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Abstract 

Fermented foods are consumed throughout the world and substantially contribute to food 

security. Many fermented products rely on the participation of Bacillus species but their 

contribution to food quality is not well documented. The purpose of this review is to highlight 

metabolic properties that relate to food quality and food safety. Most fermented foods that 

include Bacillus species use legumes or tubers as substrate and are traditionally prepared in 

East Asia, Africa and South America. In food fermentations, Bacillus species produce amylases 

and proteases, extracellular polysaccharides and polypeptides, and lipopeptides with 

antimicrobial activity. The metabolic traits of bacilli also provide opportunities for use in food 

fermentations in which they do not traditionally occur. 

Keywords: Bacillus; food fermentations; microbial enzymes; antimicrobial lipopeptides; 

probiotic; Bacillus cereus 
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Introduction 1 

Food fermentations utilize the activity of microorganisms for conversion of food components 2 

to improve shelf-life and safety, as well as sensory and nutritional properties of food. In 3 

addition, the presence of live microorganisms in fermented foods is increasingly recognized to 4 

improve gastrointestinal health [1–3]. The assembly of communities of fermentation microbes 5 

is determined by the fermentation conditions, i.e., the ingredients, temperature, pH, moisture 6 

content, and using back-slopping or starter cultures (5). Most fermentations include yeasts 7 

and/or lactic acid bacteria (LAB) as major fermentation microbes but mycelial molds, acetic 8 

acid bacteria, staphylococci, propionibacteria, Enterobacteriaceae and bacilli also play 9 

dominant roles in some fermented foods [4]. The contribution of Bacillus to food quality is not 10 

nearly as well documented as the contribution of yeasts and lactobacilli. 11 

Bacillus spp. are isolated from soil, water and plants, and are almost ubiquitously present in 12 

foods [5]. They form endospores as a key element of their ecology [6]. Bacillus endospores 13 

resist adverse conditions including heat, pressure, desiccation, and chemical assaults [6,7]. The 14 

resistance of spores to high temperature and high pressure and thus the survival in ingredients 15 

that are cooked or steamed is further increased by the spoVA2mob operon [8,9]. The ecology of 16 

Bacillus spp. and their relevance for plant agriculture and food production is shown in Figure 17 

1. The presence of Bacillus spores in plants including cereals, pulses and cassava relates to 18 

their occurrence as endophytes [10–13]. Because spores survive even cooking steps [14], 19 

cooked or uncooked cereal grains, pulses and cassava generally harbor endospores of Bacillus 20 

species [15,16].  21 

Bacillus species are recruited for traditional food fermentations of pulses, tubers or cereals in 22 

Asia, Africa and South America (Figure 2) [3,17–19]. This review aims to provide an overview 23 

on the role of Bacillus in food fermentations by presenting traditional fermented foods that 24 
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include Bacillus species as major fermentation organisms, their specific contribution to food 25 

quality and safety, and explore the potential of using these organisms in non-conventional 26 

fermentation processes. 27 

The presence of Bacillus in food fermentations 28 

An overview on food fermentations that include Bacillus species as major fermentation 29 

organisms is shown in Table 1. Major processing and fermentation steps are also indicated in 30 

Table 1 to inform on major processing steps and fermentation conditions that select for Bacillus 31 

species. The overview is likely incomplete because not all fermented foods are documented in 32 

the scientific literature. Moreover, the overview in Table 1 does not reflect that fermented foods 33 

are produced in numerous varieties that share major processing and fermentation steps but may 34 

differ in flavor and appearance [3].  35 

Fermented products from soybean and pulses 36 

Consumption of soybean and soybean derived fermented products has a long history in many 37 

East and South Asian countries (Table 1) [19]. Bacillus spp. frequently occur in alkaline food 38 

fermentations, which use soybeans as substrate [17]; Several examples are presented in more 39 

detail below. 40 

Natto 41 

Natto is a traditional Japanese fermented food produced from soybeans fermented by natto 42 

starter strains of Bacillus subtilis var. natto [20]. To make natto, soybeans are soaked, steamed, 43 

inoculated with B. subtilis var. natto and fermented at 40 °C for 24 h. The natto is cooled and 44 

aged in refrigerator for up to 1 week allowing the development of stringiness (Table 1). The 45 

fermentation process supports secretion of proteases by bacilli to degrade soy proteins, the 46 

production and racemization of L- and D-glutamic acids, and the synthesis and secretion of 47 

poly-γ-glutamate [21].  48 
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Cheonggukjang 49 

Cheonggukjang is a Korean soybean paste made from cooked soybeans fermented with 50 

Bacillus species at around 40 °C for 2-3 days (Table 1) [22]. Fermentation with Bacillus 51 

hydrolyses soybean proteins and polysaccharides. In addition, isoflavones are converted to the 52 

corresponding aglycones during fermentation [22].  53 

Doenjang 54 

Doenjang is traditionally manufactured by fermentation of meju, the fermented soybean block. 55 

Meju is traditionally prepared by soaking, steaming, crushing, and then fermented for 2 to 3 56 

months with B. subtilis, Rhizopus spp., and Aspergillus spp. The fermented meju is separated 57 

into two parts; the supernatant liquid part is filtered to prepare soy sauce and precipitated solid 58 

part is used for further ripening for over 2 months to make doenjang (Table 1) [23]. In a 59 

modified, commercialized method, meju fermentation is solely inoculated by B. subtilis to 60 

make koji, and koji is further ripened by Aspergillus oryzae, additional grains (e.g., wheat and 61 

barley), and/or other flavor enhancing materials. Therefore, the use of controlled 62 

microorganisms and standardized processes can boost the production efficiency while 63 

maintaining the flavor consistency of doenjang [23]. 64 

Gochujang 65 

Gochujang is a traditional Korean fermented paste made from meju, red pepper powder, and 66 

glutinous rice. The characteristic flavor of gochujang is a combination of hot taste from red 67 

pepper, sweet taste from sugars, umami taste from amino acids, and salty taste from NaCl. 68 

Gochujang is fermented with Aspergillus spp., Bacillus spp. and Rhizopus spp. for several years 69 

in large earthen pots by mixing glutinous rice powder, salt, and red pepper powder with meju 70 

powder (Table 1) [24].  71 
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Hawaijar 72 

Hawaijar is a fermented soybean product in Manipur, India, with a distinct flavour and 73 

stickiness [25]. It is consumed commonly in the local diet as a staple source of high protein 74 

food [26]. Whole soybeans are soaked overnight, washed and boiled. After draining excess 75 

water, the cooked soybeans are washed with hot water, wrapped with cotton cloth or banana 76 

leaves and packed tightly in a basket with a lid. The basket is wrapped with cloth and kept in 77 

the sun, near a stove, or buried in paddy straw for fermentation for 4 to 5 days (Table 1). The 78 

final product has a pH of 8.0 to 8.2 and is of brown colour with a sticky slimy white appearance 79 

and a light ammonia odour [26,27]. In hawaijar fermentation, no starter culture is added during 80 

its preparation. Bacillus strains that dominate the fermentation originate from raw soybeans 81 

[11] or are acquired from other materials used for fermentation [27]. 82 

Sufu 83 

Sufu is a Chinese fermented made from cubes of soybean curd (tofu) by mold ripening [28]. 84 

Four steps are involved in sufu-making; preparing tofu from boiled soymilk; brining; preparing 85 

pehtze (soybean curd overgrown with fungal mycelium) with a fungal starter culture; salting; 86 

and ripening for 2-3 months in a dressing mixture. During brining, the tofu adsorbs the salt 87 

until the salt content of tofu reaches about 6.5 %, which takes about 2 days. Pehtze is prepared 88 

by inoculating pure culture of Bacillus spp. or Micrococcus spp. to tofu and incubated at 30-89 

38 °C for about 1 week. Pehtze is dried at 50-60 °C for 12 h prior to subsequent fermentation 90 

in the dressing mixture. The most common types are mold-fermented sufu, and bacteria-91 

fermented sufu, which includes Bacillus and/or Micrococcus as major members of fermentation 92 

microbiota (Table 1) [29].  93 
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Roots, tubers, and vanilla fermentation products 94 

Tubers including cassava, yams and potatoes are second only to cereals in importance as a 95 

global source of carbohydrates. In most African and Asian countries, the traditional diets of a 96 

majority of people rely largely on cassava and yam, which are poor in other nutrients, 97 

particularly proteins, essential amino acids, vitamins and minerals, but contain significant 98 

amounts of starch and dietary fiber [30]. Cassava also contains the cyanogenic glycosides 99 

linamarin and lotaustralin that release cyanide during digestion unless the β-glucosidic bonds 100 

are hydrolysed during food processing [31]. An overview on fermented tubers and the 101 

organisms that occur in the fermentation is provided in Table 1; several examples are presented 102 

in more detail below. 103 

Ntoba Mbodi 104 

Ntoba Mbodi is a popular alkaline fermented food in Congo [31]. It is made by fermenting 105 

cassava leaves in the following way: the leaves are harvested, wilted for 2-3 days, cleaned, cut 106 

into small pieces, wrapped in small portions into large leaves, and allowed to ferment at 107 

ambient temperature for 2-4 days (Table 1). Fermentation also eliminates cyanogenic 108 

glucosides [31,32]. A rise in pH of up to 10 is observed during the process. The main 109 

microorganisms responsible for the fermentation are Bacillus spp. [31]. 110 

Cassava tape 111 

Cassava tape (fermented cassava) is an Indonesian traditional food made by fermentation of 112 

cassava. It is made from steamed cassava mixed with a starter commonly known as “ragi tape”. 113 

In general, the cleaned and peeled cassava tubers are steamed, cooled, and placed in basket. 114 

Powdered ragi is sprinkled over the cassava. The cassava is covered with banana leaves and 115 

incubated at room temperature for 2-3 d (Table 2.1). The quality of cassava tape depends on 116 

many conditions, including the quality of cassava, preparation method, and microbes [33]. 117 
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Several Bacillus spp. including B. subtilis, B. amyloliquefaciens and B. thuringiensis have been 118 

isolated from cassava tapes [33].  119 

Elubo 120 

Yams (Dioscorea spp.) are processed and fermented to the traditional West African dried yam 121 

flour elubo. Yam slices are blanched at for 10 min 60 °C and fermented for 24 h at 30 °C. 122 

During the first 24 h of spontaneous fermentation, the microbial population grows as the pH 123 

falls from 6.2 to 5.4. Back-slopping at a rate of 10% (w/v) is used to accelerate natural lactic 124 

fermentation by using the preceding fermentation batch as an inoculum (Table 1). Fermentation 125 

experiment of blanched samples with pure cultures of the isolates indicated that 126 

Lactiplantibacillus plantarum, Levilactobacillus brevis and B. subtilis are the main species in 127 

the reconstituted flour paste [34]. 128 

Taruba  129 

Indigenous populations in the Amazon region of South America produce fermented cassava 130 

beverages for daily consumption from cassava alone, or from cassava with addition of corn or 131 

potatoes. Cassava roots are generally washed and soaked, followed by crushing and sieving, 132 

cooking or toasting, and fermentation for one or several days. Bacilli including B. subtilis and 133 

B. amyloliquefaciens were consistently identified as members of fermentation microbiota, 134 

which also includes Lp. plantarum, Lv. brevis and pediococci [35,36].  135 

Vanilla 136 

Vanilla flavoring obtained from cured Vanilla planifolia (Andrews) beans is widely used in 137 

food, beverages, and cosmetics [37]. The characteristic vanilla flavor is formed during a curing 138 

process that yields the character impact compound vanillin. The conventional curing processes 139 

involves four steps: blanching, sweating, drying, and conditioning. Mature fresh vanilla beans 140 

are blanched and then stored at high humidity and temperature. Sweating retains a sufficiently 141 
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high moisture content for the enzyme-catalyzed reaction. The vanilla beans are dried by sun or 142 

air to inhibit mold growth and stored in a closed box for several months for formation of 143 

vanillin [38,39]. Thermophilic bacilli develop during sweating (Table 1) [40]. Bacillus isolated 144 

from vanilla beans produced β-D-glucosidase, which hydrolyses glucovanillin to vanillin [39].  145 

Cereal fermented product 146 

Daqu 147 

Daqu is a spontaneous solid-state cereal fermentation that is used as a saccharification starter 148 

to initiate the alcoholic mash fermentation for production of cereal liquors and vinegars in 149 

China (Figure 3) [41,42]. The liquor starter is prepared with different grains including wheat, 150 

rice, sorghum, that are shaped in blocks and fermented with controlled temperature and 151 

humidity [43]. The bacterial microbiota composition of daqu is diverse and includes Bacillus 152 

spp., Enterobacteriaceae and LAB (Table 1) [4,44]. Fungal organisms include Aspergillus spp., 153 

Mucor spp., and Penicillium spp. [44,45]; the most frequently isolated yeasts belong to the 154 

genus Saccharomyces [44]. In China, daqu is also used as a starter culture for sourdough 155 

fermentation but bacilli were not identified as members of microbiota of the corresponding 156 

sourdough [46]. 157 

Fish sauce 158 

Fish sauce is a condiment that is traditionally consumed in Southeast Asia but becomes 159 

increasingly popular in other places of the world [47]. It is produced by mixing fish, such as 160 

anchovies, with salts and fermenting for 6 to 12 months at room temperature [48]. Fish proteins 161 

are hydrolyzed by proteases from the fish and from halotolerant/halophile microorganisms, 162 

resulting in umami-tasting peptides and amino acids [49,50]. The fermentation organisms in 163 

fish sauces predominantly include halophilic or salt tolerant bacteria including Bacillus species 164 

(Table 1) [51,52]. 165 
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The role of Bacillus in food fermentation 166 

Bacillus species have a variety of desirable characteristics, including their ability to form 167 

endospores, and several strains or species have been awarded GRAS (Generally Regarded as 168 

Safe) status by the Food and Drug Administration [53] and QPS (Qualified Presumption of 169 

Safety) by the European Food Safety Authority [54]. Figure 4 provides an overview on the 170 

presence of desirable or undesirable metabolic traits in type strains of the genus Bacillus. The 171 

role of Bacillus as source of industrial enzymes has been well reviewed elsewhere [55,56]. In 172 

this section, the role of enzymes produced by Bacillus during food fermentations are discussed. 173 

Role of amylases 174 

The amylolytic system of Bacillus species includes glucan branching enzymes, extracellular 175 

amylases including α‐amylases, β‐amylases, pullulanases and glucoamylases, and intracellular 176 

oligosaccharide hydrolases. Most type strains of the B. cereus and B. subtilis groups produce 177 

multiple amylases (Figure 4). Yams and cassava have a low content of fermentable 178 

carbohydrates and low amylase activity [57]. Therefore, extracellular amylases produced by 179 

Bacillus spp. are particularly important for the hydrolysis of starch [58].  180 

Thermostable amylases of Bacillus are also a key element of daqu fermentations [59]. Strains 181 

of the B. subtilis group that are present in daqu fermentations have a high starch degrading 182 

ability including thermotolerant α‐amylase activities [53]. Amylase activity in daqu was 183 

significantly increased by inoculation with B. licheniformis [59]. Amylases produced by 184 

B. licheniformis in daqu fermentation yielded maltose, maltotriose, and maltodextrins as major 185 

products from starch [60].  186 

Role of β-glucosidases, phytase and α-galactosidase 187 

β-Glucosidase hydrolyzes β-glucosidic linkages between carbohydrate residues in aryl-amino- 188 

or alkyl-β-D-glucosides, cyanogenic glucosides, short chain oligosaccharides and 189 
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disaccharides under different physiological conditions [61]. The gene that produce BglA is 190 

encoded by most type strains of the B. subtilis group (Figure 4). 191 

Isoflavones are abundant in soybeans and have various health benefits related to their 192 

oestrogenic activities [62,63]. They have bioactivity only when the glycosides that are present 193 

in soybeans are hydrolysed to the isoflavone aglycones [62,63]. During the fermentation of soy 194 

with Bacillus, glucoside conjugates of isoflavones are converted into aglycones by Bacillus 195 

β-glucosidase [64].  196 

The β-glucosidase of Bacillus species also hydrolyzes cyanogenic glycosides in cassava. 197 

Linamarin accounts for 80 % of the cyanide content of cassava and is known to cause severe 198 

disease upon continual consumption [65]. β-Glucosidase activity of bacilli detoxifies cassava 199 

cyanides without compromising other nutrients [66]. 200 

Vanillin is the main aromatic constituent in cured vanilla pods [67]. In fresh vanilla beans, 201 

vanillin is present as glucovanillin, an odorless β-D-glucoside of vanillin. One of the most 202 

important aspects of curing is the conversion of glucovanillin to vanillin by β-glucosidase [68]. 203 

Bacillus in vanilla fermentation produce β-glucosidase which hydrolyse glucovanillin [39]. Its 204 

formation may be due to the action of thermo-tolerant bacteria such as B. subtilis because of 205 

their dominance in vanilla curing up to 65 °C. 206 

Fermentation is also considered a necessary and accepted method to reduce the anti-nutritive 207 

phytic acid and raffinose family oligosaccharides in pulses (73). Most of total seed phosphorus 208 

(P) in legumes and cereal grains is present as phytate, which chelates minerals and decrease 209 

their bioavailability to humans and monogastric animals (74). Most fermented soy products 210 

involve a cooking step prior to fermentation. This cooking step inactivates plant enzymes and 211 

phytate hydrolysis during fermentation is dependent on microbial enzymes. Species of the 212 
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B. subtilis group are effective producers of phytases, which hydrolyze phytate and increase the 213 

bioavailability of minerals in cereals and legumes (Figure 4) (75).  214 

Raffinose family oligosaccharides (RFOs), i.e., raffinose, stachyose, verbascose, are abundant 215 

in soybean and legumes. They are composed of one or more galactose residues joined by 216 

α-(1→6)-glycosidic bonds to sucrose. These indigestible carbohydrates can lead to flatulence 217 

and other gastrointestinal disorders [69]. α-Galactosidases degrade RFOs and improve the 218 

nutritional value of soy and legumes [70]. Bacillus species, particularly species of the 219 

B. subtilis group also encode for α-galactosidases, which hydrolyse raffinose-family 220 

oligosaccharides in soybean and legumes (Figure 4). 221 

Role of proteases 222 

Type strains of the B. subtilis group produce multiple extracellular proteinases (Figure 4). 223 

Because of their broad pH and temperature activity and stability range, proteases from Bacillus 224 

play an essential role in soybean and fish fermentations as they are tolerant to alkaline 225 

environments and high temperature. 226 

Proteases are secreted by B. subtilis during food fermentations. Degradation of proteins to 227 

peptides and amino acids impacts the texture and flavor of the products, may generate bioactive 228 

peptides, and provides precursor amino acids for conversion to flavor volatiles [1,71–73]. 229 

Fermented fish sauces are particularly rich in soluble taste-active peptides, and amino acids 230 

[49,50]. They are produced during proteolytic degradation by proteases in the muscles or 231 

digestive tracts of fish, and various microorganisms existing in the fermentation broth [74]. 232 

Proteases produced by Bacillus play an essential role in the degradation process. A halotolerant 233 

protease produced by B. licheniformis has been identified in Thai fish sauce with a high 234 

enzymatic activity, even under high salt conditions (30 % NaCl) [48]. 235 
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Role of polyglutamate and glutaminase 236 

Glutaminase of Bacillus convert glutamine to the umami tastant glutamate. Glutaminases of 237 

Bacillus spp. are tolerant to high temperature and high salt conditions; at alkaline conditions, 238 

glucaminases of Bacillus also synthesize kokumi-active γ-glutamylpeptides [71,75,76].  239 

Glutamate accumulates in the food matrix and contributes to the umami taste but is also 240 

converted to poly-γ-glutamic acid (γ-PGA). PGA is synthesized by polymerizing D- and L-241 

glutamate to an anionic biopolymer comprised of only glutamic acid residues. It is water 242 

soluble, biodegradable, and has good thickening capacity and excellent absorbability [77]. γ-243 

PGA is produced by Bacillus spp. to form part of the mucilage of natto and cheonggukjang 244 

(Figure 4) [78,79]. The stringy consistency of natto is mainly due to γ-PGA produced by B. 245 

subtilis [79]. The production of γ-PGA from natto starters were reduced in medium containing 246 

NaCl greater than 3 % [80]. A salt tolerant B. subtilis strain was found in a cheonggukjang 247 

fermentation, which also produces γ-PGA [78].  248 

Role of antimicrobial lipopeptides 249 

Bacillus species produce lipopeptides, including surfactins, fengycins and iturins [81,82] with 250 

a broad-spectrum antimicrobial activity [82,83]. The non-ribosomal peptide synthases that 251 

synthesize these lipopeptides are present almost exclusively in strains of the B. subtilis group 252 

(Figure 4). 253 

Surfactins show antibacterial activity but, with some exceptions, no marked antifungal activity 254 

[81]. Iturins display a strong antifungal action against a wide variety of yeast and fungi but 255 

only limited antibacterial activity. For example, iturin from B. pumilus HY1 inhibited A. flavus 256 

and A. parasiticus with an minimum inhibitory concentration of 50 mg/L [84]. This 257 

fungitoxicity of iturins has been attributed to membrane permeabilization [82]. Fengycins also 258 

have a strong antifungal activity, specifically against filamentous fungi [81]. In vitro studies 259 
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indicate that the ability of B. subtilis inhibiting aflatoxin-producing fungi was substantially 260 

greater than the inhibitory effect of lactic acid bacteria [85]. Lipopeptides produced by Bacillus 261 

were detected in cheonggukjang, daqu, and other solid-state fermentations [86–88]. In situ 262 

antifungal activity of lipopeptides produced by B. velezensis and B. amyloliquefaciens was 263 

demonstrated in model daqu fermentations [89] 264 

Safety and health benefits of Bacillus species 265 

Assessment of the safety of Bacillus species and their toxins  266 

Bacillus species are also of concern for food safety. Toxins are produced by certain strains of 267 

the B. cereus group (Figure 4). The B. cereus group includes B. cereus, B. anthracis, 268 

B. thuringiensis, B. mycoides, which includes strains previously designated as 269 

B. weihenstephanensis, B. pseudomycoides, B. cytotoxicus and B. toyonensis (Figure 4) [90]. 270 

Toxins produced by these organisms such as non-haemolytic enterotoxin (nhe); haemolysin 271 

BL (hbl); cytotoxin K (cytK), cereulide, and the lethal anthrax toxin (Figure 4). The 272 

lipopeptides surfactin and lichenysin are biosurfactants with in vitro hemolytic and cytolytic 273 

activity [82] but are not known to contribute to human (foodborne) disease [90], and are not 274 

produced by pathogenic Bacillus species (Figure 4). The non-haemolytic enterotoxin, 275 

haemolysin BL, and single protein cytotoxin K have been linked to the diarrheal type of B. 276 

cereus food poisoning [91]. Nearly all B. cereus strains harbor the nhe genes, while hbl and 277 

cytK are detected in about 30-70 % of isolates. The emetic toxin cereulide is produced is 278 

produced by a non-ribosomal peptide synthase, which is present only in B. cereus and related 279 

species (Figure 4) [92]. Cereulide produced in food results in rapid onset of vomiting after 280 

ingestion but is rarely lethal. B. anthracis is the causative agent of anthrax, an acute lethal 281 

disease in animals and in humans [93]. Bipartite exotoxins produced by B. anthracis include 282 

protective antigen-lethal factor (PA-LF) and PA-edema factor (PA-EF) [90].  283 
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Because Bacillus strains other than strains of the B. cereus group rarely produce toxins, bacilli 284 

were included in the QPS list, with the qualification of "absence of toxigenic potential" [54,94]. 285 

Figure 4 documents that the potential for toxin production is closely linked to phylogeny.  286 

Use of Bacillus species as probiotics 287 

Probiotics are defined as “live microorganisms which confer a health benefit on the host when 288 

administered in adequate amounts” [95]. The role of LAB as animal and human probiotics is 289 

well documented [96,97]. Endospores of Bacillus species have been proposed as heat resistant 290 

alternatives [98] and their probiotic activity is increasingly documented in clinical trials [99]. 291 

Several clinical trials support claims that Bacillus probiotics reduce chronic gastrointestinal 292 

symptoms, and increase the resistance to infections [99]. The occurrence of pathogenic strains 293 

or species in the genus Bacillus, however, impedes consumer acceptance of Bacillus probiotics 294 

[99]. Moreover, it remains unclear whether Bacillus fermented foods deliver a sufficient dose 295 

to viable bacterial cells or spores to exert probiotic effects [100].  296 

Conclusions 297 

Bacillus species are an under-appreciated group of bacteria that are prevalent in numerous food 298 

fermentations, particularly in Asia and Africa. Strains of the Bacillus subtilis group produce 299 

extracellular hydrolytic enzymes, potent antifungal lipopeptides and extracellular polymeric 300 

compounds. These properties that are only rarely found in other dominant groups of food 301 

fermenting bacteria such as lactic acid bacteria, acetic acid bacteria, or propionic acid bacteria. 302 

Toxigenic bacilli and those species that possess functional traits cluster in two separate 303 

phylogenetic groups. With the better understanding and further study of Bacillus, the 304 

fundamentally positive characteristics of the Bacillus species will make them the preferred 305 

starter cultures for many novel and improved fermented foods. 306 
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Figure legends 662 

Figure 1. A simplified view of the lifestyle of Bacillus in different environmental niches. 663 

Mutualistic interactions of Bacillus with plants or humans are highlighted in red letters; 664 

pathogenic interactions are in blue letters. Soil is the largest reservoir of Bacillus. Bacillus spp. 665 

form stable symbiotic associations with plants and occur in the rhizosphere or as endophytes 666 

[12,13]. The plants provide nutrients to Bacillus; in turn, Bacillus strains help the plant defend 667 

against harmful microbes by production of antimicrobial peptides [101]. B. thuringiensis 668 

additionally produces an insecticidal spore protein, which is used commercially as biopesticide 669 

[102]. Bacillus spp. are generally present in plant foods and may cause food spoilage [14] or 670 

improves food quality as a food fermenting organism [3,17]. In vertebrate hosts, pathogenic 671 

Bacillus species of the B. cereus group cause emetic or diarrheal illness cause illness or death 672 

[90], whereas some non-pathogenic Bacillus spp. are used as probiotics to promote host health 673 

[99].  674 

Figure 2. Geographic location of Bacillus species associated food fermentation. Panel A, 675 

cereal fermented foods; Panel B, fermented soybeans and legumes; Panel C, fermented 676 

cassava or yams. The maps were generated with a template file from www.freeworldmaps.net.  677 

Figure 3. Flow chart of traditional Chinese liquor brewing process including the process of the 678 

daqu production (left) and the liquor production (right). The stacking fermentation is used for 679 

production of few but not all liquors [103,104].  680 

Figure 4 Core genome phylogenetic tree of type strains in the genus Bacillus (left) and genes 681 

coding for useful enzymes, or toxins, in these type strains of Bacillus spp. (right). Genome 682 

sequences of type strains of the genus Bacillus were downloaded from NCBI Genome database 683 

(Supplementary Table S1) using NCBI-genome-download (version 0.3.1). Gene annotion was 684 

performed by Prokka (version 1.14.6) in PGCGAP module (version 1.0.20) to obtain the GFF 685 

format annotion. The pan and core protein clusters of all these genomes were constructed using 686 

http://www.freeworldmaps.net/
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FastOrtho. The phylogenetic tree of all Bacillus type strains was established by IQ-TREE 687 

(version 2.0.3) with the model selection of MFP. 688 

Query protein sequences were downloaded from UniprotKB database according to the Entry 689 

ID and searched against the Prokka-annotated translations of Bacillus genomes by BLASTP 690 

with an e-value cutoff of 10-5. Futhermore, shell script was used to screen the blastp results 691 

with identiy more than 0.60 and R script was used to create the heatmap matrix. Finally, the 692 

phylogenetic tree and the blastp results were depicted in iTOL. 693 

Shown in different colors are (from left to right): the amylolytic system, other glycosyl 694 

hydrolases, glutaminases, polyglutamate synthesis, proteases, antimicrobial lipopeptides, 695 

enterotoxins of B. cereus, and the anthrax toxin.  696 

Amylolytic system: GlgB (B7JDF1), branching enzyme; AmyE (P00691), α-amylase; AmyS 697 

(P06279), heat stable α-amylase; BbmA (O06988), β-amylase; SpoII (P36924), β-amylase; 698 

AmyX (C0SPA0), pullulanase or debranching enzyme; MdxE (WP_163131464), maltose 699 

binding proteins.  700 

Other glycosyl hydrolases: BglA (P22073), β-glucosidase; GanA and GanB (O07012 and 701 

O07013), exo- and endo-β-galactosidases/β-galactanases; YesZ (O31529), β-galactosidase; 702 

LplD (P39130), α-galactosidase; AguA (Q09LY5), thermostable xylanase; PhyC (O31097), 703 

phytase. 704 

Glutaminases: GlsA1 and GlsA2 (O31465 and O07637), glutaminases. 705 

Polyglutamate synthesis: PghL (A0A6M3ZBI1), poly-γ-glutamate hydrolase, PgsABCR 706 

(A0A6M3ZGL0, E0U4Z3, A0A6M4JPT9, and Q45449), poly-γ-glutamate synthetase and 707 

regulatory genes. 708 

Proteolytic system: HtrA and HtrB (O34358 and Q9R9I1), envelope-associated serine 709 

proteases; YyxA (P39668), uncharacterized serine protease. 710 
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Antimicrobial lipopeptides: FenABCDE (A0A7G7U8D7, H9TE69, A0A7G7U8D5, 711 

A0A7T5SHH4 and A0A7G7U8D6), fengycin synthase; ItuABCD (Q93I56, Q93I55, Q93I54 712 

and X5F8R7), iturin synthase; MycABC (Q9R9J1, Q9R9J0 and Q9R9I9), mycosubtilin 713 

synthase; PpsBDE (A0A6H2JR43, A0A6H2JR81 and O31827), plipastatin synthase (doi: 714 

10.6026/97320630007384); SrfAA SrfAB, SrfAC and SrfAD (P27206, Q04747, Q08787 and 715 

Q08788), surfactin synthase; sfp (P39135), surfactin synthetase-activating enzyme.  716 

Toxins: CesH (Q20CJ2), cereulide synthetase; CytK (Q63EQ2), cytotoxin K; HblACD 717 

(A0A2A8M4Y0, Q9L4L8 and Q9REG7), Hemolysin BL; NheABC (A0A8F1XQI7, 718 

A0A8I1GLU0 and A0A8F1XT31), Nhe enterotoxin; Anthrax toxin (TYC44981).  719 

The genome sequences of type strains that were used to generate this heatmap is provided as 720 

Online Supplementary Table 1. 721 

 722 
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Table 1. Bacillus species associated fermented foods. With exception of fish sauces, all fermentations are solid state fermentations. 

Product Substrate Main microorganisms 
Ingredients and main processing steps. Fermentations are spontaneous 

fermentations unless back-slopping or use of starter culture is indicated. 

Region of 

origin; food use 

Soybeans or soy protein and legumes 

Natto Soybeans B. subtilis var. natto 
Soybeans or pulses are soaked and steamed, inoculated with spores of B. subtilis 

var. natto and fermented for 15-24 h [20].  

Japan; main 

course as meat 

substitute 

Cheonggukjang 
Soybeans, local 

pulses 

B. subtilis, B. amyloliquefaciens 

and Rhizopus oligosporus 

Soybeans or pulses are soaked and steamed, inoculated with spores of Bacillus and 

fermented for 1-3 d [22].  

Korea; main 

course as meat 

substitute 

Doenjang 
Soybeans, local 

pulses 

B. subtilis, Rhizopus spp., and 

Aspergillus spp. 

Meju is made by soaking, steaming and crushing pulses and fermentation for 2 to 3 

months. The solid fraction of meju is used for further ripening for over 2 months to 

make doenjang  [23].  

Korea; 

condiment 

Gochujang 
Soybeans, rice, 

pepper 

Bacillus spp., including B. subtilis, 

B. amyloliquefaciens; Aspergillus 

spp.; and Rhizopus spp. 

The ingredients, 25 % red pepper powder, 22.2 % glutinous rice, 5.5 % meju, 

12.8 % salt, 5 % malt and 29 % water, are fermented for 6 months to 1 year [24].  

Korea; 

condiment 

Hawaijar 
Whole 

soybeans 

B. subtilis, B. licheniformis, 

S. sciuri, Alkaligenes spp., 

Providencia rettgeri 

The soybeans are soaked, boiled, washed, wrapped with clean cotton cloth/healthy 

leaves, and packed tightly in a bamboo basket with a lid. The basket is kept warm 

for fermentation for 4-5 d [27].  

India up (Asia); 

staple 

Sufu 
Tofu (soybean 

curd) 
Bacillus spp. or Micrococcus spp. 

Sufu is produced in four steps: preparation of tofu; brining, inoculation with a 

fungal starter culture to prepare pehtze; and ripening in dressing mixture [29]. 

China up (Asia); 

side dish 

Dawadawa 
Locust bean 

and local pulses 

Bacillus spp., including B. subtilis, 

B. pumilus, B. licheniformis and 

B. subtilis var. natto 

The locust beans are cleaned, boiled, pounded and separated the seed coat from the 

cotyledons. The cotyledons are re-boiled and packed into baskets or perforated pots 

and allowed to ferment spontaneously for about 48 h. Before fermentation, ash, 

maize, or millet flour is sprinkled on the cotyledons [105].  

West and 

central Africa; 

meat substitute 

Ugba 
Locust bean 

and local pulses 

Bacillus spp., including B. subtilis, 

B. licheniformis, B. megaterium, 

B. pumilus; Staphylococcus spp.; 

and Micrococcus spp. 

Soybeans or pulses are boiled, the cotyledons are sliced off. The sliced cotyledons 

are washed in water, soaked overnight and fermented for 3 to 5 d [106] .  

Nigeria; side 

dish 

Tubers and roots 

Ntoba Mbodi Cassava leaves 

Bacillus spp., including B. subtilis, 

B. licheniformis, 

B. amyloliquefaciens, B. pumilis, 

B. sphaericus, and B. xylanilyticus 

Cassava leaves are wilted for 2-3 days, cleaned, cut into small pieces, washed with 

water, distributed into small portions, and wrapped in large leaves, and allowed to 

ferment at ambient temperature for 2-4 d [32,107]. 

Congo 
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Product Substrate Main microorganisms 
Ingredients and main processing steps. Fermentations are spontaneous 

fermentations unless back-slopping or use of starter culture is indicated. 

Region of 

origin; food use 

Agbelima Cassava 

Bacillus spp., including B. subtilis, 

B. licheniformis and B. pumilus; 

LAB; and yeasts. 

Cassava root are peeled, grated and mixed with a traditional inoculum which is also 

prepared from cassava roots. The grated mash is packed into plastic sacks and 

fermented with weights placed on top of the sacks to dewater the mash [108,109].  

West Africa; 

staple 

Tape Cassava 

Bacillus spp., including B. subtilis, 

B. amyloliquefacie, and 

B. thuringiensis 

Cassava roots are cleaned, peeled steamed, cooled, and placed in a basket. 

Powdered ragi is sprinkled over the cassava. The cassava is covered with banana 

leaves and incubated at room temperature for 2-3 d [33].  

Indonesia; 

dessert or 

ingredient for 

baking 

Elubo (yams) Yams 
Lactiplantibacillus, 

Levilactobacillus, B. subtilis 

Yam slices are blanched at 60 °C for 10 min and then fermented at 30 °C for 24 h  

[34].  

West African, 

staple 

Taruba  Cassava 
L. plantarum, L. brevis and 

B. amyloliquefaciens 

Cassava is crushed and pressed, toasted for 30 min and fermented at ambient 

temperature for 12 d [35,36].  

Amazon, 

beverage 

Vanilla 

Vanilla 

Seed pods of 

Vanilla 

planifolia  

Bacillus spp., including B. subtilis, 

B. fusiformis, and B. pumilus 

Mature vanilla beans are blanched by immersing in hot water for 3-5 min to destroy 

the cell tissue structure. Then, the blanching vanilla beans are treated under 

conditions of high humidity and temperature. The sweating vanilla beans are sun- 

or air dried to inhibit mold growth and stored in a closed box for few months 

[38,39].  

Madagascar, 

Indonesia, 

Mexico, others; 

condiment 

Cereals 

Daqu 

Grains (wheat, 

rice, sorghum 

and barley) 

Bacillus spp., including B. subtilis, 

B. amyloliquefaciens, B. velezensis, 

and B. licheniformis; LAB; 

Enterobacteriaceae; Aspergillus 

spp.; Rhizopus spp.; 

Saccharomyces; and 

Saccharomycopsis 

Grains are ground and mixed with water to ~35 %. The mixture is shaped to bricks 

and then fermented for 2 months and matured for 2 months [41,42].  

China; starter 

culture for 

liquor and 

vinegar 

Fish 

Fish sauce Fish 

Filobacillus, Bacillus, 

Micrococcus, Virgibacillus, 

Halobacillus, Halococcus; 

Tetragenococcus halophilus 

Fish are mixed with salts and fermented for 6 to 12 months at room temperature 

[51,52].  

Southeast Asia 

up; condiment 



34 

 

 1 





A

B

C



Grains
(wheat, rice, sorghum or barley)

Grains 
(wheat, rice, sorghum or barley)

Crushing

Mixing

Shaping of bricks
Fermentation

Maturation

Matured daqu

Daqu powder

Daqu powder

30-40% water

Water

Steaming and distillation

Distilled grains

Stacking fermentation Mash

Liquor 
(Baijiu)

Fermented grains

Cooling

Daqu production Liquor production

Microbes and 
enzymes




	Bacillus in fermented foods revised II
	Figures final

