristics. However,
because the value of a flight's resource allocation may beyhdgpendent on its place in the preference
submission order, the assumption that submission order is compétdym and independent of the factors that
define the cost (flight characteristics, operational comatitiof the ATFM program, etc.) is likely invalid. For
instance, we would expect earlier scheduled flights, flighite higher unit airborne costs, and flights that
strongly prefer particular routes to submit their preferanpets earlier. Although the allocation framework
currently used in the CTOP differs from FSFA, FSFA can pe®wome insights into how airlines might time
their TOS submissions if the allocation algorithm were to pe@wlear rewards for earlier submission. Given
that FSFA controls the number of times that operators can syieierences (whereas the current CTOP
allocation procedure does not), it can be applied to entire CTOPsrotoesebsets of flights and airspace within
the larger CTOP framework, where and when there is heavy competititie feame resources.

In this paper we explore how flight operators will time themuests for scarce resources in FSFA under
uncertain conditions using a game theoretic setup, as submisses dre competitive responses by flight
operators looking to maximize their expected benefits through thisissibn. We explore how uncertainty
about changing NAS conditions might influence an operator’s dectsi submit its flight's route preference
information later when the operator has better information. Vge define the expected utility of submitting
preferences under uncertainty about operating conditions, and thenpdavampetition model of submission
times during an ATFM program planning period.

3. Competition in a sequential allocation program

This section discusses the methodology developed to assess iteenpetponse strategies within the FSFA
resource allocation process. As described in the previousrsettight operators must choose when to submit
their en route resource preferences within the planning pdoodise in the allocation process. The resulting
submission times will be their best responses in balansiogppposing objectives: the desire to submit earlier
than their competitors in order to obtain a more desirable, lovgtresource; their desire to submit later in the
submissions process, particularly when uncertainty regardirigimydNAS weather and operational conditions
is high. We first introduce a model describing how resourcsts @mange under evolving NAS conditions, and
then introduce the competition model framework and resultingrerefe submission strategy. Please note that
from this point forward, when we state “a flight prefers X4, flight's X", etc., we are actually stating “flight
operator prefers X, “flight operator’s X”, etc., and have removed “opérftobrevity.
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3.1 Impacts of submission time choicein evolving conditions

Say there is a capacity shortfall in a portion of en routepases due to inclement weather and/or excessive
demands. Flights that are scheduled to enter the airspace dansotat their originally scheduled times, and
must be delayed and/or rerouted. An ATFM program is initifdedhat airspace, for the period over which
demand-capacity imbalances are anticipated. The program mylog the FSFA process to allocate the
constrained resources to tNempacted flights. Say that the operator of flight [1, N] is the first to submit its
resource preferences during the planning period. Higkiterefore, has available to it all departure slots on all
routes whose departure time from Fix A is not earlier tifaroriginal scheduled departure time. Say that
represents the utility of slatto a flightn, wheres € [1, S] and includes all available slots. We assumelthat
consists of both airborne and ground delay costs(Kim & Hansen).2018e operator of flight had perfect
information (during the program planning period) about how weatigioperating conditions in the NAS will
evolve, it would also know the true utilities of each availatdparture slot forn, and be able to identify the
available slot of highest utility (or, alternately, lowest cost):

[/Tl* = max(anl, anz, ey ‘/TL,S’ ey VTl,S) (1)

where for any slof that is prior ton’s original departure time (and therefore is unavailable)td, ; = —oo.
However,n is unlikely to have perfect information throughout the planning peasdNAS conditions can
change rapidly in ways that cannot be predicted by flight tprsrar traffic managers. These conditions include
weather and traffic, as well as traffic managemenibasttaken by the FAA. Airline internal operational
situations can also change rapidly in response to NAS conddrdios other reasons, due to changing passenger
loads, fuel requirements, crew scheduling, and others. Theratweme time during the planning period, the
operator of flightr will estimate the utility of slot to beU,, ;(t), rather than its true valug, ;. Thus we write:

Un,s ) = V;l,s T Vnres) (®) (2)

The stochastic terny, ) (t) represents flightr’s imprecise knowledge about the route conditions of a
particular slot (on that routeatt, and we assume it is distributed type 1 extreme value (GumbeBnpleasize
thatn only knowsU,, (t) Vs at timet, notV,, ; ory, () (t), Vs. However, because the true slot utilities &g

n can actually expect to obtain a true utility as follows:

E[Up(t)] = Xses Pn,s(t) - Vs 3)

whereE [U,(t)] is the expected true utility can expect to obtain from the entire set of ATFM program
resources available,, ;(t) is the probability of» choosing slos based on its understandingtahat the utility
of s isU, (t). Given that,, ,.5)(t) is Gumbel distributed, this probability has the standard logit expressi

pn,s(t) = exp(vn,s/w(t))/ZsES exp(vn,s/w(t)) (4)

1 We exploit the properties of random utility to neddincertainty about slot values, but do so in“t@posite” way that random
utility is used to understand choice behavior. Tgly, V is the “explained” utility of a choice, rather thavhat it is here, which is
the true utility of a choice. Similarly] is typically the “true” utility, rather than theepceived utility of a choice at a tinte

2 We make the assumption thatiepends only on changing information (oveabout the route of slat and not departure times. In
other words, we assume that the information usezbtsider an early slot or later slot on that samge, at some time in the
planning period, is the same.

10
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wherew(t) is the scale parameter pf ) (t), and indicates the variancegf 5 (t) (Ben-Akiva & Lerman,
1994).

Uncertainty about the true utility loss in assigning a giventsl a given flight is likely to be greatest at the
beginning of the program planning periad={0) and decreases as it progresses to the end of the planning
period,T. We capture this idea by assuming that the variange, gf,(t), and therefore its scale parameter
w(t), decreases linearly with respectto

wt)=k-(T—t),Vt<T (5)

where k is a parameter capturing the overall unpredictability of mexaand operating conditions of the
particular ATFM program in question. Equation (5) assumesfligat n’s information about conditions is
perfect byT', so thatw(T) =0. Therefore, as the submission time approa€hé$) shows that the probability of
n correctly identifying the resource of true highest utitayitself —V;,” — approaches 1. When< T, flight n
believes slot is valued at,, ;(t), and with this information can only expect to gAif/, (t)] with its choice.
Flightn’s loss in (true) utility resulting from its decisionstatan be expressed as:

Ln(t) =V - E[Un(t)] (6)

Recall thatE[U,,(t)] - V", and thereforé.,,(t) —» 0, ast — T. Note that (6), which we call the “loss function”,
assumes that all slots are available to all flights atiamsy t

If w(t) is very largey, ) (t) is highly variable, and in turti, ;(t) becomes a very poor reflection of the
true utility 1, . Therefore, according to (4), slot choice probabilities becoeagly equal among all available
slots, andE[U,(t)] approached,, (the average deterministic utility of all slots, #9. Following this, the

maximum value that,, (t) can take i =1V, —V,. We can now represent the utility loss function as a
proportion of the maximum loss possible:

() = Ly () /Ly, L(t) € (0,1] (7)

The shape of, (t), and thereforé, (t), is highly dependent on the valuesugft) andVj, s, as well as the set of
available slotsS. It may be convex within the planning period depending on @6ty is specified, or it could
have an inflection point after which the function becomes condawmnly one resource is available ig
[,(t) = 0 vt. However, if there are several resources of differingtieslil[(t) is strictly decreasing and
differentiable(Kim, 2011).

This section has introduced a functional form for a flight'sslin utility (or, increase in costs) caused by
uncertainty regarding NAS conditions during an ATFM (in particuld OP) program planning period. The loss
function is used in the following competition model.

3.2 Payoff function and equilibrium submission strategy

We set up the FSFA preference submissions and resource ialiopeticess as a competition in which the
operator of each flight must decide when to submit their aterpreference information during the program
planning period. Let us assume that each flight (referce@dst players from this point forward) can be
distinguished from another by its operator’s level of uncertainty durnpagtacular planning period. For instance,
some players may have schedules that are less easilgtddsthan other players, and/or more robust operational
recovery plans. Players will also have different capalslith regards to how they handle information about
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external uncertainties through their internal operations progessel some will have larger and more
experienced operations groups. These features can increaseeasdexiplayer’'s “uncertainty” compared with
other players. We assume that players’ uncertainty levelsiehvdetermine their submission strategies — are
continuously and identically distributed over the player populatiod, @ayers’ own uncertainty levels are
known only to themselves. Players are not informed about their ctongedctions and allocation outcomes, or
resource availability status, during the planning period. THEAR®mMpetition process can then be modeled as a
simultaneous incomplete information game, where each playarcertain about their competitors’ uncertainty
levels and resulting strategies (Gibbons, 1992). We assumalltpityers are rational, in that they will employ
strategies to maximize their own payoff (or benefit) based bat wihey know about themselves and their
competitors. Each player believes that their competitorgalacerational, and believe that other players believe
that they believe they are rational, and so on. As a restlieaibove assumptions, we have a symmetric game
where the expected payoff function and equilibrium submission tintegptrare identical for all players.

To preserve tractability, further assumptions are requiFadtly, we ignore the potential effects of
correlation among flights operated by a single entity, such asrline, and consider each flight to be a single
non-cooperative player in the competition. Secondly, all playdtsswbhmit their preference inputs sometime
during the ATFM program planning period. Thirdly, each playemfermed about the resource they are
allocated immediately after making their submission, andnatepermitted to swap or modify it during the
allocation process. This rule is enforced to prevent players $wpmitting inputs at the very start of the
planning period simply for the purpose of reserving a slot theydmmest that time to be desirable, with the idea
that they can submit again later without cost. Situationsthie may in fact arise when there are very few
desirable resources and very similar flights (with relsgec say, aircraft size, origin and destination,
departure/arrival times, etc.) competing for them. Fourthly, \sanas that players are not informed as to when
other players submit, what they submit, or slot availalqdityd therefore, what allocations other players receive)
at any time during the planning period. The result is that pldyre no information about their competitors’
actions. All players in the FSFA process are assumed toitsubthful route preferences as their strategies play
out through the time at which they submit their preferencdserr#ttan the preference information itself (it is in
their best interest to submit truthful inputs). Finally, allypl® assign identical costs to each slot under
conditions of perfect information about NAS conditions. They diffem one another only in how their
uncertainty levels change over the planning period. One again miggtniena similar situation might arise
where very similar flight operators desire very similasotgces. However, this is a restrictive assumption that
should be relaxed in future work. All the assumptions listesurenthat the FSFA allocation situation is a
competitive one. If for instance, it were true that players didhave the same cost functions (and players
learned of these over, say, many iterations of the same AdrBlytam in the same problematic airspace), they
might not desire the same resources, thereby dampening coompdtibwever, this is an entirely different
situation not in the scope of this analysis. The constract é&asumptions) of our game limits the analysis and
results presented in this paper to competitive situations only.

There exist several methods in the game theory and auctierauie for modeling the FSFA competition
process as described above (Krishna, 2002). For this analysieveespsrting contest analogy, where players’
effort levels, or “bid” strategies, are dependent on prizeiegl their personal ability levels, and their
probabilities of winning those prizes(Moldovanu & Sela, 2001). WenassanV-player game setup withi — 1
prizes, where prize values are ordered from largest to sthdllee last player to submit does not win anything.
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This is analogous to the last player to submit winning the prize oktawiéity, because we define prizes only by
their relative values to one another. There is no informatiomdosh we employ these relative utility values; we
are only concerned with players’ actions when faced with one chgaiast another in the set. Therefore we can
set the prize for the last submitféras zeré Playern would like to maximum its expected payoff, which can be
expressed as:

E[T[n] = er[l,N—l] Rx|tn -P(n = xltn) - C(tn)r n=1,..,N (8)

whereC(t,) is the cost (due to uncertainty) playeincurs in making a preference submission at tinfg,,, is
the true utility that players gain by beimth in the submission order given they submitted, atlative to the
utility of being lastR(N), if they have perfect information about NAS conditiad&; = x|t,,) is the probability
of n beingxth in the submission order given they submitted. &or example, if the expected utility of being
first is R(1), thenR; = R(1) — R(N). Equation (8) also assumes that the expected utility of beiaggimen
place in the submission order is identical for all playersaiparticular ATFM program, and is common
knowledge. This follows from a previously stated assumptionathatayers have identical flight cost functions
when they have perfect information. Also, it is shown in K&@1(l) that over many program instances e
player to submit will have a greater expected utility (ordoexpected cost) than that of {ae+ 1)th submitter.
ThereforeR, > R, = - = Ry_; = 0. Furthermore, the set &, values will depend on the supply and demand
characteristics of the flow constrained areas (FCAs) and CTOP.

If player n submitted early in the planning periads true expected utility by beingth to submit will
certainly be lower thamR,. Equation (8) therefore states that the amount by whishexpected payoff is
degraded by uncertainty at the time of preference submissiadditive, and equals(t,,). C(t,,) is a linear
function of the loss functioh(g,,) introduced in (6). If,, is the timen submits during the planning period as a
proportion of the total planning perid#), such that,, = (T —t,)/T, g, € [0,1], then

C(qn) = L(qn) - hy 9)
A larger value for indicates an earlier submission time, in turn representaugttier submission due to higher
uncertainty. Ad.(q,,) is rewritten as a function @f, instead oft,,, it is increasingi.(0) = 0, andL'(g,,) = 0.
The loss function is identical for all players, in that theyddserve the same changing information about
weather, demand, and ATFM actions captured by parahétgfuation 5)h,, represents player's uncertainty
level, which determines the rate at whick informational uncertainty decreases during the planninggeas
t, — T. The rationale is that players have different capabilfiegprocessing and incorporating this changing
information into their strategic planning decisions, and this is cagbtoy their uncertainty levél A player with
a lowerh can better handle changing conditions, and therefore incursesioalies as a result of the uncertainty
represented bi(-). Conversely, a player with a highsuffers high losses when subject.{e). We will assume
that h is continuously and uniformly distributed betweep;,, andh,,,,, and all players know this. K, =
hnin, playern’s internal operations can handle NAS uncertainties best amlbrgayers, andh’s cost of
submitting at some early time will be smaller than ather player. As a resul, is likely to submit well before
the end of the planning period, If h,, = h,,4,, the opposite is true, and we assume thatould prefer to

% This is analogous to settimg— 1 alternative specific constants in a discrete ahaindel.
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submit their inputs as close Toas possible. Sinck(0) = 0 it follows thatC(0) = 0, implying no loss from
imperfect information if a player’'s submission is madg.at

Figure 1 displays the submission cost functiGrior two k values and three arbitrakyvalues. Recall that in
(5), k captures the overall unpredictability of weather and operatinglitions in a particular ATFM program,
by setting the value of the scale parametér) of the stochastic term representing information uncertaintye
loss function. Againh represents a player’'s uncertainty level. We have showm be a function of (rather
thang, such that time increases towards the right), and normalizZé*to previously defined as the maximum
utility loss that any flighta can sustain in the competition. The examples shown repr@semple three-player
game, where there are also three slot choices in thg, seith utilities V; = 10, V, = 4 (and V5 = 0; the
relationships between these values are analogous to those rb&wedyy, andR;). The two values ok are
proportions ofV;: k = V; or 2V;. We will use these values for some of the numerical plesrillustrating the
equilibrium strategy in Section 4.

Place Figure 1 here.

The submission cost functiaf(t) is shown to be monotonic and differentiable, that is alsctigtdecreasing
over the strategy space of our game, (0,T] (or, g € (0,1]). Since this is a symmetric game, the functional
form of the submission strategy is identical for all playerd can be represented as a function of a plager
uncertainty level.

The probability that Player 1 submits before Player 2 is:

P(t; <t;) =P(q1>q;) = P(g(h1) > g(hz)) =1- F(g_l(%)) (10)

For (10) to hold, we must assume a-priori thét,,) is monotonic and differentiable, and verify afterwards that
our assumption is correct. We know that this assumption holds as MoldowhBelar(2001) show that their bid
function is strictly increasing and differentiable, and thatakimizes expected payoff.

It was previously stated that players do not know their competitdygiisgion strategies because they do not
know their competitors’ uncertainty levels, and it follows thatlayer's probability of winning against one
competitor is independent of the probability of winning againsthen. Therefore, the probability of being first

N—-1
to submit (i.e., beating the otha&r— 1 players) is(l — F(g_l(qn))) , the probability of being second to
. N-2
submit (i.e., beatingV — 2 players but losing to one) '1'(((13’_—11));1)' (1 — F(g_l(qn))) .F(g*(gn)), and

(N—-1)!

the probability of beingeth to submit is 1—F(g! N R ) i |
e probability of beingth to submi '°(x—1)1((1v—1)—(x—1))!( —F(g (Qn))) -F(g7%(qn))" . If we also

normalize all utilities such that the choice of highest rdatgstic utility is one, then we rewrite the payoff
function of (8), using (9) and (10), as follows:

E[m,(qn)]

(N-1)! x _ N-x _ -1
= Yxe[1,N-1] (x_l)l((;v_ll)_(x—n)! ' L7:ax : (1 - F(g 1(%))) : F(g 1(Qn))x ] — hpl(gn) (11)

wherer, is the utility of having submittegith, normalized to the utility of the most valuable slot. Our @i
solve (11), in order to obtain the submission time stratggy g(h,) that maximizes playen’'s expected
payoff with respect to the conditions of the ATFM program, tilermationn has about its competitors, an@
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own information about itselfy(h,,) is also the equilibrium submission strategy, meaningrtitannot achieve a
higher payoff by deviating from this strategy. The payoff funciion(11) is concave with respect to the
submission strategy i € (0,1] (Moldovanu & Sela, 2001). Depending on the conditions of the ATFM anogr
(defined byv, q,, andk), equilibrium submission strategies may lie on the boundaries dfr#hegy space.

We solve (11) assuming the three-player game assumptide pmaviously fofFigure 1. It was determined
to be a reasonable assumption because it does not detracthoimsights that can be obtained from the
competition setup, but (11) can be solved with relative édserefore, by using equations (3) through (7) for
l(g,), rearranging terms, and assuming that players’ uncerté@wigls are uniformly distributed where
hy~U(Rpmin, hmas), (11) is solved for a three-player game:

1= (ZSES “xp (quq_sk))_l . ZSES P (‘;:l_sk) (12)

= 2[(r1hmax — 1 (hpin + hmax))(ln hmax — I hy) + (ry — 215) (hy, — hmax)]/(hmax - hmin)z

wherev, are the normalized “true” slot utilities, such that the maduable slot has utility; = 1. See the
Appendix for the derivation of (12) from (11). The above expressianat be expressed fgy, (the equilibrium
submission strategy) in closed form, but it is possible w $wlutions numerically. A third-order Taylor series
yielded poor approximations of the function at the boundaries of @maipg period; as a result it was not used.
The reason that it cannot be solved in closed form is bet¢hadoss functiod (q,,) is non-linear. However, if
L(g,,) took on a simpler (i.e., linear or quadratic) form, we wodde a closed form expression for the
submission time strategy (see Appendix).

Depending on the values of parameters,, hmax Vses, 11, @andr,, there may not exist a solution to (12) for
values ofh € [hyin, ], by < hyay- This is because the left side of (11) can only take a maxivalne of 1.
However, this threshold; is not critical; there is another (higher) valyewhereh; < h,, which can be defined
as a submission decision threshold for players,, i h,, n is positioned to gain more from submitting as early
as possible, becauses disutility due to uncertainty is relatively smaller thas potential gain from being
among the first to submit. As a result, whegn< h,, n will always submit as soon as possible, i.e., at the start of
the planning period. Player with h,, > h, will want to submit at > 0, depending on the parameters of the
submission strategy function,,;,, Amax, 11, @ndr,. We find bothh; andh, numerically as they also cannot be
expressed in closed form.

Once we findy,,, the time thah submits during the planning period (of total dura@rcan be obtained:
t, = max(T(1—-qy,),0), t, €[0,T]Vn (13)
4. Numerical study

Figure 2 displays submission strategies for seven valudssifown at the bottom of the figure, for a scenario
where v, = [1,0.5,0], r; = 0.8, 1, = 0.8v,, h,;, = 0.5, hye = 1.5, and T = 2 hours. These values were
chosen arbitrarily, but are meant to be representative oftmorgdin an ATFM program such as the CTOP.
Recall thatk is a parameter that captures the overall uncertaintydiegaweather and operating conditions of
the particular program in question, ahdrepresents an individual player's uncertainty level. Thaxis
represents values af from h,,;, t0 h,,.,, and they-axis represents the ATFM program planning period. It is
observed that the submission time strategies increasehvdtidt (decreasing when expressedginand are
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differentiable. Although we are using three-player game eleangve will discuss the submission strategy
functions shown in this section by referring to the flight populatioaddition, it is worth mentioning again that
the results shown are the outcomes of a highly compeR®FA process, based on the assumptions laid out at
the beginning of Section 3.2.

Place Figure 2 here.

The figure shows that submission times are very sensitivie, twhich represents the overall uncertainty
regarding weather and operating conditions. The general uncettaiat in an ATFM program such as CTOP
can vary from one program to the next depending on the charactenistits adverse weather causing the
program and how traffic is managed in response to it, botthath can be representedkn Given how much
strategies can differ with respect ko the results irFigure 2 suggest that players’ (or, flights’) preference
submission behavior may vary significantly from one CTOP toéxt. Whenk > 0.5, traffic managers would
observe a fairly slow arrival of submissions after a clump@raials att = 0. Whenh =~ h,,,,,, Submission
strategies become very sensitive such that very small incredsessult in large increasesin

Flights with uncertainty levela < h, would expect to maximize their payoff by submitting at some tim
before or at the very start of the planning pefioe- 0); however, because it is not possible to make preference
submissions before the planning period begins, all players mathh, submit att = 0. As k decreases,
increases, so more flights will be inclined to submitat\ery beginning. This is of course assuming khate
uniformly distributed over the flight population. Again, a derak would result in many flights submitting as
soon as the planning period begins, which is expected. Traffiagers would then anticipate receiving more
submissions at the beginning of the planning period, the majifritige CTOP planning could be completed
early, and the CTOP could be more readily coordinated with other aic ftaffi management programs planned
or in progress. For the examples shownFigure 2, a significant proportion of flights would submit their
preference inputs at the beginning of the CTOP planning period.

We now further explore the sensitivity of strategies tolaygy’s individual uncertainty level and the
overall program uncertainty levél, as well asv, values. Recall that we normalized the utility values to be
between 0 and 1 such thet is always 1.Figure 3 shows the resulting submission strategies for the same
examples shown iRigure 2, except that we have swapped the values represented tyatieand the lines. As
a result, thex-axis now represents values lffrom 0.25 to 3, while each curve represents a value a$
identified in the legend at the bottom.

Place Figure 3 here.

When bothk andh (overall uncertainty level and individual player’s uncertainty lleespectively) are high, the
slopes of the lines grow smaller, indicating that the equilibsufymission strategy changes little with respect to
changes ink. Conversely, at lower values of bathandh, the equilibrium strategy changes much faster in
response to changes kn(beyond the threshold where a player would submit at the very begiohitig
planning period). This is more readily observed in the folloviigare (Figure 4), where the contours represent
the submission strategy (by tintejn hours).

Place Figure 4 here.
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Thex-axis was truncated &at= 0.8 instead of ak,,;, = 0.5, to reduce the black space shown. The figure shows
that under situations of higher uncertainty (i.e. highndh, overall uncertainty level and individual player’s
uncertainty level, respectively), flights will become increasinghyivated to submit near the end of the planning
period. In addition, whetk andh levels are high, strategies are more robust to changesthncbmpared to
whenk andh are lower. More robust submission strategies at highd h levels are illustrated by the wider
(and lighter colored) contours. Contours become narrowkraasl/orh decrease, indicating that small increases
in uncertainty will have a larger impact on the flights’ p&yahctions, thereby having a greater effect on the
submission strategy. The black areas represent situationg wdsource preference submissions ought to be
made at the very beginning of the planning period. It covers|g faige portion of the figure, indicating that
airlines should submit at= 0 for many combinations df andh.

Figure 5 displays submission strategies fgr — the normalized “true” utility of the second most valuable
slot — ranging from 0 to 1 and overall program condition uncertdévisl k ranging from 0.25 to 3, when a
player’s individual uncertainty level is= 1. The left plot ofFigure 5 shows submission strategyvith respect
to k, where each curve is generated using a single valag ®he frontier curve is for, = 0, with curves ob,
values increasing in the direction of the arrow. The rightgi&igure 5 displays the identical example but with
submission time plotted against. Each curve represents a valud:pWith curves of values increasing in the
direction of the arrow. The frontier curve represénts 3.

Place Figure 5 here.

Figure 5 suggests that flights will submit earlier in the CTQ&nping period as the normalized utility of the
second most valuable slét,) increases. This observation is intuitive in that wirgns higher, the expected
relative utility of being anything other than last (thirdstdomit is also larger. Therefore, flights are pressured by
greater competition and therefore have more motivation to subrhére&or instance, if we were to draw a
vertical line atk = 1 in the left plot, whens, = 0.5 it is an optimal strategy to submit inputg & 0.2 hours.
However, wherw, = 0.2 it is best to submit at = 1 hour. This is a significant difference; according to the
shape of the curves these differences generally decreaseasases, but can still be significant at larger values
of k and whernw, is large. More easily observable from the right graph is ftraall values ofk at player
uncertainty levelh = 1, if v, is larger than approximately 0.65, the players’ submissitategy will be to
submit at the beginning of the planning period. At smaller galokv, the submission strategy varies
significantly with respect to the rangelotalues shown. However, whéns large, the submission strategy will
not change significantly with a unit increaseinThis last observation is similar to thatFogure 4.

Figure 6 shows submission strategies when the overall uncertavey iek = 1, the players’ individual
uncertainty levels are uniformly distributed betwdép,;,,, h,q.] = [0.5,1.5], and againv, (the normalized
“true” utility of the second most valuable slot) ranges frono terone.

Place Figure 6 here.

The main observations fromaigure 6 confirm the observations from the previous figures. When gepi
uncertainty level(h) is high, and the second most valuable §igf) is closer in value to that of the most
valuable slo{v;, = 1), the optimal strategy is to submit later than wheis closer in value to the third and least
valued slot. As observed Figure 5, whenv, is high, more flights will be incentivized to submit eatlignd at
the very beginning of the planning period. We observe at the tdpedigure that for a given value af the
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submission strategy is not monotonic with respect tg. This behavior contradicts the idea that players are
more likely to submit earlier when the prize values are highewever, the behavior is only observed at very
high h values; throughout these examples it has been shown thatbthession strategy is highly sensitive at
high h, and we should investigate this further to determine theecatithe non-monotonicity. The function
appears to behave as expected for all other combinatignarafv, .

Figure 7 displaysh, — the submission decision threshold — as a functian, ghormalized “true” utility of
second most valuable slot) akhdoverall conditions uncertainty level). Recall thatjf< h,, it is best for flight
n to submit preferences at the beginning of the planning péried0). However, if h,, > h,, then the optimal
strategy will be to submit at some time (0, T].

Place Figure 7 here.

Figure 7 provides information about FSFA submissions process outcomesféoert scenarios as represented
by v, andk. For any combination af, andk, the corresponding, value can be found from the figure above.
For instance it = 1.5 andv, = 0.4, thenh, = 0.85. A graphic likeFigure 7 can be used to quickly reduce a
flight's strategy set in an ATFM program. For instancey,if< h, (meaning thain’s uncertainty level is less
than the submission decision threshold uncertainty levight 2 knows immediately to submit at the beginning
of the planning period without further analysis effortsa’# uncertainty level is greater than the threshold, or
h,, > hy, n knows they should submit at a later time to minimize tbests, and further analysis is required to
determine exactly when. Air traffic managers can benefit fsaph a graphic as it gives some indication of the
predictability of the FSFA submissions process in a gpregram instance. &, is very high within the range
(hmin» hmas), traffic managers can expect to receive more submissidghe aeginning of the planning period,
as it indicates that the utility of being first or secondrater than the utility loss incurred by submitting early
for a large proportion of airlines. As a result, the ATFM progpamning process can be completed early, and
this may help traffic managers in coordinating the program with othergmnsgaking place or scheduled to take
place. It can also provide traffic managers more time {cacather FSFA allocation round before the program
begins, should conditions change enough to warrant it. Although @ariping efforts may be irrelevant and
highly suboptimal under greater uncertainty about NAS comditiave know that submission strategies
implicitly account for this as airlines are less likely to subntityaahen facing greater uncertainty.

5. Concluding remarks

In the sequential “First Submitted First Assigned” (FSIFggource allocation process, participating flights are
requested to submit their en route preferences during the ATFMipdaperiod. The earlier a flight submits, the
more likely it is to receive a desired resource. Howeherflight is also likely to face greater uncertainty about
weather and operational conditions in the NAS; in turn, the fliglhthave more uncertainty identifying which
resource is indeed of highest value to it, and therefore, whiclireesto request. To understand how flights
tradeoff these conflicts and choose optimal preference submissis) tira presented a game theoretic treatment
of submission behavior in the FSFA process. A numerical study déatedsthat preference submission times
are heavily influenced by the weather and operational conditiortheoATFM program, and each flight
operator’s ability to handle uncertainty (which varies throughimaiflight population). A notable finding is that
in many scenarios investigated, a large proportion of fligiasld find that submitting their preferences at the
very beginning of the ATFM program planning period is an optisti@tegy. Indeed, if air traffic managers
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could expect to receive more submissions at the beginning gfldheing period, some benefits may arise.
Firstly, the ATFM program could be more easily coordinated witrer ATFM programs taking place or
scheduled to take place. Secondly, there may be time to ruathes resource allocation round before the
program start, should conditions change enough to warrant it. Gothtbehand, early submission also means
that flight operators are more likely to select resourcdsith@trospect are suboptimal, because the utility loss
that is incurred by being “late” to submit in a high competitive enviemtraxceeds the utility loss of obtaining a
resource of uncertain value. In less competitive scenarios -midmatarise in future work when some key
assumptions are relaxed — we may find that airlines are somksbatclined to submit as early as they do here.

Outputs of the model developed in this paper may provide some Qdnghalevel insights to airlines in
planning submission strategies within competitive allocationgss®s such as FSFA. Tools — Figure 7 being a
simple example of one — may be developed to reduce the numbatenfigl strategies within different ATFM
programs, or even quickly determine that a submission madhe atety beginning or very end of an ATFM
planning period is best. As discussed previously there arerausfactors that can determine flight costs (and
therefore flight scheduling decisions) in times of capaditrtéalls, which are not explicitly accounted for here.
For instance, in this model we have represented both gen€FRM Arogram situation uncertainty as well as
airline uncertainty levels. However, each form of uncertaintybeafurther broken down by cause and type, and
may result in different input submission timing decisions. Assailt, although this analysis can provide some
insights about submission timing in an FSFA process, much arakysis as well as experience would be
necessary to make such decisions in a real-life scenario.

The model developed in this paper may have applications to @bheerstial resource allocation strategies
within congestible and controlled transportation systems apgrahder uncertain and/or changing conditions.
One possible example may be a northern shipping channel operatingheadgrdemand/capacity imbalances
and variable environmental conditions due to climate change.

This analysis assumed that all flights would participate in the salamisystem, but this may not necessarily
be true. If a flight is scheduled towards the end of an ATpielgram, under highly unstable and rapidly
changing conditions its operator may feel that a wait-and-gpeach is more desirable than a premature
allocation. Also, although an operator may submit information andveee@ allocation for their flight, they
might ultimately cancel the flight and fail to inform air traffic magers. Schedule compression as done in GDPs,
or a credit system (that extends beyond a single CTOP) meguilage this behavior. These assumptions should
be relaxed or addressed further in future work.

There are several key ways by which this work can be extemdedngroved upon. Firstly, the model in
(11) can be solved for flight populations greater than threen8hc@n alternate auction/contest analogy may
be sought, where “prize” values and their devaluations due to untgaithe time of preference submission)
are not additive. In addition, we should revisit and relax somehefrestrictive assumptions made for the
analysis. We cannot say exactly how relaxing the assumptiounlsl impact the results presented; however, we
could surmise that relaxing certain assumptions may dampen donpeesulting in less situations where
flights are motivated to submit at the very beginning of glaning period. An alternate formulation that
incorporates flight heterogeneity not only regarding how flaerators handle uncertainty, but also in terms of
their “true” resource valuations (which were assume taléetical for all flights in this paper), would be useful.
If a large proportion of flights do not necessarily desire the sarmaroes in an ATFM program, and they are all
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aware of this fact, then the competition would dampen and flighyssofamit later than the model introduced
would indicate. The FSFA process may be unnecessary in situatichsas this, and it would be helpful to
identify the threshold at which the process is inefficiensoAwe may revisit the assumption that players’
uncertainty levels are uniformly distributed over the population.rGilvat the airline industry can be segmented
by legacy carriers, low cost carriers, regional airlimés,, investigating the applicability of other distributiasms
warranted. Finally, the model would benefit from relaxing the raption that each flight belongs to an
individual airline; players may be characterized as flightatpes with a set of flights (possibly designated as
flows) for which en route resources in the ATFM program are sought.
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Appendix: Equilibrium airline preference submission strategy
Here we show how we obtained the (optimal) player strategws in equation 12 from the payoff function of
equation 11.
Recall thatP(q; > q) is the probability that Player 1 submits earlier than Playélso recallP(q; > q,) =
P(t; < t,). If we assume a-priori thgt(h,,) is monotonic and differentiable, then we can say that:
P(q, > qz) = P(g(hl) > g(hz))
=P(g7"(q) < 97(q2))
=1-P(g7(q2) < 97" (q0)
=1-F(97"(q1))
wheregq,, = g(h,) is the submission time strategy for player

We assume that the probabilities of winning or losing agaih&r players are independent. Therefore, the

N-1
probability of being first to submit (i.e., beating the otiver 1 players) is(l —F(g‘l(qn))) , and the

- . . (N-1)! _ 1 N-x 4 x-1
probability of beingxth to submit |o(x_1)!((N_1)_(x_1))!(1 F(g (qn))) F(g7%(gn))" . The payoff

7 .
function forn becomes:

(1-F(g 1(qn))) F(g™(gn))"

(N = 1)! .,
Elm,(gn)] =
[Tl' (q )] el I( - 1! ((N -1 —(x— 1))| max

—h l(‘]n)

If N = 3, the above becomes:

27,
Bl (@] =t (1= F(g7 @) + e (1= F(g7@))) - F(97 (@) = hul(@)

Setg™'(qn) = hp = Yn.
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T‘1 2 27‘2
E[T[n(qn)] = |max ' (1 - F(yn)) + [max ’ (1 - F(yn)) ’ F(yn) - hnl(qn)
And find the partial derivative of the expected value pivith respect t@y,,:
OE [T[n] _ 27‘1 ’ ’ 27‘2 ’ ’
aqn = _Lmax'(l_F(yn))'F (yn) 'yn_Lmax'F (yn) 'yn'F(yn)

2r2 ! ! !

+ Tmax (L= FOm) - F'On) - Yo = yn - U(@n) = 0
, 27‘1 ’ 2r2 !

e l'(q) = Ty rmax (1=F) F'(y) - dyy =y pmar CF) — 1) - F' () - dyy

Now we determine boundary conditions. Af= h,,,, (drop the subscript), where h,,,, is the highest
uncertainty level possible, we conjecture thatill submit as late in the CTOP planning period as ptesséiT
(or g = 0). Otherwise, wheh < h,,,., g > 0. Therefore,

2r

0 hmax himax
Jq U'(x)dx = _Lma"fh x 1 (1=F)) - F'(x)dx — L?:jxjh x 1 (2F(x) —1) - F'(x)dx

We know that the operators’take values that are uniformly distributed betwegn, andh,,4,. If a = hy,in

_ ) 1
andb = hyg,, F(x) = % andF’(y) = —.
27'1 hmax 1 X—a 27‘2 hmax 1 Z(X _ a)
l(CI) Lmax.[hn (b—a)x( b_— a)dx-l_LmaxJ};n (b—a)x h—a dx
2 hmax
= m(n(b Inx —x)+7r,2x —(a+b) lnx)) )

Evaluate and replageandb to obtain:
2

Lmax (hmax - hmin)z

l(q) = [(rlhmax -1 (hmin + hmax)) ’ (ln hmax —In h) + (rl - Zrz) ’ (h - hmax)]

We know, according to equations (3) through (7), that:

@=[i-(Z (i) T ol
Therefore:

-3 _ew(Z) (7%)
— ex i . Ve s ex —_—
SES P qk SES g P qk

_ 2[(r1hmax — 13 (Mpin + hmax))(ln hmax —Inh) + (ry — 213) (h — hmax)]
(hmax - hmin)z

where of course)(q) = gk.

Recall that we assumed the submission strategy to be monatshdifferentiable a-priori. Numerical examples
in Kim (2011) show that submission strategies increase thrihwggplanning period. All players that desire to

submit before the planning period submit a 0. Moldovanu and Sela (2001) also prove that the bid function is

strictly increasing and differentiable, and that it maximizgzeeted payoff.
If r, = 0.5r; then (12) becomes:
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- (z exp (E))_l . z Vs - exp (ﬁ) = 71 (hmax = Pnin) (0 opax — Inh)
ses qk ses qk (Nmax — Pmin)?

And if L(q) were linear with a form such &€q) = gk, we would have a closed form solution:

t = max (T (1 _ 2[(T'1hmax -1y (hmin + hmax))(ln hmax : In h) + (Tl - 2r2)(h — hmax)]) ' 0)
(hmax - hmin) -k
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