
University of Alberta

Towards Molecular Quantum Computing: Laser Pulse Shaping of Quantum
Logic Gates on Diatomic Molecules

by

Ryan Ryad Zaari

A thesis submitted to the Faculty of Graduate Studies and Research in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Chemistry

©Ryan Ryad Zaari
Fall 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential
users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis
and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed

or otherwise reproduced in any material form whatsoever without the author’s prior written permission.



dedicated to my parents who have provided infinite encouragement and
continued support throughout my life



Abstract

The intent of this study is to determine the feasibility of diatomics as molecular

quantum computing candidates and shed insight into the use of such exper-

imental laser pulse shaping methods to represent quantum logic gates. Four

appropriate rovibrational states of model diatomic molecules are encoded as

the qubit states. A set of 2-qubit quantum logic gates (ACNOT, CNOT, NOT,

Hadamard) are represented by amplitude and phase shaped laser pulses. The

combinations of amplitudes and phases that produce the optimal laser pulse

representation, for each quantum logic gate, are determined by a Genetic Al-

gorithm optimization routine. The theoretical laser pulse shaping is analogous

to current experimental frequency-domain pulse shaping apparatus with am-

plitude and phase control at individual frequencies.

A model set of diatomics is sampled in order to determine a relationship

between optimal laser pulse shaping and the choice of diatomic molecule. We

show that the choice of diatomic molecule greatly influences the ability to pro-

duce optimal laser pulse shapes to represent quantum logic gates. Tuneable

parameters specific to laser pulse shaping instruments are varied to determine

their effect on optimal pulse production. They include varying the number of

amplitude and phase components, adjusting the number of frequency compo-

nents, and altering the frequency resolution which is synonymous with altering

the laser pulse duration. A time domain analytic form of the original frequency



domain laser pulse function is derived, providing a useful means to infer the

laser pulse dependencies on these parameters. Initially, we show that the ap-

propriate choice of rovibrational state qubits of carbon monoxide (12C16O) and

the use of simple shaped binary pulses, 2 amplitude and 2 phase components,

can provide significant control for specific quantum gates. Further amplitude

variation at each frequency component is shown to be a crucial requirement

for optimal laser pulse shaping, whereas phase variation provides minimal

contribution. We show that the generation of optimal laser pulse shapes is

highly dependent upon the frequency resolution and increasing the number

of frequency components provides incremental improvements to optimal laser

pulses.
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Chapter 1

Introduction

1.1 Context

The use of laser fields to control quantum dynamics has been a topic of much

theoretical and experimental interest over the last 25 years, see the reviews

[1–7] and references therein. Current pulse shaping hardware can control the

phase, amplitude and polarization of individual frequency components of a

laser pulse over time durations on the femtosecond timescale [8–10]. Along

with the complexity of pulse shape variability came optimization strategies

to determine optimal pulse designs. The development of closed-loop feed-

back optimization[11] allowed for laser pulses to be shaped and control to

be achieved without a priori knowledge of the molecular system [12–15]. In

experimental methods for control, a Genetic Algorithm (GA) is typically used

in a closed loop feed-back setup to perform the laser pulse shaping. A metric

that describes the ability of the current laser pulse to carry out the required

operation or experiment, termed the fidelity, is fed back to the GA. In turn,

adjustments are then made to the applied laser pulse parameters to improve

the desired experimental outcome. This cycle continues over a desired number

of repetitions, hence the laser pulse is shaped via a closed loop feedback. This

type of experimental setup was first suggested by Judson and Rabitz[11] in

1992. The majority of theoretical pulse shaping optimizations are posed in the

form of Optimal Control Theory (OCT)[16–18] or Genetic Algorithm (GA)[11]

1



optimization. OCT is a monotonically convergent iterative technique, whereas

the GA is a heuristic search space optimization algorithm based upon biologi-

cal rules of natural selection and survival of the fittest. Due to these relatively

recent advances in pulse shaping methods and technologies, the number and

variety of examples of quantum control has increased with these techniques

now being applied to molecular quantum computing.

It was Richard Feynman who in 1982 initially proposed the idea of a quan-

tum simulator[19] and a few years later in 1985 David Deutsch extended this

idea to a universal quantum computer[20]. The former quantum simulator de-

scribes a quantum computer that is built to solve a specific problem whereas

the latter universal quantum computer refers to the quantum analogue of our

current conventional classical computers. It was initially misunderstood that a

quantum computer would always outperform a classical computer. It has been

determined that a quantum computer would perform significantly better than

a classical computer on a select number of problems[21], the most common

being Shor’s algorithm[22] for prime number factorization as used in cryptog-

raphy. Examples of some relevant scientific applications which provide motiva-

tion for the development of a quantum computer include solutions to systems of

linear equations[23], quantum Fourier transforms[22], eigenvalue/eigenvector

problems[24] and within chemistry, simulating chemical dynamics[25] and, the

determination of molecular properties and geometry optimizations[26].

The two main techniques within chemistry that have been already suc-

cessful at carrying out simple benchmark quantum computations are Nuclear

Magnetic Resonance (NMR)[27–29]and ion traps[30, 31]. In 2002, Tesch and

de Vivie-Riedle proposed an alternative approach by using a molecule’s vibra-

tional modes for quantum computation[32] and demonstrated the utility on

a model of acetylene using OCT to find optimal laser pulses required to im-

plement the quantum gates studied. Concurrently, the work of Apkarian and

co-workers appeared[33, 34] suggesting the manipulation of ro-vibronic states

for quantum computing applications using time-frequency-resolved coherent
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anti-Stokes Raman scattering or four-wave mixing. Around the same time an

experimental implementation by Vala et al. [35] showed that the Deutsch-Jozsa

quantum algorithm could be realized on the rovibrational states of Li2. Within

theoretical molecular quantum computing using OCT, various studies on poly-

atomics emerged incorporating: (i) quantum gates [32, 36–41], (ii) quantum

algorithms [42, 43] and experimental limitations of OCT concerned with (iii)

frequency constraints[44–46] and (iv) mask functions[41]. The common dif-

ficulty in using polyatomic systems in order to carry out specific quantum

computing operations resides in the difficulty in controlling the excitation to

reside within a single mode while coupling of vibrational modes within the

molecule exists. Another possibility is to use a diatomic molecule. A diatomic

molecule satisfies the five criteria proposed by DiVincenzo and Loss [47] that

are necessary for a system to be considered viable for quantum computation

(see Section 1.2.7). A theoretical implementation for laser pulse shaping to-

wards quantum computation on diatomic molecules using the GA was initially

investigated for carbon monoxide (12C16O) by Tsubouchi and Momose[48].

1.2 Overview

For more general details, we refer the reader to an introduction to quantum

computation[49] and also a recent review of the use of quantum computation

to solve chemistry problems[50]. In this overview we provide a brief summary

of the method and structure of theoretical GA optimized closed loop feedback

with application towards quantum computation, as applied in this thesis. The

details of each individual topic are covered more specifically within Chapters

2-4. Fig. 1.1 conceptualizes the general framework of a closed-loop feedback

setup using a GA. Initially a random set of laser pulses, experimental or the-

oretical (see Section 1.2.4), are input into the quantum dynamics procedure

(Fig. 1.1; lower box) in order to start the algorithm. The upper box is the

GA routine (see Section 1.2.6), constituting the laser pulse optimization. In
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the theoretical case, the quantum dynamics is determined by solving the time-

dependent Schrödinger equation (TDSE) for the applied laser pulse, from an

initial state Ψi, over the laser pulse duration, to a final state Ψf (see Sec-

tion 1.2.5). A value for the Fidelity (see Section 1.2.3), between 0 and 1, is

computed which describes the effectiveness of the specific laser pulse at car-

rying out the required quantum gate operation (see Section 1.2.2) over the

chosen rovibrational state qubits (see Section 1.2.1). This is repeated for all

laser pulses of that generation. The Fidelity is fed back into the GA so that it

can rank the laser pulses and determine the appropriate optimization through

tournament selection and uniform cross-over (see Section 1.2.6). A new set of

laser pulses are produced which constitute the next generation. This process

is continued for n generations. Both the GA and quantum dynamics are con-

nected in a closed loop, providing feedback to each other in order to produce

an optimal pulse for the quantum gate operation of interest.

1.2.1 Quantum Bits (Qubits)

The quantum bits or qubits are the chosen molecular states in which the quan-

tum logic gate (Section 1.2.2) operations occur. They are analogous to the bits,

0 or 1, of a classical computer. Unlike a classical bit that exists in a definite

state of 0 or 1, a qubit with its foundations in quantum mechanics can be in

a superposition state. The most important superposition state with respects

to quantum computing is entanglement[51]. In the cases studied herein the

rovibrational states of a diatomic molecule, (ν J), are used to represent the

2-qubit state, |q1q2〉. We are interested in 2-qubit operations and thus we have

4 qubit variations: |00〉,|01〉, |10〉 and |11〉. The choice of rovibrational states

to represent the qubits is arbitrary. We choose a set of low energy rovibra-

tional states, shown in Figure 1.2, that are connected via 1-photon excitations:

|00〉 ≡ (1,2), |01〉 ≡ (0,1), |10〉 ≡ (2,1), |11〉 ≡ (1,0). It is this set of qubits that

undergoes transformations according to the required quantum gate operation.
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Genetic Algorithm

Quantum Dynamics

Fidelity

1. Solve TDSE 
2. Propagate:

1. Tournament selection
2. Uniform cross-over
3. MicroGA

new generation 

Determine Fidelity

nth Generation
Largest Fidelity
Optimal pulse 

1st Generation
random set of 

laser pulses

Figure 1.1: Illustration of theoretical shaped laser pulse optimization using
a genetic algorithm (GA). The first generation of laser pulses is randomly
generated. The time-dependent Schrödinger equation (TDSE) for the model
diatomic is solved for each input laser pulse. The system is propagated from
an initial state Ψi to a final state Ψf , at which point the fidelity is calculated
based upon how close the laser pulse brings the system to the desired final
state. The fidelity associated with each laser pulse is used to determine the
GA optimization through tournament selection and uniform cross-over. The
GA produces a new generation of laser pulses related to the previous ones. The
cycle is repeated for n generations; the optimal laser pulse being produced in
the nth generation.

ν

J

|00〉

|01〉

|10〉

|11〉

(02)

(21)

(10) (12)

(01)

(11)

(20) (22)

(00)

(ν J)

Figure 1.2: The set of diatomic rovibrational states (ν J) chosen to represent
the qubits |q1q2〉. Increasing vibrational states occur along the vertical and
increasing rotational states along the horizontal.
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1.2.2 Quantum Logic Gates

There are two types of implementations for quantum computation. The quan-

tum algorithms constituting the computation could be determined and im-

plemented directly, termed problem-specific quantum computing. This is syn-

onymous to a quantum simulator [52] and has been experimentally applied to

determine the eigenvalues of molecular hydrogen [53]. The approach of interest

in this study is general and can in theory reproduce any quantum algorithm,

and thus is termed universal quantum computing[35]. A universal quantum

computer is comprised of a set of universal quantum logic gates, analogous to

logic gates in classical computation (e.g., NOT, AND, OR). An example set of

universal quantum logic gates is the Hadamard, CNOT and phase gate. The

application of a series of quantum logic gates comprises a quantum algorithm.

Quantum logic gates are reversible Unitary Hermitian matrix operators. The

2-qubit Hadamard, CNOT, ACNOT and NOT quantum logic gates are exam-

ined in this thesis and their operations are shown in Table 1.1. In order for

a quantum logic gate operation to be applied to the molecular rovibrational

state qubits, it is encoded into the laser pulse. Each quantum logic gate is

represented by a specifically shaped laser pulse. Subsequent application of the

laser pulse to the diatomic molecule implements the quantum gate operation

on the qubits and carries out the transformation independent of the initial

qubit state. An example is the ability for the ACNOT1 laser pulse to cause

no transformation if the qubit is initially |10〉 or |11〉, and to cause an excita-

tion between |00〉 or |01〉 if initially in either of these states. Thus one laser

pulse must be constructed in order to produce, at maximum, 4 independent

transitions between the qubit states.

The goal of producing quantum gates is to apply them in a specific order

to implement a quantum algorithm. Besides causing the required qubit excita-

tions, there is an extra requirement imposed on the laser pulse quantum gate

operation. That is, the quantum gate operation must also align the relative
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phases of all the qubits together, by the end of the laser pulse interaction.

This is termed global phase alignment [43, 54]. Thus subsequent application

of quantum gates will impose the appropriate qubit transformation, since the

qubits will all be in phase.

NOT1 : |00〉 ↔ |10〉 NOT2 : |00〉 ↔ |01〉
|01〉 ↔ |11〉 |10〉 ↔ |11〉

Had1 : |00〉 ↔ 1√
2
(|00〉+ |10〉) Had2 : |00〉 ↔ 1√

2
(|00〉+ |01〉)

|01〉 ↔ 1√
2
(|01〉+ |11〉) |01〉 ↔ 1√

2
(|00〉 − |01〉)

|10〉 ↔ 1√
2
(|00〉 − |10〉) |10〉 ↔ 1√

2
(|10〉+ |11〉)

|11〉 ↔ 1√
2
(|01〉 − |11〉) |11〉 ↔ 1√

2
(|10〉 − |11〉)

CNOT1 : |00〉 → |00〉 CNOT2 : |00〉 → |00〉
|01〉 → |01〉 |10〉 → |10〉
|10〉 ↔ |11〉 |01〉 ↔ |11〉

ACNOT1 : |10〉 → |10〉 ACNOT2 : |01〉 → |01〉
|11〉 → |11〉 |11〉 → |11〉
|00〉 ↔ |01〉 |00〉 ↔ |10〉

Table 1.1: The quantum gate operations studied, with the aim at representing
each operation by a shaped laser pulse. NOT/ Hadamard: The number follow-
ing the gate name refers to which qubit the gate operates on. CNOT/ACNOT:
The number following the gate name refers to which qubit is the control qubit.

1.2.3 Fidelity and Average Population

The degree to which the shaped laser pulse represents the quantum logic gate

operation of interest is stated by a metric. Initial theoretical studies which had

not yet perceived the necessity of global phase alignment, used the average

population P̄ , as this metric,

P̄ =
1

N

N∑
k=1

|〈Ψk(T )|Φk〉|2 , (1.1)
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where Ψk(T ) is the resulting wavefunction after the laser pulse of duration

T has been applied and Φk is the target wavefunction. The wavefunctions

are summed over the number of qubit transformations N , which in the case

of 2-qubit operations as shown in Table 1.1 is N = 4. There is clearly no

phase information contained in the average population function. Population

transfer, along with global phase alignment, can be included in the required

constraints for shaped laser pulses within the GA by using instead the fidelity

function, F ,

F =
1

N2

∣∣∣∣∣
N∑
k=1

〈Ψk(T )|Φk〉

∣∣∣∣∣
2

. (1.2)

For an alternative expression of the fidelity showing average population and

global phase alignment explicitly, see Equation 5.1. The fidelity is a number

between 0 and 1. F =0 implies no excitation to the resultant qubit state(i.e.,

an incomplete quantum gate operation), while F =1 implies a 100% complete

quantum gate operation on the qubits. Though the average population is a

useful value to determine the extent of overall population transfer between the

qubits, it is strictly the fidelity function that is used within the GA optimiza-

tion procedure.

1.2.4 Laser field

In general, a laser field (electromagnetic radiation) is modelled classically as

a combination of perpendicular oscillating electric and magnetic fields. The

electric field interaction with the electric dipole moment is “five orders-of-

magnitude”[56] or 105 times larger than the magnetic field interaction of the

magnetic dipole. The magnetic field and subsequent magnetic dipole interac-

tion of the diatomic molecule is minute. Therefore, its effects are omitted and

only the electric field/electric dipole moment interaction is considered.

As stated by Milonni [57],“An arbitrarily large number n of ‘photons’ may

occupy the same state, and when this situation obtains, it is accurate to re-

gard the photon wave function as defining a classical field distribution.” Thus
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the quantum electrodynamic view of radiation for intense laser fields can be

described classically. Overall, the light-matter interaction is treated semi-

classically where the diatomic molecule is quantum mechanical and the laser

pulse is classical in nature. The electric dipole approximation[58] is also used

which reduces the form of the electric field due to the comparative size of the

electric field wavelength compared to the molecule. The classical description

of the laser field, E(r, t), can be written in complex form according to,

E(r, t) = ε0 cos(ωt− ~k · ~r) = ε0<
[
eiωte−i

~k·~r
]
. (1.3)

It is a continuous laser field of single-frequency (ω) with peak field strength

(ε0) being a function of space and time. The norm of the wave vector (~k) is

related to the frequency of the laser field by k = ω
c
, and thus is on the order

of 10−6Å−1 for the mid-infrared frequencies used in this study. The value of

k describes the number of oscillations of the electric field in space. In this

case one oscillation occurs approximately every 106Å, which is much larger

than the space occupied by the diatomic molecule. Consequently the resulting

value of ~k · ~r is small and the Taylor series expansion for the electric field of

the laser can be truncated to the first term, (i.e. unity):

e−ik~n·~r = 1−
[
i~k · ~r

]
+

1

2

[
−i~k · ~r

]2

+ · · · ≈ 1. (1.4)

The electric field can now be written strictly in terms of time,

E(r, t) = ε0<
[
eiωt
]

= ε0 cos(2πνt). (1.5)

For the optimized laser pulses studied herein, only the amplitude and phase

were shaped (no polarization). This shaping occurs in the frequency domain

which can be readily connected to the more familiar time-domain expression

for the laser field. The form of the laser pulse for the described discretized

frequency spectrum with amplitude and phase variation is[48]:

ε(νj) = ε0

√
A(νj) exp

[
−2 ln 2

(
νj − ν0

∆ν

)2
]

exp [iφ(νj)] , (1.6)
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where ε0 is the peak field strength, ν0 is the central frequency and νj represents

the discrete frequencies at which the field is shaped. A full width at half-

maximum (FWHM) pulse width of ∆ν=100 cm−1[48] with an overall Gaussian

shaped envelope is used. The amplitude and phase range from 0 ≤ A(νj) ≤ 1

and 0 ≤ φ(νj) ≤ 2π, respectively. A binary laser pulse is the specific restriction

of A(νj)=0 or 1, and φ(νj)=0 or π. A transformed-limited (TL) pulse is the

case when A(νj)=1 and φ(νj)=0. The familiar time-dependent form of the

laser pulse can be determined by a Fourier transform or alternatively using

the analytic form for the time-dependent field (see Appendix 4.5):

ε(t) =
sin (πtdν)

πt

n∑
j=0

ε0
√
Aj exp

[
−2 ln 2

(
νj − ν0

∆ν

)2
]

cos(2πνjt+ φj), (1.7)

with frequency resolution dν. The frequency domain laser pulse shaping used

in these studies is closely related to experimental Spatial Light Modulators

using Liquid Crystal pixelated grids (LC-SLM). This requires diffraction of the

incident laser pulse onto the LC-SLM, in which each pixel will be illuminated

by a specific frequency band. At each pixel there is simultaneous control

over the amount of light transmitted (amplitude) and the phase of that light

passing through. Once each frequency band passes through and is affected by

the LC-SLM, the light is recombined to form a new pulse shape depending on

the alterations imposed by the shaper. Thus, there are numerous pulse shapes

that can be generated by varying for instance: the number of frequency bands

(νj), the resolution of the frequency bands illuminating each pixel (dν), and

the variation in amplitude and phase. The task of the GA is to determine the

optimal laser pulse within the vast pool of total pulse shape combinations.

In order to maintain a constant laser pulse energy during the conversion

between the frequency domain and time domain (numerically or analytically),

Parseval’s equation is employed:∫
|ε(ν)|2 dν = β2

∫
|ε(t)|2 dt. (1.8)

The factor β ensures the appropriate laser pulse intensities within the time-
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domain. The total laser pulse energy (E) and peak intensity (I; TW
cm2 ) are

related to the laser pulse by the following equations:

E

A
∝ cε0

∫
|ε(ν)|2 dν, (1.9)

I(t) ∝ cε0|ε(t)|2

2
. (1.10)

where c is the speed of light, ε0 is the permittivity of free space, and A=50

µm is the area illuminated by the laser field [48]. The total laser pulse energy

(E) is variable and in this study is between 5 µJ ≤ E ≤ 100µJ , which reflects

upper values of laser pulse energies experimentally available.

1.2.5 Quantum Dynamics

The diatomic-laser pulse interaction is determined by solving the time-dependent

Schrödinger equation (TDSE),

i~
dΨ(t)

dt
= ĤΨ(t). (1.11)

The semi-classical Hamiltonian, Ĥ, composed of a time-independent operator

Ĥ0, describing the natural evolution of the diatomic, combined with the time-

dependent term describing the interaction of the electric field, ε(t), with the

molecular dipole moment, µ(r), is given by,

Ĥ = Ĥ0 − ~µ(r) · ~ε(t) = µ(r)ε(t) cos θ. (1.12)

The wavefunction, Ψ(t), composed of a linear combination of time-dependent

coefficients, cνJ(t), with rovibrational state eigenvectors |νJ〉 is described by,

Ψ(t) =
∑
νJ

cνJ(t)|νJ〉. (1.13)

The magnetic quantum number M is equal to zero for the closed shell diatomic

molecules and linear electric field polarizations considered in our studies.

Solving the TDSE for the time-dependent coefficients in vector notation,

c(t), results in,

ċ(t) = − i
~

[
E − ε(t)µ

]
c(t). (1.14)
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Each time step along the laser pulse duration is solved using Runge-Kutta

fourth order integration. The time steps are chosen to be much smaller than

the oscillatory period of the laser pulse such that the resulting integration

error is also small. The diagonal rovibrational state energy matrix, E, is

E =


E0,0 0 · · · 0

0 E0,1 · · · 0
...

...
. . .

...
0 0 · · · E6,8

 (1.15)

The energies are determined from linear fits of diatomic molecular constants

as calculated by Mantz et al. [59]; see details for specific problems discussed

in Chapters 2-4. The rovibrational states used within the calculations consti-

tute a reduced set of the total states available. Vibrational states vary from

0 ≤ ν ≤ 6 and rotational states vary from 0 ≤ J ≤ 8, where the highest en-

ergy rovibrational state is (ν=6,J=8) denoted by E6,8. The energies available

within the laser pulses provide very little excitation to states with ν=6 or J=8,

and thus there is insignificant population losses due to the rovibrational state

truncation. The transition dipole moment matrix, µ

µ = µν
′,J ′

ν,J =



0 µ1,J ′

0,J 0 0 0 0

µ0,J ′

1,J 0 µ2,J ′

1,J · · · 0 0

0 µ1,J ′

2,J 0 0
...

. . .
...

0 µ5,J ′

4,J 0

0 0 · · · µ4,J ′

5,J 0 µ6,J ′

5,J

0 0 0 0 µ5,J ′

6,J 0


(1.16)

is tridiagonal with zeroes along the diagonal and structured so that excitations

occur via simultaneous ∆ν = ±1 and ∆J = ±1 transitions. The notation for

µ is given by initial states (ν,J) as a subscript and the final state excitation,

(ν ′,J ′), as a superscript. Equation 1.16 shows the structure for vibrational

transitions and Equation 1.17 shows the rotational transition substructure of
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the sample cell at µ1,J ′

0,J .

µ1,J ′

0,J =



0 µ1,1
0,0 0 0 0 0

µ0,0
1,1 0 µ1,2

0,1 · · · 0 0

0 µ0,1
1,2 0 0
...

. . .
...

0 µ1,7
0,6 0

0 0 · · · µ0,6
1,7 0 µ1,8

0,7

0 0 0 0 µ0,7
1,8 0


(1.17)

Data for the transition dipole moments were taken from polynomial fits as a

function of the angular momentum quantum number as calculated by Goorvitch

and Chackerian[60].

1.2.6 Optimization with the Genetic Algorithm (GA)

The GA is a common optimization routine that has been used within optimal

control, both experimentally and theoretically. Other theoretical optimization

methods that have been tested include Ant Colony Optimization[61] and Sim-

ulated Annealing[62]. We use the GA routine developed by Carroll[63]. The

general idea behind the GA is to use ideas of evolution and survival of the

fittest, as is used in nature to produce suitable offspring, to find an optimal

solution. Fig. 1.3 illustrates the general procedure for GA optimization. The

algorithm begins by populating the first generation using a random set of indi-

viduals (i.e., laser pulses described by specific amplitude and phase parameters

for a fixed pulse energy; Equation 1.6). For simplicity, the illustration makes

use of 5 frequency components (ν1 to ν5) of trivial amplitude and phase, in

which ν3 is the central frequency. Each frequency is composed of amplitude

(A) and phase (φ) parameters (Fig. 1.3-2.). The fitness or ability for the laser

pulse to perform the required quantum logic gate operation, defined by the

Fidelity function, is determined. Each individual can be represented as a bi-

nary string of bits (0s and 1s), which resembles a ‘chromosome’, for the set of

parameters describing the amplitude and phase at each frequency component

(Fig. 1.3-3). A tournament selection decides which laser pulses will become
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ν3
frequency

ν1 ν2 ν4 ν5

A1 A2 A3 A4 A5321 4 5

p1 a2 p2 a3 p3 a4 p4 a5 p5

Convert to binary 
representation

a1 p1 a2 p2 a3 p3 a4 p4 a5 p5

a1 p1 a2 p2 a3 p3 a4 p4 a5 p5

2.

a1

3.

4.

5.
a1 p1 a2 p2 a3 p3 a4 p4 a5 p5

1.

Breeding pairs chosen: higher fidelity, better probability
(Tournament selection)

0 1 0 0 π

01 01 00 11 00 00 10 10 1101

01 01 00 11 00 00 10 10 1101

00 10 01 11 10 00 11 00 0110

01 01 00 11 10 00 11 10 0100

ν [   ,    ,    ,    ,    ]
A [0, 1/3 ,2/3 ,1]
   [0, π/2, π, 3π/2]  

ν3ν 1 ν2 ν4 ν5Example:
Binary shaped 

laser pulse 

Figure 1.3: An illustration of the genetic algorithm procedure using only 5
frequency components (ν1 to ν5). A set of random laser pulses is used for the
first generation. The rectangular row of boxes represents a laser pulse. 1.
Discretized frequency spectrum denoting the laser pulse shape. 2. Amplitude
(A) and phase (φ) parameters at each frequency. 3. Binary representation.
Discretization of the range of amplitude and phase values allows for this trans-
formation. 4. A tournament selection decides which laser pulses will breed
(parents; white and grey). 5. Breeding via uniform cross-over produces a
child from parent1 and parent2. Tournament selection and uniform cross-over
continue until a new generation of offspring is formed. An example is shown
also using 5 frequencies with binary pulse shaping and an arbitrary choice of
4 amplitude and 4 phase components.
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parents and breed. This occurs by selecting two laser pulses at random and

the one with the highest fidelity is chosen as parent1 (Fig. 1.3-4; white box).

Parent2 (Fig. 1.3-4; grey box) is determined similarly. Laser pulses associated

with a larger fidelity have a greater chance of breeding. Breeding occurs via a

uniform cross-over (Fig. 1.3-4.). Each bit from parent1 or parent2 has a 50%

probability of being chosen to form the child. Thus the resulting child will

have bit contributions from either parent (Fig. 1.3-5; mixed white/grey). The

binary representation procedure is then reversed to obtain laser pulse parame-

ters corresponding to the child. This child is then added to the next generation

of laser pulses. This entire process is repeated until a new generation is pro-

duced consisting of the same number of children as the previous generation

(i.e. the number of individuals in each generation is constant). Within this

specific implementation of the GA we use a subroutine termed the microGA.

The microGA replaces mutation with a form of interbreeding inhibitor. When

a specific generation of individual pulse shapes becomes too similar to each

other then the next generation is populated with the highest fidelity (elite)

individual and the remaining individuals are randomly generated. Therefore,

the microGA eliminates convergence to local minima.

1.2.7 Criteria for Quantum Computing

In order for a physical system to be a viable candidate for a quantum computer

it must meet five criteria as proposed by DiVincenzo and Loss[47]. Diatomics

can in general satisfy all five conditions accordingly:

1. Scalable system with well characterized qubits - rovibrational states as

the qubits with scalability being satisfied through the inclusion of more

rovibrational qubit states.

2. Initialization - rovibrational state preparation through current experi-

mental techniques[35, 64], e.g., jet-cooling.
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3. Long decoherence times - rovibrational states in diatomic molecules ex-

hibit long decoherence times on the order of a thousand laser pulse (quan-

tum gate) applications before significant information loss.

4. Universal set of quantum gates - Laser pulses are shaped to represent

universal gates (e.g., Hadamard, phase, CNOT)

5. Measurement - rovibrational states can be projected onto other molecular

states for computational read-out[35, 64].

1.3 Diatomic Quantum Computing using GA

optimized Shaped Laser Pulses

In the present work, the focus is on quantum computing using the rovibrational

states of a diatomic as the qubits and shaping laser pulses to represent quantum

logic gates. Table 1.2 details the theoretical and experimental studies specifi-

cally concerning this type of diatomic quantum computing. There are only two

experimental implementations and in both cases there was no feedback loop

implemented. The majority of calculations done exploring molecular quan-

tum computing implement the OCT algorithm to shape laser pulses, which

in general does not reflect experimental pulse shaping conditions. Hosaka[64]

proposed a setup based on available experimental techniques and explores

its feasibility via numerical simulations. However, in general, there is a dis-

connect between computational simulations and experimental realization that

needs to be bridged if further progress in molecular quantum computation is

to be achieved. We suggest areas lacking in theoretical progress and attempt

to provide useful insight into them with respect to diatomic quantum com-

puting. These are covered in Chapters 2-4 and summarized in the following 3

sections. As a final synopsis, Chapter 5 will include a discussion of conclusions

presented from the findings of the study, along with the current progress and

future potential of molecular quantum computing using shaped laser pulses.
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1.3.1 Quantum gate operations using mid-infrared bi-
nary shaped pulses on the rovibrational states of
carbon monoxide.

Binary laser pulses (A=0 or 1 and φ=0 or π) are shaped to represent 8 quantum

gates using 4 rovibrational states of the diatomic carbon monoxide (12C16O) as

the qubits. A similar methodology was previously reported by Tsubouchi and

Momose[48] on 12C16O for shaped laser pulses consisting of 64 amplitude and

64 phase variations on rovibrational state qubits that required 2-photon tran-

sitions. Our results showed that optimal laser pulses of lesser energy and with

larger fidelities can be produced using only 2 amplitude and phase variations

(binary pulse shaping) with a qubit representation that connected qubit tran-

sitions via 1-photon excitations. It was concluded that with an appropriate

choice of qubit representation simple binary shaped pulses could be used. For

the quantum gates with large fidelities it can be suggested that binary pulse

shapes constitute the majority of the qubit excitation and variations beyond

binary shaping only cause small incremental improvements.

This work was published as: R. R. Zaari, A. Brown, J. Chem. Phys. 132,

014307/1-9 (2010)

1.3.2 Effect of diatomic molecular properties on binary
laser pulse optimizations of quantum gate opera-
tions.

The two highest order parameters (largest contributors) of the Taylor series

expansion in energy for a model diatomic (oscillating rotor) are the vibrational

anharmonicity and the rotational constant. A plot of these parameters for 85

diatomics showed a general linear trend. A scan along the line of linear fit

allowed for various diatomics to be studied, subsequent laser pulses shaped

and trends established. This was carried out using the GA; OCT optimiza-

tions were included as a comparison. Results indicate that the specific choice

of diatomic molecule strongly influences the ability to produce high fidelity
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shaped laser pulses for the ACNOT1 and NOT2 quantum gates. A qualitative

agreement was observed for the laser pulse fidelities between the GA and OCT

methods indicating that the results are not dependent upon the optimization

method employed. It was also concluded that global phase alignment increases

the difficulty of producing high fidelity shaped laser pulses, not observed with

population transfer alone.

This work was published as: R. R. Zaari, A. Brown, J. Chem. Phys. 135,

044317/1-7 (2011)

1.3.3 Effect of Laser Pulse Shaping Parameters on Laser
Pulse Shaping of Quantum Gates.

To study the impact of the experimental limitations of pulse shaping on quan-

tum gate fidelities, four parameters present in discretized frequency domain

laser pulse shaping were varied and laser pulses shaped to represent three quan-

tum logic gates (ACNOT1, NOT2, Had2). These four parameters are (i) the

frequency resolution, which in turn describes the total pulse duration, (ii) the

number of amplitude and phase components and (iii) the number of frequency

components. Simple trends were observed for optimal fidelities as a function of

the total pulse duration for the ACNOT1 and NOT2 quantum gates, showing

regular high fidelity zones. Complex and irregular trends result for analogous

calculations for the Had2 gate. The number of amplitude components has a

greater effect on producing high fidelities for all three quantum gates studied,

compared to variations in phase. Also variations in the number of frequency

components greatly affects the fidelity in conjunction with amplitude varia-

tions. The central frequency/frequencies produce the majority of the resulting

fidelity.
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Chapter 2

Quantum gate operations using
mid-infrared binary shaped
pulses on the rovibrational
states of carbon monoxide.†

2.1 Introduction

Laser control of molecules has seen its greatest development in the last two

decades due to advancements in experimental laser sources and our theoretical

understanding of the underlying principles of control. [1–5] These develop-

ments have opened the door to femtosecond and emerging attosecond science.

The use of lasers allows for more specific control of molecules, from the indi-

vidual nuclei in reaction dynamics [5] to the individual electrons of a molecule.

[6–8] It has been proposed that laser control of molecular states could be used

as a construct for quantum logic gates within quantum computing[9] and nu-

merous studies have followed this suggestion, see for example Refs. [10–15].

A fully functioning quantum computer would allow for many applications and

uses, but solving quantum mechanical problems exactly would be one of the

most important. The full capability of outperforming a classical computer re-

sides in a quantum computer’s ability to create superposition states, something

† Reprinted with permission from Ryan R. Zaari and Alex Brown, Journal of Chemical
Physics, 132, 014307 (2010). Copyright 2010, American Institute of Physics.
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that a classical computer cannot do.

Currently molecular quantum computing is seeing studies from all aspects

such as controlling nuclear states using Nuclear Magnetic Resonance,[16, 17]

electronic states in ion traps[18, 19] and the control of rovibrational states with

shaped laser pulses[20] - the last of which is relevant here. Within rovibrational

control, a laser field is used to manipulate the rovibrational states of a molecule

in order to create a series of quantum logic gate operations from which quan-

tum algorithms can be implemented. As there are classical logic operations in

traditional boolean algebra, there is also a set of analogous quantum logic op-

erations. Each laser field is designed to behave as a certain quantum logic gate

and would act on chosen rovibrational states representing the qubits (quantum

bits), inevitably executing a quantum algorithm. Currently there are two main

theoretical methods to determine optimal laser fields (not limited to quantum

logic gate operations): Optimal Control Theory (OCT)[3, 22] and the Genetic

Algorithm (GA),[23] along with some other less common methods such as sim-

ulated annealing[24] and ant colony optimization.[25] OCT often relies on an

iterative method which maximizes a functional, composed in part by a time

dependent laser field term. The most desirable laser field is the one which

produces the greatest value for the functional. Since in general there are no

explicit restrictions on the possible laser fields produced by the OCT method,

they can contain frequencies which are not attainable by current experimental

pulse shaping techniques. OCT has been used to study quantum gate oper-

ations, using the vibrational states of OH[10] or the rovibrational states of

CO.[11] In the case of using OCT on larger systems such as acetylene[12] and

MnBr(CO)5,[13] the vibrational modes were chosen to represent the qubits,

while also using reduced dimensional models of the system. The GA has been

used to optimize quantum gate operations using the rovibrational states of

thiophosgene (SCCl2) [14] and also CO. [15] The GA optimization which is

implemented in this study selects desired properties of the laser field in the fre-

quency domain and thus mimics experimental laser pulse shaping procedures
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using a feedback loop. The GA searches for frequency dependent amplitude

and phase components that construct laser pulses producing the greatest fi-

delity for the chosen quantum logic gate. For rovibrational state control, the

range of frequencies available is in the mid-infrared (mid-IR) regime.

There are few aspects of molecular quantum computing using shaped mid-

IR laser pulses that have been investigated to indicate strengths and weak-

nesses of such a procedure. There are many adjustable parameters of the

pulse shaper that can affect the resulting quantum gate fidelity. These in-

clude the frequency resolution of the shaper, the central frequency, the band-

width, the input laser pulse energy, and the range of amplitude and phase

values. Alternatively, there are also intrinsic molecular properties that can

dictate resulting quantum gate fidelities, such as the rovibrational state en-

ergies, transition dipole moments, available selection rules and the choice of

qubit rovibrational state representaiton. A poor choice of the rovibrational

states to represent the qubits may result in ineffective population transfer and

thus lower the fidelity of the gate operation. In this paper, we investigate the

effects of a restricted range of amplitude and phase values (binary pulse), as

well as an alternative choice of rovibrational states to represent the qubits,

on quantum gate fidelities. These results are compared to previous work on

12C16O by Tsubouchi and Momose.[15] In their study, they chose qubit repre-

sentations of the rovibrational states that resulted in some 2-photon quantum

gate operations. As will be shown here, all gates can be reduced to 1-photon

transitions through judicious choice of the qubit states. The number of pos-

sible amplitude and phase values within a given range is another important

factor. More values within the range means greater variation in the attributes

of the resulting pulsed laser field. However, this puts a large burden on the GA

optimization’s ability to search efficiently through these values for the greatest

fidelity. The simplest shaped laser pulse consists of a choice of two amplitude

(0 or 1) and two phase values (0 or π) for each frequency component and this

is denoted as a binary laser pulse. The GA optimization can then efficiently
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find the greatest fidelity within this reduced, but still extremely large, search

space. Moreover, all other possible shaped laser pulses which contain more

than two values of amplitude and phase within this range will have search

spaces that also contain the binary laser pulse as a possible solution. Thus,

the binary laser pulse sets a lower bound on the possible fidelities that can be

obtained with the GA optimization method for a specific quantum logic gate.

In comparison, Tsubouchi and Momose[15] chose a range of 64 choices each

for the amplitude and phase, thus producing an extremely large search space.

In summary, binary laser pulses were optimized in the frequency domain us-

ing a GA procedure, to carry out common quantum gate operations. Specific

rovibrational states of 12C16O were chosen to represent the qubits such that

single photon transitions would result.

2.2 Theory

The model system chosen was the rovibrational states of carbon monoxide

(12C16O), in its ground electronic state. Select rovibrational states of CO are

chosen to represent the qubits and the quantum gate operations are carried out

by shaped binary pulses. The projection quantum number Jz along the total

angular momentum J is zero. The rovibrational states are represented with the

vibrational quantum number ν and the rotational quantum number J, in the

form (ν J). The CO model consists of 7 vibrational states ranging from ν=0 to

6, each containing 9 rotational states ranging from J=0 to 8. These energies

were obtained by Mantz et al. [26] using a linear fit of the molecular constants

to a power series in (ν+1
2
) of the sum of both rotational and vibrational term

values. The accessible rovibrational states are ∆ν=±1 and ∆J=±1 due to

selection rules and the utilization of mid-IR pulses. It is important to point out

that previous work by Shioya et al. [11] also on CO, but using iterative OCT,

produced laser pulses that contained both microwave and infrared frequencies.

This allowed them to have independent control of rotational or vibrational
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states, which is not permitted here. Binary (two amplitude and two phase)

laser field pulses with frequency domain optimization are chosen. Tsubouchi

and Momose[15] chose to carry out similar calculations on CO also with GA

optimization but using much larger 64 amplitude and 64 phase varied laser

pulses and a different choice of states for the qubits. A comparison between

our results and those of Tsubouchi and Momose[15] is made in the results, see

Sec.2.3.1.

2.2.1 Quantum Mechanical System

In the present work, the objective is to determine a laser field which directs

the system from an initial state to a final target state. Moreover in this study

the laser pulses are designed to perform unitary quantum logic gate operations

on the rovibrational state wavefunctions of CO, but in general this can extend

beyond simple population control. The time-dependent Schrödinger equa-

tion (TDSE) with the Hamiltonian, H(t), describing the laser pulse/molecular

dipole interaction is:

i~
dΨ(r, t)

dt
= H(r, t)Ψ(r, t) = [H0(r)− ε(t)µ(r)] Ψ(r, t), (2.1)

where H0(r) is the time-independent rovibrational Hamiltonian, ε(t) is the

electric field of the laser pulse and µ(r) is the molecular dipole moment.

The molecular wavefunction, Ψ(r, t) is represented in the familiar linear

time-dependent form as:

Ψ(r, t) =
∑
νJ

cνJ(t)ψνJ(r) (2.2)

where we have a linear combination of time-dependent rovibrational coeffi-

cients, cνJ(t), and stationary states ψνJ(r).

Rewriting the TDSE in terms of the time-dependent coefficients cνJ(t), in

matrix notation, results in an equation of the form:

ċ(t) = − i
~

[
E − ε(t)µ

]
c(t). (2.3)
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The time-dependent coefficients are now contained in a rovibrational state

vector, c(t) and the Hamiltonian consists of a square energy matrix (E) along

with a square transition dipole matrix (µ) with matrix elements based upon

the allowed transitions of ν and J. The energies were obtained from the results

of work by Mantz et al. [26] who used linear fits of the molecular constants.

The transition dipole moments were obtained from the results of work by

Goorvitch and Chackerian[27] who used polynomial fits relative to the angular

momentum quantum number. The goal is to find the optimal electric field

(laser pulse), ε(t), to cause the desired quantum gate operation. For a given

electric field, the equation is integrated using the fourth-order Runge-Kutta

method. The time step used in the integration is the ratio between the number

of time points (220) and the total pulse duration (6.67 ps), which in this study

results in dt= 0.0064 fs. This value is much smaller than the oscillation period.

2.2.2 Molecular Qubit Basis

A ‘qubit’ is the shorthand name given to a ‘quantum bit,’ which is analogous

to the bit in classical computing. It is a representation of the state of the

system and thus is written in the general form, |q1 q2〉, where q1 and q2 are de-

noted the first and second qubits, respectively. The qubits can be represented

in two different ways. The first case entails that each qubit is represented by a

separate 2-level or quasi 2-level system, and then these n qubits are appropri-

ately coupled.[16–19] Alternatively, and the choice used herein, n qubits can

be represented by N = 2n combinations of N molecular states.[14, 20, 21] We

have chosen four rovibrational states of CO to encode the 2-qubit basis using

the latter representation. The proper choice of rovibrational states to repre-

sent the qubits is important when attempting to control quantum gates with

a laser pulse. In the scenario where there is independent control of vibrational

and rotational state transitions,[11] an obvious choice has been the rovibra-

tional states (ν J)=(00), (01), (10) and (11) to represent the qubit states

|00〉, |01〉, |10〉 and |11〉 qubits, respectively. The required excitations will
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Figure 2.1: Illustration of the first 12 accessible rovibrational states, (shaded
light blue boxes) of 12C16O labeled as (ν J). The chosen qubit representa-
tions (shaded dark blue boxes) are labeled as |q1q2〉. Available transitions are
governed by the following simultaneous vibrational and rotational transitions:
∆ν=±1 and ∆J=±1 which are illustrated by states connected along a di-
agonal. Some rovibrational states are inaccessible (white boxes). Excitation
frequencies (red text) are in cm−1 and lie between the accessible rovibrational
states. The qubits (|00〉,|01〉,|10〉,|11〉) that undergo a state change (black ar-
rows) during an applied quantum gate operation, according to Table 2.1, are
labeled by the corresponding gate. Notice that the NOT and Hadamard gates
require simultaneous control of 2 transitions.
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involve 1-photon transitions, but will require frequencies both in the mid-IR

and microwave regions. In the case studied here, where there must be simul-

taneous vibrational and rotational state transitions, due to the absorption of

mid-IR radiation, the above choice of qubits would result in forbidden transi-

tions according to the allowed transitions. Previous work by Tsubouchi and

Momose[15] alluded to the idea that quantum gate operations which consist of

2-photon transitions seem to be poorly controlled with a shaped mid-IR laser

pulse. Therefore, it would be ideal to have quantum gate operations which

consist of 1-photon transitions. The qubit basis chosen in this work is shown

in Figure 2.1. For the CNOT, ACNOT, NOT and Hadamard quantum gates,

the transitions encountered all remain single photon and as a consequence the

rovibrational state arrangement is cyclic.

2.2.3 Quantum Gates

A set of universal quantum gates is desirable because any quantum operation,

in principle, can then be represented by a combination of this finite set. In

the present study, the NOT, Hadamard (Had), Controlled-NOT (CNOT) and

alternative Controlled-NOT (ACNOT) gates are studied, as shown in Table

2.1. The Hadamard gate, CNOT gate and the phase gate (not shown) comprise

one such set of universal quantum gates. The NOT and Hadamard quantum

gates are labelled such that the number following the gate name refers to

whether the gate operates on the first or second qubit. In the case of the

CNOT and ACNOT gates, the labelling refers to whether the control qubit is

the first or second qubit.

If the vibrational and rotational states could be controlled independently

then the NOT and Hadamard gates would be considered 1-qubit operations.

This means that the 2-qubit state can be written as: |q1 q2〉 = |q1〉|q2〉, where

qubit1 encodes the vibrational states and qubit2 encodes the rotational states.
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NOT1 : |00〉 ↔ |10〉 NOT2 : |00〉 ↔ |01〉
|01〉 ↔ |11〉 |10〉 ↔ |11〉

Had1 : |00〉 ↔ 1√
2
(|00〉+ |10〉) Had2 : |00〉 ↔ 1√

2
(|00〉+ |01〉)

|01〉 ↔ 1√
2
(|01〉+ |11〉) |01〉 ↔ 1√

2
(|00〉 − |01〉)

|10〉 ↔ 1√
2
(|00〉 − |10〉) |10〉 ↔ 1√

2
(|10〉+ |11〉)

|11〉 ↔ 1√
2
(|01〉 − |11〉) |11〉 ↔ 1√

2
(|10〉 − |11〉)

CNOT1 : |00〉 → |00〉 CNOT2 : |00〉 → |00〉
|01〉 → |01〉 |10〉 → |10〉
|10〉 ↔ |11〉 |01〉 ↔ |11〉

ACNOT1 : |10〉 → |10〉 ACNOT2 : |01〉 → |01〉
|11〉 → |11〉 |11〉 → |11〉
|00〉 ↔ |01〉 |00〉 ↔ |10〉

Table 2.1: Quantum gate operations which are implemented by an optimized
laser pulse. NOT/ Hadamard: The number following the gate name refers to
which qubit the gate operates on. CNOT/ACNOT: The number following the
gate name refers to which qubit is the control qubit.

The result is that either qubit1 or qubit2 will be independent upon the op-

eration and the gate only needs to act on one of the qubits. Hence, it is

called a 1-qubit operation. As pointed out previously, the laser pulses used in

the current study are shaped using frequencies in the mid-infrared to induce

simultaneous vibrational and rotational transitions. However, this qubit rep-

resentation cannot treat qubit1 and qubit2 separately and so both the NOT

and Hadamard quantum gate operations resemble 2-qubit operations.

The efficiency of a quantum gate operation is determined by the gate

fidelity,[28, 29]

F =
1

N2

∣∣∣∣∣
N∑
k=1

〈Ψk(T )|Φk〉

∣∣∣∣∣
2

, (2.4)

where Ψk(T ) is the resulting wavefunction after the laser pulse of duration T

has been applied and Φk is the target wavefunction. The wavefunctions are

summed over the number of transitions N and then divided by a normalization

factor N2 to ensure the fidelity ranges between 0 and 1. A fidelity of 1 implies
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complete population transfer within the quantum gate operation, as well as

the target states being globally phase aligned, as described by,

|Ψ00〉+ |Ψ01〉+ |Ψ10〉+ |Ψ11〉 −→ (|Ψ00〉′ + |Ψ01〉′ + |Ψ10〉′ + |Ψ11〉′) eiφ (2.5)

where |Ψ〉 is the state of the qubit initially, |Ψ〉′ is the state of the qubit after

operation by a quantum gate and eiφ is the acquired global phase.

The fidelity function enforces the global phase correction which is an im-

portant feature in order to apply quantum gates sequentially, as described

by Tesch and de Vivie-Riedle.[29] If one uses an iterative OCT algorithm to

determine the quantum gates, additional transitions to those shown in Table

2.1 must be optimized to ensure global phase alignment. However, for the

GA procedure (or any other stochastic algorithm), the optimization of these

additional transitions is not needed as the fidelity, Eq.(2.4), is used explicitly

to judge the fitness of a particular laser pulse during the optimization.

The average final state population, which does not incorporate phase align-

ment is given by,

P̄ =
1

N

N∑
k=1

|〈Ψk(T )|Φk〉|2 . (2.6)

Though not used within the optimization algorithm as a means to judge the

fitness of the laser pulses, Eq.(2.6) does give an indication of the ability of the

laser pulse to transfer population without global phase alignment.

2.2.4 Laser Pulse Optimization

The laser pulses used to carry out the individual quantum gate operations are

constructed in the frequency domain. The shaped laser pulse, written in terms

of the frequency components νj, is modeled by[15]

ε(νj) = ε0

√
A(νj) exp

[
−2 ln 2

(
νj − ν0

∆ν

)2
]

exp [iφ(νj)] , (2.7)

where ε0 is the peak field strength, ν0 is the central frequency, and νj represents

the discrete frequencies at which the field is shaped. The amplitude and phase
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range from 0 ≤ A(νj) ≤ 1 and 0 ≤ φ(νj) ≤ 2π, respectively. The transform

limited (TL) pulse, which is the input pulse for experimental pulse shaping,

defines the pulse structure which is to be shaped. The TL-pulse is defined

by A(νj) = 1 and φ(νj) = 0 in Eq.(2.7). The amplitude and phase compo-

nents can be adjusted independently, producing a shaped pulse with defined

amplitude and phase features. This shaped pulse is bound by the structure

of the TL-pulse such as its bandwidth, amplitude and by the physical pulse

shaper frequency discretization. The TL-pulse used has a Gaussian profile

with a full width at half-maximum (FWHM) pulse width of ∆ν=100 cm−1.

The central frequency ν0 is dependent upon the quantum gate operation being

optimized and is chosen to be the average resonant frequency of the transition

involved for the specific qubit change. The bandwidth of frequencies ranges

from ±250cm−1 of the central frequency. The pulse shaper was arbitrarily

chosen to contain 51 discrete amplitude, A(νj), and phase, φ(νj), components,

resulting in a frequency step of dν=10 cm−1.

A result of having 51 discrete νj frequency components is that the spec-

trum contains step-like features. To our knowledge, other theoretical pulse

shaping studies have not used discretized frequencies. [30–32] Rather, once

the frequencies with associated amplitude and phase components (51 here)

are chosen, they are cubic spline interpolated to produce a smooth spectrum.

Cubic spline fitting, as seen in the other studies, can result in elements of ε(ν)

which extend beyond the limits initially set by the TL-pulse. In the present

study, the frequency domain field, ε(ν), is Fourier transformed (integrated) as

a sum of rectangles rather than via a spline fit. In the time domain, the non-

finite electric field, ε(t), is truncated at ±0.5n−1
2T

of the central time, where n is

the total number of parameters optimized (51×2=102) and T is the half the

entire frequency range (250 cm−1). This gives a total temporal pulse duration

of 6.67 ps. The integrated laser pulse energy, E, is given as: [15]

E

A
= cε0

∫
|ε(ν)|2 dν, (2.8)
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where c is the speed of light, ε0 is the permittivity of free space, and A is

the area illuminated by the laser field. In the results presented, the pulse

area corresponds to a beam focused down a diameter of 50µm. The energy

and amplitude of the frequency domain TL-pulse is used as a reference to

properly normalize and construct the correct time domain laser pulse intensity.

Varying the total energy within the original TL-pulse dictates the fraction of

this energy that will be part of the resulting optimized laser pulse energy and

its corresponding intensity.

In the context of this study, the simplest amplitude and phase shaped laser

pulse is studied, namely a binary pulse. This constitutes two choices for both

the amplitude and phase, being 0 or 1, and 0 or π, respectively. Substitution

of all four combinations of these binary amplitude and phase parameters into

Eq.(2.7) yields unique values for
√
A(νj) exp [iφ(νj)] = 0,±1. This results in

a real valued three parameter choice for the total amplitude of ε(ν) for each

frequency value, νj. The binary pulse shape is important since all general

pulse shaping experiments optimize in a search space in which the binary pulse

shape is already a solution. For example, a pulse shaper with a choice of eight

amplitude and phase components will by default also contain the amplitude

parameters 0 and 1, and also the phase parameters 0 and π. Thus there is the

possibility that the binary pulse could be chosen as the optimal pulse shape.

Studying simple binary pulse shapes sets the lower bounds for the fidelity of

the quantum gate operations, while allowing for a much simpler parameter

search space. In the current study the parameter search space for a binary

pulse consists of 351 possible combinations of amplitude and phase, while a

pulse shaper with eight independent amplitude and phase components would

result in a parameter search space of (8 × 8 − 1)51 = 2151 × 351. The search

space size has an effect on the ability for the optimization algorithm to find

the optimal solution efficiently and the credibility of that solution.

Binary pulse optimization has other interesting characteristics that have

been explored previously. Firstly, it will produce a laser pulse which is symmet-
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ric in the time domain. Secondly, binary shaped laser pulses direct the target

state populations of the individual gate transitions to phase-aligned solutions.

Work by Schröder and Brown[33] demonstrated the use of temporally sym-

metric pulses for quantum gate operations using OCT with a filter function.

Laser pulses symmetric in time occurred naturally as the most efficient means

of control in other studies,[34, 35] while examining NOT gates optimized with

(non-filtered) OCT. In experimental studies by Lozovoy et al.,[36] molecular

fragmentation was selectively controlled using only binary phase shaped laser

pulses.

In order to search through the combinations of amplitude and phase which

produce the optimal pulse shape for the quantum gate operation being studied,

the Genetic Algorithm (GA) optimization routine is utilized.[37] The GA uses

the general ideas behind natural selection and survival of the fittest to logically

determine the optimal pulse shape to cause the greatest fidelity, without hav-

ing to evaluate all possible combinations of amplitude and phase. Within this

particular GA we chose to use elitism and the microGA procedures rather than

mutation. Elitism is when the highest fidelity individual from the previous gen-

eration is automatically included in the construction of the new generation.

The microGA eliminates biological interbreeding by restarting the generation

with the elite individual and randomly selected individuals, when the individ-

uals (laser pulses) of a generation become too similar. The GA is chosen to

produce 500 generations with 8 individuals in each. With these choices of GA

parameters, minimal change in the fidelity (less than 0.2% and usually less

than 0.05%) was observed for the elite individuals between generations 400 to

500 suggesting that the calculation was near the global maximum fidelity.
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2.3 Results and Discussion

2.3.1 Optimal Quantum Gates

In order to determine the maximum fidelities of the quantum gates studied

at the chosen central frequencies and frequency discretization, nine different

total TL-pulse energies were chosen, i.e., [5, 7, 10, 15, 20, 25, 30, 35, 60µJ].

The optimal laser pulses which produce the greatest fidelity for each quan-

tum gate are listed in Table 2.2, along with the associated central frequency,

pulse energy and peak intensity. The total energy contained in the TL-pulse

and optimized pulse were determined by Eq.(2.8). The central frequency ν0

was chosen as the resonant frequency for gates involving a single transition

(CNOT/ACNOT) or the average frequency if there were two resonant fre-

quencies involved (NOT/Had). There is a distinct gap between the fidelities

obtained for the CNOT and ACNOT gates, compared to the Hadamard and

NOT gates. While all the fidelities from the CNOT and ACNOT pulses are

greater than or equal to 0.80, the greatest fidelity obtained from the Hadamard

and NOT pulses is 0.62 (Had1). It also seems that the average population P̄

for optimized laser fields for the Hadamard and NOT gates is also around

0.60. Not only do the optimized laser fields for the Hadamard and NOT gates

have difficulty in producing a global phase, they also struggle at transferring

population compared to the CNOT and ACNOT gates. As described previ-

ously, the Hadamard and NOT quantum gates here act as 2-qubit operations

and are not explicitly 1-qubit, as they are usually treated. The poor fidelities

obtained for the Hadamard and NOT gates may be due to the fact that these

gates must control an extra transition compared to the CNOT and ACNOT

gates (see Table 2.1 or Fig.2.1).

In Table 2.2, there is a comparison between the CNOT1 and ACNOT2

quantum gates studied by Tsubouchi and Momose,[15] who also used CO

as a candidate molecule. The differences between their study and this one

is that they smoothed their frequency domain field, ε(ν), using cubic spline
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interpolation, chose different rovibrational states to represent the qubits and

optimized laser pulses with a choice of 64 amplitude and phase components. As

previously stated, their choice of qubits resulted in quantum gate operations

which included 2-photon transitions. Our qubit representation is chosen such

that all gate operations involve only 1-photon transitions. The importance of

the choice of qubit states is apparent when comparing the fidelities and even

the average final state populations from Tsubouchi and Momose[15] and the

current study. They obtain fidelities which are at most 0.69, while we are able

to produce fidelities that are greater than 0.80. Also compared to their study,

we were able to utilize pulse energies and peak intensities that are much lower.

Of course, these comparisons are not entirely fair due to the different choices

of qubit states but it is interesting to note that the laser fields they generated

are governed by independent choice of 64 amplitude and 64 phase components,

which are then cubic spline fit. We use only two amplitude and two phase

discretized binary laser fields to produce much higher fidelities. In the next

sections, we discuss in more detail the dynamics for two quantum gates which

when optimized produced a high fidelity (ACNOT1) and low fidelity (NOT2).

2.3.2 ACNOT1 Quantum Gate

The ACNOT1 quantum gate laser pulse produced the greatest fidelity (0.9729),

see Table 2.2. The resulting frequency and time domain laser pulse is shown

in Fig.2.2 and the resulting state populations during the pulse interaction in

Fig.2.3. Fig.2.2(a) shows the frequency domain optimized pulse, ε(ν), in black

and the TL-pulse in red. They are discrete and the optimized laser pulse is

composed of select frequencies bound by the TL-pulse Gaussian shape. Neg-

ative amplitudes depict phase values of π radians. The main features to no-

tice within Fig. 2.2(a) are that the ACNOT1 quantum gate is centered at

ω0=2151cm−1 and the GA chooses this frequency which is associated with

the needed |00〉 ↔ |01〉 transition, i.e., (νJ) = (01) ↔ (12). Frequencies

the GA doesn’t include are those associated with transitions between other
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Figure 2.2: Resulting laser pulse for the optimized ACNOT1 quantum gate
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optimized pulse. c) XFROG trace for the obtained optimal field.
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qubits, namely the (10) ↔ (01), (10) ↔ (21) and (21) ↔ (12) transitions,

i.e., 2139cm−1, 2121cm−1 and 2109cm−1, respectively. These frequency com-

ponents are located within the large zero amplitude region to the left of the

central frequency. The square of the Fourier transform of this frequency do-

main field produces the time domain laser pulse intensity profile, Fig.2.2(b),

when truncated to a maximum temporal width of 6.67ps, as specified previ-

ously. Shown in this figure are the optimized laser field (black) along with

the TL-pulse (red) scaled down by a factor of 0.08. The TL-pulse has a peak

intensity of 1.63 TW/cm−2, while that of the optimized laser pulse is only

0.09 TW/cm−2. Another feature is that the TL-pulse has a FWHM temporal

width of ∆t=147fs, while the optimized laser pulse has stretched to ∼5.5 ps.

The optimized laser field also contains 4.07µJ of the total original 10µJ from

the TL-pulse.

The state transitions that the ACNOT1 gate must control, see Table 2.1,

are shown in the state population graphs of Fig. 2.3(a)-2.3(d). Since the aver-

age population is relatively high at 0.9904, it is expected that all transitions

are well controlled. The |00〉 ↔ |01〉 transition according to Fig.2.3(a) and

Fig.2.3(b) occurs via a complex 2-state transfer, with little excitation of outly-

ing states. For the other qubit states of the ACNOT1 gate operation, they must

remain the same after the laser field interaction. The only change that must

occur is that both qubits |10〉 and |11〉 must acquire a global phase change,

as did the transition |00〉 ↔ |01〉. For this to occur the states must undergo

some population change and this is seen in Fig.2.3(c) and Fig.2.3(d). The

resulting phase changes undergone in the qubit transformations |00〉 ↔ |01〉,

|10〉 → |10〉 and |11〉 → |11〉 are -1.055, -1.303 and -0.937 radians respectively.

The phase change for the |10〉 → |10〉 transition is higher than that obtained

for the other two qubit transformations. This could be due to some population

being lost from the qubit state |10〉 by the end of the pulse interaction result-

ing in P(21)=0.9739, compared to the final populations of the other states,

P(12)/(01)=0.9944 and P(10)=0.9988.
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Figure 2.3: Resulting populations for the optimized ACNOT1 quantum gate
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2.3.3 NOT2 Quantum Gate

The optimal NOT2 quantum gate laser pulse is shown in Fig.2.4 in both the

frequency and time domain. The resulting population transitions for the gate

operation are in Fig.2.5. The optimal NOT2 gate laser pulse has frequency

components associated with the gate transitions, (21) ↔ (10) and (12) ↔

(01), 2121cm−1 and 2151cm−1 respectively , as well as 2139 cm−1 which is

the (10) ↔ (01) transition not required for the NOT2 gate operation. The

(21) ↔ (12) transition frequency, 2109cm−1 is not present. The resulting

intensity of the laser pulse in the time domain is shown in Fig.2.4(b), where

the TL-pulse has been scaled down by a factor of 0.10. The TL-pulse this time

has a peak intensity of 3.25 TW/cm−2, while the optimized laser pulse has a

peak of 0.29 TW/cm−2. The TL-pulse has a temporal width of ∆t=147fs,

while the optimized laser pulse spans a length of ∼6ps and contains 12.20µJ

of the total original 20µJ from the TL-pulse.

The average final population obtained for the optimal NOT2 quantum gate

is 0.6025, indicating that the laser pulse populates other accessible states. This

is shown in Fig.2.5(a)-Fig.2.5(d), where there are many other states apprecia-

bly populated by the end of the pulse duration. Excitation to other non qubit

states is seen for all optimal laser pulses obtained for the Hadamard and NOT

gates.

The fidelities for the Hadamard and NOT gates are not as high as those

obtained for the CNOT and ACNOT gates. The implications of this is that the

qubit states under the quantum gate operation, which must acquire a global

phase by the end of the pulse duration, are in fact not coherent. The phase

changes undergone during the NOT2 operation for example are -0.4817 and

0.3136 radians for the transitions, |10〉 → |11〉 and |00〉 → |01〉, respectively.

The phase changes may be of similar magnitude but are different by a shift of

over π/4 radians. Indeed the NOT2 gate and other binary laser pulses opti-

mized for the Hadamard and NOT quantum gates have difficulty in controlling
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not only the average population but also the global phase.

2.4 Conclusion

It was shown in this study that simple binary shaped pulses can provide suf-

ficiently good control for quantum gate operations with a proper choice of

qubits represented by rovibrational states of 12C16O. In some cases, as in the

CNOT and ACNOT gates, remarkable control is achieved considering the sim-

plicity of the binary pulse shape. The fidelities obtained further improve on

previous work by Tsubouchi and Momose,[15] in which they used a variation

of 64 amplitudes and 64 phases, along with a qubit representation that in-

cluded 2-photon transitions. As a result, the optimal input pulse energies and

peak intensities produced for the CNOT and ACNOT gates were much larger

than those needed in our study. The optimized NOT and Hadamard gate

laser pulses produced only moderate fidelities since the required 2-qubit op-

eration consisted of controlling population and phase between all four qubits

simultaneously. Current work is directed at investigating general properties of

molecular systems and pulse shapers in order to deduce crucial requirements

for control of molecular states with shaped laser pulses. Future work involves

studying in more detail the underlying features of binary pulses which allows

them to exhibit such good control.
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Chapter 3

Effect of diatomic molecular
properties on binary laser pulse
optimizations of quantum gate
operations.††

3.1 Introduction

Although in principle a molecule or ensemble of molecules could be used as a

quantum computer, experimental control of such systems is difficult. Using nu-

clear states of an ensemble of perfluorobutadienyl iron complex[1], cytosine[2]

or chloroform[3] in Nuclear Magnetic Resonance (NMR) or electronic states

of 9Be+ or 40Ca+ ions in an electric field trap[4, 5], have been shown to be

possible architectures for a quantum computer. Another proposal uses molec-

ular states (electronic, vibrational and/or rotational) and a shaped laser pulse

to manipulate them[6–8]. A set of molecular states is chosen to act as the

quantum bits (qubits) and a laser pulse is shaped accordingly to act as a

quantum logic gate on the chosen qubits. The qubit can be described as a

2-level state vector and is analogous to the classical bit. Molecular quantum

††Reprinted with permission from Ryan R. Zaari and Alex Brown, Journal of Chemical
Physics, 135, 044317 (2011). Copyright 2011, American Institute of Physics.
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computing with shaped laser pulses also warrants the advantage of satisfying

all five of DiVincenzo’s criteria[9], which define feasible quantum computers.

Furthermore, diatomic molecules exhibit very long decoherence times, allowing

for many laser pulse interactions before substantial information loss. Shaping

laser sources in the mid-IR, corresponding to ro-vibrational state transition

frequencies, was an initial limitation but this has been overcome[10]. Despite

the theoretical interest in this approach, there has been few experimental im-

plementations utilizing shaped laser pulses for molecular quantum computing

[11].

The many theoretical contributions include, (i) studying molecular sys-

tems: modes of acetylene[6, 12, 13], ammonia[14, 15] and thiophosgene[16],

vibrational/ro-vibrational excitations within diatomics[17–25] and of dipole-

dipole coupled diatomics[26], and (ii) investigating experimental issues[10, 27,

28]. Many of the theoretical studies were based on iterative optimal control

theory[29] (OCT) and the resulting pulses were inaccessible to present exper-

iments, e.g., shaped in both the mid-IR and microwave frequency regimes.

A more appropriate theoretical method, and one which attempts to mimic

experimental implementation, is to both shape in the frequency domain and

use a Genetic Algorithm[30] (GA) to optimize the laser pulse. Some diatomic

molecules studied using OCT include CO[19], NO[20], OH[21, 25], Na2 and

Li2[22],NaCs[23], I2[24] and those which incorporate laser pulse shaping in the

frequency domain using the GA is CO[17, 18]. The small number of diatomics

studied using frequency shaped GA optimized laser pulses encouraged this cur-

rent study. Within theoretical laser molecular control, there are two obvious

options in determining optimal control either by: (i) varying the experimental

laser pulse parameters or (ii) varying the intrinsic molecular properties. In our

previous analysis[18], good control was exhibited by binary laser pulse shap-

ing on a set of universal quantum logic gates for the diatomic 12C16O. Binary

shaped laser pulses, which consist of two amplitude and two phase variation,

are the easiest to shape experimentally and are also used in this study.
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We currently investigate the effect of varying the intrinsic molecular param-

eters of ro-vibrational state energy on the ability to control specific quantum

logic gates (ACNOT1 and NOT2). By varying the vibrational anharmonic-

ity and rotational constants systematically, diatomics that exhibit properties

allowing them to be well controlled by a binary shaped laser pulse can be

determined. The ACNOT1 quantum gate exhibited the best control using

binary pulse shaping in our previous work on 12C16O[18]. Optimization was

initially implemented using a GA to determine optimally shaped laser pulses

as discussed in our previous work. In order to ensure that the obtained fi-

delities are due to the intrinsic molecular properties and not the optimization

algorithm, we carried out further optimizations using a cubic spline fit GA

procedure[17, 28] and also using the popular iterative OCT optimization[29].

The optimization comparison was carried out on a set of diatomics for the

ACNOT1 gate. Binary pulse GA optimizations for the ACNOT1 and NOT2

quantum logic gates were carried out on a larger set of diatomics.

3.2 Theory

An investigation of a variety of diatomics and their ability to be used for

molecular quantum computing, using shaped laser pulses, is of interest to

experimental pursuits. Laser pulses were constructed, by optimization using

a discretized GA routine, to represent the ACNOT1 and NOT2 quantum gate

operations. Other popular optimization techniques, the cubic spline fit GA

and OCT, were used to test, verify and compare the resulting fidelities.

3.2.1 Model System

The ro-vibrational states (ν,J) of diatomics consisting of the lowest energy

vibrational (ν) and rotational states (J), are used. Our calculations are rel-

evant to diatomics with closed shell electron configurations in their ground

electronic states. The projection of the total angular momentum (Jz) is zero.
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Select rovibrational states of the diatomic are used to represent the qubits

|q1q2〉 for quantum gate operation, namely: |00〉 ≡ (1,2), |01〉 ≡ (0,1), |10〉 ≡

(2,1), |11〉 ≡ (1,0) in order to implement single photon transitions. The tran-

sition dipole moment values used are those calculated by Goorvitch et al.[31]

for carbon monoxide. The choice of transition dipoles should have a modest

effect on the resulting optimized laser pulses by only affecting the relative field

intensities. The mid-IR pulses are optimized to cause simultaneous rotational

and vibrational state transitions according to ∆J = ±1 and ∆ν = ±1. A more

detailed explanation of the quantum mechanical system, choice of molecular

qubit basis and quantum gates, and structure of the laser pulse can be obtained

from our previous study[18].

The general time-dependent Schrödinger equation (TDSE) can be written

as a vector of time-dependent coefficients c(t), ro-vibrational state energy ma-

trix E, transition dipole moment matrix µ and the electric field of the laser

pulse ε(t):

ċ(t) = − i
~

[
E − ε(t)µ

]
c(t). (3.1)

The task is to determine the structure of the electric field of the laser

pulse such that it induces transitions from the chosen initial state c(0) to the

chosen final state c(T) with ideally 100% success. The TDSE was solved at

every time step by using the fourth-order Runge-Kutta method. The time

steps (6 × 10−6ps for the GA and 1 × 10−4ps for OCT) were chosen to be

much smaller than the oscillation period of the laser pulse having a total time

duration of T =6.67 ps.

The ability to produce optimal laser pulses to carry out quantum gate

operations on various diatomics was tested by varying the ro-vibrational state

energies. The energy values were obtained by using the Taylor series expansion
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in energy for an oscillating rotator (i.e. model diatomic)[32]:

EνJ = ωe(ν + 1/2)− ωeχe(ν + 1/2)2 + ...− ωebe(ν + 1/2)6 +

J(J + 1)[Be − αe(ν + 1/2) + γe(ν + 1/2)2 − δe(ν + 1/2)3]−(3.2)

J2(J + 1)2[De − βe(ν + 1/2) + πe(ν + 1/2)2] +

J3(J + 1)3[He − ηe(ν + 1/2)]

The anharmonicity (ωeχe) and rotational constant (Be) are the largest con-

tributors to changes in the ro-vibrational state transition energies and subse-

quently values for these parameters were varied. The remaining 13 coefficients

of Eq.3.2 were taken from work done by Mantz et al. for carbon monoxide[32].

A plot of the anharmonicity and rotational constants of some 42 common

heteronuclear diatomic species[33] are shown in Fig.3.1. The values shown in

Fig.3.1 exclude diatomics containing hydrogen and/or deuterium which lie in

a separate region of the graph. A linear fit to the plotted values (Fig.3.1, solid

line) is represented by the equation of the middle line, Be = 0.136ωeχe− 0.06.

The values studied along this line range from 4.19 < ωeχe < 16.60 and

0.51 < Be < 2.20. Also studied were values for the anharmonicity and ro-

tational constants taken from an upper line parallel to the linear fit (Fig.3.1,

dashed line) and represented by the equation, Be = 0.136ωeχe + 0.099. This

upper line extends from 7.79 < ωeχe < 15.42 and 1.16 < Be < 2.2, nearly

crossing the values for carbon monoxide at ωeχe=13.288 and Be=1.93. Ini-

tially, binary pulse GA optimizations were carried out on the upper line for

the ACNOT1 gate. The ACNOT1 gate produced the greatest fidelity in our

previous studies[18]. Subsequent spline-GA and OCT optimizations were car-

ried out along this line to further verify the resulting trends of the fidelities

as a function of ωeχe and Be. Population only GA optimizations were also

carried out along this upper line to compare to analogous phase optimized fi-

delities (see Eq.3.4 in Sec.3.2.3). Further binary pulse GA optimizations were

carried out on the line of linear fit for both the ACNOT1 and NOT2 gates

with and without global phase alignment. The NOT2 quantum gate was cho-
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sen because in previous work it produced low fidelities and shares a common

transition with ACNOT2.
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Figure 3.1: (Color online) Anharmonicities (ωeχe) plotted against rotational
constants (Be) for a variety of diatomic molecules[33]. A linear fit to these
values (solid line) and an upper line (dashed line) with the same slope as the
linear fit are shown. The position of carbon monoxide (CO) is indicated.

3.2.2 Quantum Logic Gates

A more detailed explanation of the ACNOT1 and NOT2 quantum logic gates

can be found in previous work[18]. The ACNOT1 and NOT2 gates are se-

lected from a set of universal quantum logic gates that would be required in

a quantum algorithm. In previous work[18], also using binary shaped laser

pulse optimization but on 12C16O, the ACNOT1 gate produced the best opti-

mized laser pulse compared to the other seven gates studied, while the NOT2

54



gate produced one of the lowest fidelities. The ACNOT1 and NOT2 gates also

share a common transition, |00〉 ↔ |01〉, as shown in Table.3.1. In this current

study we choose to further optimize laser pulses representing the ACNOT1

and NOT2 gates but for a range of diatomic species as detailed in Sec.3.2.1.

The ACNOT1 and NOT2 gates manipulate the ro-vibrational state qubits,

with an acquired phase eiθn , as shown in Table 3.1.

ACNOT1 NOT2

|00〉 → |01〉eiθ1 |00〉 → |01〉eiθ′1
|01〉 → |00〉eiθ2 |01〉 → |00〉eiθ′2
|10〉 → |10〉eiθ3 |10〉 → |11〉eiθ′3
|11〉 → |11〉eiθ4 |11〉 → |10〉eiθ′4

Table 3.1: Two quantum gate operations which are implemented by an op-
timized laser pulse. Each gate operation on each qubit acquires an arbitrary
phase, eiθn .

3.2.3 Laser Pulse Optimization

In order to optimize laser pulses for control of specific quantum gate transi-

tions, an optimization routine is implemented. In this study both the Genetic

Algorithm (GA), a heuristic algorithm, and optimal control theory (OCT),

an iterative optimization routine, are used. The GA optimizes the combina-

tion of parameters (amplitude and phase; Eq.3.3 in Sec.3.2.3) associated with

each frequency to produce an optimal laser pulse. Alternatively, the iterative

OCT algorithm offers the greatest laser pulse flexibility, in frequency compo-

sition and electric field amplitude, with optimization occurring in the time

domain. It is also a monotonically convergent algorithm, whereas the GA

being a heuristic search space optimization, relies on appropriate sampling of

the search space to obtain suitable solutions. Within the context of laser pulse

shaping, the discretized frequency domain optimization is used because the

fields constructed resemble those that are designed experimentally.
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In order to determine if the resulting fidelities of the upper line (Fig.3.1;

dashed line) were due to intrinsic molecular properties, alternative methods

were also carried out, namely: (i) cubic spline interpolated GA optimization,

(ii) OCT using a Transform Limited (TL) pulse as an initial guess, and (iii)

OCT using the resultant discrete GA optimized laser pulse as an initial guess.

Genetic Algorithm (GA)

The GA is an evolutionary optimization algorithm and incorporates aspects

of biology such as mutation, cross-over and survival of the fittest. For a thor-

ough explanation of the GA algorithm incorporated in this study see work by

Carroll [30]. The GA optimizes a laser pulse field in the frequency domain

with discretized frequencies νj. The laser pulse has a Gaussian profile, with

amplitude A(νj) and phase φ(νj), of the following form:

ε(νj) = ε0

√
A(νj) exp

[
−2 ln 2

(
νj − ν0

∆ν

)2
]

exp [iφ(νj)] , (3.3)

The laser pulse spectrum has a full width half-maximum (FWHM) of

∆ν=100 cm−1, peak field strength ε0 and frequency range of ± 250 cm−1 from

the central frequency ν0. The central frequency is chosen, for the ACNOT1

gate, to be the transition from |00〉 → |01〉. For the NOT2 gate it is the

average of the |00〉 → |01〉 and |10〉 → |11〉 transitions. The maximum en-

ergy attainable by an ACNOT1 quantum gate shaped laser pulse is 10µJ and

for the NOT2 gate is 20µJ. Though the amplitude and phase can range from

0 ≤ A(νj) ≤ 1 and 0 ≤ φ(νj) ≤ 2π, we restrict ourselves to binary laser pulse

shaping and thus A(νj)=0 or 1 and φ(νj)=0 or π. Each of the 51 frequency

components has an associated amplitude and phase, each with a spectral width

of dν=10 cm−1. The pulse duration of T=6.67ps is the zero crossing for the

pulse envelope of a discretized frequency spectrum, according to T=2/dν. The

task of the GA is to search the parameter space of amplitudes and phases at

each frequency (νj) in a manner that requires evaluating only a small number

of combinations. In this case there are 451 total combinations of amplitude and
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phase for all frequencies, to produce laser pulses. The GA shows little change

between generations after evaluating only 8000 laser pulse combinations (500

generations each with 16 individuals per generation).

When a laser pulse spectrum, ε(ν) is produced, it must be transformed to

the time domain in order to solve the TDSE. This is carried out by either: (i)

Fourier transforming the discretized frequency spectrum, ε(νj), directly or (ii)

cubic spline interpolating the discretized frequency spectrum ε(νj) followed

by Fourier transforming. The two methods do not in general produce identi-

cal results since a spline interpolated frequency spectrum may not reflect the

original discretized spectrum[17]. The cubic spline interpolates an extra 10

points between each frequency component to produce a curve consisting of

510 points.

During optimization the GA requires a value to weight the effectiveness of

a laser pulse to carry out the required gate operation. This value is described

by the fidelity function[34], F:

F =
1

N2

∣∣∣∣∣
N∑
k=1

〈Ψk(T )|Φk〉

∣∣∣∣∣
2

, (3.4)

The summation of the overlap of the resulting state after laser pulse in-

teraction, ψk(T ), to the target final state, φk, results not only in population

control but also in global phase alignment. Global phase alignment is the task

of inducing phase changes by the laser pulse on the qubits such that by the

end of the pulse interaction the qubits are all phase aligned [21, 35]. This is

equivalent to making the acquired phases (θ1, θ2, θ3, θ4) equal, see Table 3.1.

Qubits which are not aligned appropriately within the group will undergo a

different phase change when subsequent laser pulses are applied, leading to an

ineffective quantum gate operation.

Within both types of GA optimization procedures the 7 lowest energy

vibrational states are used each containing the 9 lowest energy rotational states

were used.

57



Optimal Control Theory (OCT)

The alternative optimization routine implemented and the most widely used

within laser molecular control is optimal control theory (OCT)[29]. It consists

of maximizing an objective function that contains three terms. The first is an

average population term, the second term consists of the field components and

the last term satisfies the TDSE:

J =
∑
k

∣∣〈Ψk
i (T )|Φk

f

〉∣∣2 − ∫ T

0

α0

s(t)
|ε(t)|2 dt− (3.5)

∑
k

2Re

[〈
Ψk
i (T )|Φk

f

〉 ∫ T

0

〈
Ψk
j (t) |i [H0 − µε(t)] + (∂/∂t)|Ψk

i (t)
〉
dt

]
Ψk
i is the resulting wavefunction after interaction with the laser pulse field

of the ith state for the kth qubit transformation for the specific quantum

logic gate. Φk
f is the target state of the qubit transformation for the specific

quantum logic gate. The electric field term in the objective function contains

the electric field, ε(t), and the penalty parameter, α0, which is an arbitrary

constant that determines the weight of the field term on the resulting objective

function, J. The penalty parameter is important for appropriate laser pulse

optimization and chosen (based upon numerical experimentation) to be α0=10.

The objective functional is maximized to produce a laser pulse that acts as one

of the quantum gate operations being studied (see Table 3.1). The OCT fields

produced have the same pulse duration of T =6.67 ps as the GA calculations.

The laser pulse envelope, s(t) with amplitude s0, is defined by:

s(t) = s0 sin2 (πt/T ) . (3.6)

As stated previously, the quantum gate operation being represented by the

optimized laser pulse not only induces a change in population but must also

induce a global phase alignment between the qubits. Within the GA this was

accomplished through the fidelity function, F (Eq.3.4). The simplest process

of including global phase alignment within OCT without altering the objec-

tive function, and thus subsequent maximization, is to include an auxiliary
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transition to optimize[35]:

[|Ψ00〉+ |Ψ01〉+ |Ψ10〉+ |Ψ11〉]t=0 −→[
(|Ψ00〉+ |Ψ01〉+ |Ψ10〉+ |Ψ11〉)eiθ5

]
t=T

(3.7)

This fifth stipulation on the requirement for the resultant optimized laser

field is incorporated within the summation of the first term of the objective

function. The qubits, after operation by the laser pulse, are then biased to shift

by the same amount of phase, eiθ5 (global phase alignment). Phase alignment

is in general more difficult to optimize than population. To increase the weight

of phase alignment within OCT, four instances of Eq.3.7 were included, along

with the four transitions required for the ACNOT1 gate, hence a summation of

k in Eq.3.5 over 8 terms. This method for incorporating global phase alignment

by including Eq.3.7 is not equivalent to the fidelity within the GA. During

OCT optimizations the fidelity, though not used for OCT optimization, was

also calculated in order to compare OCT to GA results.

Within the OCT algorithm, the lowest 4 vibrational state energies each con-

taining the lowest 4 rotational state energies were used for the three diatomics

that produced the greatest fidelities within the discretized GA, namely:

ωeχe(Be)=8.087(1.20)cm−1, 13.44(1.93)cm−1 and 14.69(2.10)cm−1. All others

diatomics using OCT were optimized using the 5 lowest energy vibrational

states containing the 5 lowest energy rotational states. The validity of us-

ing these reduced sets was verified by propagating the OCT optimized laser

pulses using 7 vibrational states each containing 9 rotational states, which was

used in the GA optimizations. The error in the fidelity, i.e. the difference be-

tween the 7×9 model and the reduced set of ro-vibrational states, is at most

|∆F|=|0.04|.
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3.3 Results and Discussion

3.3.1 ACNOT1 optimizations for diatomics along the
upper line of Fig.3.1

Optimization methods comparison

The fidelities for laser pulses optimized using the four GA and OCT methods

(described in Sec.3.2.3) for the ACNOT1 gate of diatomics along the upper

dashed line of Fig.3.1 are shown in Fig.3.2. The resulting fidelities of the

cubic spline GA optimizations (hollow red dots/lines) are in good qualitative

agreement with the discretized GA (solid black dots/lines), of Fig.3.2.

Laser pulses optimized with the OCT algorithm should provide the greatest

variation to the electric field. Thus if possible OCT would produce optimized

laser pulses with very complex features but producing near 100% fidelity. The

results using OCT with a TL pulse guess field in Fig.3.2 (hollow blue squares),

show some instances where there is a difficulty in producing sufficiently high

fidelities. The OCT using a TL pulse as a guess field failed to find laser

fields of comparable fidelity to the discretized GA, even though solutions were

found when the discretized GA results were used as a guess field within OCT

calculations (Fig.3.2, solid green squares). This could be due to a poor choice

in guess field (i.e. a TL pulse), the enforced pulse envelope s(t), or the choice

of the penalty parameter α0. In general the resulting fidelities for the OCT

calculated laser fields follow the same qualitative structure as the fidelities

for the discretized GA calculated laser fields. Overall the qualitative features

in Fig.3.2 are observed independent of the laser pulse optimization procedure

employed. These results imply that the relative arrangement of rovibrational

state energy levels, in other words the choice of diatomic, has a great impact

on the resulting fidelity and ability to shape laser pulses for specific quantum

gate operations. Further discretized GA optimizations were carried out for

diatomics along the linear fit of Fig.3.1 for the ACNOT1 and NOT2 quantum

logic gates.
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Figure 3.2: (Color online) Resulting fidelities of optimized laser pulses for
the quantum logic gate ACNOT1 for values of anharmonicity and rotational
constants of the upper line (dashed line, Fig.3.1) using the following globally
phase aligned methods: (i) discretized GA (solid black dots/lines), (ii) cubic
spline interpolated GA (hollow red dots/lines), (iii) OCT with a TL pulse as a
guess field (hollow blue squares), (iv) OCT with the discretized GA optimized
laser pulse as an initial guess (solid green squares). Fidelities for discretized
GA optimized laser pulses without global phase alignment (solid orange tri-
angles/lines) were also calculated. The inset graph illustrates the effect of
optimization without global phase alignment (population only) at a greater
range of ωeχe and Be values.
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Also, as a means to show that global phase alignment limits the abil-

ity to produce high fidelity shaped laser pulses, optimizations without global

phase alignment using the discretized GA method were implemented (Fig.3.2;

solid orange triangles/lines). The results are similar to those obtained by

Babikov[21] for qubits based purely upon vibrational states, optimizing dif-

ferent quantum gates but still without global phase alignment. In Fig.3.2,

the optimizations without global phase alignment lacked any of the complex

features obtained for the other methods that enforced global phase alignment.

The smooth curve produced has high fidelities at large values of ωeχe/Be and

decreases substantially at lower ωeχe/Be values (Fig.3.2 inset; solid orange

triangles/lines) - though the required anharmonicities required in the rovibra-

tional case are much smaller than those needed when only vibrational states

are considered[21].

High fidelity diatomics using the discretized GA method

Plots of the optimal frequency spectrum (Eq.3.3) and resulting population

dynamics for the four largest fidelity points of Fig.3.2 of the ACNOT1 qubit

operations are illustrated in Fig. 3.3. These four points correspond to the

following diatomics with vibrational anharmonicity and rotational constants:

ωeχe(Be)=8.087(1.20)cm−1, 11.90(1.72)cm−1, 13.44(1.93)cm−1 and

14.69(2.10)cm−1. There does not seem to be a clear and simple connection

between pulse spectrum properties (binary amplitude and phase) that leads

to large ACNOT1 gate fidelities. The choice of binary amplitude plays a role

in ro-vibrational state population dynamics but the choice of binary phase

has a critical role in the resultant global phase alignment. Both are required

in order to produce a maximum fidelity. To illustrate this, a time-dependent

propagation was performed using a pulse where the central frequency (ν0) of

width 10 cm−1 was the only frequency component included and either a phase

of φ=0 or φ=π was used. This corresponds to a positive or negative amplitude

for the frequency component at ν0 within the frequency domain, respectively
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Figure 3.3: (Color online) Plots of the frequency spectrum Eq.3.3 (left col-
umn) and the corresponding qubit population for each operation within the
ACNOT1 gate (right column) for the 4 largest fidelity points of Fig.3.2 namely,
(a,b): ωeχe(Be)=8.087(1.20)cm−1, (c,d): ωeχe(Be)=11.90(1.72)cm−1, (e,f):
13.44(1.93)cm−1, (g,h): 14.69(2.10)cm−1. Left column: (black) T-L pulse,
(red) optimized pulse. Right column: (dotted black/red) |00〉 → |01〉, (solid
red/black) |01〉 → |00〉, (green) |10〉 → |10〉, (blue) |11〉 → |11〉.
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and a relative π-shift in phase between the two laser pulses in the time domain.

Fidelities and average populations for the two pulses on each of the above four

diatomics were then calculated and shown in Table 3.2.

Table 3.2: Resulting fidelities and average populations for the four highest
fidelity diatomics within Fig.3.2 using only a single discretization containing
the central frequency, ν0. Also, the discretization at ν0 is chosen to have a
phase of φ=0 or π.

φ = 0 φ = π
ωeχe (Be) Fidelity Average Population Fidelity Average Population

cm−1 F F
8.087 (1.20) 0.0662 0.9662 0.8998 0.9662
11.90 (1.72) 0.0345 0.9977 0.8999 0.9977
13.44 (1.93) 0.9865 0.9979 0.0111 0.9979
14.69 (2.10) 0.1318 0.9979 0.8478 0.9979

In all cases the choice of phase φ=0 or π had no effect on the population

dynamics and thus the average population was the same. The choice of phase

did have a dramatic effect on the fidelities though, resulting in either a high

>80% or a low <14% fidelity. Moreover the arrangement of ro-vibrational

states within these four high fidelity diatomics is such that much of the control,

both population and global phase alignment, can be obtained by using only

the one discretization of the central frequency using the current implemented

spectral width, pulse energy and choice of qubits.

3.3.2 Discretized GA optimizations along the line of lin-
ear fit in Fig.3.1

ACNOT1 and NOT2 quantum gates

Laser pulse fields were optimized for the ACNOT1 and NOT2 quantum gates

using the discretized GA method. Both ACNOT1 and NOT2 optimizations

were implemented for diatomic species along the middle line of linear fit from

Fig.3.1. The resulting fidelities produced by optimizations with global phase

alignment (Eq.3.4) and without global phase alignment, along the line of linear

fit, are shown in Fig.3.4.

64



1 1.5 2

0

0.2

0.4

0.6

0.8

1

6 8 10 12 14 16

F
id

el
it

y

Rotational Constant, B
e
 (cm

-1
)

Anharmonicity, ω
e
χ

e
 (cm

-1
)

Figure 3.4: (Color online) Resulting fidelities of optimized laser pulses for
the ACNOT1 (hollow black dots/lines) and NOT2 (solid black dots/lines) for
values of anharmonicity (ωeχe) and rotational constants (Be) of the linear
fit of Fig.3.1. Also plotted are respective optimizations without global phase
alignment for the ACNOT1 (hollow red triangles/dashed line) and NOT2 (solid
red triangles/dashed line) gates.
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Acknowledging that the NOT2 gate must carry out an extra transition

compared to the ACNOT1 may indicate why the ACNOT1 gate has greater

fidelities than the NOT2 gate. In fact it is clear from further analysis (not

shown here) that under the model conditions the NOT2 gate optimization fails

to control both population and phase alignment. From the regions studied and

under the model conditions, there does not seem to be a diatomic that provides

high fidelities for both the ACNOT1 and NOT2 gates; the NOT2 gate being

the limiting factor.

There is an interesting example in Fig.3.4 in which the transitions con-

stituting the quantum gate operation cannot be globally phase aligned with

sufficiently high fidelity. For the NOT2 gate at points near ωeχe=13.5 or

Be=1.8, the average population reaches 0.88 for optimizations without global

phase alignment, but the fidelity only reaches 0.51 with global phase align-

ment. Thus, a binary laser pulse can be effectively optimized to carry out the

NOT2 gate operations but only if the qubit states do not need to be globally

phase aligned, which is not the necessary requirement.

3.4 Conclusion

From the results presented there is an indication that the arrangement of

the rovibrational state energies of a diatomic, in this case described by the

anharmonicity and rotational constants, play an important role in the ability

to produce binary shaped laser pulses to represent the ACNOT1 and NOT2

quantum gates. This was attributed to the intrinsic diatomic properties, and

not the specific choice of optimization procedure, as investigated by repeating

the calculations for differing Genetic Algorithm (discretization; cubic spline

fit) and Optimal Control Theory (Transform Limited and Genetic Algorithm

initial guesses) calculations. Overall there are specific regions (diatomics) in

which the ACNOT1 gate can be optimized to produce fidelities greater than

90% and also regions which produce moderate fidelities of 50%-60%. There is
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no specific diatomic in which an efficient laser pulse was optimized to represent

the NOT2 gate operation. The maximum fidelity obtained was only 64% in

this case, due to the lack of overall population transfer by NOT2 gate laser

pulse. Thus, for the model used, there was no diatomic that exhibited a high

fidelity for both the ACNOT1 and NOT2 gate operations. It was also indirectly

shown that the necessary requirement of global phase alignment makes it more

difficult to optimize a laser pulse to carry out the ACNOT1 or NOT2 quantum

gate operations.

Further investigations are needed to determine the reasons behind the only

moderate control of the NOT2 gate and how to establish high fidelities. This

includes examining fidelities produced by optimizing a binary 2-pulse sequence

or appropriate pulse energies for optimal control of the NOT2 gate. Overall the

conditions in order to enforce global phase alignment with high fidelities is not

clearly understood. It may be necessary to increase the frequency resolution

to values resolvable below a spectral width of 10 cm−1. This will also result in

a corresponding increase in the pulse duration since the the spectral width is

inversely proportional to the pulse duration here and this effect on gate fideli-

ties is currently being investigated. Increasing the number of amplitude and

phase components beyond binary pulse shaping used in this and our previous

studies, may also improve the fidelities. All of the suggestions noted require

the GA to search a vastly larger parameter space than previously studied and

thus there will be increased uncertainty in the GA’s ability to find the correct

optimally shaped laser pulse. Methods to avoid this problem in order to study

the above mentioned conditions are currently being explored.
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Chapter 4

Effect of Laser Pulse Shaping
Parameters on the Fidelity of
Quantum Logic Gates.

4.1 Introduction

Promising experimental implementations of quantum algorithms, within the

facet of chemistry, come in the form of nuclear magnetic resonance (NMR)[1–

3] and ion traps[4, 5]. Within NMR an ensemble of molecules is excited via

tuned laser pulses. Current linear ion trap quantum computer implemen-

tations use the shaped laser pulses to control individual atoms[6], although

trapping approaches have been proposed and are currently being extended to

molecules[7, 8]. Instead of exciting hyperfine states or atomic transitions, a

complementary approach involves the control of the rovibrational states of a

diatomic molecule (diatomic quantum computing) [9]. In this method, a mid-

infrared laser pulse is shaped through a closed-loop feedback[10–12] mechanism

to represent each specific quantum gate operation, through diatomic rovibra-

tional state qubit excitations. Experimentally the use of internal degrees of

freedom of diatomic molecules for quantum computing has not received much

attention. Two possible implementations using Li2[13] and I2[14] have been

presented and neither utilized a closed-loop feedback loop for optimization.

The two experiments implemented the quantum algorithms directly, termed
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problem-specific quantum computing, whereas the approach of interest in our

studies is universal quantum computing, where in principle any quantum al-

gorithm can be implemented [13]. In order for future closed-loop feedback

experiments to be realized, further theoretical investigations on the require-

ments for experimental implementations will be useful.

The majority of theoretical studies within diatomic quantum computing,

using shaped laser pulses, produce excellent qubit control but with laser pulses

that are difficult, or perhaps impossible to realize experimentally and/or only

show proof of principle applications on a particular choice of diatomic molecule

[15–30]. In contrast we previously studied the performance of shaped laser

pulses on a general model diatomic[31] and the ability to achieve high control

with laser pulses having very few parameters (binary pulse shaping)[32]. The

theoretical optimizing or shaping of laser pulses generally comes in two com-

mon forms: Optimal Control Theory (OCT)[33, 34] and Genetic Algorithm

(GA)[11] optimization. Unless specific constraints are applied [35–37], OCT

optimization can produce large intensities, a large range of frequency compo-

nents (depending on the rotational, vibrational and/or electronic transitions

available) and experimentally inaccessible pulse shapes. On the other hand,

the GA can be incorporated into an experimental closed-loop feedback setup

and thus theoretical implementation allows for an appropriate description of

the possible laser pulses shapes. While the molecular structure is clearly im-

portant [31], it is also necessary to explore the limitations of the laser pulse

shaping apparatus within the context of this specific application.

The aforementioned experimental implementations using Li2 and I2 had a

laser pulse shaping setup that utilized a liquid crystal spatial light modulator

(LC-SLM). A transform-limited (TL) pulse is incident upon a diffraction grat-

ing and the LC-SLM is illuminated by the resulting frequency spectrum. The

output laser frequencies from the LC-SLM are recombined to form the shaped

laser pulse. The LC-SLM contains a series of pixels that can independently

control the amplitude and phase at each specific frequency resolution, and
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thus provides a multitude of various laser pulse shapes. The GA is used to

determine the optimal combination of amplitude and phase at each frequency

component in order to implement the desired quantum gate operation. We

have implemented an analogous theoretical framework, which was also used in

our previous works[31, 32]. The object of the study detailed herein is to eluci-

date the importance of some important adjustable parameters within a typical

LC-SLM, namely (i) the effect of varying the LC-SLM pixel frequency resolu-

tion (dν), (ii) effective variance of the amplitude (Aj) and (iii) phase (φJ)at

each pixel, and (iv) the effect of changing the number of pixels (n) included

within the laser pulse shaping. Each of these four important parameters af-

fects the total number of laser pulse combinations and thus the total size of

the parameter space that needs to be explored to find the optimal laser pulse.

It is important to have a parameter space of minimal size such that the GA

can locate the optimal laser pulse with confidence and within an appropriate

amount of computational time. A minimum parameter space requires a bal-

ance between the number of pulse shaping parameters and a maximum laser

pulse fidelity, and hence the current study. In the present work, laser pulses

are optimized to represent three common quantum gates (ACNOT1, NOT2,

Had2) on the rovibrational state qubits of carbon monoxide (12C16O). Building

from our [31] and others [18] previous work using GA laser pulse optimization

on CO, we demonstrate the effect of laser pulse shaping parameters on the

ability to produce optimal laser pulses.

4.2 Theory

A full explanation of the theoretical framework employed in this study is de-

tailed in our previous work[31, 32] (see Sections 2.2 and 3.2, respectively). A

brief overview of the theory along with the relevant details are given in this

section.

The time-dependent Schrödinger equation (TDSE) can be written in ma-
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trix notation with time-dependent coefficients cνJ(t):

ċ(t) = − i
~

[
E − ε(t)µ(r)

]
c(t). (4.1)

In Equation 4.1, c(t) is the column vector of time-dependent rovibrational

state coefficients, E is the rovibrational state energy matrix, ε(t) is the lin-

early polarized electric field of the laser pulse and µ(r) is the rovibrational

transition dipole matrix. The TDSE is solved using the Runge-Kutta fourth

order method with 220-222 time points depending on the pulse duration. The

number of time points chosen is determined by an incremental change until

a convergence threshold is met, based upon the total population remaining

after pulse interaction. There is a tradeoff between the selected convergence

threshold and the computational time required for each calculation.

4.2.1 Model System

We restrict our study to the diatomic carbon monoxide (12C16O) with excita-

tions occurring between rovibrational states according to vibrational excitation

∆ν=±1 and rotational excitation ∆J=±1. The CO model consists of 7 vi-

brational states (0≤ ν ≤6) each with 9 rotational states (0≤ J ≤8) for a total

of 63 rovibrational states. With the energy contained in the laser pulses be-

ing optimized, rovibrational states higher than those used in the study were

insignificantly populated and thus the reduced set used in this study is ade-

quate. The four rovibrational states (ν,J) used to represent the qubits |q1q2〉

are: |00〉 ≡ (1,2), |01〉 ≡ (0,1), |10〉 ≡ (2,1) and |11〉 ≡ (1,0). Refer to Figure

2.1 for an illustration containing the qubits, rovibrational states and transi-

tion frequencies involved. The rovibrational state energies were determined by

Mantz et al. [38] and the transition dipole moments were taken from work of

Goorvitch and Chackerian[39].
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4.2.2 Quantum Logic Gates

In the present study three quantum logic gates were studied: the alternative

Controlled-NOT (ACNOT1) gate, NOT2 gate and Hadamard 2 (Had2) gate.

The qubit operations for each gate are depicted in Table. 4.1. The subscript

‘1’ of the ACNOT1 gate is used to denote the control qubit, here q1, and

subsequent flip of the target qubit q2 when q1=0. In the case of the NOT2 and

Had2 gates, the subscript ‘2’ simply denotes a flip of qubit 2 (q2). Laser pulses

are to be shaped in order to implement the state transformations required for

each quantum gate operation. Thus each quantum gate operation will have a

unique laser pulse and each laser pulse will have an associated value describing

its ability to perform the quantum gate operation, termed the Fidelity (see

Section 4.2.3).

ACNOT1 : |10〉 → |10〉 NOT2 : |00〉 ↔ |01〉 Had2 : |00〉 ↔ 1√
2
(|00〉+ |01〉)

|11〉 → |11〉 |10〉 ↔ |11〉 |01〉 ↔ 1√
2
(|00〉 − |01〉)

|00〉 ↔ |01〉 |10〉 ↔ 1√
2
(|10〉+ |11〉)

|11〉 ↔ 1√
2
(|10〉 − |11〉)

Table 4.1: Quantum gate operations which are implemented by an optimized
laser pulse in this study with qubit representation |q1q2〉. NOT2/ Had2: The
qubit flip occurs on qubit 2 (q2). ACNOT1: The control qubit is q1 and the
qubit flip occurs on the target qubit q2 when q1=0.

4.2.3 Laser Pulse Optimization

The present study investigates features of experimental pulse shaping using a

LC-SLM where shaping occurs in the frequency domain. The LC-SLM pro-

duces a discretized frequency spectrum, ε(νj), given by:

ε(νj) = ε0

√
A(νj) exp

[
−2 ln 2

(
νj − ν0

∆ν

)2
]

exp [iφ(νj)] , (4.2)

74



where ε0 is the peak field strength, ν0 is the central frequency, ∆ν=100 cm−1

is the full width at half-maximum (FWHM) pulse width and νj represents the

discrete frequencies at which the field is shaped. The amplitude and phase

range from 0 ≤ A(νj) ≤ 1 and 0 ≤ φ(νj) ≤ 2π, respectively. In the case

of binary pulse shaping (a choice of 2A and 2φ), A=0 or 1 and φ=0 or π.

A transform limited (TL) pulse results when A=1 and φ=0 for all frequency

components, νj, of Equation 4.2. Typically, in order to obtain the time-domain

laser pulse from this frequency domain spectrum, a Fourier transform is used.

An analytic form for the time-domain laser pulse, ε(t), has been derived from

the discretized frequency spectrum, ε(νj) (see Appendix 4.5):

ε(t) = sinc (πtdν)
n∑
j=0

A′j cos(2πνjt+ φj), (4.3)

where A′j = dνε0
√
Aje

−2 ln 2
(
νj−ν0

∆ν

)2

and contains variables as described in

Equation 4.2. The frequency resolution is labeled by dν and the summation

occurs over n discretized frequency components. The symmetry of resulting

laser pulses can be deduced using Equation 4.3. The sinc function is sym-

metric along the pulse duration from −T
2
≤ t ≤ T

2
. As long as the phase

at each frequency component (φj) of the cosine function varies only by φ=0

or φ=π, where cos(2πνjt + π) = − cos(2πνjt), then overall the resulting laser

pulse shapes will be symmetric in time. Moreover, a symmetric pulse shape

guarantees that the resulting phases of the set of two qubit transitions of the

quantum gate operation will be the same. For example, a symmetric laser

pulse being shaped to represent the ACNOT1 gate will result in the qubits

|00〉 and |01〉 being in phase. This effect of temporally symmetric laser pulses

was originally documented by Schröder and Brown [35].

The frequency of transition between the two qubits of the ACNOT1 gate

shown in Table 4.1, was chosen as the central frequency (ν0=2151 cm−1). The

NOT2 and Had2 gates shown in Table 4.1 include two transitions at 2121cm−1

and 2151cm−1 between respective qubits. In order for the laser pulse to be
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centralized between these two frequencies, an average between the transitions

involved was chosen as the central frequency, namely 2136 cm−1. For the

ACNOT1a gate the sequential addition of further frequency components is

shown in Figure 4.1. Also shown in Figure 4.1b is the method by which

further frequency components are added for the NOT2 and Had2 gates.

a) b)

frequencyν0

12

3

4

2

3

4

frequencyν0ν1 ν2

1 1
2 2

22

3 3

33

Figure 4.1: Illustration of the incremental addition of frequency components
for the ACNOT1, NOT2 and Had2 gates. (a) ACNOT1 gate. One frequency
component at ‘1’, the central frequency ν0. Three frequency components at
‘1’ and ‘2’. Five frequency components at ‘1’ ,‘2’ and ‘3’. Seven frequency
components at ‘1’ ,‘2’, ‘3’ and ‘4’. The addition of more frequency compo-
nents continues in this manner. (b) NOT2 and Had2 gates. Two frequency
components at ‘1’, the transition frequencies ν1, ν2. Six frequency components
at ‘1’ and ‘2’. Ten frequency components at ‘1’ ,‘2’ and ‘3’. The addition of
more frequency components continues in this manner.

With reference to Equation 4.3 the variables we are manipulating within

this study are Aj (amplitude), φj (phase), n (number of frequency components)

and dν (frequency resolution). These four parameters will produce different

laser pulse shapes and thus different rovibrational state qubit dynamics. In

order to optimize a pulse shape for performing a particular quantum gate op-

eration, a Genetic Algorithm (GA)[40] is utilized. The GA uses evolutionary

strategies from biology such as natural selection and survival of the fittest to

search the parameter space of possible laser pulse shapes and find the appro-

priate one, without having to sample all combinations. In the results reported

here, we use between 25 and 1000 generations each consisting of 16 individuals

and a micro-GA subroutine. The micro-GA eliminates inbreeding, which is the
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case when individual laser pulses become too similar, by keeping the best indi-

vidual and randomly selecting 15 new individuals to create a new generation.

The chosen number of generations was determined based upon the relative

size of the parameter space. For example, the ACNOT1 gate with a parame-

ter space consisting of a single frequency component (n=1) with 16 amplitude

(16A) and 2 phase (2φ) choices would consist of (16× 2)1 = 32 possible laser

pulse combinations. If the same quantum gate had a parameter space consist-

ing of 13 frequency components (n=13), 32A and 2φ, then it would produce

(32× 2)13 = 3.02× 1023 laser pulse combinations! A large number of genera-

tions would be required for the latter case to ensure appropriate sampling of

the parameter space and to ensure confidence of the optimal solution being

found.

In order for the GA to know how well an individual (laser pulse) performs

the desired quantum gate operation, a fitness function is needed. The form of

the fitness function, in this case termed the fidelity (F ), used in the present

work is,

F =
1

N2

∣∣∣∣∣
N∑
k=1

〈Ψk(T )|Φk〉

∣∣∣∣∣
2

, (4.4)

where Ψk(T ) is the resulting wavefunction after the laser pulse has been ap-

plied, T is the total laser pulse duration and Φk is the target wavefunction.

The wavefunctions are summed over the number of transitions required by the

quantum gate, N , and then divided by a normalization factor, N2, to ensure

the fidelity ranges between 0 and 1. The fidelity is dependent upon the phase

alignment of all the qubits, which can be explicitly viewed in an alternative

representation of the fidelity,

F =
1

N2

[
N∑
k

|rk|2 + 2
N∑
k 6=k′

rkrk′ cos(∆φkk′)

]
. (4.5)

For simplicity, the time-dependent wavefunctions (Equation 4.4; Ψk(T ), Φk)

are written in complex Euler notation, i.e. Ψk = rke
iφk and Φk are assumed

to be real. The term rk describes the magnitude of the time-dependent coef-
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ficients corresponding to wavefunctions Ψk at the end of the laser pulse inter-

action. ∆φkk′ is the difference between qubit phases, φk and φk′ , at the end of

the laser pulse duration.

Another description of the dynamics occurring during the laser pulse/molecule

interaction, but not used as a means for optimization, is the average popula-

tion, P̄ :

P̄ =
1

N

N∑
k=1

|〈Ψk(T )|Φk〉|2 . (4.6)

The average population (P̄ ) describes the ability of the laser pulse to excite

from an initial state to a final state as deemed by the quantum gate operation.

The average population is not dependent upon the final phase of the qubits. A

requirement of molecular quantum computing is global phase alignment.[27, 41]

The final phases of each qubit after the total pulse interaction time must

be the same. This ensures that the application of subsequent quantum gate

operations (laser pulses) occurs without inducing a phase discrepancy and thus

decreasing the effectiveness of the quantum gate. Hence, the fidelity is used as

the fitness function for GA optimizations rather than the average population

(P̄ ). Global phase alignment is related to the second term of Equation 4.5.

4.3 Results and Discussion

This investigation was carried out in three parts in order to examine the effects

on fidelity of variations to amplitude (Aj), phase (φj), number of frequency

components (n) and total pulse duration (T ). Each has a particular role in

producing an optimal pulse shape based upon the experimental discretized

pulse shaping LC-SLM. The variations to the laser pulse shaping parameters

were carried out on the ACNOT1, NOT2 and Had2 quantum logic gates and

their effects on of the gate on Fidelity (F ) evaluated. The three sections are

as follows:

A. Effect of total pulse duration (F vs. T )
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At a constant total pulse energy, the total pulse duration, T , was varied.

The total pulse energy for each quantum gate was taken from our previous

work.[32] The frequency resolution (dν) and total pulse duration (T ) are

related by dν =
2

T
. As a result, a qualitative relationship between the

total pulse duration, T and areas of high and low fidelity can be deduced.

The laser pulse included only the single transition frequency (ACNOT1)

or only two frequencies (NOT2 and Had2), depending upon the quantum

gate. Binary pulse shaping (A=0 or 1, φ=0 or π) was utilized.

B. Effect of laser pulse energy (F vs. A)

The low fidelities obtained in Section 4.3.1, as detailed in the paragraph

above, may be associated with pulse shapes of non-optimal total pulse

energy. By determining optimal amplitudes at the excitation frequency (see

Figure 4.1a; ν0) or frequencies (see Figure 4.1b; ν1, ν2), the appropriate

pulse shape of optimal energy can be generated. At specifically chosen

values of total pulse duration, T , the number of amplitude components

was varied beyond two choices (the phase variation remained at 2φ), from

2A until appropriate convergence was reached at 512A. Thus the total

pulse energy available to all frequency components can be controlled at

each frequency component by amplitude variation.

C. Effect of frequency resolution, amplitude and phase (F vs. n, A, φ)

Lastly, in order to further investigate the effect of laser pulse parameters

on increasing the resulting fidelity, the number of frequency components

(n) was increased beyond the excitation frequency, ν0 (see Figure 4.1a)

or frequencies, ν1 and ν2 (see Figure 4.1b). Concurrently, the number of

amplitude (A) or phase (φ) values was increased from only two choices to

having 32 choices each (i.e., 32A or 32φ). This investigation was carried

out on the pulses of optimal energy, as determined in Section 4.3.2 and

detailed in the previous paragraph, of a single chosen total pulse duration

for each quantum gate operation.
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4.3.1 Effect of total pulse duration (F vs. T )

In order to examine the effect of the total pulse duration on the fidelity, a

scan of the frequency resolution (dν) was carried out by setting the total

frequency window to 500cm−1 and discretizing the window into odd integer

values (x) for dν =
500

x− 1
but there was no direct optimization. Thus, the total

pulse duration (T ) at intervals of ∆T=0.27ps for 5.34ps≤ T ≤ 66.71ps was

sampled. The laser pulse energies for each quantum gate were constant and

chosen based upon the TL-pulse energies from Table 2.2. For these simulations,

laser pulses were constructed from all combinations of amplitude and phase

from A=0 or 1 and φ=0 or π for each quantum gate. The fidelity for each

laser pulse at each value of dν was calculated and then dν was converted

to the corresponding value for the total pulse duration. From this point on,

references to the total pulse duration T should be considered synonymous to

the frequency resolution dν. The field free case, for the NOT2 and Had2 gates

when ε(t)=0, is omitted since it produces a fidelity of zero due to the nature

of the excitations involved (see Table 4.1). In comparison, the ACNOT1 gate

when ε(t)=0 produces a maximum fidelity of F=0.25. Similar information

about the relationship between the fidelity and total pulse duration could be

determined experimentally by scanning through values of dν and optimizing

a laser pulse for each value when A=0 or 1 and φ=0 or π.

ACNOT1 quantum gate

The total pulse energy was kept constant at E=10 µJ and the central frequency

is ν0=2151 cm−1. Three unique laser pulses at each pulse duration T can be

produced. Using the notation [A,φ], they are [1,π], [1,0] and the field free case

[0,φ]. The fidelities for these three pulses as a function of pulse duration are

shown in Figure 4.2. As seen in Figure 4.2, there are six locations where the

fidelity is highest, though the pattern may repeat itself in time. The two laser

pulses, [1,π] and [1,0], share a relationship such that the maximum fidelity

alternates between each other as T is increased (see the inset of Figure 4.2),
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Figure 4.2: Plot of the resulting fidelities for three pulse shapes as a function
of the total pulse duration T for the ACNOT1 quantum gate having a total
pulse energy of 10 µJ . The laser pulses, consist of 1 frequency component
(n=1) at the transition frequency (2151 cm−1) with a choice of amplitude 2A
and phase 2φ using the notation [Aφ], are [1,π] black line, [1,0] red line and
[0,0] blue line. The inset shows the alternating fidelity between [1,π] and [1,0]
for 6.5ps ≤T≤ 8.8ps.
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where the fidelities from 6.5ps ≤ T ≤ 8.8ps are plotted. The overall pattern

of maximum fidelities produced by [1,π] and [1,0] follows the trend of fidelity

for the field free scenario (solid blue line), though not all cases result in a

global maximum fidelity (e.g. T=22.7ps and 45.1ps). When ε(t)=0 in the

field free case (Figure 4.2; solid blue line) the excitation |00〉 ↔ |01〉 cannot

occur and thus the fidelity represents the phase alignment of qubits |11〉 and

|10〉. It seems that the free evolution phase alignment of qubits |11〉 and |10〉

determines whether a high fidelity can be obtained for a specific value of dν.

The exception being the unexpectedly low fidelities at T=22.7ps and 45.1ps.

Analysis of the results for these two low fidelity local maxima is detailed in

Section 4.3.2.

The fidelity of the free evolution of qubits |10〉 and |11〉 is described by,

F =
1

16

[
2 + 2 cos(Φ|11〉 − Φ|10〉)

]
, where Φ|q1q2〉 is the final phase for qubit

|q1q2〉 after the pulse interaction. As seen in Figure 4.2, the maximum fidelity

(peaks) occurs every T = 7.526n ps. The free evolution alignment between

qubits |10〉 and |11〉 is related to the energy difference between these states

and occurs at a frequency of 2121 cm−1 (63.57ps−1). This is much larger

than the peak oscillation period of
1

7.526
=0.1329ps−1 just stated. However,

the period observed in Figure 4.2 is simply a result of the pulse duration

(frequency resolution) sampling used in the present work. When the free

evolution frequency of these qubits is sampled at the pulse duration interval

used in these calculations (∆T=0.267 ps), the fidelity curve produced exactly

overlaps with that of the solid blue line of Figure 4.2.

NOT2 quantum gate

The total pulse energy was kept constant at E=20 µJ and with n=2 the two

transition frequencies were ν1=2121cm−1 and ν2=2151cm−1, with the central

frequency being ν0=2136cm−1. Binary laser pulses (2A/2φ) were implemented.

Using the notation [A1φ1,A2φ2], with subscripts referring to either transition

frequency, a total of (2 × 2)2=16 laser pulse combinations result. Only 9 of
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Figure 4.3: Plot of the resulting fidelities for eight pulse shapes (only 4 are
unique) as a function of the total pulse duration T for the NOT2 quantum
gate having a total pulse energy of 20 µJ . The laser pulses, consisting
of two frequency components (n=2) at the transition frequencies (ν1=2121
cm−1,ν2=2151 cm−1) with binary pulse shaping (2A/2φ) using the nota-
tion [A1φ1,A2φ2], are [1π, 1π]=[10, 10] red line, [10, 1π]=[1π, 10] green line,
[1π, 00]=[10, 00] blue line and [00, 1π]=[00, 10] orange line.
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the combinations are unique and one of the nine combinations is the field free

case; thus only 8 combinations were calculated. The resulting fidelities for

the 8 unique laser pulse combinations for each value of T are shown in Figure

4.3. It is important to note that the plots in Figure 4.3 have considerably

lower fidelities due to inappropriate choice of total laser pulse energy and

insufficient amplitude variation beyond 2 amplitude components (2A). Some of

the laser pulse combinations produce identical dynamics in Figure 4.3, namely:

F[1π,1π]=F[10,10] (red line), F[10,1π]=F[1π,10] (green line), F[1π,00]=F[10,00] (blue

line) and F[00,1π]=F[00,10] (orange line). The red, green and orange lines in

Figure 4.3 seem to oscillate at approximately the same frequency while the

blue line seems to be centered at their minima but with a much lower fidelity.

Section 4.3.2 will show that high fidelity points do not necessarily mean 100%

fidelity points.

Had2 quantum gate

The total pulse energy was kept constant at E=25 µJ . Similarly to the NOT2

gate, there are only 8 unique laser pulse combinations using 2 frequency com-

ponents ν1=2121cm−1 and ν2=2151cm−1, centered at ν0=2136cm−1. The re-

sults are shown in Figure 4.4. We refer the reader to the ACNOT1 results

shown in the inset of Figure 4.2, illustrating the fluctuating fidelities between

pulse shapes differing in phase by π. Similar fidelity trends are observed for

the results from specific laser pulse amplitude and phase combinations for the

Had2 quantum gate. Fidelity results of all pulse combinations for ACNOT1

are plotted in Figure 4.2. However, in the case of Figure 4.4 for the Had2

gate, in order to simplify the figure the fluctuations are not shown. Only the

maximum fidelities between the following combinations are plotted, namely

[1π,1π] and [10,10] (red line), [10,1π] and [1π,10] (green line), [1π,00] and

[10,00] (blue line) and, [00,1π] and [00,10] (orange line). The black line of

Figure 4.4e displays the maximum fidelity between either four possible values

of Figs. 4.4a - 4.4d, at any given total pulse duration. The curves are more
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Figure 4.4: Plot of the resulting maximum fidelities for 8 pulse shapes as a
function of the total pulse duration T for the Had2 quantum gate having a total
pulse energy of 25 µJ . The laser pulses, consist of 2 frequency components
(n=2) at the transition frequencies (ν1=2121 cm−1,ν2=2151 cm−1) with binary
pulse shaping (2A/2φ) using the notation [A1φ1,A2φ2], are: a) [1π,1π] and
[10,10] red line, b) [10,1π] and [1π,10] green line, c) [1π,00] and [10,00] blue
line and, d) [00,1π] and [00,10] orange line. Also plotted, in black within
Figure 4.4e, are the maximum results from the previous plots of Figure 4.4a -
Figure 4.4d, at any given total pulse duration.
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complicated than those obtained for the ACNOT1 or NOT2 gates, likely due

to the required superposition of states of the Had2 gate. In this case there is

no regular pattern, making it difficult to deduce a predictable value of T that

will result in a high fidelity.

4.3.2 Effect of laser pulse energy (F vs. A)

As a first attempt to improve upon the fidelity, the optimal laser pulse energy

was determined at select total pulse durations, T . These calculations could

have been done for every value of T in Section 4.3.1 and would have provided

a more complete picture but the optimization time requirements limited this.

Using n=1 for the ACNOT1 gate or n=2 for the NOT2 and Had2 gates, we

varied the amplitude from 2A, up to a max of 512A, while restricting the phase

to φ=0 or π. This can be thought of as dividing up the laser pulse energy,

at specific frequency components, into a maximum of 512 segments. More-

over, by varying the amplitude what is actually being optimized is the energy

associated with each transition frequency component used in the calculation.

Thus the actual laser pulse energy reported will be much less than the total

pulse energy since only a small fraction of the total pulse energy is carried in

the frequency/frequencies used here. The laser pulse energy was increased to

a value larger than used in Section 4.3.1, in order to allow more flexibility in

the choice of energy. For the ACNOT1 gate an energy of 30 µJ was used. For

the NOT2 and Had2 gates, since two frequencies are needed that are not at the

central peak intensity (see Figure 4.1), a value of 100 µJ is used. In general,

optimizing the energy did not change the relative relationship between low

and high fidelity points in Figs. 4.2 - 4.4.

ACNOT1 quantum gate

Values for the total pulse duration associated with high and low fidelities were

chosen from Figure 4.2, namely: 7.47ps, 11.20ps, 22.68ps and 45.10ps. The

results comparing a total laser pulse energy of 10 µJ with an optimized laser
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pulse energy chosen from a total pulse energy of E=30 µJ for 512A, are dis-

played in Table. 4.2. In this case the chosen value of E=10 µJ for all 4 cases,

when using 2A and 2φ components, was able to produce the required opti-

mal pulse energy. With a choice of 7.47ps pulse duration and using only one

frequency component at the transition frequency, a 30 µJ total laser pulse en-

ergy could produce a high fidelity (here F=0.9748) when using 512A amplitude

variations.

The pulse durations 22.68ps and 45.10ps correspond to local maxima of

Figure 4.2. Analysis of the fidelity at these two points indicate that there

is poor phase alignment between the qubits. For example, the optimal laser

pulse in Table. 4.2 at 45.10ps produces resultant qubit phases of: Φ|00〉=-1.50

rads,Φ|01〉= -1.50 rads,Φ|10〉=-0.09 rads and Φ|11〉=-0.04 rads. It is this lack of

phase alignment that produces the unexpectedly low fidelity at T=22.68ps and

45.10 ps. In comparison, analogous data for the high fidelity pulse duration

T=7.47ps is Φ|00〉=-1.99 rads,Φ|01〉= -1.99 rads,Φ|10〉=-2.33 rads and Φ|11〉=-

2.25 rads. The resulting phases of the qubits involved in the transition, |00〉

and |01〉, are the same because the laser pulse is symmetric (see Section 4.2.3).

Table 4.2: Comparison of resulting fidelities, pulse energies and amplitudes
for laser pulses optimized for the ACNOT1 gate with and without (optimal)
amplitude restrictions. The amplitude used in Figure 4.2 is A=1.00 and the
total pulse energy was 30µJ .
Total pulse Figure 4.2 Optimal Figure 4.2 Optimal Optimal
duration Fidelity Fidelity Pulse Energy Pulse Energy Amplitude
T (ps) F F E (µJ) E (µJ) A

7.47 0.9747 0.9748 0.8388 0.8519 0.339
11.20 0.2712 0.2715 0.5592 0.5351 0.319
22.68 0.5049 0.5058 0.2763 0.2953 0.356
45.10 0.5660 0.5680 0.1390 0.1248 0.299
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NOT2 quantum gate

Values for the total pulse duration at four high fidelity points 8.27ps, 35.22ps,

44.03ps, 52.84ps and one low fidelity point 15.21ps were chosen from Figure

4.3. The results comparing a constant laser pulse energy of 20 µJ with an

optimized laser pulse energy at a maximum E=100 µJ for 512A amplitude

variations, are displayed in Table 4.3. It is evident, even for the low fidelity

case, that the initial choice of E=20 µJ for the laser pulse energy does not

produce the highest possible fidelity. Larger pulse energies were required in

order to obtain larger fidelities. According to Table 4.3, a low amplitude at one

of the two frequencies and a high amplitude at the other is needed to achieve

optimal fidelities at a given value of T, for n=2. For example optimizing the

laser pulse energy for a total pulse duration of T=8.27ps, results in an optimal

amplitude of A1=0.035 and A2=1.00 for ν1 and ν2, respectively. With reference

to Equation 4.3, the laser pulse with a frequency of ν1=2121cm−1 has a low

amplitude A1 than the ν2=2151cm−1 laser pulse with A2=1.00. These choices

of amplitudes result in high fidelities which would not have been achieved by

a constant laser pulse energy with binary pulse shaping (Figure 4.3).

Table 4.3: Comparison of resulting fidelities, pulse energies and amplitudes
for laser pulses optimized for the NOT2 gate with and without (optimal) am-
plitude restrictions. The amplitudes, A1/A2, for Figure 4.3 are 1.00/1.00 and
the total pulse energy was 100µJ .
Total pulse Figure 4.3 Optimal Figure 4.3 Optimal Optimal
duration Fidelity Fidelity Pulse Energy Pulse Energy Amplitude
T (ps) F F E (µJ) E (µJ) A1/A2

8.27 0.2085 0.7461 2.820 7.297 0.035/1.00
15.21 0.0414 0.4256 1.571 5.203 0.376/0.949
35.22 0.1629 0.7372 0.668 1.679 0.049/0.957
44.03 0.1675 0.9994 0.534 1.281 0.051/0.908
52.84 0.1641 0.8459 0.445 0.621 0.458/0.010
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Had2 quantum gate

For the case of the ACNOT1 and NOT2 quantum gates, the choice of T at high

and low fidelity points from Figure 4.2 or Figure 4.3 lead to a fairly simple

regular structure. The analogous plot for the Had2 gate (Figure 4.4) is very

complex in structure, exhibiting no signs of a regular pattern. Only two total

pulse durations with high fidelity points were studied from Figure 4.4, namely,

24.28ps and 48.30ps. The results comparing a constant laser pulse energy of

25 µJ with an optimized laser pulse energy at a maximum energy of 100 µJ

for 512A amplitude variations, are displayed in Table 4.4. The constant 25 µJ

laser pulse energy was not optimal, as seen by the large discrepancy between

the fidelities. The fidelity can be significantly improved by changing the pulse

energy e.g., the laser pulse optimized at T=48.30 ps attains a large fidelity

(F=0.9742). The choice of optimal amplitudes is different in this case than

for the NOT2 gate since A1 and A2 are of similar magnitudes.

Table 4.4: Comparison of resulting fidelities, pulse energies and amplitudes for
laser pulses optimized for the Had2 gate with and without (optimal) amplitude
restrictions. The amplitudes, A1/A2, for Figure 4.4 are 1.00/1.00 and the total
pulse energy was 30µJ .
Total pulse Figure 4.4 Optimal Figure 4.4 Optimal Optimal
duration Fidelity Fidelity Pulse Energy Pulse Energy Amplitude
T (ps) F F E (µJ) E (µJ) A1/A2

24.28 0.6810 0.8817 1.197 1.199 0.344/0.157
48.30 0.8791 0.9742 0.609 0.660 0.315/0.227

4.3.3 Effect of number of frequency components, am-
plitude and phase (F vs. n, A, φ)

From Sections 4.3.1 and 4.3.2, it is clear that the overall quantum gate fidelity

is strongly dictated by the one (ACNOT1) or two (NOT2 and Had2) transi-

tion frequency components. Here we want to consider what role additional
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frequency components play in determining the overall fidelity and subsequent

amplitude and phase variation on these additional frequencies. In order to

do so, one of the values of the total pulse duration (T ) from Section 4.3.2 for

each quantum logic gate must be selected. The optimal amplitude(s) deter-

mined for this choice of pulse duration are then used as the maximum values

instead of the default of 1.00. The result is an optimal amplitude (energy) at

each transition frequency from which to vary the amplitude (A) and/or phase

(φ) for increasing number of frequency components (n). For the ACNOT1

gate the number of frequency components varies by odd integer values accord-

ing to 1≤ n ≤ 13, so that frequency components are added to either side

of the transition frequency. The NOT2 and Had2 gates vary by n=2,6 and

10, so that frequency components are added to either side of both transition

frequencies (see Section 4.2.3 and Figure 4.1). Combinations of 2A or 32A

and 2φ or 32φ for each number of frequency components were used to test

the effect of increased amplitude or phase variation on the optimal fidelity.

Also an optimization in which the energy had 32A amplitude variations at

each value of n=10 or 13 frequency components was used as a comparison -

here termed the full optimization. This is analogous to the energy optimiza-

tion of Section 4.3.2, except in this case n=10 or n=13, resulting in a very

large parameter space optimization. The results for the minimum and maxi-

mum number of frequency components studied are shown in Table 4.5. In our

previous study [32], Chapter 2, we also produced GA optimized laser pulses

for the ACNOT1, NOT2 and Had2 gates but using binary pulse shaping for

n=51 frequency components at T=6.67 ps. Fidelities of FACNOT1= 0.9729,

FNOT2=0.5118 and FHad2=0.5075 were obtained using a total pulse energy of

10µJ , 20µJ and 25µJ , respectively.
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Effect of amplitude - A

As was shown in Section 4.3.2, the use of amplitude variance allowed for laser

pulse energy optimization. This produced a very large increase in the fidelity,

in many instances. When 32A/2φ with n=13 was used, the fidelity for the

ACNOT1 gate rose subtly from 0.9876 (2A/2φ) up to F=0.9912. In the case of

the Had2 gate with 2A/2φ, restricting the maximum amplitudes to A1=0.344

and A2=0.157 limited the fidelity from increasing (constant F=0.8817) even

when the number of frequency components was increased to n=13. When ei-

ther n=2 or when n=13, the same laser pulse shape, consisting of only the tran-

sition frequencies, was chosen. Giving flexibility to the amplitudes (32A/2φ,

n=13) of the Had2 gate allowed the fidelity to increase to 0.9834, which is very

close to the full optimization fidelity of 0.9840. For the NOT2 gate with n=13

using 32A/2φ, the fidelity of the optimal laser pulse, F=0.9132, is significantly

less than the full optimization of 0.9638. In this case there are energies at spe-

cific frequencies that are greater than the maximum allowed by the amplitude

restriction of A1=0.458 or A2=0.010. Increasing the amplitude variance while

using these maximum values will not improve the fidelity to that of the full

optimization value.

Effect of phase - φ

The increase of phase, beyond φ=0 or π, to 32φ has minimal effect (increase

of 1.5%) or no effect on increasing the fidelity. The necessary phase condi-

tion is that the parameter space at least consists of φ=0 to produce positive

amplitudes and φ=π in order to produce negative amplitudes (see Equation

4.3). An optimization for the ACNOT1 gate with n=13 using 2A/2φ produces

F=0.9876, while a choice of 2A/32φ gives a minor increase to F=0.9880. The

population transfers between the qubits for both cases is shown in Figure 4.5,

along with the amplitude and phase sequence at ν0= 2151cm−1.
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Figure 4.5: Plot of the population dynamics between qubits for the ACNOT1

gate using n=13 frequency components with a total pulse energy of 30µJ for
2A/2φ (solid line) and for 2A/32φ (dotted line). a)|00〉 → |01〉, b)|01〉 →
|00〉, c)|10〉 → |10〉 and d)|11〉 → |11〉. black: |00〉, red: |01〉, green: |10〉
and blue: |11〉. The sequence of laser pulse amplitudes and phases [A1φ1,
...,A13φ13], with a central frequency of ν0= 2151cm−1, that produce the solid
lines are [00,00,00,00,00,00,0.339 π,00,00,0.339 0, 0.339 π,0.339 π,0.339 π] and
the dotted lines are [00,00,00,00,00,00,0.339 π,00,00,0.339 1

2
π, 0.339 19

16
π,0.339

1
2
π,0.339 31

16
π].
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Effect of number of frequency components - n

The effect of adding additional frequency components is dependent upon the

ability for the amplitude and/or phase to increase the fidelity. The addition

of further frequency components beyond the transition frequency/frequencies

causes a small increase in fidelity; the majority of the fidelity coming from

the transition frequency/frequencies themselves. The former statement occurs

for the Had2 gate in which the fidelity has reached a maximum of 0.8817 and

no further increase is accomplished by increasing the number of frequency

components. The fidelity increases to 0.9834 once the amplitudes are allowed

more flexibility by using 32A amplitude variations. The latter can be noted for

the ACNOT1 gate in which an already high fidelity (F=0.9748) when using

only n=1 at the transition frequency and 2A/2φ, increases in fidelity only

moderately when the number of frequency components is increased.

4.3.4 Qubit population dynamics

To illustrate the nature of the qubit excitations, the population dynamics

for selected quantum gates are plotted. For the ACNOT1 gate there is a

comparison between the T=7.47ps single frequency using n=1 with 2A/2φ

optimization (F=0.9748) and to the full T=7.47ps using n=13 with 32A/2φ

optimization (F=0.9927). The comparison for the NOT2 gate is between two

high fidelity points for different pulse durations, namely: 44.03ps using n=1

with 2A/2φ optimization (F=0.9994) and 52.84ps using n=10 with 32A/2φ

optimization (F=0.9123). Lastly, a comparison is made between the Had2

gate when T=24.28ps using n=10 with 32A/2φ (F=0.9834) and T=48.30ps

using n=1 with 2A/2φ (F=0.9742).

ACNOT1 quantum gate

Figure 4.6 illustrates the resulting population dynamics for laser pulses opti-

mized using T=7.47ps with the single transition frequency 2151cm−1 (n=1)

and 2A/2φ components, and also T=7.47ps at 2151cm−1 but with multiple
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Figure 4.6: Resulting population dynamics for the four qubit transformations
of the ACNOT1 quantum gate of pulse duration T=7.47ps when using n=1
with 2A/2φ (solid lines) and using n=13 with 32A/2φ (dotted lines). a)|00〉 →
|01〉, b)|01〉 → |00〉, c)|10〉 → |10〉 and d)|11〉 → |11〉. black: |00〉, red: |01〉,
green: |10〉 and blue: |11〉.
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frequency components (n=13) and 32A/2φ. In Figure 4.6a and Figure 4.6b

the qubit transition |00〉 ↔ |01〉 (black and red, respectively) is shown. For

the case of n=1 (solid line) the transition seems to be a half-cycle Rabi oscilla-

tion. When an optimization is carried out for n=13 (solid line) the population

dynamics seem to be a more complicated form of Rabi oscillation. For the

|10〉 → |10〉 (Figure 4.6c) and |11〉 → |11〉 (Figure 4.6d) qubit transitions, re-

quiring only a phase change to ensure global phase alignment, there is a small

amount of intermediate population exchange between nearby qubits. Specif-

ically, in both cases, a small exchange was observed for qubit |10〉 with |11〉

and |10〉, and |11〉 with |01〉 and |10〉. The majority of the fidelity for the

ACNOT1 gate under these conditions is attributed to the central frequency

and optimal pulse energy. Further fidelity increases are attributed to varia-

tions in frequency components and amplitude, in order to bring the fidelity

near 100%.

NOT2 quantum gate

The population dynamics for optimized laser pulses with T=44.03ps using

n=1 with 2A/2φ and an optimized laser pulse with T=52.84ps using n=10

with 32A/2φ are shown in Figure 4.7. Figure 4.7a and Figure 4.7b illustrate

that for T=44.03 (solid line) the |00〉 ↔ |01〉 transition proceeds through a

3
2

Rabi cycle and the |10〉 ↔ |11〉 transition through a 1
2

Rabi cycle. The

Rabi cycle pathways are switched when the total pulse duration is T=52.84.

It is also possible to enforce the transitions to be both 1
2

Rabi cycles. For

T=52.84ps, n=2 and E=100 µJ , the initial maximum amplitudes were selected

as: A1=0.125 (64A, 2φ) and A2=1.00 (512A, 2φ). The amplitude restriction

is enforced on A1 since we know from Table 4.5 the optimal value for A2 will

be low ( 0.010). The anticipated 1
2

Rabi cycle was produced for both NOT2

gate transitions and resulted in A1=0.0516, A2=0.098 and F=0.8024. A larger

fidelity was found when A1 was not restricted (F=0.8459; Table 4.5) and thus

the transitions which both consist of 1
2

Rabi cycles were not optimally chosen
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by the GA.

Had2 quantum gate

Lastly, the population dynamics for optimized laser pulses with T=24.28ps

using n=10 with 32A/2φ and T=48.30ps using n=1 with 2A/2φ are shown in

Figure 4.8. This figure illustrates that the T=48.30ps optimized laser pulse

causes all qubit transitions to proceed through a 3
4

Rabi cycle. When the laser

pulse optimized is 24.28ps, the resulting optimized laser pulse produces rela-

tively complex population dynamics, requiring many intermediate exchanges

of population between qubit pairs and other rovibrational states of the Had2

gate. This being attributed to having more frequency components (n=10).

4.4 Conclusion

A number of experimental pulse shaping parameters and their affect on the

fidelities of laser pulses shaped to represent the ACNOT1, NOT2 and Had2

quantum logic gates, were studied. Pulse shaping occurs in the frequency do-

main using a discretized spectrum with independent control of amplitude and

phase dependent frequencies, similar to current LC-SLM setups. The parame-

ters that were varied are (i) the frequency resolution (dν) or synonymously the

pulse duration (T ), (ii) the number of frequency components (n), (iii) the num-

ber of amplitude components (Aj) and (iv) the number of phase components

(φj). A time domain analytic form for the discretized frequency spectrum was

also formulated.

Initially, an exploration of the pulse duration was carried out for each

quantum gate using laser pulses with with 2A and 2φ variation of A=0 or 1 and

φ=0 or π. The resulting plots showed a simple relationship between the fidelity

and pulse duration for the ACNOT1 and NOT2 gates. The plot obtained

for the Had2 gate showed a complex relationship. The trends observed for

the ACNOT1 gate fidelities at chosen pulse durations was attributed to the
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Figure 4.7: Resulting population dynamics for the four qubit transformations
of the NOT2 quantum gate when using a pulse of length T=44.03ps, n=2 and
2A/2φ (solid lines), and using a pulse of length T=52.84ps, n=10 and 32A/2φ
(dotted lines). a)|00〉 → |01〉, b)|01〉 → |00〉, c)|10〉 → |11〉 and d)|11〉 → |10〉.
black: |00〉, red: |01〉, green: |10〉 and blue: |11〉.
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Figure 4.8: Resulting population dynamics for the four qubit transformations
of the Had2 quantum gate when using a pulse of length T=24.28ps, n=10
and 32A/2φ (solid lines), and using a pulse of length T=48.30ps, n=2 and
2A/2φ (dotted lines). a)|00〉 ↔ 1√

2
(|00〉 + |01〉), b)|01〉 ↔ 1√

2
(|00〉 − |01〉),

c)|10〉 ↔ 1√
2
(|10〉+ |11〉) and d)|11〉 ↔ 1√

2
(|10〉 − |11〉). black: |00〉, red: |01〉,

green: |10〉 and blue: |11〉.
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difference in the natural evolution of the rovibrational state qubits |10〉 and

|11〉.

In order to determine the optimal laser pulse energy at the qubit transition

frequency/frequencies for each quantum logic gate shaped laser pulse, the am-

plitudes were varied by 512A, while keeping the phase at 2φ (0 or π), for select

values of pulse duration. The optimal amplitude chosen for each pulse dura-

tion at 30µJ for the ACNOT1 gate was already very near the previous choice

of 1.0 for a 10µJ pulse, so the fidelities did not change substantially. Two

transition frequencies were required for the NOT2 and Had2 gates, and the

resulting amplitudes were of differing magnitudes indicating that one transi-

tion requires more energy than the other. A substantial increase in the fidelity

was observed in these cases since the previous optimizations used non-optimal

laser pulse energies.

Lastly, we investigated the affect of increasing the number of frequency

components on quantum gate fidelities. Laser pulses of one pulse duration

each were shaped with 13 frequencies (ACNOT1) or 10 frequencies (NOT2

and Had2) each with 2A/2φ, 32A/2φ and 2A/32φ amplitude and phase com-

binations. A full optimization of 13 or 10 frequencies and 32A/2φ was calcu-

lated, but without optimizing the transition frequency energy and allowing the

amplitudes to have more energy flexibility per frequency component. Again,

amplitude variation played a major role in improving the fidelities and in some

cases caused an improvement of 10%. Surprisingly, phase variation at most

caused an increase of only 1.5%. The full optimization was very close to the

results of 32A/2φ, except in the case of the NOT2 gate, likely due to the

necessity of large variations in energy per frequency component.

Overall, it was determined that the majority of the quantum gate fidelity

resides in the transition frequency/frequencies and more so determining an op-

timal energy associated with them. Addition of further frequency components

can cause some incremental increases in the fidelity. The variation of phase

seemed to provide no significant improvement upon the fidelity. High fidelity
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control of rovibrational state qubits for quantum gate operation through a

shaped laser pulse also seems to be influenced by the natural evolution of the

qubits.

4.5 Appendix A - Derivation of the analytic

form of the laser pulse

We begin the derivation of an analytic form of the laser pulse, by starting with

the simple condition of the discretized frequency domain laser pulse, f(ν),

consisting of a single frequency component centered at νj with a resolution,

dν,

f(ν) =

{
ε(νj), νj − dν

2
≤ ν ≤ νj + dν

2

0 otherwise
(4.7)

Since there is only one frequency component, everywhere else outside of the

frequency resolution is satisfied by f(ν)=0. This would be the condition of

Figure 4.1a if only the central frequency, ν0, were considered. A Fourier trans-

form of this frequency domain laser pulse f(ν), produces the resulting time

domain laser pulse, F (t),

F (t) =

∫ νj+
dν
2

νj− dν2

f(ν)ei2πνt dν. (4.8)

Substituting in the Fourier transform, our initial case of a single frequency

laser pulse, produces the following,

F (t) = ε(νj)

∫ νj+
dν
2

νj− dν2

ei2πνt dν

= ε(νj)

(
ei2πtdν/2 − e−i2πtdν/2

i2πt

)
ei2πνjt

= ε(νj)
sin(πtdν)

πt
ei2πνjt. (4.9)

The resulting equation can be written in terms of a sinc function,

F (t) = dνε(νj)sinc(πtdν)ei2πνjt, sinc(x) =
sin(x)

x
. (4.10)
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Substituting explicitly the frequency domain laser pulse intensity, ε(νj), used

in this case, one obtains

F (t) = dνε0
√
Aje

−2 ln 2
(
νj−ν0

∆ν

)2

eiφjsinc(πtdν)ei2πνjt

= dνε0
√
Aje

−2 ln 2
(
νj−ν0

∆ν

)2

sinc(πtdν)ei(2πνjt+φj). (4.11)

The laser pulse is a real quantity, such that

< [F (t)] = dνε0
√
Aje

−2 ln 2
(
νj−ν0

∆ν

)2

sinc(πtdν) cos (2πνjt+ φj) . (4.12)

The resulting single frequency laser pulse produced from a discretized fre-

quency spectrum is

< [F (t)] = A′jsinc(πtdν) cos (2πνjt+ φj) , A′j = dνε0
√
Aje

−2 ln 2
(
νj−ν0

∆ν

)2

(4.13)

The above formalism for a single frequency component from a discretized

spectrum, can be extended to a frequency spectrum, ε(ν), of n frequency

components. The Fourier transform of a discretized frequency spectrum of n

frequency components is the sum of the Fourier transform at each individual

discretized frequency, j. Thus the general form of the time domain laser pulse,

ε(t), with the discretized form described by Equation 4.2 is,

ε(t) = sinc(πtdν)
n∑
j=0

A′j cos (2πνjt+ φj) , (4.14)

where,

A′j = dνε0
√
Aje

−2 ln 2
(
νj−ν0

∆ν

)2

.
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Chapter 5

Conclusions

5.1 Summary and Discussion of Results

Using shaped laser pulses to control the rovibrational state qubits of diatomic

molecules for the purposes of quantum computing, though plausible, requires

more insight and investigation. The molecular systems described in this thesis

satisfy essential criteria as proposed by DiVincenzo and Loss, for a quantum

computer candidate (see Section 1.2.7), yet minimal experimental progress has

resulted. The aim of this thesis was to investigate the inherent rovibrational

state structure of diatomic molecules and experimental parameters present

within current pulse shaping apparatus that may determine the feasibility of

these systems as quantum computing platforms. Minimal emphasis was placed

on the importance of the GA parameter search space. If the parameter space

contains symmetries or redundancies and is too large, then the GA has dif-

ficulty in finding an optimal solution in a reasonable number of generations.

Besides the need to understand the dynamics involved, we needed to approach

the problem systematically since one cannot simply select all frequency com-

ponents at a maximum number of amplitude and phase variation, and be

confident of the optimal solution deduced by the GA. An analytic solution for

the laser pulse was also formulated (see Appendix 4.5). The consequences of

amplitude and phase variation in the frequency domain, along with adjust-

ments to the number of frequency components, can now be seen explicitly in
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the time domain via the analytical expression, Equation 4.5.

The choice of which rovibrational states to utilize as qubits is important

(see Chapter 2). Binary shaped laser pulses provided greater fidelities com-

pared to a similar study on the rovibrational states of CO [1], when we chose

qubits resulting in 1-photon transitions. Relatively large fidelities (> 80%)

were achieved using binary shaped laser pulses for the ACNOT and CNOT

gates on the rovibrational states of CO. As illustrated in Fig. 2.1 there are

many possible choices for sets of qubits that are comprised of rovibrational

states connected by 1-photon transitions. Other choices of qubits would still

have similar frequency differences between excitations since the transition

types, ∆ν=±1 and ∆J=±1, remain the same and thus an alternate choice

of qubits would likely produce similar results.

The choice of diatomic molecule is relevant and affects the ability to shape

laser pulses to perform the ACNOT1 and NOT2 quantum gate operations on

rovibrational qubits (see Chapter 3). This was the case when restricted to a

constant total laser pulse energy and frequency resolution (total pulse dura-

tion) with binary pulse shaping of 51 frequency components. The results of

Chapter 4 suggest that if instead the laser pulse shaping parameters were less

restrictive and further optimized then perhaps there would be no dependence

on the choice of diatomic molecule. The GA results were shown to be quali-

tatively similar to other optimization methods such as OCT (see Chapter 3),

suggesting that the pulse restrictions were not dictating the resulting fidelities

and it is by deduction that the rovibrational state arrangement (i.e., choice of

diatomic molecule) plays a role in producing large fidelities.

The effect of the frequency resolution, or analogously the total pulse du-

ration, on the quantum gate fidelities was studied for shaped laser pulses of

constant total energy with amplitude and phase variability of A=0 or 1 and

φ=0 or π at the qubit transition frequencies required for the quantum gate op-

eration (see Section 4.3.1). The results showed regions of total pulse duration

exhibiting both large and small fidelities. In the case of the ACNOT1 gate
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the fidelity was determined to be dependent upon the difference in the natural

rovibrational state evolution between qubits |10〉 and |11〉, and the oscillatory

trends were attributed to the interval at which the total pulse duration was

sampled. The frequency resolution used in this case is less than the frequency

required to resolve qubit excitations for CO (i.e., dν < 11.4cm−1). Thus the

appropriate choice of frequency resolution, or more appropriately the total

pulse duration, determines largely if the free evolution of the qubits will con-

tribute to the phase alignment and not whether the transitions are resolved.

Future work could combine the study of amplitude optimization of total pulse

energy (see Section 4.3.2) with variability in total pulse duration.

The effect of total laser pulse energy on quantum gate fidelities was studied

for laser pulses of large but constant total energy with amplitude and phase

variability 512A and 2φ (0 or π) at only the excitation frequencies (see Sec-

tion 4.3.2). Results suggested a large fidelity dependence on the energy at

each excitation frequency component. The dependence of energy at particu-

lar frequencies is in direct relationship to the number of optimized amplitude

components (A). When the total laser pulse energy and number of amplitude

components is sufficiently large, then there is enough flexibility for the optimal

energy per frequency component to be chosen by the GA.

The effect of laser pulse variability in amplitude (A), phase (φ) and the

number of frequency components (n) on quantum gate fidelities was studied

(see Section 4.3.3). This was examined for laser pulses of constant total energy

with amplitude and phase variability of 32A and 32φ between 0 ≤ A ≤ 1 and

0 ≤ φ ≤ 2π with the maximum number of frequency components of n=10 or

13. The variability in amplitude affects the energies per frequency component,

as described previously, and thus is important towards obtaining large fideli-

ties. The data suggests that increasing the number of frequency components

can increase the fidelity and in some cases by at least 10%. The majority

of the increase in fidelity being the result of including frequency components

at and surrounding the qubit transition frequencies involved in the quantum
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gate operation. Interestingly, phase variation did not appreciably affect the

fidelities. Moreover, the subsequent calculations with phase variation beyond

2φ (i.e., more than 0 or π), posed optimization problems for the GA. Includ-

ing variability in phase not only increases the parameter space the GA must

search, but perhaps creates redundant noise due to the small phase dependent

fluctuations in fidelity.

Overall, the primary experimental conditions, as pertaining to laser pulse

shaping, that dictate whether large fidelities can be obtained are (i) the en-

ergy per frequency component and (ii) the frequency resolution (total pulse

duration). Both should be used along with a sufficient number of frequency

components, in order to attempt to obtain a maximum fidelity.

With respect to the fidelity function (see Eq. 1.2) used in this thesis and all

other analogous GA optimizations towards quantum computation, there is an

associated weight attributed to average population control and global phase

alignment. This also applies to global phase alignment within OCT using an

auxiliary wavefunction Ψ5, as detailed in Section 3.2.3. The fidelity function

used in the GA optimizations can be written in the form similar to Equation

4.5,

F =
1

4
P̄ +

3

4

6∑
i 6=j

rirj cos(∆Φij), (5.1)

where, for simplicity, the time-dependent coefficients describing final state

wavefunctions are written in complex notation and are assumed to be (1,0).

The number of qubit transformations is N=4, ri describes the magnitudes of

the time-dependent coefficients corresponding to wavefunctions Ψi at the end

of the laser pulse interaction, ∆Φij is the difference between qubit phases, Φi

and Φj, at the end of the laser pulse duration and P̄ is the average population.

Using the current fidelity function assigns a weight for the average population

of 25% and subsequently the weight associated with global phase alignment

is 75%. Within OCT, the addition of an extra wavefunction Ψ5 in order to

incorporate global phase alignment within the objective function, means that
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average population has a weight of 80% and global phase alignment is only

20%. What effect the weightings have on optimization, specifically for laser

pulse shaping, has yet to be determined. Further investigations on the effect of

these weights may suggest limitations of the current fidelity function or insight

into a more appropriate one.

5.2 Current Direction

In the present study only four rovibrational state qubits were selected to per-

form 2-qubit operations. A quantum simulator could outperform classical sim-

ulations with only 150 qubits.[2] A universal quantum computer as studied in

this thesis, in order to perform a practical algorithm in comparison to what

can be accomplished on a classical computer, would need thousands or even

millions of qubits.[3, 4] Thus scalability, or increasing the number of qubits, for

the universal diatomic quantum computer system studied in this thesis would

pose a large challenge. In our case the number of qubits (n) or rovibrational

states of a diatomic molecules scales by a factor of 2n. This rapidly increasing

number of rovibrational states compels a change of thought in the implemen-

tation posed in the study, where scalability is an issue. Instead of using the

entire diatomic rovibrational structure as the qubits, it was suggested by De-

mille [5] that only two rotational states of a chain of coupled polar diatomic

molecules trapped in an optical lattice be used. Specifically, the two lowest

energy rotational states (J=0 and J=1) of each polar diatomic would be used

as each qubit and thus scalability is accomplished by increasing the number of

trapped diatomic molecules. The diatomic molecules can interact with each

other due to electric dipole-dipole coupling and thus 2-qubit operations can

be carried out between qubits. An electric field gradient is applied across the

length of the diatomic molecular chain, creating specific differences between

rotational state energies of each diatomic molecule and thus allowing for in-

dependent control of each molecule. Also, an excitation between rotational
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states J=0 and J=1 creates a change of sign in the net electric dipole mo-

ment and thus a change in orientation of the polar diatomic molecule along

the chain. Soon thereafter, an experiment by Sage et al. [6] demonstrated the

preparation of RbCs in its lowest energy vibrational state (ν=0) with a narrow

distribution of rotational states. Then further still, Ni et al. [7] were able to

completely cool 40K87Rb molecules into the rovibrational ground state (ν=0,

J=0). Recently, Chotia et al. [8] demonstrated not only the cooling of 40K87Rb

molecules into their rovibrational ground state, but also the placement of these

diatomic molecules within a 3-D optical lattice with lifetimes of up to 25 s.

The system of polar diatomic molecules trapped in an optical lattice as a

quantum computer candidate is also of theoretical interest. The theoretical

work specific to this field includes modelling the system with 1 or 2 polar

diatomic molecules using optimized laser pulses to represent quantum logic

gates, determining the applicability of some chosen polar diatomic molecules

as practical species for the current setup and examining factors or conditions

relating to the qubits and dipole-dipole coupling [9–19]. Mishima and Ya-

mashita [9] investigated the use of the two lowest energy rovibrational states

of dipole-dipole coupled NaCl-NaCl, NaBr-NaBr and NaCl-NaBr as qubits,

without a static electric field and using OCT to optimize laser pulses relevant

to the Deutsch-Jozsa algorithm. Pellegrini et al. [10] recently investigated the

use of the two lowest energy rovibrational states of 41K85Rb to map 8 qubits

when in the presence of a magnetic field using OCT to optimize laser pulses

relevant to two quantum algorithms (0 and 1 adder, and Grover’s algorithm).

They also applied their theoretical setup to the two lowest energy rovibrational

states of each 41K87Rb dipole-dipole coupled molecules (four qubits total) in

the presence of a magnetic and electric field to shape laser pulse using OCT for

the Grover’s algorithm. Another analogous study was carried out by Bomble

et al. [11] using two dipole-dipole coupled NaCs diatomic molecules in a static

electric field to investigate the Deutsch-Jozsa algorithm (2 qubits) and 0 and

1 adder (8 qubits). Due to the relatively large electric and magnetic dipole
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moments of polar diatomic CrRb, Pavlović et al. [12] suggested it as a rele-

vant molecule for optical lattice/quantum computing studies. Alternatively,

there have also been studies investigating the formation of LiH [13], LiCs

[14, 15] and also a general photoassociative procedure for preparing diatomic

molecules into their lowest rovibrational state [16]. A method for switching

”on/off” the dipole moment was introduced by Yelin et al. [17], allowing for

high coupling between qubit being operated on. The technique was applied to

diatomic species CO and NF in which a 2-qubit phase gate was applied to two

dipole-dipole coupled molecules [18]. Entanglement of qubits is a necessary

requirement of quantum computation and its magnitude at specific distances

and configurations between electric dipole moments was studied.[19]

Our aim at investigating the application of diatomic control using shaped

laser pulses towards quantum computing was successful. We highlighted sev-

eral laser pulse shaping factors for increasing the effectiveness of resulting

quantum logic gates, as well as alluding to issues concerning the use of diatomic

rovibrational states as qubits. The work presented in this thesis may be rele-

vant to the aforementioned application of polar diatomic molecules trapped in

an optical lattice, but the implementation of a quantum computer is far from

complete. The potential advantages of a quantum computer proves to provide

constant motivation, yet many of the criteria listed by DiVincenzo and Loss

[3] which are essential for the implementation of a quantum computer have

yet to be fully realized. Even though a future era of general purpose quantum

computing is far off, the journey will provide added benefits such as greater

experience at controlling complex quantum phenomena, and the development

of new materials and sensors [20].
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R. Wester, M. Weidemüller, New J. Phys. 11, 055034 (2009)

[15] J. Deiglmayr, P. Pellegrini, A. Grochola, M. Repp, R. Côté, O. Dulieu,
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