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Abstract

Adversarial robustness has emerged as a critical area in deep learning due to

the increasing application of deep neural networks (DNNs) and the consequent

demand for their security. Adversarial examples, which are inputs modified

with imperceptible perturbations to deceive DNNs, have garnered significant

attention since their introduction in 2014. Despite the importance of this issue,

current defense methods against adversarial attacks either demand extensive

computational resources or offer limited effectiveness, often relying on specific

attack assumptions. In this thesis, we propose two novel methods to enhance

the adversarial robustness of neural networks without the need for adversarial

examples involving in the training process.

The first approach utilizes temperature scaling of the cross-entropy function

to enhance adversarial defense against untargeted attacks. Through both

theoretical analysis and empirical observations, we demonstrate that increasing

the temperature during model training promotes a more balanced learning

process. This adjustment helps prevent bias in optimization towards challenging

samples, leading to smoother surfaces and reduced gradient updates across

non-target classes. As a result, this implicit debiased optimization strategy

significantly improves robustness. Our experiments confirm that training at

elevated temperatures effectively defends against untargeted adversarial attacks

without requiring additional computational resources.

The second approach utilizes implicit dimension reduction of input data/features

and online knowledge distillation to enhance model robustness. Recent re-
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search in adversarial defense has demonstrated that training networks with

low-dimensional input vectors can improve robustness. However, this method

typically sacrifices the model’s ability to generalize well on clean data. Based on

this theory, we introduce a teacher-student framework, where a teacher model

trained with low-dimensional inputs obtains strong adversarial robustness and

is used to guide the optimization of a student model trained with higher-

dimensional inputs. This framework encourages the student model to inherit

the teacher’s adversarial robustness while maintaining strong generalization

capabilities. Extensive experiments validate that this approach significantly

improves adversarial robustness with only a small impact on generalization

performance.

Overall, our research presents two innovative strategies for improving the

adversarial robustness of neural networks. The temperature scaling method

provides a straightforward yet effective way to bolster defenses against untar-

geted attacks, while the teacher-student framework offers a balanced solution

to maintain generalization ability alongside enhanced robustness. These con-

tributions advance the field of adversarial machine learning, offering practical

solutions for developing more secure and reliable deep learning models.
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Chapter 1

Introduction

1.1 Motivation

In recent years, with the improvement of computational power and the appli-

cation of large models, deep learning algorithms have gradually demonstrated

their potential. Tools like ChatGPT and DALL-E 2 have already become

integral parts of people’s lives, bringing significant commercial success to AI

companies. Even in traditional image classification, the performance of neural

networks has seen substantial improvements due to the usage of large datasets.

In some applications, their performance has reached and even surpassed human

levels [34]. Deep learning models are increasingly being used in security-sensitive

fields, such as autonomous driving. Consequently, more research is beginning

to focus on the security and robustness of neural networks.

Researchers have found that adding imperceptible perturbations to input

data can deceive state-of-the-art classifiers, leading them to make incorrect

predictions [52]. Further research has shown that such perturbations can also

affect recognition and natural language processing (NLP) tasks. These pertur-

bations are known as adversarial perturbations, and samples containing

such perturbations are called adversarial examples. Although different stud-

ies offer various explanations for the causes of adversarial examples, there is a

consensus that improving neural networks’ defenses against such perturbations

is crucial for their future use in safety-critical applications. In adversarial

defense research, two primary methods are frequently discussed: adversarial

training and input purification.
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Adversarial training is the most common defense method against such

perturbations, first proposed by Goodfellow et al. [23] in 2015. It involves using

adversarial examples to train neural networks. However, this approach is quite

ad hoc, often designed to counter specific types of adversarial examples. When

a new attack method is developed, a corresponding training method is created.

Overfitting is another problem with adversarial training. It may occur due

to the lack of comprehensive adversarial examples during training, resulting

in a significant gap between training robustness accuracy and test robustness

accuracy. The third issue with this defense method is the trade-off between

standard accuracy and robustness accuracy; improving robustness accuracy

usually leads to a decrease in standard accuracy. Lastly, adversarial training

is time-consuming. According to this method’s assumptions, all adversarial

examples need to be generated on-the-fly, requiring multiple backpropagation

processes for each adversarial example.

Input purification is another widely used approach to counter adversarial

examples. However, most purification methods cannot achieve a "useful" level

of robustness accuracy against adversarial attacks. They usually need to be

combined with adversarial training to achieve reasonable performance. Time

consumption can also be an issue for some adversarial purification techniques.

For example, recent works using diffusion models for purification take consider-

able time, and this time consumption occurs during the inference phase, which

is even more problematic than if it occurred during training.

The problems faced by the above two methods will greatly restrict their

application in real life, especially the need for adversarial examples during the

training process and the time consumption during the testing process. Thus,

this thesis would answer the question:

"Can we defend adversarial attacks without involving adversarial

samples in model training and heavy computation and time overhead

in model deployment?"

To answer this question, we investigate temperature scaling within the

generalized softmax function. We find that training vanilla models at elevated

temperatures enhances their resilience against untargeted adversarial attacks.
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Additionally, we develop a teacher-student online distillation approach for

training robust models. This strategy encourages the student model to prioritize

robust feature learning, thereby enhancing its ability to withstand attacks.

1.2 Thesis Scope

The objective of this thesis is to explore the possibility of increasing the robust-

ness of deep neural networks without relying on adversarial samples generated

based on specific hypotheses and heavy computational cost in inference. We

approach this objective from two difference perspectives: temperature scaling

and teaching-student online distillation. The main contributions of this thesis

are as follows:

• We empirically identify the effect of temperature scaling in model opti-

mization on adversarial robustness without sacrificing standard accuracy.

We conducted an in-depth study on the "temperature," an important hy-

perparameter of the softmax function. Through extensive experiments, we

explored how temperature affects the model training process. We found

that temperature not only shapes the model’s optimization process, but

also influences adversarial sample generation process. Our experiments

demonstrate that a high temperature helps the model resist common

corruptions, natural perturbations, and non-targeted adversarial attacks.

Remarkably, we found no significant trade-off between robustness and

standard accuracy.

• We propose a Low Dimension Distillation Method (LDD) that signifi-

cantly enhances the robust accuracy of neural networks without relying

on adversarial examples or additional data during training. Previous

research in adversarial defense has shown that training networks with low-

dimensional input vectors can improve adversarial robustness. However,

this improvement often comes at the cost of reduced generalizability of the

model. Building on this insight, our approach introduces a teacher-student

framework where a teacher model analyzes data in a low-dimensional
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space to enhance robustness, while a student model directly processes the

original high-dimensional data. In this setup, the teacher model, trained

with low-dimensional inputs, guides the optimization of the student model

trained on high-dimensional inputs. This distillation process ensures that

the student model naturally inherits the robustness of the teacher model.

1.3 Thesis Outline

This thesis is divided into four chapters, outlined as follows:

• Chapter 1 - Introduction introduces the motivation behind this thesis,

emphasizing the importance of adversarial robustness for neural networks.

It also provides a summary of our work and contributions.

• Chapter 2 - Background reviews adversarial machine learning and

robustness. It covers the causes of neural network vulnerabilities, theories

explaining the existence of adversarial examples, and current adversarial

attack and defense methods.

• Chapter 3 - Improve Adversarial robustness by Scaling Temper-

ature is the first technical chapter of the thesis, specifying our effort on

exploring the temperature scaling for robust classification models.

• Chapter 4 - Low Dimension Distillation for Adversarial Ro-

bustness is the second technical chapter of the thesis, detailing our

teacher-student distillation design for robust representation learning.

• Chapter 5 - Conclusion and Future Work summarizes the findings

of this thesis and discuss potential future research directions.

4



Chapter 2

Background

2.1 Deep Learning

The core objective of a machine learning model is to approximate the projections

from data 𝑋 to the target output 𝑌 . It uses neural networks or multilayer

perceptrons (MLPs) to achieve this goal. A deep neural network (DNN) is

one of the most renowned architectures for approximating these projection

functions, 𝑓 : 𝑋 → 𝑌 . This network can be divided into three parts: an

input layer to map the input raw data to the numerical input vector, multiple

hidden layers to project the input vector into the latent feature space, and an

output layer to complete the task-specific inference based on the numerical

representation in the feature space, for example, classifying a sample. This

architecture is usually represented by the following formula:

𝑓 (x; 𝜽) = 𝜙𝑙 (W(𝐿) . . . 𝜙2(W(2)𝜙1(W(1)x + b(1)) + b(2)) · · · + b(𝐿)). (2.1)

In this formula, x represents the input data, 𝜽 represents all the parameter

variables, expressed as 𝜽 = {W(𝑙) ,b(𝑙) : 𝑙 = 1, 2 . . . 𝐿}. Here, W(𝑙) are weight

matrices and b(𝑙) are bias vectors. 𝜙𝑙 are activation functions, such as the

rectified linear unit (ReLU). 𝑙 ∈ L, where 𝐿 denotes the set of hidden layers,

and 𝑙 specifies a particular layer within the set.

Given a training set {(𝑥𝑛, 𝑦𝑛) : 𝑛 = 1, 2 . . . 𝑁}, the process of predicting 𝑦𝑛

from 𝑥𝑛 is called feedforward. This term refers to the sequential layer-by-layer

processing of information by the neural network during inference. The process

of updating the parameters 𝜽 is called backpropagation, where a loss function
5



is used to quantify the distance between the predicted value 𝑦𝑛 and the true

value 𝑦𝑛 and then update the parameters 𝜽 for loss function minimization

through gradient descent. A widely used loss function in the classification task

is the cross-entropy loss [8].

𝐿𝐶𝐸 = −

𝑁∑
𝑛=1

𝑦𝑛 log 𝑓 (x𝑛; 𝜽) (2.2)

The mean squared error (MSE) loss also performs well in classification tasks,

𝐿𝑀𝑆𝐸 =
1

N

𝑁∑
𝑛=1

[ 𝑓 (x𝑛; 𝜽) − 𝑦𝑛]
2. (2.3)

However, due to the limitation of the samples (x𝑛, 𝑦𝑛) and the greedy

property of the gradient descent based model optimization, this training process

can lead to an overfitting problem, where the network learns specific features

that are not necessary for classification. For example, consider a training set

intended to train a neural network to classify whether there is a swan in an

image. If the training set only includes images of white swans, the neural

network will learn that being white is a critical feature of a swan, causing

black swans to be misclassified as "not a swan." Such problems significantly

reduce the generalization ability of the neural network. One consequence of

this problem is the weak robustness of deep models against adversarial attacks.

Figure 2.1 shows an example of adversarial attacks which is generated following

Goodfellow et al. [23]. Even if the perturbation is hardly noticeable by human,

it can still significantly affect the neural network.

2.2 Theories of Adversarial Robustness

In traditional machine learning methods, researchers manually extract specific

features, which are carefully selected through empirical and theoretical methods,

to project the input vectors to the feature space. In deep learning, the neural

network automatically extracts features from the input images to the latent

representation. Ideally, this process would automatically extract correct and

important features from the input data, such as using the shape of a cat’s ear

6



Figure 2.1: Example of Adversarial Perturbation generated following Goodfellow
et al. [23]. Even if the perturbation is hardly noticeable, it can still significantly
affect the neural network.

(feature) to predict that the picture is of a cat. However, the reality is not that

simple and adding a maliciously designed, imperceptible, small perturbation to

a test image can lead the neural network to make an incorrect prediction. In

fundamental machine learning research, numerous studies and hypotheses have

been proposed to explain the causes of deep model’s vulnerability to adversarial

attacks. In this section, we revisit some of the representative hypotheses.

When we look into deep neural networks, they can be seen as a collection

of numerous kernel machines, as defined by Schölkopf [49] in 1999,

𝑓 (𝑥) = 𝑏 +
∑
𝑖

𝛼𝑖𝐾 (𝑥𝑖, 𝑥𝑖). (2.4)

𝐾 (𝑥𝑖, 𝑥𝑖) represents the kernel function, which matches the distribution between

𝑥 and 𝑥𝑖. Most kernel functions can be considered as a dot product of two

feature points in the feature space:

𝐾 (𝑥, 𝑥𝑖) = 𝜙(𝑥) · 𝜙(𝑥𝑖), (2.5)

where 𝜙(𝑥) is a non-linear transformation that transfers 𝑥 into a high-dimensional

feature space. According to Equation 2.4 and Equation 2.5, we can see that

the kernel function always focuses on the local distribution of 𝑥 and 𝑥𝑖. To

generalize the result from the local kernel, Bengio [8] proposed an assumption

called the smoothness prior, which states: "the target function is smooth or can

be well approximated with a smooth function." [8]. A good feature space can

also be derived from this assumption. It needs to be able to smoothly express
7



the target space. This assumption is challenging to achieve because all the

training data in the training set are finite, discrete points in the feature space.

There may not be enough to construct a continuous surface of the feature space

distribution [52].For example, in some areas of high-dimensional space, the

surface may change drastically, but if the training data do not include samples

from these areas, the plane may be smoothed incorrectly, making the neural

network vulnerable. This problem is difficult to solve because the surface of

the high-dimensional distribution is hard to visualize, making it challenging

to determine which specific images should be added to the training set to

interpolate the missing information.

Further studies also suggest that the Shrinking of the Interior can be

considered an important reason for neural network vulnerability [30]. This

property indicates that as the dimensionality of the space increases, the points

within the distribution tend to get closer to the surface. This phenomenon can

be expressed by the following inequality [11]:

𝑣𝑜𝑙𝑢𝑚𝑒((1 − 𝜖)𝐴)

𝑣𝑜𝑙𝑢𝑚𝑒(𝐴)
= (1 − 𝜖)𝑑 ≤ 𝑒−𝜖𝑑 (2.6)

In Equation 2.6, let 𝐴 be an object in 𝑅𝑑. 𝜖 is a small factor that transforms

𝐴 into another object. 𝑣𝑜𝑙𝑢𝑚𝑒((1 − 𝜖)𝐴) represents the volume of the interior

region of object 𝐴, while 𝑣𝑜𝑙𝑢𝑚𝑒(𝐴) represents the volume near the surface

of object 𝐴. The factor (1 − 𝜃)𝑑 affects the rate of shrinkage. If we fix 𝜃 and

increase the dimension 𝑑, the fraction will gradually decrease. As a result,

the points within object 𝐴 will gradually move closer to the surface. If the

dimension 𝑑 approaches infinity, the fraction will approximately equal zero,

meaning almost all points in object 𝐴 will be near the surface, leaving the

interior space close to zero. This phenomenon is common and fundamental for

distributions in Euclidean space [18]. Gregory [30] provided numerical statistics

on the proportion of points near the surface. The data shows that when the

dimension 𝑑 is equal to or greater than 128, nearly 100% of the points are near

the surface. For most neural network classifiers, such as CNNs, the dimension

of the feature space is far greater than 128. Therefore, the high-dimensional

feature space itself contributes to and increases the vulnerability of neural
8



Figure 2.2: Schematic of the hypothesis that create by [52]. There are many
low-probability traps in feature space. Even if all samples have been clearly
separated by the classifier, samples in the trap may still lead to classification
errors.

networks.

The term adversarial example was coined by Szegedy et al. [52] to describe

input examples that have been modified with imperceptible perturbations, as

mentioned in the previous section, that can deceive deep neural networks into

making incorrect predictions. It is assumed that the number of adversarial

examples is extremely low compared to the number of other examples; therefore,

they are hard to find in the test set. However, even though the relative

number of adversarial examples is small, the absolute number is still significant.

Thus, they can be found using specially designed search methods. Figure 2.2

schematically represents this assumption. In this paper, Szegedy also provides

an interesting example of this assumption: consider a classifier 𝐶 designed

to distinguish whether a real number 𝑥 belongs to the category of "positive

irrational or negative rational" numbers, or "negative irrational or positive

rational" numbers. If the training set is randomly selected from real numbers,

the classifier will easily learn to separate positive numbers from negative

numbers without considering whether a number is rational or not. This is

because the training set is likely to be predominantly composed of irrational

numbers, given the relative abundance of irrational numbers compared to

rational numbers. However, this classifier can be easily fooled by adversarial

examples, as rational numbers close to the irrational input 𝑥 are easy to find

9



among real numbers.

Goodfellow et al. [23] found that this kind of vulnerability not only occurs

in deep neural networks but also in linear classifiers. Based on this observation,

they assumed that this vulnerability might not be caused by "low-probability

pockets." Instead, it may be due to small perturbations whose effects are

magnified by the linear superposition resulting from the increase in dimension-

ality. This hypothesis is called the linear hypothesis, and they proved this

hypothesis by building a shallow linear neural network. For the simplest linear

neural network, it can be represented as a dot product between a weight vector

𝑤 and an input 𝑥:

𝑦 = 𝑤𝑇𝑥. (2.7)

The adversarial example can be formulated as 𝑥 = 𝑥 + 𝜂, and its output can

be represented as 𝑦 = 𝑤𝑇𝑥. In this context, 𝜂 represents the adversarial

perturbation, and it is constrained by ‖𝜂‖inf < 𝜖 . Here, 𝜖 is the regularization

term that defines the maximum amount of perturbation to ensure that the

perturbation remains imperceptible. Therefore, we can express the distance

between the standard and adversarial output as follows:

𝐷𝑖𝑠(𝑦) = 𝑦 − 𝑦 = 𝑤𝑇𝜂. (2.8)

According to this equation, we can see that the distance is positively related to

the perturbation 𝜂 and the weight vector 𝑤. To maximize this distance, we

can set 𝜂 to its constraint 𝜖 by assigning 𝜂 = 𝑠𝑖𝑔𝑛(𝑤). The weight vector 𝑤

can be formed by the dot product of a dimension vector n and a magnitude

vector m. Therefore, this distance in Equation 2.8 can be formulated as:

𝐷𝑖𝑠(𝑦) = 𝜖𝑚𝑛 (2.9)

Since 𝜖 is a hyper-parameter, and the magnitude vector m and dimensions are

independent of each other, the expression can be simplified to:

𝐷𝑖𝑠(𝑦) ∝ 𝑛 (2.10)

10



Figure 2.3: Schematic of the Boundary tilting hypothesis [53]. The decision
boundary (red line) and the submanifold of sampled data have a small angle
tilting between each other. This gap makes adversarial examples possible.

According to this Equation 2.10, we can see that the distance will grow linearly

with the dimension 𝑛. Even though the perturbation is small, it can still cause

a significant change in the output if the dimension of the weight vector is large

enough.

The Boundary Tilting Hypothesis is another important hypothesis for

analyzing the vulnerability of models, proposed by Tanay et al. [53]. They be-

lieve that the cause of adversarial examples is the classifier’s decision boundary

extending beyond the submanifold of input data. As shown in the Figure 2.3,

there is a small gap between the submanifold of sampled data and the classifier’s

decision boundary (red line). Adversarial examples are the points not on the

submanifold surface but close to it. Khoury et al. [31] also mathematically

proved this idea using geometric analysis. Tanay et al. also claim that in low

dimensions, an input image perturbed by a random perturbation is likely to

cross to the different side of the class boundary. However, in high-dimensional

space, a random perturbation is less likely to guide the point along the bound-

ary, thus providing robustness to random perturbations, which is consistent

with the results in [52].

2.3 Adversarial Attacks

In Section 2.2, we theoretically analyzed the possible causes of the existence of

adversarial examples from different perspectives. In this section, we will review
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specific methods to generate adversarial attacks.

2.3.1 Taxonomy of Adversarial Perturbations

After Szegedy et al. [52] proposed adversarial perturbations, researchers con-

ducted extensive studies on methods to search such adversarial perturbations.

As the research progressed, different angles of attacks on a model emerged.

The first and most direct distinction of attacks to deep models is the ability

to access the training data. Attacks with access to training data are called

data poisoning attacks or training time attacks. Depending on the level

of access to the training data, this attack method is divided into the following

three categories:

1. Data Modification Attacks: These have the maximum access permis-

sion, allowing modification of both the training sample’s feature vectors

and their labels.

2. Insertion Attacks: These attacks can only insert perturbed examples

without changing the data in the original training set.

3. Label Modification Attacks: These can only modify some labels in

the training set.

Attacks that can only access a trained model without touching the training

data are called decision-time or test-time attacks. These attacks aim to

find the weaknesses of a classifier and craft a feature vector to fool it at decision

time. Adversarial examples are one such attack, which limits the magnitude of

perturbations.

In the attack methods involving adversarial examples, based on the amount

of information about the victim model obtained by the attackers, these can be

divided into white-box attacks and black-box attacks. In a white-box

attack, the attacker knows full details about the model’s internals, such as

model parameters, random seeds, and even the training strategy. In a black-

box attack, under the original assumption, attackers can only access an API

to query the target model [44]. In subsequent research, Assion et al. [5] further
12



divided it into four subcategories based on different levels of access to model

output information: output transparent black-box, query-limited black-box, label-

only black-box, and full black-box. In some work, black-box attackers are also

allowed to know the model’s architecture to enhance the attack.

Targeted and untargeted are another dimension (attack goals) to distinguish

attack methods. In a targeted attack, the objective is to misclassify the

output into a specific class. In contrast, an untargeted attack aims to craft

a perturbation to maximize the classification loss, without concern for the

specific outcome.

2.3.2 Adversarial Examples

In this section, we will overview some representative methods to generate white-

box adversarial examples that are closed related to this dissertation. Black-box

attacks can be generated using a surrogate models with these algorithms.

• Limited Memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)

Algorithm [52] is the most basic optimization-based method to find ad-

versarial examples, introduced by Szegedy et al. in 2014. They proposed

that perturbations with desired properties could be found by optimizing

an objective function. To achieve this, the solution to the following

box-constrained minimization problem needs to be found:

min
𝜖

‖𝑥 − 𝑥′‖2, subject to 𝑓 (𝑥′) = 𝑦′, 𝑥′ ∈ [0, 1]𝐷 (2.11)

where 𝑓 (·) is the classifier, 𝑦′ represents the incorrect label. 𝑥 is the input

example, 𝑥′ is the adversarial example, and 𝜖 is the difference between 𝑥

and 𝑥′

• Carlini-Wagner (𝐶&𝑊) Attack [9] is an alternative method to the L-

BFGS attack. Carlini and Wagner pointed out that the main weakness

of the L-BFGS method is that the optimization problem is hard to

solve. Therefore, they proposed using a penalty function to replace that

constraint. They introduced their 𝐿𝑝 attack by optimizing the following
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problem:

min
𝑤

‖𝑥 −
1

2
(1 + 𝑡𝑎𝑛ℎ𝜉)‖2𝑝 + 𝛼 · 𝑓 (

1

2
(1 + 𝑡𝑎𝑛ℎ𝜉)), (2.12)

where 𝛼 controls the impact of the objectives on the problem, and the

function 𝑓 (·) is defined as:

𝑓𝑐 (𝑥
′) = 𝑦′ ⇐⇒ 𝑓 (𝑥′) ≤ 0. (2.13)

Here, 𝑓𝑐 is a classifier. They argued that using the unconstrained variable

𝜉 is a better choice to achieve this objective as it is much easier to solve

and can still produce effective results.

• Fast Gradient Sign Method (FGSM) [23] is one of the most significant

methods in adversarial attacks. It was the first useful feature-based attack

proposed by Goodfellow et al., based on their linearity hypothesis. They

used an equation to express the perturbation:

𝛿 = 𝜖 𝑠𝑔𝑛∇𝑥𝐽 (𝜃; 𝑥, 𝑦), (2.14)

where 𝜃 represents the parameters of the classifier, 𝐽 (𝜃; 𝑥, 𝑦) is the loss

function for the classifier, and 𝜖 is a hyper-parameter that defines the

magnitude of the perturbation. This method is a simple but effective

technique for finding adversarial examples, requiring only a single step of

backpropagation to craft an adversarial example with a relatively high

success rate.

• Projected Gradient Descent (PGD) [41] is an iterative version of the

FGSM algorithm. It transforms FGSM’s simple optimization function

into an iterative optimization function. By applying repeated small-

perturbation optimizations, PGD can find better adversarial examples

with a higher success rate. The recurrence equation of this optimization

process can be formulated as:

𝑥′(𝑡+1) = 𝑥′(𝑡) + 𝜖 𝑠𝑔𝑛∇𝑥𝐽 (𝜃; 𝑥, 𝑦). (2.15)

For the first iteration, a random perturbation is applied to the input 𝑥.
14



• Auto-PGD (APGD) Algorithm [15] is an automatic scheme designed

to address the problems faced by the PGD algorithm. Since the PGD al-

gorithm can only use a fixed step size to update the iteration function, the

performance of the iteration process depends heavily on hyperparameter

settings, and, like other training processes, a fixed step size may not be

the best option for finding the optimal convergence point. APGD starts

the search with a larger step size, and when the trend of convergence

begins to level off, it switches to a smaller step size to continue the search

until the loss function can no longer converge. This method balances

the effective optimization speed brought by large step sizes with the

advantages of local optimization provided by small step sizes.

• Square Attack [4] is a notable example of a black-box attack. It

employs a random search method to sample a random perturbation 𝛿.

The algorithm then determines whether this perturbation can improve

the objective function. If it can, the perturbation is added to the current

adversarial sample 𝑥′. This is a score-based attack method that does not

rely on the gradient of the victim model. Instead, it uses a random search

method to achieve a high success rate, which is comparable to that of

white-box attacks.

2.4 Defense Method

Since "adversarial examples" were proposed, researchers have tried various

methods to defend against this type of attacks. Adversarial training and input

purification are methods that have achieved considerable results and are widely

used. In this section, we will review these two methods.

2.4.1 Adversarial Training

The idea of adversarial training was proposed by Szegedy et al. [52] as well.

They pointed out that training a network with a mixed dataset containing

both adversarial and clean examples could enhance the network’s adversarial
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robustness. The following year, Goodfellow et al. proposed a regularization-

based adversarial training method that adds a regularization term to the

cross-entropy loss function to improve adversarial robustness. The loss function

can be written as follows:

𝐿 (𝜃) = 𝛼𝐽 (𝜃, 𝑥, 𝑦) + (1 − 𝛼)𝐽 (𝜃, 𝑥 + 𝜖 𝑠𝑖𝑔𝑛(∇𝑥𝐽 (𝜃, 𝑥, 𝑦), 𝑦)), (2.16)

where 𝛼 is a parameter that controls the degree of attention the network pays

to adversarial examples, and 𝐽 is the cross-entropy loss. Goodfellow et al.

found that this method can, to some extent, defend against the FGSM attack.

Kurakin et al. [37] extended this method to ImageNet by modifying the ratio

of adversarial examples in the mini-batch.

Madry et al. [41] further optimized the problem. They believe adversarial

training can be described as a saddle point (min-max) optimization problem.

They used the PGD method to iteratively find the maximum adversarial

examples and used the cross-entropy loss to achieve the best prediction on

them. It can be formulated as follows:

𝐿(𝜃) = 𝑚𝑖𝑛E(𝑥,𝑦)∼𝐷 [max
𝛿∈𝑆

𝐽 (𝑥𝑝𝑔𝑑, 𝑦; 𝜃)] . (2.17)

Zhang et al. [63] pointed out that robust error can be decomposed into

the sum of natural error and boundary error. They believe boundary error is

caused by the small distance between data points and the decision boundary.

Therefore, they proposed the TRADES method to minimize the error by solving

the following problem:

min
𝑓
E𝐿 ( 𝑓 (𝑥), 𝑦) + max

𝑥′∈B(𝑥,𝜖)
𝐿 ( 𝑓 (𝑥), 𝑓 (𝑥′))/𝜆, (2.18)

where 𝜆 is a coefficient to control the strength of regularization. Later studies

on adversarial training have mostly focused on using data augmentation to

improve performance [59], or making small optimizations to the loss function.

It should be noted that through adversarial training shows promising results,

it suffers from several drawbacks. The most important issue is its ’ad hoc’

nature. Adversarial training methods are always based on specific attack
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methods and use adversarial examples generated by these attacks to reinforce

weak points. The problem is that most current attack methods are directly

or indirectly based on the hypotheses from Goodfellow et al. [23] and Madry

et al. [41], who proposed the adversarial training method. Therefore, the

robustness performance achieved by adversarial training might be due to the

limitations of the attack methods themselves.

So far, there are no attack methods based on newer theories [17], [20], [21],

[31], [53], [54]. However, this remains the sword of Damocles hanging over

the adversarial method. Even under the limited attacks currently available,

the performance of adversarial training is still not satisfactory. The trade-off

between clean accuracy and adversarial accuracy is unavoidable in the adver-

sarial training process. Most of these methods suffer from serious overfitting

problems. To mitigate this issue, some state-of-the-art methods attempt to

introduce additional data. However, there are challenges with this solution.

For toy datasets, such as CIFAR10, it is easy to find useful additional data,

but for large datasets, such as ImageNet, finding additional data becomes a

significant challenge.

Time consumption is another problem for adversarial training methods.

Adversarial training requires ’real-time’ generated adversarial examples for the

training process, and generating each adversarial example requires multiple

iterations of backpropagation, which consumes a lot of time.

2.4.2 Adversarial purification

Adversarial purification can be considered as noise removal before feeding the

query data to the pre-trained model. To filter out or mitigate the effects of

adversarial perturbations on model predictions, it usually requires clean data

and their adversarial counterparts to build a denoising model. Defense-GAN is

the first input purification method proposed by Samangouei et al. [48], which

builds a generator to produce clean images from attacked images. Subsequent

work has used different methods to process input images, such as hand-crafted

techniques [3], learned objectives [47], and auxiliary networks [62]. The state-

of-the-art method uses diffusion models to purify input images [40]. This
17



method achieves almost the same performance as the latest adversarial training

methods [66]. It should be noted that one biggest problem with this method is

time consumption, and unlike adversarial training, this time consumption is

added to the evaluation process.

2.5 Discussion & Conclusion

With the ’arms race’ over the past few years in the field of adversarial robustness,

increasingly powerful and efficient attacks are being proposed. However, in the

area of defense, there is still a lack of effective means.

Adversarial training, proposed by Goodfellow et al. in 2015, involves train-

ing neural networks with adversarial examples to improve robustness. Despite

its widespread adoption, several challenges persist. Firstly, the approach is

often reactive, tailored to specific attack types, which necessitates continual

adaptation as new attack methods emerge. Secondly, overfitting can occur due

to the limited diversity of adversarial examples used during training, leading

to a disparity between robustness accuracy during training and testing phases.

Thirdly, there exists a well-known trade-off between standard accuracy and

robustness accuracy; while improving robustness, the model’s performance on

clean data may deteriorate. Lastly, the computational overhead is consider-

able, as generating adversarial examples on-the-fly and performing multiple

backpropagation steps per example significantly increases training time and

complexity.

Input purification methods aim to preprocess inputs to remove adversarial

perturbations or make them less effective. However, these techniques often fall

short in achieving robustness without supplementary adversarial training. Many

purification methods struggle to attain sufficiently high levels of robustness

accuracy on their own and typically require reinforcement from adversarial

training to yield satisfactory results. Moreover, certain purification approaches,

such as those utilizing diffusion models, introduce significant computational

overhead during the inference phase, posing challenges for real-time applications.

In conclusion, while adversarial training and input purification represent
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important steps forward in defending against adversarial attacks, their lim-

itations underscore the need for further research and development. Future

efforts could focus on mitigating overfitting, reducing the trade-offs between

accuracy metrics, and optimizing computational efficiency. By addressing these

challenges, advancements can be made towards achieving more robust and

reliable neural network defenses against adversarial threats in practical settings.

Therefore, in this dissertation, we aim to explore feasible methods for enhancing

the model’s adversarial robustness without incorporating adversarial examples

during model training or introducing additional computational overhead during

inference.
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Chapter 3

Improve Adversarial robustness by
Temperature Scaling

3.1 Introduction

Deep learning has had dramatic breakthroughs in recent years with tasks

like image classification [33], nature language processing [16], and semantic

segmentation [65], achieving great success. One crucial component utilized by

most deep learning methods is the standard softmax function which normalizes a

set of real values into probabilities. A generalized softmax function incorporates

a parameter, typically referred to as "temperature", which controls the degree

of softness in the output distribution. While the temperature scaling factor has

been extensively explored across various tasks such as knowledge distillation [27],

contrastive learning [56], confidence calibration [45], and natural language

processing, there has been limited investigation into its impact on adversarial

robustness [1]. Particularly, in contrastive learning, low temperature has been

shown to be beneficial by placing greater emphasis on the learning of hard

samples [56]. Since the cross-entropy loss can be expressed in a manner similar

to contrastive loss: measuring similarity between two terms, we became curious

about whether the temperature in the softmax function plays a crucial role in

model’s adversarial robustness.

In this empirical study, we surprisingly find that models trained with high

temperatures show tremendous robustness against non-targeted adversarial at-

tacks such as Projected Gradient Descent (PGD). We verify this phenomenon on
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CIFAR10, CIFAR100, and Tiny-Imagenet [39] using both CNN and Transformer

architectures. Through our analysis, we determined that higher temperatures

ultimately lead to models with a smoother loss surface where the gradient

with respect to the input data is very small, leading to inefficient adversarial

sample generation. However, this robustness improvement doesn’t exist for

targeted attacks. Lastly, we show preliminary to extend our findings regarding

temperature into adversarial training [41] and find that applying temperature

control to adversarial training can indeed regularize the model performance

and elevated temperatures have the potential to boost the model’s overall

robustness.

3.2 Related Works

The softmax function has been a longstanding component of neural networks,

usually used to normalize a vector of real values into probabilities. Modulating

the temperature scaling factor within the softmax function allows for reshaping

the probability distribution. This section provides a concise overview of the

application of temperature scaling in various computational tasks.

Knowledge Distillation proposed by Hinton et al . [27] is one innovative

way to transfer knowledge from a teacher model to a student model. Tempera-

ture is utilized during training to control both the student and teacher model’s

output. The author argues that lower temperatures make the distillation

assign less weight to logits that are much smaller than the average. Conversely,

employing larger temperatures softens the probability distribution and pays

more attention to the unimportant part of the logit. Larger temperatures are

proven to be beneficial in the distillation process since the hard-target term

already ensures the dominant part of the logit (target class) is correct. By fo-

cusing on the remaining logit, the student model can capture more fine-grained

information from the teacher model. Note that despite various temperatures

used during training, it is set to 1 when the model is deployed.

Model Confidence Calibration [24], [38], [42] usually utilizes temper-

ature scaling to address the over-confident issue in deep learning. It centers
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on estimating predictive uncertainty to match its expected accuracy. Despite

multiple generic calibration methods being proposed [35], [36], temperature

scaling used by Guo et al . [24] remains a baseline method for being simple,

effective and able to apply to various cases without major expense. The

motivation behind temperature scaling is simple, since the goal is to control

the network’s confidence to match its accuracy, applying temperature to the

softmax function that can directly modify the probability distribution seems a

perfect fit for the problem. During training, a validation set is needed to find

the ideal temperature parameter for the network, and the same temperature is

used when deployed.

Contrastive Learning [43], [60] is one paradigm for unsupervised learning.

To achieve a powerful feature encoder, it utilizes contrastive loss to pull similar

samples close and push negative pairs away in the latent space:

𝐿 (𝑥𝑖) = − log

[
exp(𝑠𝑖,𝑖/𝜏)∑
𝑗 exp(𝑠𝑖, 𝑗/𝜏)

]
(3.1)

where 𝑠𝑖, 𝑗 is the similarity between 𝑥𝑖 and 𝑥 𝑗 . Although the temperature

control parameter has long existed as a hyper-parameter in contrastive loss,

its actual mechanism has been relatively understudied. Wang and Liu [56]

analyze the contrastive loss closely and find that as the temperature decreases,

the distribution of the contrastive loss becomes sharper, which applies larger

penalties to samples similar to 𝑥𝑖. Also, uniformity [58] of feature distribution

increases, indicating the embedding feature distribution aligns with a uniform

distribution better.

Temperature Scaling in Image Classification has occasionally been

utilized in the experimental sections of prior studies [2], [19], [29], yet focused

investigations on this subject remain limited. For example, certain studies

aiming to improve adversarial robustness have utilized temperature scaling

to adjust logits within their experimentation. However, these studies often

integrate additional complex techniques such as Gaussian noise injection [2],

adversarial training [19], [46], and innovative quadratic activation functions [29],

making it challenging to isolate and understand the specific contribution of

temperature scaling to the overall system performance. In contrast, our study
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narrows its focus to investigating the direct impact of temperature scaling

applied through the softmax function on model adversarial robustness. Among

the few related works, "The Temperature Check" [1] is notably relevant to our

discussion. It mainly explores the dynamics of model training by considering

factors such as temperature, learning rate, and time, and presents an empirical

finding that a model’s generalization performance is significantly influenced

by temperature settings. While our observations and analysis align with

these findings, our study broadens the scope of inquiry by assessing the effect

of temperature scaling on a model’s resilience to common corruptions and

adversarial attacks, thereby adding a new dimension to the existing research.

3.3 Preliminary

3.3.1 Softmax Function

Given a set of real numbers, 𝑋 = {𝑥1, .., 𝑥𝑁 }, the generalized softmax function

can be used to normalize 𝒳 into a probability distribution.

S(𝑋) =
exp(𝑋/𝜏)∑
𝑖 exp(𝑥𝑖/𝜏)

, (3.2)

where S represents the softmax function and 𝜏 is the temperature scaling

factor. The temperature 𝜏 controls the smoothness (softness) of the probability

it produces. Specifically, when 𝜏 → ∞, the output tends toward a uniform

distribution; while when 𝜏 = 0, the softmax function assigns a probability of 1

to the element with the highest value and a probability of 0 to the rest. The

standard (unit) softmax function, with 𝜏 = 1, is widely used in conventional

classification tasks.

3.3.2 Problem Definition and Notation

We consider multi-category classification in this study, where paired training

data {𝒳,𝒴} = {(𝑥, 𝑦) |𝑥 ∈ R𝐻×𝐿×𝑁, 𝑦 ∈ R1×𝑀} are drawn from a data distri-

bution D. Here, 𝐻, 𝐿, 𝑁 are the dimension of a sample 𝑥, 𝑀 is the number

of categories, and 𝑦 is a one-hot vector indicating the class of the input 𝑥. A

classifier, C : 𝒳 −→ 𝒴, is a function predicting the label 𝑦 for a given data
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𝑥. That is 𝐶 (𝑥) = 𝑦. In the canonical classification setting, a neural network

classifier, C = ( 𝑓 ,𝑊), is usually composed of a feature extractor 𝑓 parameter-

ized by 𝜃 and a weight matrix 𝑊 . 𝑓 is a function mapping the input 𝑥 to a

real-valued vector 𝑓 (𝑥) in the model’s penultimate layer and 𝑊 = (𝑤1, ..., 𝑤𝑀)

represents the coefficients of the last linear layer before the softmax layer. So

the likelihood probability of data 𝑥 corresponding to the 𝑀 categories can be

formulated as

𝑦 = C(𝑥) = S(𝑊𝑇 𝑓 (𝑥)). (3.3)

Note that each vector 𝑤𝑖 in matrix 𝑊 can be considered as the prototype of

class 𝑖 and the production 𝑊𝑇 𝑓 (𝑥) in Equation (3.3) quantifies the similarity

between the feature 𝑓 (𝑥) and different class-prototypes.

During training, the model C = ( 𝑓 ,𝑊) is optimized to minimize a specific

loss, usually a Cross-Entropy loss.

𝐿𝑐𝑒 (𝑥) = −𝑦 log 𝑦 = − log

[
exp(𝑤𝑇

𝑖 · 𝑓 (𝑥)/𝜏)∑𝑁
𝑗=1 exp(𝑤

𝑇
𝑗 · 𝑓 (𝑥)/𝜏)

]
(3.4)

When considering all 𝑁 samples in one batch 𝐵𝑁 , the compound loss of the 𝑁

samples are

𝐿𝑁
𝑐𝑒 (𝑥) = −

1

𝑁

∑
𝑥∈𝐵𝑁

log

[
exp(𝑤𝑇

𝑖 · 𝑓 (𝑥)/𝜏)∑𝑁
𝑗=1 exp(𝑤

𝑇
𝑗 · 𝑓 (𝑥)/𝜏)

]
. (3.5)

Though 𝜏 = 1 is the default setting in classification tasks, we preserve 𝜏 in the

equations to facilitate theoretical analysis in this section.

3.3.3 Debias Effects of Elevated Temperature

The fundamental optimization policy is to update the trainable parameters

of the encoder based on the loss calculated from a batch of training data in

Equation (3.5). When we take the temperature parameter into account, we

find that temperature has an impact on the loss function. Specifically, at lower

temperatures, the softmax function produces a sharper probability distribution,

resulting in significant differences in loss values between misclassified (hard

samples) and correctly classified (easy samples) data. Consequently, the encoder

update is predominantly influenced by the misclassified data within the batch.
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Conversely, higher temperatures lead to smaller differences in probability

values across different classes, resulting in a smoother probability distribution.

Consequently, all samples contribute more equally to the loss calculation and

model update. Essentially, except for perfectly predicted samples, which are

rare during model training, lower temperatures cause the model to prioritize

learning from hard samples, whereas higher temperatures help mitigate bias in

updates across all samples within the batch.

3.4 Empirical Analysis and Discussion

As discussed in the Preliminary Section, applying a small temperature en-

courages a model to learn more about hard (misclassified) samples. A low

temperature, however, leads to more equitable learning across different data

points. Theoretically, both approaches to optimize feature distribution sound

reasonable. We argue that which optimization strategy is better for classifica-

tion tasks remains an empirical problem.

3.4.1 Experiment Setting

We conduct image classification tasks on multiple benchmarks (i.e. CIFAR10,

CIFAR100, and Tiny-ImageNet) and their extended Common Corruptions

and Perturbations sets (i.e. CIFAR10-C, CIFAR100-C, and Tiny-ImageNet-C

with corruption strentgh being 3) to investigate the impact of temperature

scaling on model’s adversarial robustness. To get a comprehensive evalua-

tion, 𝜏 ∈ {0.1, 0.5, 1, 10, 30, 50, 70, 100}. Unless stated otherwise, we takes

ResNet50 [25] and VIT-small-patch16-224 as the CNN and transformer back-

bones, respectively. The ResNet50 is trained from scratch, with SGD optimizer

and learning rate setting to 0.1. We also utilize the Cosine Annealing scheduler

to better train the model. The transformer is pretrained on ImageNet-21K and

finetuned on the target dataset using Adam optimizer. All experiments run on

one RTX3090.

Using the standard classification performance as the performance baslines,

we evaluate the model’s robustness against PDG20 [41] and C&W [9]. Both
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attacks are bounded by the 𝑙∞ box with the same maximum perturbation 𝜖 =

8/255 (please refer to the Section 3.6 for more adversarial attack performance).

To clarify, the temperature scaling only involves in model training in this

study, but not model evaluation and attacks. All empirical evaluation and

adversarial sample generation by PGD and C&W are based on the standard

cross entropy, i.e. 𝜏 = 1. Thus, attack gradients are not attenuated, reflecting

model’s true sensitivity to data perturbation.

3.4.2 Experiment Results & Observations

Table 3.1: Model performance and Robustness against Common Corruptions
and Adversarial attacks (%) under different temperatures with ResNet50 trained
from scratch using SGD optimizer. -C in the table represents the corresponding
Common Corruptions and Perturbations set.

Temp.
CIFAR10 CIFAR100 Tiny-Imagenet

Clean -C PGD20 C&W Clean -C PGD20 C&W Clean -C PGD20 C&W

𝜏 = 0.1 90.05 73.31 0 27.79 70.39 44.52 0 14.32 54.53 12.63 0 23.17

𝜏 = 0.5 94.17 72.51 0 16.03 74.79 45.41 0 8.44 61.07 18.55 0 19.44

𝜏 = 1 94.26 72.53 0 19.19 74.58 46.47 0 11.26 62.93 18.66 0 19.09

𝜏 = 10 95.41 73.94 0.56 39.79 78.21 50.67 0.29 15.33 64.70 21.66 2.59 23.88

𝜏 = 30 95.26 74.93 91.09 43.35 78.27 50.17 68.47 18.81 63.60 21.30 49.45 26.50

𝜏 = 50 94.92 74.44 93.04 36.13 77.97 49.87 72.92 20.50 62.85 20.40 54.95 28.68

𝜏 = 70 95.05 74.26 93.85 35.43 77.20 49.61 73.49 21.66 62.14 20.57 55.54 30.14

𝜏 = 100 95.05 73.08 94.29 37.32 77.14 49.31 73.65 22.83 61.46 18.82 54.60 32.71

The quantitative results on CNN and Transformer are summarized in

Table 3.1 and Table 3.2, respectively. For the CNN model, ResNet50, training

from scratch, the standard accuracy increases with the temperature increase.

Further more, CNN models trained at elevated temperatures shows more robust

against adversarial perturbations and naturally corrected images. We believe

that such improvements majorly attribute to the better model optimization

with leveraged temperature. For the transformer finetuned on the target
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Table 3.2: Model performance and Robustness against Common Corruptions
and Adversarial attacks (%) under different temperatures with Transformer.
Transformer models are using Vit-small-patch16-224 as the backbone and are
trained on Imagenet-21k and fine-tuned on the target dataset using Adam
optimizer. -C in the table represents the corresponding Common Corruptions
and Perturbations set.

Temp.
CIFAR10 CIFAR100

Clean -C PGD20 C&W Clean -C PGD20 C&W

𝜏 = 0.1 98.45 92.83 0 26.13 89.79 74.7 0 23.71

𝜏 = 0.5 98.33 91.60 0 26.26 90.53 74.9 0 29.25

𝜏 = 1 98.29 92.21 0 31.69 90.78 75.5 0 31.97

𝜏 = 10 98.06 92.19 89.07 31.89 89.94 75.5 58.71 34.96

𝜏 = 30 98.23 91.72 97.10 38.21 89.52 74.6 86.25 36.07

𝜏 = 50 98.22 91.43 97.75 39.52 89.28 73.8 87.29 33.64

𝜏 = 70 98.03 91.20 97.72 39.02 89.48 74.2 87.96 33.81

𝜏 = 100 98.07 91.56 97.87 38.26 89.13 73.47 86.99 31.84

set, the standard accuracy and robustness aginast natural corruptions and

perturbations is quite stable. We hypothesize that such stable performance is

due to the fact that ViT has already been pre-trained on ImageNet and has

reached a relatively high-quality state.

Clustering is a crucial metric when measuring how an encoder performs.

In classification, a good encoder should be able to gather samples from the

same class while separating clusters of different classes. Figure 3.1 and Figure

3.2 present 2D TSNE visualization of the CIFAR10 sample distribution by

ResNet50 and transformer. We observe a similar trend: low temperatures lead

to more mixed clusters, while models trained with elevated temperatures have

better cluster effects. These empirical observations also explain the improved

classification performance on clean and non-adversarial perturbations, as well

as stronger adversarial robustness, with high temperature in Table 3.1 and

Table 3.2.
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(a) 𝜏 = 0.5

(b) 𝜏 = 1

(c) 𝜏 = 50

Figure 3.1: T-SNE [55] visualization of the CIFAR10 sample distribution after
the ResNet50 encoder with different temperatures.
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(a) 𝜏 = 0.5

(b) 𝜏 = 1

(c) 𝜏 = 50

Figure 3.2: T-SNE [55] visualization of the CIFAR10 sample distribution after
the VIT encoder with different temperatures.
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3.4.3 Gradient Analysis for Adversarial Generation

Our empirical observation prompts questions regarding the mechanism be-

hind the gained robustness. In this section, our focus is on investigating the

model’s behavior under adversarial attacks and understanding why the model

demonstrates such robustness.

In order to discern the source of model robustness, we follow the work in

[28] and study the gradient of the classification loss with respect to the input

to analyze the direction of the PGD attack, which can be written as

𝜕𝐿𝑐𝑒

𝜕𝑥
= [(S(𝑤𝑇

𝑖 · 𝑓 (𝑥)) − 1) · 𝑤𝑇
𝑖 +

∑
𝑗≠𝑖

𝑤𝑇
𝑗 · S(𝑤

𝑇
𝑗 · 𝑓 (𝑥))] ·

𝜕 𝑓 (𝑥)

𝜕𝑥 (3.6)

As illustrated above, given a well-trained model, for most inputs where S(𝑤𝑇
𝑖 ·

𝑓 (𝑥)) ≈ 1, the gradient does not have a noticeable portion in target class 𝑤𝑖 on

the early stage of the attack. This implies that rather than directly ’stepping

away’ from the target class, the attack will initially focus on approaching other

class prototypes. Moreover, the second term,
∑

𝑗≠𝑖 𝑤
𝑇
𝑗 · S(𝑤

𝑇
𝑗 · 𝑓 (𝑥)), indicates

that all the other directions are weighted by their according probabilities.

Therefore, untargeted attacks are actually targeted toward the error-prone

class, which most commonly is the largest probability class other than the

target class. However, if a model lacks an error-prone class given an input, all

𝑤𝑘 will be weighted equally. Consequently, the gradient would point toward

all negative class prototypes, making it exceptionally challenging to determine

the optimal direction. We noticed that such a scenario occurs when a model is

trained with large 𝜏. Then let’s focus on the gradient update strength. For a

data sample 𝑥 is classified correctly, S(𝑤𝑇
𝑗 · 𝑓 (𝑥)) would be small when the model

training temperature 𝜏 increases. That is, when a model is trained with high

temperatures, not only the gradient direction to generate adversarial samples

is not clear, but the gradient strength is also small. Both factors contribute to

the robustness of the model when optimized with elevated temperatures.
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3.4.4 Class Prototypes Analysis

To further analyze the model behavior, we investigate the relation between

the encoded feature, 𝑓 (𝑥), and each class prototype, 𝑤 𝑗 . Here, we observe the

Euclidean distance and cosine similarity. Figure 3.3 shows Euclidean distance

and cosine similarity between one sample and all class prototypes. It is evident

that as the training temperature goes up, the feature 𝑓 (𝑥) tends to have an

identical distance to all negative class prototypes. This indicates the model

trained with high temperature is less likely to have an error-prone class, which

is essential for untargeted attacks as we discuss above.

Furthermore, to illustrate that the phenomenon shown in Figure 3.3 is

not limited to one or a few samples, we calculate the variance of Euclidean

distance and cosine similarity of all negative class prototypes across all samples

in CIFAR10 test set. Note that as illustrated in Figure 3.3, different models

have very different ranges for Euclidean distance between encoded feature and

class prototypes. Therefore, we map the value of different models into the

same range to make a more direct comparison. Box plots are drawn in Figure

3.5 showing the overall variance results with each box being a model trained

with a different temperature. We can observe a clear trend that when the

temperature rises, the variance for both Euclidean distance and cosine similarity

drops indicating the encoded sample, 𝑓 (𝑥), has a more similar distance to all

negative class prototypes. One might notice an increase in variance when the

temperature reaches some threshold. We label them as extreme temperatures,

which are so large that they can adversely affect the model’s convergence.

3.4.5 Extending to Adversarial Training

Given that our temperature control method is used inside the Cross-Entropy

Loss, it is possible to apply this method in adversarial training. Here, we

do preliminary experiments on the adversarial training baseline proposed by

Madry et al . [41] for the simplicity of its loss function. We add temperature

control inside vanilla loss term forming

𝐿𝐴𝑇 (𝑥, 𝑥𝑎𝑑𝑣, 𝑦, 𝐹) = 𝐿𝑐𝑒 (𝐹 (𝑥)/𝜏, 𝑦) + 𝐿𝑐𝑒 (𝐹 (𝑥𝑎𝑑𝑣), 𝑦), (3.7)
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(a) 𝜏 = 0.5 (b) 𝜏 = 1

(c) 𝜏 = 50 (d) 𝜏 = 100

Figure 3.3: A demonstration of the Euclidean distance and cosine similarity
between the encoded sample 𝑓 (𝑥) and all class prototypes for one sample, with
different temperature configurations. The red lines indicate the Euclidean
distance while the blue lines stand for cosine similarity.

Figure 3.4: Euclidean Distance

Figure 3.5: Box plot of the variance of the Euclidean distance and cosine
similarity calculated from each sample. The variances are calculated across all
negative class prototypes, therefore, lower variance indicates a more uniform
distribution of all negative class distances. Each box is a model trained with a
different temperature, the green line shows the median value across all variances
and the orange line is the mean value of all variances.
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Table 3.3: Preliminary experiments of adversarial training on CIFAR-10 with
temperature control. The training scheme uses Madry et al . [41] and the model
is ResNet50.

Temperature 𝜏 = 0.5 𝜏 = 1 𝜏 = 10 𝜏 = 30 𝜏 = 50 𝜏 = 70 𝜏 = 100

Clean 88.98 85.67 81.71 82.62 83.75 84.28 84.27

PGD20 35.93 42.63 40.95 44.96 48.61 49.16 48.53

where 𝐹 is a combination of encoder and class prototypes.

Our preliminary results are listed in Table 3.3. We can clearly observe that

model robustness increases as the temperature increases with a slight trade-off

with clean accuracy, which confirms the possibility of combining the temperature

control method with adversarial training. While further extension to other

adversarial training methods is possible, it remains a complex problem for most

adversarial training involves complex loss functions that may introduce terms

other than the Cross-Entropy function. Also, balancing the vanilla loss term

and adversarial loss term largely relies on empirical experiments. Therefore,

further exploration of fitting this into other adversarial training methods falls

beyond the scope of this section.

3.4.6 Further Discussion on Adversarial Robustness

Despite the model trained with high temperatures showing superb robustness

against untargeted PGD attack due to its nature attribute that discovers the

weakness of PGD attack, it does not hold robustness against targeted attacks.

The reason behind this is straightforward. In targeted attacks, (3.6) no longer

holds, and the gradient is not obligated to move towards all the negative class

prototypes with a weighted step size. Therefore, with the only source of the

model robustness gained eliminated, it is naturally vulnerable when facing

targeted attacks.

Remark: Even though many attacks claim themselves to be untargeted

attacks, they actually optimize toward one self-selected target, which we do

not consider untargeted attacks under this setting. One popular example is
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the Difference of Logits Ratio(DLR) attack proposed by Croce and Hein [15].

Regardless of its ability to rescale the logit,

DLR(𝑥, 𝑦) = −

𝑧𝑦 −max
𝑖≠𝑦

𝑧𝑖

𝑧𝜋1 − 𝑧𝜋3
(3.8)

shows that the DLR loss automatically selects the class holding the largest logit

other than the target class as the attack target. Therefore, during optimization,

it does not need to optimize toward all negative class prototypes. A similar

example also includes FAB attack [14].

3.5 Conclusion & Limitation

In this section, we investigate the under-explored property of temperature

scaling with the softmax function on image classification tasks. By performing

gradient analysis with the Cross-Entropy classification loss and executing

different empirical experiments, we show that temperature scaling can be a

significant factor in model performance. Further experiments reveal applying

high temperatures during training introduces enormous robustness against

gradient-based untargeted adversarial attacks. We hope our work raises the

interest of other researchers to utilize the simple temperature scaling in the

common Cross-Entropy loss.

One limitation of this study was that we didn’t report an explicit algorithm

to set the best temperature values. We will work on this in our future work.

One takehome note, as a hyperparameter, the tuning cost of the tempeerature

is low as a wide range of temperatures (30 to 70) can provide improvements to

the model.

3.6 Appendix: Complete Experimental Results

In this section, we report the complete experimental results of different models

trained with various temperatures against common corruption and pertur-

bations as well as various adversarial attacks. In all our experiments, the

CNN model takes ResNet50 as the backbone and are trained using SGD

optimizer with the learning rate set to 0.1 and a cosine annealing schedule
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is also utilized during all training processes. The transformer model takes

"vit_small_patch16_224" from the timm package, which version is 0.9.10. It

has been fine-tuned for 30 epochs under the target datasets, with a learning

rate of 1e-4.

3.6.1 Experiment on Common Corruptions and Pertur-
bations

This section includes detailed experiment results on natural corruption including

CIFAR10-C, CIFAR100-C, and Tiny-Imagenet-C.

Natural corruption results on CIFAR10-C, CIFAR100-C and TinyImageNet-

C with ResNet50 are reported in Table 3.4, Table 3.5, and Table 3.6. As

demonstrated in the tables, models trained with elevated temperatures have

stronger noise resistant capability. We believe that the robust performance

against the non-adversarial perturbation is due to the better model optimization

under elevated temperature. Similarly, we report transformer’s performance in

Table 3.7 and Table 3.8. As we discussed in the section 3.4.2 , VIT’s robustness

against natural corruptions and perturbations is quite stable. We hypothesize

that such consistent performance is due to the fact that ViT has already been

pre-trained on ImageNet and has reached a relatively high-quality state.

3.6.2 Experiment on Adversarial Attacks

In this section, we report more results on adversarial perturbations. All the

𝐿∞ attacks are using epsilon 8/255, C&W-L2 attack is set with 0.01 learning

rate, 1000 max iteration, and 0.01 cost, and the Square attack uses its default

parameters from the autoattack package. Table 3.9 and Table 3.10 show the

results on CIFAR10 and CIFAR100 using ResNet50 and Table 3.11 and Table

3.12 report the results using transformer.
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Table 3.9: Clean and Adversarial accuracy(%) under different temperatures.
Models use Resnet50 as the backbone and are trained on CIFAR10 dataset
using SGD optimizer.

Temperature Clean PGD20 C&W-Linf C&W-L2 APGD-CE Square

𝜏 = 0.1 90.05 0 27.79 83.18 0 0.4
𝜏 = 0.5 94.17 0 16.03 29.28 0 0.29
𝜏 = 1 94.26 0 19.19 19.09 0 0.45
𝜏 = 10 95.41 0.56 39.79 3.14 0.02 0.54
𝜏 = 30 95.26 91.09 43.35 1.33 81.54 0.83
𝜏 = 50 94.92 93.04 36.13 1.02 83.26 0.63
𝜏 = 70 95.06 93.85 33.51 0.75 84.46 1.03
𝜏 = 100 95.15 94.29 35.43 0.53 84.63 2.95
𝜏 = 150 95.05 94.52 37.32 0.43 84.96 6.17

Table 3.10: Clean and Adversarial accuracy(%) under different temperatures.
Models use Resnet50 as the backbone and are trained on CIFAR100 dataset
using SGD optimizer.

Temperature Clean PGD20 C&W-Linf C&W-L2 APGD-CE Square

𝜏 = 0.1 70.39 0 14.32 62.92 0 0.46
𝜏 = 0.5 74.79 0 8.44 27.17 0 0.39
𝜏 = 1 74.58 0 11.26 24.95 0 0.48
𝜏 = 10 78.21 0.29 15.33 2.78 0.04 0.31
𝜏 = 30 78.27 68.47 18.81 1.04 48.61 0.49
𝜏 = 50 77.97 72.92 20.50 0.69 52.86 0.68
𝜏 = 70 77.20 73.49 21.66 0.46 53.34 0.81
𝜏 = 100 77.14 73.65 22.83 0.36 54.22 1.04
𝜏 = 150 73.15 66.27 20.59 0.37 47.12 1.48
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Table 3.11: Clean and Adversarial accuracy(%) under different temperatures.
Models use ’vit small patch16 224’ as the backbone and are trained on CI-
FAR10 dataset using Adam optimizer.

Temperature Clean PGD20 C&W-Linf C&W-L2 APGD-CE Square

𝜏 = 0.1 98.45 0 26.13 56.89 0 0.21
𝜏 = 0.5 98.33 0 26.26 56.57 0.06 0.31
𝜏 = 1 98.29 0 31.69 58.63 0.21 2.69
𝜏 = 10 98.06 89.07 31.89 49.43 84.99 3.44
𝜏 = 30 98.23 97.10 38.21 55.15 96.83 6.71
𝜏 = 50 98.22 97.75 39.52 59.84 97.4 2.62
𝜏 = 70 98.03 97.72 39.02 67.49 97.57 5.27
𝜏 = 100 98.07 97.87 38.26 69.74 97.68 3.08

Table 3.12: Clean and Adversarial accuracy(%) under different temperatures.
Models use ’vit small patch16 224’ as the backbone and are trained on CI-
FAR100 dataset using Adam optimizer.

Temperature Clean PGD20 C&W-Linf C&W-L2 APGD-CE Square

𝜏 = 0.1 89.79 0 23.71 26.35 0 0.14
𝜏 = 0.5 90.53 0 29.25 31.58 0 0.43
𝜏 = 1 90.78 0 31.97 32.87 0 0.53
𝜏 = 10 89.94 58.71 34.96 20.37 44.09 0.81
𝜏 = 30 89.52 86.25 36.07 23.06 85.49 0.97
𝜏 = 50 89.28 87.29 33.64 25.98 87.27 0.72
𝜏 = 70 89.48 87.96 33.81 29.54 87.72 1.02
𝜏 = 100 89.13 86.99 31.84 32.9 87.04 0.53

42



Chapter 4

Low Dimension Distillation for
Adversarial Robustness

4.1 Introduction

Since Szegedy et al. [52] first proposed adversarial examples, dimensionality has

become one of the most important factors to consider for model’s adversarial

robustness. Goodfellow et al. [23] pointed out that with increasing input

dimensions, models can exhibit more adversarial vulnerability in a linear model.

Chen et al. [12] found that in low-dimensional input images, it is harder to find

adversarial examples. Recent work [10] suggests that CNN-based networks tend

to extract high-dimensional feature vectors, which may lead to redundant space

for adversarial perturbation. Gilmer et al. [21] demonstrated that eliminating

such redundancy may increase the adversarial accuracy of the model. Awasthi

et al. [7] used the principal component analysis (PCA) method to create a

projection matrix that projects data in the high-dimensional input space into

a robust subspace. This subspace is smooth and, under small perturbations,

maintains low variance and separable means. In subsequent work [6], they

theoretically proved that PCA can find a robust subspace for both supervised

and unsupervised tasks. The most recent work [22] found that as subspace

dimensionality decreases, the average adversarial success rate also decreases.

Despite the insightful discovery in these prior studies, there are still some

problems unsolved. First, these methods usually need auxiliary data to manually

create a fixed projection matrix to reduce the dimension of the input data.
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Figure 4.1: The diagram of our Low Dimension Distillation (LDD) Architecture.

Second, the low-dimension trained network tends to have weaker generalization

ability on clean data compared to the high-dimension trained network.

To solve the first problem, we propose a generalized input layer in deep

learning model for input data dimension reduction. It can be wither a pre-fixed

down-sampling operation or a trainable layer with a large stride step. To

address the second challenge, inspired by Zhang et al. [64]’s self-distillation

method, we propose a distillation strategy to distill a low-dimension trained

network into a high-dimension network to increase generalization ability of

the model. This strategy encourages the student model with high-dimensional

input preserving teacher model’s robustness but with stronger generalization

on clean data. In the experiment, our method achieves 43.45% robustness

accuracy on the CIFAR-10 dataset using only clean images during the training

process without any additional data.

4.2 Methodology

Figure 4.1 depicts the overall diagram of the Low Dimension Distillation (LDD)

approach using a teacher-student architecture with online knowledge distillation.

The primary distinction between the teacher and student models lies in their
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input projection layers. Specifically, following the teacher’s input projection

layer, the input data is transformed into a low-dimensional vector, reducing

information redundancy and facilitating robust feature learning. During model

training, we employ cross-entropy loss to guide the teacher model to predict as

accurately as possible. In contrast, the student model retains its input vector

in a higher dimension and incorporates an online distillation mechanism to

learn from the robust teacher model.

4.2.1 LDD Architecture

Our LDD model comprises a teacher-student pair. Each network, whether

teacher or student, is structured with an architecture 𝑓 consisting of two

components: an input projection layer parameterized by Φ and a feature

extraction backbone parameterized by Θ. Generally, the input project layer

will be the input layers in a CNN network and the linear projection of flattened

patches in a Vision Transformer. Given an input date 𝑥, we can obtain the

corresponding input vector 𝑣 by the function 𝑓Φ : 𝑥 → 𝑣. The second part of 𝑓

is the backbone, which contains the encoder and the fully connected layers as a

classifier. For any input vector 𝑣, we have a function 𝑓Θ : 𝑣 → 𝑧 that projects

it onto a logit vector 𝑧. Therefore, our complete network can be represented as

𝑓Φ,Θ = 𝑓Φ ◦ 𝑓Θ.

In this chapter, we use subscript 𝑡 and 𝑠 to denote variables in the teacher

model and student model. Therefore, the data flow of the teacher and student

models are specified as follows. First, we pass 𝑥 through 𝑓 𝑡Φ, obtaining an input

vector 𝑣𝐿𝑜𝑤−𝐷𝑖𝑚. Then, 𝑓 𝑡Θ is used to process the input vector and predict a

logit 𝑧𝑡 . Finally, we use the log Softmax function 𝜎 to generate a softened

probability 𝑝𝑡 .

𝑓 𝑡Φ(𝑥) = 𝑣𝐿𝑜𝑤−𝐷𝑖𝑚, 𝑓 𝑡Θ(𝑣𝐿𝑜𝑤−𝐷𝑖𝑚) = 𝑧𝑡 , 𝜎(𝑧𝑡) = 𝑝𝑡 (4.1)

At the same time, a similar data flow occurs in the student network 𝑓 𝑠Φ,Θ:

𝑓 𝑠Φ(𝑥) = 𝑣𝐻𝑖𝑔ℎ−𝐷𝑖𝑚, 𝑓 𝑠Θ(𝑣𝐻𝑖𝑔ℎ−𝐷𝑖𝑚) = 𝑧𝑠, 𝜎(𝑧𝑠) = 𝑝𝑠 (4.2)

The main architectural difference between the teacher and student models

lies in their input projection layers. The teacher model includes an input
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projection layer that transforms the input data into a relatively low-dimensional

space. In contrast, the student model does not perform any special operations

to reduce the dimensionality of the input vector. This design choice is motivated

by the belief that the teacher model’s reduction of input data redundancy

decreases the likelihood of the model learning non-essential features. Conversely,

by learning from the robust teacher model, the student model can leverage all

the information in the original input sample to achieve a better generalization.

To realize the dimension reduction in the teacher model, we have 4 different

implementations.

1. Direct Input Pooling (or input down-sampling): We add a pooling layer

before the model’s original input layer. This is the most straightforward

method and can serve as a baseline in our method. However, this

implementation has a significant drawback: the pooling layer cannot be

trained, making it difficult to avoid losing some essential features during

the down-sampling process.

2. Post-Input Pooling (or feature pooling): We can also add a pooling layer

after the backbone’s original input layer. This method shares the same

problem as the previous one. It is still challenging to avoid missing some

important features.

3. Trainable Input Layer with Large Stride for CNN: In this implementation,

we increase stride of model’s original input layer. This is the better

method to reduce the dimensionality of the input feature vector. During

the training process, this layer can automatically learn which features

are essential to preserve and which are unnecessary to drop.

4. Modified Embedding Patch in Vision Transformer (ViT): In this im-

plementation, we enlarge the patch size of the linear projection layer

preceding the attention blocks in ViT. It share the same functionality

as the CNN layer with a large stride step in CNN models. However, the

primary challenge with this architectural modification is that the teacher
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ViT model requires more time to converge, necessitating the use of a

pre-trained model on a large dataset to expedite convergence.

In our experimentation section, we will show that all of the above implementa-

tion improves the model’s robustness with different margins and the trainable

ones achieve the best performance.

4.2.2 Online Distillation

We use a dataset D to train our teacher-student network. The training set

contains n pairs of image-label pairs {𝑥𝑖, 𝑦𝑖}𝑛 where 𝑦𝑖 ∈ {1, . . . , 𝑐}. In each

update, we feed the network a minibatch 𝐵 = {𝑥, 𝑦}𝑚, which contains m

pairs of image-label pairs. The student and teacher networks will be updated

simultaneously in each update with the following loss functions, respectively.

Teacher Optimization: To optimize the teacher model, we use categorical

cross-entropy loss 𝐿𝑐𝑒 between the predicted softened probability 𝑝𝑡 and the

true label 𝑦.

𝐿𝑡 = 𝐿𝑐𝑒 (𝑝𝑡, 𝑦) = 𝐿𝑐𝑒 (𝜎( 𝑓 𝑡Φ,Θ(𝑥)), 𝑦), (4.3)

where 𝑓 𝑡Φ,Θ = 𝑓 𝑡Φ ◦ 𝑓 𝑡Θ. When we update our network, we update both Φ

and Θ together. We believe this can help our feature extractor obtain better

features from 𝑥.

Student Optimization by Knowledge Distillation: In the original

work of knowledge distillation [27], Hinton et al. use 𝐿𝐶𝐸 + 𝐿𝐾𝐿 to formulate

𝐿𝐾𝐷 . It can be considered a combination of a classification loss function

and an additional loss function that encourages the student to learning the

distribution information of the teacher [61]. In our work, if we directly apply

𝐿𝐶𝐸 to the student network, it will encourage the student model to directly

use the redundant information in input for classification, leading to adversarial

vulnerability in the student network (which we want to avoid). In addition,

Taehyeon et al. [32] found that the loss 𝐿𝐾𝐿 with low temperature focuses on

learning the predictions of the teacher, and when it has a high temperature, it

focuses on the teacher’s distribution. They also point out that 𝐿𝑀𝑆𝐸 can be
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considered equivalent to 𝐿𝐾𝐿 with a sufficiently high temperature. Based on

these prior studies, we propose a new distillation function in Equation 4.4.

𝐿𝑠 = 𝐿𝑘𝐿 (𝑝𝑠, 𝑝𝑡) + 𝛼𝐿𝑀𝑆𝐸 (𝑧𝑠, 𝑧𝑡), (4.4)

where 𝛼 is the weight to balance the two terms. 𝐿𝑘𝐿 (𝑝𝑠, 𝑝𝑡) encourages the

student to following the teacher’s prediction, and 𝐿𝑀𝑆𝐸 (𝑧𝑠, 𝑧𝑡) promotes the

student sharing the same logit distribution of the robust teacher. In specific,

𝐿𝐾𝐿 = 𝐾𝐿 (𝑝𝑠, 𝑝𝑡) = 𝐿𝐾𝐿 (𝜎( 𝑓 𝑠Φ,Θ(𝑥)), 𝜎( 𝑓 𝑡Φ,Θ(𝑥))) (4.5)

𝐿𝑀𝑆𝐸 = (𝑧𝑠 − 𝑧𝑡)
2 = ( 𝑓 𝑠Φ,Θ(𝑥) − 𝑓 𝑡Φ,Θ(𝑥))

2 (4.6)

The pseudo-code of the training procedure of our Low Dimension Distillation

is present in Algorithm 1.

Algorithm 1 Training procedure of our Low Dimension Distillation
Require: 𝑓 𝑡Θ, 𝑓

𝑡
Φ, 𝑓

𝑠
Θ, 𝑓

𝑠
Φ,D

1: for 𝑘 iteration do
2: while B ∼ D do
3: 𝑉𝐿𝑜𝑤−𝐷𝑖𝑚 ← 𝑓 𝑡Φ(𝑥), 𝑍𝑡 ← 𝑓 𝑡Θ(𝑉𝐿𝑜𝑤−𝐷𝑖𝑚), 𝑃𝑡 ← 𝜎(𝑍𝑡)

4: 𝑉𝐻𝑖𝑔ℎ−𝐷𝑖𝑚 ← 𝑓 𝑠Φ(𝑥), 𝑍𝑠 ← 𝑓 𝑠Θ(𝑉𝐻𝑖𝑔ℎ−𝐷𝑖𝑚), 𝑃𝑠 ← 𝜎(𝑍𝑠)

5: L𝑡 ← L𝐶𝐸 (𝑃𝑡, 𝑦)
6: L𝑠 ← L𝐾𝐿 (𝑃𝑠, 𝑃𝑡) + 𝛼L𝑀𝑆𝐸 (𝑍𝑠, 𝑍𝑡)

7: {Φ𝑡 ,Θ𝑡} ← {Φ𝑡 ,Θ𝑡} − ∇{Φ𝑡 ,Θ𝑡 }L𝑡 ⊲ Update Teacher
8: {Φ𝑠,Θ𝑠} ← {Φ𝑠,Θ𝑠} − ∇{Φ𝑠 ,Θ𝑠}L𝑠 ⊲ Update Student
9: end while

10: end for
11: return 𝑓 𝑠Φ,Θ

Discussion about Generalizability and Robustness

In recent work, Shah et al. [50] found that neural networks tend to use the

simplest but not essentially robust features for classification, which could be

background information or texture information. In subsequent work, Singla et

al. [51] divided these features into two different types: spurious correlation

features and over-emphasized features. Spurious correlation features are those

features that usually appear with the target object but are not part of the
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object. In Figure 4.2, a standard trained network tends to use the sea to

determine whether the object in the image is a ship. Over-emphasized features

are some small parts of the object that the network pays too much attention

to for classification, which is not always correct. For example, the network

might use the ear of a horse to determine whether the object is a horse (see

Figure 4.2, horse column). Shah et al. [50] propose that these features usually

lack robustness and are prone to attacks. They believe we need to help networks

use complex predictive features, such as the semantics of the object, to improve

robustness.

From Figure 4.2, we can see that the low-dimension teacher network tends

to focus on the whole object rather than a small part of the object or the

background. We believe this improvement is due to the limited number of

features that can be extracted, forcing the network to use a large but rough

perspective to look at the image. As seen in the teacher’s heat map, it not only

circles the entire object but also includes a lot of external field. Therefore, while

the teacher network’s robustness is increased, its generalization is reduced.

For the high-dimension student network, the increased dimension allows it

to examine the image with a more detailed perspective. In these heat maps,

the network includes almost no external field. Guided by the low-dimension

teacher network, it can still focus on the whole object rather than a small part

or the texture information.

4.3 Experimentation & Discussion

4.3.1 Experimental Setting

We use ResNet50, WideResNet, and Vision Transformer in our experiments.

The ResNet50 and Vision Transformer are imported from TIMM, with the

Vision Transformer pre-trained on ImageNet. WideResNet is sourced from

RobustBench [13]. The depth and width of the WideResNet are 28 and 10,

respectively, which are widely used in recent adversarial robustness research.

The optimizer for the CNN networks is SGD, while Adam is used for the Vision

Transformer. We also use the Cosine Annealing Learning Rate (CosineAn-
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Figure 4.2: This diagram shows the heat maps of different method trained
WideResnet. The heat maps are create by the GradCAM method. The teacher
network is trained with 8x8 input vectors

nealingLR) scheduler and data normalization to improve performance. Unless

otherwise specified, we also use auto-augmentation [57] on both the student

and teacher networks to improve performance. All experiments were trained

for 200 epochs.

The datasets we used in our experiments are CIFAR-10 and CIFAR-100.

We also tested the CIFAR-10-C and CIFAR-100-C datasets to evaluate our

performance on common corruptions and perturbations [26]. All attack methods

are from TorchAttack; for PGD, we set 𝜖 to 8 and the number of steps to 20.

AutoAttack uses the default settings. All experiments were performed on an

RTX 3090.
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WideResNet Vanilla T-S Pooling Image Pooling feature Large Stride Kernel

Pooling ratio - 4 4 -

stride size - 1 1 4

Teacher Student Teacher Student Teacher Student Teacher Student

Clean 82.79 83.69 56.23 62.46 62.99 68.81 67.74 73.2

PGD 4.99 6.30 7 11.3 12.31 17.96 14.64 20.55

Table 4.1: Model performance under different dimension reduction implemen-
tations on CIFAR-100. The backbone is WideResNet.

4.3.2 Experimental Results

Dimension Reduction Implementations

In this experiment, we implement different dimensionality reduction to create

feature vectors with the same low dimension in the teacher model. From

Table 4.1, we observe that even if we directly down-sample the input image and

feed it to the teacher network, it can still create a smooth feature space and

improve model’s adversarial robustness. Here, the vanilla T-S model in the table

represents the conventional teacher-student distillation model with the identical

architecture. Based on this experiment, we find that different dimension

reduction implementations have varying feature extraction efficiencies.

Varying Latent Dimensions

Table 4.2 shows the performance of the different reduced dimensions. The

feature space for all the student networks in this experiment is 32x32, which

is the standard feature dimension for the Cifar100 dataset. The number in

the first row of the table indicates the feature dimension that is used by the

teacher network.

The results of this experiment demonstrate that with the decrease in the

dimension of the feature vector, the ratio of robustness accuracy to clean accu-

racy gradually increases. This indicates that the lower the feature dimension,

the smoother the feature space.
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32x32 16x16 8x8 4x4

Teacher Student Teacher Student Teacher Student Teacher Student

Clean 82.79 83.69 78.41 80.34 67.74 73.2 49.32 56.44

PGD 4.99 6.3 10.58 14.03 14.64 20.55 14.23 20.58

Table 4.2: Illustrate performance of different target dimension in Cifar100 on
Resnet50. 32x32, 16x16, 8x8, 4x4 means the dimension of the input vector of
teacher network.

KL MSE MSE+KL KL+CE

clean 74.97 71.42 73.2 80.48

PGD 19.38 20.72 20.55 15.34

Table 4.3: Model performance under different knowledge distillation (KD) loss
function

Distillation Loss Function

Table 4.3 reports the performance of the student network under different

knowledge distillation loss functions. The results show that the 𝑀𝑆𝐸 +𝐾𝐿 loss

function is the most balanced, achieving the best average performance in terms

of both robustness accuracy and clean accuracy.

Backbone architectures

To test adversarial robustness, we use one sixteenth (1/16) of the original

feature dimension to train the teacher network. In the CNN network, we set

the stride of the input layer to 4, which is originally 1 for CIFAR-10 and CIFAR-

100. To maintain the same convergence speed, we keep the original overlap

number in the CNN consistent by setting the kernel size to 12 and the padding

size to 4. For the Vision Transformer, we use 𝑣𝑖𝑡_𝑏𝑎𝑠𝑒_𝑝𝑎𝑡𝑐ℎ32_224 as the

teacher and 𝑣𝑖𝑡_𝑏𝑎𝑠𝑒_𝑝𝑎𝑡𝑐ℎ8_224 as the student network; the difference in

input dimension is also exactly 16 times.

Table 4.4 shows the results of the experiment. Based on the results, we find

that our method achieves great robustness accuracy across different models,

datasets, and attack methods. Especially in CIFAR-10, WideResNet gains
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Method
CIFAR10 CIFAR100

Clean PGD20 AutoAttack Clean PGD20 AutoAttack

WideResnet Baseline 97.11 7.50 6.06 82.79 4.99 4.02

Ours 93.3 43.56 42.4 73.2 20.55 19.07

Resnet50 Baseline 95.520 16.72 14.57 77.13 8.65 7.66

Ours 85.19 38.5 36.45 60.55 19.48 17.47

Vit Baseline 94.06 20.39 19.51 76.49 12.33 11.66

Ours 86.66 38.63 37.61 61.07 22.43 21.29

Madry et al. 2018 WideResnet 88.83 48.68 45.83 62.07 23.64 22.29

Table 4.4: Model performance and Robustness against Adversarial attacks (%)

43.56% robust accuracy, which is close to the classic adversarial training method

by Madry et al. [41].

Robustness to Common Corruption

Base on Table 4.5, we find that common corruption achieves the best perfor-

mance when the feature space is reduced to the 16x16 dimension. However,

when the dimension is further reduced, even though the ratio of robustness

accuracy to clean accuracy continues to increase, the absolute value begins to

decrease. We believe that excessive reduction in dimensionality may negatively

impact data extraction.

4.3.3 Extension: Finetune for Further Improvement

During our experiment, we found an interesting phenomenon. We used the

teacher network to generate pseudo-labels for the input images. Since the

low-dimension teacher network cannot achieve 99% training accuracy, the

pseudo-labels contain some incorrect predictions. We then used these pseudo-

labels to train a standard ResNet50 network with standard feature dimensions.

As reported in Table 4.6, it shows great adversarial robustness.

We believe the nature of the robustness in the low-dimensional feature space

is due to the exclusion of hard cases. This revisits the idea of learning easy cases
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CIFAR10 CIFAR100

Clean -C Clean -C

Baseline 97.10 88.23 82.79 66.36

32x32 97.14 88.13 82.52 67.31

16x16 95.97 89.17 80.34 67.67

8x8 93.29 88.64 73.2 65.31

Table 4.5: Model performance and Robustness against Common Corruptions
with different Teacher feature space. -C in the table represents the correspond-
ing Common Corruptions and Perturbations set. 32x32, 16x16, 8x8 means the
dimension of the input vector of teacher network.

𝑆𝑖𝑡𝑒𝑟1 𝑆𝑖𝑡𝑒𝑟2 𝑆𝑖𝑡𝑒𝑟3

Clean 85 86.64 86.83

PGD200 38.86 39.77 40.73

Table 4.6: Illustrate performance of distillate pseudo label

first and then tackling harder cases later. We then added high-temperature

cross-entropy loss with the true labels to the distillation loss. We found that

if the temperature in the cross-entropy is sufficiently high, the network can

learn the hard cases slowly. The 𝑆𝑖𝑡𝑒𝑟2 is the student network learning from

this modified loss for 200 epochs, and 𝑆𝑖𝑡𝑒𝑟3for 400 epochs.

Therefore, we consider that the neural network itself tends to converge to

a global optimal point, which is smooth and robust. However, if the network

focuses too much on the hard cases, it uses redundant information and converges

to a local optimal point. We also found that convergence to a global optimal

point is difficult and may take thousands of epochs to teach the neural network

about the hard cases.
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4.4 Conclusion

In this chapter, we study the relationship between the dimension of the input

feature vector and adversarial vulnerability. We found that high-dimensional

information in the input feature vector may act as strong noise, making the

adversarial network vulnerable. Inspired by this discovery, we proposed a self-

distillation noisy student training method that allows the network to gradually

learn from such noise. This method helps neural networks focus on essential

features. The results of extensive experiments show that this method has great

performance and adaptability.
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Chapter 5

Conclusion and Future Work

In this chapter, we summarize our content and contributions, discuss the results

obtained, and suggest potential future work that could be developed based on

this thesis.

5.1 Conclusion

Adversarial robustness has become one of the most important areas in the field

of deep learning. The wider application of deep neural networks has increased

the demand for the security of these networks. As one of the most efficient and

powerful methods to measure the robustness of a model, adversarial examples

have received widespread attention since they were first proposed in 2014.

However, to date, no fast and effective defense method has been proposed to

guard against these specially designed perturbations. Current methods either

require extremely high time consumption or have very limited performance

and are based on specific attack assumptions. In this thesis, we proposed two

novel methods that could improve the adversarial robustness of neural networks

without using adversarial examples.

In the first half of this thesis, we presented a novel perspective on the

cross-entropy loss function to help DNNs achieve great adversarial performance

against untargeted adversarial attacks with no additional time cost. We first

theoretically analyzed how temperature affects the optimization process during

training. We found that a high-temperature cross-entropy function guides

the model to learn from different training samples equally. By increasing the
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temperature during the training process, we found that neural networks achieve

incredible performance against untargeted adversarial attacks. We believe this

is due to the debiased optimization strategy. All non-target classes have nearly

the same distance from the target class, which greatly reduces the gradient

update strength. Experimental results show that our model achieves great

success in defending against untargeted attacks.

In the second half of this dissertation, we presented our Low Dimension

Distillation (LDD) method to enhancing the adversarial robustness of neural

networks while preserving generalizability. By leveraging a teacher-student

framework where a teacher model processes low-dimensional input data to

enhance robustness, and a student model directly operates on original high-

dimensional data, LDD achieves significant improvements in robust accuracy

without the need for adversarial examples or additional training data. Through

the distillation process, the student model effectively inherits the robustness

imparted by the teacher model.

5.2 Future Work

In this section, we suggest possible directions for future research based on our

work. First, "ensemble multiple models with different temperatures to defend

against targeted attacks" is an interesting perspective for future study. In

this thesis, we focused on using a high-temperature model to protect against

untargeted attacks. However, for targeted attacks, a single model may not

provide a complete solution. We believe that combining multiple models with

different temperatures could be a great solution. This combination might be

able to reduce the gradient strength between the true target class and the

adversarial ’targeted’ class.

Another interesting perspective for future research is "training deep neural

networks with adaptive temperatures." According to our convergence analysis,

we found that high temperatures can achieve debiased convergence, while low

temperatures focus on hard cases. Although we believe that starting with hard

cases is generally not ideal for learning, focusing on more difficult parts after
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achieving a certain degree of convergence may lead to better results.
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