
 

 

 

An Integrated Framework for Balancing Contractor’s Workload versus Capacity using System 

Dynamics 

 

by 

 

Ahmed Abdelrady Okasha Mohamed Elnady 

  

  

 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

 

 

Doctor of Philosophy 

 

in 

 

Construction Engineering and Management 

 

 

 

 

 

Department of Civil and Environmental Engineering 

University of Alberta 

 

 

 

 

 

 

 

  

 

 

© Ahmed Abdelrady Okasha Mohamed Elnady, 2023 
 



ii 

 

ABSTRACT  

Workload fluctuation is one of the major challenges facing contracting (project-based) 

organizations because of the rational decision-making model applied to manage it in current 

practice. The rational model balances the workload with the capacity required at the level of 

activity, ignoring the influence of other factors. It also fails to consider the nondeterministic nature 

of these factors. Hence, there is a need for a decision support system that considers holistically the 

factors influencing workload fluctuation, their interactions, and their nondeterministic nature. 

Although the system dynamics approach is capable of filling the previously mentioned gaps, 

previous studies in this area have overlooked the organization-to-industry relationship. One of the 

important aspects of this relationship is industry demand. Previous studies have typically focused 

on predicting the organization's demand, which is not representative of industry demand. While 

some studies have endeavored to project industry demand by monitoring economic and political 

variables, these variables are very difficult to track. Hence, there is a need to accurately predict 

industry demand and integrate its characteristics with a robust decision support system. 

To fill these gaps, the present study pursues three objectives. The first is to comprehensively 

identify the factors affecting workload fluctuation in project-based organizations. The second is to 

identify the characteristics of industry demand in construction and devise a method for predicting 

future demand. The third is to develop an integrated dynamic model that considers the inherent 

uncertainties of, and interactions among, variables. 

To achieve these objectives, a multi-step approach is applied. First, a systematic literature review 

is conducted to identify the factors affecting the contractor’s workload, and these factors are 

analyzed using relative usage index and social network analysis. Second, the number of building 
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permits issued is used as the metric to represent construction industry demand. It is analyzed using 

statistical tools to measure its characteristics such as mean, range, variability, and distribution. 

Also, the future demand is predicted using various machine learning algorithms such as neural 

network, Facebook prophet, and gaussian with kernels. Third, the system dynamics approach is 

applied to link the identified factors with demand features. The proposed model is analyzed using 

social network and sensitivity analysis by applying Monte Carlo simulation and other statistical 

tools. 

The results reveal a gap with respect to the factors used by the expert mental model in managing 

the organization’s workload and by the dynamic decision support model that is typically employed. 

For instance, the cycle of owner bid selection, holistic integration, and the effect of both on 

organizational performance have received relatively little attention considering their importance. 

Another notable finding is that industry demand behaviour is found to be cyclic and stable and 

thus can be considered a low- to medium-variability market condition. Seasonality, on the other 

hand, it found to have a significant effect on demand. Moreover, the results demonstrate that the 

cyclical structure of historical data can be leveraged to predict future demand with an average error 

of 10% for stationary, normally distributed and corelated data type, although the error ranges from 

7% to 30% in a few cases for this type of data. Finally, the analysis of the integrated model reveals 

a tight structure in which one variable variation propagates easily and rapidly to other factors. The 

hub of these propagations is workload, as it is closely connected to the causes and effects of 

variations, either directly or indirectly through one or more variables. Hence, the analysis provides 

an influence matrix for workload fluctuations.  



iv 

 

This research contributes to the body of knowledge in several respects by providing a robust 

decision support system. First, it takes into consideration the significant causal factors affecting an 

organization's performance that are often overlooked in existing approaches. Moreover, the 

organization-to-industry relationship that is overlooked in existing approaches is considered in this 

model. Finally, this model considers the nondeterministic characteristics of the factors influencing 

management decisions. 
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CHAPTER 1 INTRODUCTION 

1.1 BACKGROUND 

The construction sector is subject to market fluctuations that may alter the way construction 

projects are approached. Globally, significant levels of economic uncertainty exist, and the 

construction industry is substantially more volatile than other sectors of the economy (Ribeirinho 

et al. 2020). This volatility directly affects contracting organizations, since they rely on a 

continuous supply of projects in order to make a profit. Due to this dependency on a steady supply 

of projects, construction contracting organizations are considered project-based organizations 

(PBOs). In terms of organizational structure, PBOs must create a temporary system for managing 

the activities of each given project to ensure project success (Turner, R. and Miterev 2019, 487-

498). 

Market features such as high unpredictability and cyclicality affect a PBO's long-term plans. 

Moreover, due to the inherent uncertainty of the internal and external environments, the long-term 

plans developed often perform poorly in terms of the outcomes yielded (Wolf and Floyd 2017, 

1754-1788). Another factor that adds to uncertainty in long-term planning has to do with the 

deficiencies of the management models traditionally used in strategic planning. The main 

assumption of such models is that, if elements are understood, then the project/program/portfolio 

can be controlled. However, experience suggests that the interrelationships among elements are 

more complex than what is reflected in the traditional work breakdown structures of project 

networks (Wang, Lin, Kunc, and Bai 2017, 341-352). 

Several studies have endeavored to enhance the planning process and address operational-level 

performance issues by seeking a local optimum solution (i.e., at the project level) (Killen et al. 

2012, 525-538). However, such solutions typically focus on project performance and do not 

consider the effect one project may have on other projects operated by the same contractor 

(Martinsuo 2013, 794-803). Such an approach can have a “butterfly effect” with long-term, often 

adverse, implications (Mahdavi et al. 2019, 1200-1217). In specific, such a static, one-dimensional 

approach is not capable of representing the dynamic complexities of the business and market 

landscape (Cosenz 2017, 57-80), and focuses on the logical top-down structural characteristics of 
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strategy that overlook the underlying practices generated by the strategy, as well as how these 

practices may affect the implementation of the strategy (Clegg et al. 2018, 762-772). 

Many theories have been proposed for strategic management, such as the Resource-Based View 

(RBV) (Killen et al. 2012, 525-538). RBV, which is considered the foundational and most popular 

theory for addressing the inherent challenges of strategic planning in construction contracting, 

proceeds from the premise that competing organizations' resources and competencies are not 

uniform. This concept of heterogeneity is used to explain variances in organizational success. RBV 

theory also considers that intangible resources (e.g., patents, trademarks, reputation, experience, 

practices) are more likely than material ones to provide a competitive advantage. 

The successful application of RBV theory, though, requires relative stability of both the 

organization and the external environment. In this context, Dynamic Capabilities (DC) theory 

endeavors to build on RBV and fill this gap by defining a set of organizational capabilities and 

systematic procedures or operational routines that enable businesses to successfully adjust to 

dynamic changes in the environment in which they compete. 

DC theory cannot provide value as a standalone approach, though, as the existing resource base 

must be reconfigured to obtain value. In this regard, Absorptive Capacity (AC) theory seeks to 

build on the foundation of RBV and DC while addressing this shortcoming. The key to AC theory 

is the notion that the internal process of learning from previous experience and present activities 

strengthens the imperative to acquire information from the external environment. Broadly 

speaking, AC theory can be understood as a holistic perspective that considers an organization’s 

dynamic capacity as something inextricably linked to its systems, processes, and structures (Killen 

et al. 2012, 525-538). This perspective requires an approach capable of holistically addressing the 

systems and facilitating the analysis and understanding of the emergent behaviours from the linked 

structures and accumulation of effects. Emergent behaviours can be considered the huge 

consequences from the simple rules governing the system, i.e., the whole is not equal to the sum 

of its parts (Checkland 1999, 45-56). The analysis and understanding of this behaviour can be 

achieved by the system dynamics (SD) approach. 

The SD approach allows for the holistic study of PBOs. SD links core cause-and-effect interactions 

among key business variables to gain understanding of how a company operates and what may be 
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the keys to its future success (Kenefic 2020). In recent years, the SD approach has been integrated 

with strategic management to support the PBO framework, given its effectiveness in promoting 

strategic learning, facilitating decision-making, and enhancing performance based on a systemic 

perspective (Cosenz 2017, 57-80). A notable deficiency of this approach, though, is that selecting 

model boundaries by focusing on the project may isolate the internal dynamics of the project from 

the organization and external dynamics related to the market. 

1.2 PROBLEM STATEMENT 

For PBOs, strategic planning is inherently challenging due to the influence of stochastic workload 

fluctuations. Many factors, such as market conditions, owners’ decisions and priorities, project 

characteristics, and contractors’ business models, shape these fluctuations. In turn, the uncertainty 

tied to such factors limits the strategic planner’s ability to develop a reliable long-term plan. 

Moreover, operating multiple projects simultaneously makes it particularly challenging for a PBO 

to manage its workload and resources. In addressing these issues, previous studies have tended to 

focus on just one perspective and apply it at the project level. Hence, the primary gap in the body 

of knowledge is the distinct lack of research identifying and analyzing the variables affecting the 

PBO’s workload cycle. Also, there is a gap with respect to the factors used by the expert mental 

model in managing the organization’s workload and by the dynamic decision support model that 

is typically employed  

One of these factors is market variation. Strategic planners tend to attribute the unreliability of 

long-term plans to market dynamics (e.g., volatile demand), which increase uncertainty in the 

organization's upstream operations and make it difficult to maintain a stable workforce or a 

balanced workload. In such circumstances, monitoring the economic variables (e.g., oil prices, 

inflation rates, raw material prices) and using projections to shape expectations of future demand 

is the most common approach. However, tracking and predicting all economic variables is an 

extremely difficult process, particularly when there is not sufficient data available. Hence, the 

second gap identified is the need for a reliable method of predicting demand that considers 

economic variability, is precise, and that delivers critical information to planners to aid in planning 

and decision making. 
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Contractors make strategic decisions to adapt to local dynamics, and they are able to do so with a 

reasonable amount of confidence. However, they often fail to account for what unforeseen 

circumstances may emerge from the complicated linkages among known local behaviours. The 

cumulative and delayed effect of their decisions is not considered, nor is the interaction with the 

organization’s structure, or how behaviour dynamics may deviate from the optimum behaviour, 

accounted for. Hence, the third gap identified is the lack of support systems and holistic analysis 

that could aid PBOs in enhancing their decision-making and better understanding the holistic effect 

of their decisions. 

1.3 RESEARCH OBJECTIVES 

The overall research goal is to gain understanding of workload fluctuations and the effect of 

interacting dynamic factors on PBOs at the organizational level. Toward this goal, the following 

research objectives are pursued:  

• identify the factors affecting workload fluctuations in PBOs (Chapter 3); 

• extract the characteristics and devise a method for predicting future demand with an 

acceptable level of error (Chapter 4); and 

• build an SD model that supports strategic decision making by analyzing workload and the 

strategic factors influencing PBOs (Chapters 5–7). 

1.4 RESEARCH METHODS 

In this research, a multistep approach is adopted to define and achieve the objectives, as shown in 

Figure 1.1. A review of the literature in the area of project planning and control is conducted by 

drawing upon source material from various databases, such as Scopus, Google Scholar, and Web 

of Science. The literature review consists of a series of iterations of identifying preliminary gaps 

and searching for their solutions in order to definitively identify the gaps in the current body of 

knowledge that have yet to be addressed. Based on the literature review and as noted in Section 

1.2 above, the gaps identified are (1) the lack of research identifying the variables affecting the 

PBO workload cycle; (2) the need for a method of predicting demand that considers economic 

variability, is precise, and that delivers critical information to aid planners in planning and decision 

making; and (3) the lack of support systems and holistic analysis that could aid managers in 

enhancing their decision making and in better understanding the holistic effect of their decisions. 
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To fill these gaps, first, a systematic literature review of the available body of knowledge is 

conducted. A comprehensive list of dynamic factors is identified accordingly. Analysis of these 

factors using both a conventional approach and social network analysis (SNA) is conducted. The 

purpose of the conventional analysis is to define the gap in the frequency of modelling the dynamic 

factors and their identifications in the literature. While the purpose of SNA is to define the gap 

between the expert mental models used to link these variables and the dynamic models applied to 

support the decision makers. The relations among the factors identified are then used as the basis 

for proposing a conceptual framework linking these variables. 

Second, market variations are investigated, where the key metric is the monthly number of building 

permits issued for different provinces, and the case jurisdiction considered in Canada, the data 

used having been obtained from Statistics Canada (https://www150.statcan.gc.ca/). The data are 

explored and cleaned from duplication, entry errors, and missing values using Python codes. This 

analysis is performed to extract the construction industry demand features, such as range, 

variability, mean, and distribution. Then, various statistical and machine-learning algorithms are 

applied in devising a method to predict future demand. 

Finally, an SD model is built using the variables identified. The developed model is validated using 

the soft data available, consideration of extreme-case scenarios, and reality checks of the behaviour 

of the variables. Moreover, sensitivity analysis is performed to identify areas of future investment 

that contracting organizations should consider. The research methods employed are described in a 

detailed step-by-step manner in chapters three, four, and five. 

https://www150.statcan.gc.ca/
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Figure 1.1 Research methods 

1.5 .CONTRIBUTIONS 

1.5.1 Academic contributions: 

• This study develops a decision support system that links the dynamics of project, 

organization, and market, which are typically considered separately in a piecemeal and 

fragmented manner in existing approaches. This aids decision-makers in taking into 

account the nondeterministic nature of variables and thereby enhances the reliability of 

decisions. 

• This study provides a comprehensive list of factors affecting workload fluctuation at the 

organizational level, linking together previously disparate knowledge sources and niche 

research topics such as project management, contractor selection, and portfolio 

optimization. This enhances knowledge management and provides a point of departure for 

future research in this area by defining the problem boundaries holistically. 

• This study provides a simple representation of unconstrained demand that considers the 

variability of economic and political factors. As such, it aids in the understanding of the 

characteristics of demand, the assessment of demand fluctuations, and the prediction of 

future demand. 
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• This study provides a list of significant factors influencing organizational performance, as 

well as an influence matrix for workload fluctuation. This assists scholars to define the 

optimum strategic boundaries in order to enhance workload management decisions. 

1.5.2 Contributions to industry practice: 

• This study provides tools to aid contractors in strategic decision making to achieve stable 

resource management at the level of the organization. 

• This study aids contractors in better understanding what overall behaviours may emerge 

from the complicated linkages among known local behaviours. 

• This study allows contractors to better understand demand fluctuations and their 

characteristics to support them in market-related decision making. 

1.6 THESIS ORGANIZATION 

Chapter 1 presents a concise overview and background of the research problem addressed in this 

thesis. The research goal and objectives to be achieved, as well as the expected contributions, are 

also discussed. 

Chapter 2 presents a review of the literature on the topic of project planning and control. The key 

findings of the literature review discussed in this chapter are the lack of attention given to workload 

(scope) management in the current body of knowledge, the mismatch between traditional planning 

tools and the PBO business model, and the need for an SD application to enhance strategic 

planning on the part of PBOs. 

The gaps in the body of knowledge having been identified in Chapter 2, Chapter 3 presents the 

detailed literature review conducted specifically for the purpose of identifying the key factors 

affecting the workload fluctuations PBOs face. The SD approach is discussed in general terms, 

and an analysis of the identified factors is presented. Both conventional and SNA methods are 

employed in the analysis in order to define the gap between expert mental models in the analysis 

of workload fluctuations and the dynamic models developed to model workload variations. 

Chapter 4 presents the analysis of market fluctuations in the construction industry, where market 

fluctuations are represented via a univariant time series of building permits issued, and the analysis 

is performed using qualitative and quantitative statistical tests. Statistical and machine-learning 
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algorithms are used to devise a method of predicting future demand and thereby reduce uncertainty 

in strategic planning. 

Chapter 5 describes the development of a conceptual SD model, including the dynamic hypothesis 

and assumptions underlying the development of the model. 

Chapter 6 describes in detail the computerized SD model developed to represent a PBO’s business 

model. It presents the hard relations between activities and workflow, as well as the soft logic 

embedded in the model’s decision rules. 

Chapter 7 presents the analysis of the conceptual and computerized models using SNA and 

sensitivity analysis. It describes how the assessment of the variables based on their positions in the 

network structure is achieved using SNA, as well as how the sensitivity analysis is performed using 

three different methods: screening, ANOVA, and linear regression. Finally, analysis of 

organization performance and policy selection is performed.  

Chapter 8 presents the conclusions and limitations of this study, as well as recommendations for 

future work in this area. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 INTRODUCTION 

Project-based organizations (PBOs), as mentioned earlier, rely on a continuous supply of projects 

to make a profit from their successful delivery. Each project is unique because of its features and 

its special nature which can be summarized according to (Zhu and Mostafavi 2014a, 0): 

• Construction projects include highly dynamic processes, such as hiring and training, that 

are unfolded during the project.  

• Construction projects are composed of multiple feedback processes, such as hiring 

resources that affect the subsystem of work execution, the organization's financial system, 

and the competitiveness in the market. 

• Construction projects contain nonlinear relationships, i.e., increasing for example the 

productivity to double does not guarantee the excepted work is doubled too. 

• Construction projects consist of both "hard" and "soft" data. 

The interactions among those properties give rise to different behaviors, which attract researchers’ 

attention. Some research classified them into intended and unintended behaviors related to cost, 

time, quality, environment, and safety (Zou, Zhang, and Wang 2006). Other studies categorized 

them into technological, political, economic, social, environmental, and legal (Rastogi and Trivedi 

2016).  

The unintended behaviors of construction projects negatively impact the schedule and budget 

(Love et al. 2002, 425-436). Incorporating these effects in the plan under contingency reduces the 

competitiveness of the company because it is highly affected by the project scale (Moshood et al. 

2020, 100064). This dilemma makes construction projects suffer from imperfect symptoms, 

despite the great efforts of researchers.  

The area of planning and control in construction projects has received attention from previous 

studies and the application of various state-of-the-art tools, such as artificial intelligence (AI) and 

applications of computer vision (Darko et al. 2020, 103081), building information modeling (BIM) 

in construction management and performance analysis (Sacks, Girolami, and Brilakis 2020, 
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100011), risk internally such as uncertainties within the project itself and externally such as 

environmental risk (Yaseen et al. 2020, 1514). 

Applications of AI tools in general require a huge amount of clean data to train the model and 

achieve a reasonable error margin. This amount of data might not be available for various 

problems. In such cases an approach that allows the usage of soft or qualitative data is required. 

Visualization tools help designers and planners to reduce errors by visualizing the output of each 

process. This process enhances the communication of various stakeholders and provides data for 

further analysis. This approach requires to be integration with other decision support systems to 

provide the management team with required alternative decisions. 

To fully understand the project planning symptoms and map the tools utilized in this process, this 

chapter systematically reviews construction planning and control. It collects the used tools, 

dimensions of interest, and potential for future research in construction planning and control. This 

chapter focuses on the period from 2000 to the end of 2019 to collect available studies by utilizing 

a clearly defined methodology mentioned in the next section. This is specific period is chosen 4to 

capture the full picture of tools' evolution and ensure continuity of knowledge.  

2.2 LITERATURE REVIEW METHODOLOGY 

The review process was divided into two rounds. The first round focused on construction planning 

and control. Results from this round reveal the need to have a holistic methodology to deal with 

construction projects, which will be discussed later in detail. Hence, a second round of searching 

for a holistic approach was initiated. The second round of review searched for SD as a 

methodology that fulfills this need. Figure 2.1 represents the research methodology which consists 

of: 

1. Searching Scopus, Web of Science, IEEE Xplore, ScienceDirect, ASCE, JSTOR, and 

Google Scholar to ensure reaching the largest related published articles. 

2. Selecting journals in the Engineering domain related to the topic of research, as well as 

other journals with more than five related articles. 

3. Selecting keywords related to the topic of research to be: “construction+ projects + 

planning + control + system + dynamics” 
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4. Limiting the time frame between 2000–2019 

5. Limiting the type of published articles to be “Review papers”, and “Article”. 

6. Limiting the type of publication to published, not in progress. 

7. Reviewing the abstract and conclusion of all articles to select the most relevant articles. 

8. Ensuring that content is related to Construction planning and control, in addition to System 

dynamics applications in construction projects with a model and case applied. 

9. Analyzing the body, structure, methodology, tools used, and sample project applied in 

selected articles 

 

Figure 2.1 Literature review methodology 

This methodology was applied in rounds, as mentioned above. The first round was for the 

keywords “construction+ projects + planning + control” with the time frame “2000–2019”. In this 

round, review papers on the topic were reviewed. Then, research results were refined by type 

“Article”. This led to articles related to the topic of research. The same methodology was applied 

again for the keywords “construction+ projects + system + dynamics” with bounded time “2010–

2019” because search results with time frame “2000–2020” revealed multiple reviews papers of 
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SD till 2015. The number of articles resulting from the search with keywords “planning + control” 

was 728 articles, which were filtered by hand to 135 relevant articles based on the criteria 

mentioned earlier. While, the number of articles that resulted from the search with keywords 

“system + dynamics” was 529 articles, which were filtered by hand to 112 relevant articles. All 

these articles were thoroughly reviewed and will be discussed in the following sections. 

2.3 CONSTRUCTION PROJECT PLANNING AND WORKLOAD 

Meta-analysis of the 135 selected articles revealed that construction planning and control has 

received increasing attention in the past two decades, as shown in Figure 2.2, and this attention is 

increasing. The list of the articles used in this analysis is mentioned in Appendix I   

 

Figure 2.2Distribution of construction planning and control in the past two decades 

According to the Project Management Body of Knowledge (PMBOK), time, risk, scope, human 

resources, integration, quality, communications, cost, and procurement analysis are all important 

knowledge areas for project success  (PMI 2017). Their relative importance is different by the goal 

of measure (Zwikael 2009, 94-103). Table 2.1 shows the knowledge areas with different rankings 

relative to their extent of use, contribution to project success, and the construction industry. 

Interestingly, the integration knowledge area represents the number one ranking in the extent of 

use and the construction industry, yet Figure 2.3 shows that the integration knowledge area is not 

receiving the appropriate attention. Unfortunately, the scope is ranked the last important 
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knowledge area in the construction industry (shown in Table 2.1) and from the academic 

perspective (shown in Figure 2.3).  

Table 2.1  Ranking of the knowledge areas based on relative importance (Zwikael 2009, 94-103) 

Knowledge Area Extent of Use 
Contribution to 

Project Success 

Construction and 

Engineering 

Integration 1 5 1 

Time 2 1 7 

Scope 3 3 9 

Human Resource 4 4 3 

Cost 5 8 2 

Risk 6 2 4 

Quality 7 6 6 

Communication 8 7 5 

Procurement 9 9 8 

However, the time knowledge area is ranked the 7th for the construction industry (Table 2.1), and 

it received the highest attention from the previous studies (Figure 2.3). This might be because the 

research focused on project success, which agrees with the PMBOK analysis shown in Table 2.1 

(ranked the most important knowledge area for project success) (Zwikael 2009, 94-103). 

Comparing Table 2.1 and Figure 2.3 shows that cost is ranked as the second most important 

knowledge area in the construction industry. Quality, human resources, risk, communications, 

quality, and communication knowledge areas are the next successively studied factors, as 

presented in Figure 2.3. 

 

Figure 2.3 Knowledge areas of planning and control according to PMBOK from 2000–2019 

Time 34%

Cost 20%

Risk 13%

Quality 13%

Human resources 8%

Procurement 5%

Communications 5%

Integration 1%

Scope 1%
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The PMBOK Guide comprehensively describes project planning from the standpoint of several 

knowledge domains. The planning processes are divided into two categories: basic (fundamentals) 

processes and supporting processes. The primary activities are scope identification, task 

identification, resource prediction, resource allocation, tasks’ relations, calculating the task’s 

length, estimating the activity’s cost, schedule preparation, project budgeting, and the creation of 

various plans. The project plans, which are the result of these procedures, are input to the process 

execution (Turner, J. R. 2009), (PMBOK guide). 

The domination of the classical delivery technique of Design-Bid-Build (DBB), makes the starting 

of the execution phase preceded by phases where the scope of the project is fully defined  

(Shrestha, P. P. et al. 2007, 17-25). Hence during the project, the scope is fixed, and any change 

to it is defined as a symptom (Yu, Shen, and Shi 2017). Researchers in construction projects define 

changes of scope as change management and include it under the risk knowledge area, i.e. negative 

risks impact the project. This delivery method is not efficiently compatible with the increasing 

complexity and size of projects, in addition to the increasing demand for fast delivery and 

parallelism of project phases (Xue 2020). While in Design-Build (DB) delivery method and Turn 

Key, the scope is not well defined; the contractor starts the project with a conceptual design. It has 

a single point of responsibility and could improve performance but it lacks industry interest  

(Alleman and Tran 2020). Hence in DB projects, the overall performance is more influenced by 

design-builder contractors, i.e., prime contractors (Gransberg and Molenaar 2004, 162). That 

increases the need for modification of researchers’ perspectives from the traditional view of 

construction projects that have a well-defined scope. 

There are two important issues related to the delivery method of a construction project, 

procurement, and communication. In DBB, contractors seek to start projects with a definite 

quantity and delivery time contract with the supplier. These efforts to eliminate uncertainties with 

a fully defined project and almost fully known work steps lead to successful projects. However, 

these efforts are becoming sources of complexity and risk in the DB delivery method. However, 

DB overcomes the communication cons in DBB but DB as a delivery method still has cons 

(Alleman and Tran 2020). In addition, it stresses the need for integration of all the knowledge areas 

to have a successfully delivered project, which is mentioned as an area for improvement in the 

discussion of the integration knowledge area. 
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Integration, as mentioned earlier, appears at the lower level of researchers’ attention by 1%. To be 

even-handed, this percentage depicts the full integration of the knowledge areas, and if we consider 

the partial integration of the knowledge areas, this percentage will increase to 74%. Full integration 

means all knowledge areas are covered in the research, while partial integration means that 

research focuses on specific knowledge areas. The partial integration of two knowledge areas is 

performed in 38.5% of studies. While the partial integration of five knowledge areas is performed 

in 5.2% of the articles reviewed. The partial integration details are shown in Figure 2.4.  

 

Figure 2.4 Partial integration of knowledge areas from 2000–2019 

2.3.1 Clustering of tools used from 2000–2020  

It is very important to enhance the control process in the execution phase to meet the plan. This 

concept implicitly assumed that the plan is flawless and the errors in execution to meet the plan 

can be handled through the thermostat theory. This principle is rooted in the philosophy of 

PMBOK, which makes a feedback loop connecting planning, execution, controlling, and re-

planning again  (Koskela and Howell 2002, 293-302). The domination of the management as 

planned theory, (Johnston and Brennan 1996, 367-384), and the design-bid-build delivery method 

drive research to apply various tools to control the project execution.  

For the last two decades, the researchers used various tools in the planning and control of 

construction projects, which appear in the 135 articles surveyed. These tools are clustered into 

three general categories: traditional 45.39%, mathematical/statistical tools 33.69%, and artificial 

intelligence (AI) 20.92%. Samples of these tools are presented in Table 2.2. The most frequently 

used tool is earned value management (EVM), which is time and cost-oriented. EVM compares 

planned and actual quantities (Kim, B. 2015, 04014077). The project workload is cut down into 

time-based pieces with assigned budgets; aggregating the separate pieces results in total elapsed 

2 Knowledge areas (38.5%) 3 Knowledge areas (21.5%)

4 Knowledge areas (8.8%) 5 Knowledge areas (5.1%)
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time and cost (Christensen 1998, 1-16). Despite the wide use of this tool, researchers have 

described weaknesses and efforts to overcome its limitations. For example, control charts are used 

with EVM to determine adequate levels of divergence from the plan (Votto, Lee Ho, and 

Berssaneti 2020, 04020001), and the last planner system (LPS) is used to assess plan accuracy, 

and with a dynamic threshold can overcome the fake alarms of risk signals (Kim 2015, 04014077). 

Besides, different tools are used with EVM to enhance its ability to measure risks in modern 

complex projects (Ibrahim, Thorpe, and Mahmood 2019), (Nadafi, Moosavirad, and Ariafar 2019), 

and predict a realistic production rate with consideration of ripple effects (Lee 2015, 222-232).  

Table 2.2 Clustering of planning and control tools 

Traditional 

Tools 
Resource 

Artificial 

Intelligent 

Tools 

Resource 
Mathematical/ 

Statistical Tools 
Resource 

Earned Value 

Management 

(Bortolini, 

Núria, and 

Matheu 

2018) 

Genetic 

algorithm 

(Abd 

Elrehim, 

Eid, and 

Sayed 

2019, 507-

516) 

Statistical 

analysis 

(Tennant, 

Langford, 

and Murray 

2011, 220) 

Interviews/ 

meetings/ 

questionnaires 

(Wu, D. et 

al. 2018, 

282-295) 

Robotic 

Total 

Station 

(RTS) 

(Cheng, 

Venugopal, 

Teizer, and 

Vela 

2011b, 

1173-1184) 

(Zhou et al. 

2020, 

107251) 

Bayesian 

inference and the 

Bayesian model 

averaging 

technique/ 

Bayesian beta S-

curve method 

(Kim, B. and 

Reinschmidt 

2011, 958) 

Last Planner/ 

Line-of-

balance 

System 

(Tayeh et 

al. 2019, 

1424-

1436), 

Artificial 

neural 

network 

(Li, Yan-

Wen and 

Cao 2020, 

382-389),  

(Ayhan and 

Tokdemir 

2020) 

Monte Carlo 

simulation 

(Tokdemir, 

Erol, and 

Dikmen 

2019a, 

04018132) 

Network 

scheduling 

approach 

(Araújo 

and 
Smartphone 

(Umer et 

al. 2018, 

438-448) 

Fuzzy random 

parameters 

(Song et al. 

2018, 138-

157) 

https://www.thesaurus.com/browse/adequate
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Traditional 

Tools 
Resource 

Artificial 

Intelligent 

Tools 

Resource 
Mathematical/ 

Statistical Tools 
Resource 

Lucko 

2016) 

Work 

breakdown 

structure/ 

Critical Path 

Method 

(Li, 

Duanshun 

and Lu 

2017) 

  Game theory 

(Khanzadi, 

Eshtehardian, 

and 

Chalekaee 

2016, 1066-

1077) 

The second most popular set of tools are interviews, meetings, questionnaires, and surveys. These 

tools are used in two contexts, collecting data from the field (Adafin, Rotimi, and Wilkinson 2016), 

(Sacks et al. 2017, 45-63), and validating the output results of the developed model or hypotheses 

(Mahalingam, Kashyap, and Mahajan 2010, 148-159), (Lin et al. 2017). The third most frequently 

used tool is LPS. Many researchers use this tool to benefit from its privilege of engaging laborers 

in the plan to be more accurate, e.g, (González et al. ) developed a decision-making tool to measure 

the accuracy of the executed plan.  

Another category of tools is AI tools, such as genetic algorithm (GA), which are utilized with the 

critical path method to help project managers experiment with different scenarios for allocating 

available crews based on operation and crew characteristics (East and Liu 2006, 1294-1305). GA 

is applied, also, in material handling and stockpiling on the site (Said and El-Rayes 2011, 421-

431).  

Construction projects also adopted smartphones as a proactive defense against laborers falling out 

of balance through activity execution (Umer et al. 2018, 438-448). Moreover, (Cheng, Venugopal, 

Teizer, and Vela 2011a, 1173-1184) utilized robotic total stations to track the used resources and 

to investigate ongoing operations at the site in harsh sites. 

2.3.2 Insights of surveyed articles 

The projects used as cases in the surveyed literature varied among infrastructure (Nguyen et al. 

2019, 384-399), building  (Xiao et al. 2018), heavy industrial (Mccabe and 2017, 25), power and 

energy projects (Sacco et al. 2019, 269-281), and combination of more than one category (Zhao et 

al. 2019, 52-65), as shown in Figure 2.5. Projects are fairly evenly distributed among categories, 
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except for projects related to power and energy. The combination of projects is widely observed 

in articles that surveyed the industry or in applied cases for generic models. However, most 

researchers preferred to use one project or different projects of the same category as applications 

of their models.  

 

Figure 2.5 Frequency of projects analyzed in the research 

Another key aspect in the analysis of articles is extracting the countries where the projects take 

place. Table 2.3 represents these countries and the number of articles mentioning them. The United 

States accounts for the majority of projects and research (Shrestha, K. J., Jeong, and Gransberg 

2017), followed by China (Deng et al. 2020). Those two countries have the greatest share of using 

AI and mathematical tools compared to other countries. Figure 2.6 sums up the frequency of tools 

used by the country. This chart depicts increasing interest to integrate traditional tools with 

mathematical and AI tools, producing more reliable plans and tools in the construction industry.  

Table 2.3 Countries of projects and their frequency 

Country 
Number 

of articles 
Country 

Number of 

articles 
Country 

Number of 

articles 
Country 

Number of 

articles 

USA 39 
Brazil 

(Bra) 
5 

Finland 

(Fin) 
2 Jordan (Jor) 1 

China 

(Chi) 
15 

Taiwan 

(Tai) 
4 Spain (Spa) 2 Kerman (Ker) 1 

Australia 

(Aus) 
11 

Egypt 

(Egy) 
3 

Turkey 

(Tur) 
2 

New Zealand 

(NZ) 
1 

UK 9 Iran (Ira) 3 
Ecuador 

(Ecu) 
1 

Pakistan 

(Pak) 
1 

0

5

10

15

20

25

30

35

40

Infrastructure
projects

Building projects Heavy industrial
projects

Power and energy
projects

combination



19 

 

Country 
Number 

of articles 
Country 

Number of 

articles 
Country 

Number of 

articles 
Country 

Number of 

articles 

South 

Korea (SK) 
8 Italy (Ita) 3 India (Ind) 1 Poland (Pol) 1 

Canada 

(CA) 
6 Israel (Isr) 3 

Indonesian 

(Indsa) 
1 

Portugal 

(Por) 
1 

General 

(Gen) 
9 

Projects Locations are 

not stated or have 

different locations. 

Vietnam 

(Vie) 
1 

Slovenia 

(Slo) 
1 

 

 

A: Artificial intelligence. M: Mathematics. T: Traditional 

Figure 2.6 Countries and frequency of using tools in construction planning and control research 

The previously mentioned tools helped in partially solving the problems of planning and control 

in the construction industry. These partial solutions encourage the integration of these efforts to 

bridge the planning symptoms. One of the powerful approaches that have a holistic view in dealing 

with problems is SD. It analyzes the structure that generates the unwanted behaviors and then 

makes changes to the structure to finally tackle the events (Sterman, J. D. 1994, 291-330). This 

approach and its use in the construction management field will be discussed in the next section. 
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2.3.3 Need for a holistic approach 

PBO applies the previously mentioned tools and theories in its business model (BM). BM is a 

general overview of a company framework and how it operates to achieve its objectives, and it 

encompasses sustainability, growth, creativity, social influence, and value development. BM has 

emerged as a central process for characterizing business strategy by modeling how a company 

operates to achieve its objectives (Cosenz and Noto 2018, 127-140). 

BM in such circumstances focuses on the operational issues and usage of traditional tools in 

strategic planning. This makes PBO decisions focus on one issue. Ignoring the feedback effect of 

decisions on other subsystems makes it difficult to take the optimum decision for the organization.  

Indeed, planning and management in PBO is a dynamic process affected by the sequential 

decisions applied, where “the actual sequence of decisions is determined not only by planning, but 

also by emergent variables, or decisions and actions that arise within an enterprise that adds to the 

pattern but are not expected in the strategy” (Wolf and Floyd 2017, 1754-1788). This means each 

decision has a butterfly effect on other subsystems that need to be addressed. These perspectives 

are technical and tactical planning oriented, and miss the feedback between interacting subsystems 

and integration between them  (Swei 2020). Hence, there is a need for a holistic approach to 

enhance the PBO strategic planning process. 

Moreover, the characteristics of construction projects, (Sterman and John 2002, 42-42.), and PBO 

require a dynamic approach that can consider the PBO as a system of systems made of projects, 

can examine the non-linear relations between subsystems, can cope with the highly dynamic 

environment of the PBO, can involve “soft” & “hard” data, can capture responses that exhibit time 

delays from actions. 

2.4 SYSTEM DYNAMICS 

Dynamic business modeling, in turn, is capable of representing emergent behavioral patterns based 

on sequences of decisions and feedback. The system Dynamic (SD) approach evolved from 

systems thinking, which not only considers components but also the holistic view, and focuses on 

reliably projecting behavior based on the underlying structure (Richmond 1993, 113-133). SD 

considers the lag between an action and its consequences, as well as the nonlinear relationships 

between attributes (Sweeney and Sterman 2000, 249-286). From this perspective, SD is used to 
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capture the causality relationships and feedback loops in the system (Stave and Hopper 2007, 1-

22), and to adopt multiple perspectives as subsystems in a single model (Squires et al. 2011, 10). 

SD modeling can generate macro dynamics from microstructure (Sterman, J. D. 1989, 321-339) 

because it is a white box modeling. This means it is a causal driven (based on theory) model, not 

a data-driven (based on correlation) model (Barlas and Carpenter 1990, 148-166). SD employs 

techniques from the field of feedback control to set up the problem factors into a causes feedback 

loop (Forrester 1993, 199-240). The construction project is not a unidirectional system. Each 

decision contributes to the system status which in turn affects the upcoming decision. In such 

systems, SD helps to understand that problems are mainly attributed to internal factors, despite a 

widespread and deceptive inclination to blame problems on external factors (Sterman 1989, 321-

339). The structure of the organization can be simulated and interplay with management decisions 

might result in accumulated dynamics that consistently deviate from the optimum behavior. 

Moreover, it is capable of integrating the company strategies and resources (Kim, S., Chang, and 

Castro-Lacouture 2020a). These capabilities provide incentives to choose this approach as an 

integrated tool to help eliminate the gaps in the aforementioned studies. 

2.4.1 Philosophical perspective of SD 

SD makes use of the feedback control theory's principles and mathematics (Richmond 1993, 113-

133). It has two main sorts of variables based on accumulations and flows, i.e. levels and rates. 

Auxiliaries are a third category that is utilized for additional context and modeling. The volume of 

an accumulation can be altered by the in-flows and out-flows. It can be modified by their fluxes. 

i.e, it is impossible to regulate the level directly (Sweeney and Sterman 2000, 249-286). This 

includes the delays between the actions and consequences, and nonlinear relations between 

attributes (Sterman, J. D. 2001, 8-25). Time delays and other variables can be represented by 

auxiliaries. Generally, the type of variable is determined by the procedure that produces its value.  

SD projects a trustworthy behavior generated from the underlying structure (Richmond 1993, 113-

133). This is in the form of patterns of change rather than static snapshots (Senge 1990). The 

temporal patterns (trends and oscillations) are created by the architecture of the feedback loop 

(FBL) working across time, considering the values and delays of the causal effects. From this 

perspective, SD is used to capture the causality relationships (Stave and Hopper 2007, 1-22), and 

can adopt multiple perspectives in one model as subsystems (Squires et al. 2011, 10).  
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Because the patterns are created by the full system mechanism, decisions centered on one variable 

using the open system cannot successfully change the required variable to the desired value. Hence, 

the entire structure should be examined across time. Computer simulation is utilized by SD to 

explain why processes act the way they do, based on the information we already have about the 

problem under investigation (Ramage and Shipp 2009, 99-108). SD’s graphical tools facilitate the 

sketching of causal loops that enables communication and understanding of mental models 

(Sterman 2001, 8-25). Causal loop diagrams (CLDs) consist of variables linked with arrows that 

have a positive sign for causes directly proportional to the effect and a negative sign for causes 

that are inversely proportional to the effect. This depicted conceptual relation is transformed into 

a numerical integration model using the stock and flow tool. The stock is similar to a box or level 

that elucidates the behavioral response, while the flow is the rate that changes the stock (Sterman 

and John 2002, 42-42.). Two equations at least are required to express the simplest basic feedback 

relationship mathematically between a stock and flow. The first equation must depict the formula 

in which the flows alter the level. The second equation must depict how the buildup stock alters 

the flow patterns. The simulation of the mathematical model employs algebra and logic functions. 

2.4.2 SD in the construction planning and control 

SD is essential to understanding and depicting the casual and internal relationships at different 

levels of construction projects in planning and control, effectiveness and performance, strategic 

management, sustainability, and other areas (Liu, M. et al. 2019, 730-741). SD is utilized to 

examine the effects of the skilled labor shortage. Results provide a better understanding of the 

effects of wages and their effect on project cost and schedule (Kim, Chang, and Castro-Lacouture 

2020). 

Various construction applications utilized the SD approach (Liu et al. 2019, 730-741). It is used to 

investigate the owner characteristics on market price (Lo, Lin, and Yan 2007, 409-416). It is used 

to represent project cash flow feedback loops (Cui, Hastak, and Halpin 2010, 361-376), and to 

optimize the Net Present Value of a big portfolio (Ali 2017). It is used to investigate the output of 

projects under different working conditions and productivity changes at the project level 

(Alvanchi, Lee, and AbouRizk 2012, 66-77), and portfolio level (Salehizadeh and Mahmudi 2019, 

12-22).  
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Attention on SD is growing as shown in Figure 2.7, the full list of articles used to build this figure 

and upcoming analysis is mentioned in Appendix III. Researchers have completed several 

literature surveys on its use and importance such as (Shafieezadeh et al. 2020a, 201-216; Pagoni 

and Georgiadis 2020, 277-291; Kim, Chang, and Castro-Lacouture 2020), the full list of surveyed 

literature articles is mentioned in Appendix II. SD methodology has two unique tools: causal loop 

diagrams (CLDs) and stock and flow models (Sterman 1994, 291-330). Those tools enable system 

modelers to capture the cause-and-effect relationships and numerically simulate them. CLDs 

consist of variables linked with arrows that have a positive sign for causes directly proportional to 

the effect, and a negative sign for causes that are inversely proportional to the effect  (Sterman and 

John 2002, 42-42.). This depicted conceptual relation can be transformed into a numerical 

integration model using the stock and flow tool. The stock is similar to a box or level that elucidates 

the behavioral response, while the flow is the rate changing the stock (Zhu and Mostafavi 2014, 

0), (Zhu and Mostafavi 2014b, 213-219). The CLD and stock and flow improve SD's ability to 

manage complex systems and capture feedback processes and delays. Also, they help in the 

evaluation of new strategies and decisions (Sterman and John 2002, 42-42.).  

 

Figure 2.7 Studies using SD in the construction industry from the last decade 

The analysis of 112 papers from 2010 to 2020 revealed that researchers’ main application of SD 

is in the time knowledge area, with 19.2% as shown in Figure 2.8. The main cause of this high 

percentage is that researchers use time as a tool to synchronize the workflow of a system and as a 

tool to measure the system's response to changes and decisions. 
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Figure 2.8 Use of SD in knowledge areas 

The next most frequent applications are cost and resource knowledge areas, with approximately 

the same percentage of 17.7% and 17.2%, respectively. The high frequency of using cost because 

it measures consequences, in addition to its importance to all stakeholders. Resources have the 

same attention in research due to their limitations. Much of the research published in the resource 

area is interested in minimizing the waste of resources or recycling construction waste.  

Labor resources take more attention in the SD approach than traditional methods (Kim, S., Chang, 

and Castro-Lacouture 2020b). This is related to the capabilities of SD tools that could abstract the 

behavior of the social interaction and uncertainties using cause and effect with syngeneic relations 

(Al-Kofahi, Mahdavian, and Oloufa 2020a, 1-12).  (Nasirzadeh and Nojedehi 2013, 903-911), their 

study provided a worker productivity dynamic model that describes the synergetic factors that 

contribute to labor productivity using causal loops and feedback relations. This model helps 

managers determine the main causes of productivity losses as shown in Figure 2.8. In their study, 

the focus was on the project level and the operational detail of the project which provides a 

valuable feedback model. Integrating the project level into the organizational level could enhance 

the organization's performance and allocation of resources for better productivity. Also, (Cosenz 

and Bianchi 2014) provide an SD model to depict the relationship between labor productivity and 

motivation, including the linear and nonlinear relations and factors. The results highlight 

incentives, rewards, career promotions, and burnout as the main factors that contribute to 

motivation and productivity. Other SD models depict the synergetic relations between causes and 

Time 19.2%

Cost 17.7%

Resource 17.2%

Quality 13.4%

Risk 13.4%

Stakeholder 8.5%

Communication 3.7%

Procurement 3.7%

Scope 2.3%

Integration 1%
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effects using the tools of causal loop and feedback relations (Nasirzadeh, Khanzadi, and Mir 2018, 

132-143), (Kim, S., Chang, and Castro-Lacouture 2020c, 04019035). 

 

Figure 2.9 Labor productivity model (Nasirzadeh and Nojedehi 2013, 903-911) 

Quality and risk come at the third level, with a percentage of 13.4%. The knowledge areas of 

stakeholders, communication, and procurement still require more attention as they participate in 

project success. Owner satisfaction and engagement in project processes are essential. Likewise, 

in surveys conducted by researchers, communication among contractors, subcontractors, and the 

owner is frequently mentioned as one cause of project delay (Amarkhil et al. 2020). But 

communication still lacks the appropriate attention in the literature. Finally, as mentioned in the 

previous section, scope and integration knowledge areas have much concern from a dynamic 

perspective. This becomes essential in the increasing complexity of construction projects and the 

dynamic environment.  

2.4.3 Tools and programs used with system dynamics 

Almost all of the articles surveyed integrate SD with other tools in hybrid models to make the most 

of it, as shown in Figure 2.10. Questionnaires, interviews, and case studies have been used with 
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SD to predict the impact of the owner and contractor-related variables on the legislation stages 

(Jing et al. 2019, 677),  to determine delays in Indian construction projects (Das, Dillip Kumar and 

Emuze 2017, 21-39), or to identify sources of rework in Nigerian construction projects (Aiyetan 

and Das 2015, 1266-1295). SD has also been integrated with neural networks and regression 

analysis to model construction project behavior using management, employee, equipment, and 

environment system sub-systems (Wu, X. et al. 2019, 221). 

Discreet Event Simulation (DES) has been integrated with SD to confine strategies with 

operational variables to determine more reliable plans (Alzraiee, Moselhi, and Zayed 2012, 1063-

1073). Another study shows that integrating traditional tools like CPM and activity-on-node 

(AON) networks with SD is more beneficial in dealing with schedule issues and project control 

(Gonzalez, Kalenatic, and Moreno 2012, 21-32). 

 

Figure 2.10 Utilized tools with system dynamics 

 

Fuzzy models have used SD to picture the complex, synergistic nature of construction projects, 

and address uncertain relations that are not easy to quantify or quantitatively allocate risks (Akbari 

et al. 2020, 545-567). In most cases, these values are determined by the judgment of the field 

experts. For example, (Nasirzadeh, Khanzadi, and Mir 2018, 132-143) used this methodology in a 

highway project to predict the values of factors affecting the concession period. Also, BIM has 

Questionair, Interview, Case study 39.5%
DES 16.3%
activity networks AON (activity on node), CPM 4.7%
fuzzy 4.7%
BIM 4.7%
Interpretive ranking process 4.6%
social network analysis (SNA) 2.3%
ASA 2.3%
regression models 2.3%
neural network 2.3%
IPSM approach 2.3%
 Decision trees 2.3%
SDAN 2.3%
TOPSIS 2.3%
STROBOSCOPE 2.3%
Monte Carlo simulation  MCS 2.3%
dependency structure matrix DSM 2.3%
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been connected with SD models to help in quantifying risk allocations (Thompson and Bank 2010, 

1006-1015). 

Regression models have been used with SD to measure the impact of lacking skilled laborers on 

labor wages, project time, and budget (Kim, Chang, and Castro-Lacouture 2020, 04019035). 

Monte Carlo simulation simulates stochastic and probabilistic changes in construction projects, 

while the dependency structure matrix models the estimated effects of these changes (Tokdemir, 

Erol, and Dikmen 2019b, 4018132). The interpretive ranking was also used with SD to identify 

construction risk variables. The main function of interpretive ranking is to define, evaluate, and 

rank the risk relationships. These values were then fed into SD models to quantify their impacts 

(Mhatre, Thakkar, and Maiti 2017).  

Other tools used with SD include decision trees and Integrated Participatory Systems Modeling 

(IPSM) to facilitate the decision-making process in a complex stochastic environment like 

construction projects (Suprun et al. 2019, 1-23). They utilized an integrated methodology to collect 

data from stockholders and model the collected data into a causal loop diagram. They analyzed the 

conceptual model built and finally simulation of this model. This technique is different from the 

group model building because it allows collecting data from stack holders for model 

conceptualization and analysis of policies explicitly from the modeling process by volunteering, 

which means the stakeholders might be not familiar with the SD tools such as stock and flow 

(Suprun et al. 2018, 33). In their study, they ranked the decision tree to quantify the range of values 

that the project manager can perform. Also, the Technique of Order Preference Similarity to the 

Ideal Solution (TOPSIS) was integrated with SD to facilitate selecting projects based on their 

portfolios for the projectized organizations. This methodology increases the flexibility of high-

level planning adaptation in a shared resources environment (Rad and Rowzan 2018, 175-194). 

This enables portfolio alignment but is limited to the linear relationship between variables in the 

application of the SD approach. The application of the hybrid model is valuable and the nonlinear 

relations could provide more utilization for the SD capabilities.  

Finally, the literature indicates five software packages used with system dynamics, VENSIM 

(Shafieezadeh et al. 2020b, 201-216), STELLA (Das, Dilip Kumar and Emuze 2017, 21-39), 

POWERSIM (Azhari et al. 2014, 65-86), SIMULINK (White 2011, 696-705), iThink (Chritamara, 

Ogunlana, and Bach 2002, 269-295). At the top of those programs, with a 76.4% acquisition rate 
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of articles is VENSIM, followed by STELLA with a percentage of 14.7%. The other programs 

equally share the remainder. The widespread use of VENSIM is due to its reality check feature 

available in the PLE version. In addition, VENSIM is free while the other software is not. 

2.5 TIME SERIES 

Contracting companies face problems in capacity/workload prediction either in short-term or long-

term planning. Contractors blame the complexity, inherent nonlinear relations of the construction 

market, and its sensitivity to economic and political fluctuations, to have a volatile demand. This 

volatility affects various operational and strategic decisions on the project and organization levels 

(Christopher and Holweg 2017). Understanding such fluctuations in demand helps in reducing 

uncertainty and enhance performance. There are indices to measure the uncertainty (volatility) in 

the demand time series. The coefficient of variation (CV), one of these indices, can measure the 

volatility of a demand pattern. This is determined by calculating the standard deviation divided 

over the average for a certain period (Gilliland 2010), (Abolghasemi et al. 2020, 106380). 

Time series with higher CV are normally related to higher levels of uncertainty and are harder to 

forecast (Huang, Chang, and Chou 2008, 3223-3239).  

It is critical to include and foresee these uncertainties to minimize the harmful repercussions of 

variable demand, which makes forecasting difficult (Syntetos et al. 2016, 1-26). Inaccurate 

estimates may result in wasteful expenditures in terms of labor, equipment, and other resources. 

There are approaches to mitigate these uncertainties; for instance, increasing organization capacity, 

which works as an inventory of capabilities to face fluctuations in demand. This will aid in 

reducing demand volatility, but it will come at a high cost to businesses (costly proposition) (Hope 

and Fraser 2003).  

This represents a need for demand forecasting to reduce market uncertainty. Several models have 

been employed to anticipate demand forecasting during the last few decades. For instance, in Hong 

Kong, grey forecasting is utilized to predict the local construction industry demand (Tan et al. 

2015, 219-228). Findings show that the local construction industry is about to begin another boom 

era (assuming no big external shocks to the economy), with substantial growth projected in the 

structures and facilities sector. In Australia, multivariant TS prediction is used in predicting the 

construction industry demand and comparing it with the vector error correction (VEC) with 
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dummy variables (Jiang and Liu 2011, 969-979). The effect of global economic events was 

considered, and the results show that it has a greater forecast accuracy than the conventional VEC 

model. Findings show, also, that population growth, changes in national income, interest rate 

fluctuations, and changes in household expenditure all play important roles in predicting variations 

in construction demand. Another study in Singapore utilized Machine learning, especially 

Artificial Neural Networks (ANN), and compared it with Multiple Regression (MR) in predicting 

the demand for new projects based on economic variables (Hua 1996, 25-34). Results revealed 

that 12 economic factors have a strong relationship with residential building demand. These factors 

are national income per capita, general demand for construction, size of the population, rate of 

household formation, interest rate, property price, levels of supply of residential property, 

disposable income, economic growth, level of unemployment, existing housing stock, rate of 

inflation, construction cost, mortgage credit availability, and household personal savings. 

2.6 SUMMARY 

This chapter provides systematic literature reviews of the area of construction project planning and 

control in the last two decades. The analysis revealed that time management attracts the most 

attention from researchers in both planning and control. Cost management comes at the second 

level of interest, and others follow successively (i.e. quality, risk, labor resources, equipment, 

material, safety, and communication management). There is great interest reflected in the tools 

used in this process; the most commonly used tool is EVM, which relates plan achievement to time 

and cost. The workload (scope) and integration receive little attention.  

Various tools were used to enhance the accuracy and consistency of planning and improve control 

performance in construction projects. These tools are divided into three main groups: traditional, 

AI, and mathematical tools. Besides, researchers’ efforts provide a clear picture of the lack of 

feedback among different variables.  

The need for a holistic approach that matches the characteristics of project executions in the PBOs. 

SD is the best match for these characteristics. The value added from the integration (hybrid 

modeling) of SD with different tools is reviewed. This highlights the potential for enhancing the 

PBO’s strategic planning by linking its subsystems together e.g, resources, finances, workloads, 

etc. The characteristics of SD will enable the visualization of the interaction between the whole 
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subsystems. The feedback mechanism will illustrate the effects either intended or unintended on 

the different levels of the system. Also, it will help to find the optimal strategy for the contracting 

company and how to adapt to market conditions. 
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CHAPTER 3 IDENTIFICATION OF FACTORS AFFECTING 

WORKLOAD FLUCTUATIONS IN PBO 

3.1 INTRODUCTION 

Project-based organizations (PBOs) are companies that rely on a continuous supply of projects to 

make a profit. Their structure evolves to develop a temporary system leading to the project's 

success. Through this system, the organization's workload is managed (Turner and Miterev 2019, 

487-498). PBO strives to achieve harmony between project and portfolio workload management 

to provide tangible value to stakeholders. 

PBO is composed of five main dimensions: strategy, structure, human resource, behavior, and 

process (Miterev, Turner, and Mancini 2017, 527-549). Previous work has mostly focused on one 

of these dimensions or the interaction between two dimensions. Relatively little attention—15 of 

the 177 articles analyzed in a study by Miterev et al. (2017)—has been given to studying the effect 

of three or four of these dimensions on one another (Miterev, Turner, and Mancini 2017, 527-549), 

despite the significant effect of these interactions on an organization's strategic planning. 

3.1.1 Planning in PBO 

Strategic planning is widely used, but few managers are satisfied with the outcomes it yields, 

particularly when it comes to the role of uncertainty in the internal and external environments 

(Wolf and Floyd 2017, 1754-1788). Several factors affect plans' reliability, one of them is dealing 

with strategic planning using the traditional operational project management models (Too and 

Weaver 2014, 1382-1394). This can give rise to project schedule delays and budget overruns. This 

stems from the traditional management model’s main assumption that is, if elements are 

understood, then the project/program/portfolio can be controlled. However, experience suggests 

that the interrelationships among elements are more complex than has been stated in the traditional 

work breakdown structure of project networks (Wang, Kunc, and Bai 2017, 341-352).  

To enhance the planning process, several studies have endeavored to address operational-level 

performance issues by seeking a local optimum solution (i.e., at the project level) (Killen et al. 

2012, 525-538). This results from using the traditional approach. The application of project 

planning traditional tools has typically focused on project performance, but without consideration 
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for the effect, one project's performance may have on other projects operated by the same 

contractor (Martinsuo 2013, 794-803). This can have a butterfly effect with long-term implications 

(Mahdavi et al. 2019, 1200-1217). As such, it is crucial to link the performance of all projects 

operated by a given organization (i.e. the portfolio level). 

The cycle of workload management could be considered generally as two phases interacting 

together, workload acquisition and workload execution. Previous studies considered workload 

acquisition studies from the perspective of the contractor and owner. The contractor perspective 

studies focused on Bidding decisions using different tools such as the Logistic regression model 

(Lowe and Parvar 2004, 643-653), Adaptive Neuro-Fuzzy Inference System (Polat, Bingol, and 

Uysalol 2014, 1083-1092), Fuzzy TOPSIS method (Al-Humaidi 2016, 04016068), Multi-criteria 

decision analysis (van der Meer et al. 2020, 172-188). These studies centered around the 

application of a process system to aid project selection and portfolio design to have a consistent 

characteristic of workload (Jerbrant 2014, 33-51). These processes hypothesize that optimizing the 

portfolio of PBO workload will help in achieving stable planning and management of workload. 

Also, other studies focused on competition and increasing the probability of winning in the bidding 

process. These studies utilized different tools to define the markup percent such as Bayesian 

statistics and correlation between bid items (Yuan 2011, 1101-1119), surveys and statistical tools 

to define the competitive tender price (Aje, Oladinrin, and Nwaole 2016a, 19), (Ye et al. 2014, 

461-472), a hybrid Bayesian-fuzzy to optimize the bid price in the negotiation phase (Leu, Hong 

Son, and Hong Nhung 2015, 1566-1572). 

Previous studies from the owner's perspective were focused on contractor selection and linked it 

with project success. (Nasir and Hadikusumo 2019, 04018052) utilized a hybrid system dynamic 

and agent-based model to study the relationship between owner and contractor. They found that 

the pre-award policies have a greater effect on project performance. (Semaan and Salem 2017) 

developed a multi-criteria decision support system to evaluate and select contractors in the bidding 

phase. Other models utilized the fuzzy technique  (Singh and Tiong 2005, 62-70), and a hybrid 

fuzzy-AHP model (Jaskowski, Biruk, and Bucon 2010, 120-126). 

Previous studies considered the after-award phase was oriented toward contractor project 

management. Several studies have endeavored to address operational-level performance issues by 

seeking a local optimum solution (i.e., at the project level) (Killen et al. 2012, 525-538). This 
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results from using the traditional approach. The application of project planning traditional tools 

has typically focused on project performance, but without consideration for the effect, one project's 

performance may have on other projects operated by the same contractor (Martinsuo 2013, 794-

803). This can have a butterfly effect with long-term implications (Mahdavi et al. 2019, 1200-

1217). As such, it is crucial to link the performance of all projects operated by a given organization 

(i.e. the portfolio level). 

3.1.2 Gaps in the PBO planning regime  

At the project/portfolio level, the most widely adopted management approach is open systems 

(Martinsuo and Geraldi 2020, 441-453). However, the open system considers the flow of actions 

without considering their feedback. This static approach is not capable of representing the dynamic 

complexities of the business and market landscape (Cosenz 2017, 57-80). Open system tools focus 

on the logical, top-down, and structural characteristics of strategy. As a result, this approach tends 

to overlook the underlying practices generated by the strategy, as well as how these practices may 

affect strategy implementation (Clegg et al. 2018, 762-772). Successful project management, in 

contrast, requires integration among the various dimensions of PBO (i.e. strategy, structure, human 

resource, behavior, and process). 

Using traditional BM with dynamic financial constraints, during the bidding process, to decide the 

size of markups could have a bias, either downward or upward, that is positively associated with 

the financial stability of the organization (Beker and Hernando-Veciana 2015, 234-261). Owner 

characteristics and the method of selecting the contractor directly affect the contractor's behavior 

during and after the bidding process. This could lead the contractor to change the markup percent 

(bidding price) or tend to manipulate during project execution to overcome the reduction in the 

bidding price to award the project. Previous studies utilized different tools such as Fuzzy Decision 

Framework (Singh and Tiong 2005, 62-70), Data Mining Framework (Art Chaovalitwongse et al. 

2012, 277-286), and Multi-Criteria Decision Support System (Semaan and Salem 2017) to 

optimize the contractor selection. In contrast, there is a lack of research that studied the effect of 

these decisions on contractor behavior and project performance.   
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3.1.3 Value added from SD fills the current gap  

SD is significantly different from the open system. SD allows for the study of the core cause-and-

effect interactions among key business variables, this allows one to learn how a company operates 

and what may be the keys to its future success (Kenefic 2020). In recent years the SD approach 

has been integrated with strategic management to support the PBO, given its effectiveness in 

promoting strategic learning, thereby facilitating decision-making and performance enhancement 

from a systemic viewpoint (Cosenz 2017, 57-80). However, selecting model boundaries by 

focusing on the project, might isolate the internal dynamics of the project from external dynamics 

related to the market and organization. 

3.1.4 Chapter goal 

This chapter focuses on identifying and analyzing the factors affecting PBO’s workload fluctuation 

using traditional and social network techniques, which is the first objective of this research. This 

highlights the gap in identifying the factors and their dynamic modeling. Then, a conceptual 

framework using the SD approach is proposed to address the previously mentioned limitations in 

the current body of knowledge (the focus on operational issues, the use of limited traditional tools 

in strategic planning, and the separation of internal dynamics from external dynamics).  

3.2 METHODOLOGY 

The literature on dynamic modeling of PBO/contracting organizations and construction projects is 

studied to gain an understanding of the direct and indirect effects of various project and portfolio 

variables in a holistic manner. The identification of these variables is achieved through multiple 

steps executed in rolling cycles as shown in Figure 3.1. The process starts by selecting a suitable 

search engine platform. Google Scholar is selected to have a general overview and because it is 

more inclusive that cover diversity of researches included in other databases such as Scopus and 

Web of Science (Martín-Martín et al. 2021, 871-906). Also, Scopus and Web of Science are 

screened with the same keywords to make sure that most of the sources are reviewed. A suitable 

search engine having been identified, a systematic review is conducted using predefined keywords: 

dynamic/modeling of contracting organization performance, dynamic/modeling of construction 

project performance, dynamic/modeling of contracting organization workload, and 

dynamic/modeling of contracting organization bidding process. The keywords are carefully 
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selected to cover the entire process of workload generation and execution on the part of the 

contracting organization. The title, abstract, and conclusion of each article returned in the search 

are then screened.  

The second step is to review the full papers based on whether their content is sufficient for 

mathematical analysis and for characterizing the relationships among variables. Then, analyze the 

content of the selected articles (see Table 3.1) to identify the variables responsible for the dynamics 

of how a contracting organization adds to its workload and executes its operations to earn profit. 

These articles, listed in Table 3.1, are classified into three categories: survey, non-dynamic 

modeling, and SD modeling. Survey studies focus mainly on defining variables affecting a specific 

problem using surveys, questionnaires, and interviews and carrying out statistical analysis of the 

results. Non-dynamic modeling studies use modeling tools (e.g., fuzzy modeling, equation 

modeling, neural networks) to analyze the surveyed variables. SD modeling studies apply SD 

theory to model the surveyed variables.  

 

Figure 3.1 Research methodology (adapted from (Abotaleb and El-adaway 2018b, 04018033)) 
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Table 3.1 Papers studied 

Item  Source Survey Non-dynamic 

modeling 

SD model 

S1 (Bajracharya, Ogunlana, and Bach 2000, 91-

112) 

  🗸 

S2 (Tang and Ogunlana 2003a, 127-136)   🗸 

S3 (Lo, Lin, and Yan 2007, 409-416)   🗸 

S4 (Taylor and Ford 2008, 421-431)   🗸 

S5 (Egemen and Mohamed 2008, 864-872)  🗸  

S6 (Bageis and Fortune 2009, 53-71) 🗸   

S7 (Cui, Hastak, and Halpin 2010, 361-376)   🗸 

S8 (Dangerfield, Green, and Austin 2010, 408-

420) 

  🗸 

S9 (Enshassi and Mohamed 2010, 118-142) 🗸   

S10 (Alvanchi, Lee, and AbouRizk 2011, 77-91)   🗸 

S11 (Lisse and Student 2012)   🗸 

S12 (Alvanchi, Lee, and AbouRizk 2012, 66-77)   🗸 

S13 (El-Mashaleh 2013, 200-205) 🗸   

S14 (Jarkas 2013, 53-75) 🗸   

S15 (Li, Ying and Taylor 2014, 04014044)   🗸 

S16 (Jarkas, Mubarak, and Kadri 2014, 05014007) 🗸   

S17 (Polat, Bingol, and Uysalol 2014, 1083-1092)  🗸  

S18 (Ye et al. 2014, 461-472) 🗸   

S19 (Yan 2015, 15423-15448)   🗸 

S20 (Leśniak and Plebankiewicz 2015, 04014032)  🗸  

S21 (Shokri-Ghasabeh and Chileshe 2016, 127-157) 🗸   

S22 (Aje, Oladinrin, and Nwaole 2016, 19) 🗸   

S23 (Wibowo, Astana, and Rusdi 2017, 341-347)   🗸 

S24 (Chisala 2017, 04017088)  🗸  

S25 (Aznar et al. 2017, 880-889) 🗸   

S26 (Olatunji, Aje, and Makanjuola 2017, 378-392) 🗸   

S27 (Li, Ying et al. 2018, 605-618)   🗸 

S28 (Nasirzadeh, Khanzadi, and Mir 2018, 132-

143) 

  🗸 

S29 (Abotaleb and El-adaway 2018a, 04018084)   🗸 

S30 (Marzouk and Mohamed 2018, 90-108)  🗸  

S31 (Abbaspour and Dabirian 2019)   🗸 

S32 (Oke, Omoraka, and Olatunbode 2020, 169-

175) 

🗸   

S33 (Li, Guanghua et al. 2020, 04020050)  🗸  

S34 (Shafieezadeh et al. 2020c, 201-216)   🗸 

S35 (Al-Kofahi, Mahdavian, and Oloufa 2020b, 1-

12) 

  🗸 
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The body of knowledge was studied and analyzed using both a conventional method (relative 

usage index-RUI) and social network analysis (SNA) to define the gaps. Each analysis 

encompasses two clusters of previous studies: dynamic modeling studies and non-dynamic 

modeling studies. In comparing the results from each cluster using SNA, the difference between 

expert mental models and actual dynamic models represents a gap that should be addressed in 

future holistic studies. Also, the variation between the non-dynamic models and dynamic 

models—identified using RUI—helps to determine which variables still warrant further 

investigation from the dynamic perspective. All of these results are described further in the analysis 

section below.  

A conceptual framework is then developed by applying the SD approach to mitigate the three 

weaknesses mentioned above—the focus on operational issues, the use of limited traditional tools 

in strategic planning, and the separation of internal dynamics from external dynamics—. This 

framework abstracts the cycle of seeking workload (new projects) until its successful execution 

for the PBO. The proposed framework draws upon the relationships described and discussions 

presented in previous studies and consist of three subsystems: the pre-award stage, the post-award 

stage, and the financial system underlying the PBO. Each subsystem includes variables related to 

the organization, market, owner, and project (identified in the variable identification subsection). 

This is fully explained in the description of the conceptual framework later in this paper. 

It is worth mentioning that, Abotaleb and El-Adaway (El-Adaway, Abotaleb, and Vechan 2018, 

353-374) utilized this approach to identify the parameters affecting the project performance. In 

contrast, this work focuses on the contracting organization dynamics including projects and their 

interaction with each other.  

3.3 DYNAMIC VARIABLES AFFECTING PBO WORKLOAD CYCLE 

A review of the selected articles (shown in Table 3.1) reveals that 28 dynamic variables are 

affecting the PBO workload cycle. These variables are defined and categorized in Table 3.2. The 

categorization reveals that the majority of the variables investigated are related to the contractor, 

whereas other categories of variables require further investigation from the perspective of dynamic 

modeling. These categories will help researchers to define selected variables based on the model 

boundaries to be included in the study. It is worth mentioning that the present study is, to the best 
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of the authors’ knowledge, the first attempt to describe the dynamic variables that influence the 

PBO workload cycle for strategic planning. This method helps to understand holistically the effect 

of variations in one variable on other variables in the short and long terms. The applied decisions 

and strategies to be applied can be tested before implementation to support, facilitate, and enhance 

decision-making. 

Table 3.2 Identification of dynamic variables 
Category Item Variable Identification 

Contractor 

 

V1 Organization 
Cash  

This variable indicates the cash balance of the organization, the financial capacity 
of the contractor, and the available cash for running projects and upcoming 
projects. 

V2 Organization 
experience 

This variable indicates the experience of the organization with this type of project, 
management competency, work quality, the percentage of errors in work, and the 
rework percentage. It is measured by the previous workload performed by the 
organization. 

V3 Resources  This variable indicates the availability and capacity of the contractor’s equipment, 
qualified staff, booked value, and assets. This is measured by the man hours 
available. 

V4 Bid price This variable indicates the size of the project, the contract price, or the awarded 
price. 

V5 Productivity  This variable includes labor productivity, equipment productivity, and crew 
productivity.  

V6 Debit  This variable indicates the number of contractors’ loans from financial institutions, 
interest rate, and payment terms. 

V7 Bid 
manipulation  

This variable includes overbidding, low tender sum, and beyond contractual 
reword or abnormal claims for contractor behavior. 

V8 Markup  This variable indicates the profit margin in similar projects and the expected return 
on investment. 

V9 Organization 
utilization 

This variable indicates the utilization of resources, their allocation, and 
organizational capacity relative to workload. 

V10 Overhead cost 

/organization 
overheads 

This variable indicates the indirect costs incurred, such as the cost of measures to 
satisfy the safety level required. 

V11 Tender 
preparation 
cost 

This variable indicates the cost for an organization to prepare a plan and estimate 
the bidding price of the potential project. 

V12 Winning 
percent 

This variable indicates the probability of winning the tender based on the tendering 
method, evaluation criteria, and contractor’s history. 

Owner 

 

V13 Owner 
strictness 

This variable indicates owner auditing or leniency of the owner in reviews, the 
quality level required, the required level of supervision, the owner’s reputation, 
and the type. This is measured by the tolerance level accepted. 

V14 Payment  This variable indicates the terms of payment, advanced payment, and payment 
delay. 
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Category Item Variable Identification 

V15 Tender 
document 
purchasing 
fees 

This variable indicates the purchasing price of contract documents and other 
administrative fees to participate in the bidding phase. 

V16 Compensation  This variable includes the value of liquidated damage, penalties for non-
completion, and the bonus for early completion. 

V17 Bonds value This variable indicates the size of the contractor in the market, its running financial 
power, and the size and validity of the bonds required. 

V18 Bid time This variable indicates the time allowed for bid preparation and tendering 
duration. 

Market  

 

V19 Projects 
availability 

This variable indicates the market conditions and severity/intensity of competition 
in the industry. 

V20 Market share This variable includes the current and expected market share based on the 
expected awarded projects. 

V21 Outsource 
quality 

This variable refers to the output quality of the available qualified subcontractors 
and material suppliers  

V22 Number of 
bidders 

This variable indicates the level of interest in the project. 

V23 Price feasibility This variable indicates the efficiency of the costing method, uncertainty in cost 
estimation, and the feasibility of cost to market. This is identified by comparing the 
bidding price to the market price. 

Project 

 

V24 Outsource 
percent 

This variable indicates the amount of work that is allowed to be subcontracted 
according to the contract. 

V25 Project 
schedule 

This variable indicates planned/approved contract duration. 

V26 Risk  This variable indicates safety incidents, safety hazards, the possibility of 
environmental issues during execution, resource price fluctuations, schedule 
pressure or delays, and change in scope.  

V27 Design 
complexity  

This variable indicates the design difficulty, clarity of requirements, quality, and 
potential for design rework. 

V28 Project scope This variable indicates the workload required and the project type of work. 

3.4 ANALYSIS OF DYNAMIC VARIABLES 

A reference matrix (Table 3.3) is created using the 28 variables in Table 3.2 as rows and the 35 

sources as columns. Then, for each cell (i.e., the intersection between row and column), if the 

variable is mentioned in this source, the value of the cell will be 1; otherwise, it will be 0, as shown 

in Table 3.3. The purpose of this matrix is to illustrate what the consensus is among academics and 

professionals regarding the variables in general. The matrix is then split into two matrices, one for 

SD modeling and the other for non-dynamic modeling. 
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Table 3.3 Reference matrix 

 SD Sources Non-SD Sources 
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V01 1    1 1     1 1     1  1 1 1 1 1 1 1 1  1  1  1 1  1 

V02  1  1 1   1 1 1 1 1 1  1 1 1 1 1 1 1 1 1 1 1  1   1  1 1  1 

V03  1   1 1 1 1 1   1 1  1 1 1 1 1 1 1 1 1 1 1  1 1 1 1  1 1 1 1 

V04   1   1      1         1 1 1 1  1 1 1 1 1 1 1 1  1 

V05    1 1  1 1 1    1 1 1 1 1 1           1       

V06  1   1               1 1   1            

V07   1        1                       1  

V08            1        1  1 1 1 1  1 1 1 1 1 1 1  1 

V09  1     1 1       1    1 1 1 1 1 1  1 1 1  1  1 1  1 

V10                     1  1 1         1 1  

V11                          1          

V12                     1  1 1  1   1     1  

V13           1        1 1 1 1 1 1  1 1 1  1  1 1 1 1 

V14     1 1    1      1 1 1  1 1 1 1 1 1 1  1 1 1   1  1 

V15                     1  1 1         1   

V16                     1 1 1 1        1   1 

V17                     1  1 1 1 1 1   1  1 1  1 

V18                    1 1 1 1 1 1 1 1   1  1 1  1 

V19   1   1     1 1       1 1 1 1 1 1    1  1  1 1  1 

V20  1    1     1        1 1 1 1 1 1 1 1    1   1   

V21        1         1  1 1 1 1 1 1 1  1 1 1   1 1 1 1 

V22  1 1   1     1 1        1 1 1 1 1    1  1 1  1  1 

V23           1            1   1          

V24        1         1  1 1  1 1         1 1  1 

V25  1  1 1   1 1 1  1 1  1 1 1 1  1 1 1 1 1 1  1 1 1 1 1 1 1 1 1 

V26  1  1  1 1 1 1    1 1 1  1 1  1 1 1 1 1 1  1 1 1 1 1 1 1  1 

V27        1  1          1 1 1 1 1 1 1 1 1    1 1  1 

V28  1      1 1   1 1  1 1 1 1   1 1 1 1  1 1 1  1 1 1 1 1 1 
Note: S1 means Sours number 1, and V1 means Variable number 1. The details of each source and variable are mentioned in Table 3.1and Table 3.2 respectively. 

3.4.1 Conventional analysis (RUI) 

The conventional analysis begins with calculating the sum of each row of the reference matrix 

(both dynamic and non-dynamic sources). This summation is then normalized for the calculated 

matrix to compare the ranking of variables for both matrices (since the number of sources varies 

between the two matrices). The  normalized value is calculated by dividing the total value of each 

row by the maximum total value for the analyzed matrix. Hence, the score of each variable ranges 

between 0 and 1. 
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To this point, the interconnections among the various variables have not been factored into the 

analysis. Accordingly, another technique is required to determine how the variables relate to one 

another and thereby provide a more accurate picture of their relevance and gaps. SNA is utilized 

for this purpose. 

3.4.2 Social network analysis 

SNA represents people or variables as nodes and their relations as lines. SNA is used to investigate 

how variables are connected and organized (Marin and Wellman 2011, 25). In the present study, 

to build the network, the previously built matrices (SD and non-SD) are used. Each variable is 

considered a node in the network, where two variables being mentioned in the same source is 

indicative of a relation (edge) between them. This network is considered undirected because it 

considers the study of two variables simultaneously, not the effect of one variable on another. 

Gephi is used to analyze the networks built. Gephi is software for visual analytics and investigation 

of networks, dynamics, and relational graphs (Marin and Wellman 2011, 25). The measures used 

for social networks are divided into two categories: those that provide information about individual 

positions and interactions between nodes, and those that provide information about the SN's overall 

structure (Hanneman and Riddle 2005). For this research, the first category is adopted. The prestige 

measurement used for undirected networks is centrality.  

The main assumption to build the network of variables from the previous studies states that the 

link/connection between these variables is the mention of these variables in one study. Hence, 

some SNA measures cannot provide a real reflection of the value generated from the 

measurements. For example, the degree to which a node is between other nodes in the network is 

measured by node betweenness. The variables with a higher degree of betweenness (gatekeepers) 

might function as an interface between closely knit groups. They are vital pieces in the connection 

between distinct parts of the network because they tend to regulate data flow across variables. Yet, 

based on the assumption the network is not mimicking the data flow between variables. The same 

concept is applied to the closeness measure as well. Hence, both are not calculated. 

 



42 

 

3.5 RESULTS AND DISCUSSION 

3.5.1 Conventional analysis (RUI) 

The results of the normalized score (RUI)  are shown in Figure 3.2, where this score is reflective 

of the frequency of variables used in the studied articles. The frequency with which a variable has 

been mentioned in previous studies may be indicative of its relevance. Moreover, Figure 3.2 

indicates that the most used variables are V3  (Resources), V2  (Organization experience), V25  

(Project schedule), and V26  (Risk). This indicates that these are, theoretically, the most prevalent 

variables mentioned in the literature, and as such, they are incorporated in the SD models that 

analyze project management elements. The differences between scores allow for the detection of 

discrepancies between theoretical and simulation models that have been developed to date. These 

variables are V13 (Owner strictness), V18 (Bid time), V8 (Markup), V21 (Outsource quality), V17 

(Bonds value), V27 (Design complexity), V4 (Bid price), V9 (Organization utilization). The 

discrepancies concerning these variables indicate that these variables have received less research 

attention than what may be warranted. In other words, there is a lack of dynamic models for 

studying and simulating these variables. It is worth mentioning that variables such as V18 (Bid 

time) and V17 (Bonds value), despite their importance, have not been studied using SD models in 

any previous study. 
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Figure 3.2 Normalized score for each variable as per the matrix 

3.5.2 Social network analysis 

Figure 3.3 reveals that the non-SD network has a higher degree of centrality than the SD network. 

This indicates that, while the literature emphasizes the importance of investigating dynamic 

variables in conjunction rather than separately, the simulation models developed have tended to 

focus on specific variables. Figure 3.4 quantifies this observation, where the variables with the 

highest normalized score in both networks can be considered the most prominent variables in 

construction project management. These variables are V1 (Organization Cash), V3 (Resources), 

V22 (Number of bidders), V25 (Project schedule), and V26 (Risk). In both networks, these 

variables have a normalized degree greater than 0.8, meaning that, concerning these variables, the 

simulation models developed are in agreement with what has been advocated theoretically in the 

literature. 

Both the conventional analysis and the SNA show that the greatest disparity is about variable V13 

(Owner strictness). From this, it can be inferred that, although “Owner strictness” is a critical 

variable influencing project success, it has been underrepresented in the simulation models 

developed to date. The second-largest gap is V23 (Price feasibility). This variable has not received 

sufficient attention from the dynamic analysis perspective, as shown in Figure 3.4. Moreover, the 

difference in density between the two networks shown in Figure 3.3 indicates that the variables 

are linked and have been considered in expert mental models, but have not garnered a sufficient 

amount of attention in terms of modeling analysis. Finally, the analysis reveals that no model 
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among the studies reviewed accounts for all 28 dynamic variables. Among the models reviewed, 

none is capable of modeling more than 10 variables at once. 

 

Figure 3.3 Social network for SD and non-SD studies 

 

 

Figure 3.4 Normalized degree score per variable for each network 
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The identified 28 dynamic variables can cover a wide range of project aspects such as risk, 

productivity, resources, outsourcing, project scope changes, and others as mentioned in Table 3.2. 

Moreover, these variables can represent safety using the variables: overhead cost, rework, and risk. 

The organization's technology level can be represented by the productivity, and rework variables. 

The schedule pressure can be represented by the difference between the project schedule and the 

project time. Overtime can be represented by productivity and cost. In other words, the 28 dynamic 

variables can be reconfigurable to represent almost the project aspects. 

Because social networks are inherently transitive, a particular node's connections are probably to 

be connected. i.e. in the current case how the mental models of experts link one variable to other 

variables and other variables to the connection of this variable. A clustering coefficient is used to 

measure this attribute of transitivity. Transitivity is a local attribute of a node's neighborhood that 

reflects the amount of cohesiveness amongst the node's neighbors. The local clustering coefficient 

is calculated for each node and is shown in Figure 3.5 

 

 

Figure 3.5 Normalized local clustering coefficient per variable for each network 

V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27 V28

Clustering_SD 0.640.620.740.86 0.950.951.000.830.91 1.000.79 0.930.93 0.750.72 0.691.00 0.740.780.980.74

Clustering_ND 0.951.000.890.901.001.001.000.940.950.941.000.850.900.901.001.000.950.951.000.950.891.000.961.000.890.940.950.90

0.00

0.20

0.40

0.60

0.80

1.00

C
lu

st
er

in
g 

C
o

ef
iic

ie
n

t

Dynamic Variables

(a) Local Clustering Coefficient

Clustering_SD Clustering_ND

-0.2

0

0.2

0.4

0.6

0.8

1

V05V11V15V24V18V21V12V02V01V22V19V20V26V28V03V25V09V14V16V06V07V04V10V17V27V23V08V13

Lo
ca

l C
lu

st
e

r 
C

o
e

ff
ic

ie
n

t 
D

if
fe

re
n

ce
 

Dynaic Variables

(b) Descending order of Difference



46 

 

The difference between the local clustering coefficient calculated from the Dynamic network and 

the Non-Dynamic network highlights the gap between what is required as represented by experts’ 

suggestions and the dynamic models available. It also stresses the same variables identified by the 

degree of node measurements. 

To sum up, V13 (Owner strictness), V18 (Bid time), V10 (Overheads), V5 (Productivity), V11 

(Tender preparation cost), and V12 (Winning percent) are the most important factors. These factors 

exhibit the highest difference between their importance in the expert mental models and the applied 

dynamic model to assess them. These variables require further investigation to quantify their 

impact and position among other variables in the expert mental management system of the PBO. 

It is worth mentioning that variables analysis is discussed with industry experts to validate these 

results and they emphasize the importance of the variables.  

3.6 SUMMARY 

This chapter utilized the systematic literature review approach to identify causes that affect the 

PBO workload fluctuation and understand their interaction. The need for this study was 

highlighted in multiple industrial reports and increased this need in the transformation of the 

construction industry to digitalization and modularity.  

The goal of this chapter was threefold. The first goal was to address the absence of a systematic 

evaluation and content analysis of existing studies on workload changes in construction, identify 

research gaps, and recommend future research possibilities. The second goal was to conduct a 

critical analysis of common components used in construction management procedures. The third 

goal was to identify factors influencing construction projects and contracting organizations. 

The available literature on PBO business modeling and construction project management was 

analyzed using dynamic modeling. Two project phases that have typically been studied separately 

in the literature (pre-award and post-award) were linked in this study. Accordingly, a systematic 

analysis of prior studies was carried out and identified the dynamic variables that affect the project 

and the PBO’s performance. Then, conventional analysis and SNA were utilized to quantify any 

variable that has received little to no attention in the available literature.  
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The analysis revealed that no model among the articles reviewed was capable of accounting for all 

28 dynamic variables. The available models were capable of modeling simultaneously 10 

variables. This established a compelling argument for the development of an SD model that 

incorporates all 28 variables to realize more holistic PBO and project management. This step filled 

the gap between mental models linking these variables and the applied dynamic models revealed 

from SNA.   
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CHAPTER 4 ANALYSIS AND PREDICTION OF 

CONSTRUCTION INDUSTRY DEMAND  

4.1 INTRODUCTION: 

The construction industry is a dynamic environment that is affected by multiple economic factors. 

In such dynamics, a contracting organization’s strategic planners depend on monitoring economic 

variables such as oil prices, inflation rates, and raw material prices. Then use their mental 

projection to get expectations for future construction industry demand (Asamoah et al. 2019). 

(Asamoah et al. 2019) in their review study identified 59 cited variables used in the construction 

industry to predict demand. The most five cited variables are growth domestic product, inflation, 

exchange rate, interest rate, and consumer price index. Tracking and predicting all economic 

variables is a super hard process and the data is not available (Christopher and Holweg 2017) 

Demand prediction is very important for strategic decisions because it affects other upstream 

operations of the organization. The demand prediction is required to consider the economic 

variability, be precise, and grant critical information to capacity planners (Gilliland 2010). This is 

a challenging process because of the underlying volatility and various uncertainties (Nazaripouya 

et al. 2016, 1-5). 

Demand has two types, constrained and unconstrained. The unconstrained demand is the total 

customer demand that represents the industry demand. Constrained demand is the one that 

considers the organization's ability and limitations to fulfill the unconstrained demand. Forecasting 

using constrained demand will not reflect the real market need for a service. This explains why the 

previously awarded projects for contracting organizations are not used to predict the future demand 

for its services. In other words, the true demand is unique for each organization and is not reflected 

by the historical data of its orders (Gilliland 2010). 

Strategic planners blame the unreliability of long-term plans on the market dynamics, which 

reduce their ability to maintain a stable workforce and a balanced workload. Volatile demand is 

being blamed to increase uncertainty in the organization's upstream operations. Tracking and 

predicting all economic variables is a super hard process and the data is not available (Christopher 

and Holweg 2017).  
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Building permits can work as an indicator of the construction industry demand that includes the 

effect of economic variations. The number of building permits issued at a time can be used as a 

univariate time series (TS) to represent the fluctuation in the demand of the construction industry 

in a specific area. This local variant includes the effect of interrelated industrial parameters 

influencing the market. Univariate analysis is very helpful because prediction algorithms do not 

require a lot of inputs and provide an understanding of the fundamental structure of past data 

(Lazzeri 2020). This is helpful for the context of understanding the behavior of the SD model 

variable’s pattern input in the following chapters. 

4.1.1 Time series analysis 

A time series is a collection of raw data points that are arranged chronologically. It could be either 

univariate that have a single variable, or multivariate (Adhikari and Agrawal 2013). TS consists of 

short and long-term, and variations (errors). The short-term is the seasonal (cyclic changes), while 

the long-term one is the trend (Lazzeri 2020). The components of TS are (Gilliland 2010): 

• Level, which is the series' arithmetic mean. 

• Trend, which is the series' growing or falling value. 

• Seasonality, which is the series' recurring short-term cycle. 

• Noise, which is the series' unpredictable fluctuation. 

Analysis of TS is separating the previously mentioned components from the raw data to make it 

ready for model feeding and future projections. The analysis includes the use of statistical 

parameters, such as mean and standard deviation, to provide information about the dependency of 

the data on time and the volatility inherent in the data. If the series is dependent on time then it is 

called non-stationary, stationary otherwise (Lazzeri 2020). The uncertainty (volatility) in the 

demand time series can be represented by the coefficient of variation (CV). That is determined by 

calculating the standard deviation and dividing it over the average for a certain period as shown in 

Equation 4.1 (Gilliland 2010), (Abolghasemi et al. 2020, 106380).  

𝐶𝑉 =  
𝜎

𝜇
 ( 4.1 ) 

 Where: σ is the standard deviation of the variable for a specific period and μ is the average of this 

variable for the same period. 
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A high CV value means a high level of uncertainty (Huang, Chang, and Chou 2008, 3223-3239). 

It is critical to include and foresee these uncertainties to minimize the harmful repercussions of 

variable demand, which makes forecasting difficult (Syntetos et al. 2016, 1-26).  

4.1.2 Prediction algorithm selection 

Although no particular model can be said to work well with all types of time series, the time series 

characteristics can be used to select the best prediction models (Wang, Xiaozhe, Smith-Miles, and 

Hyndman 2009, 2581-2594).  

The algorithms predict the future values of the TS assuming that values are a mixture of the level, 

trend, seasonality, and noise factors. This combination could be in the form of addition or 

multiplication. In the addition form, the TS value is the summation of the components. In the 

multiplication form, the TS value is the multiplication of the components. Additive models are 

great in short projections, but not working perfectly in long-term projections. This weak point 

comes from the assumption of existing patterns are the future ones. Another weak point is it 

cannot predict turning points, which are points when a significant change of trend occurs. 

However, the additive model is used when the variations in trend are linear. Other than that, the 

multiplicative model is used and is considered more stable than the additive one in predicting 

demand (Montgomery, Jennings, and Kulahci 2015). In this study, multiple additive and 

multiplicative models are utilized in predicting future demand and testing their ability relative to 

time series patterns. 

4.1.3 Chapter goal 

This chapter focuses on the research's second objective. This will be achieved through two 

subgoals. The first goal is to help contractors understand the construction industry's demand for 

stochastic variation. This is achieved through the analysis of 65 univariant time series of building 

permits from various Canadian provinces. The number of projects is used as an indicator of the 

demand. The statistical analysis extracts the construction industry demand features, such as range, 

variability, mean, and distribution. These features help to identify demand as stable or not, have 

low or high variability, and extract its pattern across the years. Also, find if seasonality affects the 

demand or if the trend is the dominant feature.  
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The second goal is to find an easy reliable tool to forecast the local construction industry demand. 

That can consider the uncertainties and volatility in such a market and can consider the economic 

variables without explicitly mentioning their values. This is achieved through the application of 

multiple prediction algorithms. Such as Seasonal Naïve (SNAIVE), Holt-Winter (HW), Seasonal 

Auto Regression Integrating Moving Average (SARIMA), FaceBook Prophet, Exponential 

smoothing (ETS), Neural network (NN), and Gaussian with kernels as the most common and 

successful techniques for demand forecasting. The characteristics of these techniques and results 

help to prove if the historical structure of the data is replicated in the future and can be predicted 

or if there is a need for other techniques. 

4.2 METHODOLOGY 

This work utilizes a multi-step methodology, as shown in Figure 4.1 to achieve the goals 

mentioned in the previous section. It starts by defining the problem through discussion with a 

collaborative industry partner. They reveal that the construction industry is very dynamic and has 

a volatile demand. This continuous variation makes it hard for contractors to maintain stable long-

term planning. Hence, the problem is identified to understand the demand uncertainty in the 

construction industry and evaluate the ability to forecast its future demand. The market variation 

is investigated by studying the number of building permits in the Canadian construction industry. 

The source of the data used in this analysis is the Statistics Canada Government Agency Website 

(https://www150.statcan.gc.ca/). An example of the raw data is shown in Figure 4.2. 

 

Figure 4.1 Multi-step methodology outlines 

https://www150.statcan.gc.ca/
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The second step is preparing the data for analysis. The number of building permits is downloaded 

from the Canada statistics website. Then, they are checked for missing data points and duplicates. 

The data available consists of different provinces and territories, each including six categories. The 

provinces and territories included in the analysis are Quebec, Alberta, British Columbia, Manitoba, 

New Brunswick, Northwest territories, Newfoundland and Labrador, Nova Scotia, Ontario, Prince 

Edward Island, Saskatchewan, and Yukon. The categories of each province dataset are Residential, 

Non-residential, Industrial, Commercial, Institutional, and governmental, and the total Canadian 

building permits. The data is monthly permits from January 2018 till December 2021. This means 

48 data points that consist of 4 consecutive years for 65 time series. 

 

Figure 4.2 Alberta monthly building permits 

The third step is data modeling. The data are explored and cleaned using Python codes to test their 

integrity and quality. It is found that the data has neither missing values nor duplicates. Each year 

and month have one unique observation and the data are continuous. Then the data points are sub-

plotted to show how the TS behave after splitting them into train, test, and validation sets. The 

training set is selected to be the first 23 data points in each TS, the testing set is the last three 

months of the first three years and the validation set is selected to be the last year.  

Finally, the best model is selected. There are various criteria for selecting the best-performing 

algorithm. Assessments are used to measure prediction performance using various metrics to 

determine how well the model reflects the data structure. Mean absolute error (MAE) is not used 
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because it has the drawback of dependency on the series scale. They cannot be used to compare 

performance across models that are trained with various data scales. Mean absolute error 

percentage (MAPE) overcomes this issue by calculating a percentage of error relative to the real 

data, this means it scales all the models’ performance between 0 and 100% to be compared. Also, 

the distribution of error and its characteristics are used to assure model suitability for the data 

structure. It is calculated as shown in Equation 4.2. 

MAPE =
1

𝑛
∑ |

𝑒𝑖

𝑦𝑖
|

𝑛

𝑖=1

∗ 100 ( 4.2 ) 

 

Where (y) is the actual value and e is the difference between the actual and predicted value. 

MAPE can be used to compare the results from different scales of data series, and the positive and 

negative error percentages do not cancel each other (Adhikari and Agrawal 2013).  

The main assumption in most time series prediction algorithms is a systematic pattern in the data 

and the future behavior will replicate the past pattern. The crucial problem for model selection 

should not be model fit, but model suitability to the type of behavior present in the data. To evaluate 

prediction results, there are advanced approaches including testing the performance over a test data 

set. The model should take into consideration the pattern's genuine underlying structure or 

systematic behavior. Moreover, there should be a value added by using a specific forecast 

algorithm. This value is typically calculated by the difference between the used predictive 

algorithm and the naïve approach (Gilliland 2010).   

The mean absolute percentage error (MAPE) is used to measure the algorithm performance. 

MAPE is calculated using Equation 4.2. 

The residual analysis is used to measure the algorithm performance in representing the structure 

and behavior of the data series. The Ljung-Box test is utilized to test if the residuals are 

independent and are identically distributed (i.e. uncorrelated) as a group. If the residuals have a 

pattern then there is still some structured information about the data series that are not captured 

yet. The optimum case is residuals do not show any pattern. 
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4.2.1 Qualitative analysis of time series 

The TS is sub-plotted for each year, both monthly and quarterly, to show and understand how the 

series behave seasonally. The box plot is, also, sub-plotted yearly to visualize the range distribution 

of the building permit numbers. Then, the percent of change for the industry demand is calculated 

to explore how the total demand is changing from the previous year. The behavior of each quarter 

over the years is then plotted to understand the trend and seasonality of the TS. The density 

distribution is plotted for each TS yearly to the overall distribution to visualize the range of box 

plots for each year. Then quarterly industry demand is plotted as a percentage of each year to 

understand the contribution of each quarter to the entire year. Finally, the data series is decomposed 

into its original components to check the trend, seasonality, and residuals to make sure that all 

characteristics of the series are extracted.  

4.2.2 Quantitative analysis of time series 

Statistical tests are utilized to confirm observations from the qualitative analysis. First, the 

coefficient of variation (CV) is determined by calculating the standard deviation and dividing it by 

the average. The range of medium variability is between 0.75 and 1.3 for CV value. low variability 

is for a CV less than 0.75, and high variability is for a CV greater than 1.3.  

Autocorrelation and partial autocorrelation of the data are plotted to check the data momentum. 

Then, test the series to be stationary using the Augmented Dicky Fuller (ADF) test. ADF examines 

the null hypothesis that there is no unit root in a data series. The alternative hypothesis varies based 

on the version of the test employed, but it is often stationarity (Paparoditis and Politis 2018, 955-

973), (Cheung and Lai 1995, 277-280). The function used is the “adfuller” function from 

the “Statsmodels” package in python. If the result (p-value) is less than 0.05, then the series is 

stationary, otherwise non-stationary.    

Finally, check if the series is normally distributed. i.e. it does not have a long tail that will affect 

the performance of the models that will be used to predict future demand. The “Jarque Bera” test 

for normality is conducted. This is a goodness-of-fit test that determines if data exhibits the 

skewness and kurtosis of a normal distribution (Thadewald and Büning 2007, 87-105). The 

“Jarque–Bera” function from the "statsmodels” in python is used to test the data points.  
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4.3 FORECASTING THE FUTURE DEMAND 

The characteristics of data are used to filter the candidate models to a narrow set that could handle 

its features, such as SARIMA, Facebook Prophet, S-Naïve, and Exponential smoothing. The 

description for each model will be discussed in the following subsections. These models are trained 

using the data in either its raw condition or after transformation using Box-Cox, Log function, 

scaling, or differencing. This transformation can deseasonalize and-or detrend the dataset for 

efficient model training. The model training starts by feeding the training set to the algorithm. The 

feature selection process is done at this step to provide helpful information that enhances the 

algorithm learning process. The model is, then, tested using a different set of data called a testing 

set. Finally, the best-performing model is selected and compared with other selected algorithms.  

4.3.1 Box-Cox transformation 

The Box-Cox transformation is used to make the data as normally distributed as possible. This 

step aims to get a normal distribution residual using Equation 4.3. In other words, help the 

algorithm to get a good prediction by removing the white noise from this transformation.  

𝑤 =  {
log(𝑦)             𝑖𝑓 𝜆 = 0

(𝑦𝜆 − 1)/𝜆     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ( 4.3 ) 

        

Where:  

y and w are the original and transformed data. 

λ is a parameter calculated to maximize the log-likelihood function. 

The confidence interval is calculated using Equation 4.4. 

𝑙𝑙𝑓(�̂�) − 𝑙𝑙𝑓(𝜆) < 0.5 χ 2 (1 − 𝛼, 1) ( 4.4 ) 

  

llf is the log-likelihood function and χ 2 is the chi-square function. If the optimal value for λ is 1 

then the data has a normal distribution, and in this case, the original data will only be shifted down.  

α is the error percent and is set to 0.05 for confidence interval calculations. 

4.3.2 Log transformation 

The most widespread conversion in time series analysis is the logarithmic (Log) transformation. It 

is used frequently to stabilize a series' variation and reduce the skewness using Equation 4.5. If a 
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steady variance is not maintained, then, the log transformation might be detrimental to prediction 

precision (Lütkepohl and Xu 2012, 619-638), (Hassani et al. 2020, 4-25). The transformation is 

done using the “log” function from “NumPy” in python.  

𝑦𝑡 = log (𝑥𝑡) ( 4.5 ) 

 

Where: xt and yt are the original and transformed data points at time t. 

4.3.3 Difference transformation 

Any algorithm's prediction is influenced by trends and random patterns in time series. One of the 

most common practices to remove seasonality and trend is to differentiate the series with the 

specific lags using Equation 4.6. 

𝑦𝑡 = 𝑥𝑡 −  𝑥𝑡−𝑛 ( 4.6 ) 

  

Where: yt is the value of the data point after removing the seasonality and xt is the raw data point. 

n is the significant lag value. i.e. if n =1 then xt-n = xt-1 which is the previous value of xt 

4.3.4 Seasonal Naïve 

The tendency of the series to display behavior that replicates again every number of intervals is 

known as seasonality. There are two types of seasonality, additive and multiplicative. The series 

exhibits consistent seasonal variations independent of its average level in additive seasonality. 

While in the multiplicative situation, the seasonal variation depends on the average level. The 

overall level of the TS is called a trend. It can be increasing, linear, exponential, or damping 

(Kalekar 2004, 1-13). 

The seasonal naïve (s-naïve) model is used as a base case to compare other models' results with its 

results (Anđelić and Rakićević 2020, 10), (Mamula 2015, 102), (Silvestre, dos Santos, and de 

Carvalho 2021, 1-7), (Joshi and Tyagi 2021). The reason to pick s-naïve is that the data series 

exhibit strong seasonality as mentioned in the understanding and visualization of data. The forecast 

using this method does not consider the trend in the calculations as it assigns the last similar 

seasonal value to the same season in the prediction. For example, to predict the future demand for 

January, it assigns the demand in the last January as a predicted value.  
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4.3.5 Holt Winter 

Exponential smoothing is a method that assigned exponential weights to the data points. The 

current data are assigned a higher weight than older ones. Holt-Winter (HW) model is the third 

exponential smoothing. It is suitable for data that exhibits seasonality and trend components and 

has two models depending on seasonality, additive and multiplicative. The multiplicative Holt 

Winter is suitable for data that shows a multiplicative seasonality component and assumes that 

data can be represented using Equation 4.7, (Kalekar 2004, 1-13): 

𝑦𝑡 =  (𝑏1 + 𝑏2)𝑆𝑡 +  𝜀𝑡 ( 4.7 ) 

  

The additive model is used when data shows additive seasonality, and assumes that data can be 

presented using Equation 4.8, (Kalekar 2004, 1-13): 

𝑦𝑡 =  𝑏1 + 𝑏2𝑡 + 𝑆𝑡 +  𝜀𝑡  ( 4.8 ) 

  

Where: b1 is the base component.  b2 is the trend component. St is the seasonal component (additive 

factor in the case of additive equation and multiplicative factor in the other case). εt is the error 

component 

The additive model is not adaptive, where parameters are calculated once and the history of data 

is not used in the forecasting, but it is simpler and easy. The multiplicative model is adaptive and 

the parameters are changed using the historical data to adapt to changes.  

4.3.6 SARIMA 

Because the data series demonstrates seasonality, the seasonal auto-regression integrated moving 

average (SARIMA) model is preferred to the normal ARIMA model. It may be defined as the 

product of two ARIMA models (p,d,q) and (P, D, Q). The non-seasonal auto-regression order, no 

seasonal differencing, and non-seasonal moving average order are represented by the model 

parameters p, d, and q, respectively. The seasonal auto-regression order, seasonal differencing, 

seasonal moving average order, and repeating seasonal pattern time duration are represented by 

the model parameters P, D, Q, and S, respectively (Tseng and Tzeng 2002, 367-376).  
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This approach has been used successfully in anticipating economic, marketing, and social 

difficulties, among other things. The algorithm does not consider the dataset measurement errors 

(uncertainties) (Wang, Yuanyuan et al. 2012, 284-294),  (Chen and Wang 2007, 254-264) 

The prediction using the SARIMA model is started by utilizing the auto-correlation function 

(ACF) and partial auto-correlation function (PACF). These calculations enhance the identification 

of the model parameters and estimate the unknown variables. Then, tests the performance of the 

algorithm through analysis of the calculated residuals. Finally, select the best fit model and predict 

the future data points. The residuals (prediction errors) should be statistically independent and 

normally distributed with zero means (Liu, X., Lin, and Feng 2021, 120492). 

One of the limitations of using the SARIMA model is it requires the data points to be normally 

distributed which is very hard to prove in real data, because of the data availability and value 

uncertainty (Tseng and Tzeng 2002, 367-376). 

4.3.7 Facebook prophet 

Facebook Prophet (FBP) is a method for forecasting TS. It uses an additive model to fit non-linear 

patterns to annual, monthly, and daily seasonality. FBP considers the impact of holidays and 

performs effectively with time series that have substantial seasonal effects. FBP is resilient to 

missing data and trend alterations. It usually handles outliers as well (Sulasikin et al. 2021, 1-5). 

It was designed to handle high-frequency data such as daily, hourly, minute, and so on. It may or 

may not work well with monthly or quarterly data. It provides changepoints, anomalies, and 

forecasts in addition to forecasting. This is useful for spotting rapid changes in time series. 

The FBP model was developed by Facebook in 2017 (Vishwas and Patel 2020). It employs a 

decomposable model with three key components: trend, seasonality, and holidays as in Equation 

4.9.  

𝑦(𝑡) = 𝑇(𝑡) + 𝑠(𝑡) + 𝑗(𝑡) + 𝜀𝑡 ( 4.9 ) 

  

Where T(t) is the trend function for irregular variations, s(t) is the seasonality , j(t) is the impact of 

the holiday or non-periodic seasonality, and εt is the error term.  
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4.3.8 Neural network forecasting 

In this approach, the model is trained to get the right rules. This tool differs from statistical 

methods. A good machine learning model requires data points to feed the model with, examples 

to train the model, and an evaluation technique. The model takes the input data then try to get the 

rules using the examples and then evaluates the progress using the given evaluation mechanism.  

Long-Short-Term-Memory (LSTM) is utilized in this study because it overcomes the drawbacks 

of missing the feedback in the feed-forward neural network and the vanishing gradient of the 

recurrent neural network (Bengio, Simard, and Frasconi 1994, 157-166), (Toharudin et al. 2020, 

1-24). The LSTM does this with three gates: a forget gate to determine the amount of information 

that must be deleted, an input gateway to regulate the number of neurons that must be collected, 

and an output gateway to regulate the number of neurons that must be transferred to the next cell 

(Hochreiter and Schmidhuber 1997, 1735-1780). 

The learning step is performed on the training set using various network setups and selects the 

least error among the different training models. This is performed by computing the operator’s 

value up to the max-epoch or stop if the goal error is achieved (Toharudin et al. 2020, 1-24). 

In general, deep learning approaches cannot be used to do grid searching; grid searching is multiple 

combinations of different factors’ values and selecting the best performing combination. This is 

because deep learning approaches frequently need vast quantities of data and complex models, 

leading to models that consume hours or days to learn. In circumstances when the data sources are 

tiny, such as univariate time series, a grid search may be used to modify the parameters of the 

model. 

4.3.9 Exponential smoothing  

Exponential Smoothing (ETS) is capable of dealing with discrete data with trend and 

seasonality.  It also adheres to the Robustness condition and is used as a model of Bayesian 

Extrapolation. The principle behind the exponential Smoothing technique is that the predictions 

produced by this method are the weighted average of previous observations, and the weight decays 

exponentially with time, such that current data have bigger weights than previous ones. As a result, 

smarter projections are produced (Jain and Mallick 2017). 
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ETS contains three key components: error, trend, and seasonality that might be additive, 

multiplicative, or none. The automated ETS model selection procedure is used to adapt exponential 

structures with multiplying elements and assessed different versions before choosing the optimum 

framework for predicting the data. The best model was determined by minimizing the corrected 

Akaike information criterion (Liu, H. et al. 2020, 287-294). 

4.3.10 Gaussian with kernels 

Kernels are used because of their ability to handle nonlinear issues. They've been used successfully 

for pattern recognition, regression, and density estimation (Richard, Bermudez, and Honeine 2008, 

1058-1067),  (Williams and Rasmussen 2006). The Gaussian technique utilizes the Bayesian 

concept of P(x2|x1=known) to represent the effect of the previous data point in the series on future 

values (Gelman and others 1995). It utilizes the kernel covariance to define the covariance function 

for the independent variable (x or t variable in the regression problem between time or location 

and value of the data point) (Roberts et al. 2013, 20110550). Then, predict the probability for 

future value using Equation 4.10. 

𝑝(𝑦(𝑥)) = 𝒩(𝜇(𝑥), 𝐾(𝑥, 𝑥)) ( 4.10 ) 

  

Where: 

Y(x) is the dependent variable. i.e. the data point value. x is the location. i.e. the time of the value 

of y. Μ(x) is the mean function. K(x,x) is the kernel covariance of the x. 

For the application on python, the GaussianProcessRegressor is imported from the 

sklearn.gaussian_process module. Also, different kernels such as 

WhiteKernel, ExpSineSquared, ConstantKernel, and RBF kernels are imported to represent the 

noise in data, seasonality, and trend.  

4.4 ANALYSIS OF RESULTS AND DISCUSSION 

4.4.1 Results from qualitative analysis 

From the qualitative analysis of the data series, it is obvious that the market goes up and down 

each year as shown in Figure 4.3, which represents a seasonal pattern. Typically, the market goes 

up from the first quarter to the second quarter, which is the peak of the market, and almost steady 
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to the third quarter, then drops in the fourth quarter. Comparing the second quarter's peak demand 

shows that the industry demand exhibits a trend. 

 

 

Figure 4.3 Monthly and Quarterly plot of building permits for three years 

The overall data is clean and a few data points are outside of the interquartile range of the box plot 

as shown in Figure 4.4, this means that the data has no or little outliers. The TS has no structure 

breaks. However, the length of the bar in the box plot is relatively stable from 2018 to 2019, it 

shrinks in 2020 (this might be because of the CovId19). This change in the mean and variance of 

the data will require stabilization. Also, the model will be used to predict the industry's future 

demand should capture both trend and seasonality, and can handle outliers.  
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Figure 4.4 Box-plot of building permits numbers in the yearly distribution 

From the calculations of quarter contribution relative to average demand, the quarter plot and heat 

map (Figure 4.5) confirm that the industry peak is in the second quarter and drops in the fourth 

quarter. In each quarter over the years, a little distortion from this trend appears in the third and 

fourth quarters of the residential series. It has an upward trend, while others (the majority) observe 

cyclic seasonality. Although demand peaks in the second quarter of each year, all quarters 

contribute almost the same to the yearly industry demand. The seasonal factor analysis shows that 

market demand increases in the second and third quarters by 5 to 30% depending on the project 

category relative to average, while the demand drops in the first and fourth quarters by 20 to 40% 

depending on the project category relative to average.  

  

Figure 4.5 Quarter percent plot and heat map plot 

The Kennel Density plot shows data look normally distributed with a bimodal distribution as 

shown in Figure 4.6. This indicates the sinusoidal distribution of the series. Also, bimodal 

distribution reflects the peak and valley of the demand along the quarters. The beaks are almost 

stable over the years, which indicates the demand average is slightly changing. This indicates a 
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sinusoidal wave or fluctuation in demand throughout the year. The average demand is almost the 

same between years. i.e. the market demand could be considered balanced around the average. The 

distribution is not flattened as years progress, indicating no or little spread/ variation, which 

confirms the results from the Box plot (except in 2020 because of CovId-19 the box plot indicates 

shrinkage in the market size).  

 

Figure 4.6 Bimodal distribution of the data with a little distortion 

The histogram plot (Figure 4.7) shows that data are normally distributed with a little distortion. 

This misshape is represented in the Q-Q plot (Figure 4.8) around the 45-degree line. To confirm 

these observations, statistical tests are conducted as presented in the next subsection. 

 

Figure 4.7 Histogram distribution of data 
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Figure 4.8 Q-Q plot of data 

4.4.2 Results from quantitative analysis 

Coefficient of Variance (CV) test results show that the demand has a low to medium variability. 

The Autocorrelation (ACF), as shown in Figure 4.9, results indicate that the autocorrelation 

coefficient is insignificant at all lag values as they appear within 95% of the correlation index 

except for the first leg and this indicates that the last demand value directly affects the nearest 

future value. Also, there are some series indicating a long memory effect (barely significant) from 

last year's value (fifth and sixth lag value). On the other hand, the partial autocorrelation function 

(PACF) shows that the partial autocorrelation coefficient is insignificant at various values of lags, 

which indicates long-term memory of data series. The fluctuations of the bar lengths show a 

repeating pattern that indicates seasonality has many effects on the data structure and there is no 

momentum as the length varies from positive to negative. 

  

Figure 4.9 Autocorrelation and Partial autocorrelation plots 
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Results from Augmented Dicky Fuller (ADF) test show that the demand series is non-stationary 

(random walk) at the aggregate level, i.e. Canada total data series, that requires further calculations 

to detrend the series (differencing method). Otherwise, almost all data series are stationary. 

Jarque Bera's test revealed that data are normally distributed, except for a little data series. Jarque 

Bera's test for normality is conducted to test the goodness-of-fit and determines if the data exhibits 

the skewness and kurtosis of a normal distribution (Thadewald and Büning 2007, 87-105). 

Generally, after visualizing the data series and extracting its features, the datasets can be 

categorized into nine categories. The categories are a combination of the basic characteristics of 

data as shown in Figure 4.10. Data are not uniformly distributed to the nine categories. Most of 

the data are correlated, normally distributed, stationary, and with low variability. 85% of the data 

are categorized into the first four types. The data does not include a high variability data series. A 

little percentage of data is uncorrelated or non-normally distributed. The nine data categories are: 

• C1 = correlated + normal + stationary + low variability. Represents 43.08% of the data 

• C2 = correlated + normal + non-stationary + low variability. Represents 23.08% of the data 

• C3 = uncorrelated + normal + stationary + low variability. Represents 9.23% of the data 

• C4 = correlated + not normal + stationary + low variability. Represents 9.23% of the data 

• C5 = uncorrelated + not normal + stationary + medium variability. Represents 6.15% of the data 

• C6 = uncorrelated + not normal + stationary + low variability. Represents 3.08% of the data 

• C7 = correlated + not normal + stationary + medium variability. Represents 3.08% of the data 

• C8 = uncorrelated + normal + non-stationary + low variability. Represents 1.54% of the data 

• C9 = correlated + normal + stationary + medium variability. Represents 1.54% of the data 

 

Figure 4.10 Data characteristics distribution 
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4.5 PREDICTION RESULTS 

The collected data mentioned in the previous section are fed to different prediction algorithms 

(ETS, HW, SARIMA, FBP, LSTM) to test their ability to predict future demand. The best 

prediction model for each category of data and the assessment of prediction algorithms are 

presented in the following subsections. 

4.5.1 Seasonal Naïve results 

Seasonal naïve forecasting works admirably given that it is only a logical forecasting approach 

with no statistical process. The model does a good job of capturing seasonality and overall trend, 

although it has a big error margin, an example of prediction results is shown in Figure 4.11. The 

residual analysis reveals that the residuals are not stationary and have a non-zero mean. i.e. The 

model did not capture the trend and seasonal behavior as effectively as it would be liked.  

 

Figure 4.11 Example of SNAIVE prediction results 

4.5.2 HW results 

The model is applied for the data with different combinations of additive and multiplicative 

seasonality, and with data transformation using Cox-Box, differencing, scaling, and log operator. 

Then all these combinations are compared to get the best model from these alternatives. Results 

reveal that there is no specific best combination that fits all datatypes. But each series has its best-
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fit combination. The algorithm of HW cannot handle zero values and require the dataset to have a 

positive value. In 44% of the results, HW performs better on the training set than on the testing 

set. Most of the residuals are uncorrelated and stationery. But some are not normal and almost all 

of them have a non-zero mean with a very small value. i.e. the bias can be considered minor. 

However, the algorithm did CoxBox and Log transformation for some series on the original values 

to get the best results. Using the data at its original values without differencing or scaling is better. 

Example of prediction results using HW is shown in Figure 4.12. 

 

Figure 4.12 Example of HW prediction results 

4.5.3 SARIMA Results 

First, the best fit model for the data series was searched using different data transformations like 

Box-Cox, Log, differencing, and scaling. Then, the best model is trained using the training set and 

then test using the test set. The results of the model vary relative to the data type and transformation 

of the data. Overall the SARIMA performs better for data C1, C2, C7, C8, and C9. i.e. the 

correlated and stationary data. An example of prediction results using SARIMA is shown in Figure 

4.13. The majority of error percent is within 10% and a maximum of 28% for these categories. 

The algorithm results are biased as the residual mean is not zero. Most of the residuals are 

stationary but they swing between the correlation and normality. The overall prediction accuracy 

and results were not better than the HW model and the performance is getting worse. 
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Figure 4.13 Example of SARIMA prediction results 

4.5.4 FBP results 

The FBP model is applied to the data with multiplicative and additive seasonality and various data 

transformation, such as differencing, scaling (normalization), CoxBox, and Log transformation. 

Results for most combinations reveal that multiplicative seasonality is the best fit for data 

characteristics. Except for the differencing data transformation, the additive model is the best fit. 

Unfortunately, the FBP algorithm does not perform better than the previous models as it is suitable 

for high-frequency data. Furthermore, the trend and seasonality were captured well by the model. 

An example of prediction results using FBP is shown in Figure 4.14. 

 

Figure 4.14 Example of FBP prediction results 
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4.5.5 Neural network results 

The neural network model (LSTM algorithm) didn’t perform well along the different kinds of 

datasets. The error percentage is higher than the other algorithms. This is might be because of the 

limited amount of data to train the algorithm, i.e., the parameters of the algorithm did not adjust 

properly because of the lack of data to enhance its values. Furthermore, it takes so long time 

relative to other algorithms in training and grid search. For example, LSTM consumes 19 minutes 

and 36 seconds doing the grid search for one data set and consumes 1 minute and 34 seconds in 

training the algorithm for the best parameter selection. Finally, the error percent ranges from 11.08, 

for the Alberta commercial dataset which has an error percent of 7.6 using the HW model, and 108 

percent error for the Yukon commercial which has a 20.2 percent error using HW. So, it is not 

recommended for this limited amount of training set.  

4.5.6 ETS results 

Even though ETS and HW both use exponential smoothing, the ETS model outperformed the HW 

model substantially. This is because ETS has an enhanced parameter setup and optimization. ETS, 

also, maximizes the likelihood whereas HW lowers the residual error. The residuals resulting from 

ETS are uncorrelated, normally distributed, and have a mean of almost zero, like 1.2 and -2.3. An 

example of prediction results using ETS is shown in Figure 4.15 

 

Figure 4.15 Example of ETS prediction results 
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4.5.7 Gaussian with kernels 

Different combinations of kernels were made. Then, a grid search was applied to find the best-fit 

combination of these kernels. The model performed well for the first three types of data. i.e. normal 

and low variability data sets, and worse otherwise as shown in Figure 4.16. The error margin for 

the majority of the first three types of data is within 30%. Example of prediction results using 

gaussian with kernels for other data types is shown in Figure 4.17 

 

Figure 4.16 Example of Gaussian with kernels prediction results for the first three types of data 

 

Figure 4.17 Example of Gaussian with kernels prediction results for the rest of the data 
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4.6 FORECASTING TECHNIQUE SELECTION  

Each dataset is fed to 23 algorithms including transformations. This is to train the algorithms with 

the first 33 data points (the first three years except for the last quarter) and predict the last three 

months of the third year. Table 4.1 shows the ranges of error for the best prediction algorithms for 

the first four datatypes. The reason to present the first four datatypes is that they represent 85% of 

the used data. Results revealed that exponential smoothing (ETS and HW) with different data 

transformations performs very well, with a maximum error of 27.4% and an average of 8.75%. 

SARIMA performs well for data types C1, C2, and C3. SARIMA has a higher average error 

(9.66%) than exponential smoothing and a higher maximum error (36.3%). LSTM, SNAIVE, and 

Gaussian with kernel algorithms perform well for a minor percent of the dataset. These results 

revealed that market demand can be predicted and the historical structure of the data can represent 

its future. On the other hand, the test set is small to get high confidence in the prediction accuracy 

of the selected algorithms. It might be better to collect more data to be able for a better assessment 

of the algorithm's prediction accuracy.  

Table 4.1 Prediction results on the test set 

Model ETS HW SARIMA GS SNAIVE LSTM 

Transformation Box-

Cox Log -- -- 

Diff+

Scale -- scale 

Box-

Cox 

   
Error 

Percent C1 1.4-

4.8 

5.1-

27.

4 

1.5-

2.9 

1.5-

13.7 5.4 9 

 

4-

4.6 

4.3-

4.9 

  

C2 
3.2-

9 

 

2.4-

13.7 

4.3-

11.6 

 

11.3 

 

3.6-

7.1 

 

3.9-7.6 

 

C3 

 

17.

8 

11.2

-

17.8 

   

36.3 1.4 

 

7.7 9.01 

C4 
3.5 4.1 

4.9-

16 20.2 

     

2.6-16 
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NZ  - 
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- S 

Zero mean: Z, Correlated: C, Normally distributed: N, Stationary: S, Add N before the symbol for indicating opposite  
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4.7 PREDICTION VALIDATION 

 In the validation process, not only test the best models on the validation set but test the effect of 

the increasing train set on the algorithm prediction as shown in Table 4.2. Exponential smoothing 

(HW and ETS) is still the best algorithm. HW has an average error of 18.57 % with a minimum of 

7.1% and a maximum of 43.4%, while ETS has an average error of 10.1 % with a minimum of 

6.2% and a maximum of 16.3%. SARIMA has a high average error percentage of 30.2%. the neural 

network performs better as the training set has increased with an average error of 13.8% and ranges 

from 6.79 to 20.34%. However, Gaussian with kernels and FBP algorithm has a 30% of error, they 

do a good forecast for the limited amount of data. 

The prediction algorithms captured the data behavior and the Pearson correlation coefficient 

between the predicted demand and actual values range from 0.7448 to 0.9626, which is considered 

a strong positive correlation. Even though these results are plausible, the prediction of 2021 makes 

this accuracy unpleasable. This is because the construction demand is highly affected by COVID-

19 in the year 2021 and after. So, it is recommended to test these algorithms after collecting a few 

years past COVID and retest the prediction accuracy. Unfortunately, now this data does not exist. 

Table 4.2 Prediction results on the validation set 

Model ETS HW SARIMA GS FBP LSTM 

Transformation Box-

Cox Log -- -- 

Differenc

e -- 

Box-

Cox Log 

   
Error 

Percent  
C1 

6.2-

11.8 

10.7-

17.9 

8.1-

27.2 

7.1-

16.5 7.1 14.5 

35.4-

38.7 15.6 

 

30.4 11.83 

C2 
6.5-

16.3 14.8 

6.8-

16.7 

8.1-

26.5 

       

C3 

  

6.8 

24-

37.1 

 

25.3 

 

25.3 

  

6.79-

17.54 

C4 

  

13.7-

32.2 43.4 

    

30.6 

 

10.77-

11.68 
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NS 

NZ  - 
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Zero mean: Z, Correlated: C, Normally distributed: N, Stationary: S, Add N before the symbol for indicating opposite 
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Overall, the used algorithms could capture the pattern of the market demand with some errors and 

can replicate the seasonality and trend very well as shown in Figure 4.18. This might be because 

of the data characteristics, i.e., the pattern is stable and regular. Qualitatively, this valuable piece 

of information will reduce the uncertainty for the strategic planner by predicting the unconstrained 

demand, i.e. market demand behavior. Quantitively, ETS works better for the majority of data 

(85% of the data). This will allow the strategic planner to quantify the risk and profit margin for 

each quarter.  

 
Figure 4.18 Multiple algorithms prediction for construction demand for the year 2021 

4.8 SUMMARY 

Construction demand in Canada may be divided into two categories: short or medium-

seasonality (due to weather seasons) and long-term trends (due to economic situations). Because 

of the variability in construction demand, it is hard for contractors to estimate correctly 

the required capacity. This work utilized the number of building permits issued as a new 

representative for the industry demand. Statistical analysis of the market behavior reveals that 

construction industry demand in Canada has a one-year cycle that started in January and ends in 

December. The peak of this cycle is in the second and third quarter of the year and the valley 

happens in the fourth and first quarter of the year. This piece of information allows planners to 
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quantify the risk and profit margin for each quarter to maintain a competitive pricing strategy. The 

analysis reveals, also, that construction demand is stationary, normally distributed, relatively 

stable, fluctuates around the average, and has low variability in terms of the number of projects 

issued.  

This work tests the ability of the demand volume to be predicted using statistical and machine 

learning methods. The statistical tools, especially exponential smoothing, excel machine learning 

algorithms in the case of limited available data for training. SARIMA is best for correlated and 

stationary data. HW is better than SARIMA for 85% of the data. Gaussian with Kernels is better 

for normal and low variability data. 

This work recommends the exponential smoothing algorithm for demand prediction. Because it 

does not require sophisticated calculations, a relatively short training time, and the error margin is 

acceptable. However, there is still uncertainty in the prediction due to errors, this work helps 

strategic planners to reduce market uncertainty, quantify the risk, and optimize markup percent for 

profit and competitiveness. Another advantage of this work is the methodology used in this study 

can be applied to different industries and markets to support contracting organizations in their 

strategic decision to expand and invade a new market. Finally, this work reflects the voice of the 

market in demand prediction so the organization could have an unbiased and unconstrained 

demand prediction.  

On the other hand, time-series analysis fails short to explain why behaviors occur. It does not 

explain why the demand has a seasonal cycle and exponential or damped trend. So, it is 

recommended to utilize a causal-driven approach to analyze the construction industry demand. For 

the purpose of this study the level of analysis performed is suitable to be integrated with the next 

chapter (model building) as input for the model to represent the industry demand behavior 

(pattern). Also, this work could be integrated with other models to reflect the organization's 

constraints to predict market share for future work. 
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CHAPTER 5 CONCEPTUAL MODEL 

5.1 INTRODUCTION 

One of the challenges facing project-based organizations (PBOs) is workload fluctuation.  This 

problem accumulates at the organizational level and affects its performance. It also affects various 

upstream and downstream decisions, such as optimum resource level (Gębczyńska 2019). 

Maintaining low capacity could be an economical decision but it reduces the competitiveness of 

the organization. On the other hand, a higher capacity level comes with a lot of drawbacks, such 

as high overheads. Also, workload fluctuations will stress the utilization of resources either over 

or underutilization. This might lead to a high turnover rate and loss of cash and experience (Xie, 

Liu, and Zhang 2021, 012047).  

Previous researches tend to segment the chronic problem of workload fluctuation into different 

causes related to market, owner, contractor, and project. First are market-related causes, such as 

dynamics and competition. For example, (Dorée, Holmen, and Caerteling 2003, 817-826) analyzed 

the trend of firms cooperating and competing in the construction industry. Also, (Tan, Shen, and 

Langston 2012, 352-360) analyzed the impact of competing strategies on contractor performance. 

Moreover,  (Beker and Hernando-Veciana 2015, 234-261) focused on the dynamics of bidding 

markets with financial constraints. Furthermore, (Wang, Jidong, Wu, and Che 2019, 444-456) 

improved the competitiveness of agents participating in bidding (electricity market) using agent-

based and SD.  

The second is owner-related causes. Previous studies focused on contractor-bid selection methods. 

They tried different tools such as Fuzzy Decision Framework (Singh and Tiong 2005, 62-70), Data 

Mining Framework to Optimize the Bid Selection (Art Chaovalitwongse et al. 2012, 277-286), 

and Multi-Criteria Decision Support System (Semaan and Salem 2017). The third is the contractor. 

Previous studies relate the contractor with the bidding decision. This decision is either to bid or 

not for a project, or how to select the suitable project to bid for.  They used different tools to 

support this decision such as the Logistic regression model (Lowe and Parvar 2004, 643-653), 

Adaptive Neuro-Fuzzy Inference System (Polat, Bingol, and Uysalol 2014, 1083-1092), Fuzzy 

TOPSIS method (Al-Humaidi 2016, 04016068), Multi-criteria decision analysis (van der Meer et 

al. 2020, 172-188), and questionnaire surveys to collect data and bidding factors (Aje, Oladinrin, 
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and Nwaole 2016b, 19), (Olatunji, Aje, and Makanjuola 2017, 378-392), (Oke, Omoraka, and 

Olatunbode 2020, 169-175). Finally, previous studies focused on project performance such as 

studies by (Habibi, Kermanshachi, and Rouhanizadeh 2019, 14), (Mansour et al. 2020, 1-10).  

Management of workload is considered a prevalent dynamic decision-making problem (Forrester 

1985, 133-134). In such cases, the decision maker’s goal is to keep the workload at a relatively 

stable targeted value. The complexity of this task is that workload cannot be regulated directly. 

Instead, the flow effect can be managed by controlling its causing factors. The controlling 

decisions exhibit delays to establish their outcomes. This lag might last longer and can affect other 

management decisions. Workload management issues arise at a variety of accumulative degrees 

such as project and portfolio levels. At the project level, project managers face workload 

fluctuations due to variations in productivity, material availability, change orders, and other 

contributing factors. variations of one project accumulated at the portfolio level. This requires the 

manager to have a stock of cash and resources to avoid drawbacks from these changes. Policies to 

decide on the amount of required cash and resources affected by aggregations and delays, i.e., the 

“bullwhip effect” (Metters 1997, 89-100), makes it very expensive to mitigate these risks using 

the traditional percent of contingency. 

In such an environment, the impacts on the organization depend on how the organization responds 

to such changes (Forrester 1985, 133-134). Generally, managers are adequately aware and accurate 

about the information for local decision-making. On the other hand, they frequently misunderstand 

the complicated linkages of known local behaviors on the overall behavior (Sterman 1989, 321-

339). Holistic modeling is capable of integrating organization portfolio and project dynamics. This 

can be achieved via the application of the System dynamics (SD) approach.  

5.1.1 Holistic modeling 

Holistic modeling is capable of integrating organization portfolio and project dynamics. This can 

be achieved via the application of the System dynamics (SD) approach. SD is a causal-driven 

approach (based on theory), that enables having a white model based on causes not just correlation 

between variables (Barlas and Carpenter 1990, 148-166). SD employs techniques from the field 

of feedback control to set up the problem factors into a causal feedback loop for the best 

understanding of the problem under investigation (Forrester 1993, 199-240), which is used to 

generate macrodynamic from this microstructure (Sterman 1989, 321-339). SD considers the 
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delayed effect between cause and effect. The structure of such models has a significant added value 

from considering the network effect and system inertia in studying the problem under 

investigation. 

5.1.2 Controlling workload dilemma  

From a system thinking perspective, workload management can be considered a problem of stock 

management which has two main parts. First, the workload level (stock) and the flows affecting 

it. Second, the management decisions to avoid and mitigate the variations (Sterman 1989, 321-

339). In the stock problem, the management needs to set the ordering frequency over time to 

maintain the inventory levels near the target. In the case of PBO, both inflow and outflow affecting 

the workload management decisions are beyond the manager's control. Inflow and outflow are 

determined by the interaction among the market, project, owner, and organization. Bidding 

strategy is one of the inflow factors, that affects the organization's workload and project 

performance (Wibowo, Astana, and Rusdi 2017, 341-347). The bidding price is the most 

influential factor in such strategies, and the project is awarded the lowest bid price. This awarding 

process can lead to the winner curse (Elsayegh, Dagli, and El-Adaway 2020, 147-153). Ignoring 

the effect of the lowest bid on the long-term performance of the organization reduces its 

competitiveness. Also, the effect of these strategies on the organization's capabilities is required 

to be addressed. 

Market landscape and competition mechanism affect the contractor’s behavior. Owner 

characteristics are one of the parameters that shape the competition mechanism, e.g. if the owner 

is not strict (permissive) about the project deliverables. This could drive the contractor to optimistic 

pricing of the project and intentionally offer a low price to award the project (Yan 2015, 15423-

15448). This affects the market balance prices and competition landscape.    

Contractor competitiveness is very important to sustain in the market. This competitiveness is 

usually computed based on the organization's capabilities and competition strategies. The 

aggressive strategies in the competition are not the best for the organization. These strategies make 

an organization's profit unstable and have high swings (Dangerfield, Green, and Austin 2010, 408-

420). In such cases, market demand has a great effect on the markup percentage. This effect is 

required to be reflected in the applied strategies.  
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Moreover, the project’s profit is the main source of the organization's income that drives the cash 

flow (Turner and Miterev 2019, 487-498). Income delays affect the organization's financial 

stability and could lead to overdrafts. One of the widely used strategies to reduce overdrafts is 

overbilling and credit trade. They can reduce the overdraft by 11% to 30% (Cui, Hastak, and 

Halpin 2010, 361-376).  

Not only does cash flow management affects the project and organization performance, the 

operational aspects of projects such as motivation and working hours affect the project 

performance (Alvanchi, Lee, and AbouRizk 2012, 66-77). It’s found that work-hours arrangements 

can enhance productivity and benefit the project performance for cost and time. (Li et al. 2018, 

605-618) found that hiring laborers for long periods improve the project performance but increases 

the organization's overheads. Also, (Shafieezadeh et al. 2020d, 201-216) found that dynamic 

resource allocation is the best policy to enhance the schedule performance index of the project in 

the cases of scope changes.  

Change orders are one of the scope changes that affect productivity (Al-Kofahi, Mahdavian, and 

Oloufa 2020, 1-12). Production changes directly fluctuate the project performance regarding time 

and cost (Alvanchi, Lee, and AbouRizk 2011, 77-91). In these cases, PBO may depend on 

outsourcing tasks (subcontracting) to finish parts of the work. The quality of the subcontractor is 

the most influencing factor in the project's performance (Lisse and Student 2012). The outsourced 

workload directly affects the project performance and rework percentage.  

Rework and changes between different phases affect the project's time and cost. For example,  (Li 

and Taylor 2014, 04014044) studied the rework in the design phase and its effect on the 

downstream of the project execution rework. The delays in the interaction between the two phases 

make the bullwhip effect transmits and extends to other subsystems. 

5.1.3 Chapter goal 

This chapter focuses on achieving the third goal of the research by building an SD model using 

the factors identified in chapter 3. This work builds on the previously mentioned studies to address 

the workload fluctuation in PBO. It contributes by reflecting the market voice on the decisions 

taken. Also, addresses the effect of these decisions on the organization's long-term performance. 

The boundaries for this model are set to consider the interaction of PBO's dynamics with the 
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industry’s dynamics. This is achieved by feeding the model with project-portfolio execution 

parameters, industry competitiveness parameters, and contractor-to-industry relationships. This 

study considers the competition benchmark by normalizing the performance of competing 

organizations in the market and can calculate the winning percentage. The proposed model builds 

on (Sterman 1989, 321-339). Yet the proposed solution assumes that the manager fully understands 

the underlying structure but the mental model capacity limits the solution’s suitability. So, the 

application of computer simulation using SD will support the manager to find the optimum 

decision to manage workload fluctuations. 

5.2 RESEARCH METHODOLOGY 

The building of the proposed system dynamic model goes through multiple steps to ensure its 

robustness as shown in Figure 5.1. First, the data is collected through an intensive literature review 

of academic articles, published industry reports, and industry experts. This is to collect as large as 

possible of trustworthy data either hard (as form databases) or soft data, such as logical policies of 

decision-making. Second, rearrange these fragmented pieces of information into interacting 

subsystems (industry demand and capacity planning, work execution and capacity allocation, 

contractor competitiveness, and organization financial subsystem). Third, validation and 

assessment of the model are performed through various tests, such as structural tests and structure-

oriented behavior.  

The proposed model is validated through various tests of checking model equation dimensions to 

ensure the dimension consistency of the model (Zarghami and Dumrak 2020, 253-262). In 

addition, the proposed model is gone through a set of experiments to check the configuration, 

behavior, extreme case tests, and sensitivity test of the model response to uncertainty in parameter 

values to gain trust in the model (Cosenz 2017, 57-80). The sensitivity analysis of the model is 

conducted to provide top managers and scholars with a better knowledge of how various parts of 

the organization impact the overall performance. This helps organizations to enhance their 

decision-making model by understanding the holistic effect of individual decisions. It is worth 

mentioning that the nature of these steps is not linear. However, it is a kind of loop that can go 

back and forth multiple times till reaches a validated output.  
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Figure 5.1 Model building methodology 

5.3 DYNAMIC HYPOTHESIS 

The dynamic hypothesis is a visual representation of the system under investigation. It includes 

causal relationships based on the data collection process (Tang and Ogunlana 2003b, 127-136). 

This study's dynamic hypothesis is the interaction of two main loops affecting the organization's 

workload as shown in Figure 5.2. The first one is the reinforcing (+ve) loop, which consists of the 

organization's cash that increases the capacity to execute more workload. After a while, accepted 

executed work increases the organization's cash again. The other loop is a balancing (-ve) loop, 

which consists of organization cash invested in increasing the capacity to increase the 

competitiveness of the organization to gain more workload. The higher the backlog the more 

consumption of the financial resources available reduces the ability of the organization to add more 

resources for work execution. The interaction between those two major loops shapes workload 

behavior (Gu and Kunc 2019). 
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Figure 5.2 Higher-level dynamic hypothesis 

The boundaries for this model are set to consider the interaction of PBO's dynamic environment 

with the industry’s dynamics (Arafa 2011). This is achieved by feeding the model with project-

portfolio execution parameters, industry competitiveness parameters, and contractor-to-industry 

relationships (Tang and Ogunlana 2003, 127-136). Multiple feedback loops are utilized to 

transform these connections into a system dynamic (SD) model. Which can be configured to 

represent any number of contractors working on numerous simultaneous projects.  

On the supply side, each contractor bids for projects, and if awarded, they are added to the 

contractor's workload. The proposed model considers the contractor’s strategic intent for capacity 

adjustment, and markup adjustment to compete in the market and ensure organizational 

sustainability (NGHIA 2017).  

On the demand side, owners decide the criteria for selecting the awarded contractor, either based 

on the best qualifications combination or bid-price attractiveness (Badawy 2018). The industry 

demand is also modeled to provide heads-up of the near future demand size.  

PBOs utilize strategic decisions to obtain their goal market share and prevent opponents from 

dominating the market (Arafa 2011). In such cases, market share, organization cash, profit, 

capacity utilization, and capacity variability are used as the macro feedback indicators. The 

organization's goal is to maximize and/or minimize these indices by optimizing its capacity, 
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pricing, delays in responding to such changes, and investing in new technology. This is to achieve 

maximum matching with the market (Mahdavi et al. 2019, 1200-1217). 

Generally, the key to success is a regular best-matching strategy among evolving industry demands 

and the contractor's dynamic competence. As a result, new projects will be awarded to the 

contractor who can establish their business model (BM) functions to "fit" with the present criterion 

at a certain moment and fulfill owner expectations. Contractors with high responsiveness and 

adaptable dynamic skills may be able to survive in the business during such market dynamics. The 

priority and weights of these factors may alter from industry to industry, organization to 

organization, and from time to time. As a result, one of the most important preliminary tasks for 

any contractor is to identify the landscape variables, their priority, and competition performance 

(i.e. benchmarking), and then adapt their strategies using their available capabilities to "max 

match" with the industry fitness function at any point in time to maximize the payoff (i.e. 

profitability and market share).  

5.4 GENERAL FRAMEWORK 

The extracted factors from the literature (identified in chapter 3) were arranged into three main 

groups. The pre-award project, the after-award project, and the organization's financial system. 

This division facilitates communication with industry experts. Because the industry experts' mental 

models distinguish between those three subsystems. For instance, the main goal in the pre-award 

phase is to win the bid (award the project). This is different from the experts' mental goal in the 

after-award project phase, which successfully delivers the project. The financial subsystem works 

as the motivator and controller for the organization. The financial system swings between those 

roles based on the phase. During the pre-award phase, it works as a motivation for the contracting 

organization to gain more financial resources by bidding for new projects and winning them. While 

in the after-award phase, it controls the production rate of the organization based on the available 

liquidity.  The description of each phase is illustrated in the following subsections. 

5.4.1 Pre-award stage 

At this stage, the PBO (contractor) contributes to decision-making intending to be awarded a new 

project, and multiple key stakeholders are involved at this juncture. The variables appearing in 

Figure 5.3 illustrate that the contractor, owner, project, and market characteristics at this point are 
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interacting. The financial capacity (running cash) of the organization and its bonding capacity limit 

the size of projects available for the organization to compete for. If a suitable opportunity becomes 

available in the market, the organization assesses it and decides based on its strategic planning 

whether the opportunity is worthwhile to pursue. If it is determined that it is suitable, the 

organization prepares a plan accordingly and estimates the cost and expected profit based on 

various interacting variables related to market conditions, need for work, owner strictness, and 

project. The interactions among these variables govern the likelihood that the contracting 

organization will be awarded the project. If the project is awarded to the contracting organization, 

the second phase is initiated. 

 

Figure 5.3 Pre-awarding project conceptual framework 

5.4.2 Post-award stage 

At this stage, the same four previously mentioned key stakeholders continue to interact. As shown 

in Figure 5.4, the organization adds a new workload to its existing workload. Resources are then 

reallocated to accommodate the organization's total workload. The execution of the workload is 

subject to multiple variables that affect the productivity and quality of the executed workload. 
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After a set time, the executed workload is either approved or rejected by the owner following the 

terms of the contract. The scope of work that is rejected at this juncture becomes rework, while 

the approved work will add to the organization's cash flow through payments as shown in Figure 

5.5. Other external and/or internal variables also affect this process, and these variables are 

potential sources of risk. The risk may be in the form of expected delays (due to internal 

management decisions or allocation of resources, productivity issues) and/or external variables 

such as variations in material cost or wages. These risks and project operations affect the 

organization’s financial system, as described in the following subsection. 

 

Figure 5.4 After awarding the project conceptual framework 

5.4.3 Financial system 

Contracting organizations rely on payments from accepted workloads (projects), as shown in 

Figure 5.5. These payments are subject to delays and retention based on the terms of the contract. 

Contracting organizations use these payments to cover the cost of subcontractors (outsourcing), 

organizational overhead, equipment maintenance, labor wages, and debt. The contracting 

organization must resort to debt in the case of negative cash flow (overdraft), and this exerts 

financial stress on the organization. 
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Figure 5.5 Financial subsystem 

5.5 MODEL ASSUMPTIONS 

The connections between different phases (pre-award and after-award the project) were not 

considered in the previous studies as highlighted in the literature review. In reality, the connection 

between these phases, as mentioned above in the general cycle of how the organization gain and 

execute workload, create complexity. This general representation is refined through collaboration 

with an industry partner to fully understand the cycle details and how to reduce the real complexity. 

This complexity is traditionally solved by expert mental models. This work applies some 

assumptions to reduce the complexity of reality. These assumptions are: 

• Although the contracting organization could be involved in any upstream or downstream 

construction activities, the model assumes that the organization is strictly exclusive to 

project-based activities. 

• Intellectual capital is thought to exist as labor skills and an organization’s records. It is 

uniformly distributed across the organization's workers to form its average specialized 

knowledge. 

• The technical capacity of the staff is assumed to affect the project schedule and cost. 

• The project is assumed to be fully represented by its workload, duration, and price. 
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• PBO is assumed to be fully represented by its capacity, cash, and soft variables. 

• Material delays and other supply chain constraints are assumed to be met. 

• Cash is assumed to be invested at the start of the simulation without allowing cash 

borrowing. 

5.6 CONCEPTUAL FRAMEWORK 

The previous assumptions are incorporated into the general framework and discussed with the 

industry practitioner. There are some simplifications applied to the general framework based on 

the best practices applied. However, the organization can work on various types of projects, each 

project is assigned to a specific department based on the project type. This means the organization 

departments look like small organizations. Hence, the model is simplified to represent one type of 

project. 

Figure 5.6 represents the causal loop diagram of the organization’s workload. It can be divided 

into two higher-level causal loops. The first loop is the organization's execution of the current 

workload using its available resources, and the second loop is the effect of the execution phase on 

the organization's attractiveness in the market to gain more workload. These two loops are highly 

tight and coupled with multiple feedbacks, which will be illustrated in the next subsections. This 

represents the complexity of the decision made by the practitioners’ mental model. Unfortunately, 

mental models could be easily directed or biased. 

Each time they face changes in the workload level, they make an instant decision to mitigate this 

variation. However, they are fully aware of the entire factors, and in most cases, the decision is 

usually biased toward the direct cause and the direct effect. For example, if the workload exhibits 

some variations in one project, the instant decision is to adjust the capacity to cover the workload 

changes. This decision instantaneously stresses the financial resources of the organization. In the 

long-term, this decision stresses the organization to reduce its markup percentage to award a new 

project to have fully utilized resources. The low markup percentage will continue the stress over 

the organization's financial resources. This reinforcing loop could lead the organization to file for 

bankruptcy.  
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Figure 5.6 Conceptual model diagram 

5.6.1 Workload execution subsystem 

Figure 5.7 shows the cycle of executing the workload. It starts with an amount of workload that 

requires the organization's capacity to adjust to it. Organizational capacity has some constraints to 

adjust for this workload. These constraints are the minimum capacity, maximum capacity, 

available cash resources, and time consumed to adjust the capacity for the required level. Minimum 

capacity is the minimum value of required resources to maintain a smooth workflow for the 

organization and to be competitive in the market. Maximum capacity is the maximum value 

allowed to hire new resources. This value is usually constrained by the managers based on the 

available cash and core resources.  
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Figure 5.7 Workload execution loop 

Part of the organization's capacity is allocated to this workload based on the priority of this work. 

This allocated capacity affects the production rate, which is affected also by the utilization of the 

resources and the delay in executing the workload. This step transforms the workload into executed 

work. Based on the efficiency and the quality level, part of the executed work is accepted after a 

delay time for checking, and the other part is transformed into the backlog or rework. This backlog 

will be rescheduled again and the cycle continue. The internal performance of the organization 

affects its relationship with the industry and other competitiveness as will be illustrated in the next 

subsection. 

5.6.2 Organization-to-industry relationship 

Figure 5.8 shows the relationship between the organization and industry is represented in the 

organization's attractiveness. The attractiveness of the organization is simply its probability to 

award a new project based on its performance relative to other organizations’ performance. There 

are multiple performance indices to define the attractiveness of the organization, experience, 

delivery delay, capacity availability, quality, and price performance.  
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Figure 5.8 Organization to industry loop 

Each performance index is measured based on two parts, one related to the organization and the 

other related to the industry. The first part is the organization's historical values in each part. The 

second part is the market sensitivity to this index. The benchmark to compare the organizations in 

the market is updated continuously based on the values from the historical data at each bidding or 

comparison. For illustration, let's assume there are two organizations in the market. One has 

experienced 100 hours of work and the other has an experience of 50 hours of work. The 

benchmark is calculated based on the maximum of these values which is 100 hours. The 

performance of the first organization will be 1 (i.e. 100 /100) and the other organization's 

experience performance will be 0.5 (i.e. 50/100). The portion of the experience performance added 

to the organization’s attractiveness is the multiplication between the performance by the sensitivity 

of the market to the experience in the awarding process. 

This causal loop directly links the historical performance of the organization to its future 

projections. This representation helps to understand how the organization has control over the 

internal factors that can be managed properly to build a more sustainable and competitive 

organization. 
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5.7 SUMMARY 

This chapter builds a causal loop diagram for project-based organizations (PBOs). This work links 

multiple work phases (pre-award and after-award the project) with external and internal 

organizational dynamics. The main goal of this model is to analyze the workload fluctuations and 

PBO business model performance. The proposed conceptual model holistically addresses the 

consequences of short-term decisions taken in response to dynamic changes in the internal and 

external environments on its long-term performance. The conceptual model is revised by the 

industry partner to validate it. 

This work holistically presents the cycle of managing the construction project within a contracting 

organization. Condensing and integrating these interactions in the proposed conceptual model 

opens the gate for other researchers to add to the body of knowledge with mathematical 

applications using real case studies. It will also encourage other researchers to analyze further the 

complex topic of predicting workload in PBO. This topic is crucial for the construction industry 

to face the current challenges of a nowadays volatile and uncertain market. 
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CHAPTER 6 COMPUTERIZED MODEL  

6.1 INTRODUCTION  

Workload management can be considered a problem of stock management which has two main 

parts. First, the workload level (stock) and the flows affecting it. Second, the management 

decisions to avoid and mitigate the variations (Sterman 1989, 321-339). The mathematical problem 

of workload fluctuation can be presented by Equation 6.1 (Sterman 1989, 321-339) 

𝑊 = ∫ (𝐴 − 𝑃)𝑑𝑡 + 𝑊0

𝑡

𝑡0

 ( 6.1 ) 

   Where:  

• W is the current workload level. 

• A is inflows for the workload such as the awarding rate of new projects, scope changes, 

and rework. 

• P is outflows for the workload such as the production rate. 

• W0 is the initial value of the workload. 

• t is the time interval 

In the stock problem, the management needs to set the ordering frequency over time to maintain 

the inventory levels near the target. While in the case of workload management, both inflow and 

outflow are beyond the manager's control. Intake is determined, for example, by market, owner, 

and organization, while outflow is determined, for example, by project, owner, organization's 

resources, and productivity. The scale and complexity of the feedback between such variables, and 

their typical behavior patterns feature oscillation and instability, make it hard to determine the best 

approach.  

The general solution for such stock problems includes continuous supply (might be in 

patches/discrete) to maintain a relatively balanced level for the workload. Such solutions enforce 

constraints for that supply to be non-negative, and the loss rate is also non-negative (Sterman 1989, 

321-339). Moreover, (Sterman 1989, 321-339) proposed a heuristic approach based on estimating 

a reference quantity and adjusting it due to expected changes. The main difference between 

(Sterman 1989, 321-339) solution and the proposed solution in this study is that (Sterman 1989, 
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321-339) solution assumes that the manager does not know the structure of the problem, i.e., the 

managers are solving the problem by the open system perspective or aware of a local subsystem 

without fully understanding of the holistic feedback system affecting the problem. Yet the 

proposed solution assumes that the manager fully understands the underlying structure but the 

mental capacity limits the solution's suitability, i.e., due to the experience of the manager and 

digitalization and modularity of the industry, the manager is aware of almost the holistic feedback 

system affecting the problem but the complexity of the problem is not suitable to be solved just by 

mental models. So, the application of computer simulation using SD will support the manager to 

find the optimum decision to manage workload fluctuations. 

6.2 DATA COLLECTION 

Variables affecting the organization's workload fluctuations were collected from an analysis of the 

available body of knowledge as mentioned in Chapter 3. Twenty-eight dynamic variables were 

identified. They are categorized into contractor, project, owner, and market-related factors. This 

study reallocates them into pre-award, after-award phases, and financial-related causes based on 

the soft logic of industry experts. The majority of data collected to mimic the project-based 

organization's (PBO) performance consists of administrative and logical decisions (called soft 

variables (Sterman and John 2002, 42-42.)). Values of exogenous variables are set to have large 

limits to make sure that the model does not overlook feedback effects that managers frequently 

overlook throughout their decision-making process. Finally, the strength or weights of variables 

are determined by the industry and vary from one to another. 

6.3 SIMULATION MODEL 

This previously mentioned hypothesis develops the model structure. The development of the 

proposed model requires a significant amount of effort. Particularly in terms of ensuring that the 

model is capable of capturing the behavior of various project phases—pre-award and post-award 

project—with consideration of the organization's underlying financial system and industry 

competition. 

The model is simulated using VENSIM DSS. Screenshots from the model subsystems and their 

structure are presented in the following sections.  



93 

 

6.3.1 Contractor competitiveness Sub-model 

Competitiveness is a wide expression that does not have a unique definition. In this study, 

contractor competitiveness is their ability (probability) to win a tender. It is derived from their 

attractiveness function and their fit to the market. For instance, contractors improve their 

competitiveness through drop bid prices, engage in technology transfer to improve service 

functionality, minimize rework, shorten delay times, or expand the addressable market of services. 

Not all of these criteria must be present to be successful. The most considered factors to influence 

the award of a bid are price performance, experience, financial stability, quality performance, and 

safety performance (Mahdavi et al. 2019, 1200-1217). Contractors are either awarded based on 

best value or minimum bid price. This divided the customers into two groups: those who are drawn 

by price and those who are attracted to the greatest value (best combination) even if they were 

public or private organizations. In most cases, the drive parameter is the price. A comparison 

between the contractor's bidding price and the lowest available price at the bidding period 

determines the contractor's competitiveness via pricing. In this study, to reflect the various industry 

preference, the model can change the best price to the nearest to the mean of available bidding 

prices or the second lowest bid price. Generally, the competitiveness of the contractor is calculated 

based on Equation 6.2. 

CC =  ∑(𝑥𝑐(𝑖) ∗
𝑃𝑐(𝑖)

𝑃(𝑖)
) ( 6.2 ) 

 

Where CC is the Contractor competitiveness, xc is the weight of the criterion. Pc(i) is the 

contractor's performance in such criteria, and P(i) is the industry benchmark value for this criterion.  

The benchmark value in the model is calculated based on the minimum/maximum of available 

values for such criterion, and xc is fed to the model based on user preference. The project’s owner 

compares the competitiveness of contractors, CC, and awards the bid to the largest available 

competitive contractor. As a result of the varying owner requirements, the preferences for 

contractor selection are set up to the lowest bid price and can be altered to a specified metrics based 

on user preferences. The criterion considered in this model is capacity availability, quality, 

experience, delay, and price as shown in Figure 6.1. Also, the causal loop is shown in Figure 6.13. 
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Figure 6.1 Causes tree of Organization Attractiveness 

6.3.2 Demand and capacity adjustment  

The process of evaluating the market-needed capabilities and respective volume to be achieved is 

known as capacity planning. Change in demand drives the contractor strategy in the markup 

percentage and delivery method. For example, if the market is hot, it means the demand is greater 

than the industry's capacity, and contractors will tend to increase their markup, use cost-plus 

contracts, or expand the organization. On the other side, if the market is cold (recession), they tend 

to reduce their markup percentage, accept lumpsum contracts, or shrink the organization's size.  

There are two types of capacity, fixed, and variable. The fixed capacity is the core resource of the 

organization. Variable capacity is the temporary resources to balance the required production rate 

with the required capacity. PBOs seek to have the minimum ratio between variable to fixed 

resources. Organizations that can have a stable fixed capacity like factories are more profitable, 

stable, and competitive. 

Organization fixed capacity is adjusted to expansion-shrink decisions. Variable capacity is 

modified to the current workload. Although the capacity adjustment is represented as an 

irreversible strategic action, the model allows for both fixed and variable capacity adjustment. The 
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model excludes immediate capacity adjustment. The organization capacity is calculated as shown 

in Equation 6.3. 

Org. capacity

= SMOOTH3I[MAX( Required capacity, Min Capacity), Time to adjust Capacity, Initial Capacity] ( 6.3 ) 

 Required capacity = MIN(Work in Hand, Max Capacity) ( 6.4 ) 

The model constrains the ratio between the maximum and minimum allowed capacity. This stems 

from the assumption that variable capacity is managed by fixed capacity. The delay in acquiring 

the required capacity comes from the time difference between the agreement to adjust capacity and 

the recruitment procedure. In addition, the time spent acquiring new equipment and training labor 

causes capacity growth to be delayed. This delay is represented by a third-order delay. 

6.3.3 Capacity allocation 

The resources of the organization are represented by their production capacity. i.e. the organization 

has 10 crews, and each crew can produce 8 hrs per day then these resources are represented by 80 

human hours (Ma.Hrs). Project-required resources are calculated at the beginning of the project 

and high swings in allocating these resources are not allowed. The number of resources calculated 

considers the normal efficiency and normal capacity utilization as in Equation 6.5 and Equation 

6.6.  

Cp =  WH / PD ( 6.5 ) 

 Call =  Min (Cp, Ca) ( 6.6 ) 

Where Cp is the project-required production rate, WH is the project workload in man hours, and 

PD is the project duration. The allocated capacity (Call) to a project is the minimum of available 

capacity (Ca) or the required capacity. Organization capacity is allocated to running projects 

according to two parameters, the project required crews and the priority of this project. In this 

model, it is assumed that projects have priority (trapezoidal shape) based on the percent completed 

as shown in Figure 6.2. It is assumed in this model that maximum priority is when the project is 

between 25% to 75% completed and it reduces linearly at the start and end of project execution. 
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Figure 6.2 Project priority in allocating capacity 

6.3.4 Financial sub-model 

Contractors rely on running cash for almost all activities. There is one source for gaining cash 

considered in the model, which is cash received from the accepted work. This cash is spent on 

hiring resources, labor wages, material costs, and other activities. Organization cash is represented 

by a stock and its value is calculated based on Equation 6.7. 

𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐶𝑎𝑠ℎ =  ∫(𝐶𝑎𝑠ℎ 𝑖𝑛 − 𝐶𝑎𝑠ℎ 𝑜𝑢𝑡)𝑑𝑡 + 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑎𝑠ℎ ( 6.7 ) 

The cash-out rate is from spending cash instantaneously on direct or indirect work. The cash-in 

rate from the accepted work is affected by a delay, which is around 30 to 60 days. Not all of the 

due amount is received by the contractor because of the retention percent, which is the percent 

stated in the contract and retained from the receipts till the 50% of the project progress is completed 

and paid to the contractor plus the final payment at the end of the project. 

6.4 MODEL VALIDATION 

The validation of a system dynamics model is far more difficult than that of a black-box model 

since determining the validity of a model's underlying structure is extremely difficult, both 

philosophically and technically. It is conceptually challenging because the difficulty is intimately 

tied to the unresolved philosophical question of proving the validity of a (scientific) assertion. The 

problem is technically tough since there are no recognized formal criteria (such as statistical 
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hypothesis tests) that can be used to determine if the structure of a particular model is near enough 

to the "actual" structure. Furthermore, due to autocorrelation and multicollinearity issues, typical 

statistical tests cannot be utilized to validate the behavior of a system dynamics model (Barlas 

1996, 183-210). Finally, the actual testing is expensive (Cosenz and Noto 2018, 127-140), 

(Mahdavi et al. 2019, 1200-1217) because: 

• The nature of market competition and the highly responsive nature of bidding data in this 

environment. 

• It is impossible to enforce scenarios on a contractor in a stable environment to track the 

result over time to test the hypothesis.   

• The data's longitudinal aspect adds to the difficulty of data synthesis. 

This study builds confidence in the model in a gradual process. It starts with model 

conceptualization by identifying its purpose and boundaries. This is achieved by: 1) a systematical 

analysis of the literature (in Chapter 2 and Chapter 3) to prove the need for such a model and type 

of analysis, 2) discussing the problem of workload fluctuation, its boundaries, and need for a 

decision support system with volunteer practitioners.  

The second part is model generalization by defining the key variables, which makes the model 

customizable for various project-based organizations and ensures the depth of defining the 

problem. This is achieved in Chapter 3 by extracting these factors from the literature and verifying 

them with industry experts. Chapter 2 is meant to reject the null hypothesis of workload 

fluctuations as a problem that has been solved and there is no room to add to it and accept the 

hypothesis of there is a lack of a dynamic representation and analysis of this problem. 

Third is internal model structure inspection by industry and academic volunteer experts. The 

detailed step-by-step model performance is investigated by the volunteer experts to get the model 

closest to the PBO's business model. This step includes variables behavior with the reality-

perceived behavior. For example, organization workload in dollars (Figure 6.3 – a) is compared to 

workload behavior generated by the model (Figure 6.3 – b) and they performed various 

experiments by the model to ensure the behavior of the variables is logically matched with reality. 

It is worth mentioning that this step did not perform once but in recursive cycles. Finally, the model 
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equations’ dimensions are checked and passed the test to ensure the dimension consistency of the 

model (Zarghami and Dumrak 2020, 253-262).  

 

(a) Organization Revenue behavior (Workload multiplied by the revenue/expected revenue) 

 

(b) Workload behavior from the SD model 

Figure 6.3 Organization planning from two perspectives 

Figure 6.3–a presents the organization's planning in dollars. The left part of the figure is actual 

data and near-future expectation, that ends by the year 2017. The right part of the figure is the plan 

for the next two years. The plan is very simple to just mention available resources plus a small 

margin. Also, the drop that appears by the end of 2017 and the start of 2018 is because of the data 

available to the end of 2017, and the rest of Figure 6.3–a is the expectations for the future based 

on the organization's available resources. This simple plan is acceptable as long as there is no 

available tool to integrate the organization-to-industry dynamics. In the case of integrating these 
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dynamics into this plan, the straight line of the planned margin or new work should be a curve like 

the left part of Figure 6.3–a. This result is achieved in Figure 6.3–b after integrating these dynamics 

into the organization’s plan. The behavior of the plan represented in the organization’s workload 

is investigated by the volunteer industry experts and the model is edited till the behavior matches 

the real behavior. The initial values for the test case are presented in Table 6.1. The discussion and 

editing of the model are presented in the next subsection. 

Table 6.1 Variables’ initial values for the test case 

Variable 

Initial 

value Unit Variable 

Initial 

value Unit 

Average Duration 12 Month New Project Duration Medium 12 Month 

Average Load 3000 Man.Hour New Project Duration Small 10 Month 

Bid Project duration 1 12 Month New Project Load Large 10000 Man.Hour 

Bid Project load 1 3000 Man.Hour New Project Load Medium 5000 Man.Hour 

Bid Project price 1 275000 CAD New Project Load Small 2000 Man.Hour 

Bidding Time 6 Month normal delivery delay 1 Month 

cash time buffer 3 Month normal delivery delay COMP 1 Month 

current market share 0.1 Dml normal efficiency 0.9 Dml 

Current Status COMP 1 Dml normal efficiency COMP 0.9 Dml 

Demand level 5 Project normal quality level 0.95 Dml 

discount rate 0.003 Dml normal quality level COMP 0.95 Dml 

FINAL TIME 100 Month 

normal time to perceive 

competitor capacity 2 Month 

frequency of updating 12 Month normal utilization 0.9 Dml 

frequency of updating 

COMP 12 Month normal utilization COMP 0.9 Dml 

Initial Capacity 2500 Man.Hour Number of Competitors 2 Competitor 

Initial Capacity COMP 2500 Man.Hour 

Number of Competitors 

COMP 2 Competitor 

Initial Cash 100000 CAD Overheads 1000 CAD 

Initial Number of 

Running Projects 

COMP 1 Project Percent completed 1 0.5 Dml 

INITIAL TIME 0 Month 

percent of minimum liquid 

cash 0.1 Dml 

initial trend 0 Dml Project Basket switch 0 Dml 

Market Orientation 1 Dml Project duration 1 12 Month 

Market sensitivity to 

capacity availability 0.25 Dml Project load 1 3000 Man.Hour 

Market sensitivity to 

Delay 0.25 Dml Project price 1 275000 CAD 

Market Sensitivity to 

Quality 0.25 Dml Start Delay 3 Month 

Market Sensitivity to 

Experience 0.25 Dml Strategy switch 1 Dml 
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Variable 

Initial 

value Unit Variable 

Initial 

value Unit 

Market sensitivity to 

price 0.25 Dml TIME STEP 1 Month 

Max Capacity 3000 Man.Hour Time to adjust Capacity 3 Month 

Min Capacity 500 Man.Hour 

Time to adjust Capacity 

COMP 3 Month 

Min Capacity COMP 500 Man.Hour Time to start project 1 3 Month 

New Project Duration 

Large 18 Month Wages 5 CAD 

6.4.1 Model test case behaviour and modifications 

The model variables are initialized by soft values mentioned in Table 6.1 to ensure that the model 

is calibrated to a specific market. Then the analysis of its behavior is conducted by discussing the 

following questions: 

• How does the contractor define the need to bid for a new project? 

• How did the contractor get awarded a project? 

• How does the organization define its minimum profit margin and how to set it during the 

Bid? 

• How does the organization define that there is a need to adjust the capacity? 

• Does the organization's capacity adjust relative to the expected workload or current 

workload? 

• How long does the organization need to adjust its capacity? 

• How does the organization allocate its capacity between different projects? 

The workload behavior presented in Figure 6.4 is investigated by asking “Why is there an 

exponential growth in the workload after 20 Months?”. To answer this question lets start by 

answering the 6 questions mentioned above: 
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Figure 6.4 Organization workload 

1. How does the contractor define there is a need to bid for a new project? 

The contractor defines his need to bid for a new project based on: 

a) The cash flow of running projects is positive 

b) The capacity utilization of resources is below the max allowed (we defined It as 0.9 

percent) 

c) There is available cash in the organization that covers the minimum percentage of the 

project price (we defined it in this case as 10 percent). This means if the organization is 

running 5 projects, each has a price of 100k CAD$, then the organization's cash available 

should be 50k CAD$ to be able to bid for a new project. 

These conditions should be met to allow the contractor to bid for a new project. These rules are 

defined to make sure the cash flow does not go negative. Based on these rules the organization 

wasn’t intended to bid for any project in the first 12 months of simulation. 

There were multiple discussions about considering the borrowing option to the dynamics but it 

was excluded from this model because of the high variation in different borrowing methods and 
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the scope of the model. Also, analysis of various financial strategies reveals that the more 

conservative strategy is the best for the organization's long-term performance. so, the borrowing 

option was excluded from the model dynamics.  

2. How did the contractor get awarded a project? 

Based on the market orientation the contractor is awarded a project or not. In this case, we defined 

market orientation by these rules: 

a) The Experience of the contractor is defined by the number of working hours that are 

accepted (project hours performed). 

b) The Delay to perform the workload. 

c) The rework percent of the contractor. 

d) The available capacity is based on capacity utilization. 

e) Bidding price 

The model ranks the Contractors based on scaling the values of these parameters and then defining 

a winning percentage for each contractor. 

3. How did the organization define its minimum profit margin and how to set it during the 

Bid? 

The minimum profit is set to be 10 to 15 percent and can be adjusted based on the number of 

bidders and the need for work (capacity utilization).  

4. How did the organization define that there is a need to adjust the capacity? 

The capacity is adjusted based on the expected workload. This means if the contractor expects to 

get more work in the upcoming periods then they tend to increase the organization's capacity and 

vice versa. This process has no limitations. i.e. the capacity can go higher like 1m hr/month or 

lower like 0hr/month. Based on this if the contractor expects more workload then will increase the 

capacity and if awarded the workload and expects more than this could result in overshooting as 

shown in Figure 6.4 till one of the conditions in question 1 does not meet or the rank in question 2 

is low to stop this reinforcement loop. To limit this loop, a range for the maximum and minimum 

capacity is enforced. 
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5. Did the organization's capacity have been adjusted relative to the expected workload or 

current workload? 

The capacity is adjusted based on the expected workload, not the actual workload. This explains 

why there are valleys in the capacity utilization graph. 

To enhance the capacity behavior, the capacity is adjusted based on the workload in hand, i.e., the 

current workload added to the awarded project's new load. 

6. How long did the organization need to adjust its capacity? 

The organization is assumed to take 3 months to adjust its capacity. This explains why the planned 

margin is delayed from the expected workload in Figure 6.4. 

7. How did the organization allocate its capacity between different projects? 

In this model, there is a priority assigned to projects based on the percentage of completion.  

There is a limitation on capacity variation assigned to a project based on the initial production rate 

calculations. Also, high swings are not allowed. 

6.4.2 Extreme case analysis 

The model is tested to extreme values of variables to assure its logic. The contracting organization 

variables such as quality, efficiency, cash, and capacity are set to zero, one at a time.  

The effect of quality and efficiency is set to zero drives the organization to lose its cash resources 

as shown in Figure 6.5 and kicked out of the market as shown in Figure 6.6. The oscillation in 

market share in the first few months is due to the initial condition of the variables and it is stabilized 

after a few months.   
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Figure 6.5 Organization cash and the profit 

 

Figure 6.6 Organization market share 

Setting the organization's initial cash to zero makes the organization out of the market 

instantaneously. While setting the organization capacity to zero pops up floating errors and the 

model stop running.  
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Figure 6.7 Organization market share due to zero cash 

Moreover, the model can generate the cumulative s-curve of the project’s workload behavior as 

shown in Figure 6.8, which is similar to the curves presented in (Love, Edwards, and Irani 2008, 

234-247), (Okasha, Arafa, and Amer 2019, 42-51), and  (Amer, Okasha, and Arafa 2019) 

 

Figure 6.8 Project’s workload accumulation progress 
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The model is applied on the VENSIM DSS platform. The model starts with a screen that provides 
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shown in Figure 6.9. Each hexagon directs the user to a specific subsystem to check the internal 

model structure and parameters equations. The initial values of the variables are set based on the 

data collected. It can be easily changed to reflect user preferences.  

 

Figure 6.9 Model’s welcome screen 

6.5.1 Decision support system 

The decision support system button directs the user to the decision support screen as shown in 

Figure 6.10. In this view, the main variables of each category appear beside some figures of the 

main indices. The output of these figures is updated instantaneously as the user changes the values 

of the parameters. The main purpose of this view is to support decision-makers in their decisions 

regarding parameter uncertainty and what-if scenarios.  
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Figure 6.10 Decision support system view 

6.5.2 Work execution 

The execution of the workload hexagon directs the user to the internal structure of the project-

portfolio execution subsystem as shown in Figure 6.11. The causal structure starts with the rate of 

adding a new workload to the system. This rate is controlled by different subsystems, the 

organization's competitiveness, which will be discussed later in this section. The work added is 

accumulated in the workload stock. Each project’s workload can be tracked. The workload is 

executed by the production rate. This rate is controlled by the organization's capacity subsystem. 

The allocation of capacity is based on project progress as shown in Equation 6.5 and Equation 6.6. 

Because of the resources’ efficiency, some of the work might be backlogged. The executed 

workload is exposed to checking. If the quality level or for any other sources of errors, some of 

the executed work might require rework that is accumulated at the backlog level. The backlog is 

replanned again and redone. The organization is compensated for the accepted work after a delay 

and retention deduction as presented in the financial subsystem.  
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Figure 6.11 Workload execution view 

6.5.3 Capacity planning 

The organization resources hexagon directs the user to the capacity planning and resources 

allocation subsystem as shown in Figure 6.12. The capacity of the organization is directly affected 

by the workload organization. This flexibility of altering capacity comes from the industry practice 

of outsourcing (subcontracting). The organization’s capacity is allocated to the running projects 

based on each project’s required capacity and the priority of the work. The priority of work is 

defined based on the percentage of completion of the project related to this work as mentioned 

previously.  

 

Figure 6.12 Capacity planning view 
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6.5.4 Organization competitiveness 

The bidding hexagon directs the user to the organization attractiveness view as shown in Figure 

6.13. organization attractiveness is calculated based on the performance of the organization in 

quality, experience, delay, capacity availability, and bidding price. The most competitive (max 

attractive) organization in the bidding process is awarded the project. These awarded projects add 

to the organization's workload through the newly added rate, previously shown in Figure 6.11. 

 

Figure 6.13 Organization attractiveness view 

6.5.5 Financial system5 

The financial system hexagon directs the organization to the financial subsystem shown in Figure 

6.14. The expected cash of the organization is increased by the awarded projects from the bidding 

process. The organization's cash is increased by the reimbursement of the accepted work. The 

organization uses this cash to hire new resources and pay for direct and indirect costs.  

 

Figure 6.14 Financial system view 
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6.6 SUMMARY 

This chapter builds a computerized system dynamic model for project-based organizations 

(PBOs). The model is built using VENSIM DSS software. This model utilized the stock and flow 

tools of system dynamics and other tools to simulate the conceptual model built in the previous 

chapter. Various views are developed to assess decision-makers and strategic planners in their 

policy-making. Also, a decision support user interface is developed to instantaneously simulate 

the effect of the user changes to the controller variables. The model is validated through various 

tests to build confidence in the model by validating its goal, dimension consistency, and reality 

check. The analysis of this model is presented in the following chapter.  
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CHAPTER 7 ANALYSIS OF PBO WORKLOAD USING 

SYSTEM DYNAMIC 

7.1 INTRODUCTION 

This chapter presents the analysis of the system dynamic model. The causal loop diagram is 

analyzed using social network analysis. This allows the extraction of the characteristics of the 

variables based on the network structure as a static system structure. The mathematical 

(simulation) model is analyzed using sensitivity analysis to measure the dynamic effect of the 

variables from the dynamic structure and delays. This is done to find the most significant uncertain 

variables. 

7.2 SOCIAL NETWORK ANALYSIS 

7.2.1 Network construction  

The model causal feedback loop is analyzed using social network analysis. This analysis is to 

extract the characteristics of the underlying structure of the model, i.e., the nature of the problem 

and the significance of variables. The analysis starts by converting the pictorial representation of 

the model structure into an adjacent matrix as shown in  

Table 7.1. This matrix is built based on the relations between the variables from the causal loop 

diagram. The matrix rows and columns are the model variables. If the variable in a row has a causal 

effect on the variable in the column, the intersection cell between these two variables is assigned 

a value of 1. If the row variable is affected by the column variable, then the intersection cell is 

assigned a value of -1. If there is no relation between them, then the intersection cell is assigned a 

value of 0. This matrix is fed to Gephi software to extract the characteristics of this structure.  

Table 7.1 Adjacent matrix of the causal loop diagram 
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Table continue Adjacent matrix of the causal loop diagram 
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7.2.2 Network measures 

Multiple measures are available to provide insights into the network. Centrality degree, specially 

out-degree, measures the most influential variables in the network based on the number of links 

out of this variable. The in-degree measures the most affected variable based on the number of 

inflows to this variable.  

The betweenness centrality measures the frequency of the appearance of this parameter on the 

shortest pass between two variables. The variables with high betweenness mean a high effect on 

other variables and their uncertainty propagates faster within the network. These variables can 

affect the stability of the network structure. 

The closeness centrality measures the shortest pass between one variable and other variables in the 

network. This measure differs from degree centrality because it considers the indirect links 

between variables as well. The closeness means that a variable is highly affected by other variables 
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not only by a direct effect but by the indirect effect of the network structure. This means these 

variables are vulnerable and exposed to fluctuations or disruptions because of the indirect effect. 

Also, closeness highlights the variables with the highest indirect influence in the network. These 

variables should be monitored closely because of their highest indirect effect on the structure. 

Controlling these variables is highly recommended as these variables have the most indirect effect.  

7.3 SOCIAL NETWORK ANALYSIS RESULTS 

Results from the social network analysis are represented in Table 7.2. The most influential variable 

based on the network structure is workload (V06). It has the highest out-degree centrality. The 

second influential variable is the production rate (V04). These two variables are directly affecting 

other organization performance variables. On the other hand, the most affected variables are the 

backlog (V09), organization capacity (V15), and organization attractiveness (V22). This indicates 

that an organization's strategic decisions to control these variables should be the influential 

variables, not a unidirectional decision to enforce a specific result on them.  

Table 7.2 Social network analysis results 

Variable names ID 
In-

Degree 

Out-

Degree 
Degree 

Closeness 

Centrality 

Betweenness 

Centrality 

Normal utilization V01 0 1 1 0.296 0 

Normal delivery 

delay 
V02 0 1 1 0.296 0 

Capacity Allocated V03 3 1 4 0.3 0.078 

Production rate V04 3 4 7 0.4 0.096 

Work executed V05 2 2 4 0.315 0.008 

Workload V06 2 10 12 0.642 0.301 

Work accepted V08 2 0 2 0 0 

Backlog/Rework V09 5 2 7 0.418 0.092 

Normal Efficiency V10 0 1 1 0.306 0 

Normal Quality 

level 
V11 0 1 1 0.306 0 

Time to adjust 

capacity 
V12 0 1 1 0.223 0 
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Variable names ID 
In-

Degree 

Out-

Degree 
Degree 

Closeness 

Centrality 

Betweenness 

Centrality 

Min Capacity V13 0 1 1 0.223 0 

Max Capacity V14 0 1 1 0.223 0 

Organization 

Capacity 
V15 5 2 7 0.272 0.104 

Priority V16 0 1 1 0.240 0 

Markup V17 2 1 3 0.253 0.036 

Price Performance V18 2 1 3 0.321 0.069 

Cost V19 2 1 3 0.253 0.030 

Wage V20 0 1 1 0.210 0 

Overheads V21 0 1 1 0.210 0 

Organization 

Attractiveness 
V22 5 2 7 0.439 0.265 

Experience 

performance 
V23 2 1 3 0.315 0.019 

Sensitivity to 

Experience 
V24 0 1 1 0.25 0 

Delay performance V25 2 1 3 0.321 0.034 

Sensitivity to Delay V26 0 1 1 0.253 0 

Organization 

delivery delay 
V27 3 1 4 0.253 0.032 

Capacity 

Availability 
V28 2 1 3 0.327 0.056 

Sensitivity to 

Capacity availability 
V29 0 1 1 0.256 0 

Capacity utilization V30 2 1 3 0.260 0.053 

Quality performance V31 2 1 3 0.3214 0.041 

Organization quality V32 2 1 3 0.253 0.038 

Rework V33 0 1 1 0.211 0 
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Variable names ID 
In-

Degree 

Out-

Degree 
Degree 

Closeness 

Centrality 

Betweenness 

Centrality 

Sensitivity to quality V34 0 1 1 0.253 0 

Market share V35 2 0 2 0 0 

Industry volume V36 0 2 2 0.220 0 

Initial cash V37 0 1 1 0.191 0 

Organization Cash V38 2 1 3 0.225 0.035 

Moreover, the highest betweenness centrality variable, i.e, the variable usually appears in the path 

of propagation between cause and effect variables is workload (V06). This means the workload is 

not only a direct causal variable but its uncertainty affects other variables through paths of 

propagation. This highlights the importance of analyzing the workload fluctuations in such a 

dynamic structure.  Organization attractiveness (V22) is the second important variable due to its 

position in the network structure. Because it has an indirect effect on most variables due to its 

position in the shortest path between causal variables and the affected variables. Organization 

capacity (V15) is another important middle ring. These variables (V06, V22, and V15) highly 

affect the propagation of uncertainties in the network.  

Closeness centrality measures the distance between the variable and other neighborhood variables. 

Workload (V06) is the highest closeness. This means it, directly and indirectly, affects most of the 

variables in the network (60% of the variables). Organizational attractiveness (V22), backlog 

(V09), and production rate (V04) have a high influence due to their closeness to other variables. 

They influence 40 % of the variables within the network.  

Overall, workload (V06), organization attractiveness (V22), backlog (V09), organization capacity 

(V15), and production rate (V04) are very important variables to be monitored and require further 

investigation of their behavior.  

The previously mentioned results show that the structure of the PBO’s workload flow is a very 

tight and highly coupled system. Variations in one variable are easily transmitted to other 

variables. This effect is amplified by the structure and delays effect. 
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7.4 SENSITIVITY ANALYSIS 

Because the system dynamics technique generates models with a huge number of very unknown 

parameters (Hekimoğlu and Barlas 2010, 2015). One would believe that the parameters with the 

most uncertainty are the most significant and should receive the most attention. Some readers, on 

the other hand, might think that the crucial parameters are those in a strategic position in the model, 

or perhaps the essential parameters in the model are those that govern the gain around a key loop 

(Tian et al. 2016, 1043-1057). 

Sensitivity analysis, which is a component of rigorous model validation, evaluates which model 

inputs have the greatest influence on the model response (Wang, Yung-Chieh et al. 2012, 2719-

2742). Sensitivity analysis output can be utilized to improve a model and comprehend its 

consequences. It may be used to determine where efforts should be spent to collect more data to 

develop the model most effectively. Sensitivity analysis may be used to identify leverage points in 

the system where action can have a significant and robust influence on the results. It also may be 

used to better understand model resilience and to identify places where a model might be reduced 

with minimum impact on results (Kasperska, Mateja-Losa, and Marjasz 2013, 29-44). 

Monte Carlo simulation is utilized through a set of experiments to assess how sensitive the model 

outputs to the uncertainty of its parameters’ values and to gain trust in it (Cosenz 2017, 57-80). In 

this work, most of the parameters’ values are not based on hard data but on soft data to replicate 

the behavior of the real parameters. Soft data sources are shown at the right end of the data 

collection spectrum. Although these sources do not give numerical data, they are frequently the 

most essential sources of knowledge for model construction and parameter estimation (Sterman, 

J. D. 2002, 42).  

Commonly, system dynamics practitioners prefer to use their gut instinct to calibrate the model 

rather than eliminate this variable in the case of no data available for this variable (Ford and Flynn 

2005, 273-303). This strategy is to continue with educated guesses, certain that the significance of 

the unknown factors can be evaluated by sensitivity analysis. 

Sensitivity analysis starts by selecting the variables that will vary to test the model for their 

uncertainty. They are selected in this study based on whether the contractor can control them, i.e. 
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they can take measures that enable them to control these factors or variables that are completely 

outside their control.  

Defining the range and distribution for these parameters is the second step. It is assumed that the 

values change uniformly across the simulations. Values ranges and distributions are defined in 

Table 7.3. 

Table 7.3 Variables distribution for sensitivity analysis 

 Category  Variable  Definition  Range  Distribution  

1 Out of 

control 

Wages The rate of paying resources (CAD$/Hr) (2,10) Uniform 

2 Demand level The average number of projects available 

in the market (project) 

(2,10) Uniform 

3 Bidding Time The time between starting bidding and 

knowing the bidding results (Month) 

(1,12) Uniform 

4 Average 

Duration 

The average project duration (Month) (6,18) Uniform 

5 Average Load The average project load (Hr) (1500,5000) Uniform 

6 Initial Capacity The organization capacity of production 

at the start time of simulation (Hr/Month) 

(2000,3000) Uniform 

7 Initial Cash The organization cash at the start time of 

simulation (CAD$) 

(10000,1000000) Uniform 

8 Discount rate Bank interest rate (Dml) (0.001,0.1) Uniform 

9 Can take 

action to 

control 

Normal delivery 

delay 

The average organization delay to finish 

the required workload at the start of the 

simulation (Month) 

(0.5,6) Uniform 

10 Normal 

efficiency 

The average organization's efficiency to 

utilize the time in executing the required 

workload at the start of the simulation 

(Dml) 

(0.8,1) Uniform 

11 Normal quality 

level 

The average organization quality (1 - error 

percent or rework percent) to finish the 

required workload at the start of the 

simulation (Dml) 

(0.9,1) Uniform 

12 Normal 

utilization 

The average organization utilization of 

resources at the start of the simulation 

(Dml) 

(0.8,1) Uniform 
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 Category  Variable  Definition  Range  Distribution  

13 Frequency of 

updating 

The response time to adjust the 

organization's capacity (Month) 

(1,24) Uniform 

14 Cash time buffer The cash available should be enough to 

run the organization for this duration 

(Month) 

(1,12) Uniform 

15 Max Capacity The maximum capacity that an 

organization can manage includes fixed 

and variable resources (Hr/Month) 

(500,10000) Uniform 

16 Min Capacity The minimum capacity of an organization 

to be competitive in the market 

(Hr/Month) 

(100,6000) Uniform 

17 Time to adjust 

Capacity 

The time required to modify the available 

capacity to the required capacity (Month) 

(1,12) Uniform 

18 Profit Margin 

Factor 

Factor to adjust the markup percent policy 

(Dml) 

(0,2) Uniform 

19 Wage overhead 

factor 

The percent of overheads to wages (Dml) (0,2) Uniform 

Before running the sensitivity analysis, the monitored parameters (variables under investigation) 

should be defined. This is not the general case but VENSIM requires defining a set of monitored 

variables to save their values. This step is meant to shorten the simulation time (model execution 

time), especially for big models. Analysis of the output sensitivity to input changes (uncertainty) 

starts after this step. The set of monitored variables is mentioned in Table 7.4 

Table 7.4 Monitored variables 

 Variable  Definition  

1 Market Share The percent of market share based on the number of projects 

awarded (Dml) 

2 Actual Error percent The ratio of rework to the total work done (Dml) 

3 Capacity variability index The ratio between variable capacity the fixed capacity (Dml) 

4 Organization delivery 

delay 

The organization delayed finishing the required workload 

(Month) 

5 Min profit margin The markup percent (Dml) 
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 Variable  Definition  

6 Profit percent The profit after delivering the project and doing all rework 

(Dml) 

7 Capacity utilization The ratio of idle capacity to the organization capacity (Dml) 

8 Organization Capacity The production capacity of the organization resources 

(Hr/Month) 

9 Organization Cash The available cash of the organization (CAD$) 

7.4.1 Methods of calculating sensitivity 

Monte Carlo simulation is utilized to generate hundreds of simulations over a sample range. 

VENSIM can do multiple simulations in which input values are updated for each run. This may be 

extremely beneficial in comprehending a model's behavioral bounds and assessing the durability 

of model-based policies to establish model credibility. An example of the result from the Monte 

Carlo simulation is shown in Figure 7.1. The output from the Monte Carlo simulation is analyzed 

using the common methods in the sensitivity analysis. 

 

Figure 7.1 Monte Carlo simulation results for organization market share 

There are three common methods to calculate sensitivity: screening method, linear regression, and 

analysis of variance. The screening method uses a correlation coefficient to quantify the sensitivity 
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of an output to an input. A high correlation factor between input and output means high sensitivity 

of the output to the input. The linear regression method is calculated based on the factor related to 

the input variable (independent variable) in the regression equation. A high factor value means 

high sensitivity to this factor. This method assumes independency between input (independent) 

variables. Analysis of variance (ANOVA) calculates the sensitivity based on the statistical 

significance. The possibility that a link between two or more variables is not due to random chance 

is referred to as statistical significance. In essence, ANOVA is a method of demonstrating the 

dependability of a specific statistic. A data set is regarded as statistically significant if it has 

acquired a specific degree of confidence in the result via statistical hypothesis testing. Statistical 

hypothesis testing, states that given the null hypothesis, the hypothesis is improbable to have 

happened. A null hypothesis states that there is no link between the variables in question. 

The following subsections discuss the results of each sensitivity method between monitored 

variables identified in Table 7.4 and the controller variables identified in Table 7.3. This is to 

extract the most important decision variables and areas of improvement. 

7.5 SENSITIVITY ANALYSIS RESULTS 

7.5.1 Screening method 

After performing Monte Carlo simulation using VENSIM software, results are migrated to the 

python module to calculate the correlation coefficient and visualize the results. Table 7.5 presents 

the sensitivity of the monitored set to the controller set. For instance, profit percent is very sensitive 

to overheads and wages at the start of a simulation, both are negatively correlated. For the rest of 

the simulation, overheads and the average project workload have a higher negative influence on 

it. While on the positive side normal efficiency, at the start of the simulation, has the highest impact 

and is gradually overpassed by the initial capacity for the rest of the simulation.  

An organization’s error (rework) percent is highly inversely correlated with the normal quality 

level of the organization this can be considered as proof that model logic is correct. The error 

percent is influenced, by the lifetime of the organization with normal delivery delays as well. This 

is because the delivery delay is an indication of backlog and schedule pressure. So, the longer 

delivery delay means more rework and cost overruns. Another important factor at the start of the 

simulation is the frequency of updating and the need for capacity altering. While for the rest of the 



125 

 

simulation, initial cash has a higher impact on the rework. Cash is responsible for the capacity, i.e. 

the amount of available cash defines the room for capacity boost. 

Organizational delivery delay, at the start of the simulation, is highly affected by its history, i.e. 

the initial value of the normal delivery delay, but this is rapidly diminished as the simulation time 

goes forward. Other variables that directly affect the delivery delay are average load and normal 

utilization. The minimum capacity level has a higher negative effect on the delivery delay than the 

maximum capacity. Because minimum capacity is the core resource of the organization that is 

available without a need for time to adjust while variable capacity is affected by delays. So, the 

first layer interacting with the delay is the fixed (core or minimum) capacity as defined by the 

model.   

Table 7.5 Screening method results 

V
ar

ia
b
le

 Start of simulation Rest of simulation 

+ 

correlation 
value - correlation value + correlation 

valu

e 

- 

correlation 
value 

P
ro

fi
t 

p
er

ce
n
t 

normal 

efficiency 
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126 

 

V
ar

ia
b
le

 Start of simulation Rest of simulation 

+ 

correlation 
value - correlation value + correlation 

valu

e 

- 

correlation 
value 

O
rg

an
iz

at
io

n
 

d
el

iv
er

y
 d

el
ay

 

normal 

delivery 

delay 

0.9 
normal 

utilization 
-0.2 

demand 

level 
0.25 

minimum 

capacity 
-0.4 

average 

load 
0.5 ----- ----- ----- ----- 

Maximum 

capacity 
-0.2 

O
rg

an
iz

at
io

n
 C

as
h

 initial 

capacity 
1 

wage 

overhead 

factor 

-0.1 

time to 

adjust 

capacity 

0.25 

wage 

overhead 

factor 

-0.48 

initial cash 0.22 

normal 

delivery 

delay 

-0.1 
initial 

capacity 
0.32 wages -0.31 

O
rg

an
iz

at
io

n
 

C
ap

ac
it

y
 

initial 

capacity 
1 

wage 

overhead 

factor 

-0.22 all variables 0.1 
all 

variables 
-0.1 

initial cash 0.22 
minimum 

capacity 
-0.12 ----- ----- ----- ----- 

M
in

 p
ro

fi
t 

m
ar

g
in

 profit 

margin 

factor 

0.9 all -0.15 initial cash 0.2 

normal 

quality 

level 

-0.2 

all 0.1 ----- ----- bidding time 0.18 
minimum 

capacity 
-0.18 

M
ar

k
et

 S
h
ar

e initial cash 0.32 all -0.1 all 0.1 

profit 

margin 

factor 

-0.55 

all 0.1 ----- ----- ----- ----- 

wage 

overhead 

factor 

-0.3 



127 

 

V
ar

ia
b
le

 Start of simulation Rest of simulation 

+ 

correlation 
value - correlation value + correlation 

valu

e 

- 

correlation 
value 

C
ap

ac
it

y
 v

ar
ia

b
il

it
y
 

in
d
ex

 

frequency 

of updating 
0.18 

minimum 

capacity 
-0.62 all 0.1 all -0.1 

initial 

capacity 
0.17 

project 

average 

duration 

-0.16 ----- ----- ----- ----- 

C
ap

ac
it

y
 u

ti
li

za
ti

o
n

 

time to 

adjust 

capacity 

0.43 

normal 

delivery 

delay 

-0.71 initial cash 0.4 
minimum 

capacity 
-0.38 

initial cash 0.39 
initial 

capacity 
-0.5 

demand 

level 
0.28 

wage 

overhead 

factor 

-0.37 

----- ----- ----- ----- ----- ----- wages -0.2 
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-0.23 

The organization’s cash is highly affected by the amount of initial cash invested at the start of the 

simulation and the initial capacity (very sensitive to initial conditions). This effect decays over 

time as other factors related to the processing cycle take over this influence. Time to adjust capacity 

starts to take over after the first year and its effect is oscillating with a high direct correlation. On 

the other side, normal delivery delays and wage overhead factors highly inverse influence the cash 

flow. The negative impact of overheads and wage increases affects the organization's cash as time 

goes forward.  

The organization’s capacity is highly correlated to the initial value of the organization's capacity 

and is directly affected by the initial cash. It is inversely influenced by the overheads to wages 

ratio and the normal delivery delay. These variables diminish by only a few months and all the 

variables take over. The variables all oscillate between positive and negative correlation within a 

range of ± 10%. This is a significant insight that organization capacity is not affected by only 

workload. Indeed, it is affected by all the organization variables and the business model structure 
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affects its value. The influence of the variables is almost equal and changes their direction of effect 

as a result of a balanced loop with delay to maintain the required capacity level. 

The minimum profit margin (markup percent) is directly affected by all factors at the start of the 

simulation with an influence range of ±15%. While during simulation it is mostly affected directly 

by the initial cash invested and bidding time. It is inversely affected by normal quality levels and 

minimum capacity.   

The organization's market share is directly affected by the initial cash at the beginning of the 

simulation. As time moves forward the profit margin and wages overhead factor takes over and 

they negatively impact it.  

The capacity variability index is negatively affected by the organization's minimum capacity and 

project average duration. At the start of the simulation, the frequency of updating, the need for 

capacity, and the initial capacity directly affect it. During the simulation time, all factors are 

oscillating in their influence between direct and inverse with a range of ±10%. 

Capacity utilization is highly affected by the time to adjust the capacity and initial cash available. 

The initial capacity and normal delivery delay are inversely affecting it at the beginning of the 

simulation. As time progress, the minimum capacity, wages, overheads, and maximum capacity 

has a higher negative impact on it. The demand level, also, has a high direct impact as time 

progresses. 

7.5.1.1 Insights summary compilation of screening method 

To sum up the previously mentioned results, Figure 7.2 shows the most influencing variables from 

the controller set at the start and during the simulation. This is calculated by counting the frequency 

of showing up for each variable as the most effective variable on a monitored set. It appears that 

cash availability is the most direct influencing factor at the start and along the simulation. 

Interestingly, overheads (one of the cash aspects) are the most inverse influencing variable. The 

organization fixed capacity (minimum capacity) has the same rank as cash and its effect is not just 

instantaneous (at the start of the simulation) but the effect increases along the simulation time.   
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Figure 7.2 Most influencing variables on the monitored set from the screening method 

These results show that organization capacity requires more attention, not only because other 

variables are sensitive to it and its influence increases as time progresses, but also because it has a 

positive and negative impact on various variables. So, a kind of optimization between pros and 

cons is highly suggested with a careful definition of the payoff function driving this optimization. 

This importance increases considering its indirect cause of the delivery delay, which appears as 

one of the variables that have a significant impact on the organization's performance in the long 

run. 

Profit margin (markup percent) selection requires a wise optimized decision support system. 

Because it has an instantaneous and increasing long-term effect, positive on some variables and 

negative on others. This suggests having a multi-objective optimization function that includes 

capacity and markup percent.  

On the other side, bidding duration has a little frequency on its instantaneous impact while a higher 

frequency on its long-term impact. The explanation from investigating its feedback loop is, that it 

has an indirect impact on a huge number of factors, like, the cash flow, capacity level and 

utilization, workload, and other variables by the indirect connection from one variable to another. 

The network effect amplifies its impact over time. This highlights the need to provide more 
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attention and make a detailed study to report how the organization's performance is indirectly 

impacted by the bidding duration.  

7.5.2 Linear regression method 

In the linear regression method, the migrated Monte Carlo simulation results to the python module 

are used to calculate the linear regression factors and visualize the results. Table 7.6 presents the 

sensitivity of the monitored set to the controller set based on regression factors. A high factor value 

means higher sensitivity. For instance, the capacity variability index is directly influenced by 

capacity and cash. It is inversely affected by the utilization of capacity, quality level, and wages. 

The sensitivity between capacity variability and these factors is interesting because the intensity 

of this sensitivity is amplified exponentially over time. This might mean higher variability in the 

organization's capacity, but it is balanced by equivalence between direct and inverse influencing 

variables as they look mirroring around zero. 

Capacity utilization is affected directly by the time to adjust capacity and inversely by normal 

delivery delay at the start of the simulation. The project average load and demand level have an 

impact that increases with time and they directly affect the capacity utilization. On the other hand, 

the quality level has the highest inverse effect in the long term on the organization's capacity 

utilization. This reveals that a higher backlog makes resources always fully overutilized. This 

backlog might come from rework or demand levels as factors revealed. Another major effect 

comes from wages, overheads, and initial capacity level. These factors are directly related to 

altering the capacity level to optimize cash flow which inversely affects the utilization level of 

these resources. 

Actual error percent is affected directly, at the start of the simulation, by delivery delay, project 

average duration, and cash. It is negatively impacted by efficiency. Contrarily, over time, the 

project's average workload and demand level directly affect the organization's rework (error) 

percentage and are inversely affected by the utilization of resources. This indicates that 

rework/errors are highly sensitive to the variables affecting the resources-workload-pressure. 

Hence, to increase organizational work quality and reduce cost structure the resources-workload-

pressure variables should be monitored. 
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Table 7.6 Sensitivity results from linear regression method 

Variable 

Start of simulation Rest of simulation 
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Variable 

Start of simulation Rest of simulation 

+ factors value - factors value + factors value - factors value 
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Note: e means the value increases exponentially over the simulation 

Market share is sensitive to the organization's cash, and normal efficiency. This influence increases 

over time. Negatively it is influenced by the quality level (actual error percent) and markup 

percent. This indicates the direct relation of market share with competition. A more efficient 

organization will gain more market share. 

The organization's overall profit percent is influenced directly by organization efficiency and 

quality level i.e. less rework. It is inversely influenced by overheads and wages i.e. the 

organization's cost structure. So, the organization should invest in technology to make the business 

model more efficient and apply lean concepts to minimize its cost structure for more profit.  

The organizational delivery delay is directly influenced by the project's average load and demand 

level. Interestingly, these external factors (i.e. not caused by internal business structure) affect 

strategic decisions. Their impact is diminished over time. The higher effect on the delivery delay 

is related to organizational efficiency and quality level i.e. internal organization causes. These 

internal causes have a higher impact even though their influence direction is changed between 

positive and negative, i.e. they are the influencers in a goal-seeking loop that exhibits a delay. 
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Other internal variables such as fixed (minimum) capacity and time to adjust capacity inversely 

influence the delivery delay time. The most significant about the delivery delay sensitivity is that 

all variables related to the internal business model are contributing almost the same as time moves 

forward and external variables such as demand level, project duration, and project load influence 

vanish over time. This highlights the need for more investigation of the business model's soft 

variables like labor training, communication, lean practices, etc. this will directly add to the 

organization's competitiveness, profit, and sustainability. 

Organization cash is determined at the start of the simulation by its initial value i.e. initial cash 

available. This effect diminishes rapidly over time. Capacity-related factors such as its initial 

value, response time to adjust it, capacity utilization, and quality level are factors gaining more 

influence as time progresses. Cost-related factors such as overheads, wages, markup, and cash time 

buffer share the same influence as capacity-related factors. This reveals the importance of capacity 

and cost structure to the availability of an organization's cash flow. 

Organization capacity is influenced directly by initial capacity, minimum (fixed) capacity, markup 

percent, and time to adjust capacity. It is inversely influenced by quality level, capacity utilization, 

normal efficiency, and project average load. These factors have a direct impact on the capacity 

except for the markup percentage. It has an indirect impact through the feedback network. It affects 

directly the organization's fitness function i.e. competitiveness and probability of winning a new 

project. In short, capacity is influenced by the net workload level (project average load and winning 

rate) and net production rate (all other factors directly related to the net production rate). It is worth 

mentioning that these factors' influence is exponentially amplified by the network effect as time 

progresses. 

The minimum profit margin (markup percent) is affected by the capacity and time to adjust this 

capacity at the beginning of the simulation. The effect of quality level, average load, and capacity 

increases as simulation time progresses.  

7.5.2.1 Insights summary compilation of linear regression method 

In summary, initial cash, profit margin, and quality level are the most important factors in the 

organization's performance as shown in Figure 7.3. Initial cash is a very important factor at the 

start of the simulation, this influence is reduced by time and other factors control the organization's 
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performance. The profit margin (markup percent) impact is significantly increased over time 

because its effect is amplified by the network structure and time. This result agrees with the 

screening method.  

The organizational delivery delay is still having a higher influence as concluded from the screening 

method. This difference between the two methods is they show that delivery delay has a positive 

impact (from the screening method) and a negative impact (from the linear regression method) on 

the long-term behavior of the organization.  
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Figure 7.3 Most influencing variables on the monitored set from the linear regression method 

Time to adjust the capacity has a higher influence on the positive side either at the start or during 

the simulation than the negative impact. This indicates that this variable should be monitored 

carefully by the organization and invested in it as the performance is very sensitive to its variation. 

Normal efficiency is one of the variables that maintain a high influence on various variables and a 

stable increasing effect as time progress. This could be one of the areas in the organization to invest 

in it. 



135 

 

Organization capacity, either the initial value or the minim value (fixed capacity), sensitivity 

results agrees with the results from the screening method. Contrary, project load and duration have 

a higher impact using linear regression than the screening method.  

Overheads and wages have a high negative impact on the organization considering short- and long-

term effects. This result agrees with the screening method and assures the importance of the 

organization's cost structure. 

7.5.3 ANOVA method 

The analysis in this method is based on dividing the space set that arises from points into ordered 

pairs of the dependent and independent variables into equal clusters as shown in Figure 7.4. Then, 

measure the difference between the clusters’ centers and the space set center. In Figure 7.4, the 

blue dots are the space set arising from wages on the x-axis and profit percent on the y-axis, as an 

example, from the Monte Carlo simulation results at a time of 41 months. The red dots are the 

center of clusters, and the green line is the center of the space set. If the difference between the 

cluster’s center and space set center is significant, this means the dependent variable is 

significantly sensitive to the uncertainty in the independent variable. The significant difference is 

measured by calculating the p-value based on the ANOVA F test using scipy.stats.f_oneway 

function. Because the variables follow the F-distribution under the normality assumption. 

 

Figure 7.4 Scatter plot between Wages and Profit percent at time 41 month 
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The results are presented in Table 7.7. For instance, the actual error percent is significantly 

sensitive to the quality level. This is logical because errors are the other side of quality. Other 

factors such as overheads and average load can be considered not significantly sensitive. This 

means the changes in such factors will slightly affect the rework (errors) of the organization.  

Capacity utilization, at the beginning of the simulation, is highly sensitive to the normal utilization 

initial value and quality level. By that time, capacity utilization is highly sensitive to the delivery 

delay, time to adjust capacity, initial cash, maximum capacity, and overheads. This means it is 

better for the organization to be more responsive and has a higher level of capacity allowance to 

maintain a highly utilized capacity. This might not be the best solution for the organization because 

high levels of under-utilized capacity will add to overheads. So, this is a suggested area for future 

improvement. 

Table 7.7 Sensitivity results from the ANOVA method 

Variable 

Start of simulation Rest of simulation 

Significant p-value Significant p-value 

Actual Error percent 

normal quality level 0 normal quality level 0 

wage overhead factor 0.1 wage overhead factor 0.1 

Demand level 0.2 Demand level 0.2 

average load 0.2 average load 0.2 

Capacity utilization 

normal utilization 0.0057 normal delivery delay 0.003 

normal quality level 0.035 time to adjust capacity 0.004 

    initial cash 0.005 

    maximum capacity 0.008 

    wage overhead factors 0.02 

Capacity variability 

index 

minimum capacity 0.003 time to adjust capacity 0.044 

time to adjust capacity 0.05 profit margin factor 0.045 

    cash time buffer 0.048 

    initial capacity 0.05 

Market Share 

wages 0.01 wages 0.04 

maximum capacity 0.012 initial cash 0 

demand level 0.021 profit margin factor 0.005 

    bidding time 0.01 

Min profit margin 
cash time buffer 0.02 initial capacity 0.1 

time to adjust capacity 0.03 normal delivery delay 0.2 

Organization 

Capacity 

initial capacity 0 initial capacity 0.04 

normal delivery 0.007 cash time buffer 0.04 
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Variable 

Start of simulation Rest of simulation 

Significant p-value Significant p-value 

wage overhead factors 0.02 profit margin factor 0.049 

normal quality level 0.03 time to adjust capacity 0.052 

Organization Cash 

initial cash 0.008 initial cash 0.008 

average duration 0.01 average duration 0.005 

    time to adjust capacity 0.0004 

    profit margin factor 0.03 

    wage overhead factors 0.02 

    
frequency of updating 

capacity 
0.03 

Organization 

delivery delay 

normal delivery delay 0.04 minimum capacity 0.0005 

frequency of updating 

capacity 
0.1 maximum capacity 0.0006 

    time to adjust capacity 0.005 

    demand level  0.03 

    average load 0.051 

    average duration 0.052 

Profit percent 

wage overhead factor 0.003 wage overhead factor 0.003 

wages 0.04 initial capacity 0.001 

normal efficiency 0.053 average load 0.00054 

    demand level  0.002 

    time to adjust capacity 0.008 

    initial capacity 0.01 

Capacity variability is sensitive to the minimum capacity and time to adjust it. Over time, the 

adjusting time is more significant, i.e. the sensitivity increases, and factors such as markup, cash 

time buffer, and initial capacity become more significant in their uncertainty. This indicates the 

importance of such factors to maintain a stable capacity level.  

Market share is sensitive to wages (cost structure), maximum capacity, and demand level at the 

start of the simulation. This sensitivity is reduced in the first half of the simulation and returns to 

increase in the second half of the simulation, but sensitivity to demand level reduces with time. 

The markup percent, initial cash, and bidding time sensitivity increase over time. This shows the 

importance of cash initial value (initial cash) and the inflow rate (markup percent) for the market 

share of the organization. Interestingly, market share sensitivity to demand level reduces with time.  
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The profit margin (markup percent) is highly sensitive to the cash time buffer. i.e. it is sensitive to 

the availability of cash to run the organization’s awarded projects. It is also sensitive to the time 

to adjust capacity, i.e. the flexibility of the organization to adapt to the workload. The sensitivity 

behavior to time to adjust capacity is oscillation. This might mean the level of sensitivity depends 

on other variables, i.e. this area requires more investigation. In the long term, significant sensitivity 

is not present, however, it is more sensitive to initial capacity and normal delivery delay. 

Organization capacity is sensitive, initially, to the initial capacity, normal delivery delay, 

overheads, and quality level. Over time, the sensitivity to these factors is diminished except for the 

initial capacity, and other factors such as cash time buffer, markup percent, and time to adjust 

capacity. These factors are directly related to the availability of cash and workload, and flexibility 

to adjust the workforce, i.e. capacity level. 

Organization cash is sensitive to its initial value and the project duration. Over time, other factors 

become more sensitive, such as time to adjust capacity, markup, overhead, and frequency of 

updating capacity. These variables indicate that flexibility to adjust capacity and cost structure is 

very important to maintain better cash flow. 

The organizational delivery delay is sensitive to capacity, the flexibility of adjusting the capacity, 

project characteristics (time and load), and demand level. While, profit percent is sensitive to cost 

structure, workload, and capacity adjustment.  

7.5.3.1 Insights summary compilation of the ANOVA method 

To sum up, Figure 7.5 shows the factors' importance based on their recurrence frequency. 

Organizational flexibility to adjust capacity is ranked as the number one important variable for 

organizational performance. This assures the importance to invest in new technologies and 

business models to have a more flexible resource base. Markup percent is marked as important for 

an organization's long-term performance. It affects multiple downstream workflows. The 

interdependency and feedback structure give it a high rank for the organization's long-term 

performance. 

Interestingly, cost structure (overheads and wages) and strategy to have a suitable liquid amount 

of cash (cash time buffer) are very important for the organization's current and future performance. 

The organization's performance is very sensitive at the instantaneous and accumulated level for 
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these factors. Also, project characteristics such as project duration have likely the same short- and 

long-term performance, but project load has a higher long-term performance than its short-term 

effect. This indicates the importance of planning regarding activity duration should have more 

concern when seeking instantaneous and long-term effects on the organization's performance. 

Start of simulation time Along simulation time 

  

Figure 7.5 Most influencing variables on the monitored set from the ANOVA method 

7.6 SENSITIVITY ANALYSIS INSIGHTS FROM THE THREE 

METHODS 

The most obvious finding is that the results from the three analysis methods are slightly different 

to identify the most important (sensitive) variables affecting the project-based organization 

(contractor) performance. However, these results can provide the overall importance of each 

variable from the controller set. Table 7.8 represents the overall frequency of each variable that 

appears as a significant cause to affect the state of the monitored set variables. Initial organization 

capacity is ranked as the most important factor to affect the organization's performance. It is ranked 

the second most important variable for short-term effect and number one for the longest-term 

effect. Minimum and maximum capacity has a relatively lower impact than the initial capacity, 

but minimum capacity (fixed capacity) is much more important for organizational stabilization 

and better performance. The capacity adjustment flexibility is the second important factor in the 

overall ranking and third on the long-term performance effect. This highlights the importance of 

maintaining not only a suitable amount of capacity but the organization should, also, have the 

flexibility to respond to workflow changes. Significantly, maximum capacity has not the much 
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importance as minimum capacity. This is because core resources, i.e. minimum capacity is the 

controller of how much variable capacity could be.  

The other significant result is that quality level is more important than the initial cash. Initial cash 

invested is very important for short-term performance but the quality has many effects on the 

organization's performance in the long-term behavior. 

Table 7.8 Frequency of variables usage based on their significance 

variable start end overall 

initial capacity 9 13 22 

normal quality level 8 10 18 

time to adjust capacity 7 11 18 

initial cash 9 8 17 

wage overhead factor 7 10 17 

profit margin factor 4 11 15 

normal delivery delay 10 4 14 

normal efficiency 6 6 12 

wages 5 7 12 

minimum capacity 4 7 11 

demand level 3 7 10 

normal utilization 5 4 9 

all 4 5 9 

average duration 4 4 8 

average load 2 6 8 

frequency of updating  4 3 7 

cash time buffer 2 4 6 

bidding time 2 4 6 

maximum capacity 1 4 5 

Overheads and markup percent have a significant impact on long-term behavior. Overheads have 

a relatively more effect on short-term behavior than the markup percent. This requires the 

organization have a balance between both variables to maintain a competitive long-term 

performance in the market.  

Interestingly, demand level has a much more significant impact on the long-term effect than the 

short-term performance. So, it is recommended for the organizations in case of recessions, 

booming, or force majors to focus on strategies to deal with these events in the long term rather 

than a short-term mitigation plan.  
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Finally, project characteristics (load and duration) have a moderate impact on the organization's 

performance. Relatively, by comparing their impact with internal factors impact, it is obvious that 

internal organization factors have the highest impact on its performance more than other factors. 

This highly recommends more insight investigation of project-based organizations' business 

models for future studies. 

7.7 WORKLOAD ANALYSIS 

The workload is tested for sensitivity for the same parameters shown in Table 7.3. It is analyzed 

using the three mentioned methods, screening, regression, and ANOVA. The results from these 

methods are utilized to build the influence matrix presented in Table 7.9. 

ANOVA method shows that normal utilization and initial cash are significantly important at the 

start of the simulation and the sensitivity of workload to them decayed over time. Hence, it is 

recommended for start-ups to give attention to the size of the organization in its initial steps. 

the normal delivery delay has not the much significant at the start of the simulation but its 

importance increases with time. This indicates that long-term competition requires more attention 

to the organization's time to market for sustainability and a more stable workload. 

Table 7.9 Workload Influence Matrix 

 

Start of simulation Rest of simulation 

Screening 
Linear 

regression 
ANOVA Screening 

Linear 

regression 
ANOVA 

time to adjust capacity    x x x 

demand level x x    x 

average load x x     

cash time buffer x      

minimum capacity    x  x 

average duration x     x 

normal utilization   x  x  

minimum capacity  x     

normal quality level     x  

normal efficiency  x     

initial cash x  x    

normal delivery delay      x 
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The most significant variables from start to end of the simulation are minimum capacity, demand 

level, time to adjust capacity, and project average load. The workload is very sensitive to these 

variables. Their level of significance is almost stable throughout the simulation. These might be 

areas for improvement for the organization, because of workload higher sensitivity to them, and 

their long-term effect. 

It is interesting to find that workload is low sensitivity to efficiency, initial capacity, maximum 

capacity, quality level, wages, discount rate, project average duration, bidding time, and frequency 

of updating. These variables highlight the importance of meeting the minim requirements for each 

variable is enough for the organization and spending much effort to improve them will be costly 

relative to their impact. Also, they highlight that market conditions applied to all contractors such 

as wages are not that significant to workload fluctuations. 

Another interesting variable is the profit margin factor (markup percent), its importance to 

workload oscillates over the simulation. This indicates that its effect on the workload is not 

instantaneous, i.e. subjected to a delay in its effect. Also, it indicates that this factor is a balancing 

factor for workload, i.e. organization could increase and decrease its workload based on the 

markup percent. 

From the screening method, at the start of the simulation, demand level, initial cash, and project 

average load are directly affecting the workload. Their influence is reduced by time but the 

project's average load increases relative to its initial value. This, interestingly, shows that market 

conditions have a high impact on startups this effect is slightly mitigated by time. Inversely, cash 

time buffer and project average duration have the highest effect on the workload at the start of the 

simulation, and their effectiveness decreases over time. So, the conservative strategy will reduce 

the workload initially but will develop a strong organization.  

Minimum capacity (positively correlated), and time to adjust capacity (negatively correlated) are 

the highest impact on the workload during the simulation time. This highlights the significance of 

such variables in the organization's decisions. i.e. slight changes in the capacity or flexibility of 

adjustment will affect the workload instantaneously and in the long term. So, local decisions 

related to such variables should be considered at the organizational level. 
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From the regression method, demand level, project average load, minimum capacity, and normal 

efficiency are positively affecting the workload. While, normal quality level, normal utilization, 

and time to adjust capacity are negatively impacting the workload. The screening method shows 

that the demand level is highly correlated with the workload at the start of the simulation. This 

result is different from the regression and ANOVA methods. This indicates a nonlinear positive 

relation between workload and demand level that requires further investigation. 

Normal efficiency has a higher regression factor but a not significant sensitivity to its uncertainty. 

This confirms the conclusion from the ANOVA method that as long as the minimum requirements 

are met for such factors then much enhancement is not required and is an expensive alternative. 

Other factors are in agreement with other methods. 

7.8 POLICY ANALYSIS 

After the analysis of the organization's performance, the model is utilized to assess the policies 

used by contracting organizations. Various scenarios are generated as presented in the following 

sections and analyzed in different cases.  

7.8.1 Scenario generation 

To generate different scenarios, the variables are categorized into three categories organization’s 

goals, the organization’s controllers, and the organization’s gauges as presented in Table 7.10. The 

organization’s goal setting is the variable used to define the goal of the organization based on 

different dimensions like profit, utilization, and market share. For example, if the organization is 

oriented toward profit the weight of the profit percentage will be higher than other variables.  

The organization’s controllers set are the variables used by the organization to set its strategy and 

control its performance such as the cash time buffer of the organization and its capacity cap. The 

organization’s gauges are the variables used by the organization to measure its performance such 

as its market share and profit. 

Table 7.10 Scenario generation parameters 

Organization’s Goals Organization’s Controllers Organization’s Gauges 

Profit percent Cash time buffer Market Share 

Capacity utilization Frequency of updating Error Percent 

Capacity variability index Max Capacity Capacity variability 
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Organization’s Goals Organization’s Controllers Organization’s Gauges 

Market Share Min Capacity Organization delivery delay 

Organization delivery delay Time to adjust Capacity Capacity Utilization 

Organization cash Profit Margin Factor Profit percent 

The organization’s goal variables are used to define three policies for the organization, balanced 

policy, competing for policy, and stable capacity as shown in Table 7.11. The balanced policy 

provides similar weight to the policy dimensions. This means the organization is interested in 

increasing profit and market share, decreasing the variability of the capacity and its delivery delay, 

and has utilized capacity.  

The competing policy makes the organization a risk taker. In this policy, the organization provides 

a higher weight to the market share but keeps the importance of other dimensions. On the other 

hand, the risk avers policy, i.e., the stable capacity policy oriented the organization toward the full 

utilization of its resources. In this policy, the organization can have a high variable capacity but 

this capacity should be fully utilized. Also, the organization is interested in the profit not the 

amount of available cash. This policy aims to reduce the expenses of the organization to the 

minimum required for operation. 

Table 7.11 Different organization’s policies dimensions  

Policy dimensions 
Balanced policy 

Scenario 1 

Competing policy 

Scenario 2 

Stable capacity 

Scenario 3 

Profit percent 1 1 1 

Capacity utilization 1 1 1 

Capacity variability index -1 -1 0 

Market Share 1 100 0 

Organization delivery delay -1 -1 -1 

Organization Cash 1 1 0 

7.8.2 Scenario analysis 

The different policies (scenarios) are tested on two different conditions for the market, the market 

is oriented toward the lowest price and the market is oriented toward the nearest to the average 

price. The lowest price orientation of the market means that other dimensions are not considered 

in the attractiveness of the organization and the lowest bid price is awarded the project. The nearest 
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to the average means that the price is still the main criterion and the average price of the bidders 

is the standard base and the nearest price to this standard is awarded the project.  

7.8.2.1 Lowest price market 

The results of the three scenarios are presented in Figure 7.6, Figure 7.7, Figure 7.8, and Figure 

7.9. The workload of the organization shown in Figure 7.6 for the competing policy is doubled 

twice more than the other two policies. The market share shown in Figure 7.7 is more stable for 

policy number two than the other two policies. The organization delivery delay shown in Figure 

7.8 is way better for policy number two than the other two policies. The capacity variability index 

shown in Figure 7.9 is more stable and better in policy number two than the other two policies. 

From these results, the competing policy is recommended for the PBOs in the lowest price-oriented 

market. This policy will allow the organization to have better utilization of its resources, more 

market share, higher workload (more experience), and better response to the market by decreasing 

its delivery delay 

 

Figure 7.6 Comparing the organization’s workload for the three scenarios (Case1) 
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Figure 7.7 Comparing the organization’s market share for the three scenarios (Case1) 

 

Figure 7.8 Comparing the organization’s delivery delay for the three scenarios (Case1) 
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Figure 7.9 Comparing the organization’s capacity variability index for the three scenarios (Case1) 

7.8.2.2 Nearest to the average price market 

The results are presented in Figure 7.10, Figure 7.11, and Figure 7.12. Policy number three 

provides the organization with a higher workload as shown in Figure 7.10. This policy guarantees 

a relatively stable market share than other policies as shown in Figure 7.11. Moreover, the delivery 

delay for policy number three is way less than for other policies as shown in Figure 7.12. From 

these results, the moderate policy (the more utilized resources policy) is recommended in the 

nearest to the average market. This policy, i.e., policy number three, will allow the organization to 

have a more stable market share, lower delivery delay, and a higher workload. 

 

Figure 7.10 Comparing the organization’s workload for the three scenarios (Case2) 
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Figure 7.11 Comparing the organization’s market share for the three scenarios (Case 2) 

 

Figure 7.12 Comparing the organization’s delivery delay for the three scenarios (Case2) 
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structure due to their position in the network. Sensitivity analysis measures the relative importance 

between variables due to the effect of dynamics and delays. SNA resulted that variables are very 

important due to their positions and influence on the information flow in the network.  

Sensitivity analysis is performed using three different statistical methods: screening, ANOVA, and 

linear regression. The results from each method are slightly different from one another. This 

chapter has identified the importance of internal factors on the organization's long-term 

performance. For instance, initial organization capacity is ranked as the most important factor to 

affect the organization's performance. Minimum capacity (fixed capacity) is much more important 

for organization stabilization and better performance. The capacity adjustment flexibility is the 

second important factor in the overall ranking and third on the long-term performance effect. This 

highlights the importance of maintaining not only a suitable amount of capacity but the 

organization should, also, have the flexibility to respond to workflow changes.  

The other significant result regarding short and long-term effects is that quality level is more 

important than the initial cash in the long term. Overheads and markup percent have a significant 

impact on long-term behavior. Moreover, overheads have a relatively more effect on short-term 

behavior than the markup percent.  

Interestingly, demand level has a much more significant impact on the long-term effect than the 

short-term performance. So, it is recommended for the organizations in case of recessions, 

booming, or force majors to focus on strategies to deal with these events in the long term rather 

than a short-term mitigation plan. Project characteristics (load and duration) have a moderate 

impact on the organization's performance. Internal organization factors have the highest impact on 

its performance more than other factors. This highly recommends more insight investigation of 

project-based organizations' business models for future studies.  The internal causes have a higher 

impact even though their influence direction is changed between positive and negative, i.e. they 

are the influencers in a goal-seeking loop that exhibits a delay.  

PBO’s workload is analyzed using the prementioned statistical tools. The results are utilized to 

build an influencing matrix between the controller variables and the workload level. This helps 

managers to understand the effect of the significant variables on short and long-term behavior. 

Also, facilitate the workload management policy assessment. 
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Moreover, the competing policy for the PBO with consideration of other performance dimensions 

is recommended for better performance and a stable market share. 

This work can serve as an initial step for future research by expanding its causal loop diagram to 

include other factors such as project delivery method, productivity incentives, and bank loans. 

These variables will add more complexity to the model but will add a new layer of knowledge. 

Another area for improvement is the direct linkage of the model parameters with organization 

databases to get synchronized update parameter values. Also, this work highlights the need for 

more investigation of the business model's soft variables like labor training, communication, lean 

practices, etc. this will directly add to the organization's competitiveness, profit, and sustainability. 

Finally, This work is limited to representing the contracting organizations at the execution phase 

and can be improved by considering the project design phase's impact on the organization's 

performance. 
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CHAPTER 8 RESEARCH SUMMARY AND FUTURE 

RECOMMENDATIONS 

This chapter presents a summary of the research, including the objectives achieved. The 

contributions of this research to academia and industry are also presented. Finally, the limitations 

of this work and recommendations for further research in this area are presented. 

8.1 RESEARCH SUMMARY 

In spite of the relative importance of the construction industry, most of the research on construction 

management has been at the project level. Although previous studies have considered operational-

level activities (e.g., planning, control, contract management, risk, etc.), planning at the 

organization (portfolio) level has received comparably less attention among scholars than project-

level planning. Based on the literature review, the gaps identified were (1) the lack of research 

identifying the variables affecting the PBO workload cycle; (2) the need for a method of predicting 

demand that considers economic variability, is precise, and that delivers critical information to aid 

planners in planning and decision making; and (3) the lack of support systems and holistic analysis 

that could aid managers in enhancing their decision making and in better understanding the holistic 

effect of their decisions. This research fills these gaps in consecutive steps as described in the 

following subsections. 

8.1.1 First phase 

In the first phase of this research, the literature on planning and control in construction is reviewed 

to obtain a clear image of the current research trends and gaps. A systematic literature review 

approach is used in this phase as a preliminary step to identify the research articles warranting 

further investigation. The defined set of articles is identified and reviewed, and the notable insights 

obtained in this process are compiled. A notable finding is that most of the articles in this area 

focus on cost and time control at the project level. Accordingly, the tools used in these studies are, 

primarily, cost- and time-oriented. Moreover, although scope and integration are important aspects 

of planning and control, the review of the relevant research reveals that these two areas have 

received relatively little attention. This research thus explores the use of system dynamics (SD) as 

a means of filling this gap. SD is selected based on its ability to facilitate the investigation of the 
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structures underlying a given problem by integrating multiple areas and subsystems in a common 

structure and supporting feedback between the subsystems.  

To determine the current state of SD applications in construction, a second systematic literature 

review is conducted, revealing that SD has been used in integration, but that the internal project 

dynamics still tend to be studied in isolation from the external dynamics. This is due to the 

orientation of studies toward project dynamics and finding the optimum solution at the project 

level. In other words, operational research tends to dominate the domain of SD applications in 

construction. Another notable observation is that SD when it has been used in research related to 

scope (i.e., workload management), has typically been limited to rework problems and change 

requests. The previous application deals with the workload as a well-defined entity, where changes 

to workload during the course of the project are considered side effects that should be mitigated 

by first quantifying their impact on the project time and cost. Hence, the present research studies 

workload fluctuations at the organizational level to understand the underlying causes and analyze 

the structure of these causes. On this basis, an influence matrix for workload fluctuations is 

developed, and the significance of the controller parameters to the project-based organization 

(PBO) is evaluated, as will be presented in the following sections. 

8.1.2 Second phase 

Based on the findings of the first phase, the aim of the second phase of the research is to identify 

the factors affecting workload fluctuations in PBOs. A systematic literature review approach is 

again used, this time to identify articles related to workload fluctuation at the organizational level. 

The identified articles are then clustered into three categories: dynamic modelling, non-dynamic 

modelling, and surveys. The dynamic modelling category includes studies that use an SD approach 

to model workload management. The non-dynamic modelling category, meanwhile, includes 

studies that use tools other than SD for this purpose. Surveys, finally, are studies that use 

questionnaires or interviews to define the factors affecting the workload management. The articles 

having been identified and categorized. They are studied in greater detail to extract the factors 

considered in the various models and surveys. 

Analysis of these factors is conducted using social network analysis (SNA) and relative usage 

index (RUI). SNA is used to quantify the importance of variables based on industry experts’ mental 

models, while RUI is used to quantify the importance of variables based on their frequency of use 
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as reported in the literature. In this way, the results of the dynamic modelling articles and a 

combination of non-dynamic modelling articles and surveys can be compared. The results reveal 

a disparity between the expert mental model and the dynamic models applied, thus pointing to the 

need for integrating more dynamic variables to model workload fluctuation. The most used 

variables are resources, organization experience, project schedule, and risk. On the other hand, 

The least used variables are owner strictness, bidding time, outsourcing quality, and organization 

utilization. These variables are recommended to be considered in the decision support system for 

workload management. 

The identified factors are grouped into those influencing the pre-award phase, those influencing 

the post-award phase, and those influencing the organization's financial system. It is found that the 

importance of the factors in each category is higher in the assigned phase but it affects other phases 

too. For example, the factors in the pre-award phase are defined in the pre-award phase but their 

influence propagates to the after-award phase. These factors are then structured into a causal loop 

diagram that links the various subsystems. This diagram is then evaluated by industry experts and 

they stressed the need for understanding market dynamics. This is because isolating market 

dynamics from the organizational dynamic leads to unreliable planning and an inadequate 

understanding of the problem at hand. Hence, the focus of the next two phases of research is on 

gaining an understanding of market demand and predicting it and analyzing the causal structure of 

workload fluctuation. 

8.1.3 Third phase 

The focus of the third phase of the study is on analyzing and predicting industry demand, where 

industry demand is represented by the number of building permits issued in the market at a given 

time (as this metric is reflective of the effect of various economic and political conditions). 

Analysis of this univariant time series is conducted using statistical tests, with the results of the 

analysis revealing various characteristics of industry demand. For instance, it is observed that 

construction industry demand in Canada (i.e., the case jurisdiction) has a one-year cycle that 

corresponds with the calendar year. The peak of this cycle is at the interface of the second and 

third quarters of the year, while the valley occurs at the interface of the fourth and first quarters. 

The analysis also reveals that construction demand in Canada is stationary, normally distributed, 
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relatively stable, fluctuates around the average, and has low variability in terms of the number of 

projects issued. 

The prediction of demand volume using statistical and machine-learning methods is also evaluated. 

The statistical tools, especially exponential smoothing, are found to outperform the machine-

learning algorithms in cases in which the volume of data available for training is limited. It is 

observed that SARIMA is the most suitable tool for correlated and stationary data, but that Holt-

Winter (HW) performs better than SARIMA for 85% of the data. Moreover, Gaussian with Kernels 

is the best-suited tool for normal and low-variability data. 

Overall, exponential smoothing is determined to be the best algorithm for predicting demand, as it 

does not require sophisticated calculations, has a relatively short training time, and has an 

acceptable error margin. However, there is still uncertainty in the prediction due to errors. In this 

respect, the present work aids strategic planners in mitigating market uncertainty, quantifying risk, 

and optimizing markup margins to ensure profitability and competitiveness. Another advantage of 

this work is that the approach used in this study can be applied to different industries and markets 

to support contracting organizations in their strategic decision making to expand in existing 

markets or penetrate new markets. Finally, the tools proposed in this research assume that the 

previous pattern is replicated in the future so it is recommended to apply a causal-driven approach 

to understand the market dynamics. 

8.1.4 Fourth phase 

The fourth phase involves analyzing the causal structure of workload fluctuation at the 

organizational level. The dynamic hypothesis driving this structure comprises two major “loops”, 

one of them a positive (reinforcing) loop and the other a negative (balancing) loop. The reinforcing 

loop consists of the organization's available cash for increasing the capacity to take on more 

workload, where accepted and executed work in turn increases the organization's available cash. 

The balancing loop, meanwhile, refers to the cash invested by the organization in increasing its 

capacity and competitiveness to gain more workload. The higher the backlog workload is, the more 

the consumption of financially available resources reduces the ability of the organization to add 

more resources for work execution. 
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This hypothesis is used to link the various identified variables and arrange them into four 

subsystems: contractor competitiveness, demand and capacity adjustment, capacity allocation, and 

financial subsystem. The model is subjected to various tests to validate its goal, dimension 

consistency. 

Meanwhile, the causal loop diagram is analyzed using SNA to gain insights into the relative 

importance of the various factors based on their positions in the network structure. Three different 

statistical methods—screening, ANOVA, and linear regression—are used to analyze the 

sensitivity of the model, where the results are found to vary slightly depending on the method. A 

notable finding is that internal factors have a higher impact on the organization's short- and long-

term performance than do external factors, even though their direction of influence tends to 

oscillate between positive and negative, i.e., they are the influencing factors in a goal-seeking loop 

that exhibits a delay. 

Capacity is found to be the most important factor affecting the organization's performance from 

the three methods of analysis applied, while capacity adjustment flexibility is the second-most 

important factor in the overall ranking and third in terms of the effect on long-term performance. 

This highlights the importance of maintaining not only a suitable amount of capacity but also the 

flexibility to respond to workflow changes. 

Demand, meanwhile, is found to have a much more significant impact on long-term performance 

than on short-term performance. As such, it is recommended that organizations focus on long-term 

strategies to deal with recessions, booms, and forces majeures rather than on short-term mitigation 

plans. 

Finally, the results of the PBO workload analysis are used to build an influence matrix 

characterizing the relationship between controller variable and workload level. Such a tool can aid 

decision-makers in understanding the effect of significant variables on short- and long-term 

behaviour, as well as facilitate the assessment of workload management policy. 

8.2 RESEARCH CONTRIBUTIONS 

8.2.1 Academic contributions 

1) Identification of the factors affecting workload fluctuations in PBOs: 
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The fragmented intellectual knowledge and niche research topics such as project 

management, contractor selection, and portfolio optimization are transformed into a 

comprehensive list that collects and maps coherent information about workload 

fluctuations. This provides structured, comprehensive, and holistic information to 

scholars concerning the variables affecting workload fluctuations. Another 

contribution in this regard is that the lack of dynamic models for evaluating workload 

fluctuations is identified.  

2) Increased understanding of market variations and prediction of future demand: 

Previous studies have represented demand in terms of the orders received by a given 

organization. However, this indicator is not representative of actual demand in the 

market. The present study thus represents unconstrained demand by using building 

permits as the metric. Not only is this representation more accurate in capturing actual 

market conditions, but it is straightforward and efficient because the effect of economic 

and political variations on demand is inherently reflected in the number of building 

permits. In this manner, it provides a statistical tool for demand prediction with a 

reasonable error using very limited data. Moreover, this representation aids 

understanding of the demand cycle, its peak, valley, average, range, and other 

significant aspects, and it can be extended to applications analyzing and predicting 

demand in other industry sectors. Contrary, it is limited to the analysis of one factor 

and assumes the future demand is derived from only the previous demand. 

3) Development of a decision support system for strategy selection: 

The developed model provides decision-makers with an integrated tool that considers 

the internal and external dynamics of the PBO. Previous studies have tended to focus 

on project dynamics in terms of project time and cost. The model developed in the 

present research considers the interacting dynamics of the project, organization, and 

market. Also, it considers the nondeterministic nature of the variables influencing the 

problem at hand. Another innovative feature is that it applies various indices to measure 

the organization's performance, such as market share, capacity variability index, and 

capacity utilization. These indices have been largely overlooked in previous studies, 

which have been oriented toward finding local optimum solutions for specific projects. 

The present study fills this gap and links the organization's business model to various 
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projects operated by the same contractor in order to find a global optimum solution at 

the organizational level. Moreover, a workload influence matrix is developed, and the 

significant factors affecting a PBO’s performance are identified. 

8.2.2 Contributions to industry practice 

1) Assessment of the factors affecting a PBO’s workload fluctuation: 

An assessment is developed to aid contractors and practitioners in understanding the 

relative importance of factors affecting workload fluctuations at the organizational 

level. It provides insights into how the overall fluctuation behaviour emerges from 

project-oriented decisions, and maps the complicated linkages among industry experts’ 

mental models in dealing with known local behaviours to support practitioners in 

understanding, holistically, the emergent behaviour of decisions. 

2) Increased understanding of demand fluctuations and prediction of future demand. 

Predicting the unconstrained demand provides practitioners and contractors with a 

significant piece of information to facilitate downstream decision making, such as 

capacity planning and defining the competition landscape. The characteristics of 

demand provided to practitioners support them in better understanding the demand 

cycle. This helps the practitioner to form a reliable mental model in assessing 

fluctuating market demand. 

3) Development of a decision support system: 

The developed decision support system aids practitioners in making decisions in a time-

efficient manner. In this way, contractors can achieve a stable resource level based on 

a fuller understanding of the fluctuating nature of the workload and the variables 

influencing it. Moreover, by better understanding which variables have the most 

influence on the organization's performance, contractors can make sound decisions 

regarding areas of future investment. 

8.3 RESEARCH LIMITATIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

8.3.1 Identification of the factors affecting the PBO’s workload fluctuation 

The identification of PBO’s workload fluctuation factors focused on the previous research 

published related to this area. Two decades was the limited time to investigate these factors. This 
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could be eliminated in future research by increasing the time spectrum and categorizing these 

factors into decades. These clusters of factors can be utilized in the assessment of the expert mental 

model evolution in the consideration of this problem.  

Moreover, the focus on the previous studies to extract the factors limits the variables collected to 

historical data (previous studies). Communication with industry experts to validate these variables 

was limited because of COVID-19 restrictions. This can be eliminated in future research by 

surveying multiple contracting organizations and various practitioners. 

8.3.2 Prediction of future industry demand 

The analysis and prediction of the industry demand represented in a univariant time series (TS) 

assume that historical behavior is replicated in the future. This makes TS analysis falls short to 

explain why behaviors occur. It doesn't explain why the demand has a seasonal cycle and 

exponential or damped trend. This can be covered in future research by utilizing a causal-driven 

approach to analyze the construction industry demand.  

Moreover, this work considers unconstrained demand prediction. In future work, this can be 

integrated with other models to reflect the organization's constraints in order to predict their market 

share, i.e., their constrained demand. 

8.3.3 Analysis of PBO’s workload fluctuation 

The project in this study is assumed to be identified using its average time and workload. This 

assumption limits the analysis from considering other factors that identify the project such as the 

project owner's characteristics. This factor can be studied in future research to provide a more 

enhanced assessment of the organization's performance.   

In future work, the developed model could be integrated with an optimization model to automate 

the decision-making process.  

This research used soft data due to the unavailability of hard data. This can be addressed in future 

research by applying a direct link between the model parameters and an organization’s databases 

(if available) to obtain synchronized and updated parameters. 
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Finally, this work is limited to representing the contracting organizations at the execution phase 

and can be built upon by incorporating interactions with design–build organizations during the 

design phase. 
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Safety and production: an integrated planning and 

control model 
 1  1   1   

42 2010 
Six‐sigma as a strategy for process improvement on 

construction projects: a case study 
 1 1   1 1 1  
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Modeled with Singularity Functions by Simulated 

Annealing 
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      1   

45 2012 

Hybrid principal component analysis and support 

vector machine model for predicting the cost 

performance of commercial building projects using 

pre-project planning variables 

 1     1   

55 2012 
Using the Earned Value Management System to 

Improve Electrical Project Control 
 1  1   1   

56 2012 

A Model for Quantification of Construction Waste 

in New Residential Buildings in Pearl River Delta of 

China 

     1    

57 2013 

Advancing Optimization of Hybrid Housing 

Development Plans Following Disasters: Achieving 

Computational Robustness, Effectiveness, and 

Efficiency 

 1  1   1   

58 2013 
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WITH ADAPTIVE MUTATION STRATEGY 

(CA-MODE) FOR CONSTRUCTION PROJECT 

TIME-COST-QUALITY TRADE-OFF 

 1  1  1 1   

59 2013 

SCHEDULE CONTINGENCY ANALYSIS FOR 

TRANSIT PROJECTS USING A SIMULATION 

APPROACH 

      1   

60 2013 

Performance Measurement to Aid Decision Making 

in the Budgeting Process for Apartment-Building 

Construction: Case Study Using MCDA-C 

 1        

61 2013 
Relationship between Construction Safety and 

Quality Performance 
   1  1    

62 2013 

EVALUATING CONSTRUCTION PROJECT 

SUCCESS WITH USE OF THE M-TOPSIS 

METHOD 

1         
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Quality Management Evaluation Based on Self-

Control and Cosupervision Mechanism in PIP 
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64 2014 
Anticipating Roadway Expansion and Tolling 

Impacts: Toolkit for Abstracted Networks 
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65 2014 
Multi-objective genetic optimization for scheduling 
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Dynamic Control Thresholds for Consistent Earned 

Value Analysis and Reliable Early Warning 
 1  1   1   
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Effects of the location-based management system on 

production rates and productivity 
  1    1   
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Impact of Measuring Operational-Level Planning 

Reliability on Management-Level Project 
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      1   

69 2014 

Impacts of Different Types of Owner-Contractor 

Conflict on Cost Performance in Construction 

Projects 

 1  1      
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Sensitivity of Earned Value Schedule Forecasting to 

S-Curve Patterns 
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Optimizing Earthmoving Job Planning Based on 

Evaluation of Temporary Haul Road Networks 
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Value Analysis and Reliable Early Warning 
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Autonomous production tracking for augmenting 
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Calculating cumulative inefficiency using earned 

value management in construction projects 
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A Review of Construction Delivery Systems: Focus 

on the Construction Management at Risk System in 

the Korean Public Construction Market 

   1      
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Credibility Evaluation of Project Duration Forecast 

Using Forecast Sensitivity and Forecast-Risk 

Compatibility 
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79 2015 
Method to Assess the Level of Implementation of 

Productivity Practices on Industrial Projects 
 1 1   1 1   

80 2015 
Project Completion Time and Cost Prediction Using 

Change Point Analysis 
 1  1   1  1 

81 2016 

Lessons Learned from Applying the Individuals 

Control Charts to Monitoring Autocorrelated Project 

Performance Data 

     1 1   

82 2016 

Slip Chart–Inspired Project Schedule Diagramming: 

Links, Extension to Network Schedules, and 

Unification 

   1   1   

83 2016 
Introduction to Techniques for Resolving Project 

Performance Contradictions 
    1  1   

84 2016 

Determining Significant Risks in the Variability 

between Design-Stage Elemental Cost Plan and 

Final Tender Sum 

 1  1   1   
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85 2016 

A GAME THEORY APPROACH FOR OPTIMUM 

STRATEGY OF THE OWNER AND 

CONTRACTOR IN DELAYED PROJECTS 

 1  1   1   

86 2016 

A study of best management practices for enhancing 

productivity in building projects: construction 

methods perspectives 

   1   1   

87 2016 
Cost Performance as a Stochastic Process: EAC 

Projection by Markov Chain Simulation 
 1        

88 2016 
Estimating Cumulative Damages due to Disruptions 

in Repetitive Construction 
     1 1   

89 2016 
Line-of-balance against linear scheduling: critical 

comparison 
      1   

90 2016 

Lessons Learned from Applying the Individuals 

Control Charts to Monitoring Autocorrelated Project 

Performance Data 

 1    1 1   

91 2016 

Performance Analysis of Construction Manager at 

Risk on Pipeline Engineering and Construction 

Projects 

 1  1 1  1  1 

92 2016 

Slip Chart–Inspired Project Schedule Diagramming: 

Links, Extension to Network Schedules, and 

Unification 

    1  1   

93 2016 
Customer Earned Value: Performance Indicator 

from Flow and Value Generation View 
 1    1 1   

94 2016 

Statistical Analysis of the Effectiveness of 

Management Programs in Improving Construction 

Labor Productivity on Large Industrial Projects 

  1       

95 2016 
A Survey on Production Planning System in 

Construction Projects Based on Last Planner System 
1         

96 2017 

Automated Generation of Work Breakdown 

Structure and Project Network Model for 

Earthworks Project Planning: A Flow Network-

Based Optimization Approach 

      1   

97 2017 
Causes of Construction Delays in Countries with 

High Geopolitical Risks 
   1  1 1   

98 2017 
Multidimensional Highway Construction Cost 

Indexes Using Dynamic Item Basket 
 1  1      

99 2017 
Effective material logistics in urban construction 

sites: a structural equation model 
 1  1 1  1 1  

100 2017 
Framework for productivity and safety enhancement 

system using BIM in Singapore 
  1 1   1   

101 2017 
Improving transparency in construction 

management: a visual planning and control model 
    1 1 1   

102 2017 
Construction flow index: a metric of production flow 

quality in construction 
     1 1   

103 2017 

Coordination Challenges of Production Planning & 

Control in International Mega-Projects: A Case 

Study 

   1   1   

104 2017 
Estimated Cost at Completion: Integrating Risk into 

Earned Value Management 
 1  1  1 1   

105 2017 
Improving transparency in construction 

management: a visual planning and control model 
     1 1   

106 2017 Social network analysis for construction crews   1       



191 

 

 

y
ea

r 

T
it

le
 

In
te

g
ra

ti
o
n
 

C
o

st
 

H
u

m
an

 

re
so

u
rc

es
 

R
is

k
 

C
o

m
m

u
n

ic
at

io
n

s 

Q
u

al
it

y
 

T
im

e 

P
ro

cu
re

m
en

t 

S
co

p
e 

107 2018 
Ontology-Based Knowledge Model to Support 

Construction Noise Control in China 
     1 1   

108 2018 

A multiobjective optimization method considering 

process risk correlation for project risk response 

planning 

 1  1  1 1   

109 2018 

Conflict resolution-motivated strategy towards 

integrated construction site layout and material 

logistics planning: A bi-stakeholder perspective 

      1 1  

110 2018 

Development of a tool to monitor static balance of 

construction workers for proactive fall safety 

management 

   1      

111 2018 

Techniques and benefits of implementing the last 

planner system in the Gaza Strip construction 

industry 

      1 1  

112 2018 
Optimization for Roads’ Construction: Selection, 

Prioritization, and Scheduling 
 1 1    1   

113 2018 
Effect of project complexity on cost and schedule 

performance in transportation projects 
 1 1    1   

114 2019 

Delay Risk Assessment of Repetitive Construction 

Projects Using Line-of-Balance Scheduling and 

Monte Carlo Simulation 

   1   1   

115 2019 

Tools for Measuring Construction Materials 

Management Practices and Predicting Labor 

Productivity in Multistory Building Projects 

   1  1 1 1  

116 2019 

Assessing the Impacts of an IT LPS Support System 

on Schedule Accomplishment in Construction 

Projects 

     1 1   

117 2019 
What CPI = 0.85 Really Means: A Probabilistic 

Extension of the Estimate at Completion 
 1  1   1   

118 2019 

Production and shipment planning for Project Based 

Enterprises: Exploiting learning-forgetting 

phenomena for sustainable assembly of Curtain 

Walls 

  1    1 1  

119 2019 
BIM-based Last Planner System tool for improving 

construction project Management 
  1   1 1   

120 2019 
Real-time resource tracking for analyzing value-

adding time in construction 
      1   

121 2019 
Portfolio decision analysis for risk-based 

maintenance of gas networks 
 1  1  1 1   

122 2019 

Risk factors affecting the ability for earned value 

management to accurately assess the performance of 

infrastructure projects in Australia 

 1  1 1  1 1  

123 2019 
Predicting the project time and costs using EVM 

based on gray numbers 
 1  1   1   

124 2019 
SIGNIFICANCE RISKS EVALUATION OF 

COMMERCIAL CONSTRUCTION PROJECTS 
 1  1   1 1  

125 2019 

Green Performance Evaluation System for Energy-

Efficiency-Based Planning for Construction Site 

Layout 

 1 1    1 1  

126 2019 
Long-Term Railway Network Planning Using a 

Multiperiod Network Design Model 
 1     1   

127 2019 
The impact of make-ready process on project cost 

performance in heavy civil construction projects 
 1 1  1  1   
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128 2019 

An Evaluation of a Predictive Conceptual Method 

for Contract Time Determination on Highway 

Projects Based on Project Types 

 1    1 1 1  

129 2020 
Automatic Indoor Construction Process Monitoring 

for Tiles Based on BIM and Computer Vision 
   1  1 1   

130 2020 

Applying and Assessing Performance of Earned 

Duration Management Control Charts for EPC 

Project Duration Monitoring 

     1 1   

131 2020 

Predicting Construction Labor Productivity Based 

on Implementation Levels of Human Resource 

Management Practices 

  1    1   

132 2020 

Methodological Pluralism: Investigation into 

Construction Engineering and Management 

Research Methods 
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System Dynamics Review and 

publications 1985–2017: analysis, 

synthesis and contributions 

Juan P. Torres* 2019 
System Dynamics 

Review, 35(2), 

2 

Applying System Dynamics Modelling to 

Strategic Management: ALiterature 

Review 

Federico Cosenz and Guido 

Noto 
2016 

Systems Research 

and Behavioral 

Science 33.6 

3 

A recent overview of the integration of 

System Dynamics and Agent-based 

Modelling and Simulation 

Graciela d. C. Nava 

Guerrero*1, Philipp 

Schwarz*1, Jill H Slinger1,2 

2016 
System Dynamics 

Conference 

4 

Are complexity and uncertainty distinct 

concepts in project management? A 

taxonomical examination from literature 

Milind Padalkar, Saji Gopinath 2016 

International Journal 

of Project 

Management 

5 

SYSTEM DYNAMICS MODELING 

FOR CONSTRUCTION 

MANAGEMENT RESEARCH: 

CRITICAL REVIEW AND FUTURE 

TRENDS 

Mingqiang LIU, Yun LE, Yi 

HU, Bo XIA, Martin 

SKITMORE, Xianyi GAO 

2019 

Journal of Civil 

Engineering and 

Management 

6 

A Systematic Literature Review on 

Integrative Lean and Sustainability 

Synergies over a Building’s Lifecycle 

Adrieli Cristina Vieira de 

Carvalho 1 , Ariovaldo Denis 

Granja 1,* and Vanessa 

Gomes da Silva 

2017 Sustainability 9.7 

7 
System Dynamics Modeling in the Project 

Environment 
Peter E.D. Love 2013 

Mathematical and 

Computer Modelling 

8 

Applying System Dynamics Modelling to 

Strategic Management: A Literature 

Review 

Cosenz, Federico, and Guido 

Noto 
2016 

Systems Research 

and Behavioral 

Science 33.6 

9 

System dynamics applied to 

projectmanagement: a survey, 

assessment,and directions for future 

research 

Ford, David N., and James M. 

Lyneis 
2007 

System Dynamics 

Review 

10 
Review and structural analysis of system 

dynamics models in sustainability science 

Honti, Gergely, Gyula Dörgő, 

and János Abonyi. 
2019 

Journal of Cleaner 

Production 

11 
Best practices in system dynamics 

modeling 

Martinez‐Moyano, Ignacio J., 

and George P. Richardson 
2013 

System Dynamics 

Review 

12 
On the validation of system dynamics type 

simulation models 
Qudrat-Ullah, Hassan 2012 

Telecommunication 

Systems 51.2 

13 System dynamics—the next fifty years Forrester, Jay W. 2007 

The Journal of the 

System Dynamics 

Society 23.2‐3 
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Impacts of Lean Construction on 

Safety Systems: A System 

Dynamics Approach 

Xiuyu Wu 1 , 

Hongping Yuan 2, 

Ge Wang 3,* , 

Shuquan Li 1 and 

Guangdong Wu 4 

2019     1       

Dynamic modelling of human 

resource allocation in construction 

projects 

Shahin Dabiriana, 

Soroush 

Abbaspourb, 

Mostafa Khanzadic 

and Mostafa 

Ahmadic 

2019 

Internati

onal 

Journal 

of 

Construc

tion 

Manage

ment 

1 1       1  

A system dynamics simulation 

model to evaluate project 

planning policies 

Mahdi 

Shafieezadeha, 

Mehdi Kalantar 

Hormozib, Erfan 

Hassannayebi c, 

Loza Ahmadid, 

Marjan Soleymanie 

and Arezou 

Gholizadf 

2019 

Internati

onal 

Journal 

of 

Modellin

g and 

Simulati

on 

1 1 1      1 1 

System dynamics modeling of 

design and build construction 

projects 

S. Chritamara, S. O. 

Ogunlana , N. L. 

Bach 

2002 

Construc

tion 

Innovati

on 

1 1    1 1  1 1 

Dynamic simulation for effective 

workforce management in new 

product development 

M. Mutingi 2012 

Manage

ment 

Science 

Letters 

        1  

Forensic Project Management: An 

Exploratory Examination of the 

Causal Behavior of Design-

Induced Rework 

 2008  1 1 1        

Integral and dynamic 

methodology applied to 

scheduling and control project 

Leonardo José 

Gonzalez*, Dusko 

Kalenatic, Karol 

Vivivana Moreno 

2012 

Magazin

e 

Faculty 

of 

Engineer

ing 

Universi

ty of 

Antioqui
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1          

Evaluating Construction Methods 

for Low Carbon Emissions Using 

System Dynamics Modeling 

G. Ozcan-Deniz1 

and Y. Zhu2 
2012 

COMPU

TING 

IN 

CIVIL 

1 1        1 

http://www.scielo.org.co/scielo.php?script=sci_serial&pid=0120-6230&lng=en&nrm=iso
http://www.scielo.org.co/scielo.php?script=sci_serial&pid=0120-6230&lng=en&nrm=iso
http://www.scielo.org.co/scielo.php?script=sci_serial&pid=0120-6230&lng=en&nrm=iso
http://www.scielo.org.co/scielo.php?script=sci_serial&pid=0120-6230&lng=en&nrm=iso
http://www.scielo.org.co/scielo.php?script=sci_serial&pid=0120-6230&lng=en&nrm=iso
http://www.scielo.org.co/scielo.php?script=sci_serial&pid=0120-6230&lng=en&nrm=iso
http://www.scielo.org.co/scielo.php?script=sci_serial&pid=0120-6230&lng=en&nrm=iso
http://www.scielo.org.co/scielo.php?script=sci_serial&pid=0120-6230&lng=en&nrm=iso
http://www.scielo.org.co/scielo.php?script=sci_serial&pid=0120-6230&lng=en&nrm=iso
http://www.scielo.org.co/scielo.php?script=sci_serial&pid=0120-6230&lng=en&nrm=iso
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ENGIN

EERING 

Schedule risk analysis of 

infrastructure projects: A hybrid 

dynamic approach 

XiaoxiaoXuaJiayua

nWangbClyde 

ZhengdaoLibWenke

HuangbNiniXiac 

2018 

Automat

ion in 

Construc

tion 

1   1       

Key challenges of system 

dynamics implementation in 

project management 

David Rumesera, 

Margaret Emsleyb 
2016 

3rd 

Internati

onal 

Confere

nce on 

New 

Challeng

es in 

Manage

ment 

and 

Organiza

tion: 

Organiza

tion and 

Leadersh

ip 

       1 1  

A control system project 

development model derived from 

System Dynamics 

A.S. White 2011 

Internati

onal 

Journal 

of 

Project 

Manage

ment 

1        1  

Dynamic planning of construction 

activities using hybrid simulation 

Hani Alzraiee, 

Tarek Zayed, Osama 

Moselhi 

2015 

Automat

ion in 

Construc

tion 

1        1  

System Dynamics Modeling 

Strategy for Civil Construction 

Projects: The Concept of 

Successive Legislation Periods 

Wang Jing , Hafeth 

Ibrahem Naji , 

Raquim Nihad 

Zehawi , Zainab 

Hasan Ali , Nadhir 

Al-Ansari and Zaher 

Mundher Yaseen 

2019 
Symmetr

y 
1 1      1   

UNINTENDED NEGATIVE 

EFFECTS OF CLIENT 

PROJECT COST CONTROLS: A 

SYSTEM DYNAMICS 

APPROACH 

A.M. Chitongo & L. 

Pretorius 
2018 

South 

African 

Journal 

of 

Industria
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