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Abstract
1. Management of invasive species and pathogens requires information about the 

traffic of potential vectors. Such information is often taken from vector traffic 
models fitted to survey data. Here, user- specific data collected via mobile apps 
offer new opportunities to obtain more accurate estimates and to analyse how 
vectors' individual preferences affect propagule flows. However, data voluntarily 
reported via apps may lack some trip records, adding a significant layer of uncer-
tainty. We show how the benefits of app- based data can be exploited despite this 
drawback.

2. Based on data collected via an angler app, we built a stochastic model for an-
gler traffic in the Canadian province Alberta. There, anglers facilitate the spread 
of whirling disease, a parasite- induced fish disease. The model is temporally and 
spatially explicit and accounts for individual preferences and repeating behaviour 
of anglers, helping to address the problem of missing trip records.

3. We obtained estimates of angler traffic between all subbasins in Alberta. The 
model's accuracy exceeds that of direct empirical estimates even when fewer data 
were used to fit the model. The results indicate that anglers' local preferences and 
their tendency to revisit previous destinations reduce the number of long inter-
waterbody trips potentially dispersing whirling disease. According to our model, 
anglers revisit their previous destination in 64% of their trips, making these trips 
irrelevant for the spread of whirling disease. Furthermore, 54% of fishing trips 
end in individual- specific spatially contained areas with mean radius of 54.7 km. 
Finally, although the fraction of trips that anglers report was unknown, we were 
able to estimate the total yearly number of fishing trips in Alberta, matching an 
independent empirical estimate.
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1  |  INTRODUC TION

Recreational overland traffic is a major vector for several invasive 
species and pathogens (Hulme, 2009; Karesh et al., 2005). Examples 
include invasive plants and pathogens carried via the soil attached to 
gear and vehicles of tourists (Cushman & Meentemeyer, 2008; Von 
der Lippe & Kowarik, 2007), invasive insects introduced along with 
campers' firewood (Koch et al., 2012), or invasive mussels, nonin-
digenous bait fish, and water- borne diseases spread by recreational 
boaters (Johnson et al., 2001) and anglers (Gates et al., 2007; Kilian 
et al., 2012; Litvak & Mandrak, 1993; Nalepa & Schloesser, 2013). 
Given the difficulties and costs associated with eradicating inva-
sive species and pathogens once they have established at a site, it 
is key that any management strategy prevents propagule transport 
and detects new infestations early (Leung & Mandrak, 2007; Pluess 
et al., 2012). This requires a detailed understanding of transport 
pathways and vector's movement patterns.

Data collected via smartphone apps have become a valuable 
resource to study human mobility (Wang et al., 2019) and offer 
new opportunities to understand and predict the dispersal of in-
vasive species and pathogens (Papenfuss et al., 2015; Venturelli 
et al., 2017). Assuming a sufficiently large user base, mobile app data 
can be collected at relatively low cost over large spatial and tempo-
ral scales (Papenfuss et al., 2015; Venturelli et al., 2017). However, 
even if many trip records are available, the datasets collected via 
apps are typically far from complete: often, only a small fraction of 
the population of interest, for example, hikers or anglers, use any 
particular app, and app users do not record all their trips (Papenfuss 
et al., 2015). Even if an app records thousands of trips, this number 
remains small in comparison to the vast number of origin– destination 
pairs for which traffic estimates may be desired. For example, if we 
seek to estimate the vector traffic between 100 origins and 100 des-
tinations, the number of origin– destination pairs is 10,000. Hence, 
direct empirical estimates of traffic flows can be prone to significant 
statistical error.

A common approach to bridge such data gaps is to use models, 
such as gravity models (Bossenbroek et al., 2001; Ferrari et al., 2006; 
Li et al., 2011; Muirhead & MacIsaac, 2011; Potapov et al., 2010). 
By combining empirical observations with additional covariates, for 

example, geographical and socioeconomic data, models can provide 
detailed estimates of vector traffic on broad scales and may even 
allow insights into the mechanisms behind traffic patterns. In the 
past, vector traffic models have been fitted to data collected via 
mail- out surveys (Chivers & Leung, 2012; Drake & Mandrak, 2014; 
Muirhead & MacIsaac, 2011; Potapov et al., 2010), roadside traffic 
surveys (Fischer et al., 2020), on- site surveys at origins and destina-
tions (Bossenbroek et al., 2007; Leung et al., 2004) or registration 
records from origins and destinations (Bossenbroek et al., 2001; 
Prasad et al., 2010). However, since gathering data via these meth-
ods is often costly and the data may represent specific locations and 
time frames only, app data are a promising alternative resource for 
fitting vector traffic models. In this study, we show how this can be 
done.

A drawback of app data is that app users may report their trips 
sparsely, making the temporal sequence of their trips incomplete. 
The data may still yield insight into how often each destination is 
visited, but without knowing the full trip sequence, it is difficult to 
gauge how far and quickly vectors will spread propagules after being 
infested. A vector frequently revisiting their previous destination 
has a much lower risk of spreading a disease than a vector who pre-
fers to alternate between destinations. As the risk of a successful 
transmission is highest between consecutively visited sites, disre-
garding the trips not recorded by app users could bias the predic-
tions of propagule dispersion models significantly.

To estimate the number of relevant trips between sites de-
spite missing data, some studies assume that the destinations of 
consecutive trips are chosen independently from one another 
(Bossenbroek et al., 2001; Leung et al., 2004). Then, incomplete 
trip sequences would be representative for all trips. In practice, 
however, individual travellers may have local preferences and tend 
to revisit previous destinations, which would lower the risk of 
propagule transport. Accounting for these individual preferences 
requires a more intricate modelling approach. We tackle this prob-
lem and build a vector movement model that can be fitted to in-
complete app- based data.

Although our approach is applicable to studying the spread 
of various pests in both terrestrial and aquatic systems, we intro-
duce and demonstrate it by considering a particular case study: we 

4. Policy implications. We make two major contributions: (1) we provide a model 
that uses mobile app data to boost the mechanistic accuracy of classic propagule 
transport models, and (2) we demonstrate the importance of individual- specific 
behaviour of vectors for propagule transport. Ignoring vectors' local preferences 
and their tendency to revisit previous destinations can lead to significant overes-
timates of vector traffic and biased estimates of propagule flows. This has clear 
implications for the management of invasive species and animal diseases.

K E Y W O R D S
angler, gravity model, Invasives (applied ecology), modelling (disease ecology), smartphone 
apps, survey method, vector, whirling disease
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model angler movement in the Canadian province Alberta based 
on data collected via the ‘MyCatch’ angler app so as to create a 
risk map for the spread of whirling disease in Alberta. Our focal 
invader, whirling disease, is a fish disease caused by the aquatic 
parasite M. cerebralis (Hofer, 1903), which can increase the death 
rate of juvenile salmonid fish up to 90% (Elwell et al., 2010) and 
may thus entail severe ecological and economic consequences 
(Ramazi, Fischer, et al., 2021; Turner et al., 2014). As there is cur-
rently no known cure for whirling disease in natural ecosystems 
(Turner et al., 2014), management is limited to reducing the risk of 
parasite introduction.

Our main objective is to estimate how often each subbasin in 
Alberta is visited by anglers who have visited an infested area on 
their previous trip. While estimating angler traffic, we also assess 
how traffic depends on local preferences of individual anglers and 
their tendency to revisit previous destinations. Our results indicate 
that if these factors are not accounted for, local traffic is significantly 
underestimated while long- distance traffic is overestimated. This, in 
turn, has general implications for risk assessment and management 
of invasive species and infectious diseases.

2  |  MATERIAL S AND METHODS

An overview of the data and submodels used in our approach is dis-
played in Figure 1. Below we describe the components and their in-
terplay in detail. An overview of the mathematical symbols used in 
this paper is provided in Appendix S1.

2.1  |  Data

We used a dataset collected via the MyCatch angler app, which can 
be downloaded free of charge for Android and iOS devices and al-
lows anglers to share information regarding waterbodies they visit, 
for example, their catch success. App users need to provide their 
home postal codes and may record their fishing destinations either 
via GPS or select their destination waterbodies on a map. In addition 
to using the app, registered users can also enter information via a 
web interface. Although not all anglers in Alberta use the app, the 
app users have been found to be mostly representative of the prov-
ince's anglers, with a slight bias towards higher app usage in urban 
areas (Johnston et al., 2021).

The data were collected from May 2018 to April 2020 inclusive. 
We determined the home locality (city, town, village, etc.) of each 
app user who recorded at least one trip within this time frame and 
collected the sequence of their fishing destinations along with the 
trip dates. If an angler recorded several trips to the same waterbody 
on a day, we merged these into a single trip. To keep the number of 
fishing destinations tractable, we aggregated them over subbasins 
(hydrologic units of level 8) and neglected more detailed informa-
tion. Subbasins are a natural unit for modelling the spread of aquatic 
diseases, because they have a unique outflow each. Alberta consists 
of 422 subbasins with a mean area of 1517 km2. Our dataset in-
cluded 575 anglers, who made 2104 trips. For 229 of these trips, we 
could not determine the destination subbasin, because the anglers 
did not provide destination coordinates and the reported destina-
tion waterbodies spanned multiple subbasins. We disregarded these 

F I G U R E  1  Model components. The data required for the analysis are displayed in green, the different submodels in blue and the results 
in red. The submodels are combined into a stochastic traffic model described in Section 2.2. Although incorporating a sophisticated 
propagule transport model is possible, we use the number of directly consecutive trips from infested to uninfested areas as a proxy for 
propagule pressure in this study.
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trips. All research was conducted in accordance with the Human 
Research Ethics Policy of the University of Alberta (approval num-
ber Pro00102610).

As predictors for anglers' behaviour, we used data on the 
localities and the subbasins (Table 1). Besides geographical and 
socioeconomic data, we compiled data collected on the Angler's 
Atlas website (https://www.angle rsatl as.com). The website con-
tains a page for each major waterbody in Alberta, providing an-
glers with waterbody- specific information and allowing them to 
report the species of fish they have caught there. Fish species 
reports can be upvoted and downvoted by other anglers to con-
firm or rebut an observation. We computed for each subbasin 
the area and perimeter of all waterbodies with at least one con-
firmed fish species. Furthermore, we computed the cumulative 
number of waterbody webpage visits and species upvotes per 
subbasin. For waterbodies spanning over multiple subbasins, we 
distributed the values over all applicable units according to their 
share of the waterbodies' perimeters. In addition to the listed 
covariates, we determined the number of registered anglers for 
each locality. The sources of the individual datasets we used are 
listed in the Data Sources section.

2.2  |  Angler traffic as a stochastic process

We modelled anglers' decision- making as a stochastic process, which de-
termines both the recorded number of fishing trips between each home 
locality and subbasin (origin and destination) and the expected yearly 
number �j1 j2

 of trips anglers make to destination j1 directly after visiting 
destination j2. While we sought to estimate the latter number for all des-
tination pairs, we fitted the model based on the former (Figure 2).

We assumed that anglers start all their fishing trips at their 
home localities and visit a single destination per trip. They make 

trips randomly at rates dependent on their origins, the date and 
random factors not explicitly covered in the model, for exam-
ple, weather conditions. We modelled the trip rate for an angler 
from origin i  on day t  as �i�t, where the angler activeness �i is the 
mean number of trips per day for an angler from origin i , and 
the day suitability �t is a gamma random variable with mean �t, 
denoting how well day t  of the study period is suited for going 
fishing:

The gamma distribution can take on a variety of shapes and is thus 
suited for diverse modelling applications (Husak et al., 2007; Kleiber 
& Kotz, 2003). The dispersion parameter � determines the variance of 
the day suitability; the expected day suitability �t is normalized so that 
its temporal average is 1, that is, 1

T

∑
t�t = 1 with T being the number of 

days in the study period. We supposed that the day suitability �t is the 
same for all anglers in Alberta, whereas their individual decisions are 
independent from one another. The values �i and �t are given by the 
submodels in Section 2.4.

We assumed that anglers choose the destinations of their trips 
based on individual local preferences and their previous fishing des-
tinations (Figures 3 and 4). Consider an angler from origin i . With 
probability �same, they decide to revisit the destination of their last 
trip. Otherwise, they choose a new destination as follows: with 
probability �region, they constrain their destination choice to their re-
gion of preference ℛ— a spatially contained set of destinations that 
they personally like best— and choose a destination j ∈ ℛ according 
to probabilities pij∣ℛ. Alternatively, with probability �all = 1 − �region, 
they make an unconstrained choice from all available destinations j 
according to probabilities pij.

We supposed that each region of preference consists of des-
tinations intersecting with a buffer of radius � around a subbasin 

(1)�t ∼ Gamma
( �t
�
, �
)
.

Group Covariate Median Maximum

Angler activeness in 
localities

Locality population (2019) 0.34 × 103 1286 × 103

Mean income (2013) 36, 900CAD 99, 600CAD

Median income (2013) 34, 600CAD 78, 100CAD

Fishing opportunities in 
subbasins

Total perimeter of waterbodies 350 km 1570 km

Total area of waterbodies 4 km2 2160 km2

Total perimeter with confirmed 
species

0 km 620 km

Total area with confirmed species 0 km2 1390km2

Infrastructure in 
subbasins

Population in 10 km range (2019) 0.4 × 103 1394 × 103

Public campgrounds in 10 km 
range

1 19

Social media presence 
of subbasins

Total species upvotes 
(2018– 2019)

0 196

Total waterbody web page visits 
(2018– 2019)

140 21,945

TA B L E  1  Considered covariates and 
their median and maximum values
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centre (Figure 4). Each angler's region of preference is fixed over 
time and chosen randomly. The probability piℛ that an angler 
from origin i  has region of preference ℛ is proportional to how 
likely they would choose a destination in ℛ under the uncon-
strained strategy:

Here, ℜ is the set of all potential regions of preference. The probabili-
ties pij∣ℛ are defined accordingly as

The assumptions above lead to a simplified model on an aggregate 
level. A random angler from origin i  will choose destination j with 
probability

unless they revisit their previous destination. Note that they cannot re-
visit a destination on their first trip. The probability that they choose des-
tination j on their second trip is therefore 

(
1 − �same

)
pij + �samepij = pij . 

By induction, the probability that a random angler from origin i  
chooses destination j is pij.

Since not all anglers in Alberta used the MyCatch app and app 
users may not have recorded all their trips, an additional submodel 
for the sampling process is needed to incorporate the data recorded 
via the app. We assumed that each angler decided randomly to in-
stall and use the app with probability �app, and that app users record 
a trip with probability �record.

2.3  |  Computing expected trip counts

Based on the model introduced above, the expected number of con-
secutive angler trips to destinations j1 and j2 can be computed as 
follows. Let ni be the number of anglers residing at origin i . Then, the 
expected number of trips that anglers from origin i  make during the 
study period is ni�iT. Now consider the probability that, for any pair 
of consecutive trips, j1 is the destination of the first trip and j2 is the 
destination of the second trip. Recall that anglers may either revisit 
their previous location, constrain their destination choice to their 
region of preference or choose their destination freely. Hence, the 

(2)piℛ =
1∑

ℛ̃∈ℜ

∑
j∈ℛ̃pij

�
j∈ℛ

pij.

(3)pij∣ℛ =
pij∑
j̃∈ℛpij̃

.

(4)�region
∑

ℛ ∈ℜ

piℛpij∣ℛ + �allpij = pij

F I G U R E  3  Visualization of anglers' decision- making process. 
The parameters �i and �t determine the expected rate at which 
anglers from origin i  make trips on day t  . When an angler chooses 
their destination, they may revisit their previous destination with 
probability �same. Otherwise, they may either constrain their choice 
to their region of preference (with probability �region) or make 
an unconstrained selection from all available destinations (with 
probability �all). If they decide to constrain their choice to their 
region of preference ℛ, they choose destination j with probability 
pij∣ℛ. Otherwise, they choose it with probability pij.

F I G U R E  2  Possible sequence of trips to the destinations A,  
B and C for an angler with home locality ‘origin’. The risk that 
the angler transports propagules or pathogens is highest for 
consecutively visited fishing locations, that is, for destinations A 
and B and for B and C. Our goal is to estimate the number of such 
consecutive fishing trips for any pair of destinations. Our dataset 
contains information on individual trips, but some trips may not 
have been recorded.

F I G U R E  4  An example for a series of trips to destinations A, B, 
C and again C in order (depicted as black arrows) for an angler with 
the region of preference drawn in grey. Each grid cell represents 
a destination. The region of preference contains all destinations 
intersecting with the buffer of radius � drawn around the centre 
of the destination coloured dark grey. The angler may choose any 
of the available destinations but often selects destinations within 
their region of preference. Furthermore, anglers may tend to revisit 
destinations on consecutive trips (e.g. destination C). Note that 
subbasins are not square grid cells in practice but can take any 
shape.
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mean number of consecutive trips by anglers from origin i  to j1 and 
j2 during the study period is

Here, �j1 j2 is 1 if j1 = j2 and 0 otherwise. The right hand side of 
Equation (5) can be simplified to speed up computations, as we show 
in Appendix S2.

We computed the expected number �j1 j2
 of consecutive trips to 

destinations j1 and j2 by summing �ij1 j2
 over all origins i . To deter-

mine how many anglers access a destination j2 after having visited 
a whirling- disease infested site, we furthermore summed the �ij1 j2

 
over all subbasins j1 where the disease is present already. Based 
on these results, we also computed the number of these trips for 
each origin i .

2.4  |  Submodels for day suitability, angler 
activeness and destination probabilities

The expected day suitability �t may change in weekly and sea-
sonal cycles. We modelled these variations using the prob-
ability density function fvM( ⋅ ; �, �) of the von Mises distribution, 
which is a cyclic distribution resembling the normal distribution 
(Lee, 2010). The shape of the function is controlled via the two 
parameters �, determining the location of the mode, and �, de-
termining how sharp the maximum is. We defined the expected 
suitability �t of day t  as follows:

The constants cyear and cweek are parameters controlling the amplitude 
and vertical shift of the weekly and seasonal cycles; the constant cnorm 

is chosen so that 1
T

∑
t�t = 1. If the study period includes leap years, �t 

must be adjusted accordingly.
As the 2104 trips in our dataset did not suffice to estimate the choice 

probabilities pij for all 180,000 pairs of localities and subbasins directly, 
we estimated �i and pij based on covariates on the origins and destina-
tions. To that end, we applied the framework of gravity models. Gravity 
models estimate the mean number of trips between each origin and des-
tination as a product of (1) the repulsiveness of the origin, proportional to 
the number of outbound trips; (2) the attractiveness of the destination, 
proportional to the number of inbound trips; and (3) a decaying func-
tion of the distance between origin and destination. Repulsiveness and 
attractiveness are typically functions of covariates characterizing the or-
igins and destinations. In our model, the expected outbound traffic of or-
igin i  is given by the product ni�i of angler count and activeness, and the 
expected traffic between origin i  and destination j is ni�ipij. Therefore, 
the repulsiveness of origin i  corresponds to the product ni�i, whereas 
the product of distance decay function and attractiveness defines the 
choice probabilities pij. Let dij be the linear distance between origin i  and 
destination j, and let aj be the attractiveness of destination j, measuring 
both the quantity and quality of fishing opportunities. Then,

(5)

�ij1 j2
= ni�iT

⏟⏟⏟

expected

trip count

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�same�j1 j2pij1
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

prob. to travel j1→ j2= j1

by choosing j1and revisiting it

without considering alternatives

+
�
1−�same

�
⏟⏞⏞⏞⏟⏞⏞⏞⏟

prob. to consider

alternatives to

previous dest. j1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�2
all

pij1pij2
⏟⏟⏟

prob. to travel j1→ j2

if both are chosen from

all available sites

+�all�region

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pij1

�
:j2∈

pipij2 ∣

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

prob. to travel j1→ j2 if j1 is

chosen from all available sites

and j2 from a region of preference

+ pij2

�
:j1∈

pipij1 ∣

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

prob. to travel j1→ j2if j1 is

chosen from a region of preference

and j2 from all available sites

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+�2
region

�
:j1,j2∈

pipij1 ∣pij2 ∣

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

prob. to travel j1→ j2 if both are

chosen from a region of preference

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(6)
�t = cnorm

(
cweek+ fvM

(
2�

t mod 7

7
; �week, �week

))

⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵
weekly variations

(
cyear+ fvM

(
2�

t mod 365

365
; �year, �year

))

⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵
yearly variations

.

(7)pij =
ajD

�
dij
�

∑
j̃aj̃D

�
dij̃
� ,
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with the distance decay function D, which we define as

The parameter d0 is the half saturation constant, given as the distance 
at which D

(
dij
)
=

1

2
.

To define an appropriate function to compute �i and aj based on 
the covariates, we categorized the covariates into groups  (Table 1), 
each accounting for a different component that is necessary for 
high angler traffic between an origin and a destination (cf. Fischer 
et al., 2020). For each origin or destination k, we assigned the score (
�xxk

)�x to each covariate x ∈ , where xk is the component of x cor-
responding to k and the parameters �x and �x describe the impact of 
x. We then added these individual scores to obtain a score for each 
group , so that a high score for one covariate suffices to make the 
group's score large. Finally, we multiplied the scores for the different 
groups, making a high score for all components necessary to boost 
the number of angler trips. With scaling constant c, we set

where the origin and destination covariate groups are the locality and 
subbasin groups in Table 1.

2.5  |  Fitting the model

We fitted the model via maximizing the likelihood associated with 
the recorded app data. However, fitting the complete model all at 
once is computationally costly due to the complicated form of the 
likelihood function and the large number of parameters. Therefore, 
we eliminated parameters by summing over certain quantities to ob-
tain submodels with simpler likelihood functions. Furthermore, we 
made approximations via independence assumptions, disregarding 
the identity of anglers in some fitting stages (see below). Since most 
trips are made by independent anglers, our parameter estimates re-
main valid despite these simplifications (Varin, 2008).

We fitted the model in three steps: first, we considered the sub-
model for the day suitability �t; second, we estimated the angler ac-
tiveness �i and the destination choice probabilities pij; and third, we 
estimated the parameters �same, �region, �all, �app, �record and � modelling 
anglers' tendencies to constrain their trip choices and to record trips. 
Below, we briefly explain each of these steps; more details can be 
found in Appendix S3. In each of the steps, we exploited that (1) a 

Poisson random variable with a gamma distributed mean is negative 
binomially distributed and that (2) the mixture of a negative binomial 
and a binomial distribution remains negative binomially distributed 
(Villa & Escobar, 2006).

2.5.1  |  Day suitability

We estimated the expected day suitability �t by fitting the distribu-
tion of the total number Nt of recorded angler trips on day t to the 
data. According to our model, Nt is negative binomially distributed 
with dispersion parameter �

�t
 and mean �record�t

∑
i ñi�i, where ñi is the 

number of app users in locality i . As ñi is a random variable itself and 
constant over the study period, it is not straightforward to derive 
the exact distribution of Nt. However, since Nt describes the aggre-
gate trip counts of many anglers, who rarely make more than one trip 
per day, it is reasonable to consider trips as mutually independent 
on each day. Then, Nt is negative binomially distributed with disper-
sion �

�t
 and mean �t�, where � = �app�record

∑
ini�i. Hence, by fitting 

the distribution of Nt, we obtained estimates for the parameters �, � 
and those controlling the shape of �t. See Appendix S3.1 for further 
details.

2.5.2  |  Angler activeness and destination choice 
probabilities

To estimate the angler activeness values �i and the destination 
choice probabilities pij, we considered the trip counts Nijt for origin– 
destination pairs (i, j) and days t. We fitted the joint distribution of 
the Nijt to our data for all origin– destination pairs and days of the 
study period. With the independence approximation from the previ-
ous section, each Nijt follows a negative binomial distribution with 
dispersion parameter �

�t
 and mean �app�record�tni�ipij. To improve the 

computational performance, we also considered the trips from dif-
ferent localities as mutually independent. The values �t were known 
from the previous fitting stage. By fitting Nijt to the observed val-
ues, we obtained estimates for the parameters of �i and pij. The 
scaling constant c and the probabilities �app and �record are not iden-
tifiable in this fitting stage, and we replaced them with a parameter 
C = �app�recordc here. Refer to Appendix S3.2 for a method to com-
pute the likelihood efficiently.

2.5.3  |  Remaining parameters

To fit the choice parameters �same, �region, �all, �app and �record, we 
considered each angler and their trips individually. First, we deter-
mined the likelihood for the temporal sequence of their trips. Then 
we computed the likelihood for their destination choices given the 
timing of the trips. Because the destination choices for consecutive 
trips are not independent and we need to consider unknown num-
bers of intermediate unrecorded trips, the likelihood function has 

(8)D
(
dij
)
=

d
�distance
0

d
�distance
0

+ d
�distance
ij

.

(9)
�i = c

∏

origin covariate

groups

(
1 +

∑
x ∈

(
�xxi

)�x
)
,

(10)
aj =

∏

destination covariate

groups

(
1 +

∑
x ∈

(
�xxj

)�x
)
,
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a complicated form involving convolutions and special functions. 
Nonetheless, it can be computed numerically with reasonable effort 
if partial intermediate results are reused where possible. We refer 
the reader to Appendix S3.3 for details. Dependencies between 
trips of different anglers were disregarded at this stage so as to facili-
tate efficient computation.

To fit the radius � of the inscribed circle of anglers' regions of 
preferences, we conducted a grid search with steps of 1km in the in-
terval between 10 km and 80 km. For each considered value of �, we 
maximized the likelihood with respect to the remaining parameters; 
finally, we chose the radius leading to the maximal likelihood. We 
conducted a grid search, because the regions of preference are dis-
crete entities, making gradient descent methods inapplicable to fit �.

2.5.4  |  Optimization methods and model selection

We used a combination of multiple optimization algorithms to maxi-
mize the likelihood. We applied the differential evolution algorithm 
(Storn & Price, 1997) for a global search of the parameter space, 
and improved upon the results via gradient- based search algorithms 
(Byrd et al., 1995; Kraft, 1988; Nocedal & Wright, 2006). Details can 
be found in Appendix S4. We implemented the model in the pro-
gramming language Python (version 3.7) along with the Scipy librar-
ies (Jones et al., 2001).

To decide which covariates and parameters should be included 
in the model without overfitting, we used the information crite-
rion by Akaike (1974) (AIC). This metric is particularly suitable if the 
modelling goal is prediction (Ghosh & Samanta, 2001). When fit-
ting the day suitability function �t, we considered simplified models 
with the parameters cweek, cyear, �week and �year, (Equation (6)) set to 
0 respectively. For the angler activeness �i and destination choice 
probabilities pij, we considered models with any combination of the 
parameters �x and �x (Equations (9) and (10)) set to zero. Only for 
covariates x that had 0- values for some origins or destinations, we 
tested models with �x = 1 instead. We furthermore tested models 
without the parameter d0 (Equation (8)). We searched for the model 
with the minimal AIC value by using a branch and bound algorithm 
(Appendix S4.2). This allowed us to find the optimal model without 
having to consider all potential candidates.

Note that we made approximations via independence assump-
tions, which violate the underlying assumptions of AIC. Hence, the 
metric may tend to favour overfitting models. We therefore chose 
the simplest model among those with AIC values less than 10 units 
higher than the minimal AIC. Models whose AIC value is more than 
10 units higher than the minimal AIC may have little empirical sup-
port (Burnham & Anderson, 2004).

2.5.5  |  Model evaluation

We evaluated the trustworthiness of our parameter estimates by 
computing confidence intervals using a method based on the profile 

likelihood (Fischer & Lewis, 2021). Note that since we did not evaluate 
the joint model all at once and made approximations via independence 
assumptions, the true confidence intervals may be larger. Nonetheless, 
the approximate confidence intervals are suited to detect estimability 
issues and problems arising from multicollinearity of covariates.

To validate the submodel for angler traffic between localities 
and subbasins, we randomly split the app data into a training (fitting) 
and a testing (validation) dataset, each containing observations for 
half of the anglers respectively. Note that a random split is in line 
with our purpose of evaluating the model accuracy in predicting un-
reported trips, and hence, a temporal split used for evaluating the 
model accuracy in making future predictions is not needed (Ramazi, 
Kunegel- Lion, et al., 2021). We fitted our model to the training data 
and computed the mean yearly number of recorded angler trips for 
each origin, destination and origin– destination pair. Then we plotted 
the predicted values against the observed values.

The purpose of the submodel for locality- to- subbasin traffic was 
to fill data gaps stemming from the limited number of angler trips in 
our dataset. To ensure that the model is suited to fill these gaps with-
out introducing additional error, we computed the mean absolute 
errors between the submodel's results and the observations from 
the testing data. We then compared the resulting values with those 
obtained by using direct estimates from the training data without an 
additional model.

Our model yields absolute estimates of angler traffic based on 
voluntarily reported trip data without using a priori information on 
how many trips anglers actually made. To assess the accuracy of our 
estimates of the trip frequency, we compared the number of days 
anglers go fishing per year as per our model (see Appendix S5) with 
empirical data collected in a mail- out survey by the Department of 
Fisheries and Oceans Canada in 2016 (DFO, 2019).

To facilitate a qualitative comparison of our model's accuracy with 
predictions from similar studies, we computed Nagelkerke's pseudo- R2 
(Nagelkerke, 1991). This measure indicates how well the model per-
forms in comparison to a noninformative null model. In contrast to the 
classical R2, Nagelkerke's pseudo- R2 can be applied even if the data are 
not assumed to be normally distributed with identical standard devia-
tions. We computed pseudo- R2 values for each model stage: the day 
suitability model; the joint day suitability, angler activeness and desti-
nation choice model; and the complete model with all submodels. As 
null models, we used negative binomial distributions treating all days, 
localities and subbasins similarly. The parameters �same and �region cap-
turing anglers' local preferences were set to zero.

3  |  RESULTS

The selected day suitability model contained all considered parameters 
(Table 2). The traffic was estimated highest on Saturdays and to peak on 
14 July. The rates of fishing trips during the weekly peak were estimated 
to be 2.27 times higher than on the weekly low; yearly cycles changed the 
expected traffic rate by up to factor 6.6. The confidence intervals were 
relatively narrow for most of the parameters; only the shape parameter 
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for the weekly cycles had a large upper confidence interval bound. The 
temporal distribution of trips and the expected trip rates estimated by 
the model are displayed in Figure 5.

The angler activeness and destination choice model with the 
least number of parameters and ΔAIC ≤ 10 included 15 parameters 
(Table 3; ΔAIC = 1.5). The model with minimal AIC included the num-
ber of website visits as an additional covariate. The selected model 
uses localities' population counts and the mean income numbers to 
estimate angler activeness. The angler activeness varied by up to fac-
tor 4.5 among localities. For a locality with median characteristics, a 
population increase of 1000 increases angler activeness by 6%, and 
a mean income increase by CAD 1000 increases activeness by 2%.

The localities from which anglers make the most consecutive 
trips between infested and uninfested subbasins were the popula-
tion centres Calgary and Edmonton. Setting the trip count into rela-
tion with the number of registered anglers, Calgary, located in direct 
proximity to the infested area, had higher relevant traffic with 2.86 
high- risk trips per registered angler and year as compared to 0.65 
for Edmonton. Considering all inhabitants, rural municipalities had 
higher relative trip counts: the 100 localities with the most high- risk 
trips per inhabitant had less than 8000 inhabitants.

The subbasin attractiveness was estimated based on the perimeter 
of the waterbodies in the subbasins, the surface area of the waterbod-
ies with confirmed species, the number of campgrounds and the web-
site species upvotes. The attractiveness values varied greatly among 
subbasins, by up to factor 1179. For a subbasin with median char-
acteristics, an increase in the total waterbody perimeter by 500 km 
increased attractiveness by 8.7%, whereas an increase of 1000 km 
increased attractiveness by factor 3. If the total area of waterbod-
ies with confirmed species were increased by 10 km2, attractiveness 
would rise by 69%. An additional campground increased attractive-
ness by 20%, and an additional positive species vote by 180%. The 
traffic between localities and subbasins decreased in square order of 
their distance; that is a subbasin twice as far as a similar subbasin was 
only 25% as likely to be chosen as fishing destination.

The estimates for the remaining choice parameter are displayed 
in Table 4. The fraction of anglers using the app was estimated to be 
0.22%, and the estimated probability that app users report a trip was 
0.05. The dispersion parameter, modelling the impact of stochastic 
events on anglers' daily trip rates was estimated 11.8. The model 
predicts that on 64% of their trips, anglers revisit their last destina-
tion. They choose a destination in their region of preference in 54% 
of their trips and choose the destinations for the remaining 46% trips 
from all over Alberta. The estimated radius � for the inscribed circle 
of regions of preference was 31 km. This translates to a mean radius 
of 54.7 km for the regions of preference. The parameter confidence 
intervals were relatively narrow except for the probability that app 
users report a trip (Table 4).

Angler trips were estimated to be strongest between subbasins 
located close to metropolitan areas, with estimates up to 22.3 thou-
sand (95% confidence interval 

[
14.5 × 103,32.6 × 103

]
) directly con-

secutive angler trips per year (Figure 6a). The subbasin most at risk of 
receiving anglers infested with whirling disease propagules were those 
located close to larger cities and in proximity to the already infested 
area (Figure 6b). The subbasin with the highest inflow of high- risk trips 
was estimated to receive 27.7 thousand (

[
18.1 × 103,40.3 × 103

]
) such 

trips per year. The estimated mean number of fishing days per angler 
and year was 20.5 (

[
12.5,34.1

]
) as per our model. For comparison, the 

corresponding estimate from a 2016 mail- out survey was 18 (standard 
deviation between 0.9 and 2.7) (DFO, 2019).

TA B L E  2  Parameters and estimates along with approximate 95% 
confidence intervals after fitting the model to the daily trip counts

Parameter Explanation Estimate
Confidence 
interval

� Dispersion parameter 0.33 0.25 0.42

� Mean total recorded 
trips per day

2.56 1.52 4.34

cweek Week addition 
constant

0.45 0.24 0.7

�week Week location 
constant

5.64 5.5 5.8

�week Week shape constant 2.87 1.36 ∞

cyear Year addition 
constant

0.12 0.1 0.15

�year Year location constant 3.35 3.29 3.42

�year Year shape constant 7.4 6.53 8.29

F I G U R E  5  Observed and modelled trip rates for each day of the study period. The observed number of trips Nt is drawn as solid blue line, 
the predicted mean of Nt as dashed red line and the predicted 95% confidence range as light red area.
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The pseudo- R2 values of the model components decreased as 
more complexity was added. The submodel for the day suitability 
achieved a pseudo- R2 of 0.47. Adding the component for the origin- 
dependent trip rates and the destination choice probabilities yielded 
a value 0.35. Predicted and observed values for this model compo-
nent are depicted in Figure 7. The joint model including the remain-
ing choice parameters had a pseudo- R2 of 0.26.

The submodel for the traffic between origins and destina-
tions estimated the outflow from origins with a mean error of 
1.48, the inflow to destinations with a mean error of 1.6 and the 
traffic between individual pairs with a mean error of 0.0073. 
The corresponding values obtained by using the data directly 
were 1.83, 1.81 and 0.0074. That is, applying the model did not 
increase the error.

4  |  DISCUSSION

Mobile apps exist for a variety of outdoor activities (e.g. birding, 
hiking and fishing) that could be related to the spread of animal 
diseases and invasive species. These apps can yield highly detailed 
individual- specific, spatially and temporally representative data and 
provide valuable insights into the traffic of anthropogenic vectors 
of invasive species and pathogens (Papenfuss et al., 2015; Venturelli 
et al., 2017). However, although the datasets collected via mobile 
apps can be large, they often cover only a small fraction of all trips 
of potential vectors, making direct estimates via the data's empiri-
cal distribution error- prone. Our results indicate that modelling ap-
proaches can reduce this issue and provide additional insights into 
the mechanisms behind vector movement.

Parameter Explanation Estimate Confidence interval

� Dispersion parameter 11.81 8.65 15.6

�same Probability to revisit the 
previous destination

0.64 0.53 0.79

�region Probability to constrain the 
destination choice to the 
region of preference

0.54 0.5 0.59

�app Probability to use the app 0.0022 0.0021 0.0023

�record Probability to record a trip 0.052 0.022 0.104

TA B L E  4  Parameters and estimates 
along with approximate 95% confidence 
intervals after fitting the model for the 
individual angler choices

Parameter Explanation Estimate Confidence interval

� Dispersion parameter 6.99 4.91 9.59

C Scaling constant for the 
mean daily number of 
recorded trips

1 × 10−9 3.51 × 10−11
5.12 × 10−8

�0 Distance of half choice- 
probability decay 

[
km

] 28.74 22.02 35.91

�distance Distance exponent 2.09 1.97 2.22

�population City population factor [
1∕103

] 6.95 × 1029 4.29 × 1029 1.23 × 1030

�population City population exponent 0.14 0.09 0.16

�mean income Mean income factor [
1∕

(
103CAD

)] 909.1 11.61 2.3 × 106

�mean income Mean income exponent (not 
included in the model)

1 — — 

�perimeter Water perimeter factor [
1∕

(
103km

)] 0.82 0.76 0.94

�perimeter Water perimeter exponent 6.76 3.89 9.62

�area confirmed Water area confirmed factor [
1∕

(
103km2

)] 38.95 9.25 305.8

�area confirmed Water area confirmed 
exponent

0.4 0.24 0.67

�campground Campground factor 
[
1
]

0.25 0.12 0.62

�campground Campground exponent 1 0.65 1.46

�species vote Species vote factor 
[
1
]

2.8 1 8.4

�species vote Species vote exponent 0.57 0.5 0.65

TA B L E  3  Parameters and estimates 
along with approximate 95% confidence 
intervals after fitting the model for angler 
activeness and destination choice. Note 
that although we report all parameters 
on the original scale, we worked with 
log- transformed parameters internally to 
avoid numerical errors due to extreme 
parameter values.
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Conversely, models can profit strongly from the new data source. 
Although mail- out or online surveys could collect the same data as 
apps in principle, our modelling approach based on app data has the 
following advantages:

(1) Increased accuracy. Apps can be downloaded by users from 
different geographical areas, and data may be collected over ex-
tended time periods. Therefore, inference from app data is gener-
ally less sensitive to local and temporal peculiarities, and modellers 
can identify and account for the sources of spatial and temporal 

heterogeneity. This makes the estimates more accurate, especially 
when results are extrapolated into the future or to larger geographi-
cal scales. Furthermore, the temporal fingerprint of app data records 
permits a longitudinal study design. By considering the day- to- 
day variations of the data, the unexplained recurring stochasticity 
in individual decisions can be distinguished from systemic errors 
due to misspecified models. Without this distinction (e.g. Drake & 
Mandrak, 2010; Muirhead et al., 2011; Muirhead & MacIsaac, 2011), 
residuals would be solely attributed to the stochasticity in the 

F I G U R E  6  (a) Number of consecutive trips to subbasin pairs and (b) total number of incoming trips by potentially infested anglers. In (a) 
only subbasin pairs with more than 100 trips per year are shown. In (b) black colours depict subbasins that are already infested (March 2020).

F I G U R E  7  Predicted and observed mean values of yearly recorded angler trips (a) by origin locality, (b) by destination subbasin and (c) by 
locality– subbasin pair. The values used to fit the model are depicted as solid blue circles; the values computed from the independent fitting 
dataset are drawn as hollow green triangles. The orange line indicates where predictions and observations would coincide.

(a) (b) (c)
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individuals' decisions, and the dispersion parameter would be over-
estimated (Fischer et al., 2020). Then, low- traffic angler flows gain 
an inordinate weight when the model is fitted to observations, re-
sulting in decreased model accuracy (see Appendix S6).

(2) Estimates account for reduced vector mobility due to individual 
preferences. Accounting for anglers' individual preferences allowed 
us to estimate the frequency at which they switch destinations, 
potentially transporting propagules. We found that in 64% of their 
trips, anglers revisit their previous destination and hence do not 
spread invasive species and pathogens to new areas. Furthermore, 
anglers tend to choose half of their fishing destinations from spa-
tially contained areas. This suggests that models disregarding the 
correlations within anglers' destination choices (e.g. Bossenbroek 
et al., 2001; Leung et al., 2004) are prone to overestimating traffic 
between distant destinations.

(3) Absolute estimates of vector traffic can be obtained without ad-
ditional survey data. It is difficult to obtain absolute traffic estimates 
from survey or app data without knowing which fraction of trips 
surveyed individuals or app users report. However, by considering 
anglers' tendency to revisit previous destinations, we were able to 
infer this missing information. If an angler does not record all their 
trips, the probability that the next trip they record has the same des-
tination as their previously recorded trip decays with time, because 
they may make additional unrecorded trips to other destinations in 
the mean time. The slope at which the fraction of consecutively re-
corded trips with same destinations decays with the intermediate 
time depends on the trip recording probability. This makes it possible 
to infer this information from the data.

Absolute estimates of traffic enable modellers to link traffic 
to invasion or infection success. This link is needed to predict the 
spread of a disease or invasive species (Lewis et al., 2016). Although 
invasion success can be estimated based on relative traffic estimates 
if historical invasion data are available for the studied area (Leung 
et al., 2004; Muirhead et al., 2006; Potapov et al., 2011), these es-
timates will remain site specific unless the scaling of the traffic is 
known or the same traffic model is at the other site. Transferring 
a traffic model to a new site requires that similar data are available 
at the new site and that vectors behave the same. Absolute traffic 
estimates allow modellers to estimate the establishment success per 
individual vector and to transfer such information to or from other 
study areas.

4.1  |  Validity of the estimates

Exploiting the connection between reported destinations and the 
completeness of the data, we estimated how many days an aver-
age angler goes fishing in Alberta per year. Our estimate for this 
quantity agreed with an independent estimate, differing only by 
about one standard deviation of the independent estimate. This 
suggests that our approach estimates the overall angler trip fre-
quency accurately and hence can be used to obtain absolute traf-
fic estimates even if the fraction of reported trips is unknown. 

Note, however, that the confidence interval for our estimate was 
relatively large and had an upper bound 60% higher than the esti-
mated value. Hence, additional surveys determining the total trip 
count— and thereby the fraction of reported trips— remain worth-
while to reduce model uncertainty. We refrained from incorpo-
rating this additional information, because our estimate of the 
total trip counts was already in agreement with the independent 
estimate.

The predicted versus observed analysis of the submodel for an-
gler activeness and destination choice probabilities indicated a rea-
sonable estimation accuracy. Comparison with the raw data showed 
that the model extrapolates the limited available data to all origin– 
destination pairs without introducing additional error— the model did 
even slightly better than the direct estimates. This is due to the sto-
chasticity inherent in the system and the limited number of available 
trip records.

The pseudo- R2 values we computed for different model compo-
nents decreased as more complexity was added. This is expected, 
because the level of detail of the validation data increased as ad-
ditional model components were considered. The differing level of 
detail makes it difficult to compare our pseudo- R2 values to similar 
metrics obtained in studies with less rich data sources (e.g. Chivers & 
Leung, 2012; Drake & Mandrak, 2010). Nonetheless, the pseudo- R2 
value we reported may be a helpful benchmark for future studies on 
a similar system.

4.2  |  Management implications

Our approach facilitates management in three ways: (1) it provides 
location- specific risk proxies; (2) it shows which locations are best 
connected and might thus be potential hubs for secondary infec-
tions; and (3) it helps to identify the origins of the agents most at risk 
of spreading the disease. While risk estimates facilitate early detec-
tion and rapid response to new infections, the latter two points help 
targeting management actions to the subbasins and localities where 
they are most effective.

(1) Risk proxies. The subbasins with the highest propagule inflow 
were those encompassing extended water areas with confirmed 
fish presence and located close by a population centre in proxim-
ity of an infected subbasin. Our results indicate that anglers show a 
strong preference for fishing destinations near their homes, which 
also agrees with earlier studies (Drake & Mandrak, 2010; Fischer 
et al., 2020; Papenfuss et al., 2015). Both the inscribed radius of 
the regions of preference and the distance at which traffic decays 
by half were at about 30km, suggesting this as main spatial scale 
of angler traffic. Besides water area and fish species confirmations, 
the number of campgrounds was another useful indicator of attrac-
tiveness, probably because they are typically built in scenic areas 
attractive to outdoor tourists.

The total waterbody circumference (i.e. shoreline) was positively 
connected with angler traffic as well, but the best- AIC model did 
not incorporate this covariate in conjunction with fish presence 
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data, potentially due to incomplete species data in smaller rivers. 
Interestingly, the number of visits of waterbody- specific websites 
was not a worthwhile additional predictor for attractiveness— 
perhaps because this number is also affected by the waterbodies' 
proximity to angler origins and their repulsiveness.

(2) Potential hubs. Uninfected subbasins with strong connections 
to other uninfected subbasins might become significant hubs for 
secondary infections. This makes these well- connected subbasins a 
primary target for surveillance and rapid response measures. In our 
model, these subbasins have similar characteristics to those receiv-
ing most high- risk trips (see above) except for being located farther 
away from present infections.

(3) Most relevant angler origins. Education and outreach mea-
sures may be applied with different intensity in different localities. 
According to our results, maximal high- risk trip counts per inhabitant 
are found in rural areas, where the density of anglers per inhabitant 
is higher there than in cities. Hence, general outreach may be most 
effective in rural areas close to the edge of the infested area. In con-
trast, the number of high- risk trips per angler was also high in cities, 
making cities close to the infected area good soil for outreach mea-
sures specifically targeting anglers. Outreach may be cheaper and 
hence more cost- effective in cities than in rural areas.

4.3  |  Limitations and potential extensions

Voluntarily reported data such as app data can be prone to a variety 
of biases ranging from demographic bias to avidity bias (Venturelli 
et al., 2017). For example, app usage may be higher among the young 
population from urbanized areas, and active sport fishers may use 
the app more frequently. As a result, certain demographic groups 
may be underrepresented, and highly active app users may influence 
the estimates disproportionately. This can lead to biased and over- 
confident results.

For the data from the MyCatch app used in this study, no spatial 
bias was detected (Johnston et al., 2021). This increases the cred-
ibility of our results. Nonetheless, some potential sources of bias 
remain, and other datasets may suffer from stronger bias. This issue 
could be addressed with additional data. If demographic and socio-
economic data are collected along with the other app data, these 
covariates could be directly incorporated into the model. If an inde-
pendent sample with these data is available, it can be used to weigh 
the observations differently (Chen et al., 2020).

Our model uses socioeconomic covariates to estimate the ac-
tiveness of anglers at different localities. Although incorporating 
population counts and the mean income in localities improved the 
model fit significantly, angler activeness is unlikely to be uniform 
within localities. Since there is no obvious mechanistic justification 
for the dependency of angler activeness on the covariates we used, 
we emphasize the phenomenological nature of the model and refrain 
from further analysis of the underlying mechanisms.

We also assumed that the individual preferences of individu-
als do not change with time. This assumption may be inaccurate 

if extended time periods are considered, and individuals may 
change both their region of preference and their home place. 
As a result, the connectivity of close- by locations in directly 
consecutive trips might be underestimated. This issue could 
be addressed by splitting the dataset into subsets for different 
time periods and to treat them as independent replicates of one 
another.

By fitting model components in separate steps, we obtained 
multiple estimates for the dispersion parameter �. This indicates that 
some sources of stochasticity, such as weather, act on small scales 
only and have a reduced impact on an aggregate level. This is a com-
mon effect seen in ecological models (Dungan et al., 2002) and dif-
ficult to resolve without ignoring spatial correlations completely or 
strongly increasing the model's complexity. However, since the es-
timates for the other parameters were insensitive to moderate vari-
ations of the dispersion parameter (Appendix S7), our estimates for 
the mean angler traffic remain valid despite the scale dependency of 
the dispersion parameter.

Noting that propagules may be washed out at any site visited by 
anglers, we concentrated on estimating the number of consecutive 
fishing trips to distinct subbasins. This is in line with existing stud-
ies on invasive species transport (Bossenbroek et al., 2001; Leung 
et al., 2004; Muirhead & MacIsaac, 2011; Potapov et al., 2011). An 
alternative approach is to consider all trips that anglers make within 
the time frame propagules may survive (Papenfuss et al., 2015). 
Note, however, that we assumed that anglers choose their desti-
nations independently of the past unless they revisit their previous 
destination. Therefore, the number of higher- order trips between 
two subbasins equals the count of directly consecutive trips unless 
a constrained time frame is considered. Thus, incorporating higher- 
order trips comes down to determining a sensible time- scale for 
propagule decay.

We focused on intraprovincial angler traffic, but our model 
could be extended to also consider nonresident anglers visiting 
the province on vacation trips. Within our model framework, such 
anglers could be added to the populations of the localities where 
they reside temporally. However, in Alberta, nonresident anglers 
are responsible for only 2.6% of the angler traffic (measured in 
yearly fishing days) (DFO, 2019), which is below the error margin 
of our estimates.

4.4  |  Alternative approaches

Our model's complexity is driven by the challenges stemming 
from missing trip records in app data. If complete trip records 
were available, a phenomenological gravity model for the con-
nectedness of destinations (e.g. Chivers & Leung, 2012; Muirhead 
& MacIsaac, 2011; Potapov et al., 2010) could be constructed di-
rectly. However, complete trip records are often difficult to obtain 
without strong simplifying assumptions, such as that vectors have 
visited all destinations they reported with the same frequency 
(Potapov et al., 2010).
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If data on the temporal progression of the disease or invasion 
are available, the connectedness between destinations could also be 
inferred based on the observed infestation dynamics (Bossenbroek 
et al., 2001; Leung et al., 2004). However, the resulting traffic esti-
mates can typically not be validated due to the lack of data. Besides, 
this approach makes it necessary that an establishment model exists 
that accounts for on- site conditions affecting establishment success.

5  |  CONCLUSIONS

The increasingly widespread use of mobile apps by anglers, hikers, 
campers and other potential vectors of invasive species and patho-
gens opens new opportunities for research and management. To ex-
ploit the full potential of this new data source, models accounting 
for spatial, temporal and individual heterogeneity are needed. The 
presented model demonstrates the wealth of information that can 
be gained from app data, including (1) temporally explicit estimates 
of vector traffic between cities and waterbodies, (2) estimates of 
how often vectors choose new trip destinations, potentially carrying 
propagules to other places and (3) the spatial scale at which indi-
vidual local preferences play a major role in vectors' decisions. Our 
results suggest that ignoring individual- specific components in vec-
tors' decision- making can bias estimates by underestimating local 
traffic and overestimating long- distance traffic. We furthermore 
showed that incorporating vectors' tendency to revisit past loca-
tions can bridge the common data gap arising from incomplete trip 
records reported by app users.
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