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We describe a sequence assembler, RePS (repeat-masked Phrap with scaffolding), that explicitly identifies exact
20mer repeats from the shotgun data and removes them prior to the assembly. The established software Phrap
is used to compute meaningful error probabilities for each base. Clone-end-pairing information is used to
construct scaffolds that order and orient the contigs. We show with real data for human and rice that reasonable
assemblies are possible even at coverages of only 4× to 6×, despite having up to 42.2% in exact repeats.

[The following individuals kindly provided reagents, samples, or unpublished information as indicated in the
paper: P. Green and A.F. Smit.]

All large-scale genome-sequencing projects to date have used
a shotgun strategy in which some target region is overs-
ampled by a random collection of sequence reads of typical
500 bp length. There is a wide variation in the size of the
target region. The International Human Genome Sequencing
Consortium (IHGSC; 2001) targeted bacterial artificial chro-
mosome (BAC) clones of size ∼150-kb. Celera, however, tar-
geted the entire 3-Gb human genome (Venter et al. 2001).
Regardless of the size of the target region, the primary diffi-
culty for assembling a shotgun data set is the frequent appear-
ance of repeated motifs. The difficulty is affected by how
many repeats there are, how large they are, how similar they
are, and how they cluster. All these characteristics are organ-
ism specific. The objective is to put the reads together in the
correct order and orientation, despite the repeat-induced am-
biguities.

Software used by the IHGSC included Staden (Staden et
al. 2000), Phrap (P. Green, unpubl.), and GigAssembler
(Kent and Haussler 2001). Phrap pioneered the concept of
using base-level error probabilities (Ewing and Green 1998;
Ewing et al. 1998) to help distinguish nearly identical but
distinct repeats from identical repeats that differ because of a
sequencing error. This was effective because many of the
troublesome repeats were derived from transposon insertions
that diverged over evolutionary time (Smit 1996) and there-
fore were nearly identical but distinct. Distinction of transpo-
son repeats was not scalable to larger data sets because the

explosion in the number of putative overlaps consumed an
intolerable amount of computer time. Even so, Phrap’s abil-
ity to compute a meaningful error probability for each base
has been instrumental in the IHGSC’s efforts to establish a
data quality standard of 1 error per 10,000 bases.

The Celera assembler (Myers et al. 2000; Huson et al.
2001) tamed the overlap explosion problem by masking all
known repeat classes. To further reduce the number of false
joins, it estimated the likelihood that an overlap was unique
before joining any two sequences together (Myers 1995). This
procedure resulted in a fragmentary assembly, but because
Celera sequenced both ends of the shotgun-library clones,
masked repeats could be inserted back into the assembly,
guided by the clone-end-pairing information, as long as both
ends were not masked. The clone-end-pairing information al-
lowed them to bridge across many of the remaining gaps, due
either to repeat masking or to missing sequence (Edwards and
Caskey 1991; Fleischmann et al. 1995; Roach et al. 1995).
Because their clone-insert sizes were so tightly controlled
(e.g., 2 kb with �10% variance), they could also estimate the
sizes of the bridged gaps.

METHODS
We have combined all the hard-earned lessons of the past into
a single software package, RePS (repeat-masked Phrap with
scaffolding). Rather than reinvent the wheel, we used Phrap
to handle the detailed sequence assembly, preserving its abil-
ity to compute a meaningful base-level error probability. As
the critical pre-Phrap process, we explicitly identify exactly
repeated 20mers and mask them out (i.e., remove them from
consideration by Phrap). This eliminates the overlap explo-
sion problem. At the same time, it also minimizes the likeli-
hood of making a false join. As a post-Phrap process, we ana-
lyze the clone-end-pairing information to fill gaps due to re-
peat masking and construct scaffolds across any other gaps. In
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essence, we borrowed concepts used by the Celera assembler
to create a scalable version of Phrap for whole-genome shot-
gun assembly. RePS is available by contacting the authors at
reps@genomics.org.cn.

There are advantages to explicitly identifying exact
20mer repeats without regard to their underlying biological
context. Mathematically defined repeats (MDRs) are more
useful than biologically defined repeats. From an algorithmic
perspective, it does not matter if the sequence is a transposon,
a microsatellite, or a gene duplication. If it is repeated, it will
hinder the assembly process. To the extent that the repeat
databases are incomplete, it should be more reliable to iden-
tify MDRs from the shotgun data set itself. This will be an
increasingly important issue as the large sequencing centers
move to less well-characterized genomes. Our software was
tested on a data set of genuine sequence reads, taken from an
11.9-Mb region of human chromosome 3, which was finished
to the standards set by the IHGSC with a BAC-by-BAC ap-
proach. Because the key analysis steps were effectively de-
coupled, we could explore tradeoffs between different aspects
of data quality and how they might be affected by different
experimental parameters. The results were used to guide our
assembly of the 430-Mb rice shotgun sequence (Yu et al.
2002), for which RePS was originally created.

[Note: As we were preparing this paper, a similar algo-
rithm was submitted for publication and has been published
[Batzoglou et al. 2002]. A comparison would have been inter-
esting, but it was not practical because the two programs were
optimized for different multiprocessor supercomputers and
not readily ported.]

We adopt a purely mathematical definition of repeats.
Any 20mer that is exactly duplicated in the target region is a
repeat. The Nmer unit cannot be too small because, at some
point, every Nmer is repeated. The number of different
20mers is 420 ≈ 1012, which is larger than any genome that we
might reasonably try to assemble. However, it does not help
to make the Nmer unit much larger than the minimum de-
tectable overlap, which is 14 to 26 bp, based on our Phrap
minmatch and minscore settings. Figure 1 depicts the two
primary components, repeat-masked Phrap and clone-end-
pairing analysis. The latter is divided into repeat-gap closure
and scaffold construction. All of the sequence joins are made
with Phrap. Repeat masking is used only to prevent Phrap
from making a false join. Clone-end pairs are used only to tell
Phrap when an otherwise ambiguous join can safely be made.
By letting Phrap handle all the details at the base level, we
preserve its ability to compute a meaningful base-level error
probability.

Repeat-Masked Phrap
Let C be the coverage, or the number of times, that a genome
is represented in the shotgun data set. The number of times
that any 20mer appears in the shotgun data set is its depth D.
Consider a 20mer with copy number N across the genome. It
should have an average depth of N � C. For masking pur-
poses, we define repeats as 20mers with a depth that is greater
than some preset threshold. There are tradeoffs between false-
positives (unique 20mers incorrectly called repeated) and
false-negatives (repeated 20mers incorrectly called unique).
False-positives result in excessive masking and smaller con-
tigs. False-negatives are difficult to avoid for low-copy repeats,
but the potential for misassemblies is not as serious as it might
appear. Expected overlaps are 500 bp divided by coverage, or
125 bp at 4� coverage. To result in a misassembly, the low-
copy repeat must be exactly duplicated across the entire 125
bp, which is unlikely but not impossible. In the end, one must
test the algorithm on genomes with substantial repeat frac-
tions, like the human and rice genomes, to assess the severity
of this problem.

Masking the 20mer repeats serves two purposes simulta-
neously. The first is that it liberates Phrap from having to
decide among an exponential number of possible joins, and
so the algorithm runs much faster. The second is that it pre-
vents Phrap from making ambiguous joins with a high prob-
ability of being incorrect. On the other hand, Phrap does not
assemble the sequence in a masked region, let alone compute
an error probability. To recover this information, we use a
local reassembly. After the initial Phrap assembly, all repeats
are unmasked and every contig is Phrap-ed again. Using a
100-bp sliding window, we search for discrepancies. Wherever
we find them, we extract all sequence reads that fall within
the window, Phrap them again, and replace the 100 bp of
contig sequence with this local reassembly. In essence, the
initial assembly puts the reads into more or less the right
place, while the local reassembly recovers any masked se-
quences and establishes a Phrap quality for each base.

From an implementation perspective, the existing ver-
sion of Phrap is constructed for a single-processor environ-
ment. To make it work in our multiprocessor environment,
we first do a pairwise comparison of all the reads using BLAST
(Altschul et al. 1990) to cluster any reads that have even a
remote chance of being joined. The clusters can then be dis-
tributed among as many processors as desired and assembled
independently using the single-processor version of Phrap.

Clone-End-Pairing Analysis
The clone-end-pairing analysis examines the names of the
sequence reads that are already assembled into a Phrap con-
tig, considers the sizes of the clone inserts, and on that com-
bined basis, existing contigs are validated and gaps between
contigs are closed. There are two different types of gaps, re-
peat gaps and LW gaps, which are depicted in Figure 1. In a
repeat gap, the sequence is in the shotgun data, but it has
been masked out. If the gap is small, the existing contigs may
already overlap, and all we need is clone-end evidence that
they can be joined. Even if the gap is bridged by fully masked
sequence reads, it can be filled in if the opposite clone ends
are not fully masked. In contrast, for an LW gap, the required
sequence is not even in the shotgun data, due to sampling
statistics (Lander and Waterman 1988). In practice, LW gaps
are usually smaller than a read. Regardless of the nature of the
remaining gaps, as long as they are smaller than our clone-
insert sizes, there is a good chance that they can be scaffolded
across to order and orient the contigs, even if the gap se-
quences remain undefined.

Although the widespread use of capillary sequencers has
reduced the frequency of mislabeled clone-end pairs to well
under 1%, it is more prudent to always make decisions based
on at least two sets of clone-end pairs. We adhered to this rule
for scaffold construction; but we relaxed this rule for repeat-
gap closure because we used Phrap to validate the sequence
overlap before the join is made. Specifically, we extracted 500
bp of sequence from the two flanking contigs and fed the
constituent reads to Phrap, along with the unmasked reads
from the gap, as identified by the clone-end pairs.

Glossary

Shotgun Assembly
Shotgun library. A collection of clones that over-sample the
target genome.

Clone-end pair. Sequence reads derived from both ends
of a shotgun-library clone.

Clone-insert size. The size of the clone-insert from which
a clone-end pair is taken.

Contig. The result of joining an overlapping collection of
sequence reads.
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Scaffold. The result of connecting non-overlapping con-
tigs by using clone-end pairs.

LW-gap. A gap in the assembly resulting from Lander-
Waterman statistics.

Repeat Analysis
Coverage. The number of times a genome is represented by
the shotgun data.

Copy number. The number of times a sequence occurs in
the genome.

Depth. The number of times a sequence appears in the
shotgun data set. For example, if a transposon has copy num-
ber N, and the shotgun data set has coverage C, the transpo-
son will appear at an average depth of N�C.

20-mer repeat. Any 20-mer with a depth D beyond a
preset threshold.

Repeat-masked Phrap. A shotgun-assembler based on

Phrap, for which all the 20-mer re-
peats are first eliminated from con-
sideration, before determining the
extent of overlap between different
sequence reads.

Repeat-gap. A gap in the as-
sembly that is attributed to the re-
peat masking.

Quality Measures
N50 size. As applied to contigs or
scaffolds, that size above which
50% of the assembled sequence can
be found.

Single-base error rate. The
number of small-scale discrepancies
per unit length, from a comparison
with the reference sequence. Small-
scale means smaller than a typical
500-bp sequence read, and usually
just a few bases.

Contig mis-assembly. An error
in how the sequence reads are as-
sembled. By definition, it involves
segments larger than a 500-bp se-
quence read. Comparisons with the
reference sequence might reveal
missing segments, segments in the
wrong orientation, or segments in
the wrong order.

Scaffold mis-assembly. An er-
ror in how the non-overlapping
contigs are linked together. Com-
parisons with the reference se-
quence might reveal interleaving
scaffolds, or contigs in the wrong
orientation or order.

Mis-assembly rate. The num-
ber of erroneous contigs (or scaf-
folds) divided by the total number
of contigs (or scaffolds).

RESULTS
We selected an 11.9-Mb region of
human chromosome 3, from
3p24.3 to 3p26.1, which was se-
quenced at the Beijing/Hangzhou
Genome Center as part of our con-
tribution to the Human Genome
Project. The region was covered by
an 87 BAC-clone tiling path, fin-
ished to an error rate of <10�4. Each

BAC was shotgun sequenced by subcloning into plasmids.
Two simulated data sets, at 4� and 4� + 2� coverage, were
created by uniformly thinning the plasmid subclone se-
quences to the desired coverage, thereby preserving any clon-
ing biases. Clone ends were simulated by pairing subclones
separated by the desired clone-insert distance in the finished
sequence. Because the BACs were covered by 11� of plasmid
subclones, and we allowed for a �10% variance in clone-
insert sizes, there were relatively few practical constraints.
Clone-end pairs were also deliberately mislabeled, to a worst-
case frequency of 1%. A proportionate number of contami-
nant reads (chimeras, clone deletions, and rearrangements)
were included in these simulated data sets to be as realistic as
possible.

The 4.2� data set for the 430-Mb rice genome is dis-
cussed in another paper (Yu et al. 2002). To validate this se-

Figure 1 The RePS algorithm. Any 20mer that appears in the shotgun data set more often than a
threshold depth is likely to be an exact repeat and is therefore masked out. Some sequence reads end
up fully masked, but most have enough unique sequence in them to be used by Phrap. Repeat gaps
are those for which the gap sequence is in the reads, but masked out by our procedure. LW gaps are
those for which the gap sequence is not in the reads for statistical reasons (i.e., Lander-Waterman).
Clone-end-pairing information is employed to help close the smaller repeat gaps. Large repeat gaps
cannot be closed in this manner. Neither can LW gaps. But as long as the clone-insert sizes are larger
than the remaining gaps, there is a reasonable probability that we can build scaffolds to bridge over
the gaps and order and orient the contigs.
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quence assembly, we used finished BAC sequences from a
related cultivar of Oryza sativa ssp. indica. The whole-genome
shotgun data came from the 93–11 cultivar, whereas the BAC
sequences came from the Guang-Lu-Ai cultivar, with the Gen-
Bank accession nos. AL442007, AL442112, AL442114,
AL442115, AL512542, AL512545, AL512546, and AL512547.
The cumulative length of all these finished BAC sequences
was 0.89 Mb.

Contig-Assembly Accuracy
As an initial test of our algorithm for identifying 20mer re-
peats, we compared the predicted to the actual probability-of-
detection. The key parameter is the threshold depth, which
we chose to make the false-positive rate nearly 0.1%. For shot-
gun coverages of 2�, 4�, and 6�, the threshold depths were
7, 11, and 14, respectively. Our concern was whether or not
there are cloning biases that are repeat sensitive. As we show
in Figure 2, actual performance was in agreement with expec-
tations based on Poisson statistics, which means that the
cloning biases are not a major problem. However, perfect re-
peat detection is only possible in the limit of infinite cover-
age.

In the human 4� data set, 15.9% of the finished BAC
sequences and 17.2% of the shotgun sequences are masked by
20mer repeats identified from the shotgun data. These num-
bers are comparable to the 19.4% and 15.4% of the finished
BAC sequences that are attributable to repeats of copy num-
bers at least 2 and 3. RepeatMasker (A.F. Smit and P. Green,
unpubl.), however, identifies 43.7% of the finished BAC se-
quences as being of transposon origin. The difference is that
we mask 20mers that are exactly duplicated in the target re-
gion; RepeatMasker identifies anything exhibiting similarity
to a known transposon sequence. In contrast, for the rice
4.2� data set, 32.1% of the finished BAC sequences and
42.2% of the shotgun sequences are masked. This larger frac-

tion of masked sequences reflects the fact that rice trans-
posons are of more recent origin (Mao et al. 2000; Turcotte et
al. 2001), less diverged from their ancestral sequences, and
more likely to lead to exactly duplicated 20mers. To a lesser
extent, it also reflects the fact that our rice data set comes
from a larger target region.

Table 1 assesses the performance of RePS to unmasked
Phrap. The metrics include the number of contigs, the size of
the contigs, the single-base error rate, and the contig or scaf-
fold misassembly rates. The number of contigs is compared to
the Lander-Waterman expectation. However, it is often the
case that, even when there are a large number of small con-
tigs, the bulk of the assembled sequence may be contained in
a small number of large contigs. A simple mean or median
would obscure this possibility. We therefore characterize the
assembly using N50 sizes, defined to be that number above
which 50% of the contig or scaffold sequences can be found.
Repeat-masked Phrap does produce more (and smaller) con-
tigs than unmasked Phrap, but this is all right, as it is only the
first of many steps, and it is more important to avoid making
mistakes early on than it is to build large contigs from the
outset.

Comparisons against the reference sequence reveal two
kinds of problems: single-base errors and misassemblies. The
single-base error rate is the quantity that is estimated by
Phrap. It is measured by counting the number of base dis-
crepancies per unit length in a BLAST-alignment segment
(Altschul et al. 1990). Separate error rates are quoted for
unique and repeated sequence. In the human 4� data set, the
measured rates are 0.066% (0.063%) for unmasked Phrap and
0.077% (0.076%) for repeat-masked Phrap. These differences
are negligible. The estimated error rates from Phrap are some-
what higher, but not by much, and our experience with
Phrap is that it tends to overestimate the error rate at low
coverages. We add that most of the sequencing errors are at
the ends of the contigs. If we restrict the BAC comparisons to
contigs >3 kb and trim 500 bp off both ends, the error rates
become 0.042% (0.025%) for repeat-masked Phrap. In rice,
most of these BAC discrepancies were actually polymor-
phisms, not sequencing errors, as different rice cultivars were
used. This is also reflected by the large differences between the
Phrap estimates and the BAC discrepancies.

By our definition, contig misassemblies involve seg-
ments larger than the typical 500-bp sequence read. They are
revealed by a BLAST-alignment with missing segments, seg-
ments in the wrong orientation, or segments in the wrong
order. These reflect each of the specific problems in Figure 3.
We define the contig misassembly rate as the ratio of bad
contigs to total contigs. There is a tradeoff between the contig
size and misassembly rate, as shown in Figure 4, but for low-
copy repeats, the tradeoff is minor. Only in the limit of no
repeat masking would the misassembly rates increase dra-
matically, say by a factor of 11, in the human 4� data set.
This reflects the fact that transposon copy numbers run into
the thousands, whereas, gene duplications rarely go past 10 in
copy number (Yu et al. 2002). Although some of the misas-
semblies made by unmasked Phrap are in those repeat-
masked regions that are never assembled into a contig by
repeat-masked Phrap, a huge majority, 79.5%, are not.

One could argue that by not counting the number of
misassemblies in the contig, we are underestimating the se-
verity of the problem in the largest contigs, which are likely to
have more than one misassembly. In principle, this is cer-
tainly true, but in practice, it is a problem only if the distance

Figure 2 Probability of detection for repeats of given copy number
at a shotgun coverage of 2�, 4�, and 6�. The threshold depths are
7, 11, and 14, respectively. The solid lines are theoretical predictions,
which assume Poisson statistics, and symbols of the same color refer
to actual performance on the human data sets. Ideally, the probability
is 0 at copy number 1, and 1 at copy numbers larger than 1. We
cannot detect every low-copy repeat, but the number of Alu and Line1
transposons in this target region is 4749 and 1797, respectively, so
we should be able to detect virtually every transposon.
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between misassemblies is small compared to the contig size,
which it is not. As supporting evidence, we did the BAC com-
parisons using a 1-kb window and searched for breakpoints at
which the window could only be matched to disjoint loci. In
the human 4�, human 4� + 2�, and rice 4.2� data sets,
such breakpoints were found on average once for every 649
kb, 825 kb, and 425 kb, respectively, after repeat-masked
Phrap. In no case did we find more than two breakpoints per
contig. Therefore, as long as the contigs are relatively small,
there is little practical difference between these two defini-
tions of contig misassembly rates.

After repeat-masked Phrap, we are left with many gaps
that are due to the repeat masking. If these gaps are small
enough, the clone-end-pairing information can be used to tell
Phrap how to close them. How aggressively repeat gaps must
be closed is debatable, especially in the grass genomes, like
rice, where most of these repeats are attributable to nested
retrotransposons in the intergenic regions between genes

(SanMiguel et al. 1996, 1998). The resultant improvements in
N50 contig size after repeat-gap closure are larger in rice than
in human because rice has a higher repeat-masked fraction. In
every instance, the contig misassembly rates increase signifi-
cantly, from 0.51% to 1.1%, in the human 4� data set. Com-
parisons against the BAC sequences reveal that the contig
order and orientation are correct and that it is the sequences
inside the repeat-gaps that are being misassembled.

One outstanding issue is that we do not know how well
our software will work on outbred organisms in which there
are large polymorphic differences between homologous chro-
mosomes. Perhaps if we fix the sequencing errors in advance
(Pevzner et al. 2001), it might be easier to resolve the ho-
mologs. However, this is not a problem for data from human
BACs or inbred rice strains.

Scaffold-Assembly Accuracy
After repeat-gap closure, the contigs are as big as they will ever

Table 1. Software Performance

Human 4� Human 4� + 2� Rice 4.2�

Target region (Mb) 11.9 11.9 430
Masked sequence 17.2% 17.2% 42.2%
Number of contigs by LW 2018 462 59512
Unmasked Phrap

Max. memory use (Gb) 3.085 x x
Computer time (h) 48 x x
Number of contigs 2703 x x
N50 contig size (kb) 7.05 x x
Phrap error estimate 0.099% (0.086%) x x
BAC discrepancies 0.066% (0.063%) x x
Contig misassembly 5.77% x x

Repeat-masked Phrap
Max. memory use (Gb) 0.614 1.040 50
Computer time (h) 1.8 3.4 79
Number of contigs 3536 2219 167,975
N50 contig size (kb) 5.35 11.12 3.41
Phrap error estimate 0.091% (0.13%) 0.043% (0.096%) 0.129% (0.145%)
BAC discrepancies 0.077% (0.076%) 0.044% (0.059%) 0.52% (0.78%)
Contig misassembly 0.51% 0.68% 0.71%

Repeat-gap closure
Max. memory use (Gb) 0.007 0.007 2
Computer time (h) 2.0 3.0 50
Number of contigs 3181 1810 127,550
N50 contig size (kb) 6.13 14.51 6.69
Phrap error estimate 0.09% (0.108%) 0.041% (0.076%) 0.111% (0.103%)
BAC discrepancies 0.075% (0.065%) 0.042% (0.05%) 0.54% (0.73%)
Contig misassembly 1.1% 1.33% 1.85%

Scaffold construction
Max. memory use (Gb) 0.035 0.08 1.3
Computer time (h) 0.05 0.07 2
Number of scaffolds 2284 750 103,044
N50 scaffold size (kb) 10.61 196.80 11.76
Phrap error estimate 0.09% (0.108%) 0.041% (0.076%) 0.111% (0.103%)
BAC discrepancies 0.075% (0.065%) 0.042% (0.05%) 0.54% (0.73%)
Scaffold misassembly 0% 0.13% 0%

There are two human data sets, at coverage 4� and 4�+2�. The clone-insert size is 2-Kb for the first 4�. In the 4�+2� data set, the
clone-insert size is 15-Kb for the last 2�. The rice data set is discussed in another paper (Yu, et al. 2002). We list the total size of the target
region, and the fraction of the shotgun sequence masked by exact 20-mer repeats determined from the shotgun data. Statistics are listed after
each RePS stage: repeat-masked Phrap, repeat-gap closure, and scaffold construction. Computations were done on a Sun E10K, employing only 1 of
the 64 CPUs for the human data, but 40 of 64 CPUs for the rice data. Lander-Waterman numbers assume 26-bp minimum detectable overlap, based
on Phrap’s minscore setting. N50 contig or scaffold sizes are the sizes above which 50% of the assembled sequence can be found. Single-base error
rates are computed separately for both unique and repeated (parenthesis) sequence. Phrap-derived error estimates are compared to measurements
based on alignments with finished BACs. Misassembly rate are defined as the number of bad contigs (or scaffolds) divided by the total number of
contigs (or scaffolds). Notice that interleaving scaffold problems are counted as bad in our definition of scaffold mis-assembly.

Wang et al.

828 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on November 5, 2015 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


be, and all we can do is build scaffolds to order and orient the
contigs. The remaining gaps are either repeat gaps that are too
large to be closed or LW gaps, which are typically smaller than
a 500-bp sequence read. Scaffold construction is therefore
mostly dependent on how the 20mer repeats cluster in the
target genome. In practice, one has to generate a certain
amount of whole-genome shotgun data just to compute the
20mer repeats. It is this scenario that we are simulating in our
4� + 2� human data set, in which the clone-insert size is 2
kb in the first 4� and 15 kb in the last 2�. The repeat-cluster
size distributions of Figure 5 give us an idea of what we have
to do to close the gaps. Notably, when the clone-insert sizes
are too large, the scaffolds skip over adjacent contigs, result-
ing in the interleaving problem of Figure 3d. This problem
can be minimized if the scaffolding starts with the smaller
clone inserts and slowly works up to the larger clone inserts.
Nevertheless, there are limits, and they become apparent for
clone-insert sizes that exceed the contig sizes prior to scaffold
construction. In the human 4� + 2� data set, clone-insert
sizes >15 kb result in total scaffold sizes that exceed the target

genome, as shown in Figure 6, and indicative of serious in-
terleaving scaffold problems.

In the process of building the scaffolds, we can detect
some fraction of the contig misassemblies. A consistent scaf-
fold describes a unidirectional path that puts the contigs in
the correct order and orientation. However, as shown in Fig-
ure 3, when the scaffold encounters a misassembled contig,
the clone-end analysis tells the path to turn around and put
different contigs in the same place. Clearly, this cannot be the
correct answer, but the fact that the path misbehaves at a
specific contig can identify misassembled contigs and these
can be left out of the scaffolds. The scaffold misassembly rate
is defined as the ratio of bad scaffolds to total scaffolds. In
addition to contigs with the wrong orientation or order, in-
terleaving problems are counted as bad. In fact, we had only
one bad scaffold in the entire human 4� + 2� data set, and
it was an interleaving problem. The benefits of scaffolding are
worthwhile, nevertheless, because the resultant N50 scaffold
size is 14 times larger than the initial N50 contig size. Even
larger scaffolds would be possible if we linked contigs joined
by only a single clone-end pair.

DISCUSSION
One could ask if there is an advantage to explicitly identifying
the 20mer repeats. Notwithstanding the possibility of fine-
tuning the Nmer length, the concept is similar to Celera’s
estimation of the probability that any overlap is unique (My-
ers 1995). Both are reliant on Poisson sampling statistics and
hence we would expect their abilities to detect misassemblies
to be similar, given equivalent data sets. On the other hand,
some of the arguments for (Weber and Myers 1997) or against
(Green 1997) whole-genome shotgun were based on the pre-
cise nature of the repeats. By being more explicit about the
repeats that matter, not the biological repeats, but the math-
ematical repeats, one can begin to put the arguments on a

Figure 4 Tradeoff between contig size and accuracy of assembly.
This analysis is based on the human 4� data set, using only repeat-
masked Phrap without the clone-end-pairing analysis. Increasing the
threshold depth results in less of the sequence being masked, so the
N50 contig sizes increase. For low-copy repeats, the resultant increase
in misassembly rates is minor. The asymptotic contig size and misas-
sembly rate, in the limit of no repeat masking, is somewhat larger
than implied by this figure because transposon copy numbers run
into the thousands, and this is well off the scale of the figure.

Figure 3 Common contig misassemblies, and how they may be
detected during scaffold construction. There are three common prob-
lems: missing segment as a result of two repeats in the same direction
(a), segment orientation error due to inverted repeats in opposite
direction (b), and segment ordering mixed up as a result of three
repeats all in the same direction (c). A consistent scaffold is a unidi-
rectional path that puts the contigs in a definite order. It will not turn
around and suggest that different contigs should be put in the same
place. However, this is precisely what happens if the scaffold is forced
to use a misassembled contig. A different scaffolding problem is de-
picted in d. When the clone-insert sizes are too large, the scaffolds
start skipping contigs, leading to an interleaving morass of scaffolds
with no obvious relation between overlapping scaffolds.
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concrete foundation. For example,
how large are the repeat clusters?
What is the typical copy number
for a transposon and a gene dupli-
cation? Where are the high copy
number repeats with respect to the
genes? All the answers are highly
organism specific, and only by be-
ing explicit about the repeats can
we design the experiment to suit
the organism being sequenced.

As sequencing moves on to
nonhuman genomes, with more
limited funding, the continuing
high costs of sequencing will place
a premium on strategies that can
generate useful information at the
earliest stages of the project. Even at
rough-draft coverages of 4� to 6�,
in which sequence assemblies are
necessarily more fragmentary, the
resultant data can be useful (Bouck
et al. 1998). Frankly, single-base er-
ror rates are largely dependent on
coverage, and the only real chal-
lenge is to build ever larger contigs
and scaffolds with as few mistakes
as possible. Our scaffolding strategy
does leave the larger repeat clusters
unassembled, but whether or not
this matters depends on the organ-
ism being sequenced. In rice, we

achieved an estimated 92.% functional coverage (i.e., genes
and immediate regulatory sequences), despite leaving a large
fraction of the repeats unassembled (Yu et al. 2002). There-
fore, the approach embodied by RePS is appropriate when
sequencing through every last repeat is not a high
priority.
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