University of Alberta

Acceleration of Transient Stability Simulation for Large-Scale Power
Systems on Parallel and Distributed Hardware

by

Vahid Jalili-Marandi

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Energy Systems

Electrical and Computer Engineering

©Vahid Jalili-Marandi

Fall 2010
Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is
converted to, or otherwise made available in digital form, the University of Alberta will advise potential
users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,
except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or
otherwise reproduced in any material form whatsoever without the author's prior written permission.

Examining Committee

Dr Venkata Dinavahi, Electrical and Computer Engineering

Dr John Salmon, Electrical and Computer Engineering

Dr Behrouz Nowrouzian, Electrical and Computer Engineering
Dr Walid Moussa, Mechanical Engineering

Dr William Rosehart, Electrical and Computer Engineering, University of Calgary

7o

g Jromdpe
and

m«? PMM

Jor Mhein Enverlasting Suppoits

Abstract

Transient stability analysis is necessary for the planning, operation, and control of power
systems. However, its mathematical modeling and time-domain solution is computation-
ally onerous and has attracted the attention of power systems experts and simulation spe-
cialists for decades. The ultimate promised goal has been always to perform this simula-
tion as fast as real-time for realistic-sized systems.

In this thesis, methods to speedup transient stability simulation for large-scale power
systems are investigated. The research reported in this thesis can be divided into two parts.
First, real-time simulation on a general-purpose simulator composed of CPU-based com-
putational nodes is considered. A novel approach called Instantaneous Relaxation (IR) is
proposed for the real-time transient stability simulation on such a simulator. The moti-
vation of proposing this technique comes from the inherent parallelism that exists in the
transient stability problem that allows to have a coarse grain decomposition of resulting
system equations. Comparison of the real-time results with the off-line results shows both
the accuracy and efficiency of the proposed method. It is demonstrated that a power sys-
tem with 80 synchronous generators and 312 buses can be successfully modeled in detail
and run in real-time for the transient stability study by using 8 nodes of the PC-cluster
based simulator.

In the second part of this thesis, Graphics Processing Units (GPUs) are used for the first
time for the transient stability simulation of power systems. Data-parallel programming
techniques are used on the single-instruction multiple-date (SIMD) architecture of the GPU
to implement the transient stability simulations. Several test cases of varying sizes are
used to investigate the GPU-based simulation. The largest system that was implemented
on a single GPU consists of 1280 buses and 320 generators all modeled in detail. The
simulation results reveal the obvious advantage of using GPUs instead of CPUs for large-
scale problems.

In the continuation of part two of this thesis the application of multiple GPUs running

in parallel is investigated. Two different parallel processing based techniques are imple-

mented: the IR method, and the incomplete LU factorization based approach. Practical
information is provided on how to use multi-threaded programming to manage multiple
GPUs running simultaneously for the implementation of the transient stability simula-
tion. The implementation of the IR method on multiple GPUs is the intersection of data-
parallelism and program-level parallelism, which makes possible the simulation of very

large-scale systems with 7020 buses and 1800 synchronous generators.

Acknowledgements

I would like to express my sincere thanks to my supervisor Dr. Venkata Dinavahi for his
tull support, patience, and guidance giving me throughout my research at the University
of Alberta. This thesis would not have been possible without encouragements and enthu-

siasms he created in me. He taught me the discipline of true research.

It is an honor for me to extend my gratitude to my PhD committee members Dr. Don
Koval, Dr. John Salmon, Dr. Behrouz Nowrouzian, Dr. Walied Moussa, and Dr. William Rose-
hart who read my thesis and gave me invaluable comments to improve and modify it.
Special thanks go to my colleagues and friends at the RTX-Lab: Babak Asghari, Md Omar
Faruque, Yuan Chen, Aung Myaing, and Lok-Fu Pak.

The PhD degree is not just about the research, and I would like to acknowledge all my
friends that I had their companionship during these years. I was lucky to have Aaron Ev-
eringham, Alireza Karimipour, Kathleen Forbes, Parisa Jalili-Marandi, Pouya Maraghechi, Reza
Moussavi Nik, Sahar Kolahi, Setareh Derakhshan, Vahid Farzamirad, Vahid Noei, and many oth-

ers with whom I had tones of exciting moments and joyful memories in Edmonton.

The last but not the least, I owe my deepest gratitude to my dearest ones who never
stopped supporting me: my parents, my siblings, Nazli and Sahand, my brother-in-law,

Khosrow, and my niece, Shanli. They are the happiness of my life.

Contents

1 Introduction

1.1 General Terms and Definitions
1.1.1 Transient L
1.1.2 Stability
1.1.3 Transient Stability
1.1.4 Real-Time Simulation
1.2 Literature Review
1.3 Motivation for ThisWork
14 ThesisObjectives
1.5 ThesisOutline

Real-Time Transient Stability Simulation on CPU-based Hardware

Parallel Transient Stability Simulation Methods

21 Introduction
2.2 Standard Method for Transient Stability Modeling
2.3 Parallel Processor Architecture
2.3.1 PC-Cluster Based Real-Time Simulator
2.3.2 Graphics Processing Unit
2.4 Parallel Solution of Large-Scale DAEs Systems
241 Tearing
242 Relaxation L
2.5 Power System Specific Approaches
251 Diakoptics
2.5.2 Parallel-in-Space Methods
2.5.3 Parallel-in-Time Methods

254 Waveform Relaxation

O O U1 W W N N

_
[S

13

II

2.6 Power System Partitioning
2.7 Types of Parallelism Used in This Thesis

28 SUMMAry

The Instantaneous Relaxation (IR) Method
31 Introduction
3.2 Limitations of WR method for Real-Time Transient Stability Simulation . . .
3.3 Instantaneous Relaxation.
3.4 Coherency Based System Partitioning for the IR Method
3.5 Implementationof IRMethod
3.5.1 Building of C-based S-Function
3.5.2 Off-Line Implementation of the IRMethod
3.5.3 Real-time Implementation of the IRMethod
3.6 ExperimentalResults, .
361 CaseStudy1..........
362 CaseStudy2.
3.6.3 Case Study 3: Large-Scale System

37 Summary

Large-Scale Transient Stability Simulation on GPU-based Hardware

Single GPU Implementation: Data-Parallel Techniques

41 Introduction

42 GPUOverview i e
421 GPUEvolution
422 GPU Hardware Architecture
423 GPUProgramming

43 Data-Parallel Computing

4.4 SIMD-Based Standard Transient Stability Simulation on the GPU
441 Standard Transient Stability Simulation
442 SIMD Formulation for Transient Stability Solution

45 GPU-Based Programming Models
45.1 Hybrid GPU-CPU Simulation
452 GPU-Only Simulation

42
42
43
45
49
50
51
53
54
57
58
61
64
65

68

4.6 ExperimentalResults 0 0 00 85

4.6.1 Simulation Accuracy Evaluation 86

4.6.2 Computational Efficiency Evaluation 86

47 DISCUSSION v vt e e e 88
48 Summary 91

5 Multi-GPU Implementation of Large-Scale Transient Stability Simulation 92
51 Introduction 92
52 Multi-GPUOverview 93
521 Applications 93

522 Computing System Architecture 93

523 Multi-GPU programming 95

5.3 Implementation of Parallel Transient Stability Methods on Tesla S1070 . . . 98
53.1 Tearing MethodsonMultiGPU 99

5.3.2 Relaxation Methods on Multiple GPUs 101

54 ExperimentalResults 104
54.1 Work-station and Test Systems 104

542 Transparency 105

543 Scalability 107

544 LU Factorization Timing 108

55 Summary 109

6 Summary and Conclusions 111
6.1 Contributionsof This Thesis 112
6.2 Directions for Future Worko L L. 112
Bibliography 115
Appendix A areal.c S-function Complete Source Code 123

Appendix B Performance Log for Real-time Simulation of a Large-Scale System 132
Appendix C Source Code for the GPU-only Modeling 138

Appendix D Tesla S1070 Manufacturer Data Sheet 153

Appendix E Single Line Diagram of Test Systems 160

E.l Scalel e 160
E1.1l Load Data o i 161
E.1.2 Generator Data i it 162
E.1.3 Branch Data 163
E.14 Transformer Data v i, 163
E15 Load-Flow Results. 164

E2 Scale2 165

E.3 Scaled 166

Ed4 Scale8 167

E5 Scaled6 168

E.6 Scale32 169

E.7 Scale 64 170

E.8 Scale128 e 171

E9 Scale 180 172

3.1
3.2
3.3

41
4.2
43

5.1
52
53
54
5.5

List of Tables

Performance log for real-time simulation of Case Study 1 61
Performance log for real-time simulation of Case Study2 63
Relation between time-step and accuracy of the IR method 64
GeForce GTX 280 GPU specifications 73
Systems data and simulationstime 0 00 0L 88
Speed-up comparison. Lo 90
Tesla T10 Processor specifications 94
Single GPU timing 100
Tesla T10 processor bandwidth testresults 103
TestSystem Scales 105
Multi-GPU timing o 109

List of Figures

1.1 (a) Real-Time and (b) Non-Real-Time or Off-Line simulation. 6
2.1 Excitation system with AVRand PSS[47]. 17
2.2 Hardware architecture of the RTX-LAB real-time simulator 23
2.3 Connection of the GPU to a PC motherboard using the PClebus. 25
2.4 Applying Gauss-Jacobi relaxation at different level of equations 27
2.5 The Gauss-Jacobi WR algorithm 34
26 TheRLCcircuit. 35
2.7 Responseof the RLCcircuit 36
2.8 Application of windowing technique in the WR method 37
2.9 Flowchartof the WRmethod 38
2.10 Integrating various types of parallelism 40
3.1 Partitioning a large system into subsystems. 44
3.2 Real-time implementation of the WR method: Option1.. 46
3.3 Real-time implementation of the WR method: Option2.. 46
3.4 Flowchart of the proposed IRmethod 49
3.5 SIMULINK S-function flowchart 52
3.6 Top lay-out of a decomposed system for off-line simulation 54
3.7 Placing S-function in subsystem Areal for off-line simulation. 55
3.8 Monitoring and saving outputs of the decomposed system. 56
3.9 Configuration of the real-time simulator 57
3.10 Lay-out of a three-area decomposed system for real-time simulation 58
3.11 Placing S-function in subsystem Areal for real-time implementation. . .. 59
3.12 One-line diagram for CaseStudy 1. 59
3.13 Distribution Case Study 1 in real-time simulatornodes 60

3.14 Comparison Case Study 1results withPSS/E 61

3.15 One-line diagram for Case Study 2. 62

3.16 Distribution Case Study 2 in real-time simulatornodes 63
3.17 Comparison Case Study 2 results with PSS/E 64
3.18 Comparison Case Study 2 results with PSS/E 65
3.19 Large-scaleCaseStudy 67
4.1 Hardware architecture of GPU mounted on the PC motherboard. 72
42 The GTX 280 hardware architecture 74
4.3 Cooperation of the hostand device 76
44 Anschematic model foralimiter. 78
4.5 Flowchart for the hybrid GPU-CPU transient stability simulation 84
4.6 Flowchart for the GPU-only transient stability simulation 85
47 Comparison of results with PSS/E:part1 87
4.8 Comparison of results with PSS/E:part2 87
49 Computation time variation with respect to systemscale. 89
4.10 Speed-up of GPU-based processing. 90
5.1 Frontand top views of TeslaS1070 95
5.2 Inside architecture of TeslaS1070 96
53 HostInterfaceCard L Lo 96
5.4 Possible configurations of connecting Tesla S1070 tohost 97
5.5 Serial and parallel kernel execution 98
5.6 Programming application for general purpose multi-GPU computation . . . 99
57 ILUmethod 101
5.8 ILU-based tearing method implementation on multiple GPUs. 102
5.9 IR method implementation on multiple GPUs. 104
5.10 Multi-GPU simulation: (a) 2 GPUs, (b)4GPUs. 106
5.11 Scaling factor for the IR and ILU methods using2 GPUs. 108
5.12 Scaling factor for the IR and ILU methods using4 GPUs. 109
E.1 Scale1system: 39 buses, 10 generators. 160
E.2 Scale 2 system: 78 buses, 20 generators. 165
E.3 Scale 4 system: 156 buses, 40 generators. 166
E.4 Scale 8 system: 312 buses, 80 generators. 167

E.5 Scale 16 system: 624 buses, 160 generators. 168

Scale 32 system: 1248 buses, 320 generators. 169
Scale 64 system: 2596 buses, 640 generators. L. 170
Scale 128 system: 4992 buses, 1280 generators. 171
Scale 180 system: 7020 buses, 1800 generators. 172

CPU
CUDA
GPU
ILU

IR
MIMD
RTW
SFU
SIMD
SM

SP
TPC
WR
XHP

Central Processing Unit

Compute Unified Device Architecture
Graphics Processing Unit
Incomplete LU

Instantaneous Relaxation
Multiple-Instruction-Multiple-Data
Real-Time Workshop

Special Function Unit
Single-Instruction-Multiple-Data
Streaming Multiprocessor

Stream Processor

Thread Processing Cluster
Waveform Relaxation

eXtra High Performance

List of Acronyms

Introduction

Electric power systems are large and complex. The complexity of power systems arises
from the interactions of several devices that are involved in the system such as generators,
transmission and distribution networks, and electrical loads. The generators are intercon-
nected via the transmission lines and cover vast geographical areas. Continuous growth
in electricity demand and consequent expansion of the power systems are creating newer
and larger problems. Therefore, power engineers are always exploring methods for quick
and efficient solutions for these problems.

Maintaining system stability is very important in order to have a secure and continuous
operation of the power system. Loss of supply following system instability would result in
massive economic losses to both the power producers as well as customers. Dynamic sta-
bility analysis preforms simulations of the impact of potential electric grid fault conditions
after a grid disturbance (contingency) in a transient time frame, which is normally up to
about 10 seconds after a disturbance. When a grid is subjected to a disturbance, active and
reactive powers of generators oscillate for a few seconds following the disturbance. These
oscillations must be damped out to regain a stable operating condition. Contingency con-
ditions studied include “normal” transmission line outages and/or power plant outages
caused by acts of nature or equipment (e.g., due to lightning), “wear and tear” (e.g., equip-
ment age failures) and outage conditions caused by human error or potential equipment
failures. Any specific contingency simulation analysis can take several minutes of com-

puter time, even when simulating only a few seconds of grid response after a “what if”

disturbance. Thus, analyzing hundreds or more of such “what if” contingencies can take
hours of calculations [1].

A major issue facing the electric utility industry today is to perform the aforementioned
calculations for a large-scale power system in a much shorter time interval so that the cal-
culations can be performed on-line as changes occur based on real-time data, rather than
performing the calculations off-line during days, weeks or even months ahead of time.
This large amount of computer time occurs because the transient phenomena have to be
calculated over a 5 to 10 seconds time interval for a large interconnected power system
based on detailed dynamic mathematical models of grid components. These analyses are
currently conducted off-line since the simulation must be run for each condition of a large
set of all contingency conditions that might occur. Using a software tool developed by
EPRI [2], the computer time to perform hundreds of contingency simulations was reduced
to about 20 to 30 minutes. However, improved numerical methods and computer systems
are still needed today, to reduce this computational time to less than 5 to 10 minutes. This
will meet the requirements for the promised real-time dynamic stability analysis, which
could then become a powerful tool for system operation. By using such a tool in the en-
ergy management centers the operators would quickly evaluate a large number of poten-
tial harmful contingencies and determine which ones could cause unacceptable system
instabilities. Thus, operators would have the opportunity to figure out appropriate con-
trol actions that could prevent the grid from having a regional or multi-regional cascading

blackout.

1.1 General Terms and Definitions

In this section! the important terms used in this thesis are defined to clearly identify the

scope of work done in this research.

1.1.1 Transient

The IEEE Standard Dictionary defines a transient phenomena as [3]:
Pertaining to or designating a phenomenon or a quantity that varies between two consecutive
steady states during a time interval that is short compared to the time scale of interest. A transient

can be a unidirectional impulse of either polarity or a damped oscillatory wave with the first peak

"Material from this section has been published: V. Jalili-Marandi, V. Dinavahi, K. Strunz, J. A. Martinez,
and A. Ramirez, “Interfacing techniques for transient stability and electromagnetic transient programs,” IEEE
Trans. on Power Delivery, vol. 24, no. 4, pp. 2385-2395, Oct. 2009.

occurring in either polarity.

Overvoltages due to lightning and capacitor energization are examples of events that
cause impulsive and oscillatory transients, respectively. Some of the most common types
of transient phenomena in power systems include energization of transmission lines, switch-
ing off of reactors and unloaded transformers, linear resonance at fundamental or at a
harmonic frequency, series capacitor switching and sub-synchronous resonance, and load

rejection [4].

1.1.2 Stability

From a system point of view there exist several types of stability definitions such as:
Lyapunov stability, input-output stability, stability of linear systems, and partial stabil-
ity [5]. Kimbark has classically defined stability related to power systems in [6], however,
this definition was restricted to synchronous machines, and their being “in step”. The
IEEE /CIGRE Joint Task Force on Stability Terms and Definitions [5] adopted the following
definition:

Power system stability is the ability of an electric power system, for a given initial operating
condition, to regain a state of operating equilibrium after being subjected to a physical disturbance,
with most system variables bounded so that practically the entire system remains intact.

Instability in power systems can be caused by either small or large disturbances. Dur-
ing a small disturbance the set of equations which describe the perturbed power system
can be linearized; however, during the large disturbance these equations cannot be lin-
earized for the purpose of analysis [7]. Typical examples of small disturbances are a small
change in the scheduled generation of one machine, or a small load (say 1/100 of system
capacity or less) disconnected or added to the network [8,9]. Severe perturbations such as
short-circuit faults and loss of generation events are representative of large disturbances.
Additionally, phenomena which cause instability problems in power systems have been
sub-classified based on their duration. Two types of time frame are recognizable: short
term and long term. The period of interest to stability assessment of a network perturbed
by a short term instability event is in the order of few seconds (3 to 20 seconds); however,

this time span extends to several or many minutes for the long term one [5].

1.1.3 Transient Stability

Power system stability phenomena can be categorized into three major classes: rotor angle

stability, voltage stability, and frequency stability. If an interconnected network has been

subjected to a perturbation; the ability of this power system to keep its machines in syn-
chronism, and to maintain voltages of all buses as well as the frequency of the whole net-
work around the steady-state values is the basis for the above mentioned classification [10].
Each form of stability phenomena may be caused by a small or large disturbance.

Although in the literature the term transient stability has been used to refer to the large-
disturbance rotor angle stability phenomenon [7, 8], some authors have used this term as
a general purpose stability study of the given network with a particular disturbance se-
quence [11]. The IEEE/CIGRE task force report has categorized both the small and large
disturbance rotor angle stability phenomena as short-term events. Furthermore, it recom-
mends the term transient stability for large-disturbance rotor angle stability phenomenon,
with a time frame of interest in the order of 3 to 5s following the disturbance. This time
span may increase up to 10-20s in the case of very large networks with dominant inter-area
swings [5].

The complete power system model for transient stability analysis can be mathemat-
ically described by a set of first-order differential equations and a set of algebraic equa-
tions. The differential equations model dynamics of the rotating machines while the alge-
braic equations represent the transmission system, loads, and the connecting network [12].
Chapter 2 provides details of the basic approach and numerical methods required for the
solution of the transient stability problem.

A complete description of the power network dynamic behavior requires a very large
number of equations. For instance, consider a realistic inter-connected power system
which includes over 3000 buses and about 400 power stations which are feeding 800 loads.
Assuming that the transmission system and loads are modeled by algebraic equations, and
the generation stations are modeled by a set of 20 first-order differential equations each.
The transient stability analysis of the described network needs solving of 8000 differential
equations and about 3500 algebraic equations [9,13]. To make this solution as time-efficient
as possible usually a time-step in the range of a few milliseconds is chosen for the simula-
tion. In transient stability studies it is assumed that voltage and current waveforms more
or less remain at power frequency (60 or 50 Hz). Thus, for modeling the electrical parts of
the power system steady-state voltage and current phasors can be used. Moreover, tran-

sient stability study is a positive-sequence single-phase type of analysis [4, 14].

1.1.4 Real-Time Simulation

The term “real-time” has been traditionally used by the computer industry to refer to in-
teractive systems where the computer response is sufficiently fast enough to satisfy human
users. A more rigorous definition is applied to digital control schemes where the computer
response must occur at specific time intervals. In the case of power system simulation, this
implies that the computer must solve the model equations within the model time step [15].
In general, real-time digital simulation may be defined as a faithful reproduction of output
waveforms, by combining systems of hardware and software, that would be identical to
the waveforms or effects produced by the real power system being modeled. Depending
on the time taken by the computer to complete the computation of state outputs for each
time-step two situations can arise. As shown in Figure 1.1(a), if the execution time, T, for
the simulation of any time-step is smaller or equal to the time-step used, the simulation is
said to be real-time simulation. On the other hand, as shown in Figure 1.1(b), if 7, for any
time-step is greater than its time-step, the simulation is said to be non-real-time or off-line
and in that case, execution time overruns take place. If such a situation is observed, the
simulation time-step should be increased or the system model should be modified to fit
the execution time within the time-step.

Analog scaled-down simulator also known as Transient Network Analyzers (TNAs),
were the predecessors of fully digital real-time simulators. However, realization of large-
scale power systems with a high level of complexity, non-linearity, and sophisticated dy-
namic elements using TNAs is practically impossible [16]. Real-time digital simulation is a
state-of-the-art technique for simulation of power systems and their components. During
the last ten to fifteen years, significant efforts have been made to develop real-time digital
simulators of power system networks. Developments of high speed computers and other
devices accelerated the research in this area. The approach in digital simulation provides
accuracy in component modeling and flexibility in component interconnection for repre-
sentation of a power system. The system is modeled with the help of a software using
graphical interface on a workstation or a personal computer (PC) and then simulated on a
powerful parallel processor based PC cluster.

Real-time simulation can be classified into two categories [17]: (1) Fully digital real-
time simulation and (2) Hardware-In-the-Loop (HIL) real-time simulation. A fully digital
real-time simulation requires the entire system (including control, protection and other ac-

cessories) to be modeled inside the simulator and the simulation to be completed within

execution idle
time: 7, time

< T
simulator
time o0 000
XK [(a)
-—fixed time-step—P»
overrun
simulator .

tin.le.” /,V/}% > o
real-time f

~—fixed time-step—>:
clock T T

|
tn t11-0—] tn+2

Figure 1.1: (a) Real-Time and (b) Non-Real-Time or Off-Line simulation.

the specified time-step. In this type of simulation, no I/Os or external interfacing is nec-
essary (except those required for monitoring the simulation results). On the other hand,
Hardware-In-the-Loop (HIL) simulation refers to a simulation, where parts of the fully dig-
ital real-time simulation have been replaced with actual physical components. In this case,
the simulation proceeds with the device-under-test connected through input and output
interfaces such as filters, Digital-to-Analog (D/A) and Analog-to-Digital (A/D) convert-
ers, signal conditioners etc. The simulation can also be modified with the user defined
control inputs, for example closing or opening of switches to connect or disconnect the
components in the simulated power system.

Fully digital simulation is often used for the understanding of behavior of a system un-
der certain circumstances resulting from external or internal dynamic influences, however,
HIL simulation is used to minimize the risk of investment through the use of a prototype
once the underlying theory is established with the help of fully digital real-time simula-

tion. Fully digital simulation is the type of real-time simulation that is used in this thesis.

1.2 Literature Review

Transient instability has long been recognized as the dominant problem in power system
operation. It has been extensively studied since the 1920s and a lot of knowledge and expe-
rience is available in the literature [5]. Transient stability study is important for planning,

design, operation, control, and post-disturbances analysis in power systems [10].

From the system theory viewpoint, power systems transient stability is a strongly non-
linear problem. To assess it accurately, first it should be mathematically described by a set

of differential-algebraic equations (DAEs) as follows:

X = f(x,V,1) (1.1)
0 = g(xV,i) (1.2)
x(to) = xo (1.3)

where x is the vector of state variables, xq is the initial values of state variables, and
V is the vector of bus voltages. Equation (1.1) describes the dynamic behavior of the sys-
tem, while equation (1.2) describes the network constraints on (1.1). Solution of these
equations in time-domain requires employing numerical integration methods. Histori-
cally, time-domain methods have been used even before the advent of numerical comput-
ers where calculations of simplified or reduced versions of the system dynamic equations
were carried out manually to extract the machines’ rotor angle evolution with time, known
as swing curves [18]. Another approach of evaluating transient stability is a graphical
method, popularized in 1930s, as known as “equal-area criterion”. This method deals with
a one-machine system connected to an infinite bus or any two-machine system, whether it
actually has only two machines or more than two machines reduced to two-machine equiv-
alent. The method studied stability by using the concept of energy. The equal-area method
is still used to provide insight into the physical concept of the transient stability phenom-
ena, and for evaluating the various system parameters [19,20]. Further information about
other types of approaches that have been developed based on the energy concept is avail-
able in [21].

Exploring the transient stability literature reveals that the efforts on the acceleration of
the simulation have been twofold. One is on the algorithms and numerical method, and
the other is on the hardware architecture. From the algorithm viewpoint there has been
extensive research done on solving equations (1.1) and (1.2) with accuracy and efficiency.
The overall solution can be classified into two groups [12]: partitioned and simultaneous
solution approaches. In the partitioned solution the differential equation set (1.1) is solved
separately for the state variables and the equation set (1.2) is solved for the algebraic vari-
ables, and these solutions are then alternated. In the simultaneous approaches, however,
an implicit integration method converts the (1.1) into a set of algebraic equations, and then

this set is lumped into the (1.2) resulting in a larger set of algebraic equations including all

7

the variables. In each of these approaches one can use various type of integration meth-
ods. The explicit Runge-Kutta [22], predictor-corrector method [23], implicit multi-step
integration [24] are some example methods that have been exploited for the partitioned
approaches. For the simultaneous approaches the multi-step integration methods and the
trapezoidal rule have been used widely [25,26].

The complexity of power systems simulation has increased with the system size. It
was found that a single computer cannot handle the simulation of ever expanding power
systems since it is time critical. Therefore, the need for parallel processing in the transient
stability simulation of realistic systems was recognized to reduce computational complex-
ity. The diakoptics method introduced by Kron [27] tears the problem into several subtasks
that can be run concurrently on parallel computers. In parallel-in-space [28] and waveform
relaxation [29] methods the system is decomposed into smaller subsystems and the com-
putation is allocated to parallel computers. There are also parallel-in-time methods [30,31]
which concurrently solve multiple time steps on parallel processors. While parallel pro-
cessing usually refers to simulation techniques in which closely coupled processors are
simultaneously working on the transient stability computation, the concept of distributed
processing employs a number of loosely coupled and geographically distributed computers
to simulate large-scale power systems [32].

From the hardware point of view several types of MIMD (Multiple-Instruction Multiple-
Data) and SIMD (Single-Instruction Multiple-Data) parallel architectures [33] have been
employed to accelerate transient stability simulation. Supercomputers [34], multiprocessor
networks [35,36], array-processors [37,38], and PC-cluster based real-time simulators [39]
all have been examined and reported for this application. Although these hardware-based
approaches helped to speed-up the simulations, they were stymied by significant draw-
backs. The cost of the supercomputers, communication issues and difficulties in the control
of multiprocessor-based systems, difficulties in the programming and required algorithms
for fitting in array-processors, and limitation on maximum system size of the simulated
networks in real-time simulators are some of the noteworthy bottlenecks which limited
their widespread application.

The new capability of the modern GPU, as a massively parallel processor, for gen-
eral purpose high performance computation is the beginning of a new era in computing
science. Although at first glance the SIMD architecture of the GPUs and that of array-
processors might look similar, there are significant differences between these two technolo-

gies. Moreover, issues related to processing elements” communication overhead, program-

ming complexity, and cost effectiveness have been solved for the GPU [40]. The advantages
of modern GPUs, the demand for fast simulation, and the structure of the transient stabil-

ity computation makes the GPU very suitable for this application.

1.3 Motivation for This Work

In power system operations, the operators strive to operate the systems with a high degree
of reliability. Reliability refers to the ability of the system to supply adequate electricity
service on a nearly continuous basis, with few interruptions over an extended time pe-
riod [5]. The key to have a reliable system operation is to maintain satisfactory security at
all times. Unlike reliability that is measured as performance over a period of time, security
refers to the degree of risk in a power system’s ability to survive contingencies without
interruption to customer service at any instant of time. The security of a power system
can be assessed by simulating potential disturbances and determining if the disturbances
will cause any adverse impacts that could result in unsafe condition in the network. How-
ever, in many cases a “static security assessment” or “static contingency analysis” can not
achieve the necessary security under changing grid and generation conditions. For this
purpose the “dynamic security assessment” (DSA) tools are employed, which take a snap-
shot of the system condition, perform comprehensive security assessment, and provide
operators with warning of abnormal situations as well as remedial recommendations. The
main objective of DSA tools is to determine if the system can tolerate a set of major contin-
gencies, which falls under purview of transient stability analysis [41].

The need of real-time assessment of dynamic stability analysis was highlighted by the
recent black out in USA (August 14, 2003) and Italy (September 28, 2003). The August 14
black-out in USA and Canada affected 50 million people. It took a day to restore power to
New York City, and almost two days to restore power to Detroit. The Italian black-out, the
worst blackout in Europe that affected 57 million people, started with 6545 MW import to
Italy. In less than 3 minutes cascading phenomena isolated the Italian system from Europe,
loss of generation in Italy and insufficient load shedding resulted in system black-out. The
phenomena occurred in less than 3 minutes, but it has been proceeded by about 15 min-
utes within which the problem evolved from a normal situation to an alert and then to an
emergency state with a restoration time of 19 hours. A list of evolving factors was collected
from which it was identified that improved power system monitoring and preventive ac-

tions are the most important items [42]. Presently, in most utilities, the dynamic security

analyses are conducted by off-line studies. However, there is an increasing demand for fast
and real-time simulations which can be incorporated within the energy management sys-
tem to determine the critical system limits based on the current conditions of the system.
This is a particular application where speed of simulation is vital.

The need to accelerate transient stability simulations for realistic size power systems is
the main driving force for this research. The speed of transient stability simulations can be

improved by three approaches:
e Developing new algorithmic methods
e Exploiting parallel and distributed processors
e Utilizing faster processors

While the transient stability simulation tools have been improved over the last two
decades, the improvement has been mainly made in the modeling complexity and user
friendliness rather than in the structure of the algorithm. It was predicted in 1993 that
the impact of new mathematical methods or algorithms in power system analysis will be
at best evolutionary and not revolutionary [43]. It was a true prediction at least for the
transient stability simulation. Although adaptations such as dishonest Newton-Raphson,
innovations such as sparsity handling and optimal ordering, and efficient coding brought
computer analysis of large-scale power systems into practical use, the basic time domain
algorithm for transient stability simulation remained the most reliable method for the com-
mercial and industry software developers [44]. Therefore, after many years of experience
in the transient stability simulation methods, as described in the literature review, no one
expects that a novel approach on a single processor could significantly alleviate the simula-
tion time, unless it somehow exploits a specific hardware architecture. Against the gradual
improvements of the algorithmic methods, the hardware improvements have been revo-
lutionary. These improvements includes processor architecture design, such as evolving
multi-core CPUs and GPUs, the processor’s speed, and advancements in the peripheral
technology such as storage devices and communication equipment.

This thesis aggregates all three aforementioned approaches to accelerate of transient
stability simulation of large-scale power systems. A novel algorithmic method is pro-
posed and implemented on two different types of processors. One is a general purpose
CPU-processor based state-of-the-art real-time digital simulator, and the other is the mas-
sively parallel Graphics Processing Unit (GPU). The CPU-based processor has a sequential
architecture, while GPU has a data-parallel design.

10

1.4 Thesis Objectives

The previous sections gave a glimpse of the transient stability problem and the wide efforts
made in this area. It can be concluded that in the transient stability analysis fast and reli-
able simulation is never enough and more is always required by the industry. The objective
of this thesis is to investigate the use of parallel processing based approaches to accelerate
transient stability simulation of large-scale systems. To achieve this purpose first we will
focus on the real-time simulation on a PC-cluster real-time simulator by introducing and
implementing a novel method. This can lead us to configure a real-time simulator that is
specifically designed for transient stability analysis, such as existing ones for the electro-
magnetic studies, but one that is much more cost effective. In the second part of this thesis
the use of single and multiple GPUs for the large-scale transient stability simulations is
investigated. It is predicted that GPUs will be at the core of the near future massive com-
putational engines. Therefore, power system software developers should be aware of the

GPU applications in the power system computations and exploit it.

1.5 Thesis Outline

The thesis consists of six chapters. Each chapter discuses a particular topic of relevance to

the thesis and the contributions made are described.

e Chapter 1: Introduction - The general terms used in this thesis are described in this
chapter to highlight the scope of the research. The background work done in this area
since several decades ago is summarized by considering both software and hardware
developing aspects. The applications of transient stability analysis in the planning
and operation of power systems are discussed which justified the need for faster tran-
sient stability simulations. The desire to accelerate the transient stability simulation

for large-scale power systems is the main motivation of this thesis.

e Chapter 2: Parallel Transient Stability Simulation Methods - The purpose of this
chapter is to provide a basis for the thesis. It begins with the transient stability
problem formulation and the standard solution method to model this phenomena
in power systems. However, the focus in this chapter is to review the application of
parallel processing based technology used up to date of preparing this dissertation.
This application includes both the algorithmic aspects as well as hardware advance-

ments.

11

e Chapter 3: The Instantaneous Relaxation (IR) Method - The Instantaneous Relax-
ation (IR) method is introduced and implemented in this chapter. The objective is to
revisit the application of real-time digital simulators to the transient stability prob-
lem. By exploiting the parallelism inherent in the transient stability problem, a paral-
lel solution algorithm can be devised to maximize the computational efficiency of the
real-time simulator. This would reduce the cost of the required hardware for a given
system size or increase the size of the simulated system for a fixed cost and hardware
configuration. To demonstrate the performance of the IR method, three case studies
have been implemented on a PC-Cluster based real-time simulator and the results
are validated by the PSS/E software. Several comparisons verified the accuracy and

efficiency of the IR method.

e Chapter 4: Single GPU Implementation: Data-Parallel Techniques - In this chapter
we discuss GPU-based transient stability simulation for large-scale power systems.
The mathematical complexity along with the large data crunching need in the tran-
sient stability simulation, and the substantial opportunity to exploit parallelism are
the motivations to use GPU in this area. However, since the GPU’s architecture is
markedly different from that of a conventional CPU, it requires a completely differ-
ent algorithmic approach for implementation. This chapter investigates the poten-
tial of using a GPU to accelerate this simulation by exploiting its SIMD architecture.
Two SIMD-based programming models to implement the standard method of the
transient stability simulation were proposed and implemented on a single GPU. The

simulation codes are written entirely in C++ integrated with GPU-specific functions.

e Chapter 5: Multi-GPU Implementation of Large-Scale Transient Stability Simula-
tion - The main goal in this chapter is to demonstrate the practical aspects of utilizing
multiple GPUs for large-scale transient stability simulation. Two parallel processing
based techniques are implemented on a Tesla S1070 unit. The techniques used here
are from tearing and relaxation categories, explained in Chapters 2 and 3. The exper-
imental results revealed that program level decomposition, as it happens in the IR

method, is more efficient than task level decomposition.

e Chapter 6: Summary and Conclusions - The contribution of this research are sum-

marized in this chapter. Some plans for the future work are suggested here.

12

Part1

Real-Time Transient Stability
Simulation on CPU-based Hardware

13

Parallel Transient Stability Simulation Methods

2.1 Introduction

In Chapter 1, the applications of transient stability analysis in the planning and operation
of power systems are discussed which justified the needs for faster transient stability sim-
ulations. As mentioned, for several decades it was known that the single-processor based
methods are not effective for the simulation of large-scale power systems. Thus, to achieve
substantial improvement in the speed of transient stability simulation parallel processing
approaches have been chosen as the most promising methods. In this chapter we will
discuss the issues related to the parallel simulation of the transient stability on two fronts
(1) parallel processor’s hardware architecture, and (2) parallel processing based transient
stability algorithms.

The chapter starts with the transient stability problem formulation and numerical meth-
ods for solution in the time-domain. Then, it will discuss the general classifications exist-
ing for hardware architecture of the parallel processors, and continue with introducing
state-of-the-art hardware utilized in this thesis. A review of the parallel-processing-based
algorithms for the solution of differential-algebraic equations, (DAEs) and their specific
application for the transient stability problem will be described in the remainder of this

chapter.

14

2.2 Standard Method for Transient Stability Modeling

The AC transmission network responds rapidly to any change in load or network topology.
The time constant associated with the network variables are extremely small and can be
assumed to be negligible in transient stability analysis without significant loss of accuracy
[45]. In transient stability the concern is electromechanical oscillation, that is the variation
in power output of machines as their rotors oscillate. The time constants associated with
the rotors are of the order 1 to 10 seconds. Therefore, the differential equations that are
relevant in this analysis are dominated by those having time constants of this order.

A widely used method for detailed modeling of the synchronous generator for the
transient stability simulation is the Park’s equations with an individual dg reference frame
fixed on the generator’s field winding [8]. The network side, including transmission lines
and loads, is modeled using algebraic equations in a common D() reference frame. Rep-
resentation of AVR and PSS increases the number of differential equations and hence the
complexity of the model. However, the validity of the dynamic response in a network
with a lot of interconnections and in a time frame of a few seconds highly depends on
the accuracy of the generator model and other components which can have effects on the
dynamics of the system. Realistic interconnected power systems are generally supervised
and maintained regionally by the control centers located in different geographical places.
Therefore, fully detailed models for the transient stability studies are imperative for both
online and offline simulations [46]. In this work the detailed model of synchronous gen-
erator including AVR and PSS is used. Each generating unit is modeled using a 9th order
Park’s model with an individual dq reference frame fixed on the generator’s field wind-
ing [8]. The network, including transmission lines and loads, is modeled using algebraic
equations in a common DQ reference frame. The complete system representation used in

this thesis is summarized here:

1. Equations of motion (swing equations or rotor mechanical equations):

5(t) = wr.Aw(t) 2.1)
Nu(t) = %[Te(t) T — D.Aw(?)].

2. Rotor electrical circuit equations: This model includes two windings on the d axis

(one excitation field and one damper) and two damper windings on the ¢ axis.
Yra(t) = wr-lega(t) — Ryaiga(t)] (2.2)

15

1a(t) = —wr.Rigira(t)

1g(t) = —wr.-Rigi1g(t)

¢2q (t) = —wR.RQq’qu (t) .

3. Excitation system: Figure 2.1 shows ST1A type excitation system [47]. This system
includes an AVR and PSS.

i1(0) = . [o() ~ (0] 23)
52(1) = K- Boo(t) — -02(0)
ba(t) = - (Tyta(t) + va(t) - wa(t).
4. Stator voltage equations:
eq(t) = —Raia(t) + Lyiq(t) — Eq(t) (2.4)

eq(t) = —Raiq(t) — Lyia(t) — Ey ()

where

E! =L, Yo | Ya2 2.5
d Q[qu LqZ] ()
Yra . Ya
B = L[4 + Yd.
. dl La + Ldl]
5. Electrical torque:
Te = _(d)adiq - @Z}aqid) (26)

where
Yya | Va1 2.7)

_ ! s rJja
VYad = Lgg|—ia + L Lo

16

Terminal voltage Vs
transducer

1 -
E—» ——
1+ 5T,
Phase
Gain Washout compensation
) 1+sT, |v
Ao — KS/AU " STW & = 2
1+ 5T, 1+sT,

Figure 2.1: Excitation system with AVR and PSS [47].

g g Ya | Va2
Yaq aq[g + Lot + ng}

where WR, H/ D/ Rfd/ Rld/ qur RQq/ Ra/ Lfd/ Ldl/ qul Lq2/ Lgl L:]I/ Lad/ Laq/ L:lld’ L”

aql
Tr, Tw, T1, T, and Ky are constant system parameters whose definition can be

found in [9].

. Network equations [8]: Stator equations are solved together with the network equa-
tions. All nodes except the generator nodes are eliminated and the admittance matrix
for the reduced network is obtained. The procedure for network reduction is shown

below. The nodal equation for the network can be written as:

I=YV (2.8)

where I(;,1,)x1 = [I.x1: 0rx1]t. n denotes the number of generator nodes and r

denotes the number of remaining nodes. The matrices Y and V' are partitioned as:

I, Yon Yor Va
[OT]Z[YWYTTHVT} 29)

Expanding (2.9) to find I,, based on V;, we obtain:

I, = (Ynn - anY;;IY;"n)Vn (210)

Thus,

I, = Yr.E, 2.11)

17

where the matrix Yz = Yy, — Y5, Y'Y, is the desired reduced matrix. It has the
dimensions n xn where n is the number of generators. This matrix must be computed
for steady-state, during the transient state, and after the clearing of the transient

phenomena.

As the components in the network common D@ frame are of interest the above com-

plex matrix equation can be written as two separate real matrix equations:

Ipn = Gr-Epn — Br-Eon (2.12)

IQn = GR.EQn + Br.Epy. (2.13)

To relate the components of voltages and currents expressed in the d, q reference of
each individual machine to the common reference frame (D(), the following refer-

ence frame transformation is used:

idq = IDQ . exp(—jé) (2.14)

edq = Epg - exp(—j9) (2.15)

where § is the rotor angle of the synchronous machine.

The k' iteration current components in the common reference frame can be ex-

pressed as [48]:

Ip(k) = 25 (S1+ 52+ A7) (2.16)
Ig(k) = 26 (S3+ Ss+ Ag) (2.17)

where the S and A parameters are defined as below:

S1=> Ip(j).A1, Sa = Ig(j)-As (2.18)
Jj=1 Jj=1
j#k
Ss=> Ip(j).As, Si=> Iq(j).-As
J=1 Jj=1
j#k

18

and

A1 = GRg(k,j) - u1(j) — Br(k,j) - us(j) (2.19)
Az = Gr(k,j) - u2(j) — Br(k, j) - ua(4)
Az = Gg(k,j) - us(j) — Br(k,j) - ui(j)
Ay = GRg(k,j) - ua(j) + Br(k,j) - u2(j)
As =1+ Bgr(k, j) - us(j) — Gr(k,j) - u1(j)
A = 1 — GRr(k,j) - ua(j) — Br(k, j) - ua(j)
Ay = ;GR(,J) - us(j) — Br(k,j) - ue(j)
Ag = ;GR(k J) - ue(j) + Br(k, j) - us(j)
where
uy = wio (L;ld - qu) cos(0) - sin(d) — R, (2.20)

Ug = £ (L;d sin?(8) + qu cos?(8) + Ll)
uzy = — 2 L, cos?(8) + qu sin?(8) + Ll)

wp =2 (1~ qu) cos(d) - sin(8) — Rq

§) - E), —sin(8).E

(1
ug = cos(d) - E:; — sin(6).E,.

1

Having the above parameters and thus Ip and Ig, the components of the bus volt-

ages can be expressed as:
ED(k) = [D(k).U1 (k) + IQ(]C).’U,Q(]C) + U5(k> (2.21)

EQ(/C) = ID(k).u:),(k) + IQ(]C).U4(]€) + UG(k) (222)

The general form of DAEs which describe the dynamics of a multi-machine power

system is given as:

x = f(x,V,t) (2.23)
0 = g(x,V,i) (2.24)
X(to) = X0 (225)

where according to the aforementioned formulations the vector of state variables (x) in

(4.1) and (4.2) for the synchronous generator is given as:

x = [0 Aw Yrq P1g hiq aq v1 V2 V3] (2.26)

19

and xq is the initial values of state variables, and V is the vector of bus voltages.
(4.1) describes the dynamic behavior of the system, while (4.2) describes the network con-
straints on (4.1). The standard approach to solve these nonlinear and coupled DAEs in-

volves three steps [12]:

e Step 1. The continuous-time differential equations are first discretized and con-
verted to discrete-time algebraic equations. Using the implicit Trapezoidal integra-

tion method, discretizing (4.1) results in a new set of non-linear algebraic equations:

0=—[f(x,V,t)+£f(x,V,t —h)] — (x(t) —x(t — h)) (2.27)

po| >

where h is the integration time-step.

e Step 2. The existing non-linear algebraic equations are linearized by the Newton-

Raphson method (for the j** iteration) as:

J(Z]‘_1) -Az = —F(Zj_l) (228)

where J is the Jacobian matrix, z = [x, V], Az = z; — z;_1, and F is the vector of

nonlinear function evaluations.

e Step 3: The resulting linear algebraic equations are solved to obtain the system state.
(4.5) is solved using the LU factorization followed by the forward-backward substi-

tution method.

2.3 Parallel Processor Architecture

A sequential computer with one CPU (central processing unit) includes only one control
instruction unit. Apart from its limitation to single instruction execution at any time, there
were two main obstacles with this technology: slow memory access and fundamental lim-
itations such as overheating with compact circuits. These issues limited the achievable
speed of serial computers even with the growth of the hardware technology. Therefore,
the parallel processing techniques were seriously taken into account as the main alterna-
tive approach. As reported in the IEEE committee report [49]:

“Parallel processing is a form of information processing in which two or more processors to-
gether with some form of inter-processor communication system, co-operate on the solution of a

problem”.

20

In parallel processing the single CPU is replaced by multiple CPUs (even if they are
individually slower than the presumed single CPU) whose overall parallel performance
accelerates the simulation.

Chronologically, there are two famous taxonomies for classification of the parallel pro-
cessing architecture hardware. The first one was made by Flynn [33] in which computing
machines are characterized by the number of simultaneously active instruction and data
streams. The two practically used groups are Single-Instruction Multiple-Data (SIMD)
and Multiple-Instruction Multiple-Data (MIMD) architectures. In a SIMD-based technol-
ogy the parallelism is exploited by performing the same operation concurrently on many
pieces of data, while in the MIMD architecture different operations may be performed si-
multaneously on many pieces of data. The SIMD model works best on a certain set of
problems such as image processing, and MIMD is suitable for general purpose computa-
tion. Vector processors and array processors are examples of the SIMD-based architecture,
multi-processor and PC clusters have an MIMD architecture.

The other taxonomy was made by Gurd [50] in which rather than concentrating on the
number of active instruction streams, the focus is on the relationship between processing
elements and memory modules. Based on this taxonomy there are two classes of parallel
processing architectures: distributed memory, and shared memory. In the former, there is
no memory in the system other than the local memory on each processing element, and the
processors communicate with each other by sending and receiving messages in a network
with topologies such as mesh, ring, or hypercube. An example of these processors is Intel
iPSC/2 hypercube machine which also has been used in the transient stability simulation
of power systems. It consists of a host computer as the cube-manager, and 32 processors
(nodes). Each node is directly connected to only d—1 nodes, where d is the cube dimension.
The host processor loads the execution program into all nodes and sends all the necessary
data to each processor, where the solution is performed in parallel. The results are sent
back to the host. Successful simulation on these machines requires the decomposition of
the problem into loosely coupled tasks and distribute them among the processors. The
communication between nodes is by sending messages.

In the shared memory processors, however, there is a central memory accessible from
any of the processing units, regardless of existing local memory on each processing units.
The common memory is used to make communications between processors in shared
memory architecture. The Alliant FX/8 is an example of these machines that contains 8

Computational Elements and 64MB of shared memory.

21

This dissertation involves two state-of-the-art parallel hardware architecture: PC-Cluster
based real-time simulator, and Graphics Processing Unit (GPU). The former is a CPU-
based simulator whose details on architecture and configuration will be explained in this
section. The architecture of GPU, however, is substantially different from that of the CPU-
based processors. Thus, GPU will be introduced in this chapter, and it will be explained in

detail in Chapter 4.

2.3.1 PC-Cluster Based Real-Time Simulator

The real-time simulator existing in the RTX-LAB at the University of Alberta is manu-
factured by OPAL-RT Technologies Inc. using commercial-off-the-shelf components. It
mainly comprises of two groups of computers known as target nodes, and hosts. Target
nodes are the computational cores which carry out the simulation, and each of them is
powered by a dual 3.0GHz Intel Xeon™ processor. Each host is a high-performance com-
puter which has a 3.0GHz Intel Pentium IV CPU to offer fast loading and compilation
of the developed models, and providing the interface between the user and the simulator.
The high-speed communication links connect targets, as well as hosts and targets. External
hardware can also be connected to the simulator via the FPGA-based (Field-Programmable
Gate Array) analog/digital inputs/outputs.

The hardware architecture of the real-time simulator is shown in Figure 2.2. The two
processors, i.e. CPUs, in one target communicate with each other through shared memory.
The targets is also capable of eXtreme High Performance (XHP) mode execution, in which
one CPU is dedicated entirely to the computation while the other CPU is running real-
time operating system tasks and schedulers. Several state-of-the-art computer networking

technologies have been utilized to achieve the best communication throughput:

e Shared memory for inter-processor communication in one target. It has the lowest

latency.

e InfiniBand architecture for inter-target communication. It has low latency (from sev-

eral to several-ten microsecond) depending on communication data size.

e SignalWire which only links adjacent two targets. It has only several-microsecond

level of latency.

¢ Giga-speed Ethernet which mainly connects between targets and hosts, or among

hosts.

22

FPGA 1 External
(Signal Conditioning) Hardware
Cluster Node 1 .
’L = = (Dual XEON) ¢$G
F CPU Shared CPU | ‘
AUHEE N e Al
N Memory A E
| G B Host 1
B N |
A A Cluster Node 2 <#$ T
N EL= (Dual XEON) ‘
D Shared i
CPU AN
/\@ 1 & 49! CZU ™NC Host 2
~_ Memory E
= "
| H
R Cluster Node n NE e o e
L = (Dual XEON) 0 R
| Host n
N ool Shared CPU N
K JINE Dl IR (oo $ Hosts
Memory
FPGA n External
(Signal Conditioning) <:
Target Cluster

"

Figure 2.2: Hardware architecture of the RTX-LAB real-time simulator [51].

This high-performance PC-cluster based real-time simulator, which has a shared-memory
MIMD architecture, enables any general purpose parallel processing based simulation and
specifically the digital real-time simulation. Other companies such as RTDS Technologies
Inc. and Hypersim have also manufactured similar real-time using distributed sequential
processors. The philosophy of the real-time simulation, its necessity, and requirement will

appear in the next chapter.

2.3.2 Graphics Processing Unit

Recently, Graphics Processing Units (GPUs), which were originally developed for ren-
dering detailed real-time visual effects in the video gaming industry, have become pro-
grammable to the point where they are a viable general purpose programming platform.
General purpose programming on the GPU (also called GPGPU) is currently getting a lot

of attention in the various scientific communities due to the low cost and huge compu-

23

tational horsepower of the recent GPUs. The use of GPGPU techniques as an alternative
to the parallel CPU-based cluster of computers in simulations that need highly intensive
computations has become a real possibility.

Figure 2.3 illustrates schematic of how the GPU and CPU hardware are connected. As
shown in this figure, GPU is mounted to the PC motherboard similar to the other add-in
peripheral cards. The fundamental idea of the GPU is exploiting the parallel processing.
The GPU executes independently from the CPU but it is controlled by CPU. Application
program running on CPU uses the driver software to communicate with the GPU. The
many-core architecture of GPU, that will be discussed in detail in Chapter 4, is especially
suited for problems that can be expressed as fine-grained data-parallel computations. Ex-
cept the field of image rendering, which GPU was originally designed for, several other
fields from the signal processing and physics simulation to computational finance and bi-
ology have also exploited GPUs to accelerate their simulations.

The modern GPU consists of multiprocessors which map the data elements to the par-
allel processing threads. The multiprocessor creates, manages, and executes concurrent
threads in hardware with zero scheduling overhead. The fast barrier synchronization with
lightweight thread creation and zero-overhead thread scheduling supports fine-grained
parallelism. To manage hundreds of threads the multiprocessors map each thread to one
scaler processor core, and each scaler thread executes independently with its own instruc-
tion. There is a global device memory that all the multiprocessors can have access to. Also,
each multiprocessor has its own on-chip memory that is accessible individually. Overall,
the GPU can be categorized as an SIMD and shared memory processor. However, there are
significant differences between SIMD structure of the GPU and that of the array processors

which will be explained in Chapter 4.

2.4 Parallel Solution of Large-Scale DAEs Systems

A common approach for time-domain simulation of a physical system, described by a set
of non-linear DAE consists of three steps: an integration method (e.g. trapezoidal rule)
for discretizing the differential equations, an iterative method (e.g. Newton-Raphson) for
solving the non-linear algebraic equations, and a linear equation solver such as Gaussian
Elimination and Back Substitution. This traditional approach is referred to as the standard
or direct simulation approach [52]. Both the storage and CPU time required by the standard

approach grow rapidly with the size of the system, measured in terms of its components

24

Processing
Elements

System Memory 1-8GB/s GPU Memory

Figure 2.3: Connection of the GPU to a PC motherboard using the PCle bus.

(i.e. generators in the case of a power system), increases. The demand for simulating
ever larger systems brought the use of parallel architectures to the forefront of researchers
minds. Clearly, exploitation of such parallel hardware was not possible unless appropriate
software was developed that fits the architecture. Moreover, in a large system of DAEs dif-
ferent variables change at different rates. In the standard approach the integration method
is forced to discretize all the differential equation with the same time-step which must be
small enough to capture the fastest dynamics in the system. As such simulating realistic-
size large-scale systems using the standard approach became very time consuming. To
address these problems, a family of techniques known as domain decomposition was devel-
oped.

Domain decomposition refers to any technique that divides a system of equations into
several subsets that can be solved individually using conventional numerical methods. To
solve a set of non-linear differential-algebraic equations domain decomposition can be ap-
plied at any of the three levels of equations, i.e. differential equations, non-linear algebraic
equations, and linear algebraic equations. In these techniques the system of equations at
each level is viewed as a composition of several subsystems at the same level that have
interaction together. The subsystem is a subset of system variables. When the system is
decomposed into subsystems, the solution of each subsystem is carried out by using the
conventional numerical techniques existed for each level of equations. The advantage of
decomposition techniques is that they are suitable for parallel hardware architectures since
several subsystems can be solved simultaneously.

To describe the structure of a system the notion of the dependency matrix (D) is used.

25

For a system with n equations and n unknown variables, D is an n x n matrix whose
elements are 1 or 0. If the i*" equation involves the j** variable, then D(i, j) is 1, otherwise
D(i,5) =0.

Two different approaches were proposed in the literature to perform domain decom-

position: tearing and relaxation.

241 Tearing

Tearing (introduced as the diakoptics method by G. Kron [27]) is the approach that takes
advantage of the block structure of the system of equations. For a system of equations
in which the dependency matrix is sparse, i.e. D has a small percentage of 1’s, tearing
can be used to achieve decomposition while maintaining the numerical properties of the
method used to solve the system. The Bordered Blocked Diagonal (BBD) form is one spe-
cific structure suitable for this approach. Tearing decomposition at the level of linear alge-
braic equations can be implemented as the Block LU Factorization method, and at the level
of non-linear algebraic equations as the Multilevel Newton-Raphson method [53].

It should be noted that the computational efficiency of this approach over the standard
approach depends critically on the structure of the system, and it does not increase when
system dependency matrix is dense. However, the numerical properties of the tearing ap-
proach are the same as those of the standard numerical methods applied to the system
without using decomposition. For example, in nonlinear algebraic equations the Multi-
level Newton-Raphson method still has the same local quadratic rate of convergence the

same as that of the conventional full Newton-Raphson method.

2.4.2 Relaxation

Relaxation [54] is an approach which is not restricted to a particular system structure. In
this approach the system is partitioned into a number of subsystems based on either the
system equations or component connectivity. Solving these subsystems is always easier
than solving the original system. Therefore, the complexity will be reduced regardless
of the system sparsity. Within each subsystem the variables to be solved for are called
internal variables and the other variables involving in that subsystem are referred as external
variables, which are internal variables of other subsystems. To solve a subsystem for its
internal variables the values of its external variables are first guessed and then updated
through an iterative procedure.

Two well known iterative schemes used for relaxation decomposition are the Gauss-

26

L. . s 2
i Xy X, X X e X, 1) = 0 f(xl,x2 ,. xl,x2 ,.]u) 0

n’ n’

Sy 6, 1) = 0 Gauss-Jacobi fz(x 562, T, uy) =0

N Relaxation

Yoo . _ ‘-k—l k-1 ko k-l k-l k

(X Xy X Xy Xy X1,) =0 (a) ST X XXXy ey,) =0

k 1 k-1

g, (x;,x,,0x,,u;) =0 gl(x1 , X A,..., X,)= 0

g‘z(xl,xz,...,xn,ih):() Gauss-Jacobi g (X T u,) =0
Relaxation .

° i O k-1 k*l k _ O

g, (X, xy,0x,,u,)=) g, O X X u) =

0L X, +00 X, +. 40 x, =0 0 X+ 00X 0, X =0

k-1

Oy Yy 0y, ..+ 00y, X, +11, =0 Gauss -Jacobi Oy X T 0, X o, X+, =0

[]]

: Relaxation :

O, X, +00,,X, +.. 40, X, +u, =0 o, X o, o, X u, =0

(©) o

Figure 2.4: Applying Gauss-Jacobi relaxation at different level of equations: (a) differential
equations, (b) non-linear algebraic equations, (c) linear algebraic equations.

Seidel and Gauss-Jacobi methods [55]. Relaxation can be used at each level of the solution.
Figure 2.4 gives an example of using Gauss-Jacobi relaxation at different levels of equa-
tions. The application of this approach for nonlinear algebraic equations can be found
in [28,30]. Relaxation can be used at the level of differential equations as well, but it is not
straightforward. In this case, the system is broken into subsystems in a way that the com-
ponents inside of each subsystem (internal variables) are strongly interdependent while
the dependency between components in two different subsystems (internal and external
variables) is weak enough to ignore their interconnection. In other words, the subsystems
can be relaxed. Therefore, each part of the system is still a system of differential equations
but with a smaller size that can be solved in the time-domain using the standard approach.
The relaxation approach applied to the differential equations’ level has been known as the

Waveform Relaxation (WR) method, which is discussed later in this chapter.

2.5 Power System Specific Approaches

The previous section provided a review of the parallel-processing-based computational
approaches for a general case of DAEs describing the behavior of a dynamical system.

This section introduces the ideas and approaches that have been specifically proposed for

27

the transient stability computation. Although, there is no specific classification for these

methods they appear here chronologically.

2.5.1 Diakoptics

In the 1950s G. Kron developed a solution method for large networks called “diakop-
tics” [27]. The basic idea of diakoptics is to solve a large system by tearing it apart into
smaller subsystems. These subnetworks are then analyzed independently as if they were
completely decoupled, and then to combine and modify the solutions of the torn parts to
yield the solution of the original problem. The solution of the entire network can be ob-
tained by injecting back the link currents into the corresponding nodes.The result of the
procedure is identical to one that would have been obtained if the system had been solved
as one.

The advantages of diakoptics were at least twofold. Firstly, larger systems can be
solved efficiently by the use of diakoptics on a given computer by processing the torn parts
through the computer serially. Secondly, diakoptics employs a multiplicity of computers
which essentially operate in parallel, and thus provide more speed of execution than by
the use of a single computer. The computers can be physically next to each other, thus
forming a cluster of computers, or they can be miles apart. Each computer in the latter

application can work on the solution of a given part [56].

2.5.2 Parallel-in-Space Methods

The parallel-in-space algorithms are step-by-step methods based on partitioning the origi-
nal system into subsystems and distributing them among the parallel processors. These
subsystems should be loosely coupled or independent parts. In the literature of tran-
sient stability simulation “parallel-in-space” usually addresses the task-level parallelism
in which serial algorithms are converted into various smaller and independent tasks that
may be solved in parallel. In the transient stability calculation of a large-scale power sys-
tem the obvious part that parallelism can be exploited in is the solution of linear algebraic
equations.

The most significant early work in this area is described in [57] where the Trapezoidal
Rule was used to discretize the differential equations, and then the parallelism was applied
to solve the algebraic equations. The algorithm presented in [58] that uses the Runge-Kutta
method is a typical parallel-in-space approach, which distributes solutions of the nonlinear

equations of each time step into multiprocessors.

28

Suppose the set of differential-algebraic equations that describe the dynamics of the

power system are given as following;:

x =1f(x,V)

- Y.V (2.29)
where vectors x and V are the state variables and bus voltages of the system. Applying

the implicit trapezoidal integration method to the differential equations and rearranging

them result in a set of algebraic equations:

F=xF_xk1_14 [fF 4+ 1] =0
G=I-YV=0 (2.30)
Applying the Newton-Raphson method to these equations, we obtain a set of linear

algebraic equations:

F . J 1 J 2 Ax
FIER A @
where Jq, Jo, J3, and J, are the Jacobian coefficient sub-matrices and are defined as
following:
OF OF
Jl — 87)(J2 — W
_ 9G _ 9G (2.32)
J3 — K J4 — W

Applying the Gaussian elimination to equations (2.31) we get:

F J1 J2 Ax
HE I

where

G=G-JJ;'F
(2.34)
Ja=J,— 333717,

Therefore, equation (2.33) can be decoupled and solved with the Gauss-Jacobi iterative

29

scheme as:

AVE) = _J 1 GH-1)

Ax(k’) — _Jl—l(F(kfl) + JzAV(kfl)) (235)
or with the Gauss-Seidel iterative scheme:
AVE) = _J 1 GH-D
(2.36)

Ax®) = —J HEFED 4 J,AVER)

where £ is the iteration index. Equation (2.35) and (2.36) can be solved to update V and
x at each time-step. Therefore, the work associated with each time-step can be distributed
among the parallel processors and run simultaneously.

Note that in (2.31) J4 actually is the admittance matrix of the interconnected network,

and J; is diagonally blocked, i.e.:

Jl :diag [Jli]a izl,...,ngen

where nge, is the number of generators, and obviously:

J1_1 = diag [Jl_il] , t=1,...,Ngen

Therefore, the computation of J;;'s can be assigned to parallel CPUs in any order. In the
transient stability simulation different machines may have different models, for example
in a machine using the classical model the corresponding Ji; is a 2 x 2 block while for
a machine using a detailed model including exciter and PSS, the corresponding J;; may
reach 9 x 9 or even higher depending on the complexity of the element models. Thus, in
the parallel-in-space simulation, it is important to care about balancing the CPU loads to
achieve better parallel gain.

For improved computational efficiency some variations of the Newton-Raphson’s method
such as Very Dishonest Newton (VDHN) or Decoupled Newton method have been sug-
gested to be used. In VDHN method the Jacobian matrices is held constant unless the
convergence slows down. In [59] authors proposed to keep J; fixed unless the number of
iterations exceeds a threshold value, convergence slows down, or the system undergoes
topology changes, while other Jacobian sub-matrices, i.e. Jq, J2, and J3 are updated at

each iteration.

30

In the Decoupled Newton method, in equation (2.31), the sub-matrices J, and J3 are

ignored, and equations are directly decomposed as:

AVE) = g1 Gk-1)
AxH) = 371D 237)

To avoid the time consuming matrix inversion operation some parallel iterative meth-
ods have been proposed. The Successive-Over-Relaxation Newton method uses an ap-
proximated Jacobian matrix containing only diagonal elements:

dfi(z)

82]'

i=
9fi(z) _
0z 0 i #]

(2.38)

where z presents both the state and algebraic variables. The iterative equation to obtain
individual z at each time-step can be stated as:

(k1)
A0 e, Sie) (2.39)

7 ? k—
afi(z"")
where w; is the relaxation factor for the z;. Since it is not desirable to change the algo-
rithm for every case, in [59] authors proposed to use w, = 0.9 for static and wy = 1.9 for

the dynamic variables instead of using different values for each variable.

2.5.3 Parallel-in-Time Methods

Despite the sequential character of the initial value problem which derives from the dis-
cretization of differential equations, parallel-in-time approaches have been proposed for
parallel processor implementation. The idea of exploiting the parallelism-in-time in power
system applications was first proposed in [31] to concurrently find the solution for multi-
ple time-steps. In this method simulation time is divided into a series of blocks that each
of them contains a number of steps that lead to the solution of the system. In other words,
this technique concurrently solves many time-steps. Suppose there is a set of differential

equation in the compact form of (2.40):

% = Ax + f(t) (2.40)

31

In which f is an explicit function of time. Applying the trapezoidal rule to (2.40) results

in a set of algebraic equation:

xF = xk=1 4 g [A(xk +xF N R4 fk_l] (2.41)
Rearranging equation (2.41) as:
h h h
(I— §A)xk =(I+ 5A)xk—l + §(f’“ + 1) (2.42)

For each time-step the whole right-hand-side of the equation (2.42) can be explicitly
evaluated to determine the value of x* by solving a set of linear algebraic system. How-
ever, in the parallel-in-time method the vector x is determined for T time-steps simulta-
neously, where T is the number of time-steps for which the output results are required.

Rearranging equation (2.42) for a set of T equations can be written as:

(I — %A)Xl — (I + %A)XO = %(fl =+ fg)

(I — %A)Xg — (I + %A)Xl = %(fQ + fl)
' (2.43)

(I — %A)XT — (I =+ %A)XT,1 = %(fT + fol)

where the subscribe denotes the individual time-step. A way of parallelizing this class
of algorithms is to apply Gauss-Jacobi relaxation in order to exploit the parallel-in-time for-
mulation. Therefore T time-steps can be solved simultaneously. A comprehensive research

in this area has been done by M. La Scala et al. [28,30,60,61]

2.5.4 Waveform Relaxation

The Waveform Relaxation (WR) method, was the first attempt to exploit both space and
time parallelism in the transient stability problem. The WR method is an iterative approach
for solving the system of DAE over a finite time span. In this method the original DAE,
which usually has a large scale, is partitioned into smaller weakly coupled subsystems
that can be solved independently. Each subsystem uses the previous iterate waveforms
of other subsystems as guesses for its new iteration. After each iteration, waveforms are
exchanged between subsystems, and this process is repeated until convergence is gained.
This method is based on the Gauss-Seidel or Gauss-Jacobi iterative approaches explained

earlier in this chapter.

32

The WR method was first introduced in [62] for VLSI circuit simulation. The first ap-
plication of the WR algorithm in the power system area was suggested in [63] and with
further development it was used for transient stability study analysis in [64] in 1989.
In [65] the simulation time between the sequential WR method and direct method has
been compared for some study cases. For example, a simulation interval of 25 in a net-
work with 20 synchronous generators (all represented by the classical model) and 118 buses
took 11829.5s and 1403.4s using the direct and sequential WR method, respectively. The
promise of adopting parallel computers to implement the WR method was mentioned
in [65], but the first time that the WR method has been used on a parallel machine was in
1997. In [66] several comparisons have been shown to clarify the efficiency of this method
for parallel processing. For instance, a network with 195 synchronous generators and 970
buses has been modeled on several CPUs existing in a parallel machine. The minimum
achieved execution time (not including communication time) for a simulation interval of
1.02s was 36.61s (for each CPU) in which 12 CPUs have been run in parallel; the time for
the direct method was 689.75s (using one CPU). Although it was a big speedup, but it
is still too far from real-time simulation. The useful outcome resulted from both sequen-
tial [65] and parallel [66] implementations of the WR method is that this algorithm is more
efficient for larger systems.

The general form of DAE in the transient stability study of power systems described
with equations (2.29). The time-domain standard method to solve this set of DAE was
previously described through steps 1, 2, and 3 at the beginning section of this chapter.
However, in the WR method first the system of nonlinear DAEs is decomposed into de-
coupled subsystems, and each subsystem is solved separately for the entire simulation
time interval using waveforms from the previous iteration of the other subsystems. To
achieve the convergence several iterations may be required, where each of the subsystems
exchange waveforms and are then solved with updated data collected from other subsys-
tems. This process is repeated until all waveforms converge with the necessary accuracy.
To describe these explanations mathematically, suppose that equation sets (4.1) and (4.2)

can be partitioned into r weakly coupled subsystems as equations (2.44):

33

k=0

<«
<

A

<

Guess for all 1 €[0,T]
Waveform x* (¢), such that x*(0) = x(0)

Waveform V*(¢), such that V*(0) =V (0)

k=k+1

Solve for all t €[0,T]
X = £l v v v LT
I) =Y (xfx Ly

i=i+l1

Waveform
converge?

Figure 2.5: The Gauss-Jacobi WR algorithm; k: the number of iteration, i: the number of

subsystem.
}.(1 = f(Xl...,Xr; Vl...,Vr; Il...,Ir)

Il = Y(xl...,xr).Vl
(2.44)

)'(r = f(Xl...,Xr; Vl...,Vr; Il-'er)

I =Y(x1...,%x¢).Vy
The WR method can be based on either Gauss-Jacobi or Gauss-Seidel algorithms. The

flowchart of Gauss-Jacobi WR algorithm for a time interval of [0, 7] is depicted in Figure
2.5. As can be seen, in each iteration each subsystem is being solved independently of other

34

L=0.5H R=0.5Q

A_nmm;\» AN
i +
Oy, =10V C=1F /< v,

Figure 2.6: The RLC circuit.

subsystems. Thus, this method can be implemented on parallel CPUs, so that each CPU
solves one of the subsystems. In the Gauss-Seidel based WR method, the i subsystem
uses the current iterate waveform from subsystems (1, ...,7 — 1) and the previous iterate
waveforms from subsystems (i+1, ...,) as inputs. This algorithm is therefore sequential in
nature. In both algorithms, the subsystems are discretized and solved independently. The
method exploits time parallelism over the simulation period since subsystems are solved
concurrently. The space parallelism also is inherited due to the system decomposition
shown in equations (2.44).

To show the procedure of the WR method and its related issues a simple example will
be demonstrated here. Consider the RLC circuit shown in Figure 2.6, in which the switch
is closed at t = 0, and v.(0) = 0. By choosing the voltage of capacitor (v.) and the current
of inductor (¢) as the state variables, the mathematical description of this circuit would be

as follows [67]:

i(t) = 20 — 2v.(t) —i(t) (2.45)

be(t) = i(t) (2.46)

The voltage waveform resulting from the solution of this set of ordinary differential
equations (ODEs) achieved from the direct method has been plotted in Figure 2.7 by the
solid line. To apply the WR method to this system first it must be broken into subsys-
tems. In this example there are two differential equations; thus, the system is divided into
two subsystems. Subsystem I includes the equation (2.45) and Subsystem I includes the
equation (2.46). Applying a Gauss-Jacobi iterative scheme, in the k'" iteration the Subsys-
tem [is being solved by considering v and Subsystem I1 is being solved by taking

i*=1). After computations are done over the given simulation time interval in both sub-

35

20 T LI T H T

1 k= k=5 k=9 k=13
>
p k=15,
o | iy NS :
8 p M e————— =
° =21
> S
1S
[®]
= i
o
©
o k=14
©
(&)

4 B 10
Time(s)

[55]

(==
[=)

Figure 2.7: Response of the RLC circuit for the capacitor voltage, k: the number of WR
iterations.

systems, waveforms would be exchanged; then, the two subsystems are ready to be solved
for the next iteration with the new waveform data. This procedure will be continued until
the resulting waveforms converge within required accuracy. In Figure 2.7 the response of
several iterations has been superimposed on the direct method response with dash lines.
As k increases, at the end of each iteration the resulting waveform converges toward the
direct method response more than the previous iteration.

From this example one important property of the WR method can be explained. It
can be observed in Figure 2.7 that as the number of iterations increases, the time inter-
val in which the resulting waveform is close to the exact one becomes larger. In other
words, the method works well for a certain interval, but it is inaccurate outside of this
span. So, instead of applying the method in each iteration over the whole simulation time,
it is more effective to divide the simulation time into small intervals (with the length of
win) and solve equations piece by piece within each interval, as shown in Figure 2.8. This
technique, known as windowing, decreases the number of iterations required within each
interval for achieving the certain accuracy [52]. The complete flowchart of WR method
including the windowing technique is depicted in Figure 2.9. Windowing also reduces the
required memory space, because the iterative waveforms need to be stored only for small

time intervals instead of the whole simulation time [67]. In the large-scale networks if the

36

2': :I 1 H 1 H 1

3

()
O | ==f 0 N, T -
C —

= k=21
) .

> "

S

)

_'l: u
®

o k=14

©

(&

4 &
Time(s)

o
=]

Figure 2.8: Application of windowing technique in the WR method, k: the number of WR
iterations, win: window length.

intervals are too small, the advantages of the WR method are lost due to the increase in
communication time among the partitions [29].

The same as other parallel computation algorithms, the first requirement in utilizing
the WR method is to partition the problem into smaller tasks that can be distributed among
the several processors. Partitioning can be classified into fine-grain and coarse-grain. In
the former the problem is divided into many small tasks, and consequently, the commu-
nication between the processors is broad. In the later the problem is divided into a few
but large tasks or subsystems which impose less communication on the processors. Thus,
choosing the partitioning approach, is mainly limited by the parallel processor hardware.
If the available hardware cannot provide a fast capability among its processors, the coarse-

grain method is more preferable. A full section discussing this issue appears in the Chapter
3.

2.6 Power System Partitioning

Various approaches based on criteria such as computation loads, network topology, and
dynamic behavior of the system can be used to partition power system for transient sta-
bility simulation. For example the system can be decomposed to split the computation

burden among parallel processors based on the total number of equations, or by consid-

37

Updating external waveform

variables for all ¢in win
- //
- /’ T
- prad Discretization of
- P
i=Ilton g differential
@
A

PR equations

win =win + 1 Computing internal
Newton-Raphson

A waveform variables in

subsystem # i for win #
l ~o Solution of linear
Itr=1Itr + 1 \‘\\ algebraic
Sso equations

Waveforms
converge ?

Figure 2.9: Flowchart of the WR method for the duration of [0, 7] which is divided into
k window intervals. n: the total number of subsystems; Itr: counter of iterations in each
window; Max s, the maximum allowable number of iterations in each window; win:
counter for windows.

ering the complexity of the generator models and the connectivity of the buses. There are
methods based on graph theory for network partitioning for use in the block iterative so-
lution of linear systems. In [68] this technique has been used for load flow study in power
systems.

In the approaches that are based on the system dynamics the coherency characteristics
of the generators are used. To find the coherent generators two methods are available. One
is based on time-domain simulation, and the other method is to use eigenvalue analysis.
The best way of determining generator coherency is through observing the swing curves
generated by numerical integration of the system dynamic equations. In a power network

a pair of generators are called coherent if the difference between their rotor angles (9; and

38

d;) remains constant over time:

67,(75) - (5]'(75) = A&U +e 0<t<T (2.47)

where AJ;; is a constant value, and ¢ is a small positive number. In case that e = 0
generators 7 and j are perfectly coherent. However, in the time-domain approach the com-
putation involved for a large-scale system is intensive because it requires solution of the
system dynamic equations. In [70] the time-domain simulation method to find out co-
herent groups of generators has been described based on two assumptions that coherent
generators are independent from the size of disturbance and also the detailed of model-
ing. These assumptions have been validated based on observations of many simulations.
Therefore, a linearized classical model of the synchronous machines can be used to find out
rotor angle trajectories based on criteria in (2.47). Slow coherency partitioning method, re-
ported in [71], has been applied in power systems. In this method instead of time-domain
simulation, the concept of tow-time-scale model is used to decompose the system. Two
time scales related to difference between the inter-area and local oscillations happening
in a power system following a fault. This approach requires the calculation of modes
and eigenvalues of the given system. In [72] a direct method of coherency determination
through the use of Taylor series expansion of the faulted and post faulted systems has
been proposed. There are also methods that decompose the system based on the concept
of the electrical distance between busbars, and is independent of the systems operating
condition [73]. In this thesis the slow coherency method has been used for partitioning

large-scale systems.

2.7 Types of Parallelism Used in This Thesis

We have used three types of parallelism’s:

o Algorithm-level: This is a top-level or coarse-grain parallelism which happens be-
fore any numerical method starts solving the system equations. It is also known as
program-level parallelism [29]. Here the objective is not to address task definition and
scheduling, but the parallelism inherent in the overall algorithm. The WR method is

an example of this type of parallelism.

e Task-level: In this type of parallelism the traditional serial algorithm is converted

into various smaller and independent tasks which may be solved in parallel. For

39

A.P. T,P, A.P. : Algorithm-level Parallelism
T.P. : Task-level Parallelism
D.P. : Data Parallelism

(a) (b)

Figure 2.10: Integrating various types of parallelism: (a) algorithm-level method on a data-
parallel hardware, (b) task-level method on a data-parallel hardware.

example, to solve a linear set of equations in the form of Az = b, the task-level par-
allelism entails decomposing the matrix A into various other matrices that can be
solved in parallel. Using the sparsity related solution methods, or converting matrix
A into a block-bordered diagonal matrix are examples of the task-level parallelism

approach. The parallel-in-space methods explained earlier also falls into this cate-
&OTY-

e Data-parallelism: This is the most fine-grained type of parallelism that can be used on
the SIMD-based architectures such as vector processors or GPUs. A given problem
must have the capability to be expressed in the data-parallel format in order to take

advantages of the SIMD hardware.

Both the algorithm-level and task-level approaches can take advantage of data-parallelism
techniques as shown in Figure 2.10. In Chapter 5 it will be shown how the proposed
algorithm-level parallel method, i.e. Instantaneous Relaxation, and a task-level parallel
method, known as Incomplete LU factorization, can be implemented on data-parallel ar-

chitecture of GPUs.

2.8 Summary

In this chapter the subject of parallel processing based computation applicable for tran-
sient stability simulation of large-scale power systems has been discussed. To this end
we started with the general classification of parallel processors hardware architectures to
describe two state-of-the-art available processor techniques (PC-Cluster based real-time
simulator and GPUs) in the RTX-LAB. The second portion of this chapter was allocated to
the parallel solution methods for the differential-algebraic equations, and approaches spe-

cific to the transient stability simulation of power systems have been discussed. In Chapter

40

3 the general idea of the WR method suitable for real-time simulation is discussed. How-
ever, the original WR method contains drawbacks which offer serious obstacles for imple-
mentation in real-time space. The proposed approach in this thesis is the Instantaneous
Relaxation method that will be comprehensively described in Chapter 3. As the Instan-
taneous Relaxation and WR methods have a common mathematical background, the WR
method was explained with more details in this chapter to prepare the reader for Chapter

3.

41

The Instantaneous Relaxation (IR) Method

3.1 Introduction

The objective of this chapter ! is to revisit the application of real-time digital simulators to
the transient stability problem. As mentioned in the previous chapter, transient stability
simulation of realistic-size power systems involves computationally onerous time-domain
solution of thousands of nonlinear differential algebraic equations (DAE’s). Furthermore,
from the point of view of dynamic security assessment which is required for safe system
operation and control, several transient stability cases need to be run in a short period of
time for analyzing multiple contingencies and to initiate preventive control actions.
Currently available commercial real-time simulators such as RTDS [74], RT-LAB from
OPAL-RT Technologies Inc. [51], and Hypersim [75] address these needs to a large extent
by using multiple racks or clusters of multi-processor architectures. The question that
arises, however, is whether this approach is the most efficient and cost-effective, given the
prevalent practice of using a real-time simulator, originally designed and built for electro-
magnetic transient studies, for transient stability simulations. This is done, of course, using
simpler models and larger time-steps. For example, nominal-pi models are used instead of
frequency-dependent models for transmission lines, and the simulator time-step is chosen
to be in the range of milliseconds instead of microseconds. Nevertheless, there is underly-

ing sequentiality in the electromagnetic transient simulation algorithm [76] that precludes

"Material from this chapter has been published: V. Jalili-Marandi, V. Dinavahi, “Instantaneous relaxation-
based real-time transient stability simulation,” IEEE Trans. on Power Systems, vol. 24, no. 3, August 2009, pp.
1327-1336.

42

an efficient utilization of the hardware capabilities for transient stability simulation. By
exploiting the parallelism inherent in the transient stability problem, a parallel solution
algorithm can be devised to maximize the computational efficiency of the real-time sim-
ulator. This would reduce the cost of the required hardware for a given system size or
increase the size of the simulated system for a fixed cost and hardware configuration.

In this chapter we propose a fully parallel Instantaneous Relaxation (IR) method for real-
time transient stability simulation. The idea of using relaxation-based solution of DAE’s is
certainly not new and has been explored before. The Waveform Relaxation (WR) method,
described in the previous chapter, was first introduced in [62] for VLSI circuit simulation.
Then in [63] this method was applied to the power systems area and used comprehensively
for off-line transient stability simulation [65]. The classical model of the synchronous ma-
chine was used in these simulations. Although this algorithm was implemented sequen-
tially, it was predicted that it will accelerate the simulation by exploiting parallel proces-
sors [29]. Later in [66] the WR method was implemented on parallel computers.

As will be explained later, although the WR method is a parallel method successfully
implemented for off-line simulations, there are inefficiencies that surface when it is im-
plemented in real-time. Therefore, the IR method which overcomes these limitations is
proposed for real-time implementation.

The chapter begins with a discussion about the obstacles of the WR method for real-
time implementation. The algorithm of the proposed IR method will be explained, and
the approach for partitioning a power system for performing IR method will be discussed.
Real-time simulation results and their comparative analysis with off-line simulations will

be shown at the end.

3.2 Limitations of WR method for Real-Time Transient Stability
Simulation

The WR method was explained in the Chapter 2. The most important advantages of this
method as a parallel-processing application where parallelism happens at the program

level and not at the task level, are:
e it is an inherently parallel method.
e multi-rate integration methods can be used.

e each subsystem can be solved independently

43

Figure 3.1: Partitioning a large system into subsystems.

e subsystems become smaller than the original large system, it takes less time to solve.
e different levels of accuracy for modeling in each subsystem can be used.

Figure 3.1 schematically shows a large-scale power system partitioned into r smaller
subsystems to conduct a parallel simulation by using the concept of WR method. The
outstanding difference between the WR and other classical decomposition methods for
solving linear and non-linear algebraic equations is that in this method during each iter-
ation each subsystem is analyzed for the entire time interval [0,7]. In other words, the
elements in this technique are waveforms of the variables rather than their instantaneous
values. In each iteration of the WR method each subsystem is solved by using the three
basic steps of the transient stability standard approach for all ¢ € [0, 7.

It was discussed in [67] and [29] that the WR method works well for a certain interval,
but it is inaccurate outside of this span. So, instead of applying the method in each iteration
over the whole simulation time, i.e. [0, 7', it is more effective to divide the simulation time
into k small intervals or windows, i.e. [0, T3], [T1,T%],..., [Tk, T], and solve equations piece
by piece within each interval. This technique, known as windowing, decreases the number
of iterations required within each interval for achieving required accuracy [52]. Further-
more, windowing reduces the required memory space, because the iterative waveforms

need to be stored only for small time intervals instead of the whole simulation time.

44

The waveform-based property of the WR method is one issue that needs to be changed
for real-time simulation. There are two reasons. First, in real-time simulation and specifi-
cally in hardware-in-the-loop simulation the instantaneous value of each variable at each
time-step is required and not the complete waveforms. Second, if waveforms are going
to be used as numerical elements, all waveforms of the variables such as bus voltages or
generator angles must be computed for the entire simulation interval, say 20s, in the first
time-step of the simulation, say 1ms. Clearly, this is not practical for a large-scale system
with thousands of variables. To overcome this restriction the windowing technique can
be used. So, the whole simulation time is divided into small intervals, and each interval
is computed in one time-step. The time intervals must be small enough so that the com-
putation tasks can be performed during one time-step. Although windowing can help
maintain the waveform property; however, working with waveforms in real-time is not as
efficient as in off-line simulation.

Suppose the simulation interval [0, T's is divided into £ windows of length m x h mil-
liseconds, h being the time-step. When the simulation starts, all waveforms for the interval
of the first window must be computed during the first time-step. Then, there are two op-
tions. In the first option (Figure 3.2) the real-time simulator is idle during the remaining
length of the first window, i.e. for (m — 1) x h milliseconds, when it just sends out instant
values of variables at each time-step. After this period simulator resumes computation for
the interval of the second window, and again becomes idle. This process is repeated until
the end of simulation time. In the second option, depicted in Figure 3.3, the simulator con-
tinues the computation for each window in the subsequent time-steps while it also sends
out the instantaneous values of variables at each time-step. Therefore, the computation fin-
ishes in k£ consecutive time-steps, and after that the simulator becomes idle when it sends
out instant values at each time-step. It can be concluded that in both options the simulator
performs the entire computation in k time-steps and then remains idle for (m —1) x k time-
steps. In other words, the computation load has not been distributed among the time-steps
equally. Thus, real-time implementation of the native WR method can be inefficient from

resource utilization point of view.

3.3 Instantaneous Relaxation

To overcome the limitations of the WR for real-time implementation we propose the point-

wise or Instantaneous Relaxation (IR) technique. It is simply the WR method with a window

45

Model Pttt T T T - ST T ~

time-line ‘u [Erer— j —_ ... 1 1 .1
%1 h IH L I/‘ \\l L) L) lll I\l L L '/‘

Waveform I Y

calculation Idle Idle Idle

. —Ar— —P—

Simulator e e - - - ¢ et

time-line l l l

Sending out X, X, Xy

instant values

Figure 3.2: Real-time implementation of the WR method: Option 1.

0 win, win, win T
Model P N [CTTTTTT Y .
time-line l L P P ... 1 —_ .1
| L) L) l‘ Ll L) L) lll I\l L) L) ' |
Waveform [o
calculation Idle
Simulator — —————— et ——t—t
time-line l l l l
Sending out x, x, X1 Xy

instant values

Figure 3.3: Real-time implementation of the WR method: Option 2.

length of one time-step, i.e. m = 1. It has been verified in the off-line implementation
of WR method that the smaller the length of window, the faster the convergence. On
the other hand, if the window is made too small the overall communication time among
subsystems increases which causes a loss of the advantages of the WR method. However,
the communication latency between computation nodes in currently available real-time
simulators is in the order of a few microseconds. This latency is small compared to the
time-step required for transient stability and can therefore be neglected. Based on the
previous experience with the WR method and the arguments made in the pervious section,
it can be concluded that the IR method not only inherits the advantages of the WR method
but is also efficient from the real-time simulation point of view.

To apply relaxation methods at the level of differential equations the preliminary step
is clustering variables into groups which can be solved independently. This will be specifi-
cally discussed for the transient stability application in the next section. After partitioning

the system into n subsystems, the set of DAE’s equations (i.e. (3.1) and (3.2)) are prepared

46

to describe the dynamics of each subsystem:

)-(z'nt _ f(xint’ Xext, Vz’nt’ Vezt’ t), (31)

0 = g(xint’ Xemt7 th’ Vezt’ t), (32)

where x and V'™ are state and algebraic variables that define the dynamic behavior
of Subsystem i, and x°** and V¢** are the state and algebraic variables that defining all
subsystems excluding Subsystem i. Therefore, x = x| Jx®*' and V = V| JV are
the set of all state and algebraic variables that describe the original-size system. Using the
Gauss-Jacobi iteration scheme the pseudo code for the GJ-IR method is as follows:

t and V" at each subsystem

guess initial values for x
t=0;
repeat{
t=t+1;
for each subsystem solve
411 = £, %7 Vi V)
0 = g(x{™, xi, Vi, Vi)

huntil (£>T)

and using the Gauss-Seidel iteration scheme the GS-IR method is as follows:

t and V" at each subsystem

guess initial values for x
t=0;
repeat{
t=t+1;
for each subsystem solve
St = £, 7, Vi V)
0 = ", i V", Vi)

huntil (£>T)

From the above mentioned algorithms, the obvious difference between GJ-IR and GS-
IR is that in the GS-IR at each time-step the Subsystem ¢ has to wait until Subsystems 1 to
i — 1 get solved, so that Subsystem i can use the last values of the x*** and V¢*! to solve

x™ and V!, However, in the GJ-IR the solution of Subsystem i for the current time-step

47

is fully independent from the solution of other subsystems. Therefore, the GS-IR has a
sequential nature while the GJ-IR is fully parallel that makes it suitable for our purpose.
From now on, in this thesis the IR method refers to the GJ-IR.

To solve each subsystem we first start with discretizing (3.1) that results in a new set of
non-linear algebraic equations. In this work we used the trapezoidal rule as the implicit

integration method to discretize the differential equations as follows:

0=x"— g [£'(x", Vi, 1) + f/(x', V', t — h)], (3.3)

where 7 = 1,2,...,n indicates the subsystem, and & is the integration time-step. (3.2)
and (4.4) can be linearized by the Newton-Raphson method (for the j'" iteration) as:

J(zj—_l) Az = —Fi(zé_l), (3.4)
where J is the Jacobian matrix, z' = [x*, V], Az’ = z;» — Zé‘—y and F? is the vector of
nonlinear function evaluations. (4.5) is a set of linear algebraic equations that can be solved
with Gaussian Elimination and back substitution method. Benchmarking revealed that a
majority of execution time in a transient stability simulation is spent for the nonlinear so-
lution. By using the IR method, however, and by distributing the subsystems over several
parallel processors, a large-scale system is divided into individual subsystems whose ma-
trix sizes are smaller resulting in faster computations.

To clarify the differences between the WR and IR methods, the flowcharts of IR algo-
rithm is shown in Figure 3.4 which can be compared with Figure 2.9 in Chapter 2. Prac-
tically in the WR method it does not seem efficient to perform several iterations of the
Newton-Raphson. Let the exact solution of a waveform be z(.), and the result of the k'"
iteration of the WR method be z*(.). Depending on the length of window some iterations
will be required for 2*(.) to converge to z(.); however, the starting iterations for *(.) are
poor approximations of x(.). Thus, it is superfluous to perform Newton-Raphson itera-
tions for computing a close approximation to x*(.) which itself is a poor approximation of
x(.). The convergence rate of the IR method is higher than that of WR, because its win-
dow length is minimum. Therefore, performing several iterations of Newton-Raphson, as
shown in Figure 3.4, increases the accuracy of IR.

Following the convergence of iterative solutions in all subsystems, the state and alge-
braic variables calculated from the last time-step are updated. The state variable descrip-
tion of generators used in this work was defined in Chapter 1. These state variables and

voltages of generator buses must be exchanged between all interconnected subsystems.

48

t=0
A
- / Discretization of
Updating external / N differential
P instantaneous variables in all / equations
subsystems using Gauss -Jacobi| /
/ v
v yd
i=1ton / Newton-Raphson
/
@ v

Y

Solution of linear
algebraic
equations

O T
\\

N

Computing internal
instantaneous variables in
subsystem # i

Figure 3.4: Flowchart of the proposed IR method for the duration of [0, 7] with a time-step
of h. j: counter for iterations of the Newton-Raphson; Mazr;,: the maximum allowable
number of iterations for the Newton-Raphson in each time-step.

3.4 Coherency Based System Partitioning for the IR Method

One way to partition a power system for parallel processing is to distribute equal numbers
of generators and buses among the processors. However, this is not an efficient method
because the network buses have different connectivity and the generator models vary in
both size and complexity. This gives rise to the load balancing problem in a parallel multi-
processor simulator architecture. Another option is to split the computation burden among
processors based on the total number of equations; however, this approach will increase
both the programming and communication complexity. A more efficient method is to
partition the system by considering the complexity of the generator models and the con-
nectivity of the buses. In this case, different number of generators and buses are assigned

to parallel processors, and the computation burden is roughly even; however, the draw-

49

back of this method is that it cannot be used for a general-purpose program at least in the
off-line sense [77].

The primary requirement for successfully using the relaxation methods at the level of
differential equations is to divide the system into subsystems in which tightly coupled
variables are grouped together. In [52] it was shown that the WR method will converge
for any chosen partitioning scheme; however, the rate of convergence is highly dependent
on the method of partitioning [29]. In spite of all that, it is important to ask this ques-
tion: is transient stability simulation of a large-scale network by IR method restricted by
this prerequisite? In other words, whether the partitioning scheme’s dependence on sys-
tem modeling or the characteristics of the disturbance such as its severity or location, will
influence the convergence of the IR or WR methods.

Determination of tightly coupled variables or simply partitioning the system can find
a physical meaning from the power system point of view. Following a large disturbance in
the system, some generators lose their synchronism with the network. Thus, the system is
naturally partitioned into several areas in which generators are in step together while there
are oscillations among the different areas. Generators in each of these areas are said to be
coherent. The coherency characteristic of the power system reflects the level of dependency
between generators. Coherent generators can be grouped in the same subsystem which
can be solved independently from other subsystems with the WR or IR methods. The
partitioning achieved using the coherency property has two characteristics which make
it appropriate for our study. The coherent groups of generators are independent of: (1)
the size of disturbance and (2) the level of detail used in the generators. Therefore, the
linearized model of the system and the simple classical model of generators can be used
to determine coherency. Furthermore, slow coherency based grouping is insensitive to the
location of disturbance in the power system [78]. These features of slow coherency lead us

to use this partitioning method in this thesis.

3.5 Implementation of IR Method

The IR method was implemented using a customized MATLAB S-function. S-function is
a computer language description of a SIMULINK block that can be written in either C,
C++, Fortran, Ada, or MATLAB, and it is compiled as a mex file to dynamically link into
MATLAB. The most common use of S-function is to create a custom SIMULINK block.

This block may include a new general purpose application, a hardware device driver, or

50

describing a system as a set of mathematical equation. In our case, the purpose was to
implement the IR method. Thus, we use the S-function to mathematically model the power
system equipments and solve it using the proposed IR method.

The customized S-function block is solved at every time-step assigned by SIMULINK
but the time-step can be changed from outside the S-function in the main model. The
change in time-step can be passed to the S-function structure by defining it as a parameter
of the S-function. The “discrete solver” option is used for the simulation, even though
selection of different solver in SIMULINK does not influence the S-function as the solver
is chosen inside the S-function structure. The models developed in SIMULINK could be
solved with either variable or fixed time-step. Due to the model validation process, only
the fixed-step solver was utilized. In this research we used the C programming language

to prepare the SIMULINK S-function which will be explained in this section.

3.5.1 Building of C-based S-Function

The general structure of the S-function written in C is shown in Figure 3.5. The SIMULINK
S-Function block is invoked at each simulation time-step, and any changes in the S-function
inputs can be passed to it even while the simulation is running. As shown in Figure 3.5

flowchart, the essential functions in C-based S-function to be used are the follows.

Function static void mdlInitializeSizes (SimStruct =S)

This is the first invoked function in the S-function, and it is used to specify the basic char-
acteristics of the block, such as number of inputs, outputs, the port width of each input and
output, and the number of parameters of the S-function block. It is worthwhile to mention
that while the simulation is running, the s-function parameters cannot be changed but its
inputs can be changed. In this case, three input and nine output ports are defined. The in-
put corresponds to external machines ID, and variables that are required to be exchanged

among subsystems.

Function static void mdlInitializeSampleTimes (SimStruct =*3)

Sample time of the S-function block is initialized here, which is retrieved from the first

S-function parameter by C function mxGet Scalar (ssGetSFcnParam (S, 0)).

51

(START]

\ 4
mdl I nitializeSizes

Y
ndl I nitializeSanpl eTi nmes

ndl Qut put s

Y

nmdl Updat e

<

Yes

nmdl Ter m nat e

Y

(END)

Figure 3.5: SIMULINK S-function flowchart

Function static void mdlStart (SimStruct =*3)

All initializations including the network’s steady state parameters, machines data, and
network’s admittance matrix are placed in this function. The data files in the PSS/E *.raw
tile format are read and interpreted, and corresponding models are initialized. Moreover,
in order to reduce computational time in the simulation loop, all admittance matrices cor-

responding to the switching states are uploaded here for future access in simulation loop.

Function static void mdlOutputs (SimStruct =S, int_ T tid)

This is the function invoked in every simulation loop. Outputs requested to be either
monitored, saved, or exchanged between subsystems are sent to S-function block output.

The outputs are calculated in md1Update function discussed below.

52

Function static void mdlUpdate (SimStruct %S, int_T tid)

This is the main function implementing all the transient stability numerical calculations.
Invoked in each time step, the function first reads from the S-function block input the
external variables that need to be updated for the current time-step. Then, in case that the
topology of the network has changed, the appropriate admittance matrix will be loaded.
Hereafter, the right hand side of flowchart shown in Figure 3.4 is run. Finally, this function
calculates requested outputs and saves them to be used by the function md10utputs for

S-function block output.

Function static void mdlTerminate (SimStruct =3)

In this function, memory blocks allocated for storing transient stability models are freed to

ensure no memory leakage in the C program.

3.5.2 Off-Line Implementation of the IR Method

To implement the IR method, an S-function block that mathematically models power sys-
tem transient stability computations is developed. This is a general block which can
be specified by setting parameters to model a portion of large-scale power system. To
model the complete system, several of these blocks can be simply placed and connected in
SIMULINK environment. Each block represents a subsystem identified by the partitioning
method such as slow coherency method or geographic partitioning. The required parame-
ters of the current version of the developed S-function block are: the numbers of machines
included in the system and in the individual subsystem, the total number of areas, the ID
numbers of internal and external machines. For instance, suppose a power system is de-
composed into three areas each is represented by an S-function block. Figure 3.6 shows the
top lay-out of a three-area system called Areal, Area2, and Area3. Inside the subsystem
Areal is depicted in Figure 3.7, where the S-function block is identified by areal. This S-
function block involves three input ports, U, I, and IDs, and nine output ports. The output
ports are of two types: the measuring outputs, which are directly sent to the Monitoring
block in Figure 3.6, to be saved or seen on scopes, as illustrated in Figure 3.8, and the data
outputs, which are sent to the external subsystems, i.e. Area2 and Area3, to update them

by the last computations of Areal.

53

—»|data_a2 measure_a1t

»data_a3 data_a1 —‘

Area1

Monitoring

Figure 3.6: Top lay-out of a three-area decomposed system using developed S-function
blocks in SIMULINK for off-line simulation.

3.5.3 Real-time Implementation of the IR Method

The real-time simulation software package provided by OPAL-RT came in the form of

three MATLAB/SIMULINK based toolboxes:

e ARTEMIS: This toolbox provides additional discretization methods, improved solv-
ing algorithms, and a pre-computation mechanism to boost the overall performance

of the SimPowerSystem (SPS) blockset that was built into MATLAB/SIMULINK.

e RT-EVENTS: This toolbox targets specifically the power electronics modeling, oper-

ation, compensation, and optimization.

e RT-LAB: RT-LAB contains the modules that are required for the pre-compilation of
the source code, RT hardware and software interface, and simulation result acquisi-

tion.

The OPAL-RT software package in the RTX-LAB at the University of Alberta requires
two operating systems: Windows XP on the host computers, and RT Linux on the target
nodes. Power system models could be developed off-line in the SIMULINK graphical en-
vironment on the host. In case those models are not available in SIMULINK, user defined

S-function block can also be incorporated into the models (as explained in the previous

54

d s> <
ata_al —_m
i S
daS Ds_a2
-
I e N S
e >
o >
measure_a1
i >—> aeat ——r ol HED—
o >
e
———»<{IDs_a1]] data_a1

S-Function1

Figure 3.7: Placing S-function in subsystem Areal for off-line simulation.

section). When the model optimizations are completed and verified with off-line simu-
lations, the RT-LAB utility is used to transfer the pre-compiled source code into the RT
Linux operating system, which resides on the nodes of the simulator. The execution of
the loaded model could be directly controlled through the Windows based utility without
dealing with the Linux OS.

The target runs on a Linux based real-time operating system which offers optimized
performance through a single programming environment and direct control of all system
operations by using single kernel design. It offers eXtra High Performance (XHP) mode
operation through CPU shielding where one CPU is dedicated for the simulation while
the other CPU is load with RT Linux operation system to manage data feeding to the
shared memory and to interact with the peripheral hardware. The target is responsible for
real-time execution of the model, data transfer between nodes and the host, and data com-
munication with external hardware through 1/Os. The target is also required to compile
source code generated by MATLAB/SIMULINK Real-Time Workshop (RTW) to executa-
bles. The hosts are installed with the RT-LAB software provided by Opal-RT Technologies
Inc. to coordinate all hardware engaged for the simulation. The hosts are mainly used to
create, edit and verify models in SIMULINK, compile SIMULINK blocks into C code by
RTW, control and configure real-time simulations in targets, manipulate model parameters

in real time as well as acquire real-time simulation results.

55

measure_al
measure_a2

measure_a3

ED>—
EED>—
>

T
?
|

Figure 3.8: Monitoring and saving outputs of the decomposed system.

A view of the real-time simulator target nodes and the host workstation existing in the
RTX-LAB at the University of Alberta is illustrated in Figure 3.9. Each cluster node consists
of a dual Intel Xeon’™ shared-memory PC running at 3.0GHz on a real-time Linux op-
erating system. The inter-node communication is through InfiniBand with a 10Gb/s data
transferring rate. As shown in this picture, a model, which in our case is a power system,
can be partitioned and distributed among the cluster nodes. In the case of using multiple
nodes, one node is the Master and other nodes operates as Slaves. The name of the master
subsystem, in the top lay-out of the SIMULINK model, must be prefixed with ‘SM’, and
the name of the slave subsystems must be prefixed with ‘SS’. Moreover, the monitoring
block, where the required outputs are being saved and scopes are placed, must be prefixed
by ‘SC’, as shown in Figure 3.10.

Before compiling the SIMULINK model into C-code, the OpComm block from RT-
LAB/OPAL-RT must be added into the subsystems. OpComm is a communication block
that must be used in subsystems receiving signals from other subsystems, all input ports

must go through this communication block being connected, as shown in Figure 3.11.

56

RTX-LAas

REAL Time EXPERIMENTAL
ABorAToxy =

Subsystem 1
O O+
©H

Real-Time Linux Node 1

Subsystem 2
O O+
©H

Real-Time Linux Node 2

Target Cluster

Dual Xeon PC

Gigabit
Ethernet

Dual Xeon PC

e |
Oscilloscope Host Computer

Figure 3.9: Configuration of the PC-cluster based real-time simulator in the RTX-LAB at
the University of Alberta.

3.6 Experimental Results

In this section we will demonstrate results to verify the efficiency of the IR method for
real-time simulation. To do so we have chosen three case studies. One is the Kundur’s
4 machine and 11 bus system found in [9]. The other case study is the IEEE 39 bus New
England test system [80]. There is also a large-scale power system made case study to fully
occupy the computing capacity of the existing real-time simulator. The real-time results
for these case studies have been validated using the PSS/E software program.

To incorporate IR method S-function blocks into RTX-LAB simulator, all the required
».c and «.h files, as well as the data files must be transferred to targets in RT-LAB for
real-time simulation. Together with existing C code generated by RTW, all the x . c codes
are compiled by GCC/G++ in targets to generate real-time executables. The complete C
source code of S-function program is demonstrated in Appendix A. To compile the source
code into the MEX-function (executable for MATLAB with extension *.d11 in Microsoft
Windows platform), the following command is used for all the S-function codes in MAT-

LAB:

57

—»|data_a2 measure_a1t

»data_a3 data_a1 —‘

sm_Area1

ss_Area2

sc_Monitoring

ss_Area3

Figure 3.10: Top lay-out of a three-area decomposed system using developed S-function
blocks in SIMULINK for real-time simulation.

>> mex —g areal.c
or

>> mex areal.c

The —g option is used to include debugging information in the MEX-function. More

information on debugging SIMULINK S-function is available in [79].

3.6.1 Case Study 1

Figure 3.12 illustrates the test system used as the first case study. Each synchronous gener-
ator is equipped by an exciter and PSS. A set of 6 differential equations model mechanical
rotation, field winding, and 3 damper windings of each synchronous generator as given
in Chapter 2. The complete system can be described by 36 non-linear differential and 8
algebraic equations. Since generators {1,2} and {3, 4} are coherent, the system can be par-
titioned into two subsystems. This coherency relation can also be observed later in the
simulation results. These two subsystems are distributed across two cluster nodes as seen
in Figure 3.13. The simulation time-step is chosen to be 1ms. Using the IR method, once
the steady-state has been reached, a three-phase fault at Bus 8 is imposed at t = 5s and is

cleared in 80ms. The real-time simulation results are recorded on an external oscilloscope

58

U1

data_a2 OpComm

Ts =0.001

data_a3

1

OpComm

]

—CD
measure_al
areal

o >—
—

data_a1l

il
i

S-Function1

Figure 3.11: Placing S-function in subsystem Areal for real-time implementation.

Gen2 Gend

Figure 3.12: One-line diagram for Case Study 1.

and saved. The relative machine angles are shown in Figure 3.14 in which Gen4’s angle is
selected as the reference. The real-time results are superimposed on the results found from
PSS/E. As can be seen the IR method is completely stable during the steady-state of the
system, i.e. t < 5sec. During the transient state and also after the fault is cleared, the real-
time results closely follow the results from PSS/E. The maximum discrepancy between

real-time simulation and PSS/E was found to be 0.93%, based on (3.5):

ma$|5PSS/E — 0rR|

g5 = (3.5)

(=2}

dpss/E
where dpgs/p and d;r were defined as the relative machine angles from PSS/E and IR

method respectively. It can be further observed from Figure 3.14 that following the fault,

59

rG1®_
G2

& J

Master Subsystem

G3(~ O
GA(~)—

Slave Subsystem

Oscilloscope

FPGA 1/O Card

~\

InfiniBand Link

J

Figure 3.13: Distribution of subsystems of Case Study 1 among cluster nodes of the real-
time simulator.

the oscillations of Gen4 are closer to the oscillations of Gen3 rather than to those of Gen1 or
Gen?2. If the reference generator is switched to Genl or Gen2 instead of Gen4, it was found
that the oscillations of Genl are closer to the oscillations of Gen2 rather than to those of
Gen3 or Gen4. This observation practically demonstrates the coherency relation existing
in this system.

To investigate the effect of the fault location and the partitioning scheme on the per-
formance of the IR method, the following scenario was simulated. Suppose that the fault
happens at Bus 5. Two different patterns of partitioning have been applied for this case.
The first is based on the coherency property of the system, i.e. {1,2} and {3,4}. The second
pattern is based on the fact that since G'1 is the closest generator to the fault location it will
accelerate faster than other generators in the system; therefore, the system is divided into
two subsystems: {1} and {2, 3,4}. These two patterns have been simulated in real-time
using the IR method, and then the results were compared with those of PSS/E. Results of
both patterns are close to those from PSS/E, but the maximum error in the second pattern
is larger than the maximum error when coherency-based partitioning was used. Several
other combinations of fault location and partitioning patterns have also been examined in
this system, and it was concluded that slow coherency partitioning based IR method are
the closest to the PSS/E’s results.

Table 3.1 shows the timing performance of Master and Slave nodes of the real-time
simulator running under the XHP execution mode during one time-step (1ms). This table

shows that the tasks of computation and communication are done in less than 60us. These

60

45 T

Real-time

" /\/\/\/:ji——
¥ 514 i

b

30

25k /W_/\T

151 b

Relative machine angles (degrees)

10F AV]

Time (sec)

Figure 3.14: Comparison of relative machine angles collected from real-time simulator and
PSS/E simulation for Case Study 1: 6; 4 = 6; — d4;% = 1,2, 3.

Table 3.1: Performance log for real-time simulation of Case Study 1

Duration (us)

Task Master Slave

Computation 4791 47.20

Communication 11.55 8.12

Idle Time 939.45 940.07

Other 1.09 4.61

Total Step Size 1000 1000

execution times were sampled across many time-steps, and it was found that the idle times

of the processors were uniform throughout those time-steps.

3.6.2 Case Study 2

The one-line diagram of IEEE’s New England test system is shown in Figure 3.15. As in the
previous case study, all generator models are detailed and equipped with AVR and PSS.
The system data in PSS/E format is given in Appendix E. Using the partitioning pattern
mentioned in [80], the system has been divided into 3 subsystems: {1, 8,9}, {2,3,4,5,6,7},
and {10}. These 3 subsystems were distributed on three cluster nodes of the real-time sim-
ulator: one Master and two Slaves, as illustrated in Figure 3.16. A question which may

arise here is about the uneven loading of CPUs. Although it is possible to add {10} to sub-

61

Gen8 Gen9 Generator
Genl 37 38
Transformer
30
s | T

2T
5

4
5
o
|

Figure 3.15: One-line diagram for Case Study 2.

system 1 and to use only 2 computation nodes, our intent in this study was to demonstrate
the implementation of IR in three parallel cluster nodes. Several fault locations have been
tested and the results were compared with those of PSS/E; in all cases results from the IR
method match very well. In this section a sample of these results are presented. A three-
phase fault happens at Bus 21, at t = 1s and it is cleared after 100ms. Genl0 is the reference
generator and the relative machine angles are shown in Figure 3.17 and Figure 3.18. The
maximum deviation of IR real-time simulation result from the PSS/E result based on (3.5)
is 1.51%.

Table 3.2 shows the timing performance of Master and two Slave nodes in the real-
time simulation during one time-step (1ms). Again the sampled idle times were found
to be uniform across several time-steps. In the PC-cluster architecture the Master node is
responsible for communicating with the host computer and also for organizing the com-
munication among the Slaves. This explains why the Master’s communication time in
Tables 3.1 and 3.2 is larger than Slaves” communication time. Moreover, it can be seen that
the computation time in both case studies is not very high, since the computation load is

distributed equally among all time-steps. From the idle time duration in both Tables it is

62

Master Subsystem
Gl ? G8 ? G9 ?
—

4 17

G2 ? G3 ? G4 ?
Oscilloscope
G5 ? G6 ? G7 ?

s

0?_/

FPGA 1/0O Card

Slave Subsystem 1

InfiniBand Link

J

Slave Subsystem 2

Figure 3.16: Distribution of subsystems of the Case Study 2 among cluster nodes of the
real-time simulator.

Table 3.2: Performance log for real-time simulation of Case Study 2
Duration (us)

Task Master Slavel Slave2
Computation 212.77 348.13 17.27
Communication 13.44 7.30 451
Idle Time 77093 631.73 974.12
Other 2.86 12.84 4.1
Total Step Size 1000 1000 1000

concluded that larger subsystems can be implemented on each node, and that faster than
real-time simulation is also possible.

The accuracy of the IR method is analyzed by varying the time-step and calculating
the error in (4.24). The results are presented in Table 3.3. As expected when the time-
step increases the computation error increases as well. Nevertheless, it can be predicted
that with larger time-steps larger systems can be simulated on this hardware using the IR
method. It can however be seen that the maximum error depends not only on the time-
step but also on the size of the system. For instance, the time-step of 5ms results in the

maximum error of 1.32% and 3.29% in the 4 and 10 generator systems, respectively.

63

Real-time
— — —PSS/E 7

Relative machine angles (degrees)

Time (sec)

Figure 3.17: Comparison of relative machine angles collected from real-time simulator and
PSS/E simulation for Case Study 2: 6; 10 = 0; — d10;¢ =1...5.

Table 3.3: Relation between time-step and accuracy of the IR method
Maximum error £5%

Time-Step (ms) | Case study 1 | Case study 2
1 0.93 1.51
2 1.04 1.70
5 1.32 3.29
10 1.88 4.2

3.6.3 Case Study 3: Large-Scale System

In the previous two case studies it was concluded that larger subsystems can be imple-
mented on each node of the real-time simulator. By performing several tests with various
sizes of power systems it was realized that each target node of the existing simulator can
be filled with 10 generators all modeled in detailed while still running in real-time with
a time-step of 4ms. As we have 8 target nodes available, the largest system that can be
modeled in real-time is an 80 generators system. This system was made by expanding
the IEEE test system. For this purpose, the IEEE 39 bus system was duplicated 8 times in
the PSS/E software environment, and then interconnected by transmission lines to build
a large-scale network. The result is a 312 bus and 80 generator power system. The steady-

state and dynamic stability of this system has been examined and verified in PSS/E. This

64

5ol Real-time |
— — —PSS/E
g
2 L _
vy 70
Q =
i
3 59,10
gh 6o A R 5
s 8,10
=
5 50 J 8 *
g y - 7,10
5
2 7 6,10
~—
& 40- -
o
1~
30 -
0 g 1‘0 15

Time (sec)

Figure 3.18: Comparison of relative machine angles collected from real-time simulator and
PSS/E simulation for Case Study 2: §; 10 = 6; — 019, =6...9.

system was partitioned and distributed in all 8 target nodes of the simulator running in
parallel and in XHP mode. Figure 3.19 illustrates the top lay-out of this system in the
SIMULINK environment prepared to be run on the real-time simulator. As explained in
the previous section one target node must be the master while others are slave nodes (i.e.
7 nodes in this case). The performance log of this simulation is shown in the Appendix
B for randomly selected five successive time steps. These results are directly reported by
MonitoringViewer feature of the RT-LAB software that shows in detailed the timing of
each operation in each target node during the simulation period. For each target node,
this report includes an item called Number of Overruns which counts the number of
time steps that for any reason the simulation could not satisfy the real-time requirements
and lasted more than the fixed time-step. In Appendix B the report includes the timing of
just two nodes: master (sm_areal), and one of the slaves (ss_area2). The report declares
that the number of overruns for all nodes is 0, which means the simulation was performed

successfully in real-time.

3.7 Summary

This chapter presented a parallel processing method known as instantaneous relaxation

(IR) for the real-time transient stability simulation of large-scale power systems. Although

65

it is possible to utilize real-time simulators based on the electromagnetic transient simula-
tion approach to perform transient stability analysis, the size and cost of the simulator is
usually prohibitive especially for simulating large-scale systems. The motivation behind
this work is to test the real-time feasibility of a fully parallel method that could alleviate
these limitations. The waveform relaxation (WR) method was investigated in this chap-
ter for implementation in real-time. However, it was found that WR method has some

restrictions for real-time simulation due to the following reasons:

e The WR method provides a set of values in the form of a complete waveform. How-
ever, real-time simulation especially hardware-in-the-loop simulation requires in-

stantaneous values of variables.

e Implementation of the WR causes uneven computation loads among the time-steps.
This results in execution time overrun in some time-steps and excessive idling time
in the others. An overrun, which describes a situation when the simulator requires a
larger time-step than the specified fixed time-step to finish its task, is not acceptable

in hard real-time systems.

These problems are overcome by the proposed IR method. It inherits all the advantages of
the WR method but is also efficient for real-time implementation. The two main differences

between the IR and WR methods are:

e In the IR method the instantaneous values of the variables are being used and not

their waveforms.

e To achieve the required accuracy several iterations of the Newton-Raphson within

each time-step are performed.

To demonstrate the performance of the IR method, three case studies have been im-
plemented on a PC-Cluster based real-time simulator and the results are validated by
the PSS/E software. Several comparisons verified the accuracy and efficiency of the IR
method. In addition, the performance of the slow coherency method as the partitioning
tool was analyzed, and it was concluded that for different fault locations in the system

results derived from this method had lower amounts of error.

66

adoos o=

mmwhm|mm LERIE =5 QEAIE =5 geal .
P
2~ aunseaw| -4
JETEIEp se”e1ep 2E” E1Ep{lf
- — — 4l
ZETEIER o e pl 8 EEp 98 E1Ep GE EIEp LETE1Ep|—
2B munEEs L) seeplg e E1ep| e~ e1ep{-
e eIl ve"eiep pEE1ED|
e aunsesL|- B EIE p|— £E E1Ep — ZE E1Ep|—
GE BINZESL 1o e p|4 T LE BnsEEW TE E1ER| M 98 =Inseal GE AIMSESIL .
L& EEp LB EIER | E3Ep
¢E sunses | —
e aunseaw|
HEEIE 55 CERIE =5 FERIE =5 LE=IE T WS
_ » 2 EiE o 3 ELER|— s E1Ep|
£E munsea |-
PE EIED LETEIEp|w— i CE EIEp LB E1Ep| | |E EEP LB EIE Pl
gE” E1E plag} gE"E1Ep| o gE” E1E pag}
ZE aInseaL| e eep|t e e1ep|4 ge eEp|t
£ Ee il e E1ep $E eI phel}
_..leh_l_mme fE =Unseall lemu_mﬂ l..l1 £E aInseE= lemﬂmﬂ l..ll IE =uns=gaw |E =insEal Mmlm«mﬂ A
L& e plal LE E1ep I8 ElEpr—

Figure 3.19: Implementation of a large-scale power system for parallel real-time simulation

using the IR method.

67

Part 11

Large-Scale Transient Stability
Simulation on GPU-based Hardware

68

Single GPU Implementation: Data-Parallel
Techniques

4.1 Introduction

Part I of this thesis discussed the real-time simulation of transient stability. The Instan-
taneous Relaxation method was proposed and successfully implemented on the real-time
simulator. It was mentioned that since decades ago several approaches have been devel-
oped to perform transient stability simulation faster for large-scale systems on parallel
computing hardware [49]. We categorized these methods into two major groups: tearing
and relaxation [81]. The commonality of these methods is task-parallelism which executes
the component subsystems on parallel and distributed hardware composed of clusters of
CPUs. Nevertheless, there are two limitations in these methods that contribute to the speed
bottleneck: (1) data-sequential computation on the CPUs of the cluster, and (2) limited data
bandwidth, and latency of the inter-processor communication channels of the cluster.
Recently, the Graphics Processing Unit (GPU), as introduced in Chapter 2, has revealed
the potential to revolutionize state-of-the-art research in data-parallel computing. A data-
parallel application consists of large streams of data elements in the form of matrices and
vectors that have identical computation codes (kernels) applied to them. The data-parallel
characteristic of the GPU gives it a single-instruction-multiple-data (SIMD) architecture.

In Part II of this thesis, i.e. this chapter1 and the next one, we will discuss GPU-based

"Material from this chapter has been published: V. Jalili-Marandi, V. Dinavahi, “SIMD-based large-scale
transient stability simulation on the graphics processing unit,” IEEE Trans. on Power Systems, pp. 1-10, 2010.

69

transient stability simulation for large-scale power systems. The motivation for this work
is twofold: the mathematical complexity along with the large data-crunching need in this
simulation, and the substantial opportunity to exploit parallelism. Both these character-
istics are uniquely suited to the GPU. However, since the GPU’s architecture is markedly
different from that of a conventional CPU, it requires a completely different algorithmic
approach for implementation. The GPU thrives on applications that have a large compu-
tational requirement, and where data-parallelism can be exploited. Therefore any com-
putation that is desired to be implemented on the GPU must be in the SIMD format, oth-
erwise the GPU cannot deliver its computational benefits. Here we propose SIMD-based

programming models to exploit the GPU’s resources for transient stability simulation.

4.2 GPU Overview

As GPU and its applications are new topics in the Power and Energy Society (PES), before
going further into GPU’s application for transient stability simulation, it is important to

first become familiar with GPU’s architecture and programming paradigm.

4.2.1 GPU Evolution

The earliest ancestors of the dedicated graphics processors were originally designed to
accelerate the visualization tasks in the research labs and flight simulators. Later they
found their way to commercial workstations, personal computers, and entertainment con-
sols [82]. By the end of 2000s, the PC add-in graphics cards were developed as fixed-
function accelerators for graphical processing operations (such as geometry processing,
rasterization, fragment processing, and frame buffer processing). Around this time, the
term of “graphics processing unit” (GPU) arose to refer to this hardware used for graphics
acceleration [83].

In the early 2000’s the GPU was a fixed-function accelerator originally developed to
meet the needs for fast graphics in the video game and animation industries [82]. The
demand to render more realistic and stylized images in these applications increased with
time. The existing obstacle in the fixed-function GPU was the lack of generality to ex-
press complicated graphical operations such as shading and lighting that are imperative
for producing high quality visualizations. The answer to this problem was to replace the
fixed-function operations with user-specified functions. Developers, therefore, focused on

improving both the application programming interface (API) as well as the GPU hardware.

70

The result of this evolution is a powerful programmable processor with enormous arith-
metic capability which could be exploited not only for graphics applications but also for
general purpose computing (GPGPU). Taking advantage of the GPUs’ massively parallel
architecture, the GPGPU applications quickly mushroomed to include intensive computa-
tions such as those in molecular biology, image and video processing, n-body simulations,
large-scale database management, and financial services [83].

The especial architecture of the GPU, explained in this section, made it a successful ac-
celerator/processor in particular applications in which a large amount of computations is
required to be performed on a data-parallel structure of input elements, the same as graph-
ics applications. A data-parallel application consists of large streams of data elements in
the form of matrices and vectors that identical computation codes (kernels) are applied
to them. Moreover, the data communication required to compute the output streams is
small. Through the GPUs evolution, as their main duty was for different application de-
mands than the CPU, the architecture of the GPU has progressed in a different direction
than that of the CPU. A life-like rendering of images requires billions of pixels per second
and each pixel requires hundreds or more operations. Therefore, the fundamental design
of the GPU is in such a way to deliver an enormous amount of computations for its best
efficiency in a massive data-parallel application. Later it will be observed that the size of

computation is a key-point to achieve maximum efficiency in a GPGPU application.

4.2.2 GPU Hardware Architecture

To efficiently use and program a GPU it is instructive to learn the GPU'’s internal architec-
ture. In this work we have used NVIDIA’s GeForce GTX 200 series. The following section
briefly explains the architecture and hardware specifications that we require for program-
ming purposes.

Figure 4.1 illustrates the architecture of the GPU [84] plugged into the motherboard of
a 2.5GHz quad-core AMD Phenom CPU supported by 4GB of RAM. The GPU accesses
the main memory of the system, i.e. RAM, via the PCle 2.0 bus (Peripheral Component
Interconnect Express). This version of GPU has 16 links in its PCle interface that each link
has a bandwidth capability f 0.5GB/s in each direction simultaneously. Thus, the PCle 2.0
bus shown in Figure 4.1 supports up to 8GB/s transfer rate. This rate between the CPU
and RAM is typically in the 12GB/s range. The GPU runs its own specified instructions
independently but it is controlled by the CPU. The computing element in the GPU is called

a thread. When a GPU instruction is invoked, blocks of threads (with the maximum size of

71

PC Motherboard GPU (Device)

CPU (Host) (Streaming Multiprocessor 30
AMD Phenom 9850, -
2.5GHz /

o

‘-
~ 0
Streaming Multiprocessor 2 |
| Streaming Multiprocessor 1
Shared Memory
Northbridge " = = 5 7
Register;, 1[Registers| M |Registers l
] Stream | /Stream |__[Stream | | Instruction
j E Processor 1[|Processor 25' * '#l’mcossnr 8| Unit |
| L AN W 7Y [A W ‘

ot | (e o o

8GB/s GPU Memory

Figure 4.1: Hardware architecture of GPU mounted on the PC motherboard.

512 threads per block) are defined to assign one thread to each data element. All threads
in one block run the same instruction on one streaming multiprocessor (SM).

Each SM includes 8 stream processor (SP) cores, an instruction unit, and on-chip mem-
ory that comes in three types: registers, shared memory, and cache. Threads in each block
have access to the shared memory in the SM, as well as to a global memory in the GPU.
Unlike a CPU, the architecture of the GPU is developed in such a way that more transis-
tors are devoted to data processing rather than data caching and flow control. When a
SM is assigned to execute one or more thread blocks, the instruction unit splits and cre-
ates groups of parallel threads called warps. The threads in one warp are managed and
processed concurrently on the eight stream processors.

The target GPU specifications in this study are given in Tables 4.1. Threads are assigned
by the thread scheduler which talks directly to each SM through a dedicated instruction
unit which in turn assigns the tasks to the eight stream processors. Depending on the GPU
model, 2 or 3 SM’s can be clustered to build a thread processing cluster (TPC). Moreover
two special function units (SFUs) have been included in each SM to execute transcenden-
tal calculations (e.g. sin, cosine), attribute interpolation and for executing floating point

instructions. Figure 4.2 illustrates these units schematically.

72

Table 4.1: GeForce GTX 280 GPU specifications

Number of SM’s 30
Number of SP’s 240

Device memory 1GB
Clock rate 1.3GHz
Warp size 32 threads
Active warps/SM 32
Bandwidth:

Host-to-Device 1.35GB/s
Device-to-Host 1.62GB/s
Device-to-Device 114.00GB/s

4.2.3 GPU Programming

After becoming familiar with the GPU’s architecture, in this section the GPU programming
models are reviewed to understand the GPU’s computational resources. Depending on the
application, the GPU programming paradigms can be divided into two main categories:
graphics related programming, and GPGPU programming. In both these categories the
GPU follows the SIMD model.

Graphical functionality

From the graphics point of view the GPU has two types of programmable processors: ver-
tex and fragment processors [85]. Vertex processors process streams of vertices (made up
of positions, colors, and other attributes) which are the elements that build a polygonal
geometric model. In computer graphics 3D objects are typically represented with trian-
gular meshes. The vertex processors apply a vertex program (also called a vertex shader)
to transform each vertex based on its position relative to the camera, and then each set of
three vertices is used to compute a triangle from which streams of fragments are gener-
ated. A fragment contains all information, such as color and depth, needed to generate a
shaded pixel in the final image. The fragment processors apply a fragment program (also
called a pixel shader) to each fragment in the stream to compute the final color of each
pixel. This functionality of GPUs is out of the scope of this research and we do not refer to

that anymore.

73

[Thread Scheduler

Cache

—
o)
8
=
@

L

—
o
8
3
@

—
g
2
>

)

—
o
8
2
@

L

—

N
o)
8
=
@

L

)
o
8
3
@

L

—
g
@

)

—
o)
8
3
@

L

SP SP SP SP SP SP SP SP SP SP SP SP SP
Bl =\ === = =]
=\ === == =) =]]
=) == =))) =)

r—\
=
3
]
<
—
=
3
3
<
()
—
=
E]
Q
<
)
—
=
3
S
32
)
—
=
3
S
<
)
—
=
3
£l
<
)
—
=
3
S
32
)

Figure 4.2: The GTX 280 hardware architecture: it consists of 10 TPCs, 3 SMs per TPC,
and a total of 240 SPs; TPC: thread processing cluster, SM: streaming multiprocessor, SP:
stream processor.

General purpose functionality

Early GPGPU programming directly used the existing graphics API’s to express computa-
tions in terms of an image. In other words, the computational elements (i.e. vectors and
matrices) were mapped onto the graphical elements (i.e. vertices or pixels) which are the
components of shading programs. Shading languages used for this purpose include Cg,
HLSL, and OpenGL. Although this technique has been successfully used in many research
areas, including power system load flow computations [86], it was largely unapproachable
by the common programmer. Firstly, because there is a mismatch between traditional pro-
gramming and the graphics API’s, and secondly, because it is difficult to debug or modify

these programs.

High level programming languages

Along with the evolution of the programmable GPU’s hardware architecture, the devel-
opers designed higher level languages that were specifically for general computation pur-
poses. Dedicated GPU programming tools that bypassed the graphics functions of the
GPU were created for general purpose computing, starting with Brook and Sh, and ulti-
mately leading to commercial tools such as AMD’s HAL and NVIDIA’s CUDA.

CUDA (Compute Unified Device Architecture) provides a C-like syntax to execute and
manage computations on the GPU as a data-parallel computing device. A CUDA program

consists of multiple phases that are executed on either the CPU (host) or the GPU (device).

74

The phases of the program that exhibit little or no data-parallelism are run in the host-
code after compiling with the host’s standard C compiler, whereas the phases that exhibit
fine-grained parallelism are implemented in the device-code in the form of kernels, the syn-
onym for GPU functions. Host-code uses a CUDA-specific function-call syntax to invoke
the kernel code. Calling a kernel distributes the tasks among the available multiprocessors
to be simultaneously run on a large number of parallel threads. The programmer orga-
nizes these threads into a grid of thread blocks. Thread creation, scheduling, and resource
management are performed in hardware. Each thread of a CUDA program is mapped to a
physical thread resident in the GPU, and each running thread block is physically resident
on a SM.

Moreover, a library of the basic linear algebra subprograms (BLAS) is provided that
allows the integration with C++ code. By using this library, called CUBLAS, portions of a
sequential C++ program can be executed in SIMD-form on the GPU, as shown in Figure
4.3, while other parts of the code are executed sequentially on the CPU [87]. Wherever a
kernel is invoked a grid consisting of several blocks with equal numbers of threads/block
is created. Each block within a grid, and each thread within a block are identified by in-
dividual indices that make them accessible via the built-in variables in CUDA. Threads
determine the task they must do and the data they will access by inspecting their own
thread and block IDs. Therefore in an application with highly intensive computations,
the onerous computation tasks can be offloaded to the GPU, and performed faster in par-
allel, whereas mundane tasks such as the flow control of the program, required initial
calculations, or the updating and saving of the variables can be done by the CPU. This
co-processing configures a hybrid GPU-CPU simulator.

4.3 Data-Parallel Computing

Here the fundamental difference in the computing model of a GPU and a CPU is discussed,
which leads us to a new methodology to implement the transient stability simulation on
the data-parallel architecture of GPU. From the programmer’s perspective a GPU is a par-
allel machine, whereas the CPU is a serial machine. A CPU executes one instruction after
the another, and each instruction does one thing, for instance, adding the contents of two
memory locations. A GPU, on the other hand, can add many pairs of numbers at the same
time.

Let us look at a simple example. Suppose we want to evaluate z = x + y, where z, y,

75

CUDA Program

C/C++ Code Host (CPU)
g Runs sequentially
S Grid 0 (i blocks, n threads/block)
2| |CUDA kernels Device (GPU) block 0 block 1 block i
= |lor Gridoﬁc~ =) le)=) = S)=) =
= . . 25%)--3013)3) %) Bl E) 3
o ||CUBLAS functions Runs in parallel §08078 180808 0808
= L] SysSy SylSysSy = SysSy =
= Host (CP
> C/C++ Code (E1210) .
= Runs sequentially
sl Grid 1 (j blocks, m threads/block)
‘= ||CUDA kernels Device (GPU) block 0 block 1 block j
2 ||or Gridllﬁg; gl=0=) = =0=) s
T'||CUBLAS functions Runs in parallel EPN-PRE PR PR PRt MR i P PRS-
19 B e | Sys Sy Sys = Sys =
® .
7 . °

Figure 4.3: Cooperation of the host and device to execute a CUDA program, and the hier-
archy of computing structure in a GPU.

and z are n x 1 real vectors. On the CPU, a single for loop is typically used over all array
elements as follows:

for(i=0;i < n;i++)

i) — ali] + yli)

In this model two levels of computation are active: outside the loop, the loop counter 4
is increasing and compared with the length of vectors n, whereas inside the loop, the arrays
are accessed at a fixed position determined by the loop counter and the actual computation
is performed (addition on each data element). The calculations performed on each data
element in the vectors are independent of each other, i.e., for a given output position,
distinct input memory locations are accessed and there are no data dependencies between
elements in the result vector.

If we had a vector processor capable of performing operations on whole vectors of
length n or even n CPUs, we would not need the for loop at all. This is the core idea
of SIMD programming. The computation on the GPU is performed by separating the
outer loop from the inner calculations. The inner loop calculations are extracted into a
computational kernel as follows:

if(index < n)

z[index] «— z[index] + y[index]
where index is the ID of the threads assigned to elements of the vectors. Note that the

kernel is no longer a vector expression but a scalar template of the underlying math that

76

forms a single output value from a set of input values. For a single output element, there
are no data dependencies with other output elements, and all dependencies to input ele-
ments can be described relatively. Whenever a kernel is called, the driver logic hardware
schedules each data item into the different multiprocessors (SM)-this is not programmable.
Although internally the computation is split up among the available SMs, one cannot con-
trol the order in which they are working. One can therefore assume that all work is done
in parallel without any data interdependence.

Here is a simple example to show how a CUDA-based SIMD kernel looks like. Suppose
we want to model a limiter to control the maximum and minimum amounts of a signal as
shown in Figure 4.4. In the transient stability simulation of power systems these limiters
are widely used in the model of excitation and PSS devices for synchronous generators,
and depending on specifications of each machine the up and down limits are different.
Suppose the output signals of the transfer function that we want to pass them through the
limiter are saved in a vector, V5. We also need two vectors whose elements are the maxi-
mum and minimum limits of the signals at each individual machine, i.e. Vy,q, and vimip.
The implementation of this model by using the function concepts in C++ running sequen-

tially on the CPU is as follows:

void

limiterFunc (floatx V_in, floatx V_.max, floatx V._min,
const int numElems)

for (int i=0; 1 < numElems; 1i++)
{
if (V_in[i] >= Vomax[i])
V_in[i] = Vmax[i];
else if (Voin[i] < Vmin[i])

Voin([i] = Vmin[i];

where in this code V_1in is the vector of input signals, i.e. V5 in Figure 4.4, V_max and
V_min are the maximum and minimum limits of each limiter, and numElems is the length
of the input signal. The porting of this function in CUDA language running in SIMD

format on the GPU is a kernel as below:

77

Transfer 2
‘/1 Function / ‘/é

Figure 4.4: An schematic model for a limiter.

global void

limiterKernel (float+ DEVICEl, floatx DEVICEZ2, floatx DEVICES3,
const int numElems)

{
int idx = threadIdx.x + blockDim.x * blockIdx.x;
if (idx < numElems)
{
if (DEVICE1l[idx] >= DEVICE2[idx])
DEVICE1 [idx] = DEVICEZ2[idx];
else if (DEVICEl[idx] < DEVICE3[idx])
DEVICE1 [idx] = DEVICE3[idx];
}
}

In this kernel the global qualifier in the first line declares a function as being a ker-
nel. Such a function is callable from the CPU and is executed on GPU. The up and down
limits for each limiter are saved and transferred to the GPU in two vectors: DEVICE2
and DEVICE3. The values of input signal, which also has been transferred to GPU, i.e.
DEVICEL, is compared with these limits to meet the required conditions. We can see in
this kernel there is not any for loop, and instead of that a new parameter, called idx, is
defined to control the execution of the kernel. To invoke this kernel from a CPU-based

code we need to add a syntax as below:
limiterKernel<<<dimGrid, dimBlock>>>(DEVICEl, DEVICE2, DEVICE3, N);
where the first parameter of the <<< ... >>> specifies the dimension of the grid, and the

second parameter defines the size of the thread block. The index of each block within the

grid and its dimension are identified and accessible within the kernel through the built-in

78

variables, i.e. blockIdx and bloclDim respectively. Each thread inside the thread block
is also identified by a built-in index called threadldx. Therefore, each thread in the grid
can be addressed by an index calculated based on these built-in variables. This is what the
parameter idx does in the 1imiterKernel code. Comparing idx and the length of the

vectors specifies the number of required active threads and controls running the code.

4.4 SIMD-Based Standard Transient Stability Simulation on the
GPU
4.4.1 Standard Transient Stability Simulation

The general form of DAEs which describe the dynamics of a multi-machine power system

discussed in Chapter 2 are repeating here for easy referencing:

% = f(x,V,1) 4.1)
0 = g(x,V,t) 4.2)
x(to) = xo (4.3)

where x is the vector of state variables, xg is the initial values of state variables, and V
is the vector of bus voltages. The standard approach to solve these nonlinear and coupled

DAEs involves three steps [12]:

e Step 1. The continuous-time differential equations are first discretized and con-
verted to discrete-time algebraic equations. Using an implicit numerical integration

method, discretizing (4.1) results in a new set of non-linear algebraic equations:

0:

po| >

f(x,V,t) +f(x,V,t —h)] — (x(t) = x(t = h)) (4.4)
where h is the integration time-step.

e Step 2. The existing non-linear algebraic equations are linearized by the Newton-

Raphson method (for the ;" iteration) as:

J(ijl) - Az = —F(ijl) (45)

where J is the Jacobian matrix, z = [x, V], Az = z; — z;_1, and F is the vector of

nonlinear function evaluations.

79

e Step 3: The resulting linear algebraic equations are solved to obtain the system state.
(4.5) is solved using the LU factorization followed by the forward-backward substi-

tution method.
Chapter 2 describes how to solve the network equations.

4.4.2 SIMD Formulation for Transient Stability Solution

The CPU and the GPU have radically different architectures, so they require different pro-
gramming approaches. The generator and the network model shown in Chapter 2 are
suitable for sequential computation on the CPU. To be able to perform these computations
on the GPU, the equations must be expressed in the SIMD format, i.e. instead of using
single-element values vectors or matrices of them must be used. This is straightforward
for the generator equations and is accomplished by replacing all variables and parameters
with the vectors whose elements relate to each generator. For instance, the rotor angle

equation for the ith generator, as given in (2.1), is discretized by (4.4) as follows:

0= w};g [Aw'(t) + Aw'(t — h)] — (8'(t) — §'(t — h)). (4.6)

Allocating vectors whose length are the number of existing generators, this equation

can be expressed for SIMD computing as below:

0= w}’%g (AW (t) + Aw?(t — h)] — (8°(t) — 6°(t — b)) 47)

where the superscript v indicates the vector-format variable, and

5" = [o%, 6%,.., 6., 5" (4.8)

and
A’ = [Aw!, Aw?, . AW, A (4.9)

Similarly other differential equations described in Chapter 2, i.e. (2.1) to (2.3), can be im-
plemented in the SIMD format.

For the network side, expressing the computations in SIMD format is more complicated
and requires a revision of the equations. For the n generators in the system, the objective
in the network side equations is to compute two vectors whose elements are the Ip and I
of each generator given by (2.16) and (2.17). In the sequential computing model, as shown

by (2.18)-(2.20), Ip and I are constructed based on the parameters S; to 54, and A; to As.

80

Therefore, these parameters must first be computed in the SIMD format to get the Ip and

I vectors. We start with the allocation of six vectors on the GPU as follows:
v 1 2 1 nt
Up = [ug, upy -y Uy - u] s k=16 (4.10)

where the superscript v indicates the vector-format variable. u for the i'" generator is
computed based on (2.20). Having these vectors on the GPU, a kernel was prepared to lay
these vectors on the main diagonal of a square matrix. Thus, six matrices are built on the

GPU whose diagonal elements are the U and whose off-diagonal elements are zero, as:

Ui =diag(Up); k=1..6 (4.11)

where superscript m indicates the matrix-format variable. From the reduced admit-
tance matrix shown in (2.10) two sets of vectors and matrices are then extracted. The

vectors are the real and imaginary parts of the diagonal elements of the Yr = Gr + jBr:

G¥ = [G11, Gaa,s ..., Gigy ..., G (4.12)

BU = [B117 B227] Bii) ttty Bnn]t . (4'13)

The two matrices contain the off-diagonal elements of G and Br:

Gotf—diag = Gr — diag(G”) (4.14)
g}f—diag = BR - diag(BU)' (415)

Note that vectors G* and BY, and matrices GQ} F—diag and Bg} f—diag CAN be built and
saved off-line for any number of contingencies and transferred to the GPU during the
initialization step. Once all of the above vectors and matrices are allocated on the GPU,

the SIMD computation for S; to S; can be expressed as follows:

Si} = (U{n : Z}ffdiag - U?:n : g}ffdiag) : IE (416)
Y = (U Gr— U™ Bp) - I3 (4.17)
Sy = (Us"-Gr—U{"- Br) - I (4.18)

81

SZ = (Uéin ’ (T)r}ffdiag + U2m ’ g}ffdiag) ’ IgQ (419)

The SIMD computations of A5 to Ag is given as:

AL =T+ B« UY — G® « UY (4.20)
AL =1 —G°+ U’ — B« UY (4.21)
AV =Ggr-UY— By - UY (4.22)
A =GR Ul + By - UY (4.23)

where IV = [1,1,...,,1]! ,, and the star operation ‘+’ refers to a kernel that multiplies
two equal-length vectors element by element. Based on (4.16) to (4.23) the SIMD format of

equations Ip and I, and then Ep and E is achieved.

4.5 GPU-Based Programming Models

The GPU thrives on applications that have a large computational requirement, and where
data-parallelism can be exploited. A data-parallel application consists of large streams of
data elements in the form of matrices and vectors that have identical computation codes
(kernels) applied to them. The data-parallel characteristic of the GPU gives it a single-
instruction-multiple-data (SIMD) architecture. Therefore any computation that is desired
to be implemented on the GPU must be in the SIMD format, otherwise the GPU cannot de-
liver its computational benefits. Here we propose two SIMD-based programming models
to exploit the GPUs resources for transient stability simulation. In the first model the GPU
is used as a co-processor for the CPU to offload certain computational tasks (hybrid GPU-
CPU simulation), whereas in the second model the GPU works as a stand-alone processor

and the CPU only controls the flow of the simulation (GPU-only simulation).

4.51 Hybrid GPU-CPU Simulation

The standard method of transient stability explained in the previous section was imple-

mented in a hybrid GPU-CPU configuration. Benchmarking revealed that a majority of

82

execution time in the simulation was spent for Step 2 and Step 3, i.e. the nonlinear itera-
tive solution using Newton-Raphson, and the linear algebraic equation solution. Therefore
these two steps of the simulation were off-loaded to the GPU to be processed in parallel,
while the remaining tasks such as discretizing, updating, and computation of intermediate
variables were executed sequentially on the CPU. The entire simulation code was devel-
oped in C++ integrated with CUDA.

In this programming model discretization of the differential equations, and building
of the Jacobian matrix are done on the CPU, whereas the network algebraic equations and
the Jacobian matrix solutions are performed on the GPU. At each time-step, the Jacobian
matrix is transferred to the GPU. It should be noted that CUDA stores matrices on the GPU
in a column-major format. Therefore after the Jacobian matrix is constructed on CPU, it
needs to be transposed before or after being transferred to the GPU. The other option is to
construct the Jacobian matrix in the column-major format from the beginning on the CPU
obviating the need for an extra transpose operation and thus saving computation time.
Here the latter option has been adopted in this programming model.

With the Jacobian matrix in the proper format on the GPU, the SIMD-format of the LU
factorization method was used on the GPU to handle large matrix decomposition.This fac-
torization scheme was implemented using a blocked algorithm, employing bulk matrices,
specifically suited for data-parallelism [88]. After transforming the Jacobian matrix into
its upper and lower triangular matrices, the BLAS2 function cublasStrsv() of the CUBLAS
library is used to solve the equation L - U - Ax = —F(x;_1) for Ax. The results are trans-
ferred back to the CPU to update the state variables for the next iteration’s calculations.
Then the computations are continued on the GPU for the network side solution as de-
scribed by (4.10) to (4.23). Once the iteration process converges, the time-step is advanced.

These steps are illustrated in the flowchart given in Figure 4.5.

4.5.2 GPU-Only Simulation

In the second programming model the transient stability simulation was carried out as a
GPU-only computation. In this model the CPU initializes the GPU with the system data,
and then all the 3 steps of the simulation are done on the GPU, while the CPU monitors
and controls the flow of the simulation. In this programming model the Jacobian matrix is
completely constructed on the GPU. Constructing the Jacobian matrix for a multi-machine
power system is well suited for exploiting data-parallel programming. For example, in

the row-major-saved Jacobian matrix, the first column is the derivative of all non-linear

83

Data read and
initialization

(N\
Discretization of differential
equations (4) and compute |«

Jacobian
. /

A

. R e
Transfer of J and F in (5) Transfer algebraic
to the GPU) L variables to the CPU

Solve network equations
on the GPU

1T

Update algebraic
variables on the CPU

.
JL A
P
Transfer Ax to the CPUW
and update x J

LU factorization for J

Solve L.U.Ax=-F for Ax

A

Figure 4.5: Flowchart for the hybrid GPU-CPU transient stability simulation. The colored
boxes refer to the GPU operations, and white boxes refer to the CPU operations.

functions with respect to one of the variables. Although these functions have different
formulations, they re-occur for all generators in the system. Therefore the derivatives of
all identical functions (that have the same formulation but different data-input) can be
evaluated in a data-parallel model. After the sub-matrices of the Jacobian are calculated
they are combined together to form the full Jacobian matrix on the GPU, and the simulation
continues the same as hybrid GPU-CPU model.At the end of simulation, the value of the
required variables is transferred to the CPU memory to be saved or plotted. The flowchart
in Figure 4.6 illustrates this process. The C++ source code for this model has been shown

in Appendix C.

84

(Start)

Data read and
initialization

Figure 4.6: Flowchart for the GPU-only transient stability simulation. The colored boxes
refer to the GPU operations, and white boxes refer to the CPU operations.

4.6 Experimental Results

In this section we demonstrate results to verify the accuracy and efficiency of the SIMD-
based programming models described in the previous section for the transient stability
simulation of large-scale power systems on the GPU. As mentioned before, the target GPU
in this work is connected to the motherboard of a quad-core CPU. Although the CPU has 4
cores, to precisely control the execution of the CPU and to have a clear comparison, thread
programming was used to force the CPU to run the C++ code on only one of the 4 cores.
Otherwise, the operating system decides each core’s execution at each instant which leads
to a vague evaluation. We selected Windows XP-64 as the host’s operating system. There
were three reasons for choosing this platform: first, we needed a 64-bit operating system,
in order to utilize 8GB of RAM. Second, we expected fewer driver issues on Windows
compared to Linux. Third, within the Windows product line, Windows Vista was not
supported by the NVIDIA GPU Computing platform, leaving Windows XP as the only

choice. For development, we used Microsoft Visual Studio 2005.

85

4.6.1 Simulation Accuracy Evaluation

The accuracy of the programming models was validated using PT1's PSS/E software pro-
gram. The case study used in this section is the IEEE 39 bus New England test system
whose one-line diagram was shown in Figure 3.15 in Chapter 3. The system data in the
PSS/E format is also given in Appendix E. The complete system can be described by 90
non-linear differential equations and 20 algebraic equations. Several fault locations have
been tested and the results were compared with those of PSS/E. In all cases results from
the proposed programming models match the PSS/E results very well. A sampling of
these results obtained from the hybrid GPU-CPU simulation is presented here. A three-
phase fault happens at Bus 21, at t=1s and it is cleared after 100ms. Gen10 is the reference
generator and the relative machine angles are shown in Figure 4.7 and Figure 4.8. For com-
parison PSS/E results are superimposed in these two figures. As can be seen the transient
stability code is completely stable during the steady-state of the system, i.e. t<1s. During
the transient state and also after the fault is cleared, the program results closely follow the
results from PSS/E. The maximum discrepancy between generator angles from GPU-CPU
co-processing and the PSS/E simulation was found to be 1.46%, based on (4.24):

maz|dpss/E — daPu—cpU| (4.24)

E§ =
dpss/E

where dpgg/p and dgpy—cpu are the relative machine angles from PSS/E and GPU-

CPU co-processing simulation, respectively.

4.6.2 Computational Efficiency Evaluation

To investigate the efficiency of the proposed SIMD-based programming models for the
transient stability simulation, we show comparative results in this section. Several test
systems of increasing sizes have been used for this evaluation whose specifications are
listed in Table 4.2. The Scale 1 system is the IEEE’s New England test system, illustrated in
Figure 3.15 and verified in the previous section. The Scale 1 system was duplicated several
times to create systems of larger scales. Thus, we obtained test systems of 78, 156, 312, 624,
and 1248 buses. In these systems a flat start was used, i.e. voltage and angle of all buses set
to 1.0£0°p.u., and they were modeled in the PSS/E software to find the load flow results.
These results were then fed into the prepared simulation codes.

Three separate simulation codes were prepared: the first code is purely in C++ to be

run sequentially on the CPU (CPU-only), the second is C++ integrated with CUDA to be

86

90

GPU-CPU

80+ — — —PSS/E)

Relative machine angles (degrees)

Time (sec)

Figure 4.7: Comparison of relative machine angles collected from hybrid simulator and
PSS/E simulation for IEEE 39 bus test system: 6; 10 = §; — d10; 2 = 1...5, for a three-phase
fault at Bus 21.

wl GPU-CPU | |
{4 — — —PSSE
70 b

/] 3910
" SO
& - 8,10

60

e

50

L

L\ N AT
- 86,10
40

Wi v
V)
i J
30 b

Time (sec)

Relative machine angles (degrees)

Figure 4.8: Comparison of relative machine angles collected from hybrid simulator and
PSS/E simulation for IEEE 39 bus test system: 6; 10 = 6; — d10; 7 = 6...9, for a three-phase
fault at Bus 21.

completely run on the GPU (GPU-only), and the third is also the integration of C++ and
CUDA, however, it uses GPU as the coprocessor (GPU-CPU). The difference between the
second and third programming models was explained in Section III. The execution time of
these three codes was compared for the test systems. In Table 4.2 the columns indicated
by CPU-only, GPU-only, and GPU-CPU list the computation time of each programming

model to simulate a duration of 1580ms with a time-step of 10ms for all systems. The CPU

87

Table 4.2: System scale versus computation time for various configurations for a simulation
duration of 1580ms

System Gens. Buses State, Alg. CPU-only GPU-only GPU-CPU PSS/E

scale variables Program
1 10 39 90, 20 0.9s 5.5s 2.8s 0.35s
2 20 78 180, 40 6.4s 7.7s 5.2s 0.40s
+ 40 156 360, 80 49.8s 12.3s 10.5s 0.43s
8 80 312 720, 160 7.2min 21.5s 21.1s 0.46s
16 160 624 1440,320 1hr 41.0s 44.8s 0.55s
32 320 1248 2880,640 10hr 1min15.2s 1min44.4s 0.83s

execution time of PTI's PSS/E software program is also included in Table 4.2 for reference.
Figure 4.9 plots the computation times with respect to the system size.

The application of GPU (in both GPU-only and GPU-CPU models) is truly advanta-
geous for parallel computing on a large set of input data. For small size of data, the com-
munication overhead and memory latency in the GPU are not insignificant compared to
the computation time. As such, we did not expect better performance for Scale 1 and
Scale 2 systems. When the size of system increases, however, the latency is dwarfed by
the computation time, and involving the GPU into the simulations results in a significant
acceleration. For example, for Scale 32, the GPU-CPU takes 1 min 44.4 s for simulation,
whereas the CPU-only needs 10 hrs. Table 4.3 lists the speed-up factors, defined by (4.25)
and (4.26), for the two GPU-based simulations:

CPU_only processing time

ﬁGPU—only = (425)

GPU_only processing time

CPU_only processing time
GPU_CPU processing time’

Baru-cru = (4.26)

The speed-up factors for the two simulations are plotted in Figure 4.10. As can be seen for
the Scale 32 system GPU-CPU co-processing is more than 340 times faster than CPU-only

processing.

4,7 Discussion

The tabulated results and graphs reveal that for small systems the hybrid GPU-CPU pro-
gramming model is faster than the GPU-only model, whereas for large-scale systems GPU-

only model is faster. This result is consistent with the performance of a single GPU in

88

Computation Time (ms)

10 CPU-onlyl 3
GPU-CPU
<+ GPU-only
1R ‘ ‘ :
12 4 8 16 32
System scale

Figure 4.9: Computation time variation with respect to system scale.

other reported applications. However, there are applications where a GPU may need to
communicate with other entities or use services which may not be accessible to a GPU,
for example in a multiple GPU application. In such cases and with the currently available
GPU technologies, the hybrid GPU-CPU programming model is not only useful but also
unavoidable. Similar to all programmable processors, efficient GPU programming needs
a good understanding of its hardware architecture. Managing the number of required ac-
tive threads for each kernel call, and the number of device-host interactions are essential
to make a timesaving program.

Another useful observation found from the achieved results is the scalability of the pro-
posed hybrid simulator. A system whose performance improves after adding a specific
hardware component, proportionally to the capacity added, is said to be a scalable sys-
tem. In a single GPU expanding the size of data-under-process asks for the co-operation
of more SPs which translates to adding more computing resources. In our experiments the
size of test systems and the hybrid simulators” elapsed computation time change approxi-
mately at the same rate. In the CPU-only simulation cases, however, the computation time
increases at a rate that is approximately the cube of the system size increment rate.

The last column in Table 4.2 indicates PSS/E’s computation time for the test systems.
It is important to put the lower execution times of PSS/E into proper perspective so as not
to misjudge the performance of the GPU. PSS/E is a mature software program developed
over several decades which incorporates specialized techniques to optimize computational

efficiency for large-scale system simulation. In terms of the numerical methods, the key

89

IS
@

Speed—-up
8 & 8 & 3
g o S o 3

,_‘
@
<

,_‘
1)
<@

o
<

-B-GPU-only |
-©-GPU-CP

32

o
IS
©

16
System scale
Figure 4.10: Speed-up of GPU-based processing.

Table 4.3: Speed-up comparison
System Sgpu-onty Bapu-cpPu

scale

1 x0.16 x0.3

2 x0.83 x1.2

4 x4.05 x4.7

8 x20.1 x20.5
16 x87.8 x80.3
32 x423.5 x344.8

factors that contribute to PSS/E’s speed are as follows:

1. PSS/E uses the Modified Euler integration algorithm which is an explicit integra-
tion technique (Chapter 26 in [89]). This is a simple and fast method, however, it
can suffer from numerical instability. For a given system configuration, depending
on the time-step value the simulation may either converge or diverge. If it did not
converge, the time-step must be decreased and program must be rerun [90]. In the
proposed GPU-based simulation, the Trapezoidal Rule, an implicit integration algo-
rithm, was used because it is more accurate and avoids numerical instability. How-
ever this method requires an iterative solution of the resulting nonlinear algebraic

equations at each time-step.

2. The outputs of an explicit integrator are not instantaneous functions of their inputs,
and a straightforward non-iterative procedure would be enough to find the deriva-

tives of states, as it happens in PSS/E. However the proposed GPU-based simulator

90

uses the Newton-Raphson method which consumes a large portion of the simulation
time, albeit it gives accurate convergence. At each time-step the Jacobian matrix is

calculated, LU factorized, and then solved using forward-backward substitutions.

3. PSS/E takes advantage of the sparsity of the system matrices. This is an important
factor in its fast and successful management of computer storage. However it should
be noted that presenting PSS/E with a power system network model, whose origi-
nal admittance matrix has a number of nonzero elements that exceed the program’s
allocated capacity, results in an error condition that prevents the use of some, but
not all, of the available iteration algorithms (Chapter 5 in [89]). The purpose in this
chapter was to show how the same implementation of a transient stability algorithm
on a GPU is advantageous with respect to a CPU implementation. Therefore sparsity

was not used in any of the proposed programming models.

4.8 Summary

Transient stability simulation of large-scale power systems is computationally very de-
manding. This chapter investigated the potential of using a GPU to accelerate this sim-
ulation by exploiting its SIMD architecture. Two SIMD-based programming models to
implement the standard method of the transient stability simulation were proposed and
implemented on a single GPU. The simulation codes are quite flexible and extensible; they
are written entirely in C++ integrated with GPU-specific functions. The accuracy of the
proposed methods were validated by the PSS/E software. The efficiency was evaluated

for several large test cases. Based on the results obtained, it can be concluded that:

e Using a GPU for transient stability simulations is highly advantageous when the sys-
tem size is large. As such, for simulating realistic-size power systems the application

of GPU looks promising.

e For small-scale systems the hybrid GPU-CPU simulation was faster than the GPU-

only simulation, while for large-scale systems the GPU-only model was faster.

91

Multi-GPU Implementation of Large-Scale
Transient Stability Simulation

5.1 Introduction

In Chapter 4 the GPU hardware architecture, based on a NVIDIA GPU, and the SIMD
programming models were explained in detail. The transient stability simulation was im-
plemented on a single GPU, and the results revealed the excellent capabilities of including
GPU as a powerful processor in the power system simulations. However, similar to a
CPU, a GPU also has some computing capacity limitations, that restrict the maximum size
of the problem which can be implemented on it. Simulations of realistic power system of-
ten involve large problem size with onerous calculations. Therefore, this chapter explores
the use of multiple GPUs working in parallel and parallel processing based techniques for
solving large-scale systems.

The chapter! begins with a review of the multi-GPU simulation application, and con-
tinues by describing the details of the computing system architecture that has been utilized
in this research. Managing multiple GPUs working in parallel to perform a simulation re-
quires specific programming skills which will be highlighted in this chapter. Two parallel
processing based techniques (tearing and relaxation) are implemented on multiple GPUs,
and a comparison between the two methods is presented. The chapter is concluded by

experimental results and discussions.

"Material from this chapter has been submitted: V. Jalili-Marandi, V. Dinavahi, “Multiple GPU implemen-
tation for large-scale transient stability simulation,” IEEE Trans. on Power Systems, pp. 1-9, 2010.

92

5.2 Multi-GPU Overview
5.2.1 Applications

The obvious reason for utilizing multiple GPUs for general purpose computing is to achieve
a higher simulation speed, as is the goal in this research. However, compared to the host
main memory, GPU has limited device memory. For applications which require a lot of
storage, device memory limitations can be a major bottleneck for GPU. For this reason,
sometimes running algorithms on multiple GPUs is not only required for faster applica-
tions but also necessary to overcome memory bottlenecks.

There are two possible hardware configurations to use multiple GPUs for the comput-
ing purpose. The first is to mount multiple individual GPUs internally to the motherboard
of the host? normally using the PCle buses [92]. The use of multiple GPUs as CUDA de-
vices working on an application is only guaranteed to work if these GPUs are of the same
type [40]. It is important to note that in addition to the GPUs such as GTX 280, described
in Chapter 4, that are applicable to both the graphical tasks as well as general purpose
computing, there are GPU-architecture-based cards which are specifically designed for the
high performance computation with single and double precision floating point (e.g. Tesla
C1060). The Tesla series, introduced by NVIDIA in 2007, is the first GPU generation that
are fully dedicated to general purpose computing.

The second hardware configuration is to use an external computing unit equipped with
multiple GPUs. In this case all the GPUs are compute-specific. For instance the NVIDIA
Tesla S1070 (server version) integrates four Tesla T10 GPUs. This multi-GPU configuration

is used in this research.

5.2.2 Computing System Architecture

The computing system used in this research is one unit of Tesla 51070 manufactured by
NVIDIA [91]. The “Tesla” series of cards are compute-only devices without video output
connectors. The Tesla 51070 is equipped with four independent T10 processors (GPU), and
the programmer decides how many GPUs must be employed in a simulation and the tasks
each GPU must perform. Each of the T10 GPUs is integrated with 4.0GB of memory so that
the total memory of the S1070 unit is 16GB. Delivering a theoretical peak performance of 4

teraflops has made Tesla S1070 an energy efficient teraflop processor. Table 5.1 summarizes

ZA comprehensive and practical work is the FASTRA done at the University of Antwerp, Belgium.
http:/ /fastra.ua.ac.be

93

Table 5.1: Tesla T10 Processor specifications

Number of SM’s 30
Number of SP’s 240

Device memory 4GB
Clock rate 1.3GHz
Warp size 32 threads

Active warps/SM 32

the important specifications of a T10 processor. For more hardware architecture informa-
tion of Tesla S1070 the manufacturer data sheets are attached in Appendix D. Each of the
T10 GPUs includes 240 stream processors; thus the Tesla S1070 has a total of 960 stream
processors which can execute thousands of concurrent threads. Therefore, this comput-
ing system that mixes the multi-core CPUs any multiple GPUs provides a heterogenous
computing environment with the optimized performance.

Figure 5.1 illustrates the Tesla S1070 from front and top views. The inside architecture
of Tesla 51070 is shown in Figure 5.2. As depicted in this figure, each pair of the GPUs
are connected to one input/ouput NVIDIA Switch. On the host side, i.e. on the PC moth-
erboard, a Host Interface Card (shown in Figure 5.3) must be plugged into the PCle bus.
Then by using the NVIDIA PCle cable connected between the NVIDIA Switch and Host
Interface Card the link between one pair of GPUs of Tesla S1070 and PC host is estab-
lished. To connect the other pair of GPUs, the host computer must have an extra PCle
slot mounted with another Host Interface Card. Otherwise, to have concurrent access to
4 GPUs two hosts must be used so that each pair of GPUs connects to one host. Figure
5.4 shows the possible configurations to connect a unit of Tesla S1070 to host computers.
The configuration used in this thesis is the same as in Figure 5.4(a) The maximum transfer
bandwidth between the host system and the Tesla processors is 12.8 GB/s.

With all of the highly advanced technology used in Tesla S1070, however, the direct
intercommunication capability of the 4 GPUs (such as using shared memory) is a missed
but promised feature. This means that Tesla S1070 cannot behave as a unified processor.
Therefore, to circulate data among the 4 GPUs of the Tesla 51070, data on one GPU is
tirst transferred to the host’s main memory (i.e. RAM), and then it is uploaded to the
other GPUs. By using the CPU threads, explained in the next section, this deficiency can
be recovered, but it should be noted that manipulating intensive computation requires

distributing it among existing GPUs.

94

Figure 5.1: Front and top views of Tesla 51070 [91].

5.2.3 Multi-GPU programming

The Tesla 51070 is a CUDA-enabled device. Therefore, all the CUDA programming func-
tionalities explained for the GTX 280 in Chapter 4 are also valid for the Tesla S1070. It was
previously mentioned that the GPU runs its own specified kernel independently but is con-
trolled by the CPU. A single GPU can execute only one kernel at any given time; whereas
a multi-GPU server such as the Tesla S1070 can run multiple kernels (4) simultaneously.
In this chapter we refer to these paradigms serial kernel and parallel kernel executions, re-
spectively Figure 5.5. Thus to have four GPUs working in parallel, in a Tesla S1070 or any
multi-GPU architecture, we require the same number of CPU cores to manage and control
the GPUs simultaneously. This minimizes the overhead that occurs in data copying and
kernel invocation.

Microsoft Visual C++ provides support for creating multi-thread applications with

95

4.0 GB DRAM

4.0 GB DRAM
Tesla
Tesla — GPU
GPU
PCle x16 NVIDIA) /
< Sswitch
[| PCI-Express Cables
to Host System(s)
Ritnes | < NVIDIA
/ ——~ Switch __
| WV
Thermal Tesla /
Management GPU
Tesla
GPU
System
Moritaring 4.0GB DRAM

4.0GB DRAM

Figure 5.2: Inside architecture of the Tesla S1070 computing system [91].

Figure 5.3: Host Interface Card installing in the host side [91].

Windows XP. There are two ways to program with multiple threads: use the Microsoft
Foundation Class (MFC) library or the C run-time library and the Win32 API [93]. There
also exist some packages and libraries, such as Boost C++ Libraries [94], that can be installed
and utilized for the CPU multi thread programming. In this work, the C-run-time library
was used to have a full control on the synchronization of GPU data-transfer. Writing and
debugging a multi threaded program is inherently a complicated and tricky undertaking,
because the programmer must ensure that objects are not accessed by more than one CPU
thread at a time. Synchronizing the resource access between CPU threads is a common
problem when writing CPU multi threaded applications [93]. Having two or more CPU
threads simultaneously access the same data can lead to undesirable and unpredictable

results. For example, one CPU thread could be updating the contents of a structure while

96

PCle HIC
PCIe HIC

PCle HIC

(b)

Figure 5.4: Possible configurations of connecting Tesla S1070 to host CPU system: (a) using
one host, (b) using two hosts.

another CPU thread is reading the contents of the same structure. It is unknown what data
the reading thread will receive: the old data, the newly written data, or possibly a mixture
of both. To control synchronization among the CPU threads, events are used. Events allow
CPU threads to be synchronized by forcing them to pause until a specific event be set or
reset.

Figure 5.6 illustrates how the application of multi thread programming is managed to
operate up to 4 GPUs connected to a quad-core CPU. The main thread on the CPU first
creates four child threads which are responsible for handling one GPU each. Creating
the CPU threads is a time-consuming operation; thus once they are created they should
be used for the whole of the simulation time duration. The main thread also creates two
event arrays called Start and End. Each element of these arrays is used as a notification

signal between the main thread and one of the child threads to determine the initiation or

97

Tesla S1070
=0 GTX 280 Tesla T10 || Tesla T10 || Tesla T10 || Tesla T10
kernel 1 [kernel 1] [kernel 1] kernel 1
kernel 2 [kernel 2] [kernel 2] [kernel 2
5)
£ v v v v
“
=T | [kernel N] [kernel N] [kemel N] [kemel N]
\\

(2) (b)

Figure 5.5: (a) Serial kernel execution on a single GPU, (b) Parallel kernel execution on a
multi-GPU system.

termination of a specific action. Child threads begin execution by setting one individual
device (GPU) and initializing it, and then wait until the Start event is set. As soon as
the main thread sets the Start event the computations in the individual GPU belonging
to each child thread are activated. The main thread goes into a waiting state until all the
threads are done by the GPU computations and the End event is set. Thereafter, four child
threads will exchange and update the required data with the help of the CPU, and the
simulation continues. At each child thread when the GPU computation is done, in addition
to setting the End event, it is also required to reset the Start event to prevent running of
the child threads until the data update is done by the main thread and the Start command
is released. Therefore, by appropriate use of the Start and End events the synchronization

between child threads and consequently the multiple GPUs is orchestrated.

5.3 Implementation of Parallel Transient Stability Methods on
Tesla S1070

In Chapter 2 two categories of the parallel processing based techniques, i.e. tearing and re-
laxation methods, were explained. In this section one method belonging to each category

is selected to be implemented on the parallel architecture of Tesla S1070. From the cate-

98

@
#1 #4
cputhre cpu e
create threads
and events
set device, and set device, and
initialize GPU#1 initialize GPU #4
Set Star 1 ® 00 0606 0 0 o
update events status

t events
l is start event set?
are all End N(?
NO events set? (wait) Yes
(wait)
Y

es

is start event set?

Yes
computations on
GPU#1
4

reset Start event;
set End event

NO
(wait)

computations on
GPU#4

data exchange
reset all events

‘update events status

reset Startevent;

set End event

Figure 5.6: The programming application for general purpose multi-GPU computation
using a quad-core CPU.

gory of tearing methods, the Block Incomplete LU decomposition method, and from the
relaxation group the Instantaneous Relaxation method, described in Chapter 3, are being

examined.

5.3.1 Tearing Methods on Multi GPU

In the GPU-only programming model described in Chapter 4, three major parts can be
discerned: (1) integration of differential equations and Jacobian matrix computation, (2)
LU decomposition of the Jacobian matrix, and (3) solution of the linear algebraic equations,
updating and saving the required variables, and GPU-CPU communication time. To get
an estimate of the timing load of each part, the results of the elapsed time for these specific
parts as a fraction of the total simulation time, and for various system sizes used in Chapter
4 are listed in Table 5.2. These results reveal that LU decomposition (i.e. PART2 in Table
5.2) is the most time-consuming part of the simulation. Thus, the part that would benefit
most from using multiple GPUs to reduce the simulation time is the LU factorization. In
this section we will use parallel processing to significantly improve this timing.

Tearing methods take advantage of the block structure of the system of equations. In a

99

Table 5.2: System scale versus fraction of simulation time elapsed for each major part.
PART1: integration and Jacobian matrix computations, PART2: LU decomposition, and
PARTS3: linear algebraic solution, updating and saving variables, and communication time.

System scale PART1 PART2 PART3

1 23% 55% 22%
2 14% 70% 16%
4 8% 81% 12%
8 4% 88% 8%
16 2% 91% 7%
32 1% 92% 7%

system of equations where the dependency matrix is sparse, tearing can be used to achieve
decomposition while maintaining the numerical properties of the method used to solve
the system [62]. The Jacobian matrix resulting from the linearization step of the transient
stability simulation is a case that fits this condition well. The Jacobian matrix of a large-
scale power system for transient stability study has a sparse diagonally-blocked structure.

The Incomplete LU factorization (ILU) is widely recognized as effective method for a
preconditioned iterative sparse linear system solution. A preconditioner is any form of
implicit or explicit modification of an original linear system that makes it easier to solve
by an iterative method. For example, scaling all rows of a linear system to make the diag-
onal elements equal to one is an explicit form of preconditioning. The ILU method entails
a decomposition of the form A = LU — R, where L and U have the same nonzero structure
as the lower and upper parts of A, and R is the residual or error of the factorization [95].
This incomplete factorization, known as ILU(0), is easy and inexpensive to compute, but it
often leads to a rough approximation and imposes more iterations to the applied iterative
scheme. Generally, more accurate ILU factorizations require fewer iterations to converge.
Thus, several alternatives of this approach have been developed by allowing more fill-ins
in the L and U matrices. One alternative that is useful for sparse matrices is to perform
the LU-decomposition only at locations where A originally has non-zeros. A variant of
this approach is the Block ILU in which the decomposition is conducted only along the
main diagonal [95]. Figure 5.7 shows the original sparse matrix divided into diagonal
sub-matrices which locally are decomposed using ILU. Because these blocks do not com-
municate with each others and can be individually decomposed, this scheme fits well in a
parallel processing based architecture.

Considering the multi-GPU programming concepts explained in the previous section

100

inhmbntehiy by Ee b
e Ly e R
I
I
I
I
I
I
|
T
I

I
|
T
I
I
I
I
|
|
|
TS TTAT T T T T T T T T T T T T T

Figure 5.7: Sparse diagonally blocked matrix is a suitable case for the ILU method.

(such as creating and managing CPU threads and events), Figure 5.8 illustrates the distri-
bution of computations among the GPUs of a Tesla S1070 unit. As shown in the pseudo
code, the discretization of the DAEs and computation of the Jacobian matrix for the whole
system are done on the main thread on the CPU. The Jacobian matrix is then decomposed
into n sub-matrices which are then transferred to each of the GPUs. GPUs concurrently de-
compose the sub-matrices into their L and U factors. Due to the parallel operation of GPUs,
their computation loads must be equal to have an efficient simulation. Thus, the sub-
matrices must have equal or approximately equal size. Moreover, the size of sub-matrices
is an important factor: if they are too small the overall efficiency of using GPUs will be
lost. After all GPUs are done with the factorization steps, the L-U factors are transferred
to the CPU main memory, and then uploaded to one of the GPUs to build the original-size

LU factor and perform the remaining calculations.

5.3.2 Relaxation Methods on Multiple GPUs

In Chapter 3 the Instantaneous Relaxation (IR) method was proposed and implemented
on the PC-cluster based simulator made up of multiple CPUs. The important advantage
of this method in the transient stability study of large-scale power systems is its ability to
make a coarse-grain decomposition which allows breaking down the large DAE systems
into smaller pieces and distributing the individual computations to specified processors.

These processors need to communicate only once at each time-step.

101

main ()

{ hread
read system input data; CPUt PU
create CPU threads and events; e 0o 0 0 0 o
while time < Sim_time
1.discretize differential equations; set device, and initialize set device, and initialize
2.compute Jacobian matrix (J); GPU#1 GPU#4

3.distribute J among CPU threads; ‘ update events status
is Start
NO event set?

(wait)

Wead#

4 .wait for the event update;
5.gather small L’s and U’s from GPUs;

6.transfer L's and U’s to one GPU,
and construct the complete L and U;

7.solve the linear system;

8.check the convergence condition;
9.update variables; do ILU for the selected
i blocks on GPU#1
go for the next time step;
end of while
reset Start event;
set End event

«\ blocks on GPU#4
—/'
reset Start event;
set End event

print and save output results;

update events status

Figure 5.8: ILU-based tearing method implementation on multiple GPUs.

In this section the IR method will be implemented on the multi-GPU architecture of
Tesla S1070. This provides a high degree of parallelization for the transient stability study.
First, the solution algorithm is inherently parallel, and second, this algorithm is imple-
mented on up to 4 GPUs each with a massively data-parallel architecture. In other words,
implementing of the IR method on a multiple GPUs is actually the intersection of algorithm-
level-parallelism and data-parallelism.

Figure 5.9 illustrates how the Instantaneous Relaxation method is implemented on the
4 GPUs of a Tesla 51070 system. Comparing this figure with Figure 5.8 it can be seen that
in the IR method the system decomposition and consequently the parallelization happen
at the top level of computations, while in the tearing based approach parallelization is in
the inner loop of the procedure. Thus, in case the convergence condition in the ILU-based
tearing method is not fulfilled, the loop must be repeated which multiplies the commu-
nication time between the Tesla 51070 and CPU memory. Whereas, from the GPU pro-
gramming perspective efficient programs are ones which require the minimum amount of
GPU-CPU communication. To practically confirm this statement, Table 5.3 lists the exper-
imental results showing the maximum bandwidth rate of the Tesla T10 processors inside

the Tesla S1070 system. In this Table “Device” refers to a single Tesla T10 processor, and

102

o ILU for the selected

Table 5.3: Tesla T10 processor bandwidth test results

Host-to-Device 1.35GB/s
Device-to-Host 1.62GB/s
Device-to-Device 73.1GB/s

“Device-to-Device” means the operations inside one GPU, i.e. not the interconnection be-
tween 2 GPUs. As it can be seen, the Host-Device bandwidth for both directions is lower
than that of the device to device rate. Therefore, especially in the application of multiple
GPUs where data transfer is unavoidable, the GPU-CPU communication must be reduced
to minimize simulation time. This is what the IR method provides perfectly. In the next
section, a comprehensive efficiency comparison between the tearing and relaxation types
parallelization will be shown and discussed.

In addition to the high parallelization offered by the IR method, its implementation
on both single GPU (serial kernel) as well as multiple GPUs (parallel kernel) covers the
maximum size limitation imposed by CUDA /CUBLAS application. In the current version
of CUBLAS API, BLAS2 functions are specified for the single or double precision matrix-
vector operations. For example, cublasStrsv() solves a system of equations of the form:

op(A) xx = b,

where op(A) = A or op(A) = AT,

b and = are n-element single-precision vectors, and A is an n x n, upper or lower tri-
angular matrix consisting of single-precision elements. This function plays an important
role in the solution of a system of linear algebraic equations that have already been LU fac-
torized. cublasStrsv() takes n as an input argument that determines the number of rows
and columns of the matrix A. In the current implementation of CUBLAS, n must not ex-
ceed 4070 for the single-precision entries. For the double-precision function n is limited
to 2040 [87]. This is an unexplained boundary, imposed by the GPU manufacturer, that
does not allow the programmer to go beyond systems that may include matrices with the
dimension larger than these limits. For instance, the size of Jacobian matrix in the tran-
sient stability stability simulation of a power network within m machines each of which
is modeled by 9 state variables is 9m x 9m. Thus, the largest system that can be modeled
in a single GPU with the traditional approach cannot include more than 450 machines.
In the IR method, however, the system is decomposed into subsystems which are solved
individually. Consequently, regardless of its serial or parallel implementation of the IR

method, each subsystem can use the maximum compute capacity of the available hard-

103

main ()

{
read system input data; h]’ead #1

1l.decompose system into subsystems; PUt CPU

2.create CPU threads and events; e e 0 0 0 o

3.distribute subsystems among GPUs;

while time < Sim_time set device, and initialize set device, and initialize
a)set the Start event; GPU#1 LIRS GPU#4

thread#4

b) conduct the transient stability update events status
computations on each GPU and for e e o= —4
each subsystem; | / |
c)wait for the event update; = , .
is Start 1s Start
NO event set? NO event set?
d)gather and exchange data; (wait) Yes (wait) Yes
go for the next time step; v /
end of while N . N T
int d R 1ts: do transient stability steps do transient stability steps
print and save output results; on GPU#1 on GPU#4
}
\ A
reset Start event; reset Start event;
set End event set End event

update events status

Figure 5.9: IR method implementation on multiple GPUs.

ware. This is the direct result of decomposing the system of DAE from the differential
equations level and before performing the discretization step (i.e. top level). In the ILU-
based tearing method described in the previous section, although the Jacobian matrix is
torn into smaller sub-matrices, eventually they must be rebuild the original-size LU ma-

trix to be used in cublasStrsv() function.

5.4 Experimental Results
5.4.1 Work-station and Test Systems

In this section we demonstrate results to verify and compare the efficiency of the parallel
processing based techniques described in the previous section. As mentioned before, the
target computing system is a unit of Tesla S1070 that is connected to the motherboard of
a quad-core CPU supported by 8GB of memory (RAM). Depending on the size of com-
putations being done on the multi-GPU system, using the same amount of CPU memory
(RAM) as the GPUs have is recommended to achieve better performance. For example, in
the case of running 4 GPUs of the Tesla S1070, the CPU should be supported by 16GB of
RAM; however, in our case the host motherboard can support a maximum of 8GB of RAM.

Thus, the simulation time results that are shown in this section can be improved simply by

104

Table 5.4: Test System Scales

System scale Generators Buses

1 10 39

2 20 78

4 40 156
8 80 312
16 160 624
32 320 1248
64 640 2496
128 1280 4992
180 1800 7020

upgrading the host-side memory.

The accuracy of the simulation models has been investigated and discussed for the
single GPU case in Chapter 4. In this chapter also, we use the IEEE’s New England test
system and develop its multiplicands by using PT1's PSS/E software. The steady-state
and dynamic stability of these systems have been examined and verified. Although these
are fictitious systems, the important advantage of using them as test cases is that they let
us to explore the performance of the GPU-based simulation statistically and gradually. In
addition to the systems used in Chapter 4, in this chapter systems with Scales 64, 128,
and 180 have been developed. The single-line diagrams for these systems are given in the
Appendix E, and Table 5.4 summarizes the specifications of these cases. The Scale 180 is
constructed based on the discussion provided in the previous section that the maximum
computing capacity of each GPU for the prepared model is 450 generators. This system
is built so that all GPUs of the Tesla S1070 become fully populated (4 x 450 = 1800 gen-
erators). The admittance matrix and load flow results of PSS/E simulating these systems
were saved in a text format file to be fed into the prepared programs for the tearing and IR

methods.

5.4.2 Transparency

Both parallel processing based methods are implemented to work with 1 to 4 GPUs, de-
pending on the required computing capacity. This issue in the parallel processing software
development is referred as transparency, which means the ease with which software written
for a set number of processors can be reformulated for another number of processors [49].
Although the SIMD hardware architecture of GPU and the way kernels are invoked and
run by many threads offer a high degree of transparency, the developed software is ef-

105

Computation time (s)

System scale

(@)

0 OIR BILU

Computation time (s)

2 4 8 16 32 64 128 180

System scale

(b)

Figure 5.10: Multi-GPU simulation: (a) 2 GPUs, (b) 4 GPUs.

fectively controllable by changing one variable at the compile time to work with various
numbers of parallel GPUs. In this section the 2 and 4 GPUs implementation will be shown.

Graphs shown in Figure 5.10 compare the computation time of the IR and ILU-based
tearing methods. In Figure 5.10.a the results for utilizing 2 GPUs illustrates that as the

system enlarges the IR method accelerates more than ILU method, so that for the largest

106

applicable system, i.e. Scale 32, the IR is 1.6 times faster than ILU method. Moreover,
Scale 64 and higher are not implementable with the ILU method, due to GPU hardware
restriction, while the IR overcomes the limitation and can simulate larger system. These
systems that are not implementable are shown as “Not Applicable” in graphs. The largest
system that can be implemented by exploiting 2 parallel GPUs is Scale 90, which includes
900 fully detailed generator models, not shown in this figure.

Figure 5.10.b shows the computation time for the case of using 4 parallel GPUs. In
this case the Scale 1 is ignored, because the communication and computation times are
too similar to reveal any computing advantage of including multiple GPUs. From the
achieved results it is clear that IR implementation is faster than ILU-based simulation, so
that for the largest applicable system for both methods, i.e. Scale 32, the IR is 2.4 times
faster than ILU method. Furthermore, very large-scale systems as Scales 64, 128, and 180
have been simulated by the IR method. Scale 180 is the system that entirely occupies Tesla
51070 to solve 19800 DAEs.

5.4.3 Scalability

The other important observation is the scalability characteristic of the IR method. The

Scaling Factor (SF) is defined as:

SF — computation time of Single GPU

5.1
computation time of Multiple GPUs ®-1)

The SF reveals how much the parallel multi-GPU simulation is efficient compared with
the single-GPU simulation. Ideally, and for an available hardware, we expect that in case
of using n parallel processors simultaneously running to solve a problem which takes T’
seconds on a single processor, the simulation time would break down to £ seconds. How-
ever, this is not true in practice due to several software development issues such as task
scheduling, processors” communication, and the parallel processing algorithm. Thus, SF
is always less than n, and the closer it is to 7, the higher is the efficiency of multi processing
based technique. This factor is computed for the IR as well as ILU-based methods, for 2
and 4 GPUs, and for the system scales that are applicable to both methods. The results are
depicted in Figs. 5.11 and 5.12. For the IR method in both the 2 and 4 GPUs, as the test sys-
tem expands, the SF factor grows closer to the number of parallel GPUs in use. This means
that the IR method is scalable, and if somehow the communication time is reduced, for ex-

ample by upgrading the hardware or advancement in GPU cluster technology, the SF will

107

19 T T

—©-IR
—H—1Lu

17 =

15— -

Scaling Factor

13 =

12~ =

11— -

L L L L L L
1 2 4 8

16
System scale

Figure 5.11: Scaling factor for the IR and ILU methods using 2 GPUs.

increase further. On the other hand, in the ILU-based method as the system scale increases
the SF decreases. One reason that can explain this low SF' in the ILU-based method is
that as the system enlarges the size of data that needs to be transferred among the GPUs
increases which leads in-turn to a rise of the communication time, and in case of requiring
iterations the situation becomes worse. As explained before, the IR method is a algorithm-
level parallel method where decomposition happens at the top level so that the GPUs are
required to communicate only once at each time-step. The advantage of algorithm-level

decomposition over the task-level decomposition is obvious from this experiment.

5.4.4 LU Factorization Timing

As explained in the previous section and shown in the Table 5.2, a significant portion of
the simulation time is elapsed for the LU factorization of the Jacobian matrix. In the ILU
method the Jacobian matrix is torn into several sub-matrices to reduce the LU factorization
time by exploiting parallel GPUs. Table 5.5 lists the elapsed time for the LU factorization
part in case of using multiple GPUs and compares it with the single GPU application.
This timing for the multi-GPU applications includes four major tasks: (1) decomposition
of the Jacobian matrix into sub-matrices, (2) communication time between GPUs and main
memory to transfer these sub-matrices, (3) LU factorization for each sub-matrix on each
GPU, and (4) reformation of the original size Jacobian matrix. The extraneous tasks, i.e.

tasks 1, 2, and 4, cause the LU factorization time in the 2 and 4 GPU implementations to be

108

T T
-©—IR
L [B

Scaling Factor
N N N N w w
N D o © w N B
T T T T T T
I I I I I I I

N
T
1

18— =

16— =

14— -
1 1 1 1 1

Sy;gn scale
Figure 5.12: Scaling factor for the IR and ILU methods using 4 GPUs.

Table 5.5: System size versus LU decomposition elapsed time (in seconds) for single, 2,
and 4 GPUs applications.

Systemscale 1GPU 2GPUs 4 GPUs

1 1.1 0.7 Not Applied
2 24 1.6 0.9

4 51 3.3 22

8 10.8 7.8 5.2

16 23.3 17.5 12.3

32 54.6 44.5 33.1

more than half or quarter of that in the single GPU application.

5.5 Summary

The main goal in this chapter was to demonstrate the practical aspects of utilizing multi-
ple GPUs. A parallel processing technique can be implemented on any parallel processor
based hardware, for example using a cluster consisting of hundreds of PC’s. However,
employing a large cluster has some drawbacks as well: it is quite expensive, is not always
available, takes a lot of space and requires considerable maintenance. By including GPU
units in the simulation and appropriate programming of GPUs, a regular PC can have the
performance of a super computer with much less price and energy usage. Moreover, these

GPUs are affordable for personal, research, and industry applications.

109

In this chapter, two parallel processing based techniques implemented on a Tesla S1070
unit. The techniques used here are from tearing and relaxation categories, explained in
Chapters 2 and 3. The experimental results revealed that algorithm-level decomposition,
as it happens in the Instantaneous Relaxation method, is more efficient than task level
decomposition.

Although the multi-GPU server with its current technology looks very capable, its API
still is in its infancy. Performance of the multi-GPU algorithm can be further increased by
direct GPU to GPU communication. We await NVIDIA’s CUDA support for direct inter-

GPU communication instead of communication through the CPU.

110

Summary and Conclusions

Transient stability analysis is a major requirement for the planning and safe operation of
power systems. It is the core of any DSA tool in the energy management system. However,
time domain transient stability simulation of large-scale power systems is computationally
very demanding. The transient stability problem is rich in parallelism which makes it very
suitable for applying parallel processing based techniques.

The goal in this thesis is to accelerate the transient stability simulation. To do so, the in-
vestigation in this thesis branched into two directions. In part one the focus is the real-time
implementation of transient stability simulation. As the real-time simulator has a parallel
processor architecture, it is unavoidable to have a parallel processing based technique to
use the simulator’s capacity. The IR method was proposed and successfully implemented
for this purpose, and is shown to give both accuracy and efficiency for PC-cluster based ar-
chitecture. The main outcome of this approach is that it uses the program-level parallelism
that inherently exists in the nature of the transient stability problem. In the second part the
objective is still the acceleration of the transient stability simulation for larger systems but
by using the general purpose computing capacity of the GPUs. The use of GPU requires
the rethinking and re-engineering of the problem solution in a SIMD-based programming
model. The results obtained in this part revealed the advantage of GPU-based simulation
over the CPU-based one for large-scale systems. By using single GPU it became possible
to model large-scale systems that take several hours of CPU time in a few minutes. Inte-

grating the IR method with the multiple GPUs was the other achievement of this thesis

111

that not only increased the scale of largest implementable system but also overcame the

limitation existed in the current GPUs.

6.1 Contributions of This Thesis

The main contributions of this thesis are summarized as follows:

e This thesis has a significant practical value. Although transient stability has been
formulated and it has a rich literature resources, in this thesis the effort was to aggre-
gate the abstract of all the required equations, for synchronous machine and network
modeling, and step-by-step numerical methods to solve these equations. Moreover,
in both real-time implementation as well as single/multiple GPU programming the
achieved experiences and difficulties that may exist were clearly explained. This type

of knowledge cannot be usually found in power systems literature.

e The IR method proposed in Chapter 3 showed an efficient performance for both real-
time simulation as well as multiple GPU implementation. Integrating this method
with the slow coherency based partitioning and its implementation on a general pur-
pose state-of-the-art real-time simulator resulted in an inexpensive and efficient real-
time simulator. In the GPU applications, the IR method was also very helpful to
overcome the technology restriction existing in the present GPUs. By the use of this
method it was possible to conduct the transient stability simulation of large-scale

power systems which are modeled in detail.

e The software developed for both real-time simulation as well as GPU application,
is designed in such a way to be easy to expand to include more models of power
system elements in its library. It is also easy in both cases to change the number of

processor nodes or GPUs which are running in parallel.

e This is the first time that GPU is used for dynamic computations in power systems.
This research will introduce GPUs to the power systems experts and inspire them to
use GPUs for other burdensome computations such as load flow and electromagnetic

transient studies.

6.2 Directions for Future Work

This research can be continued in several ways for the transient stability simulation of

power systems. First, the software developed for both real-time simulation as well as GPU

112

codes have the capacity to be further improved. For instance, including more models for
synchronous machines, AVR, PSS, and loads, adding more elements such as protection
devices, as well as the ability for performing various types of contingency studies all are
cases that lead to provide a complete set of transient stability tool. Having this tool and
using the IR algorithm as the core of parallel processing method the general purpose real-
time simulator can be utilized as a real-time transient stability simulator.

It is anticipated that the GPU can play an important role in realizing the ultimate goal of
online or real-time dynamic security assessment in the energy control center. The transient
stability simulation algorithm in this research work employed the implicit Trapezoidal
integration method along with the iterative Newton-Raphson procedure. However, as
reported in Chapter 1, there exist many other possibilities for solving the nonlinear DAEs

applicable to the transient stability problem, such as:
e explicit or implicit integration methods
e iterative and non-iterative solvers
e simultaneous or partitioned solution approaches
e application of sparse methods to solve linear algebraic equations [96].

In addition, it is also possible to implement other parallel processing based techniques to
investigate higher speed-ups. It is predicted that if a method accelerates the CPU-based
simulation, it would also accelerate the GPU-based model, if that approach was efficiently
implemented on the GPU.

Existing real-time simulators used in the power system area are clusters made up of
CPU or DSP based hardware. Each rack of these simulators costs several hundreds of
dollars and are not affordable for all industry and academic customers. Moreover, the
maximum size of the system that can be simulated by a rack of PC-cluster is very limited.
The price of the GPU-cluster is much lower than the PC-cluster simulator while its com-
puting capacity is much higher. Therefore, a worthwhile research goal is to move toward
using GPUs for the real-time simulations. Certainly, GPU has the capacity for this purpose,
but the important points are how to manage or force a GPU code to run in real-time and
second, how to perform the hardware-in-the-loop simulations. The former is mainly the
matter of software development while the later is the hardware issue.

Recently, NVIDIA represented next-generation of CUDA architecture GPUs named

Fermi. The complexity of the Fermi architecture is managed by a multi-level program-

113

ming model that allows software developers to focus on algorithm design rather than the
details of how to map the algorithm to the hardware, thus improving productivity. The
most important difference of this new generation of GPUs in comparison with existing
ones is that Fermi supports simultaneous execution of multiple kernels from the same ap-
plication, each kernel being distributed to one or more SMs on the device. This capability
avoids the situation where a kernel is only able to use part of the device and the rest goes
unused [97]. Exploiting this technology would let us implement a program or task level
parallel transient stability simulation algorithm (such as Instantaneous Relaxation or ILU

methods) on a single Fermi GPU in the future.

114

Bibliography

[1] R. Schainker, G. Zhang, P. Hirsch, C. Jing, “On-line dynamic stability analysis using
distributed computing,” Power and Energy Society General Meeting, Conversion and Deliv-
ery of Electrical Energy in the 21st Century, pp. 1-7, 2008.

[2] EPRI TR-104352, “Analytical Methods for Contingency Selection and Ranking for Dy-
namic Security Analysis,” Power and Energy Society General Meeting, Conversion and De-
livery of Electrical Energy in the 21st Century, Project 3103-03 Final Report, Sept. 1994.

[3] IEEE Std 100, “The Authoritative Dictionary of IEEE Standards Terms Seventh Edi-
tion,” 2000.

[4] H. W. Dommel, “Techniques for analyzing electromagnetic transients,” IEEE Comput.
Appl. Power, vol. 10, Issue 3, pp. 18-21, July 1997.

[5] IEEE/CIGRE Joint Task Force on Stability Terms and Definitions, “Definition and clas-
sification of power system stability,” IEEE Trans. Power Syst., vol. 19, no. 2, pp. 1387-1401,
May 2004.

[6] E. W. Kimbark, Power system stability, vol. 1, New York: J. Wiley, 1948.

[7] M. Pavella, P. G. Murthy, Transient stability of power systems: theory and practice, Chich-
ester, New York: Wiley, 1994.

[8] P. M. Anderson, A. A. Fouad, Power system control and stability, lowa State University
Press, 1977.

[9] P. Kundur, Power system stability and control, McGraw-Hill, 1994.

[10] IEEE Std 1110-2002, “IEEE guide for synchronous generator modeling practices and
applications in power system stability analyses,” IEEE Power Eng. Soc., pp. 1-81, Nov.
2003.

[11] A. A.Fouad, V. Vittal, Power system transient stability analysis using the transient energy
function method, Englewood Cliffs, N.J.: Prentice Hall, 1992.

[12] B. Stott, “Power system dynamic response calculations,” Proc. of IEEE, vol. 67, no. 2,
y y P
pp- 219-241, Jul. 1979.

115

[13] P. M. Anderson, B. L. Agrawal, J. E. Van Ness, Subsynchronous resonance in power
systems, IEEE PRESS, New York, 1990.

[14] M. Sultan, J. Reeve, R. Adapa, “Combined transient and dynamic analysis of HVDC
and FACTS systems,” IEEE Trans. Power Del., vol. 13, no. 4, pp. 1271-1277, Oct. 1998.

[15] T. Berry, A. R. Daniels, R. W. Dunn, “Real-time simulation of power system transient
behaviour,” Proceedings of 3rd International Conference on Power System Monitoring and
Control, pp. 122-127, June 1991.

[16] D. Jakominich, R. Krebs, D. Retzmann, A. Kumar, “Real time digital power system
simulator design considerations and relay performance evaluation,” IEEE Trans. Power
Delivery, vol. 14, no. 3, pp. 773-781, July 1999.

[17] M. O. Faruque, V. Dinavahi, “Hardware-in-the-loop simulation of power electronic
systems using adaptive discretization,” IEEE Trans. Industrial Electronics, vol. 57, no. 4,
pp- 1146-1158, Apr. 2010.

[18] R. H. Park, E. H. Bancker, “System stability as a design problem,” AIEE Trans., vol.
48, pp. 170-194, 1929.

[19] O. G. C. Dahl, Electric power circuits, Vol. 1I: Power system stability, McGraw-Hill, New
York, 1938.

[20] H.H. Skilling, M. H. Yamakawa, “A graphical solution of transient stability,” Electrical
Eng., vol. 59, pp. 462-465, 1940.

[21] M. Pavella, D. Ernst, D. Ruiz-Vega, Transient stability of power systems: a unified approach
to assessment and control, Kluwer Academic Publishers, 2000.

[22] P. L. Dandeno, P. Kundur, “A non-iterative transient stability program including the
effects of variable load-voltage characteristics,” IEEE Trans. Power App. Syst., vol. PAS-
92, pp. 1478-1484, 1973.

[23] N. Stanton, S. N. Talukdar, “New integration algorithms for transient stability stud-
ies,” IEEE Trans. Power App. Syst., vol. PAS-89, pp. 985-991, May 1970.

[24] M. M. Adibi, P. M. Hirsch, J. A. Jordan, “Solution methods for transient and dynamic
stability,” Proc. IEEE, vol. 62, pp. 951-958, July 1974.

[25] H. L. Fuller, P. M. Hirsch, M. B. Lambie, “Variable integration step transient analysis-
VISTA,” Proc. IEEE PICA Conf., pp. 156-161, 1973.

[26] W. D. Humpage, K. P. Wang, Y. W. Lee, “Numerical integration algorithms in power-
system dynamic analysis,” Proc. Inst. Elec. Eng., vol. 121, pp. 467-473, 1974.

116

[27] G. Kron, “Diakoptics-piecewise solutions of large systems,” Elect. |., London, vol. 158-
vol. 162, also published by McDonald, London, 1963.

[28] M. La Scala, M. Brucoli, F. Torelli, M. Trovato, “A gauss-jacobi-block-newton method
for parallel transient stability analysis,” IEEE Trans. Power Syst., vol. 5, no. 4, pp. 1168-
1177, May 1990.

[29] M. L. Crow, M. Ilic, “The parallel implementation of the waveform relaxation method
for transient stability simulations,” IEEE Trans. Power Syst., vol. 5, no. 3, pp. 922-932,
Aug. 1990.

[30] M. La Scala, R. Sbrizzai, F. Torelli, “A pipelined-in-time parallel algorithm for tran-
sient stability analysis,” IEEE Trans. Power Syst., vol. 6, no. 2, pp. 715-722, May 1991.

[31] F. L. Alvarado, “Parallel solution of transient problems by trapezoidal integration,”
IEEE Trans. Power Appar. and Syst., vol. PAS-98, no. 3, pp. 1080-1090, May /June 1979.

. Shahidehpour, Y. Wang, Communication and Control in Electric Power Systems: -

[32] M. Shahidehpour, Y. Wang, C jcati dC I in Electric P Sy Ap
plications of Parallel and Distributed Processing. New Jersey, US: John Wiley and Sons,
2003.

[33] M.]. Flynn, “Very high speed computing systems,” Proc. of the IEEE, pp. 1901-1909,
Dec. 1966.

[34] H.H. Happ, C. Pottle, K.A. Wirgau, “An assessment of computer technology for large
scale power system simulation,” Power Industry Computer Applications Conference, pp.
316-324, May 1979.

[35] F. M. Brasch, J. E. Van Ness, S. C. Kang, “Simulation of a multiprocessor network for
power system problems,” IEEE Trans. Power App. Syst., vol. PAS-101, no. 2, pp. 295-301,
Feb. 1982.

[36] S.Y.Lee, H. D. Chiang, K. G. Lee, B. Y. Ku, “Parallel power system transient stability
analysis on hypercube multiprocessors,” IEEE Trans. Power Syst., vol. 6, no. 3, pp. 1337-
1343, Aug. 1991.

[37] H. Taoka, S. Abe, S. Takeda, “Fast transient stability solution using an array proces-
sor,” IEEE Trans. Power App. Syst., vol. PAS-102, no. 12, pp. 3835-3841, Dec. 1983.

[38] M. Takatoo, S. Abe, T. Bando, K. Hirasawa, M. Goto, T. Kato, T. Kanke, “Floating
vector processor for power system simulation,” IEEE Trans. Power App. Syst., vol. PAS-
104, no. 12, pp. 3361-3366, Dec. 1985.

[39] P. Forsyth, R. Kuffel, R. Wierckx, J. Choo, Y. Yoon, T. Kim, “Comparison of transient
stability analysis and large-scale real time digital simulation,” Proc. of the IEEE Power
Tech., vol. 4, pp. 1-7, Sept. 2001.

117

[40] NVIDIA, “NVIDIA CUDA Programming Guide,” June, 2008.

[41] S. C. Savulescu, Real-time stability assessment in modern power system control centers,
IEEE Press Series on Power Engineering, 2009.

[42] R. Krebs, E. Lerch, O. Ruhle, “Blackout prevention by dynamic security assessment
after severe fault situations,” CIGRE Proc. on Relay Protection and Substation Automation
of Modern Power Systems, pp. 1-9, Sept. 2007.

[43] J. I. Mitsche, “Stretching the limits of power system analysis,” IEEE Computer Appli-
cations in Power, pp. 16-21, Jan. 1993.

[44] G. Aloisio, M. A. Bochicchio, M. La Scala, R. Sbrizzai, “A distributed computing
approach for real-time transient stability analysis,” IEEE Trans. Power Syst., vol. 12, no.
2, pp- 981-987, May 1997.

[45] F. F. de Mello, J. W. Felts, T. F. Laskowski, L.]J. Opple, “Simulating fast and slow
dynamic effects in power systems,” IEEE Computer Applications in Power Syst., pp. 33-
38, July 1992.

[46] Y. Chen, C. Shen, J]. Wang, “Distributed transient stability simulation of power sys-
tems based on a Jacobian-free Newton-GMRS method,” IEEE Trans. Power Syst., vol. 24,
no. 1, pp. 146-156, Feb. 2009.

[47] IEEE Std 421.5-2005, “IEEE recommended practice for excitation system models for
power system stability studies,” IEEE Power Eng. Soc., pp. 1-85, Apr. 2006.

[48] W. Janischewskyj, P. Kundur, “Simulation of the non-linear dynamic response of in-
terconnected synchronous machines, Part I- machine modeling and machine-network
interconnection equations,” IEEE Trans. Power App. Syst., vol. PAS-91, no. 5, pp. 2064-
2069, Sept. 1972.

[49] IEEE Task Force on Computer and Analytical Methods, “Parallel processing in power
systems computation,” IEEE Trans. Power Syst., vol. 7, no. 2, pp. 629-638, May 1992.

[50] J. R. Gurd, “A taxonomy of parallel computer architectures,” Proc. of International
Conference on Design and Application of Parallel Digital Processors, pp. 57-61, Apr. 1988.

[51] L.-F. Pak, M.O. Faruque, Xin Nie, V. Dinavahi, “A versatile cluster-based real-time
digital simulator for power engineering research,” IEEE Trans. Power Syst., vol. 21, no.
2, pp. 455-465, May 2006.

[52] J. K. White, A. L. Sangiovani-Vincentelli, Relaxation techniques for the simulation of VLSI
circuits, Kluwer Academic Publisher, Boston, MA, 1987.

118

[53] N. Rabbat, A. Sangiovanni-Vincentelli, H. Y. Hsieh, “A multilevel newton algorithm
with macromodeling and latency for the analysis of large-scale nonlinear circuits in the
time domain,” IEEE Trans. Circ. and Syst., vol. 26, no. 9, pp. 733-741, Sept. 1979.

[54] J. M. Ortega, W. C. Rheinboldt, Iterative solution of nonlinear equations in several vari-
ables, Academic Press, 1970.

[55] A.R. Newton, A. Sangiovanni-Vincentelli, “Relaxation-based electrical simulation,”
IEEE Trans. Electron Devices, vol. 30, no. 9, pp. 1184-1207, Sept. 1983.

[56] H. H. Happ, “Diakoptics-the solutions of system problems by tearing,” Proc. of the
IEEE, vol. 62, no. 7, pp. 930-940, July 1974.

[57] W. L. Hatcher, E. M. Brasch, J. E. Van Ness, “A feasibility study for the solution of
transient stability problems by multiprocessor structures,” IEEE Trans. Power Appar.
Syst., vol. PAS-96, no. 6, pp. 1789-1797, Nov./Dec. 1977.

[58] S. Y. Lee, H. D. Chiang, K. G. Lee, B. Y. Ku, “Parallel power system transient sta-
bility analysis on hypercube multiprocessors,” IEEE Proc. of Power Industry Computer
Applications Conference, pp. 400-406, May 1989.

[59] J. S. Chai, N. Zhu, A. Bose, D. J. Tylavsky, “Parallel newton type methods for power
system stability analysis using local and shared memory multiprocessors,” IEEE Trans.
Power Syst., vol. 6, no. 4, pp. 1539-1545, Nov. 1991.

[60] M. La Scala, A. Bose, “Relaxation/Newton methods for concurrent time step solution
of differential-algebraic equations in power system dynamic simulation,” IEEE Trans.
Circ. Syst., vol. 40, no. 5, pp. 317-330, May 1993.

[61] M. La Scala, G. Sblendorio, R. Sbrizzai, “Parallel-in-time implementation of transient
stability simulations on a transputer network,” IEEE Trans. Power Syst., vol. 9, no. 2, pp.
1117-1125, May 1994.

[62] E. Lelarasmee, A. E. Ruehli, A. Sangiovanni-Vincentelli, “The waveform relax-
ation method for time-domain analysis of large scale integrated circuits,” IEEE Trans.
Computer-Aided Design of Integrated Circ. and Syst., vol. 1, no. 3, pp. 131-145, Jul. 1982.

[63] M. llic-Spong, M. L. Crow, M. A. Pai, “Transient stability simulation by waveform
relaxation methods,” IEEE Trans. Power Syst., vol. PWRS-2, no. 4, pp. 943-952, Nov.
1987.

[64] M. L. Crow, M. Ilic,]. White, “Convergence properties of the waveform relaxation
method as applied to electric power systems,” in Proc. IEEE Conf. on Circuits and Systems,
May 1989.

119

[65] M. L. Crow, “Waveform relaxation methods for the simulation of systems of differen-
tial /algebraic equations with application to electric power systems,” Ph.D. Dissertation,
University of Illinois at Urbana-Champaign, 1990.

[66] L. Hou, A. Bose, “Implementation of the waveform relaxation algorithm on a shared
memory computer for the transient stability problem,” IEEE Trans. Power Syst., vol. 12,
no. 3, pp. 1053-1060, Aug. 1997.

[67] J. Sun, H. Grotstollen, “Fast time-domain simulation by waveform relaxation meth-
ods,” IEEE Trans. Circ. and Syst., vol. 44, no. 8, pp. 660-666, Aug. 1997.

[68] B. A. Carre, “Solution of load-flow problems by partitioning systems into trees,” IEEE
Trans. Power App. Syst., vol. PAS-87, no. 11, pp. 1931-1968, Nov. 1968.

[69] P. Podmore, “Identification of coherent genrators for dynamic equivalents,” IEEE
Trans. Power App. Syst., vol. PAS-97, no. 4, pp. 1344-1354, Aug. 1978.

[70] P. Podmore, “Identification of coherent genrators for dynamic equivalents,” IEEE
Trans. Power App. Syst., vol. PAS-97, no. 4, pp. 1344-1354, Aug. 1978.

[71] S. B. Yusof, G.J. Rogers, RT.H. Alden, “Slow coherency based network partitioning
ncluding load buses,” IEEE Trans. Power Syst., vol. 8, no. 3, pp. 1375-1382, Aug. 1993.

[72] M. H. Haque, A. H. M. A. Rahim, “An efficient method of identifying coherent gener-
ators using taylor series expansion,” IEEE Trans. Power Syst., vol. 3, no. 3, pp. 1112-1118,
Aug. 1988.

[73] N. Muller, V. H. Quintana, “A sparse eigenvalue-based approach for partitionin
p g PP p g
power networks,” IEEE Trans. Power Syst., vol. 7, no. 2, pp. 520-527, May 1992.

[74] P. G. McLaren, R. Kuffel, R. Wierckx, J. Giesbrecht, L. Arendt, “A real time digital
simulator for testing relays,” IEEE Trans. Power Delivery, vol. 7, no. 1, pp. 207-213, Jan.
1992.

[75] D. Par, G. Turmel, J.-C. Soumagne, V. A. Do, S. Casoria, M. Bissonnette, B. Marcoux,
D. McNabb, “Validation tests of the hypersim digital real time simulator with a large
AC-DC network,” Proc. Int. Conf. Power System Transients, New Orleans, LA, pp. 577-
582, Sept. 2003.

[76] H. W. Dommel, “Digital computer solution of electromagnetic transients in single
and multiphase networks,” IEEE Trans. Power App. Syst., vol. PAS-88, no. 4, pp. 388-399,
Apr. 1969.

[77] J. S. Chai, A. Bose, “Bottlenecks in parallel algorithms for power system stability
analysis,” IEEE Trans. Power Syst., vol. 8, no. 1, pp. 9-15, Aug. 1993.

120

[78] H. You, V. Vittal, X. Wang, “Slow coherency-based islanding,” IEEE Trans. Power Syst.,
vol. 19, no. 1, pp. 483-491, Feb. 2004.

[79] MATLAB User Guides The MathWorks Inc., Natick, MA..

[80] X. Wang, V. Vittal, G. T. Heydt, “Tracing Generator Coherency Indices Using the
Continuation Method: A Novel Approach,” IEEE Trans. Power Syst., vol. 20, no. 3, pp.
1510-1518, Aug. 2005.

[81] V. Jalili-Marandi, V. Dinavahi, “Instantaneous relaxation based real-time transient
stability simulation,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1327-1336, Aug. 2009.

[82] D. Blythe, “Rise of the graphics processor,” Proc. of the IEEE, vol. 96, no. 5, pp. 761-778,
May 2008.

[83] J. D. Owens, M. Houston, D. Luebke, S. Green,]. E. Stone, J. C. Phillips, “GPU com-
puting,” Proc. of the IEEE, vol. 96, no. 5, pp. 879-899, May 2008.

[84] E.Lindholm, J. Nickolls, S. Oberman, J. Montrym, “NVIDIA Tesla: a unified graphics
and computing architecture,” IEEE Micro, vol. 28, no. 2, pp. 39-55, Mar./ Apr. 2008.

[85] M. Pharr, GPU Gems 2: programming techniques for high-performance graphics and general-
purpose computation, Addison-Wesley Professional, 2005.

[86] A. Gopal, D. Niebur, S. Venkatasubramanian, “DC power flow based contingency
analysis using graphics processing units,” Proc. of the IEEE Power Tech., pp. 731-736, Jul.
2007.

[87] NVIDIA, “CUDA CUBLAS library,” Mar. 2008.

[88] M. Garland, S. Le Grand, J. Nicolls,]J. Anderson, J. Hardwick, S. Morton, E. Phillips,
Y. Zhang, V. Volkov, “Parallel computing experiences with CUDA,” IEEE Computer
Society., vol. 28, no. 4, pp. 13-27, Jul./ Aug. 2008.

[89] PSS/ET™ 31, Program Application Guide, Dec. 2007.

[90] D. N. Ewart, E. D. deMello, “FACE: a digital dynamic analysis program,” Power
Industry Computer Applications Conference, pp. 1-8, Sept. 1967.

[91] NVIDIA, “Specification: Tesla S1070 GPU computing system,” Oct., 2008.

[92] A.Cevahir, A. Nukada, S. Matsuoka, “Fast conjugate gradients with multiple GPUs,”
Computational Science, Springer Berlin / Heidelberg, pp. 893-903, May 2009.

[93] Visual Studio Developer Center, http://msdn.microsoft.com/en-us/library/

[94] BOOST C++ Libraries, http://www.boost.org/

121

[95] Y. Saad, Iterative methods for sparse linear systems, Society of Industrial and Applied
Mathematics, 2003.

[96] M. Wang, H. Klie, M. Parashar, H. Sudan, “Solving sparse linear systems on NVIDIA
Tesla GPUs,” Computational Science - ICCS 2009, Springer Berlin/ Heidelberg, pp. 864-
873.

[97] P.N. Glaskowsky, “NVIDIAs Fermi: The first complete GPU computing architecture,”
A white paper prepared under contract with NVIDIA Corporation, pp. 1-26, Sept. 2009.

122

areal.c S-function Complete Source Code

This is the main S-function program that implements areal.c S-function initialization,
simulation loop, and output.

123

/¥

(0 ‘0 ‘s)ybnoayrpesigzositqirogindurlosss

eaIe pu,z JO sasqunu-dI//¢(3no" N ‘z ‘S)y3ipTmizoginduIlilssss
ZeTdr//*(Ino”Nxz ‘T ‘S)Yy3IpTM3zodindurissss
zZeTn//f(3IN0TN*9 ‘0 ‘S)U3IPTM3IzOqIndurlssss

‘fuaniex ((g ‘s)s3zoginduIwnNiSSssi) FT

{
fuiniax
} este |

{

/* quTTnwts Aq pelrodsx oq TTTM UDJeWSTW Idjawered x/

fuinjeax
} (TION =i (S)sSn3e3siorigienss) It
! (5) sIs3aweIedyosy)Tpu
} ((S)3unopsweiedqudoisienss == (S)sweiredudjsunyNisgss) IT
siojawered pejoadxe JO IaqunN ¥/ ! (SWYMVAN ‘S) SWeIedqudiSwnNlasss

{TeTN-N=3In0 N

}

(S¥ JONIISWTS) SOZTSSZTTRTITUITPY PTOA DTIe3S
/*

*SI0309A snoTiea 8yl JO S9ZTS Qﬂuwm *
:130BI3SqAY *

S9ZTS9ZTTeTITUITPW :UOTIOUNS */

[¥================x

/¥ SYILANYIVd MOHEHO TAW */ JTpus4
{
}
(S* 1ONIJSWTS) SISIDWEILINOSYDTPW PTOA DTS
/*
sAexo o1e Aoyl AJTaea 03 siojsweaed INo 93EPITEA *
$310eI3SqyY *

{[T+N]OT

fLT+TeN] [6]TPT X

‘IT+Nla

SI9]oWeIRINOSYDITPW :UOTIOUNT */
AmMMHmz<m<m\MUMMU\QDEPU®GmeU IT#
SYHLAWYIVYd MOHHD TAW SUTISpP#

/ ¥
¥ Spoy3leaW UOTIOUNI-S *
*/
0 SHYIVIN SUTISp4#

(FTI4 XIW dYILVW) PSUTISp 3%//

{ANOT N IUT OT3e3s

fgdxd ou ‘Xd ‘sd ‘ewry 3UT OT3Iels

‘lr+nlon ‘[T+Nlsn ‘[T+N]p0 “[T+N]l€n ‘[T+N]lZn ‘[T+N]Tn 3BOTF DT3R3S
flT+1eTNI[6]aa™2 “[T+Te Nl [6]2PT X “[T+T° N] [6]TPT T 320TI OT3e3s

‘[T+1e Nl [61PFo 1 ‘[T+Te Nl [6]PIT 1 ‘[T+Te N][6]1917 % 320TF OT3IE3S

{[1+7e7Nlsng snd 3ona3s OT3e3ds
{[T+1e N]USD SUTYORW 23ONI3S OTIRIS

‘af
f[T+N] [T+N]33sod jeoT3
f[T+N] [T+N]2ATORT 2EOTT
f[T+N] [T+N]322d 3POTZ
}g 2onxas

‘51
{[T+N] [T+N] 33sod 3eoT3F
S[T+N] [T+N]3TnET 3EOTT
f[T+N] [T+N]322d 3eOTT
}9 30oni3s

1
Rt

‘OA ‘an 3eoTI

‘31 ‘OI ‘dr 1eols
}sndg 3onais

!

fssd ‘oxdE

futw sa ‘xXeu sa ‘z1
fuTur pIN

‘TL ‘M1 ‘qeasy 2
‘xeuw pId ‘4l ‘¥ 23
tzbt7ead ‘Tbrt ead ‘TpT @ad ‘pjs sad ‘pIT =ad 13
fiynTead ‘o1 ead 3

tepoad ‘gzpaead ‘Tpa ead 3
‘1psTeoad ‘pgys ead ‘dris ead ‘e3rep =ad 3
senTea dels SWT] SNOTAD

!zbsTaad ‘1bsTaad

{oesTbeT ‘oesTpe1 ‘gby ‘tby ‘1py ‘pIy ‘gb1 ‘1bT ‘TpT ‘p3T ‘bel ‘pel 1
suezed pIepPUER]S SY} UO pPaseq Ps3eTnoTed aIe YoTym siajswered Tejuswepu
‘a ‘"3
‘zn ‘1o
Im

‘30 ‘a4 ‘wr ‘sl 1

‘sby ‘spa 3

!‘be”s ‘peTs 3

‘I9Ip ‘P3E ‘PIS ‘PIT 2
fan ‘ba ‘pa ‘BT ‘pT 3
‘Tps ‘pzs ‘drrs ‘e3fep 1
senTea uUOT3LILQT 23S

f9n ‘gn ‘pn “‘¢n

{zbt ‘1bt ‘1pT

‘en 'zn ‘TN ‘Zbs ‘1bs

Jut

eoTT
eoT3

°OTT
eOTJ
eoTJ
©OTT
ad//

eOTT
ni//
eoTJ
BOTT
'OTT
eoTJ
eoTJ
BOTT
eOTT
eoTJ
eoTJ
e1//

}euTtyoew 23dONI3s

sIojeIsuUsh TeUISIXS JO IaquNu PI SYL//{0T‘L’‘9'G’'k‘c’‘Z} =
0 sAemTe ST suo 3sITI ayl//
‘eeIe STY]1 UT siolersusb JoO Iaqunu pPI aYyl//?{6‘8‘1‘0} =

[lzeTsusn 3u
[1susn 3u
<y-otpis>

ZUOT1eINP+TUOTIRIND UOTIRINnp
0T zuotr3ieanp
y/T Tuot3IeANp

0G*Tdxz um
10°0 U

600 uortsds
G9z6STPT € Td

sesxe SpTsS3ino [T JO Isqunu Te303 ayl// ¢ ¥ O N
eaIe STU]} UT sIoleIauab Jo Iaqunu ayl// € T N
sI1ojeIsusb TTe JO Iaqunu Te303 9yl// 0T N

/¥ €37104 Indul o3 I°3UTOd */ ([JuswaTa] €sa2dn+) (JuswaTad) e wnu gl
/* €3304 andur o3 Is3uTOod x/ ([FusweTa]zsaidgnx) (uswsTes)ze I
/* 03x0d 3andul 03 I®3juTOod */ ([JuswaTa] [sI3dnx) (JuUswsT3a)ze n
R I N I
WUCOonIsuTS,
<y-burais>

¢ TIAIT_NOILONNJIS
TeeI® FWYN NOILIONAA S

*IeUD OYY AHdd
T aNF N
WU TTINAU,
<y y3leu>
<Y qTTPIS>
<U‘3opp3Is>
<y‘oTp3s>

SOTTJ pexTnbex 93eisusb 03 uni g Isnw W UTWT
‘jew-XTIJeW X Se IS9PTOJ oYyl UT paaARsS 9C ISNW XTIJeu 20UeITUp
seare z utr 1snl we3lsAs oyl butuoriTized I0J ST UOTIOUNTS

STTJI Xaw 8yl a3e
©aIP STY1 UT SSUTYDRW JO SISqUNU-PT 9yl YITm AeIIe sus9 ayl o
¥ ON ‘TETN
HWYN NOILIONAA S 8y

‘sweu Isyjoue Y3iTMm STTF STY3 ,SE
1ea2Ie M3{U B

o-zesxe b e

T otr3e3s
T oT3E3S
SpnTouTH

SuUTIoP#
suTIeD#
suTIeP#

SuUTIop#
SuTIepP#
suTIepP#
suUTIoP#

SuTIeP#
suTIoP#
suUTIop#

SUTISP#
SUTISP#
SUTIopP#
Axxxxxx/
epnTouTH
SpnTouTH

SUTIoP#
suTyep#

auTIep#
SuTIOpPH#
SPnTOUTH#
SpNTouUTH
opnTouUT#
opnTouUTH
SpnTouTH
/*
s pue
e oyl x
STUL *

ISUSD ¥
Jepdn *
N 385 *
3 3ISS *
anes, x
aew o

x

~&

OO HIO\O DN 0N

o "eoJge

124

‘zn = [Tlen
AN 10€ R I T T
(s rons T 008 PR P
qe33 ‘9Nz ‘qedn ‘gny ‘qe3s pny /qels ‘cns ‘qess ‘zns‘qe3s In 66C BXTRLHRRL G SSOTIREN BUTTT T DU SST13 furpess
‘qeqs ‘sbax ‘qe /9e13 4303 ‘qe33 /143 ‘qed® :ﬁw\pmﬁ\mﬁw 86¢ A TSRl S/
g SRS S R A o ek et ;- e
‘oqean ‘qe3s . 5 ; 3‘3d3‘qeln ‘pIen‘qein’ 10 = eut
qe3x m>wﬁm$&5\Qmu??wdmuwdwg\Qmu%Mm@%Mquﬂ%mew%ﬁ;Qmue&\édmuw ﬁg&gwu%wm G6¢ 0 T3
7 ; T
) 3% ‘p3Isy Qmuw\aﬂamwmmeMhmuwmv¢ mmw ‘dyx "TIa
2DeTeDeTeDeTeDeTeDe IO nu
(oL IO IORI 004 I 04T H04I 04T A0LTAOILOY 433043 [fonranpElEnIgh Iy ees
/wwowwwowmwwo 195575 $3%$0%F%0%F$0%FO$TIEO$ISOLILO%TIL0%ISO% Jaon Lec {30734 "Wl ‘L 320
3F%0%3F% awoogwmoomwomo.ww.wowuwwowwwowwwowwpowmwwwmaodfwcwomw 06¢ mmmm‘mﬁm\wmu\f@mm\nmm umOMw
FO%FISO%P%Su tzbT/1bT
Tt ua%a WA++M“H+ZVﬂNHnHvuow mmw : o wnM;mmmemwwameM 1eot3
EAPETEM -oTeoss,) uadoz=d fentzalTat FIbT 3EoT3
n WDHW %mw za'TA‘zbs ‘1bs ‘Tps ‘pIs ‘dTTs ‘eaTep 18011
14 S8C SuTW PRS- {Ssd ‘D™ 3UT
£ (d3)esoTo3 fos fuTWTSA ‘xeuTSA ‘gl ‘TI ‘ML ‘Qeasy 1eo0T3
{ €8¢ fs~oby ‘d~obr ‘sTopr ‘d~ fUTWPIE (XU N1t
pI ‘d o i J PId ‘YL ‘¥ 3eo
) . { mmw Pl ‘ey ‘Tx ‘sbx ‘spx ‘dbx ‘dpx ‘bx ‘px umOMw
fo=uTu " sa- [[JusH ‘a ‘g jeory
f0=xew"sA 08¢ fumnu—
} (0==5s4d"° [[]uen @M HuMoxm._ngcwwm W”mmemA mmN “QEmUowmwmw
UTW SA=UTW SA- [[]usD LT Y/CYT aut
’ . — : v b
Ixew m\wnAMWEmmw mwmmwv %MM {qe3 aeyo
== D) IT
fssd = ssa-[(wmw (S 39NIISWTS) ITLASTPU PTOA oAumuw
- = d- Jusn /*
Oxa = oxa [f €L¢ 20eTd 8y3 ST STyl ‘80 3T op ©
. [hiueo 1974 nok 31 .:oﬂu:uwstﬂwnoE:MOﬁwmMamjﬂ:ﬂ oq prnoys 3eys sa3eds w>mw :
, t71=71° [Clues fT1=T1° [[]uo 142 3S 3B 9OUO PITTEO ST UOTIDUNF STUL
MI=Mm1° [C]ueD fqeasy=qeasy: ?_cow 042) 130®eI3SqY ‘
SUTW PII=UTU | . _) 69C JIBASTPW :UOTIOUNZ
Hi pIEmIT BIE ﬁﬁgumw\mxwamvumnxmawnum.ﬁﬂg:ww 89¢ /% UOT3OUNI SAOWSI 03 Fopung 03 b Aammwmlqazvvwzﬂwmﬁ*Wﬂ*
P fNI=v1° [(Jueo fyy=vi' [[]JueD £9T ueyp x/ IYVIS TAW SUTISPH
Uﬁﬁmvm.“wwmww“ﬁw+Aqu.Hﬂ_:mu\ﬂv+ﬁvmq.ﬁmgcmu\ﬁv'\ﬁ ossTbet" [(&t X
! ()+ . oL = o ! (g)e0u
{ (axs—ob (p31° [E1uen/T) + (peT* [Cluen/T)) /T = uwm\nmm.mwwmww $9C BITIBYUTITNRFEqRUT 1 TdWRSa0USISIOYTOPONIDSSS
1)/ (((1BT" [(]uen+beT [(]us : €9z ‘(0"0 ‘0 ‘s)swrraes
[flus9) /1bT" [C]usoxbeT: [! ! o lGuoaages
{(gMxrsT ! (amxd”ob b- Juen) +gb1- [[]uen) = gby- [[]uey [24 f(4 ‘0 's)eurrerdwesiesss
b1 / (((PFT- [(10004DeT- []1055) sbams 16 Tusbhoia i haay toe . tElus0) = Touiiriueo 19¢ (s% 30m1 }
NAmz*grova*wmq wﬁw:mwv+ﬁﬁq.ﬁﬂ_:mov = 1py- [[Juen 09¢ ASWTS) SSUTLSTAWRSSZTTRTITUITPW PTOA DT3E3S
/(P31 [F1usp+pet: [[]usd) = pra- [[Juss oer “300Tq BUTATIP Y3 woij owrty oTdues Ino 1 . o
L((1bT" [[lusn+beT" [[]us: . ST om e Arirosds M
£ 9) * (Tx-sbx) —1bT" [. LST i9
/ (Tx-sbx) xTbT" [C : [[Juspxber- [[]usD) s9 I3oBIISAY *
(p371° [C g:moiomqﬂ_mgﬂw,wwﬂmmw@mmm?mm_mww.nﬁ qu. [C]usH mmw wTLoTdwessz TTeTITUITPW :UoTIoUNT */
/ (Tx-spx) *xpIT1- [[]ue N cww*nmq._m_:wo
¢ (Tx+dbx-beT" [{ oxpeT- [[]usn = 1pT° [[]us vae (a0 - I
Nﬂﬂx+mnx|Umm.mw“mww'\Mﬂx mvxv*@mq [CJusD = TbT" [[w:mw €5C onm@qmowm HIIM JTL FSO°NOLLAC S5
! / (Tx-dpx) xpe1- [[Juen = pFT-[[]usn [4°4 | 4000 ITIL NOILJIOXHT NOILJO SS
{1x - bx = b s %mw / ASNEYAA0D HITM SMHOM NOTL40 S
! - = beT* [[Jusn ¥ 0 oop T1dwijunjis 99s - ‘g) suo
fTx - px = pe1’[[]usy mwN ’ ®poo 213 uor3ideoxe buthyrosds :wr_wkumwummwwmwm
!spx=sbx BWM /
(0 ‘s)s
‘4= q-[C]us 9T §) $07paTdwesUONUNN3ISSS
! 1) ore (0 ‘S)SOPONWNNISSSS
‘g = H [[lueo (0 “s) a0,
ve M , MJWNN3IDSSs
140l €re MMW \m“Mwmmemmmemm
es1e STU3 UT S } ([3] susn==wnu q1 e ! ! 5
r sepn{ouT Iequnu QI STY3 YITM UTUORW Y7 meWCWMUwgo\\ %«N eaIe STU} UT opPNTOUT sioleisausb JoO (T ‘s)sswrlsTdweSWNNISSSS
peSE AN ji4 Tequnu-qr// ¢ (127N
£ (qean ‘s9an ‘qean _ (4434 T+Te N>Y ! T=Y) 103 _ _ © 127N ‘8 ‘S)u3lpTMilzodindinols
QB33 “OXES ‘qRAR UTW SAR ‘RIS ‘XeWTSAS QeI ‘718 ‘qedy L TLF ‘qels MLy ¢ , mmw TeT9n ‘TeTgn ‘Tepn ‘Teen ~Wm\wm wm mw“wwMﬁm e ‘Los)yua B TiaroaandIngassss
JoeAR {UTWDIES fqRIR KR qe3s ‘qe3syy ; *9 ‘9 ‘s)u3aprmMizogindinois
qone Yo—of wTpFEy Qs MLy qedy LEC n//i(TeTN ‘G Ox5ges
‘qeas feun 1qeas S TxD *qBas /S m_oﬁdmw%arovidmu%m\onidmﬁdromm% 9€e 1)) (N 1 M Tedandangaases
pxx ‘gqeds ‘dbxy ‘qeds ‘dpxx ‘qels ‘bxs ‘qedx ‘px Gee 11774 (Te N ‘e ‘S) 31043nd3no3agss
‘qean ‘ge’ 0xs 414 A/ (TN ¢ UY3IPIMITOJINAIN0ISSSS
, PEAC O R €67 p3a/ ¢ (1o N ¢ mwﬁﬁzﬁoiauzoﬁmmm
904P303P05T%0%71%05750%T%057% u daIs (1o i
NETPIN S S S B B B SNSRI al) IR iy G eATeR//f (T8N "0 vmumﬁmwummwmmemwwmmm
233057%03730%33057%05F%0%D3, /dJ) Jueos] oce FERe1 T (6 o) sadodandanonnnaosss) 31
I T
oz pxuﬁmg A++MMH+ZV..n.TﬁH..Cuow 62¢ , ,
FEREN wered Go9,)uado=d; grg (0 ‘s)S23E3ISOSTQUNNIISSS
10=C e (0 “S)S238353IUODWNNIDSSS
sIo03eIBUSY -T// rad ‘(o ! b
‘0 \m \mwg@:ousHUmmMUUmuHouuomu:mcHummmm
S) ybnoIyrpeed30e11qlrodinduriasss

125

{(1’s) TeubtsTESY3II0g3INdIN03L9Ss = TAx I Teax £S¥
{(0’s) TeubTsTESYII043INdIN0ILSISS = 0&* I Tesx TSP {
}o1gy ‘3a° [[Jusn = 3a~ead: [[Juen
(PT3 I73uT ‘S* 30onajswts)sindinoTpw PTOA OT3IRIS (GF ‘bt [[Jusy = gbr7aad: [[Jusp
/* 6bF = tbt ead- [[]usp {1pTr [Cluen = TpT ead- [[Juen
130BI3ISAY * QFF = p3ye~ead- [[Jusn ‘pyT-[[]uso = pIT _@ad: [[Jusn
sand3inQoTpw :uotiound x/ /i a1 [[Jusen = a1 =ad- [[]usn
9y {
{ S¥vp ‘0 = ga"ead- [[Jusy
} PR ‘0 = za“ead- [[Jusy
(S* 3IONIISWTS) SUOTATPUODSZTTLTITUITPW PTOA DTIeIS CFf 1At [[]uso = 1A ead- [[Jusn
/x Ty } (0==ssd- [C]us 3% T==0x""[[]u®D) JT osTa{
“9UO 0] S931B1S 919I0STP Y3IOQq 9ZTTRTATUI * IF fepn [Clusn = gaoad- [[Jusny
t31oeI3sqvy * (OFF fzn [Llusn = ga~=ad- [[Jusy
SUOTITPUODSZTTRTITUITPW :U0TIOUNI */ 6CF 1At [CJusd = A~ @ad: [[usy
SNOILIANOD HZITYILINI TAW SUTISP# QeF }(T==ss4" [[]ueD) 3IT
V254 {zbs* [[Jusen = zbs aad: [[]usy !1bs* [[Jusn = tbs™aa1d-* [[]usy
/* IdVISTTAW */ JFTPUS4 9¢f {tps: [[]Jusp = Tps”=ad: [[]usH ‘pgs- [[]usy = p3ys~=ad- [[]usH
{ gev {drys- [[lusp = drrsTead: [[Jusy fe3rep- [[Jusn = e3rep =ad- [[Jusp
! (dy)esotrol 254 sentea deils swrl snotasad//
{ (354
{ 454 f9n = gn- [C]uen
{dus3=[[][T]JF3sod" g 1k ‘gn = gn- [[]uso
{(qe3n ‘dwsln /,0%3%, ‘dF) JueOST ogh ‘yn = pn- [[]usy
}(++CfT+N>C 2 1=0) 307 6CF ‘en = gn- [[]usy
P(++TAT+N>TT=T) 70T §TF fzn = gn-[C]usy
f(uTu’u3x3 33s0d g,) uedoz=dz LTh {In = Tn- [[Juen
9Ty
{(d3)eso1o3 GTF 30 = 30" [[]ued
LS 74 4 {34 = 3a-[[]uen
{ [ovs2 ‘wup = wr- [[Juen
‘dwsy=[(] [T]3TneI"g f44 fo1 = a1 [[]usn
{(qe3n ‘dwusln /,0%3%, ‘dy) Juedsy 1%
}(++0fT+N>C i T=0) 303 0ch !sbg = sbm- [[]uen
P(++TIT+N>TT=T) 07T 617 !spg = spa- [[]uen
f(uTy'w3IX373TNRITd,) usdog=dy QI¥ {391p = 39ap- [[]usn
L1¥ !‘bes = be~s* [[]Juen
{(dy)esor21 91% ‘pes = pe~s-[[]usy
{ aiy
{ ¥1¥ ‘gbt = ¢b1- [[]us
‘dusy=[[] [T]I9ad g C1¥ {1bt = b1 [[]usH
{(qe3n ‘dwe3ls ‘,0%3%, ‘dy) Jueosy [45% {TPT = TPT" [[]usH
} (4L T+ fT=0) 307 11 ‘38 = p3da- [(Jusn
}(++T4T+N>T4T=T) 3101 QIF ‘pye = pgo-[[]usn
f(wTa'u3x31391d7g,)usdog=ds 607 ‘P31 = pIT- [[Jusd
seoTajew 9 -// Q0%
Wi ! (paxpa+baxba)1abs = 3a- [[Jusn
{(dy)esoro7 90% ! (pI¥pI+bIxbr)2abs = 31°[[]snqg
Qv ‘pr = ar-[C]sng
{ 0¥ *Jax jaomisu//!br = 01°[[]lsng
{dus3=[[][T]F3sod D iz ‘pa = pa-[[]uen
{(qea1n ‘due3n ‘,0%3%, ‘dJ) Jueds] 07 !ba = ba- [[Jusn
P(++0fT4N>C47=0) 107 10¥ ‘pT = pr-[[]usy
P(++TIT+N>TIT=T) 307 0% *Fox x030x //!bT = bT[[]uey
{(uTu’u3Ix3 33s0d 9,) usdoz=d3 66€
86€ fen = gat [Cluen
{(dy)esor21 /6€ fza = zat[C]usn
{ 96€ {18 = TA"[C]usn
{ S6€ izbs = gbs* [[]us®
!dwe3=[L] [T]3TnRI" D ¥6€ {1bs = 1bs-[[]usn
{(qe3n ‘dwels’,0%3g, ‘dy) Juedsy €6€ {1ps = 1ps- [[]us
P(++0fT+N>C 4 T=0) 07 76€ !pFs = p3ys-[[]uen
PH+TITHN>TIT=T) I0T [6¢ {drrs = drrs- [[]usn
f(uTa 'w3IX3T3TORITY,) usdog=ds 06€ fe3Tsp = e3rep- [[Jusy
68€ f140=C
{(d3)esoTo3 §8¢ } ([s]susp==wnu ar) 3t
/8¢ ®aIe STU] UT S9PNTOUT Idqunu I STYI Y3Tm uTydew syj JT BuTdsyd//
{ 98¢ (+43 4 T+Te N> { T=3) 103
‘dwsy=[[] [T]I92d D 68¢
{(qe3n ‘dwus3n /,0%3%, ‘dy) Juedsy 8¢ ‘pr = [Tlal
}(++0fT+N>C A T=0) 07 €8¢ ‘b = [TI0I
P(++T/T+N>T{T=T) 07 8¢
f(uTa'w3x1391d79,) usdog=ds 8¢ fon = [T]9n
sedTIjeW O -€// 08¢ ‘gn = [T]gn
6LE ‘pn = [T]90
{(dy)esorog 8LE ‘en = [Tlen

126

} ((zuoT3eInp+IuoTIRINP > BWTI) 33

ig=

[N

!l =71

{01 [t]atner 9=[L] [TINN D
}(++0fT4+N>C 4 T=() 03
P(+H+T!THN>T Y T=T) I03
(TuoT3eInp =< 2wWT3)) JIT osTa(

{

2ad-g=[C] [TINN"&
21d 9=[C] [TINN D
}(++CfTHN>C 4 T=0) 103
PH+TTHN>T/T=T) 103
} (TuoT3eInP>8WTl) IT

[C1er1s
[C1eels

f0=[C][T]pAuT
‘o=[C][Tlp
} (++C fozTs=>L!1=() 103
0" T=[Tlxe3TeP
‘o=[T1]a
}(++Tf02T8=>T!1=T) 103

!(2zTs ‘1) I0309A=XRIToP
1(22TS'1/92TS 1) XTI1RW=LAUT
! (9zTs'T’92ZTS’1)XTI1RW=L

! (9zTs 1) 103109A=4

IXE*7-SdXT OUxC-TE N*6 = 9ZTS

S(N‘TIN’T)XTIQ1PW=NN_d
S(N‘T/N'T) XTIIPW=NN D
‘ 3-=Xe3TOP'L <= SIIN3IS S ,U03M3N//

f9=Ta fG=gb !y=1b !g=Tp {z=3s !I=Ts !0=T°p

442wty
{
f+4d

01//*(1+z+d) ze” 1=[%]01
ar//*(zxd)zeT1=[x%]az

on//*(g+9xd) zen=[%]90
gn//¢(y+9xd) ze n=[%]sn
pn// 4 (e+9xd) zeTn=[x]pn
en//¢(z+9xd) ze n=[%]cn
zn// 4 (1+9+d) zen=[3%]zn

n// ¢ (9xd)zeTn=[%]1n

{[1-C13no sar=y
VA++n H+u:o TN>CfT=0) 303

{

{01 [673] sna=[%]01
ar- [B¥)sng=[x]dr
fon- [65]uso=[3]9n
fgn- [675] usn=[3%]sn
fpnc [675]uso=[x%]pn
fens [67]usn=[x%]¢en
fznt (6] uso=[%]zn
‘1ot [67]uso=[%]1n
} (e@xeTuT) JIT
{
{
=67y

!T=e8I1R”UT
}([C)susn==y) 3T
}(++C T+ N> f1=0) 303
{p=ea1R UT
P+ A THN>Y f T=3) T07
fo=d

} ((S)pPUODITUIISITISISS|) IT

{

() zeTwnuTgI=[3]Ino"sar

/* opow buTysel ST7PuUTS UT pasn Jou x/

}(+4+3 43N0 N>¥ {0=3) X0F

{(PT3)D¥Y QISANA

Ay« @114
{[N]2no " sgl ‘appe dwelx ‘Ippex ‘eai1y ‘Y N ‘Blep pus JuTl
feaxeTUT JUT
!9zTs 3ut
pAuTxx ‘pxx ' gx JROTT
{Xe3lrepx 3Ieo13
fsTa ‘dwsy 0TI ‘dwel Tl 3IBOTT
!lzaxs’‘Taae’‘gIas ‘119" Xew Je0TT
f[T+Te Nl pRWbTS ‘[T+Te N]cewbTs ‘[T+Te N]lzewbTs ‘[T+Te N]TBWHTS 3ROTT
fIT+TRTNIOTY ‘[T+Te NI6Y ‘[T+T® NISV ‘[T+Te NILY ‘[T+T® NJOV ‘[T+Te NIGV 3BOT3
flT+1e"N] [6]103A72 ‘[T+1e N] [6]d3AT 1 3BOTZ

‘lT+1eN] [6

‘[t+1e Nl [6]bT 2 ‘[T+Te Nl [61PT" X \HH+HM N1 610

flTrTe Nl [eley X “[T+T® NI [6]LW X “[T+Te N]

‘liere Nl [6lpy 2 ‘[1+1e Nl lelev I ‘IT+1e Nl l6]¢

‘lr+Te Nl [6lonx ‘[T+1e N][6]Gn™2 ‘[T+T® NJ
‘lT+TeN] [6)T0nTT ‘[T

‘lt+te Nl [elzn +Te N] [6]sba

lga‘za’ta’zb Tb/1p‘3s 18 ‘TP

!(z's)saagreubrgTeayiiogindurlegss
{(1’s)sa3greubrsTesylaogindurianss

zeT9n ‘zeTgn
! (0’s)saagreubrsTesyyzogandurianss

(PT3 I 3uT

14

\w ‘It+1e Nl [6]
I
]

1
I
[
o
[

6
I

‘zeTyn

sT2 ‘[1+1e"N] [6]pes™2
ar—x 3eoT3
9¥ I ‘[T+Te"N][6]lGY 2
‘[1+1e7N] [6] T¥ 2 3eOTI
po I ‘lT+Te N] [plenx
‘[T+1e N] [6]SpE 1 30077
INNTExx ‘NN 9xx 3eOTT

qutT
BT ey A g LT quT

seaIe I9yjo JoO MWQESE\DH\\
£s13gn adArsaagresyandur

ze ar//
zsx3gn adArsaagresygindul
‘zeTen ‘zeTzn ‘zeTIn//

Tsx3gn adArsaagreayindur
}

‘gx 30nI3SUTS) @3epdnTPW PTOA DT3e3s

/%
1joeI3ISqY *

©SIe STY] UT SPNTOUT SauUTydew JO Isqunu-dI oYyl 1Ino buTpuss//?![3]suso=

o3epdaTpw :uoTIOUNI */
FIVAdN TAW SUTISp#

(
[f184

‘01" [lsna=[T+zxL]L
far- [lsna=lextlL
[M]ueo=[G+9+[]
] ueo=[p+9+[]
fpnc uso=[e+9x[]9
[¥]ueo=[z+9%[]
[]uso=[T+9+(]
fInc [yJuen=[9x[]
fgmx (dTTs [q]uen+T)=[L]g
kmH [x]uso=[[]p
“[)sna=[(]¢
\u> [sJuso=[(]¢
‘pIEc []ueo=[L]T
feqrep- [yluso=[[]0 >
- x\ﬁ
P+ THTET N> T=3) 20T
04y qut
!(g’s) TeubTgTEsy¥31I0gIndINQle9ss = ghx I Tesx
!(L's) TeubTsTEa¥1I0gdIndINQ389Ss = LAx I Tesx
{(9'g) TeUbTSTEOY1I04d3ndINnQI99Ss = 9Ax 1 Tesx
!(g*s) TRUDTSTEOY1I043ndIN0I29SS = GAx 1 Tesx
! (p’s) TRUDTSTESYII0g3Ind3N0399SSs = phx I Tesx
!(g’s) TeubTsTEaY1T0gdIndINQ3I89SsS = (.3 I Tesx
!(z's) TeUbTSTESY1I04d3ndInQl99ss = (453 1 Tesx

127

{[3] [TOP] TPT axTPY " []ueoxumxyxG 0 = [T+ (T-3) x6] [p+ (T-3) *6]r LS famruxGt0- = [+ (T-0) %61 [T+(T-3) x6]L
9SG/ T o= [T+(T-0) 6] [T+(T-3) x6] 0
_ { SSz PR3 THTRTN>Y { T=3) 103
L[] [€A]PIO_TxgMxUxG 0- = [6+(T-¥) *6] [€+(T-3) *6]D ¥SL
f] [TalpIe IxdamxUxG 0- = [L+(T-3) *6] [e+(T-3) *6]0 €82 } ((S)PUOCDITUIISITASISS) IT
:Hnnmmm.i::mu 3% T==0Xd" [¥]ueD) IT [acva
L[] [Zb]lpIT a+pFd - [M]ueD*xumxyxG- 0 = [9+(T-Y) *6] [€+(T-) 6] 162 R R R R
Y] [TR]PIT I+pIY" [M]USDxuMxUxG 0 = [G+(T-3) *6] [+ (T-3) *6]L 052 XXAAAX XXX XXX XXX ¥ ¥ XXTIJRN ULTQOORL*
LIH] [TPIPIT I*PJId” [H]uso+dm+UxG° 0 = [F+(T-3) *6] [E+(T-3) *6]0 67/ B R e L
f[M] [IS]PIT IxPIU” [M]USD¥UM*UxG 0+T = [€+(T-3) *6] [€+(T-3) *6]0 SPL
fM] [TePlPIT a+pId - [M]ueDxumxyxG 0 = [T+(T-) *6] [+ (T-3) *6]0 LVL . {
9L
Y] [gblal”a+yxG 0~ = [9+(T-3) *6] [g+(T->0) *6]r (74 _ f44C
0] [Thlera+yxG 0- = [G+(T-3) *6] [g+(T-) x6]r WL {(gnTead: []usox (UxG 0-TL" [34]us9)
M) [TP]I”IxyxG 0- = [p+(T-3) 6] [Z+(T-3) *6]0 574 + €A ead [Y]us9x (ZL® [%]U99-U*G-0) + ZA® [M] U9 (UxG 0+TL" [¥{]us9)
] [Fs]elTa+yxG 0- = [e+(T-¥)*6] [2+(T-N) *6]0 WL — €A [M]ue9x (UxG-o+zl: [Y]us))—=[L]a
fu«a [q]ueo+H" [q]uedxz = [z+(T-3) *6] [2+(T-3) x6]L ¥ _ Ll
L] [TePlelTaxUxG 0- = [T+(T-3) x6] [g+(T-) x6]r \i72 ! (za2ad" [3]usox (MI* [¥]u®9-UxG-0)
6€L + (dr1sTexd: [3]usn-dTTs" [f]usD) *xML" [3]usDxqelsy- [}]uso
MrUxGT0- = [Z+(T-3) *6] [T+ (1) *6]0 8€L — A [M]ueDx (UxG - o+MI” [d]us9)) -=[L14
T = [T+ (130 *6] [T+ (I3 *6]0 LEL _ f4+C
P+ {THTR N> I T=Y) 303 9€L (1A 2ad" [3]usDx (41" [4]ue9-yx5-0)
}aste se/L + (3a7ad" []ue9+3a® [Y]USD) *Ux*G°Q
B e) ¥eL — TA" [M]ue9x (YxG o+dl" [f]Jue9))—=[[]g
{ €EL }(T==ssd" [%]usD 33 T==0xd" [¥]ueD) IT
{ €L gl
{ 1€L f((gbt7oad" [3]usD+gbT- [3]UsD) xzby " [¥] USD*uM*U*G 0
f(UxGro+zl [M]udD) = [6+(T-3) *6] [6+(T-X) *6]0 [\ + (gbsTead: [y]usn-gbs- [3]usn))-=[[]4
S(UxGro+TL [M]usD) - = [+ (T->() *6] [6+(T—>) *6]0 60L 4L
8TL f((1brTead" [y]usn+TbT " [3]usD) by " [3]UsH*umxyxG"Q
fyxG O+ML” [M]ueD = [8+(T-¥) *6] [8+(T-A)x6]L0 Vil + (ThbsTaad: [y]usn-1bs* [y]us))-=[[]a
ML [M]ueDxqedsy [M]uen- = [zZ+(T-3) *6] [8+(T-3) *x6]r 9TL 4L
STL f((TPT 2ad" [Y]uSH+TPT " [3]USD) »TPY" [H]USDH*yMxyxG "0
UxGro+daL [M]ueD = [L+(T-3) 6] [L+(T-3) *6]L L + (TpsTead- []uso-Tps- [3]us9)) -=[L14
10 = [9+(1-3) %6 [L+(1-) %610 €T _ L
0 = [S+(T-3) 6] [L+(T-3) *6]0 L f((pITTead" [%]USD+PIT" [Y]USD) *PIU " [}] USD*UM*UxG "0
0 = [p+(T->0) 6] [L+(T-3) 610 124 + (pFooxad" [{]ueD+pIa- [{]USD) xYMxUxG 0
0 = [e+(T->0) 6] [L+(T-3) *6]0 0ZL - (p3sTead- [f]usD-pIs- []usn))-=[L14
‘0 = [T+(1- x?i_iz A x6l0 61L it
}(T==ssd" [}]ueD 3% T==0XH" [¥]u®D) IT S1L f(urt []ueoxy - (917 9ad" [M]ueD+al- [3]usD) xyxG Q
L1L — dr1sTead: []usox (H* []usDHxz-uxq- [¥]us9)
{(ZbT [M]usD/T) xzby " [USD*uM*UxG 0+T = [9+(T-3) *6] [9+ (T-¥) *6]1L 91L + dTTs: []usox (yxa- [¥]usD+H" []us9xz)) —=[[]4
‘0 = [S+(1->0) *6] [9+(T-3) x6]L (9 f4+C
0 = [p+(T-3) *6] [9+(T-3) *6]0 ¥1L {(drrsTead" [q]usDxumMxyxGT(~ ISP oad” Z_:ww
‘0 = le+(1-20) *6] [9+(T-3) 6] 1L — (dTTs" [M]usoxymxyxG - 0-23Top" T::mw ?:
0 = [T+ (1->0) *6] [9+(T-3) 6] (494 P+ THTET] z! H u:uow
T =
0 = [9+(T-3) *6] [G+(T-3) *6]0 0TZ ::o.:wmmAuuw mevm‘:r_B
{(ThT [d]ueD/T) *ThY " []UsD*uM*UxG 0+T = [G+(T-3) *6] [G+(T-¥) *6]L 60L f1=1397XRW
‘0 = [p+(1->0) *6] [+ (T-3) 610 80
‘0 = [e+(T-30) *6] [G+(T-3) *x6]0 L0L {
0 = [T+(T-20) *6] [S+(T-2) 610 90 f3a° [y]uen = 3aead: [yf]usy {gbT* [y]usy = gbrtTead: [3]usH
S0L {1bt [y]ue) = 1bT @ad- [y]usy 1Pt [M]uen = TpT _2ad- [y]usen
Y0 = [9+(T-3) *6) [P+ (T-3) *6]0 $0L ‘pga- [f]us = p3yo ead- [y]uso pIT* [H]ued = p3T oad’ [y]ueo
0 = [G+(T-30) *6] [P+ (T-3) *6]r (04
S(TPTT (M1 USD/T) * TP [H]USD*dgMxUxG 04T = [§+(T-3) *6] [H+ (T-3) *6]0 0L ‘oL [d]usn = o1 ead" [¥]us
‘0 = le+(1->0) *6] [p+(T-3) 610 102
0 = [T+ (T *6] [P+ (T-2) *6]0 004 _ fent [d]usy = gaead: [y]usy
669 fzat [M]usd = zaTead: [y]uso fTAT []us = 1A ead" []uso
{ 869 izbs- [y]uen = NUmHmum. [¥]uen {1bs- [y]uen = iumeum. [3]usn
:vmq []uen/p1y- [M]ueD+yy " []USD) ¥dMmxUxG 0~ = [6+(T-3) 6] [e+(T-) *6]D 169 {1ps -t [y]usn = (psTead- [y]usH ‘prs- [yf]lusn = pIsTead: [y]usH
L(peT" [M]1USD/PII" [H]USO*V " [H]USD-) ¥¥MxUxG 0— = [L+(T-A) *6] [€+(T-3) x61L 969 {drrs: [y]usn = drrsTead: [y]uso fe3Tep- [q]usy = e3rep oad- [f]usH
} (T==Ssd- [3]uso 33 T==0XT" [A]u=9) IT S69 senfea ds3s swty snotasid//
0 = [9+(T-3) 6] [€+(T-3) *6]0 769 P+ THTETN>Y ¢ T=Y) 103
‘0 = [s+(1- v:«ﬁ [e+(1-3) *6]r €69
0 = [p+(1->0) *6] [€+(T-3) 610 269 {
£(PITT [M1USD/T) *PIU " [H]USDxdmMxUxG 0+T = [€+(T-3) *6] [+ (T-3) *6]L 169 {
‘0= [T+(1- V:*E [e+ (1) *6]r 069 _ {
689 f[C)[t)3asod-g=[L]) [TINN&
‘0 = [9+(1->0) *6] [+ (T-3) 610 889 f[C][t]33s0d 5=[C] [TINN D
‘0 = [S+(1->0) x6] [g+(T-3) *x6]L £89 }(++CfT4N>C 4 7=0) 707
‘0 = [p+ (1) *6] [2+(T-3) x6]l0 989 P(+H+TATHN>T I T=T) 103
0 = [e+ (1) 6] [Z+ (1) *6]0 S89 } (zuoTaeanp+UOTIRIND =< SWT]) IT 9ST3{
fuxar [M]uso+H” [M]ueoxz = [Z+(T-3) *6] [2+(T-3) *6]0 789 {
0 = [T+ (1->0) 6] [2+(T-3) 610 €89 {
789 f[C)[t]atnes g=[CI[TINN &

128

futw sAact [f]uSH = s A (Utw sa- [y]Juss > s~ A) JT SsT®
Ixeuw sac [Y]us9 = ST A (xew sA- [y]JusH =< s A) IT
et [Mluen = sTa
}(T==ssd" [{]ueD 3% T==Dx"" [q]ued) IT
fzb1r [y]usn/ (beTs " [q]usn-¢gbs- [y]usn) = gbr-[y]uso
1P []usD/ (beTs " [¥]uso-Tbs " [¥]usD) = TBT"[y]uen
‘TP []usH/ (peTs " [q]usH-Tps” [%]uen) = TPT- [q]usD
{pITr []usH/ (peTs [Y]usH-pIs- [}]usn) = PIT* [Y]usD
((gb1" [3]usn/zbs " [3]us9) + (TPT" [3]usn/(bs" [%]us9) +bT" [3]usH—) +d9s be" [y]usy = beTs- [y]usy
((TPT" [3]usn/TPS " [3]Us9) + (PIT" [¥]uSD/PIS " [%]USD) +PT " [3]USH-) +08s™peT* [{]UsH = pe”s- [{]usH
PO+ LTHTR N> T=3) I0F
{
f(aa” [M]sngxaa” [M]sng + OA [3]snaxDA- [d]snq) 3abs = 3a° [y]us
fon- [3]uen + pnc [¥]usoHx0IC [d]sng + en- []usoHxdI” [%]sng = OA* []sng
‘gnt [y]usd + zn- []usox0I” [d]sng + n: [{]usoxdI” [d]sng = aa” [¥]snq
(01 [M]snaxDI- [M]sna+al- []sng+ar- [3]snqg) 3abs=31" [¥]snq
SPTS YIOMISN "=°'T =20UsI=3I=31 SUOWWOD UT \\
{(e3Tep” [3]usD)uTs*OI" [3]Sng + (BATSP" [¥]UsH)s00+AI” [{]sng = pT- [y]usD
{(eatep- [q]uen)uTsxaI- [Y]snq — (eAT9P" [¥]useD)s0dxDI" [¥]sng = bt [3]uso
*J9x1 30101 UT//
{
!zaxe=¢gaae
98719
!T1x9=gaa°
(zII2=<TI133) 3T
{(dwe3”0I-01" [¥]snq) sqeg=ziis
{(dwe3TgI-ar- [¥]snq) sqeg=1ii1s
‘01 [M]sna=[[3]suso]01
‘a1 [s]sna=[[3]susnlar
S019¥/ ([]0TY + [M)8Y + [d]pewbrs + []cewbrs) = OI°[¥]snq
L0M16Y/ ([M16Y + [A1LY + [M]zewbTs + [3]TewbTs) = QH.ﬁxgm:w
f(le) o« [ex) [eTINN"d-[ex] enx (23] [BTMINN_D) * [2¥]dI + [Yq]cewbTs = [3]ceubrs
Sl pnx 2] (B INNg- (2] enx (23] [BTINN D) * [23]0I + [¥]cewbTs = ﬁxgmmamﬂw
f(lztlenx (2] [eTMINN"d+ (2] pax [2] [eTINN"D) * [2X]OI + []pewbrs = [3]peubrs
f(lzlen« 2] [eSINNTd- (2] T+ (23] [BT3INN D)+ [2]dal + [¥]TewbTs = [3]Teubrs
FeT=ig) 1
}(++23 {T+N>2 {T=¢¥) 20T
‘01" [d]sng = dws3”OI
{ar- [¥)snq = dwel”dAr
f0=[¥]pewbTs fo=[3]crwbrs !0=[3]zewbrs {p=[]1EWOTS

fzn [¥]usox e
T [y]ueox [®

[z3)snx[z] [e3InN"g + [zx]9nx(
[zolon«[23] [e7YINN"d -

[zx]

] [BTMINN"E -
A1 [BTYINNTD -

i

}(100°0 < €118

STTUM
!T=¢caae

ZA] [BTHINND + [4]8v=[3]8¥
snx[za] [e7YINND + [o]Lv=[3]L¥Y
P2 THN> T T=23) 203
prc [M]uenx [eTy] [ETINN D - T=[3]9¥
ens [ylusox[eTy] [ETHINN_d + T=[%]G¥
o=[%lotv ‘o=[3]ev ‘0=[%]18vY ‘0=[¥]L¥
f[y]susn = ¥ 3
} (4 {TH+TET N> L T=3) 303
{
font [Ty]uso=[¥]9n
fgn- [BTy{]usH=[x]gn
fpnc [Ty usn=[¥]pn
fen [Fy]uso=[¥]en
fgnt [67y]uso=[¥]zn
{10 (BT usn=[%]1n
} (esaeTuT) IT

{
{
0=b"Yy

Zb]gb1 axgby "

’

w
«©

Zb]) TPT ax b [Y] UsD*dm*U*G -0

]
S

- sbyg-*

- spa”

SO(TpT [Mluen/T

f((ZbTr [M]usn/Z

~

.

.

}

.

.
~

.

{[C]xe3Tep +

{[C]1xe3Tep + e3rep’ [Y]usn =
PO+ THTE N> T= xvuom
T

ps*
bs*

[C]Ixe3Tsp + €A [A
[C1xe3Tap + zA® [¥

[C1XeaTop + TA"[X
==55d"

(1

[ClxeaTep +
[ClxeaTep +
[ClxeaTep +

[ClxeaTep +

[

[3]us9x (e3Top"
[3]ue9) +

Jusox (e3Top" [

[3]ue9) +

!T=poxe UT

} ([C]suso= ;
}(++0 4T+ N> I T=) 307
fp=e0I1RUT

}(++ L THN>Y L T=3) 303

spa - [3]usox (e3T9p"

!sbg- [

(P3T° [
xD9s peT” [}f]usn =

x09s~beT" [f]us9 =

Jusn =
Jusg =

Jusn =
[3]uso 3 T==0X""

zbs* [3]usn = zbs-

Tbs* [3]usn = Tbs*

Tps- [%]ueo = Tps*

pIs* [d]us = p3s-

drrs- [3]uso = drTs”

e3Tep”

{(ozTs’g’ezTs‘@zTs ‘pAuUT) ATdTITNW 309A” XIJW

©*°38IT3 3O 8ST8//{

[3t]ues
Jusn)sod = gn-*
s]usox (e3Tep- [3]us
[3]usp) soo- = gn*
Juso/pIs- [¥]u

[sba*
(TbT" [3]usn/Ths " [3]u

[spd -

=) 3

- [d]usn

4L

ZAT [M]uen

f44C

[
[
[
[
[

[

! (9zTs’p)XTIjeW JO 9©SIDAUT

- []uen
[3]ue9) 37

f44C
Juso
4L
Jusn
f44C
Juso

Juen

Xe3Tep
paut

J¥¥xxxxxxxxxxxxxxxxxURTQOORL JO PUDX/

f(Uxgr0+zl” (MU
\As*m.o+ﬁa._x_cm
fuxGo+MI” [M]uso
ML [3]usDxqeisy [¥]uso-
fUxGro+dL” [usn
3] [eb] A" T*yxG 0~
] [TP]3A”T*U*G 0-
3] [TP]3A” I*UxG 0—
3] [38]3A”TI¥UxG 0~
1[TeP]3A~ I*U*G 0-

}(T==ssa- [

T ax1hy"
b

D] [PT a*TPY " [3] USD*dMxU*G 0
bl TpT 2xTIPY" [3] USD*dm*y*G " Q

TPT I+1PY"

[d]uSD*yum*y«G - 0+1
1 [1b]zbT xxzby " [3] usD*um+y*G -0
ZbT Txzby " [] usDxdmxyxG - 0
zbTt axzby " [y]us9xdmxyxG - Q
ZbT axzby " [3] usDxdmxy+G 0

[f] uSD*gm*yxG - 0+1
TP] TBT I+ 1Dy [{] usD«ym*yxG 0
s] Tax1hyt []usHxumMxyxG T Q
op] ThT ax Ty " [f]ueD*um*yxG - Q

[] USO*qMxU*G " 0+T
S]TPT IxTPY" [M]UuSD+um*y+G- 0

{

[6+(T=3)*6] [6+(T->0) *6]0
[8+(T-3) *6] [6+ (1) *61L
[8+(T-3) *6] [8+(T-3) 6]
[z+(T-30) *6] [8+ (T2 *6]0
(1) *6] [L+(T-3) 6] 0
(T-3) *6] [L+(T-3) x6]L
(T-30) *6] [L+(T-3) *6]D
(T=3) *6] [L+(T->0) *6] 0
(1) *6] [L+(T-3) *x6]0
(T-3) *6] [L+(T-3) *x6]L
Juso 3% T==0xd- [}]usD) IT
[9+(T-3) *6] [9+(T-x) *6]r
[G+(T-31) *6] [9+(T-3) *6] L
[p+(T-30) *6] [9+ (T-3) 61D
[€+(T-3) 6] [9+(T-%) *6]r
[T+(T-30) *6] [9+ (T-x) *6]r
[9+(T-3) *6] [G+(T-3) *6] L
[S+(T-3) 6] [G+(T-%) *6]r
[P+ (T-3) *6] [G+(T-) *6]D
[e+(T-31) 6] [G+(T-) *6]L
[T+ (T-30) 6] [G+(T-) *6] 0
[9+(T-3) *6] [p+(T-x) *6]0
[+ (T-30) *6] [F+(T-3) *6]L
[p+(T-30) *6] [F+(T-3) *6] 0
[e+(1-30) 6] [p+(T-3) *6]r

{

129

103

slognTa+pn- [f]us9x

Sn_I+zn” [q]usox

Gna+zn" (3] usDx

f[x] [gb]gn”

f[] [Th]gn"a4+gn- [3]usn«x
L] [1e]

1) [38]

¢ (e3Top"

GnTI4znt [q]usox

[

[x] [Tep]pn~ 201"
+ [M)[TeplenTa+ar”

[x] [Teplzn™2x01"
+ [M)[Tep]nTa+ar”

(%

1 [Fs]0T a+en- []uenx %] [Fs]aI =[] [Is]O3A T
£[] [TeP]9n =
Jsnqgtpn- []ueox [%] [TeP]OT 1
[3t)sng+en- [3]ueo«[y] [TeplaI 2=[¥] [ToP]0IA 2
[Zb]O1” 2+ [y]usDx[¥] [gb]lar”a=[x] [¢b]a3an”x
[TR]0I”a+1n" [f]usox 3] [Tb]lar”a=[x] [Tb]d3aan"x
[TP]DI_a+1n" [3]uex[¥] [TP]AI_2=[¥] [TP]aIA”Z
[zs]OT a+1n- [y]ueox [¥] [3s]AT2=[%] [3S]A3A™ X

[

Isng+zn- [y]usox

0] [Teplgnz
[%][TepP]0OI™x

[]sng+1n [y]ueox[y] [Toplal” 2=
} (1==s54a" []uso 3%
zb1’ [¥]ueD/ (%] [gblbes™a-1)
fzb1 [%]usn/ (] [Th]bes”a-
{zbTt [M]usn/[¥] [TP]bes a-

[
{zbTe %xg:mo_x_ﬁum_wmmlu\

fgbTr [M]usn/ [y] [Tep]besTa- =
{1bT: []ue/ [¥] [gblbes™a-
Nawq [%]usn/ ([%] [Tb]bes™a-1)
f1bTe ﬁx_:mo\ﬁx__ﬂv_wmm|u\
1T [y]usn/ [y] [Is]besTa-
{1b1- [3]usn/ [%] [Teplbes™a- =
1P [Y]ueD/ [%] [gb]pesTa-
TP ﬁxg:ou\ﬁx_ﬁﬁw_vmm\u\
‘TP []uso/ ([%] [TP]pes™I-T)

f1pTC [¥]uen/ [¥] [Is]pes a-

1P [(]uen/ [d] [TeplpesT 1~ =
{[3] [gb]PIT_axpIy- [d]usD
{[3] [TP]PIT_IxpIy- [y]usD
f[¥] [TP]PIT_I+pIy- [y]usD
‘03] [3s]pIT 2xp3Y” []usd
{1 [ToPIPIT I¥pIU - [M]usD =
‘P31 [M]usn/ [y] [¢b]pes”a-
p31t [M]usn/ (] [Th]pes”a-
P31 [q]uen/ [Y] [TP]peS™ I-
‘pIT [Mlusn/ ([¥] [Fs]pes™a-T)
‘pITC [d]usn/ [d] [Teplpes 1~ =
{([] [gblpt_axbe”s" []usn - pT- [%]usDx[¥] [¢b]bes”x
- [A] [gb]bT axpe”s* [y]uso + br- []usox[3] [gh]lpes x)-
f([d] [Th]pT_axbeTs" [3]usn - pT- [{]usdx[y] [Tb]bes™x
— [d] [tP]bT axpe”s- [{]usd + br- [3]usDx[y] [TP]pes_ 1) -
f([] [TPlpT _axbe”s: [y]uen — pT- [f]ueox[] [Tp]lbes”x
- [M][1p]bT axpe”s- [y]usn + b1 [3]usdx[¥] [TP]pes I)-
f([d] [3s]pT_axbeTs" [y]usn - pT- [{]usDx[y] [Is]besx
— [%][3s]bT axpe~s [y]uen + br-[y]ue9x[y] [Fs]pes I)-
[3] [TePlpT _axbe”s: [y]uen - pT- [f]ueox[3] [Tep]bes a1
[3] [Tep]lbT axpe~ s [y]usn + bT- [3]usox[x] [Top]lpes™ a) -
f((gb1" [d]usn/T) + (3] [Zb]bT 1) ¥08s beT- [y]usy
(b1 [3]usn/T) +[] [Th]bT x1-) x09s beT" [3]usy
£([%] [TP]bT 1-) x00s beT" [y]UsD
£([%] [3s]bT"1-) ¥08s™bET" [}]USH
f[y] [TeplbT ax00s beT" [f]USDH- =
£([4] [Zb]PT_a-) xDas peT- []usn
£([%] [TP]PT_1-) xDas"peT" [}]USD
S((TPTT [M]uen/T) + [X] [TP]PT_I-) +08s peT- [¥]usn
f((PFTT [M]usD/T) +[¥M] [FS]PT_I-) *x09s™ peT” [y]usH
{[3] [ToP]PT Tx09s peT" [Y]uso- =
*[M]uep)utrs«] [gb]AI”a- (e31op" [¥]ueD) soox 3] [¢P]OI_ 1
[3]uso)utsx[¥] [TP]aI_x-(e3Top" [34]usD) s0dx [¥] [TP]OI 2
*[d]usp)uts« [3] [TP]AI_I- (e3Tep" [%]usD) soox [3] [TP]OI 1
s [s]usn)utsx %] [IS]ATTI-(2ITSP " [Y]uSH) S0 [¥] [IS]OI 1
* [d]uep) soo+gI” [{]sng-(e31op" []udo)utsx[¥] [ToP]AI”_ X
[M]uen) uTsx0I [¥]sna- (e3Tep - [M]ueD) soox[¥%] [Tep]OI™ 2
T [MJuen) utsx (3] [b]OIT 2+ (3Top" [¥]usD) soox 3] [gh]ar™x

[s] [Tep]a3an™=
==0Xd" [¥

Jues) IT

UOT1e3TOXE//

3] [Zhla1™a
[[tbla1™x
(3] [TPla1™x

[q)[3s)er™2

Nw_wﬂ I

0] [
(1] [
(3] [
[RIRELIES
[3] [1eplbT 1
3] [ZhlpT™2

f(ea1ep- []uso)utsx 3] [TP]OI” I+ (23T9p " []usn)soox] [1b]aI"x = [][TP]pT 2
{(e31ep- [y]uso) uTs« [3] [TP]OI_a+ (eaTep- [¥]usD) soox[] [TP]AI 1 = [¥] [TP]PT
{(ea7ep- [y]usn)uts« 3] [IS]OI a1+ (23T9p" ﬁx_:mwvmoo*_xgﬁum_mH|u = [M][Fs]pT 2
{(e379p" [3]usD) SOO«OI " [Y]Snqg+ (BITOP " [Y]uen)uts«[¥] [ToP]OI_ X
+(e3Tep - [3]uso)utsxar- [3]sng- (e3rsp- [¥]us) soox[3] [TepldIl * = [] [TeplpPT
f[)9¥/ [¥] [blgv_2 = [%][gb]0I”2
f[q)9v/ [M] [TP]gy 2 = [¥][TP]OI”2
fIqlov/ [l [TPlgY I = [%][TP]OI” 2
_fIdlov/ M1 [3slgY 1 = [¥][3s]01” 1
f((z! ﬁ gmmvsomv\ﬁﬁm__amvuwm Tx ([A] 0T+ [3] 8%+ [d] prwbTs+[¥] cewbTs
—[low ([3] [TeP] 8y a1+ ([3] [TePlev a*al” [d]snq))) = [¥][ToP]OI
fq)6v/ M) [gbliv x = [%][gblar”x
)Y/ M) [1blv—x = [¥] [Thlar”x
fq)gY/ M) [TPlLv 2 = [¥][TPlAI” 2
fllge/] [3s)Lv a1 = [d][3slar” =
f((z*M16y)mod) / ([[ToP1 GV a* ([M] 6+ [A] L+ [3] zewbTs+ 3] TewbTs
=)oy« ([¥] [Tep] LV 2+ ([¥] [TeP]g¥ I+0I" [¥]lsnq))) = [¥][Tep]al™ x
Y] [gblgn”ax [e7x] [eT]NN"g + [3] [gb]on"a«[e7>] [eT{]NN"D = [3][¢cb]gv 2
Y] [Thlgn”ax[eTs] [eTINN"g + [3] [Tb]on"ax[e 3] [eT{]NN"D = [3][TP]gVv x
f0st] [telgn”ax[e 3] [eTINN_g + [] [TP]9n xx[e 3] [eT{]NND = [][TP]8¥Y
f[) [Fs]gnax[eTy] [eTYINN" & + [][Is]on ax[e 3] [E"YINND = [3][Is]gy
f0] [TeplgnTax [eTy] [eTHINN d + [3] [ToPlon~ax[e73] [e7XINN"D = [%][ToP]lgV 1
f0] [gblgnTax[e7y] [ETYINN_d ~ [3] [gb)gn"ax[eTy] [eTH]INN D = [%][¢P]Lv X
f[] [Th]on"ax[e7y] [eT3]NN_g - [¥][TP]gnax[e73] [eTY]NN"D = [3][TP]L v 1
f]ltelon” ax[eT] [eTINN g - [¥][TP]gn ax[e] [e"%INN D = [%][TP]LY Z
f0][FslonTax[e] [eTHINN € - [¥][Fs]gn ax[e] [e"%INN D = [3][FS]LY Z
f[x) [Teplon ax[ex] [eINN & - [¥] [Teplon ax[e] [e"%INN © = [3][T®P]LV 2
‘0 = [q]l1eplov 2
‘0 = [d][Teploy 1
‘0 = [A][TepPlpvY 2
‘0 = [d][1oPlev
‘0 = [q]l1eplev 2
{0 = [M][TepPlIY 1
£[¥] [¢b]spa_ax (e3P " [f]usn)uts— = [¥] [¢b]onTx
f[] [Th]spd I+ (e379p " []usn)uTts— = [y] [TP]9n"x
£[3] [TP]sba_ax (eaTep" [¥]usn)soo = [x] [Tplon x
{[3] [Fs]sba ax (e3Top” ﬁxgcmwvmoo = [¥][3s]on"x
{spd- [{]usDx (BITOP " [3]usD) s00-sby - [3]usnx (e37ep” [¥]usn)uTs- = [¥] [Top]on
{[3] [zb]spa_ax (e3Top" [f]uen)soo- = [¥][gblgn x
(3] [Th]spa ax (e3Top" [f]ueo)soo- = [y][Th]lgn I
£[¥] [Tp]sba_ax (e3Top" [f]uen)urs— = [] [TP]Gn_ 1
{[3] [3s]sba ax (e3rop- [¥]uso)utrs- = [][Fs]gn x
{sba" [{]ue9x (e3TOP " [34]usD) S00-spA* [3]usDx (B3Top" [¥]usd)uTs = [3] [TeP]gn 2
‘0 = [d][19P]pn"2
‘0 = [dM][Toplen
‘0 = [M][Teplen
0 = [MllTeplIn™x
1P [M]uen/oes peT” [y]uen=[¥] [TP]sba x
pFT [A]usn/oesTpeT [H]usn=[¥] [Fs]sba
fgbT1 []usn/oes” beT [y]uso=[¥] [¢b]spa
{1bT [y]usn/oasTbeT []usn=[3] [Th]spa”x
{[¥] susp=e"y
P43 THTE N> T=3) 0T
e
¥rxxxxxexxxxxxxxxxUOTIRTNOTR) PUOY*
KRR AR R XA AKX XA RRX XA RRX LA RN X
{(pT* [y]usepxbeTs" [y]uen - br- [y]usoxpeT s [yJuen)- = oL [f]ueo
{
{0=p3d" [3]uso
}esta{
_ fpeTr [Y]ue/pId” [Y]usHxpIy- [Y]usD = pIa’ [y]usy
futw pIEC [Y]uso = pIA” [Y]Juso (uTw pIF” [YJued > pIFE* [¥]us) JT SST°
{xew pId- [¥]usp = pIE- [Y]ueo (xew pIF” [Y]usD =< pIE" [Y]uso) IT
C(STA+TAC [M]UuSD-38aA" [H]UeD) »¥i - [H]uSD = pIF- [q]usD

130

JTPUSH

/% UOTIDOUNJ UOTIRIISTHSI uoTjeIaUSH SPOD */ 2U-ungsTbhbo, SpniouT#
osTo#

/% WSTURYOSW 90BIILIUT STTI-XAW */ WO YUTTNUWTS, SpnTouT#

/* ¢OTTI-XEW © S paTTdwod butsq STTF STUI SI */ FTI XAW GYIIVW FoPIT#

/+ Ausunbre Indut pssnun x/ ! (S)9YY AISOANA

(S¥ 3oNIISWTS) @IBUTWISLTPW PTOA DT3Fe3S

/*

©2UTINOI STUJ SARY 073 pairtnbsal 8i1e aM INg ‘PSpPssu UOTIRUTWIS] ON *
130RI}SAY *

9jeuTWISITPW :uoTIoUNg ¥/

! (2zTs ‘T ’Xe3Tep) 101098 8917
!(2zTs‘T’q)10109A 9317
{(9zTs‘T’9ZTS’T/PAUT) XTIdOW 9917
!(ozTs’/T’9zZTs T /L) XTIRW 29917

S(NT/N'T/NN d) XTI3ew o213

‘fpe [y]uso/pIu- [
fper’ [y]uen/pIu” [

A3IA_IxdA" [f]sna+ [
3N IxaA- []sng+ [
AIA_IxdA” [X]sna+ [
A3IA"IxdA" []sna+ [

/(4] [TeP) @aa~x%an" (3] sna+ 3] (T9P] 03A~7+0A" [¥] Snq)
) [gblon"a+pn- [

3] [Tb]gn"a+pn- [
] [TPl9n™a+pn- [

S(N‘T/N'T/NN D) XTIajew 9917

_ aTTumM/ /|
!(9zTs ‘1 ‘YXelTep)xeu Aw = II9 xXew

£ ([T]Xe3TopP) sqeI=[T]Xe3IT°pP
(+4T¢92TS=>T{1=T) 103
///11171717717//17/////////u0TeTNOTED PUOT O nzm\ﬂ
{
ﬂ_:mo*ax.

[]uso=[y] [€a]pIa"a
uS9xyy* [¥]

usn-=[¥] [1a]pIo~ 1
%] [2b]03A”a*0A" [d]sna) =[] [gb]aa"x
3] [TP]03IATI«0A" [M]snq)=[¥] [TP]IA" X
3] [TP]O3IA”Z*0A" [d]snq) =[] [TP]3A_ X
] [FS]OAAT 2«0 [M]lsna) =[] [Fs]3A™ T

A" [Y]uso
=[] [Teplan™=x
[gb]OI”a+en []usox[] [zb]ar”a=[3] [¢b]03IA” 2
[Th]OI x+en []usox[3] [TP]ar”_a=[3] [TP]03IA” 1
[TP]OT a+en- [xlusox [x] [TP]aT a=[¥%] [TP]0O3A™

131

Performance Log for Real-time Simulation of a
Large-Scale System

The performance log in this Appendix shows the RTX-LAB simulator nodes timing sched-
ule for simulation of a large-scale power system described in Chapter 3. For this power
system, all the 8 nodes of the simulator have been used; however, to save space, here just
2 nodes are being demonstrated: the master node (sm_areal), and one of the slave nodes
(ss_area2). Exploring this report is useful to understand how the parallel architecture of
the real-time simulator works. The sequence of events, the duration of each event, and the
probable obstacles that might be in the simulation can be extracted from the performance
log. However, the Number of Overruns is the mostimportant item in this report. If this

item is O for all nodes the simulation was indeed running in real-time.

132

File version: 1

Model name: rt_312b_8a.mdl

File created on:
Model sample time: 0.004s

Time factor: 1
Model step 1772
sm_areal 3000.000 Mhz
Status Update
Duration 0.712667
Start 27.21485
Stop 27.21485
Data Acquisition
Duration 3.07
Start 27.21692
Stop 27.21692
Multi-Receive
Duration 1899.548
Start 27.21295
Stop 27.21485
Handle target requests
Duration 0.085
Start 27.21692
Stop 27.21692
Handle host requests
Duration 0.04
Start 27.21692
Stop 27.21692
Pre-execution computation time
Duration 0.035
Start 27.21292
Stop 27.21292
Major computation time
Duration 2068.946
Start 27.21292
Stop 27.21692
Minor computation time
Duration 0.077667
Start 27.21692
Stop 27.21692
Post-execution computation time
Duration 0.035
Start 27.21692
Stop 27.21692
Execution Cycle
Duration 3998.498
Start 27.21292

Friday-April 23-2010 at 12:12:16

1773

0.705
27.21885
27.21885

3.355
27.22104
27.22105

1901.052
27.21695
27.21885

0.077333
27.22105
27.22105

0.055
27.22105
27.22105

0.035
27.21692
27.21692

2196.785
27.21692
27.22104

0.077333
27.22105
27.22105

0.035
27.22105
27.22105

4128.495
27.21692

133

1774

0.785
27.22285
27.22285

3.157667
27.22493
27.22493

1770.955
27.22108
27.22285

0.082333
27.22493
27.22493

0.04
27.22493
27.22493

0.032667
27.22105
27.22105

2078.678
27.22105
27.22493

0.077667
27.22493
27.22493

0.037667
27.22493
27.22493

3880.07
27.22105

1775

0.712333
27.22685
27.22685

3.082333
27.22892
27.22892

1890.463
27.22496
27.22685

0.075
27.22892
27.22892

0.042667
27.22892
27.22892

0.032333
27.22493
27.22493

2069.99
27.22493
27.22892

0.075
27.22892
27.22892

0.035
27.22892
27.22892

3991.13
27.22493

1776

0.712333
27.23085
27.23085

3.092667
27.23292
27.23292

1899.613
27.22895
27.23085

0.082333
27.23292
27.23292

0.04
27.23292
27.23292

0.035
27.22892
27.22892

2067.637
27.22892
27.23292

0.077333
27.23292
27.23292

0.037667
27.23292
27.23292

3997.003
27.22892

Stop
Total Step Size
Duration
Start
Stop
Idle
Duration
Start
Stop
Number of Overruns
Duration
Start
Stop
Send_RT to ss_area2
Duration
Start
Stop

Recv_RT from ss_area2

Duration
Start
Stop
Send_RT to ss_area3
Duration
Start
Stop

Recv_RT from ss_area3

Duration
Start
Stop
Send_RT to ss_area4d
Duration
Start
Stop

Recv_RT from ss_aread

Duration
Start
Stop
Send_RT to ss_area5
Duration
Start
Stop

Recv_RT from ss_area5

Duration
Start
Stop
Send_RT to ss_area6b
Duration

27.21692

3999.535
27.21292
27.21692

1898.627
27.21295
27.21485

o

3.847333
27.21292
27.21293

1900.585
27.21295
27.21485

3.39
27.21293
27.21293

0.147333
27.21485
27.21485

3.487667
27.21293
27.21293

0.037333
27.21485
27.21485

3.482333
27.21293
27.21294

0.037667
27.21485
27.21485

3.49

27.22105

4129.55
27.21692
27.22105

1900.14
27.21695
27.21885

o

3.852333
27.21692
27.21693

1902.087
27.21695
27.21885

3.47
27.21693
27.21693

0.142333
27.21885
27.21885

3.495
27.21693
27.21693

0.037333
27.21885
27.21885

3.467667
27.21693
27.21694

0.037667
27.21885
27.21885

3.48

134

27.22493

3881.11
27.22105
27.22493

1770.065
27.22108
27.22285

o

4.165
27.22105
27.22106

1772.103
27.22108
27.22285

3.377667
27.22106
27.22106

0.145
27.22285
27.22285

3.522333
27.22106
27.22106

0.04
27.22285
27.22285

3.477333
27.22106
27.22107

0.037333
27.22285
27.22285

3.617333

27.22892

3992.137
27.22493
27.22892

1889.452
27.22496
27.22685

o

4.072333
27.22493
27.22494

1891.555
27.22496
27.22685

3.59
27.22494
27.22494

0.127333
27.22685
27.22685

3.8
27.22494
27.22494

0.04
27.22685
27.22685

3.52
27.22494
27.22495

0.035
27.22685
27.22685

3.495

27.23292

3998.063
27.22892
27.23292

1898.817
27.22895
27.23085

o

3.855
27.22892
27.22893

1900.678
27.22895
27.23085

3.375
27.22893
27.22893

0.137333
27.23085
27.23085

3.512667
27.22893
27.22894

0.04
27.23085
27.23085

3.442667
27.22894
27.22894

0.035
27.23085
27.23085

3.53

ss_area2

Start 27.21294

Stop 27.21294
Recv_RT from ss_area6

Duration 0.035

Start 27.21485

Stop 27.21485
Send_RT to ss_area?7

Duration 3.755

Start 27.21294

Stop 27.21294
Recv_RT from ss_area?7

Duration 0.035

Start 27.21485

Stop 27.21485

Send_RT to ss_area8
Duration 3.442333
Start 27.21294
Stop 27.21295
Recv_RT from ss_area8
Duration 0.037333
Start 27.21485
Stop 27.21485

3000.000 Mhz
Status Update
Duration 0.397333

Start 27.20471

Stop 27.20471
Data Acquisition

Duration 2.955

Start 27.20676

Stop 27.20676

Multi-Receive
Duration 1915.198
Start 27.2028
Stop 27.20471
Handle target requests
Duration 0.192333
Start 27.20676
Stop 27.20676
Handle host requests
Duration 0.047667

Start 27.20676
Stop 27.20676
Pre-execution computation time
Duration 0.035
Start 27.20277

27.21694
27.21694

0.037667
27.21885
27.21885

3.687667
27.21694
27.21694

0.035
27.21885
27.21885

3.502667
27.21694
27.21695

0.035
27.21885
27.21885

0.39
27.20871
27.20871

3.605
27.21091
27.21091

1923.462
27.20679
27.20871

0.367667
27.21091
27.21091

0.055
27.21091
27.21091

0.035
27.20676

135

27.22107
27.22107

0.035
27.22285
27.22285

3.507667
27.22107
27.22107

0.035
27.22285
27.22285

3.442333
27.22107
27.22108

0.037667
27.22285
27.22285

0.56
27.21271
27.21271

3.052667
27.21478
27.21478

1773.677
27.21094
27.21271

0.215
27.21478
27.21478

0.04
27.21478
27.21478

0.035
27.21091

27.22495
27.22495

0.035
27.22685
27.22685

3.51
27.22495
27.22495

0.037333
27.22685
27.22685

3.472667
27.22495
27.22496

0.035
27.22685
27.22685

0.4
27.21672
27.21672

3.105
27.21877
27.21877

1903.32
27.21481
27.21671

0.192333
27.21877
27.21877

0.047667
27.21877
27.21877

0.032667
27.21478

27.22894
27.22894

0.035
27.23085
27.23085

3.455
27.22894
27.22895

0.037333
27.23085
27.23085

3.415
27.22895
27.22895

0.035
27.23085
27.23085

0.417667
27.22071
27.22071

3.047333
27.22277
27.22277

1914.543
27.2188
27.22071

0.217667
27.22277
27.22277

0.04
27.22277
27.22277

0.032333
27.21877

Stop 27.20277
Major computation time
Duration 2047.63
Start 27.20277
Stop 27.20676
Minor computation time
Duration 0.082333

Start 27.20676
Stop 27.20676
Post-execution computation time
Duration 0.04
Start 27.20676
Stop 27.20676

Execution Cycle
Duration 3992.143
Start 27.20277
Stop 27.20676
Total Step Size
Duration 3993.458

Start 27.20277

Stop 27.20676
Idle

Duration 1914.25

Start 27.2028

Stop 27.20471
Number of Overruns

Duration 0

Start 0

Stop 0

Send_RT to sm_areal
Duration 4.287667
Start 27.20277
Stop 27.20278
Recv_RT from sm_areal
Duration 1915.917
Start 27.2028
Stop 27.20471
Send_RT to ss_area3
Duration 3.387667

Start 27.20278

Stop 27.20278
Recv_RT from ss_area3

Duration 0.14

Start 27.20471

Stop 27.20471
Send_RT to ss_area4

Duration 3.42

27.20676

2192.67
27.20676
27.21091

0.075
27.21091
27.21091

0.032667
27.21091
27.21091

4146.345
27.20676
27.21091

4147.847
27.20676
27.21091

1922.538
27.20679
27.20871

o

3.992333
27.20677
27.20677

1924.155
27.20679
27.20871

3.382333
27.20677
27.20677

0.162667
27.20871
27.20871

3.435

136

27.21091

2067.217
27.21091
27.21478

0.08
27.21478
27.21478

0.037667
27.21478
27.21478

3871.003
27.21091
27.21478

3872.493
27.21091
27.21478

1772.837
27.21094
27.21271

o

4.405
27.21091
27.21092

1774.568
27.21094
27.21271

3.377667
27.21092
27.21092

0.15
27.21271
27.21271

3.467667

27.21478

2052.997
27.21478
27.21877

0.09
27.21877
27.21877

0.045
27.21877
27.21877

3986.778
27.21478
27.21877

3987.94
27.21478
27.21877

1902.337
27.21481
27.21671

o

4.105
27.21479
27.21479

1904.038
27.21481
27.21672

3.397667
27.21479
27.21479

0.16
27.21672
27.21672

3.467333

27.21877

2057.197
27.21877
27.22277

0.077667
27.22277
27.22277

0.042667
27.22277
27.22277

4001.163
27.21877
27.22277

4002.575
27.21877
27.22277

1913.72
27.2188
27.22071

o

4.13
27.21877
27.21878

1915.275
27.2188
27.22071

3.392667
27.21878
27.21878

0.145
27.22071
27.22071

3.477333

Start 27.20278 27.20677 27.21092 27.21479 27.21878

Stop 27.20278 27.20678 27.21092 27.2148 27.21878
Recv_RT from ss_area4

Duration 0.04 0.04 0.037667 0.04 0.037667

Start 27.20471 27.20871 27.21271 27.21672 27.22071

Stop 27.20471 27.20871 27.21271 27.21672 27.22072
Send_RT to ss_area5

Duration 3.397333 3.48 3.487667 3.637667 3.485

Start 27.20278 27.20678 27.21092 27.2148 27.21878

Stop 27.20279 27.20678 27.21093 27.2148 27.21879
Recv_RT from ss_area5

Duration 0.035 0.035 0.037333 0.037667 0.037333

Start 27.20471 27.20871 27.21271 27.21672 27.22072

Stop 27.20471 27.20871 27.21271 27.21672 27.22072
Send_RT to ss_area6b

Duration 3.442333 3.662667 3.46 3.547333 3.455

Start 27.20279 27.20678 27.21093 27.2148 27.21879

Stop 27.20279 27.20678 27.21093 27.2148 27.21879
Recv_RT from ss_area6b

Duration 0.035 0.035 0.037333 0.035 0.037333

Start 27.20471 27.20871 27.21271 27.21672 27.22072

Stop 27.20471 27.20872 27.21271 27.21672 27.22072
Send_RT to ss_area?7

Duration 3.425 3.457333 3.425 3.997667 3.412667

Start 27.20279 27.20678 27.21093 27.2148 27.21879

Stop 27.20279 27.20679 27.21094 27.21481 27.2188

Recv_RT from ss_area7
Duration 0.037667 0.035 0.035 0.035 0.035
Start 27.20471 27.20872 27.21271 27.21672 27.22072
Stop 27.20471 27.20872 27.21271 27.21672 27.22072
Send_RT to ss_area8
Duration 3.402667 3.407333 3.642333 3.565 3.397667
Start 27.20279 27.20679 27.21094 27.21481 27.2188
Stop 27.2028 27.20679 27.21094 27.21481 27.2188
Recv_RT from ss_area8
Duration 0.037667 0.037667 0.035 0.037333 0.035
Start 27.20471 27.20872 27.21271 27.21672 27.22072
Stop 27.20471 27.20872 27.21271 27.21672 27.22072

137

Source Code for the GPU-only Modeling

This is the main program that implements GPU_Only . cpp simulation model.

138

fepToad

!oesTbeT px ‘0ss peT px ‘zby px ‘Thy px’IpY Px

‘PIT P ‘zbT px ‘1T px ‘TPT P* ‘PIT Px ‘beT px‘peT px 3ROTF

QT Px ‘H Px ‘20 Px ‘34 px ‘WLlTPx ‘S1 P+ ‘SbE px ‘SpE_px IBOTT

{beTsTpx ‘peTST P ‘gbT P /TP T Px 1 IPT Px ‘I8IAT Px ‘PIE Px ‘PISTPx ‘PIT Px 1POTI
QAT px ‘DA P ‘AT Px ‘DT px ‘PT Px 1BOTT

{ENTPx 'ZATPx ‘A P ‘ZbsTpx ‘TbsTpx ‘TIPS px ‘IS px ‘dTTST px ‘B3TOP P 3EOTJ
{110SHEY_Ux 320TI

{pTHRTP Ux ‘N beTP Ux ‘znTbeTp Ux ‘TN DbRTP Ux 3IROTF

!pewbh TS Ux ‘gewbTs Ux ‘zeub TS Ux ‘TPWOTS Yx JeOTT

f8Y Ux ‘LY Ux‘9¥ Ux‘GY yx 21BOTJ

f9NTUX ‘GATUYX BN U YENT Ux ‘2N Y TN Ux ‘0T U ‘I yx 1eoTd

PTyx ‘d ux ‘Xe3Tep yx 1eOTF

!{¢obueyo ‘zebueyo ‘Tsbueyd JutT

flT+en xew] [6]3A7 1 ‘[T+eN xew] [6]zbT 2 ‘[T+eN xew] [6]TPT 2 ‘[T+eN xeu] [6]TPT I
‘[T+BeN xew] [¢]pFe 1 ‘[T+eN xeuw] [¢]pIT I ‘[T+eN_xew] [g]a1™ 1 3FeoT]
NN g DbeTp 3Joxx ‘NN O DeTP JJOoxx ‘WN dx* ‘NN dx* ‘AN Oxx* ‘NN D*x 1BOTJ

g g 2onias
{5 5 30na3ys
![T+eN xew]sng snd 2IonI3s
![T+BN Xew]usH SUTYDRW 30NIJS
Jequnu I @yl//![T+BN Xew]sus9 Ut
f9zTs JuT
fwnu-ush JuUT
}3onxas JepadAy
i
B

PaIe ydE® UT I0jeIsush ydes JO

‘OA ‘an 1eoTd
‘O ‘ar aeotrs
}sng 3oni3s

.

ERt
‘ssd ‘oxd 3ut
futwsa ‘xewTsa ‘zl ‘Tl ‘ML ‘qeasy
fuTW pPIE ‘xeul pIE ‘¥l ‘¥

3eot1s
1eoTT

fqn"aad

‘1pt oad ‘pge ead ‘pIT 2ad
!a1721d 2e0TZ

‘drrs ead ‘earsp =1d 1eOTJ
sentea de3s swr3 snoTasad//

3e0T3

{zbt7ead ‘1bt ead 1e0TT

‘zanT2ad ‘1A ead ‘gbsTead ‘TbsTead ‘1ps ead ‘p3sTead

{oesbeT ‘DesTpet ‘zby ‘tby ‘Tpy ‘pIu ‘zhb1 ‘1bT ‘TpT ‘p3T ‘beT ‘peT 30T
sweied pIiepuels 92Ul UO paseq paijieInoTed a1 YoTym sisjsweied Tejuswepund//

‘a ‘m 3eots
f9n ‘gn ‘pn ‘¢gn “‘zgn ‘Tn 1eO0TT
30 ‘34 ‘wl ‘Sl 3IBOT3F
{sby ‘spd 3eOTF
!beTs ‘peTs 3e0TJ
fzbt ‘1T ‘TPT \mwu>‘mvwm ;ﬁmm ~muﬂ JeoTs
‘38 ‘ba ‘pa ‘BT ‘PT 3eOTI
fen ‘za 'TA ‘Zbs ‘tbs ‘Tps ‘pys ‘drTs ‘e3rep 3e0T]

senTea UOTILISIT 3Iser//
}suTyoew 30NI3S

ER
[T+N] [T+N] 33sod 3eoT3
f[T+N] [T+N]2ATORT 2EOTT
f[T+N] [T+N]322d 3POTZ
}g 2onxas

Rt
{[T+N] [T+N] 33sod 3eoT3F

;

S[T+N] [T+N]3TnET 3EOTT
f[T+N] [T+N]322d 3eOTT
}9 30oni3s
€UOTIRINP+ZUOTIRINP+TUOTIRIND UOTIRIND SUTISP#
Uy/T €UOTIRIND SUTISP#
8 ZUOT1RIND SUTISP#
U/G"0 TuoTiIRIND SUTISP#
0G*Tdxz ¥M SUTIoP4#

f(mod 3uT

T0°0 U SUTISp#

G0'0 uorTsds suTIOpP#

G9Z6GTPT ¢ Td SuTIap4

INNOD NdD XV¥W = SeaIe TTe JO Idqunu Te303 SYL//T © N SUTIop#
©SIE UOPS UT SSUTYDRW STURMOTTE WNWTXeW SYL// (0T BN Xeu SuTIop#
sI10jeISUSb [TE JO Iaqunu Te303 9YL// 0T N SUTIop#

N N s
sjusuodwo) we3lsAg Ismodg //

\\“mmMmB“m\mmm
£p9=UIPTMIOOTq UT

£ [INQOD NdD™ XYW] 3usAgITRIS HTANVH

¢ [INNOD NAD XYW] TUSATY HTANYH

SoTpuBH 3USA® 7 JO ARIIR UR 23R8I0/ /

EN=//T =

L1070 0777777077770 0 070777777777 7777777777777077777777777777777777177717777

INNOD NdD™ XYW 3IUT 3ISuod

‘XSpUT UT ‘IVW [P *3BOTJF ‘DHA TJd L P *3BOTJF)gqoder o3 Adod proa ,D, uUIsixe
¢ (MOY UT ‘X9pPUT XVW IUT ‘XSPUT NIW IUT ‘pow 320T1g 3JuT
‘IVW 07 P *3POTI ‘DHA Td [P *3ROTF)qodep 03 Adod proa ,D, UIDIXD
{(MO¥ JUT IV 1TINSHY *3IBOTI ‘DHA ADIAEA *3BOTF)beTp pToa UIS3IXd
{(MOY JUT ‘CHDIAEQ *3BOTI ‘ZEDIAHA *3B0TJI ‘THEDIAEA ¥3BOTJ)ISATWIT PTOA urs3xe
{(dEQY0 IUT ‘319S3JO JUT ‘ITNSHY *IBOTIF ‘TEDIAHQ *IBOTF) €LITASODA PTOA ,D, UISIXD
{(MO¥ QUT ‘ITNSEY *3eOTT
‘6EOIAEA *3IBOTI ‘BHADIAHA *3IBOTI ‘LHADIAHA *3IBOTT
‘9EDIAEA *3BOTI ‘GHDIAHA *3BOTI ‘pHEDIAEQ *3BOTT
‘€EDIAHA *3IBOTI ‘ZEDIAHA *IBOTF ‘THEDIAHA *3IBOTF)HAYOSYDOSA PTOA uz93%3
f£(MOY 2UT ‘ITASHEY *3e0TJ
‘6EDIAEA *3BOTJF ‘8EDOIAHA *3IBOTJ ‘LHEDIAHQ *3IBOTF
‘9HEDIAHA *3eO0TI ‘GEOIAEA *320TJI ‘pEDIAEA *3IBOTI
‘€HDIAHQ *3IBOTI ‘ZEDIAHA *3IBOTI ‘THEDIAHA *IPOTF) ZXIWODA pTOA uz93%3
{(MO¥ JUT ‘YHATY 3BOTJ ‘HEDIAEQ *3IBOTJ) TEOSWNSOSA PTOA ure3xe
(MOY 3UT ‘LTNSHY *3P0TI ‘ZEOIAEA *23e0TJ ‘TEDIAHA *3IBOTF)OSAAIQOSA PTOA urs3xe
(MO¥ 3UT ‘LTNSHY *3e0TJ ‘ZEOIAEA *3e0TJF ‘TEDIAHA *3IBOTI)O9ALOQOSA pPTOA urs3xe
(MOY 3UT ‘ITNSHEY *3B0TJF ‘ZEDIAEA *3IBOTI ‘TEDIAHQ *IBOTF)O9AWNSODA PTOA uz93%3
£(MOY 3UT ‘ITASEY ¥3BOTF ‘HDIAHNA *3BOTF)SODDOSA PToA uISIXS
{(MO¥ UT ‘IINSHY *3BOTI ‘EDIAEQ *3LOTJI)UTSO9A pTOA urs3xe
{(MOY JUT ‘EDIAHQ *IBOTF) SAYXTIJRW pTOA urs3xe
£(MOY 3UT ‘EDIAEA *3IBOTF) I¥0S PTOA uIeIxXs
{(MO¥ 3UT ‘03T EDIAEQ *3BOTJI ‘wOII HOIAHQ *ILOTJ)Jew NO Jew Ad0D PTroa urs3xe
{(MOY JUT ‘EDIAEQ *3IBOTI ‘ISOH *3BO0TF)NdD NO 04O AJOD 3UT uisixe

SUOT3IONI ¥aNd JO uoTjeIr[oep //

L1010 0700 7000777777070 770 7000777777777 1777770777777777777177777717777171171/
{SYOTIATUIW §93UT

/¥3UNod I8WT] TeTITUT xx/

!bsxgw p93uUT

/*Aousnba1y }00TO xx/

{()adwTrI®h 3JuUT

! ()I2WTIIIRIS PTOA

NN

WU NdOUOX T LYW, SPNTOUTH
wU NdOUOXTYIVW, SPRTOUT#
wU"Serqno, SpnTout
<I0109A> SPNTOUTH
<U'SMOpUTM> SPNTOUT#

<Y qTTP3IS> SPNTOUT#
<Y-ewTl> opnTouT#
<UP9I1SOT> SPNTOUTH
<Y'OTP3IS> SPNTOUTH

H_LSHI_ SuTIsp#
H LSEL JFepuIT#

OO HIO\O DN 0N

ddo - ATuo ndo

139

i
i

{(baTp® (#xpTOA) /(320TF)JOSZTS
{(pATP® (x¥pTOA) /(3BOTF) JOOZTS
VMWMIWMM¥*WﬂO>W \MumOwawowNHm
! ¥¥PTOA) ‘(2BOTJ)JO9ZTS
(€AY (x¥PTOA) ‘(3BOTJ) JOSZTS
NMM»Ian**UﬂO>“ \Mumoawwwommﬂm
! PR (xxpTOA) ‘(3BOTJF) JOSZTS
{(¢bs”p® (x¥pTOA) ‘(3POTI) JOSZTS
{(TbsTp® (+¥pTOA) ‘(22OTJI)I09ZTS
{ (TIPS PR (*xPTOA) ‘(3BO0TF)JOSZTS
{(pFsT PR3 (¥xpTOA) ‘(2BOTT) JOSZTS
{(dTTs”p® (x¥pTOA) ‘(3POTI) JOSZTS
{(e3TOP PY (x¥PTOA) ‘(3BOTJF) JOSZTS
{(ZbT3ATI PR (x*pTOA) ‘(3BOTJ) JOSZTS
{(TB_AATI PR (+¥pTOA) ‘(2POTJ) JOSZTS
(TP AN T P3(¥xpTOA) ‘(300TJ)JOSZTS
{(IJSTAATI DI (x¥pTOA) ¢ (120TJ)J0SZTS
{(ToP 3A I PR (x¥PTOA) ‘(3BOTF)JOOZTS
! (gb_zbT a7 p® (¥¥pTOA) ‘(1BOTI)JOSZTS
! (1bTzbTt 1 PR (*xpTOA) ‘(2ROTJF) JOSZIS
(TP zbT I PR (¥¥pTOA) ‘(2BOTT) JOSZTS
! (IsTzbT I PR (x¥pTOA) \AumOﬂwvwomem
{(19p_¢bT a7 p3 (¥+pT0OA) ‘(310TI)JOSZTS
{(zbT1thbT 2 PR (*xpTOA) ‘(2POTF) JOOZIS
{(TbTTbT a1 PR (¥¥pTOA) ‘(2BOTT) JOSZTS
{(Tp_TbT 2 PR (*xPTOA) ‘(1BOTJ)J0OSZTS
{(IsTTbT aTpR (¥¥pTOA) ‘(1BOTI)JOSZTS
{(Top TPT 2 pP3 (**xpTOA) ‘(3BOTF)JOSZTS
! (ZbTIPT I PR (¥¥pTOA) ‘(2BOTJT) JOSZTS
{(TbTTPT 2 PR (**xPTOA) ‘(1BOTJ)JOSZTS
(TP TIPT_2_P3 (¥xpPTOA) ‘(3BOTJ) JOSZIS
{(3sTIPT_I PR (¥xpTOA) ‘(3BOTF) JOOZTS
{(ToP_TPT I PR (¥xpTOa) ‘(3BOTJF)JOSZTS
{(gATPIST I PR (*¥PTOA) ‘(3BOTF)JOSZTS
{(1ATPIS" AP (¥xPTOA) ‘(3IBOTJ) JOSZIS
! (zbTpIoT a1 PR (*xpTOA) ‘(2POTI) JOSZIS
{(Tb p3a 2 p3(*xpTOA) ‘(3BOTJ) JOSZTS
{(Tp_PIo I PR (¥xPTOA) ‘(3BOTF)JO°ZTS
{(3sTp39” 2P (»xpTOA) ‘(3BOTI) JOOZIS
{(Tep_PFa_ 1 PR (¥xpTOA) ‘(3ROTF)FOO2ZTS
! (ZbTPIT I PR (¥¥pTOA) ‘(2BOTT) JOSZTS
{(Tb"PIT 2 PR (*xPTOA) ‘(1BOTJ)JOSZTS
(TP PIT_A_P3 (¥xpPTOA) ‘(3IBOTJ) JOSZTIS
{(3sTPIT_I PR (¥xpTOA) ‘(2BOTF) JOSZTS
(TSP PIT I PR (x¥pTOA) ‘(3BOTJ) JOSZTS
! (zbTel A PR (xxpTOA) \Aumoawvwommwm
{(TbT217a Py (+¥pTOA) ‘(3POTJ) JOOZTS
{(Tp el I PR (*¥pTOA) ‘(3BOTF)JOSZTS
{(FsTel 1 p3(¥xpTOA) ‘(3LOTJ)JOSZTS
{(ToP o1 I PR (x»¥PTOA) ‘(3BOTF)JOoZTS
f(e9zTs ‘p"p ‘ezTs ‘pTy ‘(1eO0TJF)J09ZTS ‘9zZTS
T ‘d P ‘T ‘4 U ‘(380TF)JO8ZTS
wAmmIU¢A*¥ﬁﬂo>v ‘(3eo13)JoazTs
(84 p3 (x*pTON) ‘(3e0TF) 30°2TS
(LA P3 (x¥PTOA) ‘(3BOTJ) JOSZTS
{(947P% (x¥pTOA) /(3BOTF) JOOZTS
wAmmIU¢A*¥ﬁHo>v ‘(3eo13)JoazTS
vAwm\UzA««nﬁo>v ‘(3eo13)J082T1S
(€4 P3 (x¥pPTOA) ‘(3BOTJ) JOSZTS
{(zd PR (**pTOn) ‘(3BOTJT)JODZTS
(17 P3 (+xpTOA) ‘(3BOTT) JOSZTS

f(pn_betp PR ()
{(enbeTp PR (*xpTOA) ‘(3BOTT
! (zn_PeTp Py (**pTOA) ‘(
£(107heTP P3 (¥¥pTOA) “(

(ZXTYIVYW_dwa3 pP3 (¥*xPTOA)
(TXTYIVW dws3 p3 (¥xpTOA)
! (pewbTs PR (

! (cewbts PR (

! (zewbTs PR (
{(TewbTs PR (

f(8v PR (

xxPTOA JeoT13s
3eory

‘(3e0T3) J022TS
‘(3e0T3) JO22TS

**PTOA) ‘(3BOTF) JOSZTS
¥¥pTOA) ‘(3BOTJI)JO®ZTS
#¥pTOA) ‘(3BOTF)FOSZTS
*¥pTOA) ‘(3BOTJF)JOSZTS
¥¥pTOA) ‘(3BOTJF)JOSZTS

Je0TJ) JOBzZTS
‘TTR39P N*TTRI9P N) OOTTVYSBIAND
‘TTe39p N*TTe3I8P N) Q0TTVYSBIInd
‘T+TTe3IS9p N) O0TTYSBIqno
‘T¥TTe3ep N) 00TTV¥SeTqnd
‘T*TTEISP_N)O0TTY¥SBIAND
‘T*TTe3ISP_N) 00TTYSeTqnd
‘I¥TTe38p N)20TTYSeTqnd

‘T*TTEISP_N) O0TTY¥SBIIND
‘T*TTe3ISP_N) 00TTYSeTqnd
‘T+TTe39p N) O0TTYSBIqnd
‘T¥TTe38p N) 00TTV¥SeTqnd
‘T*TTERISP_N)O0TTY¥SBIAND
‘T*TTe3ISP_N) 00TTYSeTqnd
‘T+TTe39p N) O0TTYSBIqno
‘T¥TTe38p N) 00TTV¥SeTqnd
‘T*TTEISP_N) O0TTY¥SBIAND
‘T*TTe3ISp_N) 00TTYSeTqnd
‘I¥TTe39p_N) 00T TYSeTqnd
‘T¥TTe38p N) 00TTV¥SeTqnd
‘T*TTEISP N) O0TTY¥SBIAND

‘T¥TTe3I9p_N) 00T TYSeTqnd
‘T¥TTe389p N) 00TTV¥SeTqnd
‘T*TTEISP_N) O0TT¥SBIAND
‘T*TTe3ISP_N) 00TTYSeTqnd
‘I¥TTe3I9p_N) 00T TYSeTqnd
‘T¥TTe38p N)00TTV¥SeTqnd
‘T*TTEISP_N)O0TT¥SBIIND
‘T*TTe3ISP_N) 00TTYSeTqnd
‘I¥TTe39p_N) 00T TYSeTqnd
‘T¥TTe38p N) 00TTV¥SeTqnd
‘T*TTEISP_N)O0TTY¥SBIIND
‘T*TTe3ISP_N) 00TTYSeTqnd
‘I¥TTe3I9p_N) 00T TYSeTqnd
‘T¥TTe389p N) 00TTV¥SeTqnd
‘T*TTEISP_N) O0TT¥SBIAND
‘T*TTe3ISP_N) 00TTYSeTqnd
‘I*TTe3I9P_N) 00T TYSeTqnd
‘T¥TTe3ep N) 00TTV¥SeTqnd
‘T*TTEISP_N)O0TT¥SBIAND
‘T*TTe3ISP N)O0TTY¥SEBIIND
‘T*TTe3I9P_N) 00T TYSeTqnd
‘T¥TTe38p N) 00TTV¥SeTqnd
‘T*TTEISP_N)O0TT¥SBTAND
‘T*TTER3ISP N)OO0TTY¥SEBIIND
‘I*TTe3I9P_N) 00T TYSeTqnd
‘T¥TTe389p _N)00TTV¥SeTqnd
‘T*TTEISP_N) O0TTYSBIAND
‘T*TTE3ISP _N)OO0TTY¥SBIqND
‘I*TTe3I9P_N) 00T TYSeTqnd
‘T¥TTe389p _N)00TTY¥SeTqnd
‘T*TTEISP_N)O0TT¥SBIAND
‘T*TTER3ISP_N)OO0TTY¥SBIIND
‘I*TTe3ISP_N) 00TTYSeTqnd
‘T¥TTe39p _N)00TTYSeTqnd
‘T*TTEISP_N)O0TT¥SBIIND
‘I*TTEISP_N)O0TTY¥SBIIND
‘I*TTe3I8p N) 00TTYSeTqnd

‘9zTs) XTI3RRISSSRTND
‘92Ts) 10309A39SsLTAND

‘T+TTe39p _N) O0TTYSBIqnd
‘T*TTEISP_N) O0TT¥SBIAND
‘T*TTE3ISP_N)O0TTYSBIIND
‘I*TTe3ISP_N) 00T TYSeTqnd
‘T+TTe39p N) O0TTYSBIqno
‘T*TTe39p_N) O0TTYSeTqnd
‘T*TTERISP_N)O0TTY¥SBIIND
‘I*TTe3ISP_N) 00TTYSeTqnd
‘T+TTe39p N) O0TTYSBRIqnd

JOSZTS ‘NxN)OOTTYSBRTqnd
JOSZTS ‘NxN)OOTTYsSerqno
JO®2zTS ‘NxN)OOTT¥serqno

‘N*N) 00T T¥SeTqno

snaiels
sniels
snajels
snajels
snaiels
sniels
snajels
snajels
snaiels
snaiels
sniels
snajels
snaiels

sniels
snajels
snaiels
snaiels
sniels
snajels
snaiels
snaiels
snijels
snajels
snaiels
snaels
snijels
snajels
snaiels
snaiels
sniels
snajels
snaiels
sniels
snajels
snajels
snaiels
snaiels
snijels
snajels
snaiels
snaiels
snijels
snajels
snaiels
snaiels
sniels
snajels
sniels
snaels
sniels

snjels
snjels

snajels
snjels
snjels
sniels
snajels
snjels
snjels
sniels
snajels

snaiels
snaiels
snajels
snajels
snaiels
sniels
snajels
snajels
snaiels
snaiels
snajels

NAP 5 (¥xPTOA) /(3BOTJ)JOSZTS ‘TxTTRISP_N)OOTTYSBIQNO = snieqs
£(9V_PB (x¥pTOA) /(3BOTF)JOO2ZTS ‘T+TTEISP_N)OOTTYSBIIND = snieids
wAmm ﬁzﬁ**vﬂo>v ‘(3e013) JoozTS “ﬁ*aﬂmumﬁlzvooHamwmﬂﬂzo = sn3je3s
UAwD D3 (+¥pTOA) ‘(320TF)JOSZTS ‘T+TTPISP_N)DOTTYSRIAND = sn3els
£(SN7P3 (x¥pTOA) 4 (3BOTF)JOOZTS ‘T+TTRISP_N)OOTTYSRIND = snieds
{(070% (+¥PTOA) *(320TF)JOSZTS ‘T+[TEISP_N)OOTTVSLIAND = Sn3L3s
wAmD 3 (+¥pTOA) ‘(3BOTJ)JOSZTS “H*HﬂmuwﬁlzvooHamwmﬂﬂzo = sn3je3s
(fips (11bTon) (eoT3) Josets ‘IiTreiep) ooffvssidno = snieas

t *TT 20 no =
¢ (dwe3"OI_PY (¥¥PTOA) ‘(3BOTJ)JOSZTS \W*M+mwmm\m“ooMMMmmwm:w 2 Sneas
¢ (dwe3~QI_P3 (**PTOA) ‘(3e0TJ)JO®ZTS ‘[xTTEISP N)OOTTYSEIqnO = Sn3e3ls
¢ (€1INSTY_P3 (**PTOA) ‘(320T])JO°2ZTS ‘[*TTRISP N)OOTTYSeTqnO = Sn3eas
{(ZIINSTE PH (»¥PTOA) ‘(3BOTF) JOSZTS ‘T+TTe3I8P N)OOTTVSBIINO = snjels
£ (ILTNSEY P3 (x*xpTOA) ‘(100TT)J0S2ZTS ‘T+[TEISP N) OOTTYSETANO = Sniels
(NN"€ BeTP IO P® (x*pTOA) ‘(1B0TI)JO2ZTS ‘[TeIop N*[TR39p N)OT[¥SEIqno = sniels
(NN"97BeTP 330 P3 (++PTOA) ‘(3BOTJ)JOSZTS ‘[T239p N+*TT23I9P N)OOTT¥SEIAnd = snje3s
{(NN_d_beTp PR (*¥pTOA) \AumoawvwooNHm ‘T%TTe3op N) OOTTYSRTONO = snieis
! (NN"D BBTP D3 (*PTOA) ‘(3BOT3)3002TS ‘T¥TTBISP_N)OOTTYSETANO = snje3s
{(NN_€_P3 (+¥PTOA) ‘(3BOTJ)JOSZTS ‘TTEISP _N+[TRISP_N)DOTTYSBINO = snjels
{(NNTOTP3 (+xPTOA) ‘(3BOTJF)JOSZTS ‘TTRISP N+TTPISP N)DOTTYSRIQND = sniels
NA@ Nb\ﬁwﬁ««bﬂo>v \AumOvawomNHm ‘9ZTSx9ZTS)D0TTYSRIONO = sn3jels
.Amh;ﬁqh«*ﬁﬂo>v AuWOvawomNﬂm ‘2ZTS¥92ZTS)DOTTYSBIONO = snije3s
“Mmlﬁzﬁ**UMm>v ‘AumOvawomNﬂm “H*wNﬂvaoHamwmﬂQ:u = snje3s
\Axmumow\wMMHHU. n) \AMMOvawowNﬁm ~ﬁ*wNﬁw'ooHH<WMAon = snje3ls
! pToA) (21e0T7T)J09ZTS ‘Tx2ZTS)OO0TTYSBTOND = snijels
f()3Tursergnd = snje3s

{snjels snje3gserqno

{((380T3)J082Ts * T x TTe3I8P N)OOTTeW (x3e0T3) = dwei u
{dwusy yx 3eOTT

funuTusb=TTEISP N JUT
}
()®ZTTETATUT NdD: :¥HIY PTOA

bTonTyuxbTgn T ux ‘b pn U« ‘bTen T ux ‘6Tz Y+ ‘6T TN U ‘6T 0T yx ‘b a1l uyx 3IeoTI
{[T+INNOD NdD™ XVW]eaxe VIYY
IYHNY

!/ ()oTeD puOI pPTOA

¢ (PUODITUIISITIST JUT)OTBD UBTQODRL DTOA

{(dELSTEWIL 3uT)o3epdn ©douellTwpe PTOA

{(dE1STHAIL 3JUuT)o3jepdn weo3lsAs pToA

{()®ZTTeTATUT Ndd PToA

. _ _ _ _ {XpTTpr JUT
{pnTbetpTpx ‘en beTp px ‘zn berp px ‘IO HeTp px 3e0TI
{ZXTIIVA dwo3 ™ px ‘TXIMIYW dwsl px 3e0TJ

!pewbTs px ‘ceubTs px ‘zewb TS Px ‘TPWOTS Px 3EOTT

_ _ '8V Px'LY¥ P9V px‘GY _px 3eO0TI

Y9N P ‘GNP ‘PN DX ‘EN P ‘ZNTPx ‘TN Px 3B0TT

{dwsy 01 px ‘dwe1T I px ‘O P+ ‘I_Px 3BOTJ

€1TNSEY P ‘ZITINSHY Px ‘ILTINSEY Prx 3e0TJT

P _ !NNTE6PIPTIFO P ‘NNTO BerpTIzoTpx
NN"g beTp Px ‘NN O HeTP Pr ‘NN & P* ‘NN DPx 3L0T3
{0720 P g Px TP ‘A Px 3ROTT
RN S X% m*\xMuﬂWUHU* jeoTy
po B AN A mw LIBT3 2T px TP I 138 AN T Ds TOR 3AT TP 32013
vmvwmv.\ _Px 1B gbTTaTpx ‘TP ZbT I px 13STZbT I px ' TOp g1 A px 32013
{gbTTbT I px ' TbT BT I px TP ThT I px ‘3sTTbT 2 px ‘TOpT IDT I px JEOTy
{ZbTIPT T P« ‘TBTIPT A7 Px ‘TP IPT X px ‘JSTIPT I px‘T9p” IPT_I px jeoTld

lenTPIeT I px‘TATPIST I pPx

“NGHmeHuHU«;ﬁWHUumHMHU«‘Hﬁlﬁwwlulv«\umlvwwlulﬁ«;Hwﬁlvumlulv« 3eoT1s
#2bTPIT I px 'TPTPITTI px ‘TP PIT I Px ‘IS PIT I Px ‘9P PIT I px 1EOTI
{zbTel I px‘TbTel X pPx ‘TP o1 1 Px‘JS ol I px‘Tep o1 I Px 1IBOTJT
S _ _ ‘OATpx‘dATPx‘3I_Px 3B0TJ

Y60 Px 84 Px LI Px 194 PG Pxpd Px‘ed Px’Zd P+ ‘T4 Pr 3JeOTI

o {SSd px ‘OXE_P*
fUTUT SAT Px ‘XBUl SATPx ‘SATPx ‘71T PxT1TP*
‘geasy px ‘UTW PIF P+ ‘XU PIE Px ‘M1 Px ‘¥ _Dx 3e0TT
fan ead px‘zbt 2ad px ‘1bT 2ad px
_ ‘1pT oad px‘pIo oad px‘pIT o1d px‘sl e1d px 3eOTT
fepnToad pxiza 2ad px TA 9ad px ‘gbsTead px ‘TbsTead px
‘1psTead px ‘pIs T ead px‘dITs @ad px‘elTop =2ad px 3IBOTT

‘MITP*

140

(1 ‘peTsTp ‘1 ‘d
wey Ty (
3e0T3) 30277
TS \
(o TTRIOD ¢WMMuoo>ummmmHQ:o
) Zb1 fpeTs: — sn
P ‘T ‘duerTy ‘(3e0T3)3 :t_f:m_m%mwﬂé%@mmﬁ €57
[eE] 1= H \
Z1s ‘TTe3ePTN) 1030943 I=¥ 2uTt)I03J mmw (1 ‘p3s ‘1 ‘dwer—
ags q
(1 ‘thTTp ‘T ‘A _ (.“NUH.T::WUWHQDU = snje3s 0S¥ (3e0T73) JOOZTS ‘TIT \
e~y ¢ (12073) 300 ++x.ﬂ+aﬂmumv|ZWMmmxgaEwu\g mww , TS ‘TT®3ISP N) 10309A39SS
zTs ! _ 1= 3ut i L d — 1 N eTqno =
TS TTeIspTN) 30 P03 TSP ‘T ¢ p3s- [y]us = snieas
. 308A388 Lvy T ‘dus3iy f (++43(fT+TTR 99=[T-3] dwa3™
(1 ‘TpTP b1 [serqno = sn 9 (72073) 70 Te19p N>Y ¢ [= 1Ty
T ; _ e oz 1=
P T tdwedTy f(3eo13) 3o A++xuﬂ+aﬂmmwmmmwhﬁlxgaEwuwgpm www . TS ‘TT®19Dp N) 103097398 o
9zTs ! _ {1=3 aut 14 (1 e — dtTs - serqno =
k TTe39p N) 10 T) 103 ITep P ‘T ¢ TS [y] us! - snae3s
. EREV R a4 1 ‘dws1y ‘ (443 {T4TT 9= [T-3] dusy—
(T ‘30N ‘1pT* sseTano = 54 (3e073) Te3ep N> ! E
AP ‘T ‘dusqT (JIpT [3{]us9= snaiels joazTS _ SNAT=¥ uT)
237y ‘(320 +43{T4TTRISP | = (T3] dus3 ™ 44 £S ‘TTE3sP N) 10 pae3
T3)JoezTs ‘ : DTN T=Y v 0bF . Josp395s®e
TS ‘TTe39p JuT) 103 (BT bt S Rt i
(1 “pIE P IoNoaseeseTane o JoAETIETeY ThEe A++xmH+Hﬁmumvlmlﬁﬁ|xgaEmu\su
prEp ‘T ‘dwsa—y 4 (A++x~H+wawx_:munﬁﬂlx_me:wmum umw quHlvMMH«ﬁao>v AumOMWWwomNﬂm P >3{T=3 3UT)I0F
1e0T31) J09ZT : Te3I9p N> T1= EER S(ar *pTOA) (Jo2zTS * T PTN) 00T
s ! — f1=3 3uT 9ey I7P3 (x Jeo13) TS /TxTTE3op | TYSeTAno =
TTR3® T) 3103 et pTon) JoezTs ! P N) 00 — snae
-) zosoapassserans < o St e s
PEoTp T rdweaTy rt_wmﬂwzcmun:-ﬁmawgwﬁm £cv . (Svabs (v epton) (3eo13) Jooets \T?.hmm\z‘oo:ﬁmﬂmw = snaeas
Je0771) 02T Telsp N>Y{T= ! L (UTUTSA *pTOA) 4 (oszTs ; N) 00T - snae
s 4 _ 1=y 3uT [454 i (xe PR (*x 1e0T3) J0BZT T*TTe3I8p | Tyserqno = as
TTR39P N) 10 T) 303 4 (ReuTSA proa) ‘(3e joszTs ‘T D N) 90T TV — sna3e3s
‘ joepjesse ey s D (*xpTOA oT3) JoezTS * *TTe38p N) 00 seTono - sn
PP rpzeriluses ey y o ;M.m”:ssw (3eo13) 30021 (TeTTeaep otivsetans Shieas
(3e013) : TeISP N> ! 93U : *x¥pTOA) JoozTs ¢ TRe39p N) 00 no = sn
joozTs ! SY{T=Y 2u TF L(T1TPR (* (320T17) T IxTTE | TTyseTan qe3s
: TTEe19p T)a03 ‘ *xpTOA) joszTs ¢ Te33p N) 00 5 = snie
. P zoremasserans - e Ot gl e
AP ‘T ‘dwely ‘(A++xuﬁwma%x_:munﬁﬂlxgMEMSWmum lerag VMGAEImeIﬁzMH«Uao>V AumOMwwwooNﬂm \H«mewmﬁ\ZVOOHH<WMMMMM = Sn3ea3s
3e0T3) yoozT rBAop A ToX 2uT) 3 ¢ (xeup «pToa) (Joszre iAot ~ Gnge
e _ f1=y aurt ¥y JE P (+x jeot3) TS ‘TxTTe3ep TYseTqno = e
. TTe3sp N B)I03 (4L pTon) (31e0 JoszTs ‘T« P_N)DOTTVS® = snje3s
(1 BaT 1030013955 TARD & (o bs (- bron) = S fﬂmﬁﬁlz;o:ﬁmsa - sngess
A7P T fdweiTy | A++x«m+aamx_:muuﬁa|xgmEMwwmum 12y \MAW> mumlﬁzﬂw*mao>v AumOMwwwooNﬂm \H«awmwmw\zvooHammmMmmw = snje3s
Jeo0T3) JoozT Telep N> 1= q 1 (zbTe1d xpron) “(oozts ‘TrT1 N) 00T ~ snae
TS/ _ f1=3 3uT 0cy : P73 (xx 1e0T3) J0BZT T*TTe39p | Tyserano = s
TTe19p N) I0 T) 303 (TbT 21d7] proa) ‘(3e JoazTs ‘T D N) OOTTY — snije3js
309A38sS oy L(TPT™ PB (*x+pTOA) o13)Joezts * *TTe38p N) O seTqno = sn
‘
(T pAT ‘ba- eIqno = s 8I¥ ! °1d7ps (+ (32012 . T*TTe38p OTTVSETAN aeas
P ‘T ‘dueyT (+43¢ [3]uso=[niels {(pgoead) *pTOA))Jo92Ts * re3ep N) 00T 5 = snae
1Ty ‘(1e0 +3{T+TTEI8D] T-3] dwea L1Y i D3 (**pTO (1e0717) 30571 TxTTe19p Tyserono — as
13)30927s * FRASET N> T=3 q 91¥ (pT 21d P3 (a) ‘(3eoT ZTs ‘TxTTe TN) 00T TYSeTAnS — snjels
TS ‘TTe3ep N) IO Jur) 103 f (o1 o1d™ xxpTOn) ‘(7@ I)J09zTS ‘TxTT 8P N) 00T TY qno = sniels
309A38SS Siy (e Tp3 (xxpTOA) oT7)1092TS * *TTe18p N) O seTqno = sn
.
(1 BT ‘pa- eTand = s iy flenToadon (+ (3e013) te TiTtero0mN) ooTTueeran aeas
P ‘T ‘dueyT (+43¢ [3]uso=[niels f(zA"oxd™ *pTOA) JoszTs ‘ Te18p N) 00T 5 — snae
17y ‘(3e0 I IT+TTRISP T-3] dwsq ™ 184 i DR (xxpPTO. (7e0T7) J0°ZT TxTTe30p | Tyserono — 3s
13)3092Ts ¢ FRASET N> T3 d [4 L4 (1a7eadTpR(a) ‘(3eoT ZTs ‘TxTTe TN) 00T TYSeTAnS — snje3s
L TTe19p N) I0 quT) 103 ! (zbs~oxd ™) xxpTOA) ‘(1@ I)JoezTs ‘TxTT 15pN) 00T TYS qno = snaje3s
3oaa338s Ly {(Ths ™ TPy (x*pTOA) o11)j0°zTs * *TTB3I9P_N) O BIONO = sn
.
(T pTT ‘br- eTqno = s [1)54 ! °1d 7Py (+ (3e0T2 TS ‘TxTTE39p | OTTVSETAN aeas
P ‘T ‘duel (4431141 [3]uso=[nje3s £ (Tps—o1d] *pToA))JoszTs ‘TxT1 PN) 00T 5 - snae
3Ty ‘(3e0 A {T+TTRIOP | T-y]dwe™ 607 £ P3 (x*pPTO (30T3) 30971 T*1T239p_| TYSeTano = as
T3) Joezts ‘ , PN T=3 q 80% PR —oad Py (a) ‘(3eoT ZTs ‘TxTT® "N) SOTTYSEIAN = sn3je3s
: TTe39pTN) 10 uT) 03 f(dr1s exd xxpTOA) ‘(1@ I)JoszTs ‘TxTT 1epN) 00T TYS gno — snijeas
108A38SSs L0v ! (e3Top PR (¥xpTOA) oT7)1092TS * *TTe38p N) O PTQNO = sn
.
(T ‘enT ‘pT* erano = s 90¥ ! °3d7py (+ (3e013) TS ‘T*TTRISP OTT¥SETan aeas
P ‘T ‘dueyT (4434141 [3]uso=[niels ! (oesTbe *pTOA) JoozTs ¢ re3ep N) 00T 5 = snae
1Ty ‘(1e0 +3{T+TTRISD | T-3] dwea S0% ‘(oo TP (xxpTO (1e0717) 30921 TxTTe3op Tyserono — as
13) 309278 * FRASETN> T3 hd i STpeT A (a) ‘(3eoT TS ‘TxTTE TN) 00T TYSeTAnS — snyels
TS 'TTE3SPTN) 10 R 4 (Zod *¥pToA) “(3e 3)Joszte I+Treien N o aeians = Snaege
309A38SS €07 i 3 (xxpTOA 0T3)J092TS *TTe38p N) O eTgqno = sn
e s s Kb e SR S T i
y ‘(3e0T {T+TTe3pP | —x]dwe3Ty : 5 (xxpTOA 13) Joezts * Te39p N) Tano = s
J) joezts ‘ N> T=3 00% f(p3d PR (*) ‘(3e0T TS ‘TxTTe38p | ooTTyseTan njeis
T TTe3epN) 20 quT) 707 I (zbT xpTon) ‘(3® J)JoozTs ‘TxTT 18P N) OOTTVYS qno = snijejs
J08A3888 66€ : DB (x+pTOA oT3) 3092Ts *TTe39p N) O eTano - sn
e v e g e faadimii e - o
y ‘(3e0T {T+TTeISP | —x]dwe3Ty : 3 (x*xpTOA 11)JoszTs Te3I9p N) Tqno = s
1)Jo0ezTS N> T=% 96¢ S (PIT PR (*) ‘(3e0T s ‘IxTTEeD SoTTyseran nyeas
TS ‘TTE39P N) 10 JuT) 103 ! (beT xpton) I)JoezTs ‘TxTT 18P N) OOTT gno - snijeas
Jo8A32 g6¢ : P3 (+¥pTOA 1e0T13) J0°ZT ¥TTe39P N ¥serqno = s
(1 ‘gbsTp ‘T ‘dwe3T A++x~mﬁ>.ﬁx_cwwmﬂwzmgm sn3e3s Mmm Amwm\qu**vao>w MwmmawvwowN»M “w*aﬁmumﬁlzwww%MMmmﬂgzo - mwwmwm
U ‘(3e01 R w3y ; 3 (+xpTOA 13) Joezts ¢ *TT218p N eTqno = s
J)goezTSs ! N>3{ T=Y T6¢ £ (HTP () “(3aeoT TS ‘TxTTE3Op |) ooTT¥seTan n3e3s
TS ‘TTe39p N) 10 JuT) 103 (307 xxpTon) 3)joezTs ‘ TR3op N) 00TT gno - snijeas
309A3958 log {(307px (+xproA SRS ¥SETAno = sn
s e s e s e o e e SRS T
y ‘(3e0T {T+TTEISP | =[1-y]dws3y i B (**PTOA 11)JoszTs Te38p N Tqno = s
J)joezTs N> T=% 38¢ (a1 P9 () ‘(3eoT TS ‘TxTTE N) O0TTVS®ET njeas
TS ‘TTe389p N) I0 JuT) 103 1 (sba xxpTon) 3)joszTs ! Te3op N) 00TT gqno = snije3s
108)32 £8¢ i DR (x¥pTOA 1e0T3) J0OZT T*TTe39p N yseTano = s
(T ‘TpsTP ‘T ‘dueqT TTC_.MUm. Z_:wwm.mzw:m snije3s Nmm :Wmvw mf««vao\yw Mwmm.ﬁmvwomNMM “M*MﬂmumﬁlzwwwMMMMMﬂﬂzu - mwwmwm
y ‘(3e0T {T+TTEISP | =[1-y]dws3y ‘ B (x*PTOA 11)JoszTs +TTe38P N Tqno = s
J) Joszts * N> A T=% 8¢ ¢ (pe”sTP3 () ‘(3eoT TS ‘TxTTE30p)o0TTYSeT nje3s
TS ‘TTe39p N) I0 JuT) 103 1 (zb1 xxpTon) 3)joszTs Te3ep N) 00TT gqno = snije3s
Josp3esse £8¢ ! D3 (**pTOA 3e0T7) JoozTs \H*Hﬂmumt\zvoo ¥SEIAnO = sn
:;wmwz_éumm@mssm o : (1o wﬁ:agw (3e013) 300215 ﬁmmg-zzoﬁﬁms 2 Gnaeas
fT4TTRIOP N> ! SaRk! £ **xpTOA) JoozTs ‘TxTT Sp_N) 00 no = sn
AIT=A AU 08¢ ISINTPR (* (32013 TS ‘TxTTe39P | TTyseTqno — Je3s
8ze meww UQA««Uao>W MwmoawvwomN+m \w*aﬂmumﬁlszw%%Mmmﬁn:u _ mwwmwm
i PR (*xpTOA ©0T3) 30921 *TT218P_N) O serano = s s
£(347 vzﬁ**@ao>w Aumoawvuowmwm “H*aﬂmuob\z“omHammmﬂgso = snaEis
(3e017) Te Irtieiop M) oOTteserans Jeas
joozTs Te3sp N) o0 o = sn
: TxTTe — TT¥seTano = Je3s
Te3sp N) 20 aqno = sn
TTYSeTqno = Je3s
= snajels

141

(T ‘¥Mp ‘T ‘dwe3Ty ‘(3BOTJF)JOS2ZTS ‘TTERISP N) I0IDSAISSSETAND = Snieis o9 (1 ‘gbyp ‘T ‘dwelTy ‘(320TJ)JOS2ZTS ‘TTEISP N) I0IOSAISSSEIINO = sniels
{9] uso=[T-3]dwsy Yy $09 fzby [y]uen=[T-3]dwe3 ™y
(++3{fT+TTOIBP N> T=¥ 3IUT)I0F €09 (++3{T+TTRISP N> { =3 3IUT) 0%
209
(1 ‘3a7ead p ‘T ‘dwelTy ‘(3BOTI)JOSZTS TTEISP N) I0IOSAFSSSEIQNO = Sniels 109 (1 ‘thyp ‘T ‘dwelTy ‘(320TJ)JOS2ZTS ‘TTEISP N) I0IDSAISSSEIINO = sniels
{3a70xd" [y]uso=[T-3]dwel 4 009 {1y] uso=[1-3]dws3™y
(++3{T+TTRISP N>/ T= 2IUT)I0T 666 (++3{T+TTEISP N>H{T=Y 3IUT) 10T
869
(1 ‘gbr ead p ‘T ‘dwey Ty ‘(3207F)J0OSzTS ‘TTEISP N) JO0JOSAISSSBIOND = Snjels /a6 f(T ‘teyp ‘T ‘dwelTy ‘(3B0TJ)JOSZTS TTEISP N) I0IOSAISSSEIINO = sniels
{zbr ead: [y]uso=[T-3]dwsy Yy 965 f1pY - D] uso=[1-3]dws3™y
(+43(! T+TTRISPT N>/ T=3 3IUT) I0T G6G (+43 ! T+TTRISPT N>/ T=¥ 3UT) I07
69
(1 ‘tbread p ‘T ‘dwey Ty ‘(3207F)J0S2TS ‘TTEISP N) JO0IOSAISSSBIOND = Sniels ¢ (T ‘payp ‘1T ‘dwelTy ‘(3BO0TJ)JOS2ZTS ‘TTEISP N) I0IOSAISSSEIINO = sniels
{1br ead: [y]uso=[T-3]dwsy Yy 65 ‘p3y- []uso=[1-3]dws3™y
(+43({T+TTRISP N> {T=3 UT)I0T [6G (++43 {T+TTRISP N> {T=¥ 3UT)I0J
069
(1 ‘tprTead p ‘T ‘dweyTy ‘(3207F)J0OS2TS ‘TTEISP N) JOIOSAISSSBIOND = snjels 686 (1 ‘gbTp ‘T ‘dwelTy ‘(3B0TJ)JOS2ZTS ‘TTEISP N) I0IDSAISSSEIINO = sniels
f1pT ead: [y]uso=[T-3]dwsy Yy 886 fZb1 []uso=[1-3]dws3™y
(+43({T+TTRISPT N> {T=3 3UT)I0T /QG (+43 {T+TTRISP N> {T=¥ 3JUT) I0F
989
(1 ‘pzeTeadp ‘1 ‘dwei Ty ‘(1207F)J0OS2TS ‘TTEISP N) JOJOSAISSSEIONO = Snjels ¢gg (1 ‘thTp ‘T ‘dwelTy ‘(3B0TJ)JOS2ZTS ‘TTEISP N) I0ID9AISSSEIINO = sniels
{pgeTead: [y]uso=[T-3]dwsy Yy 8¢ fTPT []uso=[1-3]dws3™y
(+43({T+TTRISPT N> {T=3 IUT)I0T €8¢ (+43 {T+TTRISP N> {T=¥ 3JUT)I0J
89
(1 ‘paTead p ‘1 ‘dweiTy ‘(3207F)J0S92TS ‘[TEISP N) J0JOS9ALSSSEINO = snjels 186 f(T ‘teT P ‘T ‘dwelTy ‘(3BO0TI)JOS2ZTS ‘TTEISP N) I0IDSAISSSEIINO = sniels
‘pIT ead: [y]uso=[T-3]dwsy Yy 085 fTPT D] uso=[1-3]dws3™y
(+43({T+TTRISPT N> {T=3 IUT) I0T 6/G (+43 {T+TTRISP N> {T=¥ 3UT)I0J
849
(1 ‘e17ead p ‘T ‘dwelTy ‘(320TJ)JOSZTS TTEISD N) I0IOSAISSSEIONO = Snieis //¢ (T ‘paT P ‘1T ‘dwelTy ‘(3BO0TJ)JOSZTS ‘TTEISP N) I0IDSAISSSEIINO = sniels
for ead: [y]uso=[T-]dwe3 948 pIT [M]uso=[T-y]dus3 g
(+43({T+TTRISPT N> {T=3 IUT)I0T /G (+43 {T+TTRISP N> {T=¥ 3UT)I0J
VLS
(1 ‘enTPadTp ‘T ‘dwelTy ‘(3BOTI)JOSZTS TTEISD N) I0IOSAISSSEIONO = Snieis ¢/¢ (1 ‘beTp ‘1T ‘dwelTy ‘(3BO0TJ)JOSZTS ‘TTEISP N) I0IDSAISSSEIINO = snieqs
fen2adr [y]uso=[1-¥]dwa3™y LS ‘beT: [y]usoH=[T-¥]dws3™y
(+43({T+TTRISPT N> {T=3 3UT)I0T [/G (+43 {T+TTRISP N> {T=¥ 3UT)I0J
049
(1 ‘gaTeadTp ‘T ‘dwelTy ‘(3BO0TI)JOSZTS TTRISD N) I0IOSAISSSEIONO = SnIeIs 69¢ (1T ‘peTp ‘1T ‘dwelTy ‘(3BO0TJ)JOSZTS ‘TTEISP N) I0IDSAISSSEIINO = snieqs
fzn2adr [y]uso=[1-¥]dws3™y 896 ‘peTt [y]usH=[T-¥]dws3"y
(+4+3{T+TTEISP N> ! T=3 23UT) 1037 298 (+4+3 {T+TTRISP” N> ! T=3 3UT)I0F
999
(1 ‘1aTeadTp ‘T ‘dwelTy ‘(3BO0TI)JOSZTS TTEISP N) I0IOSAISSSEIONO = Sniels gog {(T ‘dp ‘T ‘dwe3Ty ‘(3BOTI)JOSZTS ‘[TEISP N) J0IOSAISSSLINd = snjels
fTAT2adr [y]uso=[1-¥]dws3 ™y $9¢ ‘s [M]uso=[T-3]dwsl ™y
(+4+3{T+TTEISP N> T=3 3UT) 1037 €96 (+4+3 {T+TTRISP” N> ! T=¥ 3UT)I0F
299
{(1 ‘zbsTead p ‘1T ‘dwel Ty ‘(23e0T3I)J0S9ZTS kHﬂmuwvlzv\youomxﬁmmmmaﬁnu = sn3e3s 196 (T ‘H P ‘1T ‘dwel Ty ‘(3BO0TI)JO9ZTS ‘TTEISP N) I0J0DAISSSETOND = snieys
fgbsTead" [y]uso=[T-3]dwe1 Ty 09S ‘He [y]uso=[T-3]dwsy Yy
(+4+3{T+TTEISP N> T=3 3UT) 1037 658 (+4+3{T+TTRISP” N> {T=¥ 3UT)I0F
869
f(7 ‘tbsTead p ‘1 ‘dwel Yy ‘(1BOTJ)JOOZTS ‘TTEI9P N) I0309AISSSLTAND = snjels 166 (T ‘30 P ‘T ‘dwe3 Yy ‘(32OTJ)J09ZIS ‘TIRISP N) I0IDSAISSSETAND = snje3s
{1bsTead" [y]uso=[T-3]dwe1 Yy 966 30" [d]ueH=[T-3]dwey gy
(+4+3{T+TTEISP N> T=3 3UT) 1037 oo (+4+3{T+TTRISP” N> ! T=¥ 3UT)I0F
jic
(1 ‘tpsTeadp ‘T ‘dwelTy ‘(1207F)J0OS92TS ‘[TEI9P N) J0]OS9ALSSSEINO = snjels €66 (T ‘3d P ‘T ‘dwelTy ‘(3BOTI)JOSZTS ‘TTEBISP N) I0ID9AISSSEIINO = snieqs
{1psTead: []uso=[T-3]dwe1 Ty zes f3d° [d]ueH=[T-3]dwey gy
(++3{{T+TTOISP N> T=¥ 3IUT)I0F [GG (++3{{T+TTRISP N> ! T=¥ 3IUT)I0JF
099
(1 ‘pysTeadp ‘1 ‘dweiTy ‘(1207F)J0OS92TS ‘[TEISP N) J0]OS9ALSSSEINO = snjels 678 (T ‘wrTp ‘T ‘dwelTy ‘(3BOTI) JOSZTS ‘TTEBISP N) I0IDSAISSSEIINO = snieqs
‘prsTead: [y]uso=[T-3]dwe1 Yy 8vS fwrt [y]ueH=[T-3]dwey Yy
(++3{{T+TTOISP N> T= 3IUT)I0F /G (++3{{T+TTRISP N> ! T= 3IUT)I03F
9%<
{(1 ‘drrs ead p ‘1 ‘dwelTy ‘(3BOTI) JOSZTS ~Hﬂmuwvlzhyouow>uwmmmanzu = sniejs S¥S (1 ‘o1 P ‘T ‘dwe3 Yy ‘(32OTJ)JO09ZIS ‘TIRISP N) I0IDSAIDSSETAND = snieys
{drrsTead: [y]uso=[T-3]dwey y ¥Pe foL" [M]ueH=[T-3]dwey Yy
(+4+3{T+TTEISP N> T=3 23UT) 1037 €rve (+4+3 {T+TTRISP” N> {T=3 3UT)I0F
s
(1 ‘eaTep 2ad p ‘1 ‘dwe3 Ty ‘(2BOTJ)J0O9ZTS ‘TTIRISP N) I0IDDAISSSETQND = Sniels %S (1 “‘sbgp ‘1T ‘dwel Ty ‘(3BOTI)JOSZTS ‘TTEIDP N) I0JDOAIDSSETOND = sniels
fearep 2ad [y]usH=[1-¥]dus3™y i ‘sbu- [y]usH=[T-¥]dws3™y
(+4+3{T+TTEISP N> ! T=3 23UT) 1037 6£S (+4+3{T+TTRISP” N> {T=3 3UT)I0F
8¢9
{(1 ‘oesTbeT p ‘T ‘dwel Ty ‘(3e0T3I)JOS9ZTS ~HHMumUIZHuouow>ummmmagzu = snie3s 1€S (1T “spadp ‘1T ‘dwelTy ‘(3BOTI)JOSZTS ‘TTEISOP N) I0J0DAISSSETONO = snieys
{0887 be " []uso=[T-3]dwe1 Ty 9¢G fspu” [y]usH=[1-x]dws3 ™y
(+4+3{T+TTEISP N> T=3 23UT) 1037 ceg (+4+3{T+TTRISP” N> {T=3 3UT)I0F
¥es
{(1 “oesTpeT p ‘T ‘dwel Yy ‘(220TI)J0S9zTS ‘TTRIDP N) I03ID9AIDSSPTOND = sSniels €€g (1 ‘beTsTp ‘T ‘dwe3 Yy ‘(3BOTI)JOLZTS ‘TIERISP N) I0IDOAISSSETOND = Sniels
fossTpeT" []uso=[T-3]dwe1 Ty €8 ‘beTs - [y]uso=[1-3]dws]y Ty
(+4+{T+TTEISP N> ! T=3 3UT) 1037 Tes (+4+3{T+TTRISP” N> {T=3 3UT)I0F
0gs

142

NAH HHqumm TP ‘T ‘TPT p ‘TTe3sp N) AdoogseTqno

(T ‘pap ‘T ‘Tps ead p ‘I- ‘TTe3sp N)AdxesseTqnd

(T ‘pap ‘T ‘TpsTp ‘Trejep N)AdoogseTqno

(T ‘ed P ‘T ‘T1INSAY P ‘T ‘TTe3sp N) Adxesserqno

(T “TI1T0SEY P ‘T ‘€17ASEY P ‘T ‘TTe3sp N)AdxegseTqno
£(T7239P7N ‘€1T0SAY P ‘PIY P ‘ZIINSEE P) 994100094

(T ‘Z1INSEY P ‘¥MxUxG 0 ‘TTe3I89P N) [eOssserqnd

(T NHq:mmm P ‘T ‘p3T ead p ‘T ‘ITe3ep N)Adxesserqno
(T ‘z1I0SEY P ‘T ‘PIT P ‘TTe3lsp N) AdoosseTano

//4(T ‘T1TNSEY P ‘¥mMxUxG Q- ‘TTe38p N) [eossserqnd

N1 ~ﬁHqummlﬁ ‘1 ‘pgeo ead p ‘1 ‘TTelep N)AdxesseTqno

NAH HHqumm P ‘T ‘p3eTp ‘TTe3sp N)AdoogseTqno

pIsToad p-pIysTp=cd p//! ‘ed P ‘T ‘pIsTead p ‘I- ‘TTe3lsp N)Adxesserqno
(T ‘e¢dp ‘1T ‘p3sp ‘Trelsp N)Adoogserqnd

(T ‘zdp ‘T ‘zrinsEd p ‘T ‘TTe3sp N)Adxegserqno

(T ‘z1InSEY P ‘T ‘I1TASEY P ‘T ‘TTe3sp N)Adxesselqno
(T ‘Z110sEY P ‘Y- ‘TTelsp N) [edossserqno

(T ‘NHq:mmmlv \ﬁ ‘wrTp ‘TTelsp N) AdoogseTqnd

(T ‘117I0SEY P ‘UxGr0- ‘TTEISP N) [BOSSSerano

(T HHqumm P ‘T ‘sl ead p ‘1 ‘Tre3sp N)AdxegseTqno
(T “1I70SEY P ‘T ‘el P ‘TTe3sp N)AdoogseTgno

(1 ~Nm|n ‘1 ‘ziIAsdAY P ‘T ‘TTelsp N) AdxegseTqnd
{(TTRl9P N ‘z170SEY P ‘dITs ead p ‘TITASHY P)O9AIOAOSA

i

A Y+HZ=TIINSHET P//

(T
oxd dTTs+dTTs=1110S3d P// ¢ (T

sad e3Tep-e3Tep=14 p// ‘(1

[1001700770 070007007000 7777777777777777777777777777777/3T18M/ /7117

‘T3P

(T ‘TITASEY | 14 ‘T ‘Hp ‘z- ‘Tre3ep N)AdxesgseTqno

(T ‘TIINSEY P ‘Y ‘TTe3sp N) TeOSSSeTqno

(1 ;Haq:mmmlv ‘1 ‘a’p ‘1Te3sp N)Adoogserqno
NAaAmuov\z ‘zd P ‘dITsTP ‘TII1TNSHEY P)O9ALOAOSDA
(T “1II0SEY P ‘T ‘d P ‘U ‘TTe3sp N) Adxesserqno

(T ‘11I0SEY P ‘z ‘TTE3ISP_N) [ROSSSeTqno

(T ‘1T1I0SEY P ‘T ‘H P ‘TTe3ep N)Adoogserqno

‘T YTIINSTEY P ‘amxyxG Q- ‘TTe3sp N)Adxegserano
‘TIIASEY P ‘T ‘drTs ead p ‘T ‘Tre3sp N)AdxegseTqno

‘TTe39p N)AdoogseTgno
‘TTe39p N) AdxegseTqno
‘TTejsp N) AdoogseTqno

f(1_‘tiInsEy p ‘1T ‘drTsTe
‘TI P ‘T ‘e3jrep ead p ‘I-
(T ‘Tap ‘T ‘earsp p

} (uoTTsde< ([p]xxe™xeW) SqeI) T TUM

!1=[0]xa9" xEW

{(TTe3ISP N ‘X P ‘€A P ‘zA P ‘TATP ‘gbsTp ‘TtbsTp ‘TpsTp ‘pisTp ‘dITIs P ‘B3TOP P) ZXIWOSA
By ‘3a7ead p ‘T ‘3a7p ‘TTe3ep N)Adoogserqno

‘(1 ‘gbt ead p ‘T ‘gbt p ‘Trte3sp N)Adoogserqnd
(1 ‘1hTT @MQIU ‘1 ‘1btTp ‘TTe39p N)AdoogseTqno
(T ‘1 “p ‘TTe3sp N)Adoogserqno
(T ‘1 ‘TTe3ep N) Adoogserano
(1 ‘1 ‘Tre3ep N) Adoogserano

H ‘ ‘TTe39p N)AdoogseTqno

H ‘TTe3sp N) AdoogseTqno

H ‘TTe38p N) AdodogseTqno

H ‘T1e3ep N) AdoogseTqno

(T ‘T ‘¢bsTp ‘Trejsp N)Adoosserqno
(T ‘T ‘1bsTp ‘TTe3ep N)Adoogserano
(1 ‘T ‘Tps”p ‘TTe3ep N)Adoogserqno
‘(1 _‘p3sTead p ‘T ‘pys_p ‘Tre3sp N)Adoogserqnd
(1 ‘drrsTead p ‘1 ‘drTs_p ‘1Te389p N)Adoogserqnd
{(1 ‘e3rep ead p ‘T ‘e3Tsp p ‘TITe3sp N)Adoogserano
!()3TUurserqnd = snje3s

fsnjels snielgseTqno

f((autT 9ZTS x T * wNamvuoaamEA*u:ﬂv s3nuasd
umo~wvuowNﬂm T)00TTe2 (*¥3e0TF) = b 118

)
1)00TTeD (¥x3B0TF) = P IId

J0
((

((3e0T3) 309218
Je vooaamoﬁ¥uQOva II19 Xeu

OT13)3092Ts ‘T

fumuTusb=TTEISP N 2JUT
fojnuradx JuUT
‘1197 XPulx 1BOTT

!bTa1a9x ‘p aI0x

! (baagwn (xMADAINI @OYVYT)) AousnbsagsourwroIaxadiaand

!(ezTs ‘9"z p ‘8zTs
(T ‘9n”p ‘T ‘9n”y !
‘(1T ‘so”p ‘T ‘sn”y ¢
‘(T ‘wvo”P ‘T ‘pOTU !
(T ‘en”p ‘T ‘en”y f
(T ‘zoZp ‘T ‘eo”y !
T ‘ot ‘T ‘tong
N ‘pn_beTp p ‘N ‘pn_berp”
N ‘en betp p ‘N ‘en berp
N ‘zn beTp P ‘N ‘zZn PeTp
N ‘T betp p ‘N ‘1n berp
(1 'OT7p ‘T ‘dwe3Ty !
(1 ‘ar"p ‘1 ‘dwe3Ty ‘
(T “317p ‘1T ‘dwe3Ty f
(T ‘ssap ‘1 ‘dweyy f
(T ‘oxdp ‘1T ‘dweyTy !
T ‘utuw saA p ‘T ‘duey Ty
T ‘weur sap ‘T ‘duelTy
(1 'zip ‘1 ‘dwe3Ty !
(T ‘t17p ‘1 ‘dwe3Ty !
(T ‘M1ITP ‘T ‘due3Ty
(T ‘qe3sy p ‘1 ‘dweay ’
‘utwpIgTp ‘T ‘dwsiTy !
‘xew pIgp ‘T ‘dwsiTy !
(T "917p ‘T ‘dweiTy

0=z0”P 38s //*!(92Ts

} 189

(dEISTHAIL 3uT)o3epdn wolsAs: :¥a¥Y PTOA (89

(3e0T3) JoozTS

(3e0T3) JoozTS

(3e0T3) JoozTS

(3e0T3) JooOzTS

(3e0T3) JoozTS

(3e0T3) JOoOzTS

(3e0T73) JOoOzTS

(3e0T3) J0o9z2TS

(3e0T3) J009z2TS

(32073) 308218

(32073) 308218

(32073) 308218

‘TTe3ep N) 10308A38SSeTAND =

‘TTEISP N) 2103094395 SBTAND =

‘TTEISP N) Z70309A39SSBTAND =

‘TTe39p N) 10309A38SSeTqnd =

‘TTEIS9P N) I0309A39SSLIAND =

‘TTel9p N) 10309A38SSeTqnd =

‘TTE19P N) I0309A9SSBIAND =

‘TTeI9P N) I0309A19SSeIqND =

{(0Tu) o013

‘Z0TP ‘07 z0TP) ABW NO 3BW Xd0OD

‘PTY ‘(3e0T3T)J0SzTSs ‘8SzTs ‘82ZTS)XTIIeRWISSseTqnd
(320T3) JOSZTS ‘TITeRISP N) I0309AISSSPIONO = sniels
(3e0T73F) JOSZTS ‘TTeRISP N) I0J0SAISSSETONO = sniels
(3e0T73) J0S2zTSs ‘TTeRISP N) I03109AISSSRTONO = sniels
(320T3) JOOZTS ‘TTRISP N) 10309AIDSSLTANd = snieils
(320T13) JO2ZTS ‘TITRISP N) I0309AISSSPIONO = sniels
(3e0T73) JOSZTS ‘TTeRISP N) I0JOSAISSSBTONO = sniels
U ‘(3e0T7J)J092TS ‘N ‘N)XTIJNISSSEIQNO = sniels
Ty ‘(3BO0TJF)JO9ZTS ‘N ‘N)XTIFRWISSSBINO = snjieis
U ‘(3e0TJF)FO9ZTS ‘N ‘N)XTIFeHISSSBIONO = sniels
Y ‘(3e0T3)JF0=22Ts ‘N ‘N)XTIJeR3IaSserqnd = snieis
(12e0T7) JOOZTS ‘TTE1SP N) I0I09AISSSLTAND = sniels
‘o1 [x]sna=[1-] dwe3 u
(+43{T+TTEISP N>¥ ! T=¥ 3uT) I0J
(320T77) JOOZTSs ‘TITeRISP N) I03109A3SSSRTANO = snie3s
‘a1 [d]sng=[T-3]dwe3 y

(+43 4 T+TTEISP N> T=3 IUT) I0J

snije3s
{31 [q]sng=[T-%]dwe3 u
(+43 4 T+TTEISP N>3 ¢ T=3 IUT) I0J

snjejs
‘ssar [M]uso=[T-y]dus3 g
(+43 {T+TTRISP N> {T=¥ 3UT)I0J

snjejs
foxE" [M]uso=[T-y]dus3 g
(+43 {T+TTRISP N> {T=¥ 3UT)I0J

snjeqs
futwsac [Y]uso=[T-y]dus3 g
(++3{T+TTEISP N>¥{T=¥ 3uT) I0J
snjeqs
fxeur sac [y]uso=[T-]dusl Uy
(++3{T+TTEISP N>¥T=¥ 3UT) I0J

‘TTel19p N) I03089A2195SPTOND = sniejs
fzLlt [M]ueH=[T-3]dwey Yy

(+43 {T+TTRISP N> {T=¥ 3UT)I0J

‘TTE19P N) I0309AISSSBTIANO = sniels
1L [M]ueH=[T-3]dwey Yy

(+43 {T+TTRISP N> {T=¥ 3UT)I0J

‘TTe3sp N) I0309A39SSBIAND = snjels
ML [M]usD=[T-¥]dwe3™y

(+43 {T+TTRISP N> {T=¥ 3UT)I0J

‘TTel19pP N) I0309A2195SBTONO = sniels
{qeasy [q]uso=[T-3]dwe3 y

(+43 4 T+TTEISP N> ¢ T=3 IUT) I0J

snjeqs
futw pFE” []ueo=[T-y]dwsi y
(+43 {T+TTRISP N> {T=¥ 3UT)I0J

snieqs
Ixew pIA- [M]ued=[T-y]dwel y
(+43 {T+TTRISP N> {T=¥ 3UT)I0J

snjels

L [l uen=[T-3]due3 Ty
(443 {T+TTOIBP N> {T=3 3IUT) 103

{69

143

{(N ‘ZXIYIVA dws3 p
(N ‘ZXT¥IVW dwelTp

L(N ‘DITP ‘9V P ‘TILINSHY P)OSAATIAOSA

(T ‘T1I0SEY P ‘T ‘Y P ‘0°T ‘N)Adxesserqno

(1 ‘1iIasEY P ‘T ‘pRwbTs o ‘0-T ‘N)Adxesserqno
(1T ‘11IasEd P ‘T ‘gewbisTp ‘N)AdodogseTqnd

Y(N ‘dITP ‘SY P ‘TITASHY D) O9AAIQOSA

(T ‘TII0SEY P ‘T ‘LY P ‘0°T ‘N) AdxegseTqnd

L(T ‘1TrTIaSEN P ‘T ‘zewbTsTp ‘0T ‘N) AdxegseTqno

(T ‘tiInsEy p ‘T ‘TewbrsTp ‘N) Adodogserqno

‘pewbtsTD ‘0"
T ‘N ‘zn”betp
0 ‘N ‘pnTbeTp

T ‘OI”P ‘N ‘gXI¥IVWN dws3™p ‘0°T ‘N ‘N ‘,N,)Aswsbsserqno
N ‘NN"d_beTP_3FOo"P ‘0°T ‘N ‘N ‘N ‘,N, ‘,N,)uwsbgserqno
N ‘NN"9 PERTPTIJOTP ‘0°T ‘N ‘N ‘N ‘,N, ‘,N,) uwsbsserqnd

‘(T 0
‘0" P
- °
0

‘(T ‘geuwbtsTD ‘p ‘T ‘adr P ‘N ‘ZXTEIVW dwe3l P ‘0°T ‘N ‘N ‘,N,)swsbgserqno

f(N ‘ZXIMIVW dws3 P ‘0°T ‘N ‘TN Hetp P ‘N ‘NN € P ‘0°T- ‘N ‘N ‘N ‘,N, ‘,N,)uwsbsserqno
{(N “ZXTEIVW dwel™p ‘070 ‘N ‘e heTp P ‘N ‘NND P ‘07T ‘N ‘N ‘N ‘N, ‘,N,)uwsbgserqno

(T ‘zewbTsTP ‘070 ‘T ‘OI'P ‘N ‘ZXI¥IVW dws3 P ‘0°T ‘N ‘N ‘,N,)swsbsserqno

(N ‘ZXTMIVW dwe3™p ‘0°T ‘N ‘pn Hetp™p ‘N ‘NN g P ‘0°I- ‘N ‘N ‘N ‘,N, ‘,N,)uwsbgserqno
(N ‘ZXT¥IYW dwedTp ‘00 ‘N ‘zaTBerpTp ‘N NNTO P ‘07T ‘N ‘N ‘N ‘LN, ‘,N,)uusbgserqnd

BN

N ‘ZXTYLVW dwsl™ p
(N ‘ZXT¥IVW dwel p

‘¢

, ‘TewbTs ™ P ‘0°0 ‘T ‘Al P ‘N ‘ZXIMIVW dwe3l P ‘0°T ‘N ‘N ‘,N,)swsbgserqnd
0 N
7

ﬂ v

H\z\mo|mmﬂvlm.z.zz|m|@mﬂn|uuo|v;o.ﬂw\z\z\z~\z‘;;vaammmmmﬂnzu

070 ‘N ‘TOTHeTPTP ‘N ‘NN DTHRTIPTIIOP ‘07T N ‘N ‘N ‘LN, ‘,N,)uwsbgserqno
}((100"0<([01b7228) sqe3) | | (100" 0<([0]P 118)sqe3))STTym

{1 = [0]b xae
‘1 = [o]lpTa38
¥ P ‘0°T ‘T ‘Sn_P ‘TTeI9P_N ‘NN"€ P ‘0°T ‘TTe3Isp N ‘TTe3Isp N ‘,N,)Awsbgserqno
¥ P ‘070 ‘T ‘90TP ‘TTE3eP N ‘NN O P ‘0°T ‘TTe3ep N ‘TTe3sp N ‘,N,)Awsbsserqnd

P ‘0°T ‘T ‘9n"P ‘TTEISP N ‘NN & P ‘0°T- ‘TITBRISP N ‘TTeIdP N ‘,N,)Awsbgserqno
¥ P ‘070 ‘T ‘SnTP ‘TTe39pP N ‘NN O P ‘0°T ‘TITelsp N ‘ITeisp N ‘,N,)swsbsserqnd

{(TTeI9P N ‘T ‘9Y¥ P) TeOSHASO™dA

‘(T ‘oY P ‘0°T- ‘TTe3sp_N) [eOSsserand

(T ‘9¥ P ‘T ‘zIInsE¥ P ‘0T ‘1Te3sp N)Adxegserqno
{(TTRISP N ‘Z171ASEd P ‘ZN P ‘NN g DbeTp p)O9AL0dO9A
{(TTR3SP N ‘9Y P ‘PO P ‘NN 9 DPeTp p)oealoddss

(ITeI9P N ‘T ‘GY P) TPOSWNSO9A

(T ‘GY P ‘T ‘zZiInsad p ‘T- ‘TIR3S9p N) Adxesseqno
{(TTe3I9P N ‘Z110SEY P ‘TN P ‘NN D _DbeTp p)OsAr0odoss
{(TTR3I90 N ‘GY P ‘€N™P ‘NN € DbeTp p)oealodooa

(1 ‘dwey OI P ‘T ‘OI P ‘TTe3sp N)Adoosserqnod
NAH‘QEmu\aH\v\H\onﬂ~aﬂmumv\zv>moommman:o

(T ‘9n"P ‘T ‘elInsEY TP ‘1- ‘TTe3dp N) Adxegserqno
f(TTe3ep N ‘€11ASEN P ‘SPE_P ‘ZITASHEYM P)OSALOdOSA
{(TTe389p N ‘9n P ‘sba P ‘IITNSHY P)OSALI0dOSA

(T ‘snTp ‘T ‘elTnsEY P ‘T- ‘TTe3sp” N) Adxegserqnd
{(TTe39p N ‘€110SHAY p_‘sbE P ‘ZITNSHEY P)O9ALOAOSA
(T ‘sn P ‘TI- ‘TTe3sp N) TeOSSserqnd

f(TTe39p N ‘6N P ‘spE P ‘TITNSEY P)OSALI0OCOSA

{(TTe39P” N ‘ZIINSHEY P ‘e31sp_p)ursosa
mﬁaﬂmqu2~HHqumm\U\muamv\vvmoooo>

Tel9p N ‘sbg p ‘oesTpeT p ‘sbd p)osarodosa
TP ‘T ‘TI7aSHEY P ‘T ‘Trelep N) Adxegserqno
Te39p N ‘ILINSEY P ‘IPT_P ‘IPS_D)OSAAIQOSA
{(TTe39P N ‘sba P ‘PIT P ‘PISTP)OSAAIQODA

{(TTe39P N ‘spd p ‘oes beT p ‘spd p)O9AL0dODA

(T ‘spd P ‘I ‘TITASEY P ‘T ‘Tre3ep N) AdxegseTqnd
{(TTe39P N ‘I1TASAY P ‘ZbT p ‘zbs™p)osapraosa
{(TTe39pP N ‘spd p ‘1bT P ‘1bsTPp)osapIgosan

1Xe3Tep_P=[TlEA"P// ‘(6 ‘8 ‘eAP ‘X’ P)ELITASOSA
Ixe3arep_p=[TlzA"P// (6 ‘L ‘za"P ‘X”P)elITdsosn
Ixearep p=[TlTA™P// (6 ‘9 ‘TA™P ‘X P)ELITdSO™A

Ixearep p=[T]lzbsTp// ‘(6 ‘G ‘ZbsTp ‘X P)ELITdSOSA
Ixe3rsp p=[1]1bsTP// ‘(6 ‘p ‘TbSTP ‘X "P)clITdsosn
1Xe3rep p=[T]IPs”P// ‘(6 ‘€ ‘IPS_P ‘X_P)ELITdSO™A
[g+Tx6]Xe3aTop_p=[1]dT1s"P// ‘(6 ‘C ‘PIS”P ‘X_P)E€LITdSO®A
[T+Tx6]lxea1op P=[T]dT1s"P// ‘(6 ‘T ‘dTTS"P ‘X P)€ELITdSO®A
[0+Tx6]xXeATopP P=[T]e3ToP P// ! (6 ‘0 ‘©3T9P P ‘X P)ELITdSO™A

XeATep P + X P=XP//*(1 ‘X"Pp ‘T ‘Xe3rep p_ ‘1 ‘8zTs)Adxegserqno
f(szTs ‘yxe3rep p ‘ejnwiad ‘g p ‘zp p)ndb uo sATOS

!(3zTs ‘sinwrad ‘zZp P ‘YIPTMYOOT ‘T)ATOoIwIOIsueIl = ojnurad

! (dELSTEWIL) OTeO uetqooep

R R KRR KRR X R R XX XXX KR KRR R X
xxxxxxxxxx¥¥xxx¥xxxXTIJE[URTQODEL¥
P L L Ty,

(T ‘d P ‘1- ‘TTe3sp Nx6) [eOSSSeTqnd

f(TTRIBP N ‘AP ‘64 P ‘84 P ‘LA P ‘98P ‘GAP ‘pd P ‘eI P ‘24P ‘T4 P)IXIWO®DA
(T ‘64 P ‘T ‘TITASEE P ‘UxG°0- ‘Tre3ep N) Adxegselqno

L(T ‘1T1IASEN P ‘T ‘zaead p ‘T ‘TTe3I9p N) AdxegseTqno

(T “1TIT0SAY P ‘T ‘ZA P ‘TTe3sp N)AdoogseTqno

(T ‘6d P ‘T ‘ziInsSEY P ‘T ‘TTe3ep N)Adxegserqno

{(TTe3I9P N ‘ZITASHEY P ‘TI° P ‘TITINSEY P)O9AI0QO9A

(T “1II0SET P ‘T ‘Za P ‘I- ‘TTe3sp N)Adxesseiqno

(T ‘TI70SEI P ‘T ‘zA 2ad p ‘Trelsp N)AdoogseTqno

(T ‘64 P ‘T _‘TI1T0NSEY P ‘Yx5'0 ‘TTe3ep N)Adxegserqno
(T ‘1T110say p ‘T ‘ga=ad p ‘T ‘Tre3ep N)Adxesserqno
(T “1TII0SET P ‘T ‘eA P ‘TTe3sp N)AdoogseIqno
{(ITR3ISP N ‘64 P ‘ZI P ‘TIIINSEY P)OSAIOAOSA

(1 ‘1110sEY P ‘T ‘egaead p ‘I- ‘TTe38p N)Adxesseqno
(T ‘TIInSEY P ‘T ‘eATP ‘TTe3sp N) Adoosserqno

(T ‘g8 P ‘T ‘€11nSAY P ‘I- ‘TTe3sp N)Adxegseqno
{(TTe39p N ‘€11ASEY P ‘TLIASEY P_‘ZLINSEY_P) 094100094
{(TTe3I9P N ‘ZITASHY P ‘MIT P ‘qelsy p)O9A10aosa

(1T ‘11InSEY P ‘T ‘diTs ead p ‘T- ‘TTR3I9P N)AdxegseTqno
(T ‘TrIASEY P ‘T ‘dITs P ‘TTe3ep N)Adoogselqno

(T “8d P ‘T _‘TI1T0SEY P ‘Yx5'0 ‘TTe3ep N)Adxegserqno
(T ‘11I0SEy P ‘T ‘za 2ad p ‘T ‘Tte3ep N)Adxegserqno
(T ‘TIINSEY P ‘T ‘ZATP ‘TTe3sp N) Adoogserqnd
{(ITe3ISP N ‘84 P ‘MITP ‘TIIIASEY P)OSAIOAOSA

(T ‘TIInSEY P ‘T ‘gaead p ‘I- ‘TTe38p N)Adxegserqno
(T ‘TIInsEY P ‘T ‘ZaTP ‘TTe3sp N) Adoosserqno

.
.

(T ‘L4 P ‘T ‘11T0SET P ‘Y*G Q- ‘TTe3sp N)Adxesserqnd
(T ‘11I0SEY P ‘T ‘3aTead p ‘T ‘rTe3sp N) Adxegserqnd
(T “1I1I0SAN P ‘T ‘3a P ‘TTe3sp N)Adoogselqno

(T “Ld P ‘T ‘1110834 P ‘Y50 ‘TTe3ep N)Adxesserqno
(T ‘117ASEY P ‘T ‘Ta =23d p ‘T ‘TTe3isp N)Adxesselqno
mAmA;HHADmMmIm ‘T ~.m>lm kHﬂMUwvlz;Qoummmaﬂso
{(ITe3I9P N ‘L4 P ‘MITP ‘TILINSEY P)OSALI0AOSA

(T ‘T1InSEY P ‘T ‘TATead p ‘I- ‘TTe3Sp N)Adxegserqno
(T ‘TIINSEY P ‘T ‘IATP ‘TTe3sp N)Adoogserqno

’
i

(T ‘94 p ‘T ‘zrInsEd P ‘T ‘TTe3ep N) Adxegserqno
{(TTR3I9P N ‘Z1I0SHEY P ‘zby p ‘TITNSHY P)O9AI0AOSA

L(T ‘TITASEY P ‘MmMxUxG(Q ‘TTRISP N) [ROSSSBeTqnd

(T “1II0SEY p ‘T ‘gzbT ead p ‘T ‘TTe3sp N)Adxegserqno
(T ‘trInsEy p ‘1 ‘gbT p ‘Trejep N)Adoogserqno

(T ‘94 p ‘T ‘zbsTead p ‘I- ‘Tre3sp N)Adxesserqno

(T ‘98P ‘T ‘zgbs p ‘TTe39p N)Adoogserqno

(T ‘A P ‘T ‘ziInsEd P ‘T ‘TTe3ep N)Adxegserqno
{(TTR3I9P N ‘Z110SHEY P ‘ThY P ‘TITNSHY P)O9AI0AOSA

(T ‘TITIASEN P ‘MmMxUxG(Q ‘TTRISP N) [ROSSSEeTqnd

(T “1II0SEY p ‘T ‘1bT ead p ‘T ‘TTe3sp N)Adxesserqno
(T ‘trInsEd p ‘T ‘1bT p ‘Trejep N)AdoogseTqno

(T ‘gap ‘T ‘thsTead p ‘I- ‘Tre3sp N)Adxesserqno

(T “‘cap ‘T ‘Tbs™p ‘TTe39p N)Adodogserqno

(T ‘pa P ‘T ‘ziInsEd P ‘T ‘TTe3ep N) Adxegseqno
{(TTRISP N ‘ZII0SHEY P ‘IPY P ‘TIINSHEY P)OSALOAOSA

(T ‘TITASEY P ‘MMxUxG(Q ‘TTRISP N) [ROSSSBeTqnd

(T ‘1T1IasEN P ‘T ‘TpT ead p ‘T ‘TTe39p N)Adxesserqno

144

1901 (T ‘T1InSEY P ‘T _‘beTsTP ‘I- ‘TTe3ep N) Adxesserqno
(N ‘NN € P ‘N ‘NN g U ‘(3e0TF)JF022ZTS ‘N ‘N)XTIIBWISSSETONO = sniels 090T] (T ‘TIInSET P ‘T ‘gbsTp ‘TTe3sp N)AdoogseTqno
(N NNTOTP ‘N ‘NN DY ‘(3BOTJ) JO92TS ‘N ‘N)XTIFBWISSSEBTYNO = sniels 6501
{ 8901 {(TTe39p N ‘TbT p ‘1bT P ‘TI1TINSHY P)OSAAIAOSA
L0 2501 (T ‘TIInSEY p ‘T ‘beTsTp ‘I- ‘TTe3ep N) Adxegselqno
{ 90T (T ‘t1InSEY P ‘T ‘1bsTp ‘TTe3lep N) Adoosserqno
LT fere)
fT+C) [T+MINN_E = [TINN d U $S01 f(TTeI9P N ‘IPT P ‘IPT P ‘TITINSEY P)OSAAIQOSOA
SITHCIITHINNTD = [TINN DU €501 (T ‘T1INSEY P ‘T _‘peTs P ‘I- ‘TTe3ep N) Adxegselqno
Y(++3 IN > 3 {0 = ¥ 3uTr) I0O%F 29071 (T ‘T1I0SEY P ‘T ‘TIPS P ‘TTe3lsp N) Adoosserqno
UoT3TUTISP Jo[PW UWNTOO Y3TMm sAerie uo sa0TIjew HutAdoo//} (N*N > T) STTUM 1501
‘0=0 ‘0=T 0501 {(TTeI9P N ‘PIT P ‘PIT P ‘TITINSTY P)OSAAIQODA
670 (T ‘T1I0nSEY P ‘T _‘pETS P ‘I- ‘TTe3lsp N) Adxesserqno
2 ‘NN beTtp p ‘T ‘NN g DbeTrp Yy ‘(3BOTJ)JOSZTS ‘N)I0I09AISSSETQNO = SNIes SF0T] (T ‘TIINSET P ‘T ‘pIsTP ‘TTelsp N)AdoogseTqno
{(T ‘NN D PeTP P ‘T ‘NN O DbeTp Yy ‘(3eoT3)JFoozTs ‘N)I0IDSAISSSETOND = Snieis 01|
{ 9101 {(1 ‘bETSTP ‘T ‘11I0SHEY P ‘TTe38p N) Adoosserqno
{ SHOT| {(TTR3SP N ‘117TASHEY p ‘be s p ‘OssTbeT p)osarodosa
{ PH0T| (1 _'beTsTP ‘T ‘bTp ‘I- ‘TTE3lep N)Adxesserqno
fLC)[r]30ad g=[N-C] [TIWN_€& ¢F0T (1 'beTsTp ‘T ‘TLIASEY P ‘T ‘TTe3sp” N) Adxesserqno
fI0)[r]3ead o= [N-L] [TINNTD o1l {(TTR3I9P N ‘T1I0SHY P ‘ZbT p ‘zbsTp)oeapIaosa
}esTo{ 1901 {(TTR39P N ‘beTsTp ‘1bT p ‘1bsTp)osapIdosa
‘[Tl [t]lgead-g=[T-TINN € beTp y 0F0T|
NN D FO sjusweT® ﬂmcomma\\:: [T]1323d 9=[T-TINN O beTP 4 60T (T ‘peTsTp ‘T ‘I1TNSEY P ‘TTe3ep N) Adoogserqno
(0] [t]gead-g=[C] [TINN"d@ 8€01| {(TTe39P N ‘TILIINSHY P ‘Pe ST P ‘09STPET p)O9AL0dO9A
fC][t]1Fead o=[C] [TINN D LE0T] (T _‘'peTsTP ‘T ‘PT P ‘TI- ‘Tre3ep N)Adxegserqno
F(n=>C) 3IT 9€0T (T ‘peTSs P ‘T ‘TITINSEY P ‘T ‘TTR3ep N) Adxesserqno
P (++0fT4N>C 2 7=0) 207 Se0T] {(TTe3I9P N ‘T17ASEY P ‘PIT P ‘PIS_P)OSAAIQOSA
P(H+THTHN>T fT=T) J07 $€01 {(TTeI9P N ‘Pe S™P ‘IPT P ‘IPS P)O9AAIdODA
{p=Tobueyd €201
} (T==T2bueyS %% TUOTILINP>JHALS HWIL)IT ZLOI| (T “3a7P ‘T ‘zZIIasSEY P ‘TTe3ISp N) Adoogserqnod
TE0T] f(TTe39p N ‘ZII0SEY P) I¥0S
{((3BOTF) JOSZTSxN*N) OOTTRW (¥32OTF) = NN & PPTP JJ0 U (OE0]| (T ‘z1InSEY P ‘T ‘TIINSHEY P ‘T ‘TTel9p” N) Adregserqno
{((3B0TJ) JOSZTS*N*N) OOTTRW (¥3BOTF) = NN O DBTIP 3O U 601 {(TTe39p N ‘ZI1INSHEY P ‘OA P ‘OA_P)O9A100094
{((380TF) JOSZTS*T*N) DOTTRW (¥3BOTF) = NN d beTp U 8707 {(TTe39P N ‘TITASHEY P ‘dA P ‘dA” P)99A10Q098A
£((320T77)JOS2ZTS*TxN) OO TRW (¥32OTI) = NN O beIp U /701
f((3e0TJ) JOOZTS*N*N) OOTTRW (*32OTI) = NN d U 9201 ebeatoa snq//f(T ‘OA P ‘T ‘on"p ‘T ‘TTelsp N)Adxegserqno
£((3e0TF) FJOOZTS¥N*N) OOTTRW (*3ROTF) = NN O U G20T (T 'OATP ‘T ‘TIT0SEY P ‘T ‘TTe3Sp N) Adxesserqno
201 {(TTe39P N ‘TIT0ASEY P ‘pO P ‘OI P)O9A100O8A
{NN € PeTP JJO Ux ‘NN 9 DBTP JJO Ux ‘NN & DeTp ys ‘NN 9 Derp ux ‘NN & ux .zz\o\m* 20T €01 {(TTR3I9P N ‘OA™P ‘€N P ‘dI”P)9OS9ALIOdOSA
f0'T 3uT g0l
() 3turserqnd = snjels 1201 @beiroa snq//f (T ‘aA™P ‘T ‘snp ‘T ‘Tre3ep N)Adxesserqno
{snje3s snjeisserano (01 f(T ‘gaTp ‘T ‘TITNSEY D ‘T ‘TTR3ISP”N) Adxesserqnod
} 6101 f(TTEISP N Eq:mmm\ﬁ ‘zaTp ‘01T P)oSAI0COSA
(dE1STEWIL 3UT)S3epdn”sdouellTwpe: iyEdy PToA QIQ]| {(TTe39p N ‘dA™P ‘TN P ‘dI”P)O9A10098A
{2101
! (e3nwasd) @213 9] jusIano sng // (T ‘3T P ‘T ‘Z1I0SEY p ‘TTe3ep N) AdoogseTqno
{(xearep_y)ee13 QIO {(TTe3S9p N ‘ZITNSEI P) IMOS
f(du)eear yI01 (T ‘Z1InSEY P ‘T ‘TIINSHEY P ‘T ‘TTel9p” N) Adxegserqno
€101 {(TTe39p N ‘zZI1INSHEy P ‘OI P ‘OI P)99A100o9A
{(b”xa9)8913 ZIOT| {(TTe39p N ‘TITIASEY P ‘Al P ‘dI” P)O9A10Qd93A
{(pTxx9) 9913 [0
! (1x97xXew)ss17 0101
6001 (T 'PT P ‘T ‘e€I10SEY P ‘T ‘TTe39p N) Adxesserqnod
aTTuM//{ 800T| {(TTe39p N ‘€LlTASHY P ‘ZITNSEY P ‘OI P)99A10008a
(1 ‘zasTxew ‘T ‘[b]Xe3Tep P3 ‘(3BOTJ)JOSZIS ‘T)I0308A3LDHSBIAND £007] {(TTR3ISP N ‘PT P ‘IITNSHEY P ‘Al P)OSAIOAOSA
I-(T ‘Xearep p ‘°@zTs)xXewesIselqnd = b Jut 9001
<001 (T ‘BT p ‘T ‘er1nsEy P ‘1- ‘Tre3ep N) Adxegselqno
(T ‘21 P ‘I- ‘TTe39p N) [BOSSSerqnd $001| {(TTe39p N ‘€lTASHY P ‘ZITNSHEY P ‘dI” P)O99A1000sa
(1 ‘e17P ‘T_‘TITINSHEY P ‘T- ‘ITe38p N) Adxesserqno €00T| {(TTe39P N ‘BT P ‘1IT0SEY P ‘OI P)O°AIOAOSA
{(TTe39p N ‘1110SEY P ‘pT P ‘be”s p)osarodosa 2001]
{(TTRI9P N ‘O17P ‘bT P ‘peTSTP)09AI0QOSA 1001 {(TTe19p N ‘ZI1TINSEY P ‘eaT9p p)uTrsoen
0001 {(TTe39P N ‘TITINSHEY P ‘B3T9p” P) soDdsa
{(TTe3I®P N ‘PI® P ‘ILTNSEY P ‘PI¥_P)OSAI0AOSA 666
{(TTe39p N ‘TITINSEY P ‘PeT P ‘PIE P)O2AAIADSA 866 {
166 {(17 ‘dwel”0I"P ‘T ‘OI_P ‘N)Adoogserqno
{(TTe3I9P N ‘UTW pIE P ‘XBw pIE P ‘PIE P)ISITWTT 966 (1 ‘dwe3TaI"p ‘T ‘ar P ‘N)Adoosserqno
f(TTe38pP N Em\@ ‘TLINSEY PY WM P)O9A10d09A 66
(T ‘T1I0SEE P ‘T ‘ISIAP T ‘TTe3sp N) Adxegserqno 166 (T ‘b aae ‘T ‘[P]TITNSEY PR ‘(3BOTJF)FOLZTS ‘1) I0302A399SRTAND
(1T ‘1110SEY P ‘T ‘TATP ‘I- ‘TTe3asp N) Adxegserqno €66 I-(T ‘TIINSHEY P ‘N) xewesIseTqnd = b
(T ‘T1INSEY P ‘T ‘saTp ‘TTe3sp N) Adoogseranod 766 (T ‘TIIASEY P ‘T ‘dwe3l 0I P ‘0°I- ‘N)Adxegserqno
166 (T ‘TIInSEY P ‘T ‘0T P ‘N) AdoogseTqno
f(TTe3ISPT N ‘UTW SATP ‘XPW SATP ‘SATP)IS3TWTT 066
686 (1 ‘praxs ‘T ‘[P]TITASEY PP ‘(3IBOTJ) JOSZTS ‘1) I0309AL9DSETAND
(T ‘saTp ‘T ‘eATP ‘TTe3sp N) AdoosseTqno 886 {1-(T ‘TIT0SEY P ‘N) xewesIserqndo = b jut
/86 (T ‘TIIASEY P ‘T ‘dwe3 ar P ‘0°I- ‘N)Adxesserqno
{(TTe3sp N ‘ZbT P ‘ZbT P ‘ILINSHY P)OSAAIQO9A 986 (T ‘trInsEy P ‘T ‘ar p ‘N) AdoogseTano

145

{T9PT TLA [T Px

‘TP T94 TP

‘TP TG TP

‘TOP TRI LT P*

‘TP TEL L Px ‘TS9P Tzd [Px ‘TSP TT4 [Px 1IROTT

fumuTusb=TTEISP N 2JUT

(PUODITUIAISITASI JUT)OTED URTQODEB[: !YAYY PTOA

¢ (NN_g_beTp_J30Ty)981g
(NN O beTP 33O y)esIF
{(NN_d_betpy)esig

{ (NN beTpTy) eeag
f(NN_d y)eaaz

(NN DY) 9917

{

(N ‘NN g bBTPTIFOTP ‘N ‘NN @ beTp IOy
‘(320T7F) JO9ZTS ‘N ‘N) XTIJeW3ISSSeIqnd = snieis

(N ‘NN D HRTP IFOTP ‘N ‘NN O DbETP 3O U
‘(3e0T3) 3082Ts ‘N ‘N)XTI3eN3ISSSeTqnd = sniels
{

el

{

fH4T

SLT+C) [T+ NN"g BetpT3J0 = [T]NN_d berp_IJoy
ST+CT [T+MINNT D BRTPT 330 = [TINN O beTp 330y
P(+43 !N > 3 {0 = 3 3uT) I0O%F
UOTATUTISp Jolew uwnTod YyiaTtm shexre uo saoTIew buTAdoo//} (N*N > T) STTym
‘0=0 ‘0=T

!
(N

‘NN_d_beTp P
‘NN DT beTP P

{
{

}osTe{
=[{][TINN_g beTp 330
=[C][TINN"D BeTP 130

}(E==1) 1T
P40 fT4N>C 4 7=0) 307
(++T{T+N>T T=T) 103

(N ‘NN_d P ‘N ‘NN_€@ Y ‘(3e0T3)JF022Ts ‘N ‘N)XTIIBKISSSRTQND = sniels
‘NN D P ‘N ‘NN D U ‘(3eO0TJF)JFOSZTS ‘N ‘N)XTIFeWISSSeTqnd = snieis
{
f+4L
{
{+4T
SITHETLTHMINNCE = [TINN G 4
ST+ [T+INNTD = [TINN D7 Y
P(++3 N > 3 ‘0 = 3 3uT) I0%T
UOTATUTISp Jol®ew uwniod Yyjitm sheire uo sao0TIew buTAdoo//} (N*N > T) TTum
f0=C ‘o0=T
‘T ‘NN_ g beTp Y ‘(3B0TJ)JOSZTS ‘N)I0309AISSSBRIOND = snjels
‘T ‘NN D HRTP Y ‘(3BOTJF)JOSZTS ‘N)I0IOSAISSSBRIOND = snjels
{
{
_ {
0] [r]133sod g=[N-C] [TIWN_ &
(0] [T]133sod o=[N-[] [TIWN D
}as1a{
_ ‘[t][1]33s0od g=[T-T]NN_d& betp 4
NN 9 JO sjuswsTs Teucberq//![T][T]33s0d D=[TI-T]INN 9 beTp Y
f[C)[T]33sod g=[(] [TINN_&
(0] [t]133sod o=[[] [TINN D
}J(N=>C) 3T
}(++CfTHN>C 4 T=0) 107
} (44 T{T+N>T I T=T) 103

{0 = g¢abueyo
} (T==¢obueyd 3% ZUOTILINP+TUOTIRIND =< JELS AWIL) IT 9ST3

KEXAAXE XA XXX XXX XXX ¥ ¥ ¥ xx¥¥xxxxUTDOQ JTNRI 23s0d//
FEXKAFAXXXXXXXXAXXXXXXXX XX XXX XXX XXX XPUD JTORT / /|

(N ‘NNTE PeTpTIIOTP ‘N ‘NN g beTpTIJoy
‘(3e077) 7092TS ‘N_‘N)XTIIBRIDSSPIQNO = sniels

(N ‘NNTDTPRTPTIIOD ‘N ‘NN 9 beTpT 330y
‘(3e0T3) J08zTs ‘N ‘N)XTIJeNISSSLIqNO = Sniels

{

€Tl

[T+C] [T+M]NN_g berp_310
[T+C] [T+ NN"D beTP 330
}(+4+

UoT3TUTI®p Jo[PW UWNTOO Y3ITM sAexre uo sad0TIjew HutAdoo//} (N*N > T)
i

1440
{
f4T
= [T]NN_g betp~ 3307y
= [TINN O berp 33074
‘N > 3 {0 = 3 3uT) 03
STTUM
‘0= ‘0=T
{
{
[C][TINN_d Betp— 330
[C1[TINN" D beTp 370
}osTa{
[C][TINN & Dbetp F3O
[C][TINN D BeTP 130
}(C==1) 1T

}(++0fT4N>C 4 7=0) 307

(++T!THN>T {1=T) 103

S(N ‘NN_E P ‘N ‘NN @ U ‘(3BOTF)F09zTS ‘N ‘N)XTIIBWISSSEBIANO = snjels
S(N ‘NN DR ‘N ‘NNTOTU Y (3BOTF) J09ZTS N ‘N)XTIFEPWISSSBIANO = snieis
{
1440
{
44T
SITH+C) [T+MINN"E = [TINN € 4
SITH+C) [T+MINNTD = [TINN 97 Y
P(++3 !N > ¥ ‘0 = 3 3uT) I07F
UOTATUTISP IOo[PWw uwnyodo YITMm sAexre uo sadTIrew butAdoo//} (NxN > T) STTUM
f0=C ‘o=T
(T ‘NN & betp p ‘T ‘NN g PeTp U ‘(3BO0TF)JFO2zTS ‘N)IO3IDOAISSSBIIND = Snieis
(T ‘NN O beTp P ‘T ‘NN O PeTp U ‘(3BOTF)JFOSzZTS ‘N)IOIDSAISSSBIAND = Snieis
{
{
{
) [T]latnes g=[N-C) [TIHUN_ g
(0] [t]atnes o=[N-L] [TIWN D
testa{
f[T)[T)atnes d=[T-TINN_g betp y
NN 9 JO s3juswsls Teuoberd//![T][T]3TneI 95=[TI-TINN 9 DbeTp 4
fC][t]atnes g=[C] [TINN €
S0 [t]atnes - o=[C][TINN D
P(N=>0) 1T
}(++CfT4N>C 4 T=0) 107
F(++T!T+N>T {T=T) 303

} (T==gobueyo %%

{0 = gzsbueyo

(zuoTieanp+IuoTieInp > Juls WWIL)
3% (TUOTIRIND =< JAIS FWII)

JT °sTe

HRK KKK KKK K KRR KRR XXX XXX X XXX xxxxUTDQ 3TNRI//
KRRAAXXXAAX XXX XXX XXX XXX ¥ ¥ xx ¥ ¥ ¥ xPUS ATORI 2ad//{
f(N /NNTE PeTpTIFoTp ‘N ‘NN g beTpIIoTy

‘(3e0T13) 309zTS ‘N
(N
‘(3e013) JoazTS

[T+C] [T+]NN_g Berp_310
[T+C] [T+ NN"D beTP F30
}(+4

UoT3TUTI®p Jo[PW UWNTOO Y3ITMm sAexre uo sad0TIjew HutAdoo//} (N*N > T)

‘N) XTIFBH3ISSSBIOND =
‘NN D BRTP IJOTP ‘N ‘NN 9 DRTP FJO U
‘N ‘N) XTIJER3ISSSeTqnd =

snjels

snjels
{
f44C
{
f4T
= [T]NN_g berp~ 3307y
= [TINN 9 beTP 33074
‘N > 3 {0 = 3 3uT) 03
STTUM
‘0= ‘0=T
{
{
[C][TINN_d Betp~ 330
[C1[TINN D beTp 370
}osTa{
[C][TINN"dg BeTp—330
[C][TINN D BeTP 130
}(C==1) 3T

b (440 fTHN>C I T=0) 307

(++T!THN>T I 1=T) 103

146

(T ‘T1sTTzd 0P ‘T ‘dP ‘U ‘TTelsp N)Adxesserqno

(T ‘TS Ted 0TP ‘z ‘TTe3sp N) [edssserqno
(T ‘T1sTTZzd TP ‘T ‘Hp ‘Tte3sp N)Adoogserqno
{(TTERISP N ‘¥gMxUxG 0- ‘TS TTJ [P) TeOSWNSO9A

(T ‘TSTTIA TP ‘0 ‘TTe3sp N) Tedssserqno

N R N N A NN,
‘A1 ‘TP TLA L P ‘uxg'p- ‘TTRISD_N) TeIssse1qnd

(T ‘TeP TLA 0P ‘T ‘Tep 3A X p ‘TTe3sp N) AdoogseTqnd

L(T ‘TP T94 0P ‘¥mxyxG-(Q ‘TrTe3sp N) [eossseTqnod
{(TTe39p N ‘Top 194 7P ‘TP ¢bT 2 p ‘zby p)ooa10doea

f(T_‘TOP TG4 P ‘umMmxyxG (‘TTe38p N) [eOSSSeTand
{(TTe19p N ‘T9P 164 [p ‘T9p 1bT x p ‘Tby p)ooaroagosa

f(T_'ToP Tpd 7P ‘¥MxUxG 0 ‘TIBISP N) TeOSsserqno
{(TTeI9P N ‘TP Thd 0 P ‘ISP IPT X P ‘TPY P)OSAI0OQDdA

f(T_‘ToP Ted £TP_ ‘¥MxUxG'(‘TTe38p N) [eOsSSserqnd
{(TTRIBP N ‘T9P Ted 0 P ‘I8P PIT I P ‘PIY P)OSAI0CO9A
‘(1 ‘TepP Tzd 0P 'UxG'o-

(T ‘Tep Tzd P ‘T ‘Tep Bl T p

‘TTe3sp N) [ROSSserqno
‘TTe3ep N)AdoogseTqno

{(TTEI9P N ‘T ‘T9P T14 [P) TBOSWNSO9A
(T ‘TP TT4 0P ‘0 ‘TTedsp N) [edssserqnod
{()oTed puox

}osTa{
HAXXKXARK XA R XX AR XXRA XXX RN XN XR)]

{(TTe3ISP N ‘8+TTRISP N*6*8 ‘z0 P ‘€A T6d [P)gqooer 03~ Adoo
{(TTe3I9P N ‘Z+TTeISP N*6*8 ‘207 P ‘€a”Ted 0 p)gqodoep 03~ Adoo
{(TTe3ISP N ‘8+TTRIBP Nx6*L ‘Z0L P ‘ZA Ted [p)zgooep o3 Adoo
{(TTeI8P N ‘L+TTRISP N*6*L ‘c0”P ‘zA_ T84 [P)gqooer 03”"Adoo
{(TTRISP N ‘9+TTRISP_N*6*9 ‘Z0 P ‘TATTLA [p)zqooer 03 Adood
{(TTRISP N ‘Z+TTRISP_N*6x9 ‘Z0 P ‘TIA°Ted [p)zgooer 03 Adoo
{(TTe3ISP N ‘G+TTRIBP Nx6xG ‘Zr P ‘zb 194 [p)zqooep o3 Adoo
{(TTe3I8P N ‘p+TTRISP N*6*p ‘c0”p ‘TP 164 [P)gqooer 03"Adoo
{(TTe3sp N ;m+HHmumn|z*m*m ‘20TP ‘TP _ThA 0T P)zqodoepr 03 Adod
{(TTe39p N N+Hamuwn TNx6*Z ‘zZ0 P ‘FSTTEd £ p)gqoder o3 Adodo
{(TTR3I9P N “L+TTeISP Nx6 ‘z0 P ‘TS 184 [P)gqooep 03 Adoo
{(TTe39p N_‘T+TTRISP Nx6 ‘z0 P ‘TS Ted [p)zqooep 03 Adoo
{(TTe3SP N ‘TTRISD N¥6 ‘g0 P ‘TS TT4 0 P)zqodepr o3 Adod
{(TTRISP N ‘0 ‘z0TP ‘TSP TI4 [P)gqodoer 03 Adod

{(TTe3I9P N ‘UxG 0 ‘€47 T6d [P) TBOSHASOdA

(T ‘erTed 0TP ‘T ‘zZl P ‘TTe3sp N) AdoogseTqnd

f(T_'EATES 0P ‘MMxUxG Q- ‘TTRISP N) TRISSSETand

f(TTe39p N ;m>|Hmmlnlv \vmq|v qu:mmm P) O9AATAORA
{(TTe39p N ‘€lINSHEY P ‘PIY P ‘UM P)O9AL0CO9A

(T “‘za"T6d L P ‘I- ‘TTe38p N) [EOSSSerand

{(TTe3I®P N ‘UxG 0 ‘zA7T6d L P) TBOSHASOdA

(T ‘gaTed TP ‘T ‘TITP ‘TTelsp N) Adodogserqno

f(TTe3spP N ‘UxG 0 ‘Za T84 [P) TEOSWNSOSA

(T ‘zaTTgA TP ‘T ‘MITP ‘TTelsp N) AdoogseTqno

{(TTe3SP N ‘UxG 0 ‘TATTLA [P) TBOSHASOSA

(T ‘TATTLA 0P ‘T 417 P ‘TTe3iep N) AdoosseTqnd

(T ‘TATTE TP ‘¥MxUxG'Q ‘TTe38p N) [eOssserqnd

f(TTe39p N ‘T4 Ted 7P ‘PRT P ‘€1INSEY P)OSAATIQOSA

{(TTe3sp N ‘eITNSTY P ‘PIW P ‘¥ P)D2AL0d08A

_ Y(ITe3dPTN ‘T ‘gbTT94 [p) TROSHASO9A
(T ‘ZbTTod LT P ‘¥mxUxGt(Q ‘TTEISP N) [POSSSserqnd
{(TTe39p N ‘gb 194 0P ‘gbT P ‘zhby p)osapraosa

_ (ITe3sp N ‘T ‘1BbTTGA [T P) [BOSWNSO9A
(T ‘TP TGA 0T P ‘¥mxUxGtQ ‘TTEISP N) [2OSSsserqnd
{(TTe3sp N ‘TbTTed 0P ‘TbT p ‘ThY p)oeaaIgosa

fZbTTLa TP
{1bTTLd T Px
TP TLA TP
13sTTLA 0TPx

—_

(T

1

’

(ITRP3I9P N ‘T ‘TP Tyd L P) TROSHASOSA

TP Thpd £7P ‘¥mxyxG (Q ‘TTRISP N) TeOSSSeTqno
TTeISP N ‘TP Thd 0P ‘IPT P ‘IPY P)OSAAIARSA
f(ITe3I9P N ‘T ‘3STIed [P) TBOSNASOSA

‘ISTTEA 0P ‘dmMxyxGT(Q ‘TTe3Sp N) TROSSSBTAnO
TTeRISP N ‘IS™TE€d 0P ‘PIT P ‘PIU P)OSAATdDDA
(1 ‘TSTI8d 0P ‘I- ‘TTe39p N) Teossserqnd
Teisp N ‘IS T84 £ P ‘ML P ‘qeisy P)oOsALodosAa
‘IsTTzAT LR ‘T ‘d P ‘U ‘TTE19p N)AdxegseTqno

‘ITe3I8P_N) TeossseTqno
‘TTe39p N) AdodogseTqno

(T ‘tsTrzda e ‘2
(T ‘Ts"Ted 7P ‘1 ‘HP
‘1S7IT4 L7 P) TROSHASDO9A
‘TTRI9P N) TROSSSRIqNO

{(TTe39p N “gmM*yxG 0-
T 'TsTITALOP ‘0

{(TTe38p N ‘T ‘TeP 114 L P) TEOSHASO®A
(T ‘TePTTI4 0P ‘0 ‘TTe3Lp N) Teossserqno

} (0==PUODITUIISITASI)IT

0=z07P 39S //!(32zTs ‘Z07P ‘07 20 P)IBW NO Few Xd0D

Nﬂm> T6d [PR (*xpTOA) (3BOTJ)JOSZTS ‘IxTTRISP N)OOTTYSEINO = snieis
f(eaTTEd 0T PR (*xpTON) (320TJ) J02ZTS ‘T+TTeISP N)OOTT¥SEIAND = sniels
{(Z0TT6A LTPR (*xPTOA) (380TJ)J08ZTS ‘[+TT2I9P N)OOT[YSEIqnd — Ssnieis
H T *¥PTOA ©o 09ZzZTS ‘TxTTIB3I8P N) 20 SeTgno = snie3ls
NM Hmm m mMM««wﬂo>w MmeMwwwooN»m \m«ﬁwmwom\m“quMMmmﬁmso 2 Sarers
{(TATTEA L D3 (**PTOA) *(320TJ)JOSZTS ‘T[+TTeISP N)OOTTYSETAND = Snijeqs
Nﬁmwla>m £7P3 (xxpTOA) ‘(3BOTJ) JOSZTS ‘[+TeISP _N)OOTTYSBIIND = Sniels
{(zb_T9d 0 PR (**¥pTOA) ‘(30O0TJT)JOSZTS ‘[+TTEISP N)OOTTYSLIANO = sniels
{(ZbTTGA 0T PR (**pTOA) ‘(3BOTJ)JOSZTS ‘[*[TRISP N)OOTTYSBRIOND = snjeils
{(Zb”Tpd TR (**PTOA) ‘(3B0TF)JOSZTS ‘TxTTEISP N)OOTTYSEIINd = snjels
{(gb_Ted [TPR(x*pTOA) ‘(3BOTF) JOSZTS ‘[x[TeI8P N) OOT[YSBIINO = snjels
{(zb"Tzd 0 PR (**¥pTOA) ‘(30O0TJT)JOSZTS ‘[+TTEISP N)OOTTYSLIANO = sniels
{(TPTTLA 0T PR (**pTOA) ‘(3BOTJ) JOSZTS ‘[*[TRISP N)OOTTYSBRIOND = snjeils
{(TbTT9d TP (**PTOA) ‘(3B0TF)JOSZTS ‘Tx[TEISP N)OOTTYSLIINd = snjels
{(1b_ TG4 £ PR (xxpTOA) ‘(3BOTJ)JOSZTS ‘TxTTRISP _N)DOTTYSEINO = Sn3eis
{(TB”Tpd LT P3 (¥¥PTOA) ‘(3207JF)JOSZTS ‘[x[TeISP N)OOTTYSEIIND = snjeis
{(TbTTed 0 PR (**pTOA) ‘(3BOTJ)JOSZTS ‘[*[TRISP N)OOTTYSBRIOND = snjeils
{(Tb"TZd TP3 (**pTOA) ‘(320TF)JOS2ZTS ‘Tx[TEISP N)OOTTYSEIINd = snjeis
{(TP_TLA L PR (xxpTOA) ‘(3BOTJ)JOSZTS ‘TxTTRISP _N)DOTTYSEINO = Sn3eis
£(TP 1947073 (x¥PTOA) /(3BOTJF)JOS2TS ‘T+TTRIOP_N)OOTTYSBIAND = sniels
{(TPTTGA L7 P3 (¥¥PTOA) ‘(320TJF)JOSZTS ‘[x[TeISP N)OOTTVYSEBIAND = snjeis
(TP Tpd LT P3 (**PTOA) ‘(320TF)JOSZTS ‘TxTTEISP N)OOTTYSLIINd = snjels
{(TP_Ted [T PR (x*pTOA) “(3BOTF) JOS2ZTS ‘[x[TeI8P N) OOTTYSEIYNO = snjels
£(TP Tzd 07P3 (x¥PTOA) /(3BOTJF)JOS2TS ‘T+TTRIOP N)OOTTYSBIAND = sniels
{(FJSTTLALTPY(¥¥PTOA) ‘(320TJF)JOSZTS ‘[x[TeISP N)OOTTVYSEIAND = snjeis
(ST 194 0 PR (¥xpTOA) ‘(3L0TJ)JOSZTS ‘T[*TTEISP N)OOTTYSETINO = snjels
£(3sTTGA L PR (xxpTOA) ‘(3BOTJ)JOSZTS ‘TxTTRISP _N)DOTTYSEINO = Sn3eis
£(3sTTpd 07P3 (x¥PTOA) /(3BOTJ)JOS2TS ‘T+TTRISP N)OOTTYSBIAND = sniels
{(FsTTEd LT P3(¥¥PTOA) ‘(320TJF)JOSZTS ‘[x[TeISP N)OOTTVSEIAND = snjeis
{(3sTTzd TR (*+pTOA) ‘(3B0TF)JOS2ZTS ‘TxTTEISP N)OOTTYSEIINd = snjels
{(1s”T8d PR (**pTOA) ‘(3BOTF)JOS2ZTS ‘[x[Te3I8P N) OOTTYSEIYNO = snjels
£(Ts”Tzd 07P3 (x¥PTOA) /(3BOTJF)JOS2TS ‘T+TTRIOP N)OOTTYSBIAND = sniels
{(TsTTTA L7 P3 (¥¥PTOA) “(320TJF)JOSZTS ‘[x[TeISP N)OOTTVYSEIAND = snjeis
{(T9P_TLA (TP (¥*pTOA) ‘(320TJ)JOS2ZTS ‘Ix[Te3ISP N)OOTTYSEIONO = snjels
{(T9P 194 [D3 (**pTOA) ‘(320TJ)JOS2ZTS ‘Tx[TeISP N)OOTTYSEIYNO = snjels
£(T9P_ TG4 LTPY (»*PTOA) /(320TF)JOOZTS ‘T¥TTRISP_N)OOTTYSBINO = sniels
{(T9P Thd L7 P3 (*¥PTOA) /(3B0TJ)JOSZTS ‘TxTTRISP N)OOTTYSEIIND = snjeis
{(T9P_TEd L PR (**pTOA) ‘(3BOTJF)JOSZTS ‘TxTTEISP N)OOTTYSBIAND = snieqs
{(19P_Tzd [T P3 (**pTOA) ‘(320TJ)JOS2ZTS ‘Tx[TeISP N)OOTTYSEIONO = snjels
{(T9PT TTd 7 P3 (x¥PTOA) /(3B0TJ)JOS2ZTS ‘Tx[TeISP N)OOTTYSBIIND = snjeis
{()3TUuIsSeTqno = snjels

‘ZbTT94 0T Px
‘1bTT94 T P*
‘TP_T94 TP+
‘3sTTo4 0P

‘ZbTTed TP
‘1bTTGd TP
‘TP T6d P+
‘3sTIGA TP

{snjels snje3lsseTqno

{47164 P ‘€ATTEd [px JBOTI

je0T13

{TATTL A TPx ‘TATTEd [T Px 3B0TT

‘ZbTTpd TP ‘gbTTed [Tpx ‘ZbTTed [px 3BOTT
‘1b_Tpd TP ‘1B Ted (T px ‘1B Ted [px 3BOTT
‘TP Tpd £ Px ‘TP TEd L Px ‘TP Tzd [Px 3eOTJ
‘3sTTpd £ Px ‘ISTTEd [T px ‘ST Tzd [T Px 3JeOTJ
{1sTT8A L px ‘TSTTZd 0 px ‘TS TT4 [Px JeOTT

147

{(T9p Tzd 7 p)oS1Iserqno
{(Top 114 £ P)ooIiserand

{(TTRI9P N ‘8+T1TRISP _Nx6x8 ‘Z0 P ‘€47 T6d [P)gqodoer 03 Adoo
{(TTe39P N ‘Z+TTRIDP Nx6*8 ‘Z07 P ‘€a7Ted [p)gqooep 03 Adoo
f(TTe3I9P N ‘8+TTEIASP N*6*L ‘2L P ‘ga”Ted [p)gqodoep 03 Adoo
{(TTe3ISP N ‘L+TTRISP Nx6xL ‘Z0 P ‘Za” 184 [p)zgooer o3 Adoo

{(TTe3IS9P N ‘9+TTRISP N*6*9 ‘g0”P ‘1A TLd [P)gqooer 03~ Adoo
NAHHmuov\z\N+Hﬂmumn\z*m*@\Nn\u\H>\Hmm\w\vvNgoomn\0u\>moo

{(TTe39p N “9+TTRISP Nx6*G ‘z0 P ‘gb 1.4 07p)zqooep o3 Adoo
{(TTeI89P N ‘G+TTRISP N*6*G ‘cr”p ‘zb 194 [Pp)gqooer 03~ Adoo
NAHHmuov\z\w+aﬂmuwuwz*m*mNnumwammwvvwgoomn0u>moo
“A v
NA v
NA v

TTRISP N ‘€+TTRISP N*6*S ‘Z0 P ‘gb Tpd £ P)zqooer o3 Adoo
TTe3I9p N ‘Z+TTe3ISP Nx6*G ‘z0 P ‘gb 1ed 07 p) zqooep o3 Adoo
TTeISP N ‘T+TTRISP N*6+G ‘Zr P ‘gb 1ezd [7Pp)gqodoep 01 Adod

{(TTRI9P N ‘9+T1Te3ISP Nx6xp ‘z0 P ‘1B 1.4 07 p)gqooer o3 Adoo
{(TTe3ISP N ‘G+TTRIBP Nx6xp ‘Z0 P ‘Ib 194 [p)zqooep o3 Adoo
{(TTe3I8P N ‘p+TTRISP N*6*p ‘c0”P ‘1B 164 [P)gqooer 03~ Adoo
wMaHmuov\z ‘C+TTRISP Nx6*F ‘z0 P ‘TP THA O vwwpoomn 03" Adodo
()

TTR3ISP N ‘Z+TTeRISP Nx*6*F ‘Z0 P ‘Tb Ted £ p)zqooer o3 Adoo

TTe3I8P N ‘I+TTeB3ISP Nx6*F ‘Z0 P ‘Ib Tzd £ P)zqooep 03~ Adodo
Y(TTe3I8P N ‘9+TTEASP N*6*€ ‘g0 P ‘1P _TLd [~ P)gqodoep 03 Adoo
{(TTR3ISP N ‘G+TTRISP _Nx6*E ‘Z0 P ‘TP 194 [p)zgooer 03 Adoo
{(TTRI9P N ‘p+T1TRIDP Nx6*E ‘Z0 P ‘TP 164 [P)gqooer o3~ Adoo
()
£)
£)

ITRAOPTN ‘£+TTRISPIN*6+E ‘207 P ‘TP Tpd [P)qoorL 03 Adod
TTeISP N ‘Z+TTe3I9P N¥6*€ ‘g0 P ‘1P Ted [p)zqodoer 03~ Adoo
TTR3ISP N ‘T+TTRISP Nx6*€ ‘Z0 P ‘TP Tzd [P)gqoder o3~ Adodo

TTeI9P N ‘9+TTRISP_Nx6*Z ‘z0 P ‘IS”TL4 [P)zqooep 03 Adoo
TTRIOP N ‘G+TTRISP N*6*Z ‘Z0 P ‘IS 194 [p)gqodep o3 Adoo

TN ‘p+TTRISD Nx6xZ ‘z0 P ‘IS TGA [Pp)gqodoer o3 Adoo
TTeIep N ‘E£+TTRI9P N¥6+Z ‘207 P \um\Awm £7P) zqooep 03~ Adod
TTeI9P N ‘Z+TTRISP_Nx6*Z ‘z0 P ‘Is”Ted [p)zqooep o3 Adoo
TTR3OP N ‘T+TTR3ISP N*6*Z ‘Z0° P ‘Is™ Tzd £ P)zqodep 03~ Adodo

a3
A P

]

D

)

"C'

Z

(TTe3I®P N ‘L+TTe39P N*6 ‘g0 P ‘Ts_ 184 [p)zqooep o3 Adod
(TTeI9P N_‘T+TTRISP_N*6 ‘Z0 P ‘1s”Tzd 7 p)zqodep 03 Adoo
{(TTe3SP N ‘TTRISP N¥6 ‘20 P ‘TS TT4 £ P)zqoder 03~ Adod

’
4

B ‘9 ‘zeTP ‘TeP TLA [P)ggodoep 03 Adoo
£ ‘G ‘zeTp ‘18P T94 [P)gqooer 03”Adoo
B ‘p ‘z0TP ‘T9P TG4 [p)zgooer” 03 Adod
{(TTe3I9P N ‘€ ‘0P ‘TSP _Thd [P)gqodoep o3 Adoo
BN ‘z ‘zeTP ‘Tep Ted [p)ggooep 03 Adoo
BN ‘T ‘zeTp ‘18P _Tgd r_p)gqodoep o3 Adoo
B ‘0 ‘z0TP ‘TOPTTIA [p)gaooepT o3 Adod

1123890 N
TTe38p N

{(TTR3ISP N ‘UxG 0 ‘€47 T6d [P) TPOSHASOSA
(T ‘enTTed TP ‘T ‘ZlTP ‘TTelsp N)AdoogseTqno

{(T ‘eATTES 0P ‘¥MxUxGTQ- ‘TTe3ISp N) [BOSSSeIgno

(T ‘eA”TES 0P ‘T ‘eATpPIS I p ‘TTe3sp N)AdoogseTgno
\\\
(I ‘er"16d £ P “T- ‘TT®39P N) T2ISSSPTInd

{(TTe3I8P N ‘UxG 0 ‘zA Ted [P) [EOSWNSOSA

(T “ZaTTed 0P ‘T ‘TP ‘TTe3sp N)Adoogseranod

{(TTeI9P N ‘UxG 0 ‘A" T84 [P) TBOSHNSO9A

(T “zaTT8d 0P ‘T ‘MI P ‘TTe3ep N)Adoogserqno
\\\
(TTe3spP N :*m 0 H> TLd 0 P) TEOSWNSOaA

f(1 ‘TATTLE 0P ‘T ‘NI P 11edep N) Adoogserqno

(T “TATTEd 0P ‘¥9mxyxG Q- ‘TTe3sp N) [BOSSSeTand

(T ‘TATTEd 0P ‘T ‘TATpPIo I p ‘TTe3lsp N)AdoogseTqno

I R N N N N NN A,
(T ‘Zb TLd 0P ‘UxGT0- ‘TTRISP _N) Tedssserqnd

(T ‘ZbTTLa 0P ‘T ‘gbTaa I p ‘TTe3ep N)Adoogserqno

_ A(ITe3sp N ‘T ‘gbTT94 [P) [EOSWNSOSA
(1 ‘gbTT94 TP ‘¥Mxyx§°Q ‘TTE3ISP_N) [ROSSSeTqno
{(TTeI9p N ‘¢b 194 7P ‘gb ¢gbT 1 p ‘zby p)o9ar0dosa

(T ‘ZPTTGd 0TP ‘dmxUxS0 ‘TIRISP N) TROSSSRIAND
{(TTRe3I9P N ‘gbT TG4 TP ‘gbT1bTTaTp ‘1by p)osarogosa

(1 ‘ZbTTpd 0TP ‘¥MxUxG°Q ‘TTEISP N) [ROSSSeIqno
{(TTR3SP N ‘b Tpd 0P ‘ZbTIPT I P ‘TPY P)OSAIOdOSA

{(1 ‘gbTTed 0P ‘gmMxyxG 0 ‘TTE3ISP N) TEOSSSETqnd
{(TTe38p N ‘ghb Ted 0P ‘ZB PIT I P ‘PIY P)OSALOTOSA

(T “zbTTzd 0P ‘UxG 0- ‘TTe3ISP N) [ROSSSReIqnd

(1 ‘zbTtza 0P ‘T ‘zb el x p ‘TTe3l9p N)Adoogserqno
\\\
(T ‘Tb TLA 0P ‘UxG0- ‘TTERISP N) [edssseTqno

it Hw TLA 0P ‘T ‘TbT3A 1 p ‘Tre3ep N)Adoogserano

(1 ‘TP 194 7P ‘¥MxyxG'Q ‘TTE3I8P_ N) [BOSSSeTqno
{(TTR3ep N ‘1B 194 0P ‘TbTgbT I p ‘zby p)osaroqosa

{(TTRISP N ‘T ‘Tb TG4 07 P) TeOSWNSOeA
(T ‘TBTTGA TP ‘umMxyxGTQ ‘TTEISP N) [2OSSSeTano
{(TTe3ep N ‘1B 164 0P ‘TbTT1bT I p ‘1by T P)osaroqoss

(T ‘TBTTpd 0P ‘dmxyxG 0 ‘TTEISP N) [edssserand
{(TTe3sp N ‘TbTTpd TP ‘IBTIPT 1P ‘IpY P)O9ALI0d09A

(T ‘TP Ted 07P ‘9gmxyxG (0 ‘TIRISP N) TeOssserqnd
{(TTe3sp N ‘Tb Ted 0P ‘TP PIT I P ‘P3d P)O°AIOADSA

{(T ‘1b Tgd 0P ‘UxGt0- ‘TTelsp N) [eOSSSserqnd

(1T “1b Tza o P ‘T ‘Tb el x p ‘Tre3sp N)Adoogserqno
\\\
‘TPTTLI LT ‘Uxgt0- ‘TTRISP_N) [ROSSSBTONO

(1 Hv me TrTP ‘T ‘TP 3AT T P ‘Tre3ep N) AdoogseTqno

{(1 ‘107194 7P ‘4mMxUxG 0 ‘TTe3ISP N) TEOSSSeTqnd
{(TTe39p N ‘TP 194 £ P ‘1P ¢bT I p ‘gby p)ooarogoea

(T ‘TP TGA 7P ‘¥dmxUx§ 0 ‘TIPISP N) TeossseTqno
{(TTR3I9P N ‘TP TG4 07 p ‘Ip 1bT 2 p ‘1by p)osarogoss

_ f(ITe3LPTN ‘T 'IP Thd [P) TEOSHASORA
(T ‘TP Tpd 07D ‘9mMxUxG 0 ‘TIPISP N) Teossserqno
f(TTe39p N ‘TP Tpd L P ‘TP IPT I P ‘IPY P)OSAL0OQOSA

(T ‘TP TEd 0P ‘dMxUxGtQ ‘TTEISPT N) TeOSSseTqnd
{(TTe3sp N ‘TP Ted 0P ‘TP PIT I P ‘PIY P)OSAI0QOSA

(T ‘TP Ted 7P ‘Uxgr0- ‘TTRISPTN) [RISSSeTand

(T ‘TP Tgd 07P ‘T ‘TP ol X p ‘Tre3sp N)Adoogselqno
\\\
(T “IJS”TLd £7P ‘yxG 0- ‘TTRISP N) [BOSSSBeIqno

f(1 ‘3sTTLa0TP T ‘3STaA A P ‘TTeasp N) Adoogserans

(T ‘FsTTOd 0P ‘dmxyxG Q ‘TTRISP N) TeOSSserqnd
{(TTe3sp N ‘ISTTo4 [P ‘IS ¢bT 1P ‘zby p)osarodosa

f(T ‘ISTIGA 0P ‘YmxyxG0 ‘TIEIASP N) TROSSSEeTano
{(TTR3ISP N ‘ISTIGL TP ‘IsTTbT 1 p ‘Tby p)osarogoss

(1 ‘ISTTPA 0P ‘amMxUxGcQ ‘TTE3I9P N) TEOSSSETqnd
{(TTe38P N ‘IS Tpd TP ‘FSTIPT T P ‘TIPY P)OSALOUOSA

{(ITEI9P™N ‘T ‘ISTTed £ P) TeosHnsosa
f(1 ‘ISTTEA 0P ‘9mMxUxG 0 ‘TTE3ISP N) [EOSSSEqnd
{(TTe38P N ‘IS TEd TP ‘FSTPIT I P ‘PIY P)OSALOTOSA

(T ‘FsTTea TP ‘UxGT0- ‘TTEISP N) [BOSSSerqnd

(T “FsTTzd TP ‘T ‘FsTel X p ‘Trelsp N)Adoogselqno
\\\
‘(1 “Ts T84 0 P ‘I- ‘1Te3I9P N) [eOSSSERIqND

{(TTe3ep N ‘TS T84 0P ‘MITP ‘qeasy p)oSALOTOSA

148

JIIIIIIII D01 LL 1)L 00107007100017172071177111177] 6991 {(zbT9n"aTPY (+¥PTOA) ¢ (3LOTF) FJOSZTS ‘T+[TEISP N) OOTTYSEIQNO = Snie3s
f(1_‘gbgnxp ‘I- ‘TTRISD N) [BISSSBIqNO 99 {(Tb_9n" 1 p® (*¥pTOA) ‘(3BOTF)JOSZTS ‘[x[TeI8P N) OOTTYSEIYNO = snjels

{(TTRAOP N ‘ZbTGnTaTp ‘gbTspETaTp ‘ZITINSHY P)OSALOAOSA /99T £(TP_ 9N I P3 (*+*¥PTOA) ‘(3JBOTJI)JOOZTS ‘T+TTRISP _N)OOTTYSBIAND = sniels
9991 f(3sT9n"aTpR (#¥pTOA) ‘(3IBOTT) JOSZTS ‘[x[TeI8P N)OOTT¥SEIYNO = snjels

{(T_‘ThTgnTaTp ‘I- ‘TTe3sp N) TeOSSsSerqnd 99| £(T9p_ 9N I PR (*¥pTOA) ‘(3BOTF)JOSZTS ‘[*»TTeISP N)OOTTYSLIAND = sniels

{(TTe3sp N ‘Thb gn a p ‘Tb7spE I P ‘ZITASAEY P)O°AI0dR®A F997| {(zbTgn I p® (¥*pToa) ‘(3ROTJF) JOSZTS ‘I+TTeISP N)OOTTYSBIAND = SN3Ie3s
€991 {(TbTGn"a Py (*¥PTOA) ‘(3B0TJF)JOSZTS ‘Tx[TeISP_N)OOTTYSEIINDd = snjeis

f(T_‘1pTenTaTp ‘1- ‘TTe3SpTN) [eOSSSEIano 99| f(TP_GNnTa PR (#¥PTOA) ‘(IBOTT) JOSZTS ‘[+[TeI8P N)OOT[¥SEIYNO = snjels

(TTe22P N ‘TP S0 I p ‘Tp sby 1 p ‘1110SEY P)O2AI0J0SA 1991 1(FsTon I PR (*»+¥pTOAN) (120T3) J02ZTS ‘T+TRISP N)OOTTYSRIONO = sniels
0991 {(T2p TGN I PR (**PTOA) ‘(3B0TF)JOSZTS ‘Tx[TEISP N)DOTTYSEIINd = snjels

{(T_‘FsTenTaTp ‘T- ‘TTe38p N) TEOSSSerqnd 669] ! (¢bTspE_a PR (¥xpTOA) ‘(IBOTJ) JOSZTS ‘I[x[TeISP N)OO[TYSBIOND = sniels

{(TTeI9p N ‘IFSTGN I p ‘IsTsby aTp ‘IITNSEY P)OSAIOAOSA QGO {(Tb”spd_ a7 P (*+pTOA) ‘(120TJ)JOS2TS ‘[¥[TEISP_N)OOTTYSLIqNd = snjels
2997 {(3s”sbd I p3(**pTOA) ‘(3BOTJF)JOSZTS ‘T+TTEISP _N)OOTTYSRIIND = Sniels

(T ‘TepTen I p ‘T ‘elTNSEY P ‘1- ‘TTe3sp N) Adxesserano 9697 {(Tp"sbE a7 PR (*xxpPTOA) ‘(3B0TF)JOSZTS ‘Tx[TEISP N)OOTTYSEIINd = snjels

{(TTe38p N ‘€110SEY P ‘sbE p ‘ZI1TASEY P)O9A10A98A 66O
‘(ITe3S9p N ‘ZITINSEY P ‘B3TOP P) SODO®A HG9])

{(TTEI9P N ‘TP 6N I P ‘sSpE P ‘IITINSEY P)OSAL0OdO9A €GO f()3TUISETIONO = sniels
{(TTe39P N ‘TITINSHEY P ‘e3T9p P)UTSO9A 7G| {snjels snie3gseIqno
R R N I NSV ") o o o o o
{(TTe3ep N ‘Ip_sbi 1 P ‘IpT P ‘08S peT P)OSAAICDRA (GI 1zb 03N 2 _Px ‘Tb 03ATA_ Px ‘TP _03IA_I_P+ ‘IS _0IA_T P ‘TOP_03IA_I_Pr 3e0T3
{(TTe39p N ‘Is sbd 1 p ‘pIT p ‘O9S peRT P)OSAATIAOSA 69| {zbTaanT 3 pxThTa3A” I P ‘TP d3IA_ I _Px‘FS AN I px ‘TSP _d3A~ 1 _px 3eOTF
{(TTe39p N ‘zb spE 1 p ‘gbT p ‘oss beT p)osapIgosa SF91T {zb"bes 1 px‘Tb bes 1 px/Ip bes I px‘Js bes 1 px‘Tsp bes I px 3e0TT
!(TTe39p N ‘Tb spg 1 p ‘TbT p ‘o8s beT p)osapIdosa L¥91] {zb pes 1 px‘Tb pes I px/Ip pPeS I px‘Js pes I px‘Top pes I px 30T
9%91] 1zb b1 1 px ‘1 bT 1 px‘Ip BT I px‘Js bT I px‘Top bT I px 3BOTT
SHIT| {ZbTPT I px‘Tb PT I px ‘TP PT I px‘Js pT I px‘T19p PT I px 3eOTJ
PH9T| {ZbT0T 1 px‘Tb 01 I px ‘TP _OI I Px‘3s 0T I px‘Tep OI I Px 3eOTF
{(ZbT03A_I PR (x*PTOA) ‘(3BOTF)JOS2ZTS ‘TxTTEISP N)QOTTVYSEIAND = snijeis ¢jo]| {zbTaI”a px‘1b Al A Px ‘TP dI_ I Px‘JsTAI I px‘TSp_dI_ I Px 3BOTJ
NAHm|0u> I PR (+¥PTOA) ‘(3BO0TF)JOOZTS ‘[xTTRISP N)OOTTVSEIqnd = Snieis o[fzb gy 2 Ppx‘Tb gV I px ‘1P 8V I P+ ‘IS gV I _Px‘ToP_8V 1 _Px 3e0T3
{(TP_03A_ T _P3(¥*pTOA) ‘(3BOTF) FOO2TS ‘Tx[TRISP _N)OOTTYSLTIND = snieis 1#91 g7V AT px TP LY I px ‘TP LY X Px‘3STLY I px‘TOp LV I pPx 3eOTF
{(ISTOIA_ T PR (¥¥PTOA) ‘(3BOTF)JOSZTS ‘[x[TLISP N)D0TTYSLTdNd = snieis (p9]| {zbT9n”a px‘Tb on x px ‘TP 90 I px‘Js 9n I px‘Top 9n I px 3eOTJ
(TSP 03A” T PR (**xpTOA) ‘(3LOTJ)JOSZTS ‘[+TTRISP_N)POTTYSRIAND = SN3IRIS 4L fZbTgnTa px ‘ThTonTa px ‘TP GNT X Px‘IJSTGN I px‘Tep Gn I px 3eOTJ
{(gb”Q3A”I PR (xxPTOA) /(3BOTF)JOOZTS ‘[xTTRISP_N)OOTTYSEIANO = snjels geo] {zbTspd A px ‘1b spd I px ‘Is sba 1 px‘1p sba 1 pr Jeol3
{(TPTA3A”I PR (¥¥PTOA) ‘(3BOTF)JOSZTS ‘[xTTR3ISP N)OOTTYSRIqnd = Snieis /g9J|
(TP _A3IA” T PR (¥¥PTOA) /(3©OTF)JOS2ZTS ‘[x[TLISP N)DOTTYSLTIND = Snieis 9goJ| fwnuTusb=TTRISP N JUT
{(3sTA3IATI PR (x*PTOA) ‘(3BOTF)JOSZTS ‘TxTTeISP N)OOTTVYSBIAND = snijeis cgo]| }
(T9P_a3A_2_P3 (+¥PTOA) ‘(3BOTJ)JOSZTS ‘I+[TRIOP_N)DOTTVSEIIND = sn3eis o[()2Te0 PUOI: 1YHIY PTOA
! (zbTbes I PR (»¥pPTOA) ‘(2BOTI) JOSZTS ‘TxTIRIASP N)OOTTYSLRIIND = sniels €€97] {
! (Tb™bes 1 3 (¥¥pTOA) ‘(3BOTJF)JOSZTS ‘TxTTRISP N)OOTTYSETIAND = sniels 2691 /¥ x %% %% xxxxxxx¥¥¥¥¥¥URTAODRL JO DUDX/
{(Tp_bes”a pR (x*pTOA) ‘(3BOTF)JOSZTS ‘TxTTeISP N)OOTTVYSEIANO = snijeis g9 (eA”T6d r p)oo1dserqno
! (3sTbes 1 pR (¥¥pTOA) ‘(1BOTI)J0S9ZTS ‘[x[TeISBP N)OOTTYSEIQNO = sniels 0€91] (Tcd 07 p)osagserqnd
(Top bes™ 1 p® (»xpToa) ‘(3BOTJF)JOSzTS ‘T+TTRISP _N)OOTTYSRIAND = snjeis 79[(za~T64 0 P) @21sTqND
{(zb pes”a PR (xxpTOA) ‘(IBOTF) JOSZTS ‘TxTTEISP N)OOTTYSEBIONO = snieis Qg (za~ T84 [p)odadseTqno
{(Tb pes” I PR (x*PTOA) ‘(3BOTF)JOSzTS ‘TxTTEISP N)OOTTVYSEIANO = snijeis /g9 (TATTLI 0T P)osxgseIqnd
£ (TP pes”I PR (xxPTOA) ‘(3BOTI)JOOZTS ‘[xTTRIOP_N)OOTTYSEIANO = sniels gzo]] (1A7T€d 0 p)osaaserqnd
{(3sTpes” I p3(¥¥pTOA) ‘(3BOTF)FOS2ZTS ‘Tx[TRISP_N)DOTTYSLTAND = snieis GgI9[(zb”TLd 0~ p)odadseIqnd
(TeP_Pes I PR (*xPTOA) ‘(3BOTJ)JOSZTS ‘[+TTRISP_N)OOTTYSRIAND = snieis jg9]| (zb"T94 r p)osagserdnd
{(zb bT I PR (xxpTOA) ‘(3BOTJT)JOSZTS ‘[+TTRISP _N)OOTTYSRIAND = Snieis ¢goJ| (zb~Tqd p p)oesagserqnd
{(TbTbT 1 PR (**¥pTOA) ‘(3eOTJ)J0S2ZTS ‘T+[TeISP N)OOTTIYSRTINO = sniels 2291 (zb™1pa 0 P)o21gserqno
(TP bT 1 PR (x¥pTOA) ‘(2BOTI)J022ZTIS ‘T+[TEIADP N)OOTIYSETIQND = sniejs 1291 (zb™1ea p p)o2a1gseTqno
{(3sThT 1 PR3 (x*¥pTOA) ‘(3BOTJ)JOSZTS ‘TxTTEISP N)OOTTYSBTIND = sniels 02971] (gb"Tza 0 p)esaaseTqnd
{(Top bT a1 PR (x*pTOA) ‘(3BOTF)JOS2ZTS ‘TxTTEISP N)OOTTVYSEIAND = snijeis gI9]| (Tb™ 1,3 07p)osagseTqno
{(gb”PT_a PR (*xpPTOA) /(3BOTF)JOSZTS ‘[+TTRISP_N)OOTTVYSEIANO = sniels Qo] (1b” 194 0 p)es1aserqnd
{(TPTPT 2 p3 (*xpTOA) ‘(3BOTJF)FOSZTS ‘T+TTRISP N)OOTTVYSRIAND = snjelis /][9] (TPT TG4 [~ p)odadseIqnd
{(TP_PT_I PR (*¥pTOA) ‘(3BOTF)FOSZTS ‘[x»TTRISP N)OOTTYSEIAND = snieis 9[9]| (TP™Tpd [~ p)osadseIqno

ISTPT I PR (¥*PTOA) ‘(3e0TF)JF082ZTS ‘[*[TeISP N)OOTTYSBIOND = sniels G197 (Tb™Tea 0 p)osaaseTqnd
(Tb_Tzd 0_p)o@14seTqno
(TP TLd 0 P)o2IdseTqnd

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

9P PT I PR)
)

P_T94 [P)esaxgserqno

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

Zb 01 1 p3

¥¥PTOA) “(300TF)JO92TS ‘[¥TTeISOP_N)OOTTYSETANO = snjels HI9]]
*+DTOA) (3B0T3)J0O8ZTS ‘[[T@3I8P N)OOTTYSETdnd = sniels ¢[9]

Tb OI 2 PR3 (*xpTOA) ‘(3BOTF)JOSZTS ‘TxTTeISP N)OOTTYSBIONO = snieis 9| (T
TP _OI I P3(%xpTOA) /(320TJ)J08ZTS ‘[+[TRISP_N)OOTTYSETANd = snieis [[9]| (TP_T6d [p)od1serqnd
JSTOI_Z P9 (¥¥pTOA) “(3207J)JOS2TS ‘[x[TeISP_N)OOTTYSEIANd = sniels ([9] (TP T 9914seTqNd
! Jo®zTs ‘T+TTERISP_N)OOTTYSeIqnd = snjelis (9] (Tp_Ted (”p)9214seTqno
¥¥PTOA) ‘(3BOTJ)JOSZTS ‘T+TTeISP N)OOTTYSEIAND = sniels g9[(TP _Tzd [p)oeadserqnd

hTar i p3
TP_a1_a pw
Is7d1 1 PR

¥¥PTOA) /(320TF)JO92zTS ‘T¥TTEISP_N)OOTTVYSETANO = snjeds 209

)

)

)

) (3sTTLA 0TP)@214SRTAND

*+PTOA) /(320T3)J08zTS ‘[[TEISP N)OOTTYSETnd = sniels 9O9[

)

)

)

)

)

(35”1940 p) @vadseTqno
(3s”164" 07 p) @eadseTqno
(FsTpa £ p)oadseTqno
(Js”Ted £ p)esiserqno
(3s”Tzd 0 p)@sadserqno
(Ts” 184 r_p) @eadseTqno
(Ts”Tzd 07p) eeadseTqno
(Ts”TT4 £ p)es1dseTqno

¥*¥PTOA) ‘(3BOTJ)JOSZTS ‘IxTTRISP_N)OOTTYSBIAND = sniels S091
*¥pPTOA) ‘(12OTJF)JOS8ZTS ‘T[+TTeRISP N)OOTTYSBIQNO = sniels F091]
ZbT8V A PR (xxPTOA) /(3BOTJF)JOo2TS ‘TxTTRISP N)OOTTYSBIANO = snjeis ¢oo|
P78V aP3 (+xPTOA) ‘(3LOTJ)JOS2ZTS ‘T+[TRISP_N)OOTTYSLTANd = snjels 2097
TP_8V_ I P3 (¥xPTOA) ‘(3BOTJ)JOSZTS ‘IxTTRISP_N)DOOTTYSBIAND = sniels 1091
*¥pPTOA) ‘(1BOTJF)JO2ZTS ‘[+TTeRISP N)OOTTYSBIQNO = sniels 009T1]

Sp 8V T DR (¥xPTOA) ‘(3BOTF)JOSZTS ‘[xTTeISP_N)OOTTVYSETANO = snjeds 66GQ]

(
(
((
((
((
T (
((
((
((
((
T (
((
((
((
((
9P 0I_ 2 P3(*¥pTOA) ‘(300TF
(zb~ar—a p3(
((
((
((
T (
((
((
((
((
T (
((
((
((
((
T (

ZbT LY I PR (¥xPTOA) ‘(3B0TJ)JOSZTS ‘[+TTBISP N)OOTTYSETIND = Sn3eds §eG[{(Tep_TL4 [p)oeIiserqnd

TBTLV I PR (¥+xPTOA) ‘(3B0T3)JOSZTS ‘[+TT€ISDP N)OOTTYSETND = Sn3eds /6G[{(Tep 194 [p)es1iserqnd

TP LV I PR (¥+PTOA) ‘(320T3)J08ZTS ‘[*TTEISP N)OOTTYSETINO = Sn3eds 9eGl| {(Top TG4 [P)991dseTqnd

JSTLU T PR (xxPTOA) ‘(3BOTF)JOSZTS ‘[xTTeIOP_N)OOTTVYSETANO = snjeds Gall {(Top Tpd £ p)ooIISETAND
)

SPTLY ATPI (+¥PTOA) ‘(3B0TJF)J052TS ‘T+[TeIop N) OOTTYSETANd = snieis peGl (Tep™Ted £ p) @o1dseTqnd

149

{(TTRI8P N ‘TIep beS 1 p ‘Iep bT 1 p ‘0es beT p)osAalodoss
\\\\\\\\\\\\\\\\\\\\h\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
(T NU U@m I p H\ HHMHWﬁ T N) TedosgseTqno

{(TTeI”P N Nwlﬁmm ITp ‘ZbTPT AP ‘09sTpeT P)OSAL0dO8A

(T ‘ThTpes I P ‘I- ‘TTe3®p N) [BOSSseIqnd
{(Tteasp N ‘Tbpes 1 p ‘Tb Pt a1 p ‘Oes peT p)o2Al0dodA

{(TTeI9P N ‘TP pPes I p ‘D03s peT p ‘Ip pes I _p)OaaIodoadan
{(TTe3sp N ‘TP pes I p ‘TpT P ‘€IlTIASHEY P)OSAATIADSA
{(TTe29P N ‘T ‘€1TASEY P) TeOSHNSOSA

(T ‘€11nSEY P ‘I- ‘TTe39p N) TeOSSserqnd

{(TTRISP N ‘€11I0SAY P ‘TP PT I P ‘IPT P)OSALOAOSA

f(TTelSpP™ N ‘Js™pes 1 p ‘Oss peT p ‘Js pes I p)osalodosa
{(TTeI9P N ‘IsTpes 2 P ‘PIT P ‘€ITNSHY P)OSAAIJODA
(TTR3I9P N ‘T ‘€1INSHEY P) TeOSWASO™A

(T ‘elInsdy P ‘I- ‘TTe3sp N) TeossseTqno

{(TTe3sp N ‘€lLINsSdd P ‘IFSTPT I P ‘PIT P)OSAI0OCOSA

‘(1 ‘TP pes a1 p ‘T- ‘ITe38pP N) IBOSSseIqno

{(TTe3SP N ‘TS9P PeS I P ‘TSP PT I P ‘08s™ peT p)OSaLlodosa
\\
‘ZbTbT 1P quDmmm P 1= Hamuwﬁ " N) Adxegserqno
\Aﬁﬂmumv N ‘maqsmmm P ‘TITOSEN P ‘gb_aI” 1 p)09A100o9s
{(TTe39P N ‘Zb bT I p ‘ZIInsSay P ‘zb 0I 1 P)0o°AI0dosA

T ‘1BThTaTP ‘T ‘e€lINSEY P ‘I- ‘TTe3ep N) Adxesserqnd
(TTe39P”N ‘€ITIASEN P ‘TITNSEY P ‘TB7dI”I7p) 094100094
{(TTR3SP N ‘TP hT 3 P ‘ZITASEY P ‘TP 0OI a1 P)osar0@dss

B
i

(T ‘TP b a7 p ‘T ‘cLInSdd P ‘T- ‘TTe19p” N) Adxegserqnd
f(TTe3eP N ‘€110SEY P ‘TIIINSEY P ‘Ip_dI_I P)O°AL10008A
{(TTe3a9P N ‘TP bT I P ‘ZI11ASHY P ‘TP OI I P)O9A100O9A

(T ‘3s™bT a7 p ‘T ‘cLInsdd P ‘T- ‘TTe319p” N) Adxegserqnd
f(TTe3eP N ‘€110SEY P ‘TIIINSEY P ‘3s”dI” I P)OSAL00OSA
{(TTe3sp N ‘IsThT I p ‘zlIASEY P ‘ISTOIT I P)OSA10d0SA

(T ‘TP BT I p ‘T ‘€LINSEY P ‘T1- ‘TTe3189p N) Adxegserqnd
{(TTEISP N ‘€1TASHEY P ‘ZITASEY P ‘dI” P)O9AI0QO9A

(T ‘TeP BT TP ‘T ‘€11InSAy P ‘I- ‘TTe3sp N)Adxesserqnod
{(TTeI9P N ‘€ITNSHEY P ‘TITASEY P ‘I8P AI_ I P)O9A10d08A
(T ‘TeP BT I p ‘T ‘€LINSEY P ‘TI- ‘TTe38p N) Adxegserqnd
{(TTeI9P N ‘€17ASHEY P ‘TIINSEY P ‘OI° P)O9AI0Q09A
{(TTe3ISP N ‘TSP bT I P ‘ZITASET P ‘TSP OI I P)OSAI0AOSA
(e3T9pP) SO0O=ZITINSHEY P { (B3ITOP) UTS=TLINSET P///
\\\\\\\\m\\\
(T ‘zbpT TP ‘T mpqzmmm P T HAmuov T N) AdxegseTqnd
\Aﬁﬂmumu N ‘€1T0SHEY P ‘TITASEY p ‘gb 01”1 p)osaroaosa
{(TTe3I9P N ‘b PT 2 P ‘zI110SHEY P ‘zb dI” a1 p)09AI0dosA

(1 ‘1BTPTTIP ‘T ‘elInsEy p ‘1 ‘TTe3sp_N) Adxegserqno
{(ITeI9P N ‘E€1T0SEY P ‘TITINSTY P TP OI_ T P)O9A10qo9A
{(TTe39P N ‘TP PT I P ‘ZITINSEY P ‘Ib Al a1 p)oealodosa

(T TPTRPTTI P ‘T ‘elInsEy p ‘1 ‘TTe3sp_N) Adxegserqno
{(TTRISPTN ‘€1TNSAY P ‘TILTNSEI P ‘TP_OI_I7P) 994100994
f(TTe39P N ‘TP PT I P ‘ZITINSEY P ‘TP dI I P)O9ALOdO9A

(T ‘IsTpT 1 p ‘T ‘elInsay p ‘I ‘TTelsp N)Adxegserqno
(TTe3Isp N \mﬁqzmmm P ‘TIINSHEY P ‘IJSTOI” I P)O9ALI0QOSA
f(TTe3sp N ‘IJSTPT I P ‘ZITASEY P ‘IS Al I P)OSALOdOSA

(T ‘TeP PT 2P ‘T ‘€170SEY P ‘T ‘TTR3ep N) Adxesserqno

{(ITe39P N ‘€1TASHEY P ‘ZITASEY P ‘OI° P)O9A10QO9A
(T ‘TP PT T p ‘T ‘e17AsSHEy P ‘T ‘TTe3sp N) Adxegserqnd
{(TTR1OP N_‘€LIASEY P ‘TITASEY P ‘T9p 0I_ 1 P)O9ALI0009A
(T ‘TP PT T P_‘T ‘€1T0SEN P ‘- ‘TTe3ep N)Adxesserqno

{(TTe3I9P N ‘€17ASHEd P ‘IITINSEY P ‘AI”P)O9AI0QO9A
{(TTeI9P N ‘T9P PT X P ‘ZITNSEY P ‘I8P QI I P)O9AI0d08A

(e179pP) SO0=ZLTASHY P *(B3T9P) UTS=TLINSTL P///
R N N N A R A
{(TTe3Sp N ‘Zb 0T T P ‘9Y P ‘zb 8v I Pp)oOsapIadea

(1T

1T

B3P N ‘TbT

0I TP ‘9¥ P

BISPTN ‘TPTOI I P ‘9¥ P

{(TTe39pP N ‘FsT0I I P ‘9Y P

{(TTe3I9P N
‘(1Ten

1T

(1T

(1T

(1T
f(TTe3sp N
f(TTRd

.

{(TTRe3eP N
NAHHmuovz

(1 ‘“tbTev 1P ‘1

{(TTRe3eP N
NAHHmuov\z

(T ‘TP 8Y T P ‘T

(TTe39Dp N
(TTe38P N

(T IJsT8Y TP ‘T

{(TTRe3ep N
{(TTe39p N

(1 ‘18P 8Y I p ‘T
! PN ‘e1INSEY_ P
f(TTe39p N ‘T

(TTE38P N

(T ‘b LY
{(TTe3e9p N
f(TTe39p N

TE38P N
Te3ep N

— e~

(T TP LY .

{(TTe3e9p N
f(TTe39p N

(T “Is”LY .

{(TTe3=p N
{(TTEe3I9P N

(T TePT LY

(TTE38P N

f(TTe3IsP N

f(TTe3sp N
{(TTe39P N

f(TTe3sp N

(1 ‘Tep 9nT.
(e379p) So0=zI1TASHEY ©P/// ! (TT®e
(e3ToP) UTS=T11I0SAY P///* (TTe3

T ‘1hT Ly

Hw@IOHluln ‘elINsEd_ P

‘(1Te390°N ‘€110SHY_ P
9P N ‘T9P 0I I P ‘9V P
\\\\\\\\\\\\\\\\\\\\m\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
BI9P N ‘gbTar 1p ‘SsY p

e3ep N ‘1B
'SP N ‘TP

BISP N ‘IS

ar I e ‘SY p
ar I p ‘sy p

ar 1 p ‘sy p

‘T9pTAIT AP ‘€LTNSEY P
uAHHmUwv N ‘el1InsEd p

SPTN ‘oD

‘€1INSHAY P
‘ZbTgY 1P

‘e1INSHAY P
‘TbTgY 1P

‘e11NSIY_P
‘IPT8Y T P

‘e11InsIY_P
‘IsT8Y TP

Sp gV 1 P

Ip ‘T ‘e
‘e1INSEY_P
‘gL aTP

Ip ‘T ‘e
‘e1INSEY_P
‘ThTLY T aTP
Ip ‘T ‘¢
‘e1INsEY_P
‘TPTLY TP
Ip ‘T ‘e
‘e1INSEY_P
‘ISTLY TP

Ip ‘T ‘e

! PN ‘eLINSEY_ P
f(TTeI9P N ‘T

9P LY I P

ar 1 p ‘sv p

MHADmmm P ‘T

‘1bTgV¥ 1 p)osApAIdOSA
‘TPT8Y 17 P)DSAAIARRA

3sTgY I p)OSAAIdOSA

‘T9p 01”17 P)OSAAIQOSA
‘9Y P ‘9v¥ P)
‘T9PT8Y 1 P)O8ALOdOSA

D9AI0QO9A

‘ZbT LY I P) 09AATADRA
‘1bT LV a1 p)oeapIdoeA
‘TPTLY 17 P)29AAIdOSA

‘ISTLY 1 p)OSAAIQOSA

‘TepTAIT A P)O9AATIQOSA
‘SY P ‘SY P)

‘TP LY 17 P)29A10008A
N N N N N A,
(T _‘egbsy TP ‘T

D9AL0QO9A

‘TTe3ep N)AdxegseTqno

‘zb”gn” 1 p ‘NN _d HBeTP P)O9AL10009A
‘zbT9nTaTp ‘NN 9 bRTP P)O9A10d09A

‘eITNsSEY P ‘T

‘TTe39p N) AdxegseTqno

‘1b”gn” a1 p ‘NN_d PPTP P)O9AL10009A
‘TbT9nTaTp ‘NN 9 DRTP P)O9A10009A

‘eITNsSEY P ‘T

‘TTe39p N) AdxegseTqno

‘TpTGnTaTp NN_d beTpTp) 09AL0A0SA
‘TPT9NT I P ‘NN DT DRTPTP)09A10009A

‘eITNsSEY P ‘T

‘TTe39p N) AdxegseTqno

‘FsTGn a p ‘NN_d PPTP P)O9AL10Q09A
‘IsTONTI P ‘NN D DRTPTP)O9A10009A

‘eIINsSEY P ‘T

‘TTe39p N) AdxegseTqno

‘Tep_Gn I p ‘NN_d beTp p)o9AL0dosA
‘Tep 9N I P ‘NN 9 PeTp p)oealodoes
\\

HADmmm P ‘T-
‘zb_9n a1 p
‘ZbTgnTaTp

110sEy P ‘1-
‘1tb”9n" 1 p
‘1bTgnTaTp

110838 P ‘1-
‘Tp_9n_ 1 p
‘TpTGnTITP

IInsEy P ‘1-
‘IsTon I p
‘3sTGnTaTp

110sEd P ‘1-

‘Tep_9n" 1 p

‘TTe39p N)AdxegseTqno

‘NN_d_beTp P) 094100094
‘NN D beTp T P) 09A10a29A

‘TTe39p N) AdxegseTqno
‘NN_E_beTP P)2°A10008A
‘NNT9TDRTPTP) 094100094

‘TTe39p N) AdxegseTqno
‘NN_E_beTp P)2°9A10d08A
‘NNT9TPRTPTP) 094100024

‘TTe39p N) AdxegseTqno
‘NN_€_BeTp_p)0°A10008A
‘NNT9TBRTPTP) 094100024

‘TTe39p N) AdxegseTqno
‘NN_ € beTP P)2°A10008A

‘Tep 6N I P ‘NN 9 DbeTP P)29AL0dO9A
\\

(T_‘zbT 9u I ‘T
‘ZbT9nTaTp ‘gbTspE I p

(T _‘ThTonTap ‘1-
‘Tb™9n"x p ‘1bTspd I p

‘TpT9nTaTp ‘1P sbE I P

‘IJsTo9n 1 p ‘s sba 1 p

(T ‘TepTon I p ‘T-

Ip ‘T ‘¢

ITNSHEY P T+

19PN ‘€1INSEY P ‘spE p

SPTN ‘ToP

9n~ a1 p ‘sba p

Hamuwn TN) TEOSSSBTAND
‘TLINSEY P) 209A10009A

‘TTe39pP N) TBOSSSBTanO

‘11T0STI P) 92AI0d02A
‘Z1INSHEY P) O9AL0AD9A

‘ZLTNSHEY P) 09AL1000SA

‘TTe3ep N) [ROSSSeIqnd
‘TTe39p N) AdxesgseTqno

‘Z1I0SHEY_P) O9AL0A09A
‘ILTNSTY P) 29AL00O3A

150

(T “FsTa3aA_ AP ‘T ‘FsTen I p ‘T ‘Tre3ep N)AdxegseTqno
(T “FsTa3A TP ‘T ‘€1Tnsad p ‘T ‘TTe3isp N) AdxegseTqno
{(TTe38p N ‘€110SEY P ‘zn P ‘ISTOI I Pp)OSALOdOSA
f(TTe3I9P N ‘ISTdIA T P ‘TP ‘ISTAI I P)O9ALOdORA

(T ‘Tep @In T p ‘T ‘Tep gn I p ‘T ‘TTe3sp N)Adxegserqno
(T ‘TP aIn I p ‘T \mﬁq:mmmln ‘1 ‘TTe3sp N)AdxegseTqno
{(TTeI9P N ‘€17ASdY P ‘Zn P ‘T9p _0I_ I P)O9A10do9Aa
{(TTe39p N ‘I8P Q3A™ T P ‘TN P ‘I8P AI” I p)O9A100094n
\\\\\\\\\\\\\\\\\\h\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
{(TTre3Isp N ‘gb ¢bTTaTp ‘ZgbT P ‘€ITNSEY P)OSAAIdOSA
{(TTe29P N ‘T ‘€1TNSHEY P) TEOSHNSO9A

(T ‘elTnsEy P ‘I- ‘TTe3sp N) [edssserqnd

(1T ‘erInsEy P ‘T ‘zb besTx p ‘TTe3l9p N) AdoogseTqno

f(1 ‘Tb"gbT a7 P ‘I- ‘TIE38P N) TeOSSSeTqnd
{(TTe39p N ‘Tthbzbt 1 p ‘zbT p ‘1b bes i p)osapTgosa

{(1 ‘TpTZbT 2P ‘I- ‘TTE38p N) TeOSSserqno
{(TTe38p N ‘TP ¢bT 2 P ‘gbT P ‘1P bes I p)oeapIaosa

(T ‘FsTgbT TP ‘I- ‘TTE3ISP N) TROSSSeIqnd
{(TTe39p N ‘IsTzbt ap ‘zgbT p ‘JsTbes i p)osapIdosa

(T ‘Tep ¢hT I P ‘T- ‘TTR3ISP _N) [ROSSSRTAND

{(TTeI9P N ‘T9p ¢bT 2 p ‘zbT p ‘TSp bes™ a1 p)oaapIgoss
N R N R,
(1 ‘gb Tbr 2P ‘T- ‘TTEISP_N) [ROSSSEINO

{(Tre3sp N ‘gbT1btTaTp ‘b1 p ‘b besTip)osaprgosa

{(TTe3ep N ‘ThTThT a7 P ‘TbT P ‘€II0ASH P)OSAATIAOSA
{(TTRIOP N ‘T ‘€I1TINSHEY P) TeOSWASO9A

(T “‘€170SEY P ‘I- ‘TTe39p N) [ROsSselqnd

(T “‘erInsEg p ‘T ‘Tb bes i p ‘Treilsp N)AdoogseTqno

_f(T ‘1P 1PT 2 P ‘I- ‘ITEI9P_N) TROSSSeTqnd
f(TTR39Pp N ‘TP ThT a1 p ‘1bT p ‘1p bes I p)osapATIdOSA

(T ‘3sTTPT TP ‘I- ‘TTR3ISP N) TROSSSEeIqno
f(TTE39P N ‘IsT1bhbT a1 p ‘1bT p ‘Js bes 1 p)osAapIgoSA

(1 ‘1opTThT I P ‘1- ‘TT2I9P N) T2OSSSEIANd

{(TTR3ISP N ‘TP TPT I p ‘IbT p ‘TIop bes 1 p)osapIgosa
\\\\\\\\\\\\\\\\\\\\h\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
(T ‘Zb71PT 2P ‘I- ‘IIE3ISP_N) [OSSSBIqnd

{(TTR3SP N ‘ZbTIPT X P ‘IPT P ‘zb pes I p)osapIaoss

_f(1 ‘TBTIPTTAP ‘I- ‘TTE3ISPTN) [B9SSSETND
{(TTe3ep N ‘TBTIPT 1P ‘IPT P ‘TP pes™ a1 p)oeapaIadea

f(TTe3sp N ‘TP IPT I P ‘IPT P ‘€ILTINSEY P)OSAATIQOSA
{(TTe29P N ‘T ‘€1TASEY P) TeOSHNSOaA

S(T ‘eIInSEY P ‘T- ‘TTR3ISOP N) [ROSSSBRIgnO

(T ‘€11I0nSEY P ‘T ‘TP pes 1 p ‘TTelsp N)AdoosseTqnd

_ f(T ‘3STIPT AP ‘I- ‘TTRIBPTN) [RISSSEIIND
{(TTR3eP N “ISTIPT I P ‘IPT P ‘3STPRS™ 1 P)OSAAIQORA

(T ‘TP TPT 1D ‘T- ‘TTEISP N) [BOSSserqnd

{(TTe39p N ‘T9p IPT X P ‘IPT P ‘T9p Pes™ I p)O9aAAIdo9n
L1000 007007770007 77000077077077777707777771171777
{(TTe3ISp N ‘gb p3s 1 p ‘zb pIT I P ‘PIY P)OSALIOAOSA

f(TTe3sp N ‘1bTpIeTaTp ‘TBTPIT AP ‘PIY P)OSALI0dOSA
{(TTRISP N ‘TP PIS" I P ‘1P PIT I P ‘PIY P)OSAIOAOSA
{(TTe39p N ‘ISTPIS TP ‘ISTPIT I P ‘PIYW P)O9OAL0OADSA
{(TTe39p N ‘I8P PIFS I P ‘190 PIT I P ‘PIY P)O9AL00O9A
\\\\\\\\\\\\\\\\\\\\h\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
(T ‘Zb™pI3T 2P ‘I- ‘TTE3ISP_N) [eOSSSerqnd

{(TTe3sp N ‘gbTPIT 1P ‘PIT P ‘ZbTpesTI p)oaapIddea

(T ‘ThTPIT 2 P ‘I- ‘TTe39P N) [ROSSSBIgnd
{(TTE39P N ‘T PpIT a1 P ‘PIT P ‘Tb pes 1 p)osapIgoSn

_ (T ‘TPTPIT AP ‘I- ‘ITBISP N) TBOSSSETqnd
{(TTe39p N ‘TP PIT 2 P ‘PIT P ‘IP PeS I P)OSAAIAO®A

{(TTe3I9P N ‘ISTPIT I P ‘PIT P ‘€LTINSEY P)OSAAIQOSA
f(TTe3sp N ‘T ‘€ITNSEY P) TROSHNSOLA

! ‘€1I0SHAY P_‘I- ‘TTRISP_N) Tedossserqno

(1 ‘erInsad U ‘1 ‘zsTpes 1 p ‘Ttel9p N)AdoogseTqno

{(T ‘TeP PIT I P ‘I- ‘TTEISP N) [eOSSSeTqno

{(TTe38p N ‘T9Pp PIT I P ‘PIT P ‘T9p Pes™ I p)O9AAIdO9A
\\
{(T ‘¢b el 1 P ‘I- ‘ITE3ISP N) [BOSSSeTqnd

(T ‘zbTelTa p ‘T ‘€I10SEA P ‘T- ‘TITe3ep N) Adxegselqno
{(TTe39p N ‘eITNsHEY P ‘zb pT 1 p ‘beTsTp)osar0doss

(1 ‘zbTelTaTp ‘T ‘er10SEY P ‘I- ‘Tre3ep N) Adxegserqno
{(TTe3ISP N ‘€170SAd P ‘PT p ‘gbbes” 1 p)osaroaosa

(T ‘ZbTel X p ‘I ‘€I70SEA P_‘T ‘ITe3sp N) AdxegseTqno
{(TTe3ep N ‘gb o1 1 p ‘zb b1 aTp ‘peTsTp)osarodoss
{(TTe39p N ‘el1nsHEy p ‘b1 p ‘gbTpesTi p)oearoaosa

(T ‘b= 2 p ‘I- ‘ITe3SP N) [eOSSserqnd

(T ‘Tb el 2 P ‘T ‘€1I0SEY P ‘I- ‘TTelsp N)Adxegselqno
{(1Te389p N ‘€1TNSEY P ‘TP PT a1 p ‘be7sTp)osarogqosa

(T ‘ThTerl™x p ‘T ‘e€I10SEY P ‘I- ‘Tre3ep N) Adxegselqno
{(ITe38P N ‘€ITNSEY P ‘PT P ‘Ib bes” 1 p)osa10gqosa

(T ‘Tb el 2 P ‘I ‘€1T0SEY P ‘T ‘TTelsp N)AdxegseTqno
f(TTe3op N ‘1tb el x p ‘1b bt 1 p ‘pe s p)oaalodosa
{(TTe39P N ‘€I70SEY p ‘BT p ‘TbTpesT i p)osalogosa

(T ‘TP el I p ;H\ Jﬂmuwvlzv Teosgserqno

(T ‘TPTeLaTP ‘T ‘ELINSEY P ‘1 ‘ITel9p N) Adxegserqno
{(TTe3I9P N ;quDmmm|n ‘1P UH Z “p ‘be’sTp)osarogosn

(T ‘TP el X P ‘T ‘€IT0SHEY | |3 ‘I- ‘TTe3Sp N) Adxegserqno
{(TTR3I9P N ‘€110SHEY P ‘PT P ‘1P bes I p)doAI0dooa

(T ‘tpTel I P ‘T ‘elINSHEY P ‘T ‘ITelsp” N) Adxegserqno
{(TTeI9p N ‘Ip ol 1 P ‘Ip BT I P ‘pe s p)ooaIodoss
{(TTR3I9P N ‘€IT0nSTY P ‘DT P ‘TP PeS I P)O2AI0d09A

{(T ‘FsTeL I P ‘T- ‘TTEISP_N) [BOSSSeTqnd

(T ‘FsTel ap ‘T ‘erInsEY P ‘T- ‘TTe3ep N) Adxegserqno
{(1Te39p N ‘€ITNSTY P ‘IS PT I P ‘be s p)osalogosa

(1 ‘FsTeI TP ‘T ‘€ITASEY P ‘I- ‘TTe3sp N)AdxegseTqno
{(11239p N ‘€11nSTd P ‘PT P ‘IS bes 7 p)oea10qoen

£(1 ‘IsTel AP ‘T ‘elINSE¥ P ‘T ‘ITe3ep N) Adxesserqno
{(TTe39p N ‘ISl I P ‘IS hT 1 p ‘pe s p)osalodosa
{(TTe39P N ‘€170sAY p ‘BT P ‘IsTpes I p)ooalodosa

(T ‘TP @l 1 p ‘I- ‘TITe39P N) [eOSSserqnd
‘T ‘er10sEY P ‘1- ‘TTe3sp N) Adxegserqno
110SEY P ‘I9p PT I p ‘be s p)osarogosa
T ‘€lINSEY P ‘1- ‘TTe39p N) Adxegserqno
{(TTRISP N ‘€1T0SHEY P ‘PT P ‘I8P bes 1 p)09A10098A

(1 ~Hov\mH\u\v ‘T ‘€1InsAY P ‘T ‘TTe3ep N) Adxegserqno
£(TTeISP N_‘Tep oL 2 p ‘T3P bT I p_‘PETS p)09A10@094
{(TTe39p N ‘€110SHEY P ‘bTTp ‘[op pesT I p)OosAL0doss
J171171107017177717117717111171777777/11171017111171117
{(TTE39p N ‘zb bes I p ‘Oss beT p ‘gb bes 1 p)osarogosa
{(TTe39p N ‘gbTbesTaTp ‘zbT P ‘€ITNSEY P)OSAAIQOSDA
{(TTe39p N ‘T ‘€lTNSHEY P) [eoSHNSOan

(T ‘elInsEy P ‘I- ‘TTe39p N) [edssserqno

{(TTRIBP N ‘€110SHEY P ‘b b1 1 p ‘zbT p)osaroacsa

(T ‘TepP Bl X v
{(TTe3IsP N ‘€
(1 ‘Tepel A p .

{(TTE39P N ‘Tb bes 1 p ‘oss bel p ‘TbTbes i p)osalogosa
{(TTe3sp N ‘TtbTbesTiTp ‘TbTTP ‘€ITNSHEY P)O9AAIQOSA
{(TTe39P N ‘T ‘€1T7ASHY P) TeOSHNSO9A

(T ‘elInsdgy P ‘I- ‘TTe3sp N) Tedossserqno

{(TTeIBP N ‘elINSHEY P ‘ThThTTaTp ‘1bTTp)oearoaosa

(1T ‘TP besTap ‘T- ‘TTeE3ep N) [ROSSSeIqnd
{(TTE3I®D N HU\&MW I p ‘Tp bT I p ‘O89S beT p)oaAlogosa

‘(1 ‘3sTbesTap ‘I- ‘TTe38p N) TeOSSSeTqnd
{(TTE39P N ‘Js bes 1 p ‘IJsTbT I p ‘09s beT p)osalogosa

f(T ‘Tep besTaTp ‘I- ‘TTe3ISP N) TeOSSSeTqnd

151

JTPUSH

‘bozqu/QQ0T* (SYOTLITUIW-]) UINISIT
£ (33 (*4EOELNI EOMYT)) I93unopsdourwIOI 19441900

3 p93uT

() aswtr3sh jut

{(SYOTIATUTWS (¥YADALINI ™ ADYYT)) I93UNODSOUBWIOFISJAISND

(
(T
(
(
T
(
(
(T
(
T
(
(
(
(
T
(
(
(
(
H
(
(
(
(
(
(
(
(
(
(
(

() IswTr3IEIS PTOA

ZbT03IA” T p)esagseTano
bT03A 1 P) @2agseTqno
TP_03A_I_p)oeaiseIqnd
JSTO3IA I p)osxgseTqnd
Sp 03IA” I p)osI1iseTqnd

)

)

)

)

)

zbTgan 1 p)esagseTqnod
1b~Q3A~ 1 p) @91 4seTgno
P_d3n_ I p)es1iserand
JST@3IAN I p)esxgseTqnd
9P d3IA I p)ea1gserqnd

zb~bes 1 p)esxjserqnd
1b~bes 1 p)esrjserqnd
1P bes 1 p)ssiiseTqno
Js"bes 1 p)esrgserqnd
sp bes I p)eariseTqnd
zbTpes 1 p)esrjserqnd
1b pes 1 p)ssiiseTqno

1P pes 1 p)osI1iseTqno
JsTpesT 1 p)esriserqnd
op pes I p)esagserqno

(gb™bT 17 Pp)°esaaseTqnd
Hw\wa\u\ﬁ 921 JseTqno
TP b1 I p)oariseTqnd
Js b1 1 p)esrjserqnd
Sp bT I p)ssrgserqno
Zb pT I p)esagseTqno
leﬁa Ip)osagseTqnd

TPT I p)os1iseIqnd
wm TPT I P)osIgseTqno
Sp PT I p)esrgserqnd
zbT0I 1 p)eoeaiseTqno
16701 1 p)os1gseTqnd
TP_0I_ I p)esajserqnd
ISTOI 1 P)osI1iserqno

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
|p 01 I p)eoaxjselqnd
ZbTaIrTaTp)esagseTqno
TbTaI 1 p)es1dseTand
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

TP a1 a1 p)esrgserqnd
3STQI_1_p)osIgserqnd
921 3seTINd

zbTgy I p)eosigseTqno
1bT gy 1 p)esagserqno

TP_8V_1_p)ed14serqnd
JST8Y 1 P)ooIiserqnd
9P 8Y I p)osrgserqnd
ZbT LY I p)esagseTqno
1bT LY I p)eaxgseTqnd
TP LY 1 p)eeagserqnd
ISTLY I P)osIiserqno
9P LY I p)esIgserqnd
zbT9n"1p)esxgseTqno
1bT9n" 1 p)esxgseTqnd
1P 9N I p)osrgseTqno
JsT9nT I p)osI1iseTqno
op 9N I p)esIrgserqnd

zbTgn 1 p)esiiseTqno
1b~gn 1 p)osagseTqno

1P Gn I p)osriseTqno
JsTGnTI p)osI1iseTqno
T9p Gn I p)eaxiseTqnd

zbTspg a1 p)esrgserqnd
TbTspa a1 p)esriseTqnd
JsTsbg 17 p)esagserqno

{

}
{
}

{

14t
4"
€Cl
ol
jxq8

1117

! (1p sbg 1 Tp)esagserqno

/
(112390 N
T ‘ea™p3e I P ‘T ‘TITNSEY P
_(T ‘1ATPISTITRP ‘1-
{(TTe3I9P N

{(TTe39p N ‘1I1TASHEY P

‘1aTp3e I P ‘peT P

N N e
‘€A PIe I P ‘PeT P

‘TLINSEY P) O9AATIQOSDA
‘TTe39p N) AdoogseTqno

‘TTe39p N) Tedssserqnd
‘TLINSHEY_P) O9AATAOSA
‘PIYTP VM P)OSAIOEOSA

\\

A

(T
B

A

i

i

.

i

n

i

/
(
(

/
(
(

(1

(1

(T

(T

(1

f(TTEe39P N

‘117ASHEY P ‘T ‘zlInsEd P ‘1

f(TTe38P N ‘ZITNSHAY P
{(TTe3sp N ‘TITASHY P
{(TTe39P N ‘TBTIA I P ‘3aTP

‘TIINSAE_P ‘T ‘ZlInsEd P ‘T
{(TTeISP N ‘zIINSHAY P
{(TTe3sp N ‘TLINSHEY P

{(TTeI9P N ‘TP 3N T P ‘a7 p

‘T1IOSEY P ‘T ‘zIInSEY P ‘T
‘(TTe3ISP N ‘Z1TNSHY P
f(TTR3ISP N ‘TIINSHAE P

{(TTe3dP N ‘IS N T p ‘3ap

‘TIINSEY P ‘T ‘Zlinsad p ‘T
(TTe3opP” N ‘ZII0nsEd P
(TTe3ep N ‘TII0SEY P

f(TTEe39P N

‘11IASHEY P ‘T ‘zlInsEd P ‘1

Nm|u> Ip ‘anap

‘TePTIATI P ‘34T

‘TIINSTEY P)O9AATIAOSA
‘1Te29p N) AdxegseTqno

‘ZbTaIn” 3P ‘dATP)99A100984
‘ZbT03ATITP ‘OATP)O2A10009A

‘TLINSEY P) O9AATIQOSDA
‘1Te29p N) AdxegseTqno

‘1bTQ3A_ 3 P ‘dATP)oeALI0dOeA
‘1bT03AT TP ‘OATP)©9AI00D9A

‘TIINSHY P) O9AAIQO9A
‘TTe39p N) AdxegseTqno

‘IP_Q3A_ITP ‘dATP)OSAL00DSA
‘TPT03IA T P ‘OATP)O9ALOADDA

‘11TASTd P) O9AATIQOSA
‘TTe39p N) AdxegseTqno

‘IsTAIN”ITP ‘dATP)29AL0008A
‘IST0IAT T P ‘OATP)D9AI0OSA

‘TITASHEY P) O9AATAOSA
‘1Te29p N) AdxXegseTqno

{(TTeI9P N ‘ZITASHEY P ‘190 _Q3A I P ‘dA°P)O9AL0009A
{(TTe3SP N ‘TITASHEY P ‘TS9P 034 T P ‘OA° P)O9A10029A
\\\\\h\\\\\\\\\\\\\\h\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
T ‘g0 TP ‘T ‘Zbonap ‘T ‘TTE3Sp N)Adxegserqno
T ‘ZbT03A TP ‘T ‘elTnsdEY P ‘T ‘TTe31Sp N) Adxesserqno
{(TTR3I9P N ‘£110SHY P ‘pa P ‘zbT0I” 1 p)osarogosa
(TTe3SP N ‘ZbT03ATI P ‘enP ‘ZbTAITaTP)O9AL0d0RA

T ‘1hT03A a7 p ‘1T ‘TbT9n ap ‘T ‘TTe3lsp N)Adxegserqno
T ‘1bT03A™aTP ‘T ‘€110SHY | P T ‘TTe39p N) Adxesserqno
{(TTe39P N ‘€1710SEY P ‘pa_p ‘1B 0I” 31 p)oeAarodosa
{(TTe39P N ‘TPT03ATITP ‘enTp ‘1Al I P)O9AIOAOSA

T ‘TP 03N T P ‘T ‘TP 9n I p ‘T ‘TTelsp N)Adxegserqno
T ‘TP703A™2°P ‘T ‘€lINSHEY P ‘T ‘TTe3spT N) Adxegserqno
{(TTeI9P N ‘€1TASHY P ‘pn_ P ‘TP _OI I P)O9AI0Q09A
{(TTe3SP N ‘TP 03A™ T P ‘e P ‘TP dI I P)OSALOdOSA

T ‘3sT0O3INIp ‘T ‘IsTonTaTp ‘T ‘TTe3ISp”N)Adxegserqnd
T /35703 TP ‘T ‘ElTINSTT P ‘T ‘TTe19p”N) Adxegserqno
{(TTe3ISP N ‘€1TASHEY P ‘PO P ‘IS OI I P)OSAIOQOSA
{(TTe3IsP N ‘IsT03A T P ‘en' P ‘IsTAI I P)O9AI0dOSA
‘TP 0IATZ P ‘T ‘Tep 9 aTp ‘T ‘TTelsp N)Adxegserqno
‘TSP 0N T P ‘T \qu:mmm\n ‘T ‘TTe3sp N) Adxesserqno
{(TTe39P N ‘€1TNSHEY P ‘pN P ‘T9p 0I I P)O9AL0023A
f(TTRISP N ‘TP 03A27P ‘€A™ P ‘18P dI” 17 P)29ALI0dReA
[0 L011707 0077777007707 070077777777777777007117777177
T ‘zb-a3nap ‘1 ‘zbgn I p \H \Hﬂmuwu N) AdxegseTqno
T ‘Zb anap ‘1 ‘€1INSTE P ‘T ‘TTe3ep N) Adxegserqno
{(TTe39P N ‘€1I0SHEY P ‘zn p ‘zb 01”3 p)osearodosa
{(TTe3I9P N ‘zbTaaATITP ‘InTp ‘zbTar 3T p)oeAlodcsa

T ‘Thanap ‘T ‘thgnap ‘1 \Hﬂmuwn\zv>axmmmmag:o
T ‘th aaa ap ‘T ‘erInsEd p ‘T Hamuwv "N) Adxegserqno
{(TTe39p N ‘€17I0SHY P ‘zn P ‘101 17 p)osarogoss
{(TTe3SP N ‘TP @3a™a p ‘1o P ‘1P Al I p)osAroaosa

T ‘TP_a3Ia_a"p ‘T ‘TpTen I p ‘T ‘rTe3sp N)Adxegserqno
T ‘TP aIa ITp ‘T ‘elInsEy p ‘T ‘TTe3sp N) Adxegserqno
{(TTe39pP N ‘e€lT0SHY P ‘zo P ‘TP _0OI_ I P)99A100dd9a
{(TTe3sp N ‘TP Q3A 1 P ‘TN P ‘IP AI I P)9O2AL10Q0SA

152

Tesla S1070 Manufacturer Data Sheet

The specifications illustrated in this section are borrowed from [91].

153

Configuration

Tesla S1070 GPU Computing System Specification

There are two configurations available (Table 1) for the Tesla S$1070 computing

system.

Table 1. System Configuration

Specification

Description

Ordering Part Numbers

920-20804-0001-000 (-500 configuration, Turnkey,
with standard HICs and external cables included)

920-20804-0002-000 (-500 configuration, A La
Carte, with no HICs and no cables so user can specify
accessories)

920-20804-0006-000 (-400 configuration, Turnkey,
with standard HICs and external cables included)

920-20804-0005-000 (-400 configuration, A La
Carte, 1.296 GHz peak clock with no HICs and no cables
so user can specify accessories)

GPU

T10 GPU

GPU Processor clock

-500 configuration: 1.44 GHz peak clock
-400 configuration: 1.296 GHz peak clock

GPU Memory clock

792 MHz

Memory configuration

16.0 GB total configured as 4.0 GB per GPU

Memory I/O

512-bit per GPU

System 1I/O

Two PCle connections. Each connection leads to two of
the four GPUs.

PCI Express cables

- A 0.5-meter cable is included in the “turnkey” kit
- A 2.0-meter cable is available but must be ordered
separately

154

Mechanical
Specification

System Chassis

The Tesla S1070 (Figure 4) uses a 1U form factor chassis and conforms to the EIA
310E specification for 19-inch 4-post racks with 900 mm to 1000 mm depth. The
chassis dimensions are 1.73 inches high X 17.5 inches wide X 28.5 inches deep.

Figure 4. System Chassis Drawing

155

Tesla S1070 GPU Computing System Specification

PCI Express Cable

The Tesla S1070 uses 0.5-meter PCI Express cables as the standard connection to
the host system(s). Figure 6 shows the dimensions of this cable and its connectors.
A 2.0-meter version of the cable is also available as a standalone accessory and uses
the same connectors as the 0.5-meter cable.

Note: For Figure 6 the dimensions are in millimeters unless otherwise labeled.

10125 | |
|
ﬁ I fi | Ti i i ol 104
JRY. J}H-:"Tr
999
7040
16.23
051030 M
B 2 T
34 © { 1 e
4300 [‘ ‘Ujjj ‘ Y =
l | 4 1 = | L =
2831

EM GASKET

Figure 6. PCI Express Cable (0.5 Meter)

The minimum bend radius is 38.7 mm for the PCI Express cable. Figure 7 shows
details of how this is measured relative to the I/O plate on the host interface card
and relative to the cable/connector interface.

156

Tesla S1070 GPU Computing System Specification

F|
N

]

13.00

CABLE GAGE 0
A. CAELE DIAMETER 8.6
B.| MINIMUM OUTER RADILIS 8.7
C.. FACEPLATE TO OUTER RADIUS 94

Figure 7. PCI Express Cable Minimum Bend Radius

Rails for Rack Mounting

The Tesla S1070 uses a pair of rails for mounting to a 4-post, EIA rack. The rails
can expand to fit a distance from 730 mm (28.74 inches) to 922 mm (36.3 inches)
for the inside dimension between the front and rear posts. See Figure 8 for the
exact dimension details.

Note: For Figure 8 the dimensions are in millimeters unless noted in square brackets
[xx.yy +/- zz] that indicate dimensions in inches.

157

Tesla S1070 GPU Computing System Specification

#10-32 tup\

— N
o O oo [e] \Qﬂ
°©o o o

72300 £5,00

[28465 £.196]
927.63 £3.00

Figure 8.

[36522 £.196 1]

Rail for Rack Mounting

158

Tesla S1070 GPU Computing System Specification

Environmental
Specifications

Table 2. Environmental Specifications and Conditions

Specifications Conditions
Operating Input Power 90 to 274 VAC
50 to 60 Hz

Temperature 10 °C to 35°C (50 °Fto 95 °F) at
sea level with an altitude derating of
1.0 °C per every 1000 ft.

Humidity 10 % to 80 % RH, 28 °C (82.4 °F)
maximum wet bulb temperature,
non-condensing

Altitude 0 to 5000 feet mean sea level (MSL)

Shock Half sine 40g, 2 ms duration

Vibration Sinusoidal 0.25g, 10 to 500 Hz, 3
axis. Random 1.0 Grms, 10 to 500 Hz

Acoustics TBD dBa at 1 meter in front of
system

Airflow 143 cfm maximum

Non-Operating Temperature -40 °C to 60 °C (-40 °F to 140 °F)

Humidity 10 % to 80 % RH, 38.7 °C (101.7
°F) maximum wet bulb temperature,
non-condensing

Altitude 0 to 10,000 feet mean sea level
(MSL) with maximum allowable rate
of altitude change of 2000 ft/min.

Shock Half-sine: 80G, 2ms

Trapezoidal: 40G, 150 in/sec

Vibration (random)

0.015-0.008G/Hz, 5-500 Hz, 10
minutes

159

Single Line Diagram of Test Systems

In this section the single-line diagram of the test systems used in this thesis are given. The
Scale 1 system is IEEEs New England test system which its complete data and load flow
results are also given in the PSS/E’s *.raw file format. Other test systems are made by

duplicating this system.

E.1 Scale1l

Gen8 @ Generator
Genl 37
S Transformer
30 T
s |

3 16
i 15 i 21 35
g 4 T 14 » :E
5
Genl0 6 li—/ T
Z JV 11 s 19 =

I‘O

T

S J1 T L

T el |
EEE

Figure E.1: Scale 1 system: 39 buses, 10 generators.

160

E.1.1 lLoad Data

Bus Pload Qload
Number (MW) (MVAR)
1, 0.000, 0.000
2, 0.000, 0.000
3, 322.000, 2.400
4, 500.000, 84.000
5, 0.000, -200.000
6, 0.000, 0.000
7, 233.800, 840.000
8, 522.000, 176.000
9, 0.000, 0.000
10, 0.000, 0.000
11, 0.000, 0.000
12, 8.500, 88.000
13, 0.000, 0.000
14, 0.000, 0.000
15, 320.000, 153.000
16, 329.400, 323.000
17, 0.000, 0.000
18, 158.000, 30.000
19, 0.000, 0.000
20, 680.000, 103.000
21, 274.000, 115.000
22, 0.000, 0.000
23, 247.500, 84.600
24, 308.600, -92.200
25, 224.000, 47.200
26, 139.000, 17.000
27, 281.000, 75.500
28, 206.000, 27.600
29, 283.500, 126.900
31, 9.200, 4.600
39, 1104.000, 250.000

0 / END OF LOAD DATA, BEGIN GENERATOR DATA

161

000c0°0
0000cC°0
0000cC°0
0000cC°0
0000cC°0
0000C°0
0000C°0
0000cC°0
0000cC°0
0000C°0
(nd)
90aIn0s¥x

‘00T00°0
‘00€00°0
‘98900°0
‘8920070
‘0619070
‘0¥T00°0
‘2220070
‘98€00°0
‘00L2Z0°0
‘0¥T00°0
(nd)
20anosy

VIVA HONVEd NIDHAd ‘YIVA YOILVIANHD A0 ANA / O

‘000°000T ‘000€0°T ‘000°000T- “‘000°00ST ‘ZOL"Z¥FE ‘LLLTTTIOT ‘6¢
‘000°000T ‘069z0°1T ‘000°00S5—- ‘000°008 ‘927861 ‘000°0€8 ‘8¢
‘000°000T ‘08LZ0"T ‘000°00S5—- ‘000°008 ‘6T0°2S ‘000°0%S ‘Le
‘000°000T ‘06¢€90°1 ‘000°00S5—- ‘000°008 ‘v¥8°G¥C ‘000096 ‘9¢
‘000°000T ‘0€670°T ‘000°00S—- ‘000°008 ‘6L8°LTIE ‘000069 ‘q¢
‘000°000T ‘0ezZ10°T ‘000°00c—- ‘000°00F ‘ToZ-SLT ‘000°80§G ‘ve
‘000°000T ‘0ZL66°0 ‘000°00S5—- ‘000°008 ‘168-¢gzt ‘000°2¢€9 ‘c¢
‘000°000T ‘0T€E86°0 ‘000°00S5—- ‘000°008 ‘86T°G9¢ ‘000°0G9 ‘z¢e
‘000°000T ‘00070 T ‘000°00S5—- ‘000°008 ‘9657068 ‘0€6°2LS ‘1¢
‘000°000T ‘06LF0"T ‘000°006—- “‘000°008 ‘7617912 ‘0007062 ‘0¢

(YAI) (nd) (IYAIN) (IYAIN) (IYAIN) (MW) IequmN

osedn PSYUDSA utTw)d Xeud usbpd usbg sng

'3jeq Jo3jeasusd TT'H

162

E.1.3 Branch Data

From Bus To Bus Line R Line X Charging
Number Number (pu) (pu) (pu)
1, 2, 0.00350, 0.04110, 0.69870
1, 39, 0.00100, 0.02500, 0.75000
2, 3, 0.00130, 0.01510, 0.25720
2, 25, 0.00700, 0.00860, 0.14600
3, 4, 0.00130, 0.02130, 0.22140
3, 18, 0.00110, 0.01330, 0.21380
4, 5, 0.00080, 0.01280, 0.13420
4, 14, 0.00080, 0.01290, 0.13820
5, 6, 0.00020, 0.00260, 0.04340
5, 8, 0.00080, 0.01120, 0.14760
6, 7, 0.00060, 0.00920, 0.11300
6, 11, 0.00070, 0.00820, 0.13890
7, 8, 0.00040, 0.00460, 0.07800
8, 9, 0.00230, 0.03630, 0.38040
9, 39, 0.00100, 0.02500, 1.20000
10, 11, 0.00040, 0.00430, 0.07290
10, 13, 0.00040, 0.00430, 0.07290
13, 14, 0.00090, 0.01010, 0.17230
14, 15, 0.00180, 0.02170, 0.36600
15, 16, 0.00090, 0.00940, 0.17100
le, 17, 0.00070, 0.00890, 0.13420
leo, 19, 0.00160, 0.01950, 0.30400
le, 21, 0.00080, 0.01350, 0.25480
le, 24, 0.00030, 0.00590, 0.06800
17, 18, 0.00070, 0.00820, 0.13190
17, 27, 0.00130, 0.01730, 0.32160
21, 22, 0.00080, 0.01400, 0.25650
22, 23, 0.00060, 0.00960, 0.18460
23, 24, 0.00220, 0.03500, 0.36100
25, 26, 0.00320, 0.03230, 0.51300
26, 27, 0.00140, 0.01470, 0.23960
26, 28, 0.00430, 0.04740, 0.78020
26, 29, 0.00570, 0.06250, 1.02900
28, 29, 0.00140, 0.01510, 0.24900
0 / END OF BRANCH DATA, BEGIN TRANSFORMER DATA
E.14 Transformer Data
From Bus To Bus Specified R Specified X Winding
Number Number (pu) (pu) (MVA)
2, 30, 0.00000, 0.01810, 100.00
6, 31, 0.00000, 0.02500, 100.00
10, 32, 0.00000, 0.02000, 100.00
11, 12, 0.00160, 0.04350, 100.00
12, 13, 0.00160, 0.04350, 100.00
19, 20, 0.00070, 0.01380, 100.00
19, 33, 0.00070, 0.01420, 100.00
20, 34, 0.00090, 0.01800, 100.00
22, 35, 0.00000, 0.01430, 100.00
23, 36, 0.00050, 0.02720, 100.00
25, 37, 0.00060, 0.02320, 100.00
29, 38, 0.00080, 0.01560, 100.00
0 / END OF TRANSFORMER DATA

163

E.1.5 Load-Flow Results

Bus Voltage Angle
Number Code G-Shunt B-Shunt (pu) (deqg)
1, 1, 0.000, 0.000, 1.03297, -9.3761
2, 1, 0.000, 0.000, 1.01107, -6.5836
3, 1, 0.000, 0.000, 0.97373, -9.6291
4, 1, 0.000, 0.000, 0.93270, -10.4775
5, 1, 0.000, 0.000, 0.91852, -9.0155
6, 1, 0.000, 0.000, 0.91880, -8.1528
7, 1, 0.000, 0.000, 0.86315, -10.6842
8, 1, 0.000, 0.000, 0.88084, -11.4079
9, 1, 0.000, 0.000, 0.98072, -11.2091
10, 1, 0.000, 0.000, 0.93851, -5.4052
11, 1, 0.000, 0.000, 0.93050, -6.3356
12, 1, 0.000, 0.000, 0.91230, -6.3741
13, 1, 0.000, 0.000, 0.93620, -6.2589
14, 1, 0.000, 0.000, 0.93615, -8.2553
15, 1, 0.000, 0.000, 0.93910, -8.7854
le, 1, 0.000, 0.000, 0.95674, -7.1671
17, 1, 0.000, 0.000, 0.96640, -8.3608
18, 1, 0.000, 0.000, 0.96767, -9.3332
19, 1, 0.000, 0.000, 0.97919, -1.8354
20, 1, 0.000, 0.000, 0.98066, -3.2817
21, 1, 0.000, 0.000, 0.97306, -4.4866
22, 1, 0.000, 0.000, 1.00987, 0.3478
23, 1, 0.000, 0.000, 1.00805, 0.1165
24, 1, 0.000, 0.000, 0.96783, -7.0433
25, 1, 0.000, 0.000, 1.02018, -5.1214
26, 1, 0.000, 0.000, 1.00002, -6.3872
27, 1, 0.000, 0.000, 0.97808, -8.5778
28, 1, 0.000, 0.000, 1.00181, -2.5385
29, 1, 0.000, 0.000, 1.00379, 0.4750
30, 2, 0.000, 0.000, 1.04750, -4.1349
31, 2, 0.000, 0.000, 1.04000, 0.3286
32, 2, 0.000, 0.000, 0.98310, 2.6947
33, 2, 0.000, 0.000, 0.99720, 3.3869
34, 2, 0.000, 0.000, 1.01230, 1.9120
35, 2, 0.000, 0.000, 1.04930, 5.3801
36, 2, 0.000, 0.000, 1.06350, 8.2185
37, 2, 0.000, 0.000, 1.02780, 1.7236
38, 2, 0.000, 0.000, 1.02650, 7.6230
39, 3, 0.000, 0.000, 1.03000, -10.9600

164

E.2 Scale?2

T

| g,l
it
nL“r“
1
s

1 IO
1

|
1

Figure E.2: Scale 2 system: 78 buses, 20 generators.

165

E.3 Scale4

Figure E.3: Scale 4 system: 156 buses, 40 generators.

166

E.4 Scale8

e

s

- |t

Figure E.4: Scale 8 system: 312 buses, 80 generators.

—

167

E.5 Scale 16

160 generators.

Figure E.5: Scale 16 system: 624 buses,

168

H 'E ,F. gl

L

E.6 Scale 32

eaite ot 2t

b Lok
-.-
.i...._....
e

desie

ators.

320 gener

Figure E.6: Scale 32 system: 1248 buses,

169

Scale 64

E.7

el PR CpiE CRERS TR R R B
ﬁﬁﬁﬁ:ﬂaﬂﬁﬁﬁﬁﬁﬁﬁmﬁﬁ!&mﬁﬁﬁﬂH.E...H.

E.8 Scale 128

Figure E.8: Scale 128 system: 4992 buses, 1280 generators.

171

E.9 Scale 180

1y

Figure E.9: Scale 180 system: 7020 buses, 1800 generators.

172

