
Characterizing Energy-Aware Software Projects: Are They
Different?

Shaiful Alam Chowdhury
Department of Computing Science

University of Alberta
Edmonton, Canada

shaiful@ualberta.ca

Abram Hindle
Department of Computing Science

University of Alberta
Edmonton, Canada

abram.hindle@ualberta.ca

ABSTRACT
The improvement in battery technology for battery-driven
devices is insignificant compared to their computing ability.
In spite of the overwhelming advances in processing ability,
adoption of sophisticated applications is hindered by the fear
of shorter battery life. This is one of the several reasons soft-
ware developers are becoming conscious of writing energy
efficient code. Research has been conducted to model soft-
ware energy consumption, to reduce energy drains, and to
understand developers expertise on energy efficiency. In this
paper, however, we investigate the nature of energy-aware
software projects. We observed that projects concerned with
energy issues are larger and more popular than the projects
that do not address energy consumption. Energy related
code changes are larger than others (e.g., bug fixes). In ad-
dition, our initial results suggest that energy efficiency is
mostly addressed on certain platforms and applications.

1. INTRODUCTION
“The world has changed.” Nowadays people move and play

with pocket computers (i.e., smartphones and tablets), with
more power than the traditional desktop computers of yore.
Smartphones in particular, built primarily for voice commu-
nication, are now adopted for daily life use cases: people
use their smart phones as calculators, as to-do lists, as game
consoles, and of course for accessing the Internet. This is
because of the overwhelming improvements in smartphones
computing capability.

Ironically, despite such improvements, users reported longer
battery life as the most desired smartphone feature [6]: the
insignificant improvement in battery technology compared
with their computing counterparts causes reduced battery
life. Energy consumption, in addition to the mobile devices,
has also become a subject of concern for large data centers,
and was reported as one of the pivotal issues Google faced
when scaling their operations [1]. Last but not least, the
devastating effect of energy consumption is climate change,
as most of the electricity is produced by burning fossil fu-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR’16, May 14-15, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4186-8/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2901739.2903494

els [1].
Although the hardware components are responsible for

draining energy, efficient software systems can play a vi-
tal role on how the components can be accessed and used
to minimize the energy consumption. Subsequently, energy
awareness is now observed among software developers [6],
and the awareness has increased linearly over the last few
years [7].

Previous research has analyzed energy related code and
questions from open source software projects and program-
ming Q&A forums [6, 7, 5]. The main objectives of these
research were to investigate what programmers do for soft-
ware energy optimization, and how often programmers are
successful with their attempts. Voltage scaling, reducing
number of messages and update periods, imposing idle peri-
ods, and selecting efficient data structures have been found
as the most frequently applied energy optimization tech-
niques. In spite of their urgency, however, developers are
not confident that their code changes will really reduce en-
ergy consumption [6].

In this paper, we analyze commit messages similar to the
previous work [6, 3]. However, we investigate a different re-
search issue: are energy-aware software projects different in
nature than others? In general, we answer the following four
different questions that jointly address the big question.
RQ1. Is energy efficiency considered only by large and pop-
ular software projects? To answer this, we collected different
statistics of the selected projects: number of contributors,
number of commits, number of forks etc.
RQ2. What are the most frequently used programming
languages in energy-aware projects? This also indirectly an-
swers the types of projects that address energy efficiency the
most.
RQ3. Which developers address energy efficiency the most?
Are there few energy experts? And are the energy related
changes in source code longer than other changes (e.g., code
change related to bug fix)?
RQ4. When addressing energy efficiency, do the developers
express differing sentiment than other issues like bug fix?

Our results, for RQ1-RQ3, suggest that energy-aware
software projects are significantly different than projects
that do not consider energy efficiency. No noticeable differ-
ence, however, was observed in sentiment analysis. For that
matter, we found that traditional corpora of sentiwords are
not suitable for understanding the sentiments of program-
mers’ commit messages—although such a corpus was previ-
ously used for GitHub sentiment analysis [3].

(a)

Energy Non Energy Gold Set100

101

102

103

104

105

Nu
m

be
r o

f C
om

m
its

Energy Non Energy Gold Set0

20

40

60

80

100

120

Nu
m

be
r o

f C
on

tr
ib

ut
or

s

Energy Non Energy Gold Set102

103

104

105

106

107

Si
ze

 (K
B)

(b)

Energy Non Energy Gold Set0

10

20

30

40

50

60

Nu
m

be
r o

f F
or

ks

Energy Non Energy Gold Set0

20

40

60

80

100

Nu
m

be
r o

f S
ta

rs

Energy Non Energy Gold Set0

20

40

60

80

100

Nu
m

be
r o

f W
at

ch
er

s

Figure 1: Energy projects VS Non-energy projects: larger (Figure (a)) and more popular (Figure (b)) projects are more likely
to address energy issues.

2. DATA COLLECTION
Boa [2]—a framework specifically designed to analyze large

software repositories—was used for our data collection. We
collected all the available commit messages with their project
IDs from GitHub as provided by Boa. This way we were able
to collect 282,779 GitHub projects. In order to separate out
energy related commit messages, we used keywords used in
previous studies [6, 7, 5]. We also included missing key-
words like “energy drain.* ”, “energy leak.* ”, “tail energy.* ”
etc. Initially, we ended up with 522 energy commits from
GitHub. A project with at least one energy commit was
labeled as an energy project in contrast to the non-energy
projects where no energy related commit message was found.
The problem with GitHub energy projects was that we ob-
served lots of exactly similar energy commits across different
projects—indicating that many of the energy projects were
forked or cloned. Unfortunately, using the GitHub API we
found only three forked energy projects in our list; we found
many cases where a project had been cloned and then up-
loaded to GitHub without using GitHub’s fork directly. As
a result, we wrote a script that reports projects with very
similar commit messages, and very similar group of contribu-
tors. Duplicated projects were then deleted from our dataset
after manual inspection. Finally, the dataset consists of 223
unique GitHub energy projects with 400 energy commits.
Similarly, 65,935 projects were collected from SourceForge.
We found only 182 energy commits from all of our Source-
Forge projects. These commit messages were included with
the GitHub ones to answer the RQ4.

In addition to Boa, the GitHub API was used to collect
information like number of forks, number of watchers of all
the GitHub energy and selected non-energy projects. In or-
der to answer how different energy related projects are than
others, we need information about non-energy projects as
well. We selected 5000 projects randomly from our labeled

non-energy projects; collecting information for all the avail-
able GitHub projects is problematic due to the rate limit
imposed by the GitHub API. Previous research [4], how-
ever, has found that a GitHub repository is not necessarily
a GitHub project. In fact, from our quick inspection we
found lots of student projects, and tutorials (e.g., how to
implement heap sort in Java) from our 5000 selected non-
energy projects. This might lead to an unfair comparison—
all of the energy projects in our dataset were true software
projects, as confirmed by manual inspection. As a result we
created a goldset of 100 true non-energy software projects
without any bias towards their statistics that we use in this
paper. After randomly selecting a project from our dataset
of 5000 projects, we manually inspected if the project is an
actual software project [4]. If yes, we included the project in
our goldset. After trying about 180 projects, we were able
to create our goldset of 100 desired projects.

3. RESULT ANALYSIS
RQ1. Are energy-aware projects different in size

and popularity? In order to evaluate how distinct the en-
ergy projects are compared to the others, we consider two
different metrics: size and popularity. The total numbers
of contributors, commits, and the actual size (in KB) are
used as the indicators of a project’s size. Likewise, the total
numbers of forks, stars and watchers are used to measure
popularity. Figure 1(a) and 1(b), without outliers, illustrate
the difference in size and popularity respectively. The non-
energy projects of our goldset, as expected, are more pop-
ular and larger than the non-filtered non-energy projects.
However, we observe very distinct characteristics for the en-
ergy projects. In general, Figure 1 evidently suggests that
large and popular software projects have higher probability
to incorporate energy efficiency issues. A project with more
contributors is more likely to have developers with energy

consumption expertise.
RQ2. Are energy-aware projects biased to a group

of programming languages? We ranked all the program-
ming languages used in our energy projects. Most of the
projects, however, have more than one programming lan-
guage. As a result, we calculated the percentage of projects
that used a specific programming language. Likewise, the
top 40 programming languages across all the GitHub projects
as provided by Boa were collected. Figure 2, with the top
10 most frequent programming language in the collected
energy-aware projects, clearly suggests that energy-aware
software projects are biased to the programming languages
that are most frequently used for hand-held and embed-
ded device applications. Although Java is the 5th most fre-
quently used programming language across all the GitHub
projects, it is the most frequently used language among the
energy-aware software projects. In fact, 95% of the energy-
aware software projects have Java as one of the used lan-
guages. This is intuitive, as Android is the most famous
platform for smartphones and tablets,1 and Java is the pri-
mary language used for Android applications. Similarly,
Objective-C (for iOS platforms) is more frequently used in
energy projects. C and C++ also have ascended ranks in
energy projects compared to all other Boa provided GitHub
projects. This might be because of their frequent use in em-
bedded systems.2 Interestingly, D—purportedly designed
for efficiency and improved programmers’ productivity3—
also belongs to the list of top 20 languages used in our
energy-aware projects, which is not even within the top 30
languages used in all the collected GitHub projects.

Lack of Web/server-side programming languages, how-
ever, is noticeable in Figure 2. For example, the rank of
JavaScript is 5th, whereas in general ranking this is the most
frequently used programming language. PHP, the 6th most
frequently used programming language in all the collected
GitHub projects, does not make a position in our list of the
most frequently used languages in energy-aware projects.
For the Go programming language, a language mostly used
for server-side programming, we observed similar pattern;
although Go belongs to the top 30 among all the GitHub
projects as provided by Boa, it is not even within the top
40 languages of our energy-aware projects list. We conclude
that developers are mostly concerned about energy efficiency
in case of mobile and embedded systems. This is unfortu-
nate to some extent, as server energy efficiency has been
found to be crucial for CO2 emissions [1].

RQ3. Who deals with energy issues in a project?
Are there developers who only deal with energy
issues? In order to answer this question, we calculated
the percentile ranks of all the contributors in our energy
projects. A 20th percentile rank of contributor x means
80% of the authors in a project committed equal to or less
number of commits than x. For all of our energy projects,
we also collected bug fix contributors through filtering com-
mit messages using “bugfix”, “bug fix”, and “fixed bug” key-
words. Figure 3 illustrates the cumulative distribution func-
tion of all the contributors in different roles: all commits,
energy commits, and bug fix commits. Results suggest that
energy issues are addressed by the authors who in general

1http://techland.time.com/2013/04/16/ios-vs-android/
2http://www.eetimes.com/author.asp?doc id=1323907
3http://dlang.org/

Java
(5) Shell

(3)
C
(7) Python

(4) C++
(9)

JS
(1) Perl

(10) Obj-C
(11) CSS

(8) Ruby
(2)

0

20

40

60

80

100

Pe
rc

en
t o

f E
ne

rg
y

Pr
oj

ec
ts

Figure 2: Distribution of programming languages: Java is
the most frequently used language in energy-aware software
projects.

99 88 77 66 55 44 33 22 11 0
Percentile Rank

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Energy commits
All commits
Bugfix commits

Figure 3: Cumulative distribution of energy commits among
the contributors: most contributing authors deal more with
energy issues compared to bug fix issues.

contributes the most in a project. In contrast, bug fix com-
mitters are more distributed. We conclude that most of
the software projects do not have developers that only deal
with energy issues. Developers who are more connected to
a project—i.e., make more contributions than others—are
more likely to care about and address energy issues.
Do energy related issues require more changes in
source code? We captured the changes made in the source
code (number of additions + number of deletions) for all of
our collected energy and bug fix commits. Figure 4, exclud-
ing the outliers, suggests that energy related code changes
are most of the time significantly larger than the bug fix
related changes. This is unsurprising as energy is relatively
a new concept in software development, and the developers
are yet to master this art. In fact, we observed lots of en-
ergy commits where a significantly large previous code has
been deleted as the objective was not achieve, leading the
developers to try very different ideas. However, the number
of energy commits with only a few line of code changes is

Energy Commits Bugfix Commits0

200

400

600

800

1000
To

ta
l C

ha
ng

es

Figure 4: Distribution of number of changes in the source
code: energy related changes are larger than bug fix changes.

noticeable; we found 73 energy commits with less than 10
lines of changes in the source code. To indulge our curiosity,
we manually investigated some of these committed changes.
Encouragingly, we observed that some of the developers are
aware that a little tweaking can improve energy efficiency
significantly. For example, one of the developers disabled
automatic screen brightness, and was confident that this lit-
tle change will reduce energy drain. A lot of commits dealt
with changing a parameter value to optimize energy such
as GPS-timeout, number of logs per event etc. Some others
dealt with efficient release of CPU and Wi-Fi locks, requiring
very little change in the source code.

These observations imply that achieving energy efficiency
does not necessarily require sophisticated code changes, but
rather demands knowledge on how different hardware com-
ponents operate. In fact, we found developers’ discussions
on significant energy reduction through small changes in
source code; tweaking on a CPU related conditional vari-
able claimed to reduce energy consumption by 90% in an
audio player project.4

RQ4. Are software developers more frustrated
while dealing with energy efficiency? To answer this
question, we did sentiment analysis on the energy related
commit messages compared to bug fix and all other commit
messages. The first impediment for such analysis is that
most of the commit messages are very short. We adopted
SentiStrength because of its specialization with short mes-
sages and for its inclusion of the most frequently used emoti-
cons. Moreover, SentiStrength was used for analyzing sen-
timent of GitHub commit messages in an earlier study [3].
Initially, we observed that energy commit messages are more
positive in contrast to the bug fix commit messages. Unfor-
tunately, this was because of the selected keywords used in
our commit filtering. Most of the energy commit messages
have the word “save” whereas “bug” is the most frequently
used word among the bug fix commits. SentiStrength has
a +1 score for “save” and −1 for “bug”—thus leading to an
unfair comparison. After deleting these two words from our
dataset, no difference was observed. In fact, the sentiment

4http://stackoverflow.com/questions/29310100/why-
does-a-conditional-variable-fix-our-power-consumption

score distributions for both energy and bug fix commit mes-
sages were found very similar to all other commit messages.
After searching for “hesitating” words in the commit mes-
sages [6], however, we found 6% hit for energy commits and
3% hit for the bug fix commits—i.e., less confidence with
energy issues than bug fix issues.

We conclude that a manually curated corpus is required to
analyze developers sentiment. For example, SentiStrength
can not differentiate between “It fixed the bug” and “It did
not fix the bug”. In both cases, it returns a negative score
(−1) although they carry very different sentiment.

4. THREATS TO VALIDITY
This work is based on dataset provided by Boa, which

might bias to certain languages. The number of captured
energy-aware projects is very small compared to the enor-
mous size of GitHub, thus can produce skewed observations.
This is a common problem in mining software energy is-
sues [6, 7]. We made assumptions, such as types of projects
from the used programming languages, without actual veri-
fication; this, however, demands manual inspection.

5. CONCLUSION
We have observed that energy-aware projects tend to be

large, mature, and popular. The developers who create en-
ergy commits tend to be the top developers of the project
and may have different rank distributions than those who
contribute to bug fixes. Many of the energy commits be-
long to languages and projects that target mobile/embedded
platforms. More code changes in energy commits compared
to bug fix commits suggest that energy concerns are often
cross-cutting that may affect many modules.

Acknowledgment
Shaiful Chowdhury is grateful to the Alberta Innovates -
Technology Futures (AITF) to support his PhD research.
Abram Hindle is supported by an NSERC Discovery Grant.

6. REFERENCES
[1] S. Chowdhury, S. Varun, and A. Hindle. Client-side

Energy Efficiency of HTTP/2 for Web and Mobile App
Developers. In SANER ’16 (to appear), Osaka, Japan,
March 2016.

[2] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen.
Boa: A language and infrastructure for analyzing
ultra-large-scale software repositories. In ICSE 2013,
pages 422–431, May 2013.

[3] E. Guzman, D. Azocar, and Y. Li. Sentiment analysis
of commit comments in GitHub: An empirical study. In
MSR 2014, pages 352–355, 2014.

[4] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer,
D. M. German, and D. Damian. The promises and
perils of mining GitHub. In MSR 2014, pages 92–101.

[5] H. Malik, P. Zhao, and M. Godfrey. Going green: An
exploratory analysis of energy-related questions. In
MSR 2015, pages 418–421, 2015.

[6] I. Moura, G. Pinto, F. Ebert, and F. Castor. Mining
Energy-Aware Commits. In MSR 2015, Florence, Italy,
May 2015.

[7] G. Pinto, F. Castor, and Y. D. Liu. Mining Questions
About Software Energy Consumption. In MSR 2014,
pages 22–31, 2014.

