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ABSTRACT

- The primary objective of this thesis was the development of
a method of analysis to accurately predict the behaviour of large planar
reinforced concrete shear wall-frame structures.

The analysis traces the second order e]astic-plastic.response
of planar reinforced concrete structures as loading progresses to failure.
In the analysis, conditions of equilibrium are formulated on the deformed
members and the deformed structure to consider the secondary axial load
effects in the columns and shear walls. The analysis considers axial
shortening of the columns and shear walls and includes the effects of
the finite width of the shear wall elements. Time effects and.shear de-
formations in the members and joints are neglected.

The analysis idealizes member section response as elastic-
perfectly plastic moment-curvature relationships. Rationalized methods
were developed to predict elastic-plastic column section moment-thrust-
curvature and girder section moment-curvature relationships.

In the computer programme developed for the analysis, the

solution is derived by the deformation method, using slope-deflection

equations modified to consider the presence of plastic hinges in the

members. The equations of equilibrium are solved by an iterative pro-

cedure.,

Using the analysis, good correlation was obtained with three
other analyses and with the results of tests of sway frames reported by

Ferguson and Breen.
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The analysis was used to investigate some aspects of the be-
haviour of a symmetrical, twenty $torey, two bay, reinforced concrete
structure. The properties of the basic structure were adjusted to
isolate the effects of axial shortening, the finite width of the shear
wall elements, slenderness, and the effects of varying shear wall stiff-
ness on the behaviour of the structure.

| The study indicates that a realistic analysis of a shear wall-
frame structure must consider the effects of axial shortening and the
finite width of the shear wall elements.

The investigation of the effects of variation of the shear wall
stiffness suggests that a relatively low shear wall stiffness is required
to effectively brace the structure. In this type of structure, the in-
creasing of the shear wall st{ffness was not an efficient method of in-

creasing either the overall stiffness or the failure load of the system.
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CHAPTER 1
INTRODUCTION

In the latter part of the nineteenth century when multi-storey
construction had its beginning, heavy bearing walls provided adequate re-
sistance to lateral loads. Today, however, the increasing height of
structures, the quest for as much column-free interior space as possible
and the replacement of the bearing walls by 1ight precasf curtain walls
)have_resulted in the development of the shear wall-frame type of con-
struction for multi-storey structures.

As the name implies, the shear wall is a stiff element incorpo-
rated into a structure primarily to provide resistance to lateral load.

In addition to carrying vertical and lateral loads, shear walls also serve,
when required by b]anning, to divide and enclose space. Consequently a

shear wall may function as a service core wall, elevator éhaft, stairwell

or partition wall, and may assume a great variety of shapes. The analysis

of a shear wall-frame structure is sufficiently complex that consideration
of the third dimension and the effects of torsion becomes quite unmanageable
in terms of the treatment considered in this thesis. Hence, this thesis will
examine the system represented by the plane structure shown in FIGURE 1.1.
Shear walls will be treated as members of finite width possessing relatively
high stiffness properties. -

The adoption of the shear wall type of construction and changes

in design procedures have left unanswered a number of questions regarding

1



FIGURE 1.1
ELEVATION YIEW OF A
SHEAR WALL-FRAME STRUCTURE




the design and behaviour of shear wall-frame structures. The current trend
in structural design is to rep]aﬁe'the working stress design method by

Timit design procedures, dealing with the limiting strength of.the structure,
Most analyses presently available for shear wall-frame structures, dis-
‘cussed in CHAPTER II, are limited to the consideration of elastic behaviour.
Consequently, little is known as yet regarding the complete response history
of these structures.

Limit design of engineering structures considers three basic
criteria of structural damage. First of these is the strength criterion
which is the primary consideration in proportioning mild steel structures
By the plastic design method. The serviceability criterion of 1imited de-
formations and limited cracking may also control the design. The third
criterion of the Timit design process is that of buckling streﬁgth or the
inceptiqn of instability. The stability 1imit of a structure may be de-
fined as the loading condition at which an increase in deformation may
occur with no corresponding increase in Toad. In recent years it has become
evident that in most cases it ié not‘possible to separate the strength and
stability failure criteria.

Shear wall bracing will significantly influence the response
of a structure to loads. If an unbraced structure under generalized loading
as shown in FIGURE 1.2(a) were tested, it would demoﬁstrate a load-deflection
response as shown in FIGURE 1.2(c). The non-linearity of the relationship
is caused by secondary PA effects and by softening of the structure as in-
elastic action progresses. If the members are sufficiently slender, it’is
conceivable that failure could be initiated by elastic instability before

any portion of the structure reached the inelastic behaviour range. If the



1! — | I ,A=1 SRR (A O I O
l .
1
» [T 17 17711 » L T T 13171
> I T T§1 T 1T 1 » LT T TIF]
» T T 1T 1. 11 » L T 1T 1111
> [ T IIT T 1.1 » I T T J1T1 1§
. rr beea »rr J7
(a) Unbraced (b) Braced
Braced

~~

1

1]

4+

2

v Unbraced

o]

oo

B~

L]

o

-

Deformation Parameter A

(c} Generalized lLoad-Deformation Diagram

FIGURE 1.2

EFFECTS OF LATERAL BRACING ON
LOAD-DEFORMATION RESPONSE

BEEEE



structure were braced laterally as shown in FIGURE 1.2(b), it would be
stiffened and poésib]y strengthened. Because of the increased lateral
rigidity, the PA effects would be reduced, reducing the danger of frame
instability so that failure would result primarily from the progress of
ine]aétic action. The efficiency of a shear wall in providing bracing
stiffness to alter the overall response of a shear wall-frame structure
has not been investigated previously. Methods have been developed for the
plastic design of unbraced and heavily braced steel structures(])*, but
1itt1é is known regarding the Timit design of structures with intermediate
degrees of bracing. |

The effects of lateral bracing are also considered in the design
of discrete members of the structure. In the current ACI Building Code(z),
when dealing with the design of long columns, different effective length
criteria are applied to cases of columns in which “relative lateral dis-
placement of the ends of the member is prevented" and "is not'prevented".
Thus, the code considers the effective Tength of a column to be a function
of the lateral bracing stiffness. However, no method is suggested for
differentiating between the braced and unbraced structures.

In his study of the elastic buck]ing behaviour of columns Gold-
berg(3) has expressed the problem in a simple form. In the structure de-
picted in FIGURE 1.3, the columns can buckle in either a symmetrical or a
lurching mode, depending upon the bracing stiffness and the degree of end
restraint provided by the girders. Goldberg's elastic analysis of the
system yielded a relationship similar to that shown in FIGURE 1.3. In the

area ABCD of this piot, the critical column load is a function of the degree

*Numbers in parentheses denote references listed at the end of the thesis.
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of lateral bracing provided, and can vary over a wide range as the degree
of lateral bracihg is changed.

Due to the predominance of the relatively stiff shear wall
element in a braced structure, the deformation response characteristics of
the shear walls in any storey are strongly influenced by the response of
those in other storeys of the structure. For this reason, in a braced
structure, it is not possible to isolate a particular storey or group of

members to derive a simplified model like that of Goldberg. Information

‘regarding the effects of bracing stiffness must be obtained from an analysis

of the entire structure,

The interaction behaviour in a shear wall-frame system which
results in sharing of the lateral loads by the shear wall and frame also
merits some investigation., A Fea]istfc assessment of the load-sharing
character of interaction is necessary for a rational and economical design
of the structure. Often shear walls are designed to resist all lateral
forces while the frame is assumed to carry only vertica1-1oads. A number
of authors have shown that if the wall is tall and slender or if the frame
itself possesses some degree of ]aterai stiffness, a safer and more economical
design could be achieved by taking the shear wall-frame interaction into
account. Neglect of the lateral load carrying ability of the fréme could
result in overdesign of the shear wall and underdesign of the frame members.
Any redistribution of this lateral force resistance resulting from inelastic
action would influence the limit design of these structures.

In view of these apparent gaps in the current state of knowledge
of shear wall-frame systems, the object of this thesis is to develop an ac-

curate analysis to trace the behaviour of a reinforced concrete shear wall-
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frame structure as it progresses through the elastic and inelastic ranges
to failure. |

The methods currently available for the analysis of braced and
unbraced structures are discussed in CHAPTER II. In CHAPTER III, methods
are developed to express the section response characteristics of .rein-
forced concrete members as elastic-perfectly plastic moment-curvature re-
lationships. This type of section response leads to consideration of
pléstic hinges. Slope-deflection equations are derived to treat members
with varying numbers of plastic hinges. These slope-deflection equations
are employed in CHAPTER IV to derive a second order elastic-plastic analysis
for. shear wall-frame systems. The analysis, fdrmu]ated using displacement
method principles, employs an iterative method of solution. A computer
programme is developed to perform the analysis and provide information re-
garding the behavioural history of the structure. The applicability of
the analysis is demonstrated in CHAPTER V by comparison with the results
of laboratory tests and other methods of analysis.
| CHAPTER VI and VII are dévoted to an investigation of the effects
of axial shortening, finite wall widtﬁ; slenderness, and relative shear
wall stiffness on the behaviour of a shear wall-frame structure. A twenty
storey, two bay reinforced concrete structure, designed by u1timate-strength
procedures, is taken as a basis for the study. Since the study is limited
to this one sfructure, it is not complete or definitive. However, the
study does illustrate the applicability of the analysis and shows trends
which must be considered in the design of multi-storey reinforced contrete

structures.



CHAPTER 11

REVIEW OF PREVIOUS WORK

2.1 Introduction

For the investigation of the problems discussed in CHAPTER I, it
is necessary to employ a method of analysis which will accurately trace the

response of a plane shear wall-frame structure as loading brogresses to

failure.

A review of the current state of knowledge regarding the analysis
of unbraced frames and braced structures fs presented in this chapter. To
permit comparison of the analyses currently avai]ab1é, the variety of
possible approaches and the relative merits of each are mentioned.

On the basis of this review, the consﬁderations leading to the
development of the method of analysis derived in this thesis are discussed.

At the moment, 1ittle is known about the behaviour of shear wall-
frame structures. However, a brief discussion of the extent of the infor-

mation presented by other investigators is included in this chapter.

2.2 Possible Methods of Analysis

In formulating an analysis, it is necessafy tb simplify the
problem by idealizing the configuration of the structural model and the
behavioural characteristics of the member cross-sections, individual members
and the overall structure. The type and extent of simplification used to

develop the analytical model can significantly influence the accuracy and
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validity of the results.
Once the form of the simplified analytical model has been chosen,

several alternate methods can be used to arrive at a solution.

2,2.1 Simplification of the Analytical Model

Assuming that the geometry and }oading configuration of the
analytical model have been defined, an engineering analysis is derived by
making some of the following assumptions:

| 1. The cross-section behaviour is

(a) purely elastic

(b} rigid-plastic neglecting axial thrust

(¢) rigid-plastic considering axial thrust

(d) elastic-plastic

(e) elastic-inelastic considering gradual plastification,

residual stresses, strain-hardening or any combination
of these.

These are illustrated in FIGURE 2.1.

2. The member behaviour is
(a) first order, meaning that equilibrium is formulated on
the undeformed member
(b)  second order, meaning that equilibrium is formulated on
| the deformed member, considering beam-column action.
3. The structure behaviour is
(a) first order, meaning that equilibrium is formulated on .
the undeformed structure
(b) second order, meaning that equilibrium is formulated on

the deformed structure, considering PA effects,
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FIGURE 2.2 indicates the axial load effects in-the member
and the overall étructure which are considered by a
second order analysis.

A qualitative representation of the effects of these assumptions
on the load-deflection relationship for a portal frame is presented in
FIGURE 2.3. The true behaviour is shown by the continuous heavy line. The
numbers denoting the other relationships refer to the assumptions involved
in their derivation. It will be noted that the second order elastic-plastic
-and second order elastic-inelastic analyses most closely approximate the
true behaviour.

To compiete the analytical model, decisions must.a1so be made
regarding the consideration or_negTect of axial shortening, shear defor-
mations, finite member widths, "large deflection" effects and imperfections

in the actual structure.

2.2.2 Formulation of the Solution

Essentially three different approaches have been adopted by in-
vestigators for the solution of this type of problem. These are the
analytical methods, the convergence methods and the energy methods. The
analytical methods of solution, which might better be termed matrix methods,
involve the derivation of sufficient linear simultaneous equations to
provide a unique solution. The equations are established by classical force
or displacement methods, also known as flexibility oy stiffness methods,
or by some variation of these methods. The convergence methods involve a
series of successive approximations of deformations to achieve force'ggm—

patibility. The energy methods utilize the techniques of variational calcu-

tus applied to the total potential energy of the system. There are, of
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course, many variations of each of these general methods.

Each of these methods can be shown to be advantageous in particular
cases. With a large structure, none of thé techniques are easily executed
in the elastic range of stresses, and consideration of inelastic behaviour

complicates the problem even more.

2.3 Unbraced Frame Analyses

The advent of plastic methods for the design of mild steel
structures has provided impetus to the investigation of the limiting load-
carrying capacity of structures. The initially proposed simple plastic
method proportioned members on the basis of the loading configuration which
produced a failure mechanism. This first order rigid-plastic method ef-
fectively established strength as the sole failure criterion, neglecting
the possibility of instability occurring prior to the formation-of the
critical failure mechanism. The question of the_va]idity of'such an approach
in tall slender structures naturally focussed attention on the effects of
instability. .

The well known methods for evaluating the elastic critical load of
frameworks consisting of centrically-loaded columns are summarized by
B]eich(s). A great deal of work(6) has also been done in deriving elastic
and fnelastic solutions for the buckling load of symmetrical structures sub-
jected to symmetrically distributed gravity loads. Unfortunately, the
concept of elastic stability finds limited application in mu]ti—storey frames
of usual dimensions, since the frames are usually strained into the inelastic
range before critical or buckling loads are reached. Moreover, the solutions
for symmetrical structures, even with primary bending moments due to dis-

tributed gravity loads, treat the bifurcation type of failure. The case
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where lateral loads are applied, leading to translational instability of the
structure, is by far the most practical engineering problem.

In view of the apparent complexity of an exact solution under
conditions of inelastic instability, British investigators turned their
attention to the approximation of critical loads in multi-storey unbraced

(7) proposed the use of a Rankine formula %— =-%— + %w
F P C

frames. Merchant
which enables evaluation of the maximum capacity of the structure AF as a
function of the rigid-plastic collapse load AP and the elastic critical
load AC. Horne(B) has provided a justification for the formula, and
its range of validity has been experimentally verified for certain cases(g).
wood(]o), employing what he termed the "deteriorated" structure,
derived a method to establish uppef and lower bounds to the carrying capa-
city. Reasoning that a fully plastic hinge contributes no more to the
stiffness of the structure than does a real hinge, Wood repTéced the
plastic hinge by a pin joint and computed the "deteriorated" critical load
of the structure. As the load increases and more plastic hinges form, the
deteriorated critical load decreases until it corresponds to the applied
load, at which time the structure becomes unstable. However, the prediction
of the deteriorated structure implies prior knowledge of the order of hinge
formation.

While these two approximate methods have helped to clarify the
significance of instability effects in reducing failure loads below the
values predicted by the strength criterion, neither is simple to apply to
large structures. The essential weakness of Wood's method in requiriﬁé

knowledge of the order of hinge formation points out the fact that methods

~ for accurately predicting failure loads must be historical in nature.
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Accurate methods must trace the response of the structure as lcading pro-
gresses, detecting and making allowances fdr all inelastic action as it
occurs.

A number of very sophisticated second order ana]yses(q) have been
developed to provide the complete load-deflection relationship for simple
laterally loaded structures throughout the elastic and inelastic ranges.
These "exact" solutions were derived using compatibility methods. In

place of the elastic-perfectly plastic relationship which results in the

consideration of point plastic hinges, more realistic moment-curvature re-

lationships were employed to treat inelastic behaviour. Since the per-
formance of an accurate compatibi]ity analysis is quite complex, these
theoretical studies were limited to portal frames, with the hope that the
knowledge gained would provide some insight into the behavior of larger
structures. It seems safe to say that extension of these rigorous analyses
to multi-bay muiti-storey structures would severely tax computer capacity.
Recently, computerized methods have been developed to carry out
a complete elastic-plastic analysis of large unbraced planar frames. How-
ever, to formulate these solutions it has been necessary to relax the
rigorous requirements of strain compatibility by assuming point plastic
hinges consistent with elastic-perfectly plastic section behaviour.
Jennings and Majid(]]), extending the displacement method of
analysis to the inelastic range, developed an iterative procedure to per-
form an elastic-plastic analysis of unbraced structures loaded by static,
proportional, concentrated loads. The solution is derived by matrix'ﬁ
techniques with joint displacements as the unknowns. As each successive

plastic hinge forms, the hinge rotation becomes an additional unknown, and

,,,,,,
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the augmented stiffness matrix for the deteriorated structure must be re-
constructed. This revised stiffness matrix is used to perform an elastic
analysis for prediction of conditions when the next hinge forms. Insta-
bility is assumed when the determinant of the stiffness matrix changes

sign.. Secondary axial load effects in all members and.the overall structure
are considered by incorporating stability functions(]z). The Jdennings and
Majid analysis provides the complete load-deflection history for the structure
and directly yields information regarding the order of plastic hinge for-
mation.

Davies(]3) has since extended the Jennings and Majid analysis to
study the behaviour of frames subjected to cyc]fc lToading. His analysis is
capab]é of considering the effects of hinge reversals by replacing the
closing hinge by a "locked" hinge with a rotational discontinuity. This is
the only analysis yet formulated which considers the possibi1ity of strain
reversals.

Parikh(]q), also using the displacement method, has formulated a
second order elastic-plastic ana]y;fs for unbraced planar frames. The
method employs slope-deflection equations which are modified to consider
members in different stages of plastic hinge formation. PA effects are con-
sidered in satisfying equilibrium conditions and columns are treated as
beam-columns by the use of stability functions. In.this analysis, hinge
rotations need not be considered as additional unknowns, and the requirement
of performing a separate elastic analysis to detect each successive hinge is
removed. Loading is incremental and at any stage of loading, the analysis

procedure is continued until the plastic hinge pattern converges., Thus, the
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solution does not yield the exact order of hinge formation but does detect
the total number of new hinges Which form in a particular increment.
Classical matrix methods are replaced by an iteration procedufe for the
solution of the simultaneous equations resulting from equilibrium conditions.
Instability is detected by non-convergence of the iterative procedure.

Parikh's approach offers several advantages over that of Jennings
and Majid. The use of slope-deflection equations removes the Timitation
of concentrated loads, and uniformly distributed loads can be considered,

Of greater significance is the fact that Parikh's analysis makes more ef-
ficient use of computer storage capacity than does the Jennings and Majid
analysis. Using the iteration procedure for a solution, it is not necessary
to set up a formal stiffness matrix. This saving of computer capacity
should permit study of larger structures.

Korn(]s), combining features of the Jennings and Majid and Parikh
analyseg, has also formulated a second order elastic-plastic analysis for
unbraced planar structures subjected to static, proportional concentrated
loads. Korn used modified slopé-def]ection equations similar to Parikh's
to formulate a solution satisfying second order equilibrium conditions.

However, in place of the iterative method of solution used by Parikh, Korn

used matrix techniques, with a determinant sign chahge signifying failure

of the strucfure. Korn also employed a procedure similar to that of Jennings

and Majid to establish the order of formation of successive plastic hinges.
Thus, three different methods are currently available for the ac-

curate analysis of large unbraced planar frames. These analyses require

no simplification of frame geometry. All consider only bending and axial

deformations, neglecting shear deformations. Inelastic action is represented
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by point plastic hinges in all three methods. The hinges at member ends

are considered to form in the jbint at the intersection of the centrelines

of all members framing into the joint. No provision is made for consideration

of the finite width of the members.

2.4 Braced Structure Analyses

The basic difference between the braced structure and unbraced
frame is the presence of a relatively stiff element which possesses signifi-
cant finite width. In this thesis, the stiff element is represented by
the reinforced concrete shear wall.

The concept of 1imit design of reinforced concrete structures is
a relatively recent development. The primary concern of most previous in-
vestigators of shear wall-frame structures has been the partitioning of
lateral forces between the frame and the shear wall at the working load.
Consequently, most analyses have been Timited torthe considefation of
elastic behaviour of braced structures subjected only to lateral forces.
They were intended to serve primarily as quick office design tools, and
must be considered quite approximate compared to the analyses discussed
in SECTION 2.3.

In most cases, the analysts have reduced the structure to an
equivalent system and solved the resulting indeterminate structure in a
variety of manners. Typical simplified configurations are shown in
FIGURE 2.4,

Gou]d(ls) replaced the frame by a system of rotational and trans-
lational springs linked by rigid bars, as shown in FIGURE 2.4(a). Usf%g a

finite difference approach, Gould proportioned the lateral load to satisfy
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conditions of deformational compatibility.

Bande1(]7) replaced the shear wall by an equivalent truss torde—
rive the configuration shown in FIGURE 2.4(b). With deformatfon relation-
ships expressed in power series form, principles of virtual work were used
to derive the solution.

Khan and Sbarounis(]s) considered a model consisting of a shear
wall and a simplified Tumped frame system as shown in FIGURE 2.4(c). The
solution was accomplished by an iterative procedure of force-fitting until
deformational compatibility was achievéd.

In addition to these, numerous other anaTyses(]9’20’21’22’23) haﬁe
been formulated. However, because they are all first order elastic solu-

tions of simplified structures, they are not suitable for use in the in-

.vestigation described in this thesis. Moreover, the methods of analysis

employed by these investigators are difficult to extend to inelastic
structures. |
Clough, King and w1]son(24) have developed a computerized first

order é1astic analysis for mu]ti—stbrey braced structures subjected to
lateral loads. The only simplificatioﬁ of the frame required for the
analysis is that of constant shear wall finite width, though the stiffness
may vary. The analysis is accomplished by the deformation method using
matrix techniques. Axial deformations of the columns and shear wall are
considered in the analysis.

 Guhamajumdar, Nikhed, MacGregor and Adams(zs) have derived an
elastic-plastic analysis for braced structures subjected to concentrated

lateral and gravity loads applied only at the joints. The shear wall-frame
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model considered is similar to that of Khan and Sharounis, with a simplified
substitute frame derived by a 1Umping procedure. The effects of shear wall
finite width and PA are considered, but axial shortening and beam-column
behaviour are neglected. The analysis is performed by the convergence
method. Loading is proportional and incremental, with failure signified

by non-convergence of the force-fitting procedure.

2.5 Studies of Braced Structure Behaviour

Few authors of the articles discussed in SECTION 2.4 have applied
‘their analyses to anything but a sample calculation of a specific design
problem. However, both Khan and Sbarounis and Parme, using first order
elastic analyses, produced sets of charts showing the distribution of
storey shear forces in the shear wall and frame for a variety of member
stiffness distributions and loading configurations. These were intended
to provide guidance in the preliminary sizing of braced struétures. In
addition, Khan and Sbarounis carried out a 1imited study of the effects
on elastic behaviour of foundation rotation, plasticity in the shear wall,
wall shear deformations and axial shortening of columns.

Guhamajumdar, Nikhed et al applied their elastic-plastic analysis
to investigate the behaviour of a twenty-four storey two bay braced structure,
The study considered the effect of neglecting secondary PA moments and the
finite width of the shear wall on the overall load-deflection history.

The flexural stiffness of the shear wall in the structure was varied to

study the effects on overall elastic-plastic behaviour.

2.6 Conclusions

Previous studies of braced frame behaviour have been quite Timited,
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and a number of questions remain unanswered. To accomplish the behavioural
investigation proposed in CHAPTER I, the inelastic analysis must be accurate

and should involve as few idealizations of the analytical model geometry and

" behaviour as possible.

"Only the analysis of Guhamajumdar, Nikhed, MacGregor and Adams is
capable of considering the second order elastic-plastic behaviour of braced
structures. However, in the formulation of this analysis, a simplified sub-
stitute frame system is assumed. The validity of the Tumping procedure
used in establishing this substitute frame has yet to be demonstrated for
a partially inelastic structure.

Since the use of the "exact" compatibi]ity analyses discussed in
SECTION 2.3 is clearly impracticable for large structures, it is necessary
to assume elastic-plastic section response characteristics. Al] three
second-order elastic-plastic solutions for unbraced structures employ
essentially the same analytical model. However, the iterative procedure
of Parikh appears to have greater capabilities in analyzing large structures
because of its more efficient use of computer storage capacity. For this
reason; the braced frame analysis deve]bped in this thesis is modelled
after the Parikh analysis. The finite width of the shear wall element
will be accommodated in the analysis.

The extension of this type of e]astic~p1a§tic analysis to consider
reinforced concrete structures introduces a significant problem. Parikh and
the other investigators considered mild steel structures for which elastic-
plastic section moment-thrust-curvature relationships have been defined.
Similar relationships for reinforced concrete members must be established

to permit the application of an elastic-plastic analysis.



CHAPTER III

ANALYSIS OF MEMBERS

3.1 Introduction

In this chapter, the methods used to define the behaviour of
reinforced concrete members are described, and the related assumptions are
discussed. The method of analysis applied to the structure itself is pre-
sented in CHAPTER IV. It is based on the member properties described in
this chapter.

The basic assumption made in the analysis is that the behaviour
of any cross-section can be defined in terms of an elastic-perfectly
plastic moment-thrust-curvature relationship. Accordingly, elastic-per-
fect]y'p]astic section response relationships for girders and columns are
presented in this chapter. These relationships are compared with those
derived using other assumptions.

The response of the entire member to applied forces is expressed
in slope-deflection equation form. A series of these equations, modified
to consider the presence of plastic hinges at any point in a member, the
effects of axial loads, and the finite width of the shear wall element,

is also presented in this chapter.

3.2 Analysis of a Reinforced Concrete Cross-Section

For any section subjected to constant axial force, curvatureais
a function of the applied moment. This moment-curvature relationship for
the section must be known to establish the deflected shape of the member.

24
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In dealing with materials having simple stress-strain relation-
ships, it is generally possible to formulate a closed form of solution
relating bending moment, axial load, and curvature (M-P-¢). However,
to consider the complex stress-strain relationships encountered in dealing

with the inelastic response of a reinforced concrete section, it is neces-

(26) (27)

sary to resort to numerical methbds or a set of analytical expressions
In the simplest case of a girder section, where axial load can be neglected,
a unique M-¢ curve can be generated without much difficulty if creep of
~the concrete is ignored. The derivation of the same relationship for a
column section is complicated by the presence of axial load.

To gain some understanding of the response of a column section
to load, a computer programme was prepared using the procedures developed

(28). For clarity, this will be termed the "exact" analysis.

by Pfrang et al
In this analysis, the concrete is assumed to exhibit the stress-strain
curve defined by Hognestad(zg) modified as shown in FIGURE 3.1(a) and the
steel is considered to be elastic-plastic as shown in FIGURE 3.1{b). This
analysis was applied to the symmetrically reinforced column section shown
in FIGURE 3.2, the basic properties of which are also presented. To sepa-
rate the effects of the several section parameters, eight variations of
this basic cross-section were investigated, as listed in TABLE 3.1.

In an effort to derive an e]astic-p1astic.M-P—¢ relationship,
several unsuccessful attempts were made to non-dimensionalize the values

generated by the exact analysis for the range of variables considered.

| Recourse was then made to a "rationalized" approach, basing the response

characteristics on the section geometry and material properties. This

rationalized relationship, used throughout the thesis, is presented in
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PARAMETER
CASE VARIED

1 p = 0.02
2 Py = 0.06
3 = 30 ksi

fy iy 1
4 @%&=é¢km
5 d'/t = 0.05
6 d'/t = 0,156

fc = 2 ksi
8 fé = § ksi

TABLE 3.1

VARIATIONS OF BASIC SECTION CONSIDERED
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the balance of SECTION 3.2.

3.2.1 Assumptions of Rationalized Moment-Curvature Relationship

In deriving the rationalized section response characteristics,

the following assumptions were made.

1.

~ extensively by Manuel and MacGregor

The maximum stress developed in concrete in a column or a
girder is 0.85 times the standard 28 day compressive strength.
This value of the concrete strength reduction factor has

been verified by numerous tests.

No consistent assumption is made regarding the concrete
stress-strain relationship. When ultimate section response
characteristics are considered, the complete stress-strain
relationship shown in FIGURE 3.1{(a) is used. When conditions
at the "yield point" of the section are considered, a linear
stress-strain relationship, representing the initial portion
of the complete stress-strain diagram, is employed. The as-
sumptions will be presented as they arise in the derivations.
Creep and shrinkage deformations can be neglected in the
analysis. This assumption leads to an underestimation of

the reinforcement strains, particularly in lightly reinforced
columns, and an underestimation of the secondary deflections,
particularly at high stress levels. On the other hand, the
relative stiffness of the columns tends to be overestimated
if time effects are ignored. Consequent]y, in indeterminate
structures, the errors resulting from the neglect of creep.are

compensating to some extent. This problem has been studied
(30)
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4. The tensile load-carrying capacity of concrete, small relative
to the compressive strength, can be neglected.

5. The ultimate capacity of the section is based on a limiting
concrete strain criterion. The useful limit of concrete

(29) indicate that

-strain used here is 0.0038. Test results
this is a realistic value of the useful strain limit for
unconfined concrete.

6. The column section is assumed to have sufficient transverse

| reinforcement to make the axial load capacity of the core
equal to that of the gross section. |

7. The reinforcement exhibits a 1inear elastic-plastic stress-
strain relationship with no strain-hardening. This assumption
is not entirely realistic for high strength steel.

8. At all load levels, plane sections remain plane. Shear
deformations and localized disturbances at éracks are neglected.

9. The axial load and bending moment increase continuously to

failure. Hence, strain reversals can be ignored.

3.2.2 Column Section Response

The column sectjon considered throughout this thesis is a rec-
tangular symmetrically reinforced section as depicted in FIGURE.3.2a The
essential co]qmn features are described by the geometry of the section and
the material properties fé, fy and Es'

To permit the formulation of the method of member analysis described
in SECTION 3.3, the response of a column section to applied moment in %he

presence of axial load must be described by a rationalized elastic-plastic
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M-¢ diagram. A typical M-¢ relationship is that shown in FIGURE 3.3.
The dashed Tine represents the moment-curvature }elationship derived by
the "exact" analysis discussed prevfously. The solid line represents the
"rationalized" relationship derived in this section. Throughout the initial
stage of the M-¢ diagram, the column section is assumed to behave elastically.
When the "yield point" of the cross-section is reached, the section behaves
plastically with constant resisting moment until the useful T{mit of
strain is reached in the compressed concrete.

If the three co-ordinate values, Mpc, ¢y and ¢pc can be expressed
as functions of the axial load P, it is possible to derive M-¢ curves for

any value of P, and obtain the complete M-P-¢ relationship for the section.

(a) Interaction Diagram Relating P and MEE

The ultimate strength interaction diagram, essentially an envelope
of all possible combinations of axial load and moment which do not lead to
material failure of the cross-section, provides a relationship between P

and M The rationalized interaction diagram shown in FIGURE 3.4, was derived

pc’
by simplification of the exact solution.

The capacity of a section subjected to pure axial load can be ex-

pressed simply as the summation of the ultimate capacities of the steel and

concrete.

P, = 0.85 fL b(t - 2pd) + 2pbdf (3-1)

-

The ultimate moment capacity of a column section in pure flexure

is a rather complex quantity to evaluate by the exact analytical equations.
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A rationalized Mo’ based on the couple of the yielded steel sections, com-
pared very favourably with the exact values over the range of variables

considered.
Mo = AS fy (d - d') (3-2)

The balance point of the interaction diagram represents the
combination of axial load and moment which leads to simultaneous initial
tension steel yield and the attainment of the ultimate compressive strain

in the extreme concrete fibre. By definition, then:

= — - (8-3)

A simplification of an exact analytical expression makes it

possible to express the balanced axial load value as:
0.00257 féb
Py = — (3-4)
b

An approximate expression for the evaluation of the balanced
eccentricity has been presented(B]). While this simplified approach is
more suitable for slide-rule operations, it was found to be insensitive to

]

variations in ’r‘.y and‘%— . The exact equations were used to derive the ex-

pression which follows.

-3 p,
=t 0.5 - L2EXI0 495 (d - @) oy ] (3-5)
c

b 9
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The derivations of EQUATIONS (3-4) and (3-5) appear in APPENDIX

Finally, by definition:
(3-6)

With these points established on the interaction diagram, it is

necessary to complete the locus of bounding points by joining them in a

-suitable manner. For the tension failure portion of the interaction curve

dM
boundary below P = Pb’ a parabola was fitted such that -H§5-= 0at P = Pb

and M c =M, at P =0. A similar relationship was developed independently
by Quast(32). A Tinear relationship was assumed for the compression failure
portion of the boundary. Thus, the foT]owing relationships provide a value
of M c for any axial load value.

p
If 0 <P <P:

Q=M (M - Mou-‘;—b—)(z - 5) (3-7)

M
P b

If P <P <P

| P - P
M= (5

e * B (o

) M

Values from this rationalized relationship compared favourably

with the exact values in most regions of the interaction curve.
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(b) The Yield Curvature'?y as a Function of P

In general, the "yield point" of a column cross-section is the
point at which the slope of the M-¢ curve decreases considerably. In the
absence of axial load, the yield point of the column section considered
here is wéll defined. The application of axial load results in a progressive
onset of inelastic action ih the section, masking the yield point as shown
in FIGURE 3.3. However; to derive the elastic-plastic M-P-¢ relationship,
it is necessary that a ¢y value be defined.

M-P-¢ curves were plotted using the results of the exact analysis.
From these plots, best fit elastic-plastic M-¢ parameters were chosen. Plots
of the graphically-derived "exact" ¢y as a function of P yielded a family
of curves similar to that illustrated by the dashed 1ine in FIGURE 3.5.
Starting from ¢yo for pufe flexure, the ¢y value increases to a peak value
at a value of P somewhat lower than Pb, and natUr§11y drops to zero at Po‘

The rationalized ¢y - P relationship adopted here is shown by the
sp?id line in FIGURE 3.5. -The essential co-ordinates are defined by ¢y0’

¢ b and Pb.

y .
The apparent yield in the M-¢ diagram could be attributed to
several occurrences:

1. yield of the tension reinforcement

2. yie]d of the compression reinforcement

3. strain-softening of the concrete in compression

4. a combination of these.

The relative significance of these varies according to the section proﬁerties

and the axial load value. Consequently, it is difficult to formulate an ex-
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pression for ¢y which is app11cab1e in altl cases.,

In this thesis, the derivation of a value of ¢yo assumes that
the yield of the M-¢ diagram is brought about by the yielding of the tension
steel. A detailed derivation of EQUATIONS (3-9) and (3-10) with the re-

lated assumptions is presented in APPENDIX A.

k - 2pn + v/:l(pn)2 + 2pn(1 + %l) (3-9)

yo

500
/el

¢=fy
yo Esd(l - Kyo)

(3-10)

Similarly, the derivation of ¢yb’ also presented in APPENDIX A,

assumes initial tension steel yield as the yield criterion.

K. =-y* v y2 - 4xz

vb 2% (3-11)
where X = L
7n
p
b
L
y
' Pb
2= -p(1+ ) - v5q
£
Sy _
b T AT R ) (3-12)
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In deriving the rationalized ¢yb value, several other possi-
bilities were considered. Most'notab]y, a similar solution was formulated
using initial compression steel yier as the yield criterion. Within the
range of variables considered, this assumption yielded excessively con-
servafive values of ¢yb'

Since ¢yo and ¢yb values were based on the same yield criterion,
it is apparent that EQUATION (3-12) is applicable for any 0 <P f_Pb if
that value of P were used in evaluating EQUATION (3-11). A study of the

¥y

no intermediate peak value as indicated by the exact analysis. Hence,

- P relationship so calculated yields virtually a straight 1ine, with

for any value of P, the corresponding value of ¢y can be computed using
EQUATIONS (3-13) and (3-14). These are plotted in FIGURE 3.5.

If 0<P<P:

+ {6,y - 0.) B o (3-13)

P, - P

¢ = — .

y =P, =Py b (3-14)

(c) The Ultimate Curvature ¢pc as a Function of P

The last component required to define the rationalized column
M-¢ relationship is the ultimate curvature ¢pc‘
Again, using the exact analysis, plots of ¢pc versus P were

prepared for the range of section properties considered. The general shape



38

of these plots is illustrated by the dashed line in FIGURE 3.6. The sharp
break noted in the range 0 < P < Pb can be attributed to the inception
of compression steel yield as P increases.

The relationship bétween ¢pc and P assumed in this analysis is
shown by the solid 1ine in FIGURE 3.6. The value of by the ultimate
curvature of the section in pure fiexure, can be derived in a rationalized
manner. The derivation and assumptions leading to the formulas which

follow appear in APPENDIX A.

=yt .V2 - 4%z (3_]5)

ku B Zx
where X =0.7 fé
y=p (Eg, - f)
- dt
z=-Pp Esgu d
E
= Y ' -
¢u = ku (3-16)

With ¢, defined, equations for the ¢pc - P relationship, broken
into four segments, were developed empirically from the plots of the exact
~analysis.

IfO0<P <P

¥ 9,01 -06 -F;-t:) (3-17)
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IfP <P <0.8 PO:

b
d’ P - Py
¢pc =gy * [(f—-+ 0.01) ¢, - ¢b] ﬁjg*ﬁ;f:js (3-18)
1f 0.8 Po P <Pyt
8. = 56, (L + 0.01)(1 - B-) (3-19)
pc u't ) P0

(d} Comparison of Rationalized and Exact M-P-¢ Relationships

At this stage, all values necessary to define rationalized elastic-
perfectly plastic M-¢ diagrams for any column section subjected to an axial
load 0 < P < P, have been derived. In the course of the derivations, these
rationalized parameters were compared with values provided by the exact
analysis and were found to yield good comparisons. To check the overall
effect of combined errors in values, the rationalized M-P-¢ cufves were
compared with those generated by the exact analysis for all sections con-
sidered in the investigation. A sample comparison for a typical section
is provided in APPENDI% B. In conducting the analyses discussed in CHAPTERS
V and VI, the accuracy of the method was checked for sections with other
properties,

It was found that, within the limitations of an elastic-plastic
relationship, the rationalized method described here provides good quanti-
tative representation of section response and adequately accounts for the
effects of variation of the several section parameters. As will be noted
in the sample plots, the idealization of the response as an elastic-plastic

relationship does yield conservative section stiffness values throughout
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much of the "elastic" range of behaviour of a section subjected to axial
loads. It does, however, provide quite reliable section stiffness values

as the "yield point" of the section is approached.

3.2.3 Girder Section Response

Unless otherwise stipulated, the girder section considered
throughout this thesis is a rectangular section reinforced only in tension
as shown in FIGURE 3.7. Other authors(ss) have succeeded in expressing
the girder section response in an elastic-plastic ﬁanner as illustrated
in FIGURE 3.8. The derivations and related assumptions are provided in

the reference.

ky = »/(ph)2 + 2pn - pn -~ (3-20)
f . ' ( )
¢, = - 3-21
y _—'(l_)'Esd RS
pf |
e ¥ -
TR (3-22)
e,
b, = ¥ g (3-23)
u
Mp] = Asfyd(1 - 0.4 ku) : (3-24)

An exact analysis, similar to that applied to the column section
was prepared for the girder section. The results were compared to the
T
rationalized M-¢ curves over the same range of variation of fé, fy and %—

of the section, with reinforcement ratios varied from 0.25pb to R de-
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fined in the ACI Building Code. A sample comparison is presented in
APPENDIX B. Inspection of this'comparison indicates that the rationalized
M-¢ relationship, while yielding slightly unconservative girder stiffness
values, provides good quantitative representation of the effects of vari-

ation of section properties.

3.3 Member Properties

With the section response characteristics defined, it is possible
to establish the deflection response of the entire member to the application
of external forces. In this analysis, member behaviour is described by
slope-deflection equations. This method, frequently used for first order
elastic analysis, has been extended by the incorporatidn of stability
functions(5) to consider the non-linear behaviour of a member under vari-
able axial load. To consider elastic-plastic section behaviour, Parikh(]4)
has modified the equations for elastic members to apply to mémbers in dif-
ferent states of plastic hinge formation. Before proceeding with the pre-

sentation of these slope-deflection equations, the concept and implications

of a plastic hinge and stability functions will be discussed.

3.3.1 Plastic Hinge

The formation of "point" plastic hinges in members is the only
possibility consistent with the assumption of elastic-perfectly plastic
section behaviour. The neglect of gradual yielding of the section leads
to plastic hinges of zero width at points of maximum moment. Al11 inelastic
rotation takes place at the hinge, the remainder of the member continying

to behave elastically.



44

In this analysis, the unloading branch of the moment-curvature
relationship is not considered.- Consequentiy, it must be assumed that
a plastic hinge, once formed, is maintained, and further, that it re-
mains stationary at the point where it first formed during the loading

cycle.

3.3.2 Stability Functions

In the analysis of an elastic beam-column, the effective stiff-
ness of the member is found to be a function of the axjal force. Softening
and stiffening of the member result from axial compressive and tensile
forces respectively. To include these effects in the analysis, stability
functions S and C are used in the slope-deflection equations for columns.

The basic slope-deflection equation for a beam-column, sub-

jected to end forces only, can be written as:
M, = EL [co, + So, - (C + S)p] (3-25)
A~ h A B P

For zero axial force, C and S have values of 4.0 and 2.0 re-
spectively, and EQUATION (3-25) reverts to the traditional slope-deflection
equation. For other values of compressive axial load, S and C assume the

values given by EQUATIONS (3-26) and (3-27).

kh - sin kh )

S5 = kh (2 - 2 ¢cos kh - kh sin kh

(3-26)
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_ sin kh - kh cos kh
C = kh (=505 kh — Kb sin ki) (3-27)

kh =/ 2 h

El

‘The possible stiffening effect of tensile forces in columns is

neglected in the analysis as is the effect of axial loads in the girders.

3.3.3 Assumptions of Member Analysis

6.

The following assumptions were made in the analysis of members.
“Small deflection theory" is applicable to the elastic portion
of a member. This is a necessary condition for the validity
of the slope-deflection equations and 1mp1ies.that the effects
of curvature shortening are neglected.

A1l members are initially straight and exhibit a constant
flexural stiffness, EI, throughout their length, except at
point§ where plastic hinges have formed.

Members are subjected to uniaxial flexure and out-of-plane
instability is prevented,

The possibility of shear or diagonal tension failure is qeg]ected.
Member sections exhibit elastic-plastic M-¢ response. Thus,
"point plastic hinges" may form at points of maximum ﬁoment in
a member. Once formed, the Hinges remain stationary and are

maintained, with no hinge reversals.
Shearing deformations are neglected.

3.3.4 Sign Conventions

The sign conventions adopted in formulating the slope-deflection

equations for columns and girders are shown in FIGURES 3.9(a) and 3.9(b)
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respectively. All directions indicated are in the positive sense.

3.3.5 Slope-Deflection Equations for Columns

An individual column in a structure, in maintaining deformational
compatibility with the rest of the structure, behaves as a beam-column
subjected to end moments. A typical column in its initial and deflected
state is shown in FIGURE 3.10. Initially fhe entire member responds
elastically, and the slope-deflection equations modified for axial load

can be applied.

=)
I

8
= %l [Coy + S8 - (C+ ) —4—F] (3-28)

5
-El [ce, + Sey - (C +5) 41 (3-29)

==l
L]
o

As the load on the structure increases, the bending moment magni-

tude at any point in the column may reach Mpc' and a plastic hinge will

form. The possible column hinging configurations considered in this analysis

are shown in FIGURE 3.11, in conjunction with the sequences of hinge for-
mation considered possible. It should be noted that, because of the sym-
metry of the column reinforcement, plastic hinges may open in ejther di-
rection.

Three possibilities of first hinge formation must be considered.
Usually in a laterally loaded structure, the maximum moment in an elastic
column (case 1) occurs at either the top or bottom of the column. Tﬂi§ can
lead to either a case 2 or case 3 hinge configuratioh. However, in cértain

cases, it is possible that the maximum moment value occurs between the ends
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of the column. The possibility of this occurrence is dependent upon the
level of the axial load, the slenderness ratio, and the end moment magni-
tudes and directions. The best example, of course, is in a column bent
in single curvature when the secondary effects of axial force amplify the
interior column moment value. EQUATION (3-30) can be used to determine

the position of the point of maximum moment.

BU + BL cos kh

BL sin kh

kx = tan'] [ - (3-30)

where k = V/E:r

If 0 < kx < kh, the point of maximum moment is between L and U. If not,
it is at a fictitious point outside the length of the column. Assuming

that the condition is satisfied, the value of the maximum moment is computed

as:
/82+82%4+ 288 cos kh
I — uL (3-31)
maXx sin kh
If Mo 3'Mp], the column moves from a case 1 to a case 4 hinge con-

figuration. The derivations for EQUATIONS (3-30) and (3-31) appear in
APPENDIX C.

Assuming that the column was initially straight, it is difficult
to visualize a case where an end hinge could form after the case 4 hinging
configuration is reached. Consequently, the case 4 hinging configuratjon
is considered a final condition for a column. However, a check is inéorpo~

rated in the computer programme to detect any violation of this assumption.
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If an end hinge condition is detected in a case 4 column, the occurrence
is noted in computer output, but the column continues to be treated as
a case 4 column in the analysis.

Similarly, the possibility seems remote that an interior hinge
could form after the development of an initial end hinge. Conseﬁuent]y
cases 2 and 3 may progress to a case 5 hingfng configuration, at which
point all member stiffness is exhausted.

It is possible to alter the slope-deflection equations for the
elastic co]dmn, EQUATIONS (3-28) and (3-29), to formulate slope-deflection
equations of the form of EQUATIONS (3-32) and (3-33) for each column
hinging configuration considered.

Sy - 8

8 + C

v Gt Cab by Tt Cyy (3-32)

[=~)
1

(3-33)

[=s]
n

L= byt Gl G TR
Coefficients for these equations are presented in TABLES 3.2 and 3.3. The
equations were originally derived by Parikh(]4).

It should be noted that the resisting moment at a column plastic

hinge, M__, is a function of P, and consequently is not likely to be a

pc
constant value, As is shown in FIGURE 3.4, should the P value increase,
but still remain below Pb’ the resisting moment at a hinge will actually
increase. If a column hinge has formed, it is assumed to remain active

with the value of MpC corresponding to the current axial load.
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3.3.6 Slope-Deflection Equations for Girders

The girder configuration considered in this analysis is shown
in FIGURE 3.12. The girder, spanning between points A and B on the face
of shear walls with finite widths WWL and WWp respectively, supports a
unifofm1y‘distributed load w which represents the girder self-weight and
superimposed dead and live load. When a column is considered in place of
a shear wall, the finite width reverts to zero and centre-line dimensions
are employed.

In the analysis of girder behaviour, finite shear wall width has
two effects. In the first instance, the wall width reduces the effective
span, L, of the girder. Moreover, rotation of joints A' and B' causes a
vertical translation of points A and B respectively, either increasing or
decreasing the effective differential column axial shortening deformation
to which the girder is subjected.

The inhomogeneous nature of a reinforced concrete gfrder compli-
cates the analysis of its behaviour. A steel girder is usually of uniform
section throughout its span, providing constant values of Mp] and EI, re-
gardless of the sense of the moment. It is also realistic to assume that
a symmetrically reinforced column is a homogeneous member throughout a
storey height. In proportioning a reinforced concrete girder, however, the
designer will normally provide different reinforcement areas at various
points along the length of the girder. This design procedure produces a
member in which both EI and Mp1 vary. To consider this possibility in the
analysis of a real structure, provision is made to adjust the plastic moment
capacities as shown in FIGURE 3.13. The girder section at an interior

support is used for the derivation of Mp] and EI values for the member. By
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reading in values of TPRATE and TPRATM, each girder can be assigned ad-
justed plastic moment capacities at exterior supports and interior points.
No alteration in the girder EI value is considered, however. This leads
to unconservative results if the interior support is stiffer.
.Moreover, since the girder is assumed to be reinforced on one side
only, it is possible that cases will arise_where the end moments are in a
direction opposite to that of the reinforcement resistance. In the com-
puter programme, violations of this sort can be detected and recorded.
In thfs case, the analysis of the structure continues, heg1ecting the in-
compatibility and assuming that the girder possesses equé] moment capacities
in both directions.
| As the Toads on a structure increase, a girder may develop plastic
hinges in much the same manner as a column. Again, it is possible that
hinges can form at three different locations. However, because of the
different nature of the external loading, plastic hinges can occur at both
an end point and an interior point. Consequently, it is necessary to con-
sider the seven possible girder hinge configurations shown in FIGURE 3.14.
To detect a possible interior hinge, EQUATIONS (3-34) and (3-35)

can be employed.

M, + M
X = % - “"“"‘_Aws_ B (3-34)
If 0<x<L:
W2 Myt Mg (M4 MB)2 -
Moax = Ma * 73— - 7t 2 (3-35)
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Only positive moment hinges are considered in the interior portion of a
girder. |

For eacﬁ combination of girder plastic hinges, the s]ope-dé-
flection equations originally derived by Parikh have been extended to in-
corporate finite wall width effects. The equations have also been gener-
alized to consider the variable plastic moment capacity of a reinforced

concrete girder. The general form of these equations is as follows:

0

=
n

C 8, + C 60 + C

1h On * Can g+ Cap Spr + Cpp Sy + Cy (3-36)

Mg = Cig Op * Cop 05 + C3p 81 + Cpp 851 + Cep (3-37)

The coefficient values for these equations are presented in TABLES 3.4
and 3.5, and the derivations appear in APPENDIX C.

In the formulation of simple plastic theory methods, the for-
mation of three hinges in any girder produces a beam mechanism which is
considered to constitute a failure mechanism for the entire structure.
While it is true that a girder hinged in this manner can not support ad-
ditional gravity loading by flexure, the remainder of the system may still
be stiff enough to resist additional load. In this analysis, the for-
mation of a beam mechanism will not be considered to represent the attain-
ment of the maximum load for the entire structure. It will be treated
simply as a localized failure. Conditions of serviceability will be over-
looked. Should a beam mechanism be detected at any stage of loading, the
occurrence will be recorded. And, as shown by the dotted line portion of

FIGURE 3.14, the system can continue to be analyzed by reverting from a beam
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mechanism configuration to a case 7 hinging configuration with appropriate
end hinge moment values. These resisting moments and the accompanying end
reaction values represent the effect of the deteriorated girder on the rest

of the structure.

3.3.7 Properties of a Shear Wall

Thrbughout this thesis, the sheaf wall section is assumed to be
that of a solid symmetrically reinforced tied column. In this case, the
wall can be considered to behave exactly 1ike a column with finite width.
Shear deformations of the wall are neglected.

While the assumption of a solid wall section may not be considered
consistent with the variety of wall section shapes possible, the analysis
can easily be.adapted to consider any shear wall section if the section

response can be expressed by an elastic-perfectly plastic M-¢ relationship.

3.3.8 Axial Shortening of Columns

In a multi-storey frame, relative axial co]umn-shortening may in-
duce significant bending moments, pérticu]ar]y in the upper floors where
the cumulative effect is imposed. The effects of these deformations are
discussed in CHAPTER VII.

The axial shortening of any column under axial load P is computed
using EQUATION (3-38), which is based on the composfte action of elastic
reinforcement and concrete behaving according to Hognestad's stress-strain
relationship,

Ah;(l_y".yz'ﬂ‘xz

T ) h (3-38)
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0.85 fé (bt - ZAS)
where X = 5

o

1.7 fL (2A - bt)
y = - - 2AE
0

To be consistent with the assumption of small deftection theory,
curvature shortening has been neglected. Korn(]s) has already shown that

its effects are minimal.

3.3.9 Hinge Rotation Capacity

Compared to mild steel, reinforced concrete is a material of
limited ductility. Proponents'of Timit design of reinforced concrete
structures have noted this problem. One Timitation of limit design methods
is that at any hinge location each member must pbssess sufficient rotation
capacity to permit the redistribution of bending moments necessary for the
formation of a collapse mechanism, |

(34,35) indicate that a conservative value of

Experimental studies
girder rotation capacity is obtained by considering that the inelastic
hinging region extends for a distance 0.5d on either side of the idealized
“point" plastic hinge. It will be assumed that the same is true in columns.
Hence, for a girder, the permissible hinge rotation eDa]l = 0.5 ¢ud and for
a column, eDa]] = 0.5 ¢pcd for an end hinge. The values are doubled at
interior hinges. Actually, the laboratory tests indicated that 8Da]]"= 0.5

(¢u - ¢y)d, but a less restrictive estimate was used in this study,

By manipulation of the member slope-deflection equations preSjjted
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earlier, it is possible to compute the finite inelastic rotation developed
at any plastic hinge. Formulas for these are presented in APPENDIX C. In
the analysis, any occurrences of excessive hinge rotation are recorded.
Such a violation is not considered to constitute failure of the structure,
and the analysis is continued assuming that the resisting moment at the

hinge remains unchanged.

3.4 Summary

Methods have been presented to describe the behaviour of rein-
forced concfete members throughout the entire range of Idading of a
structure., The major assumptions made are those related to the idealized
elaétic-plastic section behaviour.

The elastic-plastic section resﬁonse characteristics defined in
this chapter are used throughout the thesis. However, they can be altered
for any future elastic-plastic analysis and need not limit the applicability

of the method of analysis.



CHAPTER IV

ANALYSIS OF FRAMEMORK

4.1 Introduction

In the previous chapter, methods'were presented to define the
behaviour of individual girders, columns and shear walls with given loading
and end constraints. In a framework, the end constraints provided for
any member are functions of the stiffness of the rest of the structure,
and an individual frame member cannot be analyzed separately.

This chapter will deal with the formulation of a solution for a
plane framework cpnsisting of an assemb1a§e of girders, columns and shear
walls. A computer programme is developed to trace the second order
e]astié-p1astic response history for the framework as loading progresses
to failure. The limitations and possible errors of the analysis are dis-

cussed,

4.2 Model Framework and Loading Configuration

The model framework and loading configuration considered in
the formulation of the solution is that shown in FIGURE 4.1. The structure
is a rigid-jointed, plane, rectangular multi-storey, multi-bay frame with
complete base fixity. The size of the frame which can be considered is
limited only by computer capacity. The structure must be a regular frame
with_no missing members and no staggered spacing of members.

The model may be either an unbraced frame with no shear walls or

a braced structure with shear walls in any or all of the column lines.
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When a shear wall is present, it must be treated as such throughout the
entire height of the structure, although its stiffness and width may
approach that of a column,

The joints are assumed to be completely rigid at the points of
1ntersecfion of the centre-lines of the members. The effect of the over-
lapping of columns and girders in this region is neglected, and computations
are based on centre-line dimensions except where finite shear wall widths
are considered. Thus, all hinges at the ends of members form in a joint or
at the face of a shear wall. This assumption results in conservative
estimates of framework strength and stiffness.

Member properties may vary from bay to bay and storey to storey,
subject only to the Timitations in cross-section discussed in CHAPTER III.
Similarly, bay widths and storey heights may vary in any desired manner.

Only static loads have been considered and all loads are assumed
to act only in the plane of the frame. The graQity loading cases which
can be considered are:

1. uniformly distributed loads on girders representing dead Toad,

Tive load and member self-weight,

2. exterior loads at the top of all column stacks,

3. exterior wall weights acting on the exterior column Tines.
As is normal practice, lateral loads are assumed to act only at windward
joints.

To systematize the solution for computer adaptation, a co-ordinate
system was used for numbering individual joints and members in the framework.
For a typical joint (M,N), M refers to the floor number and N the column

line working from the top left corner joint as (1,1} for reference. The
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nomenclature for the members framing into a typical interior joint (M,N)

is shown in FIGURE 4.2.

4.3 Formulation of the Solution

To obtain a solution for a stable structure subjected to static
loads, three fundamental conditions must be satisfied simultaneously.

1. Geometrical compatibility must be maintained. Stated simply,
this means that no matter how the structure deforms the com-
ponent members must fit together and continue to satisfy any
boundary conditions.

2. Statical equilibrium must be maintained. The external applied
forces must be balanced by internal reactive forces in the
structure. This app]ies'equa11y for the entire structure, any
combinaiion of members, any member or any portion of any member.

3. The relationship between force and disp]acement must be satis-
fied. In this particular case, since deformation is assumed to
occur only as a result of bending and axial shortening, if the
curvature of each portion of the structure satisfies the appro-
priate M-P-¢ relationship and the relationship between column
axial load and axial shortening is satisfied, material behaviour
is adequately considered.

The third condition has already been satisfied in the derivation
of the slope-deflection equations and the relationship for axial shorten-
ing of the columns.

To simultaneously satisfy the other conditions in an indeteghinate
structure, two different approaches could be adopted. The force or flexi-

bility methods initially satisfy the equilibrium condition and solve for
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redundant forces as the unknowns by satisfying the compatibility condition.
In contrast, the displacement or stiffness methods are formulated by
initially satisfying compatibility conditions and solving for displace-
ments as the unknowns necessary to satisfy equilibrium.

The slope-deflection equation formulation of the problem is
suited for a displacement method of ana1ysfs. To satisfy the compatibility
condition, it is necessary only to assume that the joint displacements,
rotation and translations, are the same for all members framing into
a particular joint. The boundary conditions at the base of the frame
must be satisfied. The problem then reduces to one of satisfying statical
equflibrium conditions.

Equilibrium of the overall frame under gravity loads can be achieved
if the columns can support these loads and conduct the loads to the foun-
dation. The equilibrium condition for any girder or any portion of any
girder can be satisfied if the restraining end moment and end reaction
values can be imparted through the joint by the rest of the structure.

This amounts essentially to satisfaction of the conditions of joint equili-
brium. To satisfy equilibrium of the structure under lateral loads, it is
necessary to consider the conditions for storey sway equilibrium.

Thus, the satisfaction of the conditions of joint and storey
sway equilibrium constitutes simultaneous fulfilment of all three conditions

necessary for a solution.

4.3.1 Joint Equitibrium

FIGURE 4.3 illustrates the forces acting on the ends of all members

framing into a typical interior joint (M,N). A1l forces are shown in the
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positive sense. The constraining forces in the members are opposed by
reactions equal in magnitude and opposite in direction acting on the joint,
though these are not shown.

To maintain statical rotational equilibrium of the joint:
MA(M,N) + MB(M,N—l) + BU(M,N) + BL(M-l,N)
+ [Vg(M.N-1) = V, (,N)] Hﬂéﬂlﬂl =0 | (4-1)

The last term of the equation results from consideration of the finite
shear wall width, with shear transfer at the face of the shear wall pro-
viding the required girder end reaction values.

Consideration of equilibrium of the girders provides values
of the end reactions.

In girder (M,N):

M, +M
_wb A B _
We7 - T (4-2)
In girder (M,N-1):
M, + M
I N )
VB =% + T (4-3)

Moreover, for translational equilibrium of the joint:

- H -H, =0 (4-4)

Hy + Hg - H - Hy
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P(M,N) = P(M-1,N) - V,(,N) - Vp(M,N-1) = O (4-5)

EQUATION (4-4) will be satisfied in the consideration of storey sway
equilibrium in the next section. EQUATION {4-5) will be considered in
computing the column axial load values.

By combining EQUATIONS (4-1), (4—2) and (4-3) it is possible
to express the joint moment equilibrium condition in terms of member end
moment values and known girder distributed load values. Substitution of
the appropriate slope-deflection equations derived in CHAPTER III for each
of these member end moment values and grouping of the coefficients provided
in TABLES 3.2, 3.3, 3.4 and 3.5 produces a joint "operator" which can be
represented graphically as shown in FIGURE 4.4, Each coefficient in a
girder {i.e. GR) cén take on seven different values, the choice of the
appropriate va]ue being determined by the curreﬁt hinge configuration in
the girder to which it applies. Similarly in columns, five different
values of coefficients are provided.

Thus, EQUATION (4-1) can be rewritten as:
8(M,N)[AL + AR + AA + AB] + GL + GR + GA + GB
+CC+DD+EE+FF=0 7(4—6)
This equation can be applied at any typical interiof joint to satisfy ]

moment equilibrium at the joint with the framing members in any stage of

hinging. Naturally, adjustments must be made at exterior joints where
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members are non-existent. The boundary conditions of base fixity are

satisfied by setting FF at zero for all first floor joints.

4.3.2 Storey Sway Equilibrium

As was mentioned previously, to achieve the condition of equili-
brium of lateral forces, storey sway equilibrium must be maintained.
FIGURE 4.5 shows a free-body diagram of the columns or shear walls in a
typical storey in their initial and deflected positions. Since axial

shortening of girders is neglected, all columns in a storey are subjected

to the same storey sway deflection value A. The total externally applied

lateral force IW acting on the storey is the sum of all lateral forces
acting above that storey. To maintain equilibrium of the storey, this
external lateral force must be balanced by the horizontal reactions
developed by the columns, which are provided by the end moments in the
columns. '

Moreover, it was decided that this analysis was to be a second
order analysis. The secondary axial load effects in the columns and shear
walls themselves have already been considered by the incorporation of
stability functions in the slope-deflection equations. But to satisfy
the requirements of a second order solution in the structure, equilibrium
must be formulated on the deformed structure. Consequently, the PA
moment must also be balanced by the column end moments developed.

FIGURE 4.6 shows a free-body diagram of a typical column. For

equilibrium of this column:

Hh = - (B, + B + Pg) (4-7)



W
—_—

75

— . q———— ——— i w— a—— —.

|

| |

S
FIGURE 4.5

FREE-BODY DIAGRAM OF A TYPICAL STOREY

Z

P

Al

Y
B

— U

Y H
BL\_J‘"'

!

p

FIGURE 4.6
FREE-BODY DIAGRAM OF A TYPICAL COLUMN



76

The relationship B, + B, + PA for a typical column (M,N) can be expressed
in "operator" form as shown in FIGURE 4.7. This operator is similar to
that derived in the previous section. Using the terms shown in FIGURE 4.7,

EQUATION (4-7) can be rewritten as:
Hh = « (V + T + U + Z4) (4-8)
For equilibrium of the entire storey:

TH = IW (4-9)

Therefore, for an entire storey consisting of NC columns or walls:

N=NC N=NC _
(ZWihh=- & (V+T+U)-A T Z {4-10)
N=1 N=1

The satisfaction of EQUATION (4-10) for every storey in a structure
indicates fulfilment of the condition of statical equilibrium of lateral

forces.

4.3.3 Computation of Axial Loads and Vertical Joint Displacements

In EQUATIONS (4-6) and (4-10), derived to satisfy the conditions
of joint and storey sway equilibrium respectively, values of column axial
loads P, vertical joint displacements GA and Gé, and stability functions
C and S appear. The terms GA, Gé, C and S are all functions of the Eo]umn
axial load values P, which are, in turn, functions 6f the deformed shépe of

the indeterminate structure.



V= fle(M,N)]

Z = f[aM)]

U = constants

T = fle(M+1,N)]

FIGURE 4.7

OPERATOR FOR BU + BL + PA FOR

A TYPICAL COLUMN

7



[
I

78

The object of the displacement method of analysis is to set up
a system of simultaneous linear equations which can be solved for the
unknown displacements. In EQUATION (4-10), however, the PA terms is non-
1inear since P = ¥(6,4,8,C,S). Thus, to derive a system of linear equations
in terms of the unknowns 8 and A, it is necessary to perform a separate
solution for values of P, GA, 6hs C and S, and treat these values as con-
stants in solving EQUATIONS (4-6) and (4-10).

The column axial load P is computed using the relationships ex-

‘pressed in EQUATIONS (4-5), (4-2) and (4-3). A recurrence relationship

or "operator" similar to those derived in the previous sections can be
formulated for this operation.

With P values known, the vertical joint displacements are com-
puted by using EQUATION (3-38); and are cumulative from the base of any

cotumn stack since no foundation settlement is considered.

4.4 Method of Solution

At this stage, a solution for the model framework has been formu-
lated which simultaneously satisfies all three necessary conditions discussed
in SECTION 4.3. The solution is expressed in terms of EQUATIONS (4-6) and
(4-10). Temporary linearization df tHese equations, accomplished by the
separate computation of column axial load values P and GA, 84, C and S,
leaves the values of joint rotations 6 and the storey sway displacements
A as the unknowns. If all values of 6 and A can be computed, the deformed
shape of the structure under any stable loading configuration is known.

By applying the slope-deflection equations, the bending moment distribution

in all members of the framework can be determined.
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For each joint in the framework, EQUATION (4-6), depicted
graphically by the recurrence relationship in FIGURE 4.4, can be applied.
For each storey, EQUATION (4-10) can be applied. This produces a series
of simultaneous linear equations, one per unknown, with joint rotations
and storey sway displacements as the unknowns.

The question then is how to solve this system of linear equations.
Several investigators(]]’]3’15’24) have formulated solutions by setting up
a formal stiffness matrix. Others(]4) have chosen to solve the equations
by an iteration procedure. The advantage of the iteration procedure is
that no formal matrix need be set up and computer storage space is saved.
The disadvantage, of course, is that the iteration procedure yields an
approximate solution rather than the exact solution which is provided by
matrix operation. The implications of this inaccuracy will be discussed
in SECTION 4.8. |

The method of solution used in this analysis is the Gauss-Seidel
procedure(36) of iteration by.sing1e steps.

EQUATIONS (4-6) and (4-10) can be rearranged to express joint and
storey sway equilibrium conditions explicitly in terms of the unknown dis-

placement values.

_ GL+GR+GA+GB+ CC+ DD+ EE + FF
O(M.N) = - AL + AR + AR + AB (4-11)
N=NC
[z (V+T+U)]+ h(zw)
aM) = - = N=NC (4-12)
r 12

N=1
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Using these equations, the 1teration procedure can be continued until suc-
cessive values of deformation have converged to the desired degree of
accuracy. These deformation values represent the statically admissible and
geometrically compatible solution for the response of the structure to the

applied loads.

4.4.1 Convergence Lriteria

Since this is an iterative method of solution, it is necessary
that some criterion be used to define adequate convergence, Moreover, since
it is necessary to separate the solutions for column axial loads P on the
one hand, and joint rotations and storey sway deflections on the other,it
is nécessary for a correct solution that convergence of both P values and
deformations be achieved.

In setting up the iteration procedure for a solution, the con-
vergence check used is that of comparing succesﬁive values of the unknowns.
Values of ACCURP and ACCURD are chosen to fepresent the desired degree of.
accuracy. If at the end of a cycle of iteration, the ratio of successive
P values in all columns fits within the range of 1 + ACCURP, the P values
are assumed to have converged sufficiently close to the exact values. A
similar check is employed to signify adequate convergence of the deformationA
values. When both have converged, the_solution is assumed to be correct.
The inaccuracies inherent in this convergence check are discussed in

SECTION 4.8.

4.5 Incremental Loading Procedure

In the computer programme, the behaviour of the frame is analyzed

at various load factors A as loads increase to the failure load. The loading
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is incremental and may be, but need not be, proportional. A load-deflection
plot, typifying the response hiétory of the structure as traced by the pro-
gramme, appears in FIGURE 4.8. A |

To set up the incremental 1dading procedure, three different sets
of data must be fed into the computer. Working load values, corresponding
to the case A = Aw = 1.0, are assigned to all loads on the structure. The
initial Toads applied to the structure correspond to the case where A = Ai.
In the programme, these initial loads are set by providing values of FAUGE,
FAUGL , FAUGLL, and FAUGDL which denote load factors for exterior column
loads, lateral loads, live loads and dead loads respectively. Thus, the
Toading conditions at X = Ai are assigned by multiplying the working load
values of exterior column Toads by FAUGE, and so on. Moreover, the size of
the increments are set by values of AUGE, AUGL, AUGLL and AUGDL, again ex-
pressed as a portion of the working Toad value. After the analysis is
completed at Ai’ the second loading condition analyzed, Az, is represented
by FAUGL = FAUGL + AUGL, and so on.

This incrementing procedufe continues until plastic hinging pro-
gresses to the point where the structure has lost a significant portion of-
its initial stiffness. At this stage, it becomes advantageous to reduce
the size of the increments. This is accomplished by multiplying the original
load factor increments AUGE, AUGL, AUGLL and AUGDL by a "deterioration
factor” DETF, which is computed as a function of the ratio of the total
number of plastic hinges present to the degree of indeterminacy of the
structure, o

At some stage, the-application of a load factor AF] will resutt

in indications of frame instability as discussed in SECTION 4.5.3. This
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AEq value is equal to or greaterrthan the load: causing failure of the
structure, To converge closer to the actual failure load, the size of the
last load increment is halved and the structure reanalyzed at AFZ' If in
yields instability, the increment is again halved. If a stable configuration
is found at AFZ’ the true failure load lies between le and AF]' After
the first detection of instability at AF]’ the increment is subdivided four
times by choosing the midpoint between the last stable and the last unstable
A values. After these four adjustments, it is assumed that the last load
factor is sufficiently close to the true failure load factor Ap-

As was mentioned previously, the loading procedure need not
be proportional. For instance, by initially setting FAUGDL = 1.0 and AUGDL = 0,
full working dead load will be on the structure initially and will never be
incremented in the analysis. Caution must be exercised in applying non-
proportional loading, however, since the plastic hinge reversals which might

occur are not considered in the analysis.

4,5.1 Detection of Plastic Hinges

The formation of a plastic hinge at any point in any member is
detected using the sTope—def]ection equations and the procedures discussed
in CHAPTER III. If a hinge is detected, the member hinge configuration is
adjusted accordingly.
In tracing the response of the structure to incremental loading,
the analysis detects the occurrence and location of all new plastic hinges
which form in any Toad increment. In this way it differs from ana]yse§(11’13’15)

which are set up to provide the order of formation of plastic hinges direct]y.

The deflected shape at the end of an increment is computed using
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the hinge configuration existing at the end of the increment. Several
iterations may be required to satisfy the yield condition by detecting
all the hinges which develop in the increment. The load-deformation re-

lationship is assumed to be linear throughout the increment.

4.5.2 Speeding up Convergence

Initially all deformation values are set at zero. Thus, in

jterating for convergence at the first load stage Ai’ the iteration pro-

cedure must alter the deformations from the zero values to the statically

admissible Qa]ues, Thereafter the final deformation values obtained for
one cycle of analysis could be used as initial values for the next cycle.
To speed convergence, however, the known deformation values were extra-
polated to predict approximate starting values for the new load stage.

To avoid storing all previous deformation values, the extra-
polation procedure used in this analysis considers that the relationship
between FAUGL and the total sway deflection at the top of the frame is
representative of all load-deformation relationships in the structure.

In the initial load stages, a linear extrapolation procedure is applied
to this relationship to establish a value of RATIO. A1l values of joint
rotations 6 and storey sway deflections & from the previous load stage
are multiplied by RATIO to provide approximate values of deformations for
the start of the convergenée procedure at the new load stage. After at
least three points of the load-deformation relationship have been deter-
mined, Lagrange's procedure(37) is used to fit a second degree equafiqp
to the last three points to derive a value of RATIO.for the extrapolation

operation,
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4.5.3 Detection of Instability

As the loads on the frame are increased, the applied loads will
eventually exceed the maximum load-carrying capacity of the frame. In
formulating the computer programme, it is necessary to incorporate checks
to indicate that instability conditions have béen reached in the structure.
The load is considered to be at or beyond the frame instability load if
any one of the following conditions arises.

1. A storey sway mechanism, as shown in FIGURE 4.9, is detected.

This hinging condition is a recognized collapse mechanism

condition in simple plastic theory. In applying EQUATION

(4-12) to this hinge configuration, it will be found that

the numerator equals 2% Mpc and the denominator equals IP

in all storey columns.

2. A joint mechanism, as shown in FIGURE 4.10, is detected.

Again this is a valid collapse mechanism condition in simple

plastic theory. Since the denominator in EQUATION (4-11)

would be zero with this hinge condition, it is not possible

to derive a unique value of the joint rotation.

3. The storey sway deflection value computed by EQUATION (4-12)

shows a reversal in one or more storeys. EQUATION (4-12)

computes the equilibrium value of the storey sway deflection

under the current 1oad values, If at some load stage, this
equilibrium deformation value drops below that for the previous
load stage, it indicates that the columns in the storey in

question are able to support the incremented loads only at a

reduced sway deflection value because of the reduced column
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stiffness. This serves to indicate that the.structure is
unstable in that storey.

The iteration procedure fails to converge after a l1imiting
number of cycles. In a formal matrix solution of the

problem, instability is signified by a change of sign of the
stiffness matrix determinant. In an iteration procedure,
however, instability will be detected by non-convergence of
the iteration pfocedure. Some sufficient, but not necessary,
conditions for convergence of a matrix have been suggested(36),
but the question of where the borderline between convergence
and non-convergence lies has not been answered. Thus, in the
programme, it is necessary to set some realistic limits on the
number of cycles of fteration required to bring about con-
vergence of values of column axial loads and deformétions in

a stable structure. And beyond these 1imits, defined as
LIMITP and LIMITD in conjunction with ACCURP and ACCURD, the
structure will be assumed to be unstable. The problems in-
volved in assigning realistic values to LIMITP and LIMITD are
discussed in SECTION 4.8.

The first two conditions for instability are usual criteria for
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a failure mechanism in simple plastic analysis. As was noted in SECTION
3.3.6, the formation of a beam mechanism is not considered to représent
instability of the structure in this analysis. A combined collapse mechanism
will obviously be detected by one of the last two conditions. But thegé

last two conditions will also detect instabiTity of the structure should it

occur prior to the formation of a collapse mechanism as a result of'softening



of the structure by hinging and secondary axial load effects.

4.6 Computer Application of the Analysis

A computer programme was prepared to carry out the incremental

analysis described in this chapter. The programme was written in IBM
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System/360 Fortran IV language. The programme nomenclature, flow diagrams

and a listing of the programme are presented in APPENDIX D.

The basic steps in the programme can be summarized as follows:
Read frame geometry, material properties and section pro-
perties. Set convergence 1imits. Inftialize all deformations
as zero, and all hinge configurations as elastic.

Compute all girder section properties. These remain unchanged
as loads on the structure are increased.

Read working load values, initial! load factors and initial

joad factor increments, and use theserto compute the initial
loads on the structure.

Compute axial loads in all columns. Compute vertical joint
deformations, column section properties and stability functions
under these currenf axial load values.

Compute joint rotations and storey sway translations by iterati
until sufficient convergence is achieved. This involves the

use of the "operator" relationships shown in FIGURES 4.4 and 4.

on

7.

If instability is detected due to inability to converge, a joint

mechanism,or reversal of a storey sway deflection value, skip
to step 10. |

With these current deformation values, check for the emergence
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of new hinges in the frame. If a storey sway mechanism is
detected , skip to step 10.
Check for convergence of column axial load values and the

frame hinging configuration, If axjal load values have not

-converged to the specified degree, or new hinges were de-

tected in step 6, revert to step 4 and try again for con-
Qergence to a proper solution. If instability is detected

due to insufficient convergence of column axial load values,
skip to step 10.

If all values of deformations and column axial Toads have
converged and no new hinges were detected in the last pass
through step 6, the current solution satisfies all conditions
of equilibrium and compatibility under the current external
loads. Print out all pertinent information, including cases

of excessive rotation at plastic hinges.

Increment the load factors, extrapolate deformation values,

and return to step 4. However, if four load factor adjustments
have been made since the initial detection of instability,

skip to step 11.

Record the source of instability. Reduce the load factors as
described in SECTION 4.5 and return to step 4. However, if
four load factor adjustments have been made since the initial
detection of 1nstébi1ity, proceed to step 11.

Stop the analysis, and take the last stable loading configurétion
as indicative of the true failure load of the structure.

With slight modifications, the computer programme can be used for
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fifst order elastic-plastic or first order elastic analysis.

4.7 Limitations of the Analysis

Simplifications introduced in both the framework model and the
analysis of member behaviour impose iimitations on the use of the computer
programme presented in this thesis.

In the model, all shearwalls are considered to be continuous
throughout the height of the structure, and all columns must have fixed
foundations. These conditions do not represent limitationsof the method
of analysis, but do restrict the use of the present programme. The
programme could easily be revised to consider shear walls terminated below
tﬁe top of the structure and any conditions of base fixity. In addition,
the model is assumed to be a regular rectangular frame with no missing
members. For the analysis, new conditions of equilibrium could be formu-
lated to consider the boundary conditions imposéd by missing frame members

or irregular member spacing.

Although it is a limitation of the present analysis, the assumption

of point joints is not essential since the finite widths of all members
framing into a joint could be considered in the same manner as was the
finite shear wall width,

O0f the assumptions of member behaviour, perhaps the most signifi-
cant is that regarding the maintenance of all plastic hinges once they
have formed. The possibility of plastic hinges ceasing to rotate during
proportional loading has been discussed by Nea1(38) and Davies(]3) who
illustrated the occurrence in the analysis of simple structures. Negi;ct

of the presence of unloaded plastic hinges may lead to erroneous estimates
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of deflection values. In his analysis, designed to consider variable re-
peated loading, Davies takes info account the reversibility of plastic
hinging. In the course of loading, if cessation of plastic rotation is
detected at any hinge, the plastic hinge is replaced by an elastic “"passive”
hinge locked with a permanent deformation. The formation of passive

hinges could be detected by this method of analysis. To consider the
permanent rotational discontinuities at the closed hinge, it would be
necessary to revise the slope-deflection equations to consider "kinked"
elastic members instead of the straight members considered in the present
analysis. However, Davies' investigations indicate that, in a structure
subjected to proportional loading, hinge reversals are unlikely to occur
before instability is detected. In view of this, it was felt that the
sophistication required to consider hinge reversals was not warranted in
this analysis. |

The analysis as presently constituted will yield only the stable
equilibrium configuration denoted by the portion QA of the load-deformation
plot shown in FIGURE 4,17, stopping where instability is detected at A.
When the PA effect is considered in the formulation of equilibrium, two
distorted configurations of the structure can be in equilibrium with a
given set of loads. The second configuration, represented by the dotted
line AB in FIGURE 4.11, is a post-instability or unloading case.

To extend this type of analysis to consider the post-instability
behaviour, a number of modifications would be required. As was noted in
SECTION 4.5.3, EQUATION (4-11) becomes inoperative for a joint mechanism
and failure of the structure is assumed. Similarly, in formal stiffness

(11,13,15)

matrix formulations of an analysis, the formation of a joint
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mechanism leads to a breakdown of the solution because the inoperative
equation results in a zero stiffness matrix determinant, which signifies
failure. To permit extension of this analysis to consider poﬁt—instab{]ity
behaviour, some method must be found to treat the joint mechanism condition.
Fortunately, the formation of a joint mechanism need not lead to a mathe-
matical breakdown of the solution. If a joint mechanism occurs, the be-
haviour of all members framing into the joint is found to be independent

of the rotation of the joint itself, and the members can continue to be
analyzed neglecting the rotation of the joint. By simply skipping the
evaluation of the joint rotation in the analysis, the inoperative equation
can be eliminated, and the evaluation of the response of the rest of the
structure can be continued. This, of course, implies that the maintenance
of serviceability at an isolated joint is not a serious consideration,

or that remedial design procedures can be employed to minimize the loss

of serviceability. No such problem arises in the event of occurrence of

a storey sway mechanism since EQUATION (4-12) remains operative, treating
the hihged columns essentially as rfgid bodies.

In addition, provision would have to be made for decreasing the
load factors after instability is detected, and for predicting the jnitial
trial values of the increased deformations. Davies' work indicates that
the closing of plastic hinges should also be considered in the post-
instability range.

In this manner, it would be possible to express the equilibrium
equations for the structure on the unloading branch much as was done before.
wrighf and Gay]ord(39), using a compatibility analysis, indicate that

post-instability behaviour is non-convergent. To permit derivation of the
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unloading branch, the structure was modified by providing fictitious lateral
spring supports. The adoption 6f such an approach in this analysis would
require a number of major assumptions and modifications. Moreover,_there
is no apparent reason why the equations satisfying equilibrium on the un-

Toading branch should be i11-conditioned for a solution.

4.8 Effect of Convergence Limits on Accurdcy

To solve the system of linear equations, an iteration procedure
is used instead of a formal matrix solution. Consequently, the solution

must be regarded as approximate, the departure from the exact solution

‘being a function of the degree of accuracy specified for the convergence

of deformations and column axial loads. In the computer programme these
are denoted by ACCURD and ACCURP respectively.

To illustrate the significance of this error in convergence,
two structures discussed in CHAPTER VI were anaiyzed with three different
values of ACCURD and ACCURP. The results df these analyses appear in
TABLES 4.1 and 4.2, Because the loads and deformations are progressively
increasing in the analysis, it might be expected that the lower specified
value of convergence accuracy would produce unconservative values of
overall frame stiffness. However, a comparison of the deflection values
indicates that no such consistent resu}t can be observed while the structures
remain elastic, This inconsistency is probably caused by the interrelation-
ship between P, C, S, Mpc and EI. When a low degree of accuracy is specified,
there is a definite tendency to overestimate the stiffness of the stfug}ure
as the structure becomes inelastic and the behaviour becomes more sensitive

to errors. In the 1ne]astic'frame, this leads to an underestimation of the



95

LH JWNLINYLS 40 SISATYNY IHL NO ADWENIOY IONIDUIANOD NOILVHILI 40 §133443

L'y 378VL
sajnutw |7} sojnuLw 60*| sajhuLl £8°Q BWL] UOL3IND9X]
140
165 06¢ £12 Suoljewdo4aq | sauabusauoy
104
¢l s 6¢€ San|ep 4 | suotjessanr
1R300}
QLEYE™L - GLEC L | S/gPE"Ll - GLe8°) 09€°L - gqieve’l LBAJSIUT Y sdn]led
. v91°¢ée LE GLePE"L
8LL7 12 123 AR 14> 299702 £e Glee’]
28102 AN Lv6" 61 4% 78E 8L LE Geel
el Ll Lé Al /AA L2 §ge°9l 14 0e"l
Bev 2l ¢l N ArAS A €97 ¢l 2l 021
67901 0 6v9 0L 0 259701 0 oLt
rivt 6 0 A 0 AL A 0 00" 1
£86¢°8 0 1862°8 0 £66¢°8 0 0670
¢lle’s 0 oLLe £ 0 9ile*L 0 08°0
L2419 0 62419 0 8vLL"9 0 0L°0
e8iL'S 0 08LL°9 0 9L.1°§ 0 09°0
102¢ ¥ 0 L02e’ v 0 L6127 Y 0 08°0
(ut) p33293s5Q (ut) paisaiaq (ut) PENRERETY|
F00Y 32| s3BuLly| sooy je sebuly | jooy qe sabu Ly X
v Aemg | ol3se|d| v Aemg dLISe[d v Aemg | oL3se|q
20070 G000 - ¢0'0 duN3dy pue qdnady

[P




96

OSH J¥NLONYLS 40 SISATYNY 3HL NO

AJVHNIJY 3INIDYIANOD NOILWYILI 40 S193d443

¢’y 38vl
SajnuLlt g5°¢ s3jnuLW /6°| sajnulw gg°| SUL] UOLIND3X]
: 110
1092 121 869 SUOL3ewa043(q | 95uabusAuo)
404
9 7S 8¢ sanlep 4 | suoijed9y]
tejol
St*L - SiEpbL Gev°L - si8ly°L G29%°t - G9296%°1 [RAJIBIUT Y auan|Le4
FANANAL e G295%° 1L
9¢6° 11 og Gr° L
618721 Le SLERY L
6887 L1 Qg GevTL
PELTLL ge §/8ly°L
0£6° 0t 8¢ T4l
étit ol 92 £29°01 ¥e POLT0L 22 ot L
£299°8 2l ¥3€9°g 2l 890/°8 2l 1350 |
L£0L" 2 0 YA 0 - L€9G° £ 0 02°1
266879 D ¥6¢6°9 0 £2£0° 7 0 oL°1L
29elt9 0 Serl°9 0 9%02° 9 0 00°1L
£6it°g 0 L2y s 0 940%°¢S 0 06°0
ELlEL Y ] LsEL ¥ 0 6G9G69° ¢ 0 08°0
2990 0 LSF0" v 0 L196° ¢ 0 0L°0
A TA S 0 L06g"¢€ 0 ev2e e 0 090
€082 0. €082 0 8L2L°2 0 05°0
ﬁzrv pa12933( (ut) pa12913Q ﬁ:wv pa3o938(
300y 1e ssbuly 400y e sabuLy 100y 3e sabuly X
V Aemg oLiseld v Aemg aL3seld v Kemg oLyseld
200 0 S00°0 200 ddnddy pue Qdnoav




97

number of plastic hinges present and an overestimation of the failure load.
It is important to note, howevef, that the inaccuracies are not cumulative
in their effects, since the frame is reanalyzed at each load stage to the
same specified degree of accuracy.

| In setting up the programme, it was necessary to set limits on
the number of cycles of iteration required for a solution. These limits
are specified by LIMITD and LIMITP in the computer input. As was noted
in SECTION 4.5.3, instability is assumed if these values are exceeded in
iteration for a solution at any load stage. Unfortunate1y, the rate of
convergence of a solution to any desired degree of accuracy is a property
of the system under consideration., Comparison of the execution time and
total number of cycles of iteration of H1 and H50 serves to indicate this.
H1 is a structure with a relatively weak shear wall compared to that in H50.
In keeping with the condition that a matrix in which the diagonal elements
predominate is more amenable to solution by the Gauss-Seidel iteration

procedure(37)

» the solution for H1 should be obtained more rapidly than that
for H50. Thus, it can be said that LIMITD and LIMITP must be considered

as functions of the system under analysis, the size of load increment and

the degree of accuracy required. As such, the assignment of values to

LIMITD and LIMITP is a matter of judgment. Perhaps the best test of the
applicability of the values chosen is to check that the load-deformation plot
flattens adequately with the onset of instability. In all cases shown in

TABLES 4.1 and 4.2, the frames failed by the formation of a joint mechanism
and LIMITD and LIMITP exerted no effect on the failure loads. o



" CHAPTER V
COMPARISONS WITH OTHER ANALYSES AND TESTS

5.1 Introduction

To illustrate the validity and applicability of the method of
analysis described in CHAPTERS III and IV, results derived using the
analysis are compared with available information provided by other in-
vestigators. Certainly the most desirable information for comparison
is that derived either from full scale field tests or from laboratory
tests., Unfortunately such tests on reinforced concrete frames are both
expensive and complicated, and most investigators have chosen to test
analytical models by computer. Consequently only one group of the com-
parisons made in this chapter is based on actual laboratory test results.

In this chapter, the tests chosen for comparison include:

1. the analytical reinforced concrete column study performed by

Pfrang(40)

» to check the applicability of the rationalized
M-P-¢ relationship and the slope-deflection equations derived
in CHAPTER III,

2. the unbraced multi-storey steel frames analyzed by Parikh(]4),
to check the performance of the computer programme developed
in CHAPTER 1V,

3. the laterally loaded reinforced concrete frames tested by
Ferguson and Breen(4]), to provide a check on the overall

effects of the assumptions made in formulating the analysis

98
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for reinforced concrete structures,
4. the approximate braced frame analysis of Guhamajumdar, Nikhed

1(25)

et a » to check the applicability of the analysis in braced

structures.

5.2 Pfrang's Analytical Column Model

Pfrang investigated the behaviour and capacity of a reinforced
concrete column in a structural framework subjected to vertical loads and
relative lateral joint displacements. To approximate the system in an
actual frame, Pfrang represented the column and its restraining members
by the equfva]ent model shown in FIGURE 5.1. The rectangular column
section was symmetrically reinforced and possessed section and material
properties identical to those used for the sample M-P-¢ computations in
APPENDIX B.

In his study of column behaviour, Pfrang analyzed many of these
individual systems, varying the several parameters h/t, ez/e], ez/t, 0,

B and ey known to influence the behaviour and capacity of this type of
structural system. The analysis used by Pfrang was an incremental analysis
employing a convergence procedure fo achieve compatibility at a number of
stations along the column. Non-linearity of the reinforcéd concrete column
M-¢ relationship was considered in us{ng M-P-¢ curves based on the exact
analysis(?8) described in CHAPTER III.

Using the rationalized bilinear M-P-¢ relationship and the re-
sultant constant EI condition throughout the column length, an analysis
was formulated for Pfrang's model column. This analysis was app]ied_to

several of Pfrang's column cases, and the resulting comparisons appear
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in FIGURES 5.2, 5.3 and 5.4. It should be noted that the results shown
for Pfrang's analysis were scaled from his figures. The rationalized and
exact M-P-¢ diagrams showed satisfactory agreement.

The comparison justifies the applicability of the rationalized
M-P-¢ relationship to this column section. The validity of the slope-
def]ectfon equations for unhinged members, which assume a constant EI |
value throughout the length of the member, is also demonstrated. The
departurés of the exact M-¢ relationship from the idealized elastic-
plastic relationship are shown in APPENDIX B. Despite these departures,
the analysis predicts the behaviour of the member quite accurately. As

is shown in FIGURE 5.2(b), the analysis somewhat underestimates the de-

formation values at high load levels approaching the failure condition.

This, of course, could be expected in view of the excessive stiffness
values considered by the bilinear M-¢ relationship in the yielding portion
of the M-¢ diagram. The failure loads, however, do agree very well with

those derived by Pfrang's more sophisticated analysis,

‘5.3 Parikh's Analysis for Unbraced Steel Frames

To check the formulation of the computer programme for frame
analysis described in CHAPTER IV, an attempt was made to duplicate the
results of an unbraced steel frame analyzed by Parikh. The structure
chosen for study was Parikh's three storey, two bay steel frame loaded
as shown in FIGURE 5.5. The computer programme was modified to use the
M-P-¢ relationships for steel members derived by Parikh. A comparison of
the Toad-deformation characteristics of all three floors appears in -

FIGURE 5.6, and a comparison of the order of plastic hinge formation is
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shown in FIGURE 5.7.

The results generally indicate a good comparison of the two
analyses. In view of the simf]arity of the methods, however, one might
expect duplication of results. Both analyses detected failure by in-
stability prior to the formation of a collapse mechanism. The analysis
in éHAPTER IV, with ACCURD = 0.005 and ACCURP = 0.01, detected instability
in the interval 6.96875 < H < 6.98375 kips when the ninth hinge formed.
Instability was indicated by a significant drop in the equilibrium sway
def}ection value of the second storey. Parikh notes simply that his
analysis indicated failure by instability with ten plastic hinges at
what appears to be H = 7.125 kips. Unfortunately, Parikh does not give
details regarding his accuracy of convergence.or his criteria for detecting
instability.

Despite the differences in the results, it would appear that
this check adequately establishes the validity of performance of the pro-

gramme formulated in CHAPTER IV.

5.4 Reinforced Concrete Frames Tested by Ferguson and Breen

To study the interaction between long columns and other frame
members in a framing system, Ferguson and Breen tested a series of rein-
forced concrete frames of the type shown in FIGURE 5.8. A1l columns wefe
symmetrically reinforced with Py = 0.02, and all beams reinforced similarly
with a higher percentage of reinforcement to induce column failure. In
all, eight such frames were tested with different values of e/t, h/t
and column to girder stiffness ratio. Sik of these could be considérgd

adequate short term tests for comparison with the analysis.
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An analysis similar to that presented in CHAPTER IV was pre-
pared to anaTyze these frames considering all variations in frame geometry
and material and section properties. The results of this analysis are
compared to the test results in FIGURES 5.9, 5.10 and 5.11. These figures
show the interaction diagram for the column section and a record of Toad
and moment at the failure section. Two values of indicated moment were
provided by Ferguson and Breen, one derivéd from measured deflections using
the known external load values, the other from curvature measurements using
exact M-P-¢ curves. '

As will be seen from the interaction diagrams; in the early
stages of loading, the computed column moments from this analysis were
genéra]]y higher than the measured moments, indicating a softer structure
than was found in the tests. The fact that the analysis neglected the
finite width of the members and considered centre-line member dimensions
may account for some of this discrepancy jn ovérall stiffness. At higher
Toads, the analysis failed to detect the progressive softening of the
structure as the ultimate Toad was approached. Two probable explanations
for this discrepancy could be advanced. First, it is evident that the
discrepancies at both low and high load levels are similar to the dis-
crepancies between the exact M-P-¢ and the rationalized M-P-¢.  The ration-
alized M-¢ relationship tends to be too soft initially, especially if the
section has not yet cracked in flexure, and tends to be too stiff in the
final stages before the yield moment is reached. Moreover, one of the
major problems encountered in comparing the analysis to tests is that of

considering time effects. The analysis is formulated using M-P-¢ curves
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which do not consider concrete creep effects. Each of these frames was
tested to failure in a period of a few hours. Even in that length of
time, however, concrete creep effects at high stress levels could sub-
stantially alter the observed deformation va]ues(42).

Despite these differences between true and jdealized behaviour,
the computer prediction of failure loads appear adequate. A comparison
of computed and observed failure loads is presented in TABLE 5.1. Parme(43),
uﬁing a more sophisticated analysis than that employed here reported ratios
of measured to computed fai]dre loads ranging from 0.81 to 1.02 with a

mean value of 0,92,

Pute Pult Test

Frame Analysis Test Analysis

: (kips) (kips)
L1 43.03 | 37.5 0.87
L2 30.47 25.0 0.82
L3 29.66 31.0 1.04
L5 41.53 425 1.02
L6 | 61.97 55.0 0.89
L7 46.28 40.0 0.87
Mean 0.92
TABLE 5.1

ULTIMATE LOADS FOR FERGUSON AND BREEN FRAMES
The results indicate that the method of analysis yields results

which compare with test results as well as could be expected in view of
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the idealizations of the analytical model. Tests on more complex rein-
forced concrete structures are required to establish the reliability of

the analysis when applied to multi-storey structures.

5.5 Approximate Braced Frame Analysis of Guhamajumdar, Nikhed et al

Guhamajumdar, Nikhed, MacGregor and Adams have formulated an
“approximate" elastic-plastic analysis for multi-storey shear wall-frame
structures. Compared to the "exact" analysis presented here, their analysis
is approximate in that it deals with an idealized lumped model rather than
the actual structure.

To compare the two analyses, the symmetrical, twenty-storey
two-bay braced reinforced concrete frame shown in FIGURE 5.12(a) was used.
The section properties of the exterior columns and the girdérs are varied
throughout the height of the structure to provide stiffness distributions
as shown in FIGURES 6.4 and 6.5 respectively. The shear wal} with a finite
width of 25.7 inches is prismatic throughout the twenty-storeys with an

12 1b inz. The lumped model used in the approximate

EIw value of 11.95 x 10
analysis is shown in FIGURE 5.12(b).

To provide as meaningful a comparison as possible, the structure
was subjected only to lateral loads, the working values of which appéar
in FIGURE 5.12(a). Since the exact analysis consfders column Mpc and EI
values as functions of P while the approximate analysis considers Mpc and
El as.constant values, it was desirable to minimize the column axial load
values in any comparison. Consequently external gravity loading was not

considered, and the Mpc and EI values for columns in the approximate model

are those corresponding to zero column axial load. At all stages of loading,
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however, the exact analysis considers the self-weight of the girders,
columns and shear wall although the axial shortening of columns and walls
are neglected in the exact analysis, in keeping with the approximate
analysis assumptions.

Both analyses were performed using incremental lateral loading.
A numerical comparison of the results at various load faétors A is pre-
sented in TABLE 5.2. The working load case corresponds to A equal to

one. Load-deformation plots appear in FIGURE 5.13. 1In the analyses, .a

| convergence accuracy ACCURD = 0.003 was used for the exact analysis, and

the convergence 1imit in the approximate analysis was set at 0.005.

While the structure remains elastic, the results compare very
well. The approximate analysis has been shown(zs) to compare well with
the Khan and Sbarounis analysis(]g) in the elastic range of behaviour.

In the exact analysis, the PA effect due to se1f-weight may account for
the initially more rapid detection of plastic hinges by the exact analysis.
The delay in detection of hihges by the approximate analysis may also be
the result of the lumping of girder plastic moment capacities, creating

the condition that girder hinges cannot form singly, but rather in pairs

in the complete structure,

The approximate analysis did, however, indicate earlier softening
of the structure than the exact analysis. A comparison of the plastic
hinge configurations at A = 4.00 appears in FIGURE 5,14, Although the
exact analysis structure contains more plastic hinges, the approximate
analysis indicates a softer structure at that stage of loading. .

On the other hand, the exact analysis does not indicate significant



Exact Approximate
Sway A Plastic Sway A Plastic
A at roof hinges at roof hinges*
(in) detected (in) detected

0.50 1.9944 0 2.0382 0
- 0.75 2.9943 0 3.0572 0
1.00 4.0029 0 4,0764 0
1.25 5.0227 0 5.0954 0
1.50 6.0553 0 6.1146 0
1.75 7.1012 0 7.1337 0
2.00 8.1589 0 8.1528 0
2.25 9.2255 0 9.1718 0
2.50 10.296 0 10,191 0
2.75 11.363 0 11.210 0
3.00 12.419 0 12.229 0
3.25 13.458 0 13.248 0
3.50 14.473 8 14.267 4
3.75 15.466 14 15.402 12
4.00 16.449 21 16.976 18
4,25 17.447 26 18.797 30
4.50 18.492 30 21.195 42
4.625 19.071 33

4.75 19.730 37 24,317 50
4.875 20.555 40 A

5.00 21.634 44 27.818 66
5.125 23.050 46

5.25 28.206 62 32.70 88
5.3125| 32.181 76

5.375 37.027 84

5.4375| 42.634 85

5.50 39.58 9z
5.75 45,79 92

*Number of hinges shown here is double the number detected in

the lumped members

TABLE 5.2

-RESULTS OF THE EXACT AND APPROXIMATE ANALYSES

118
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softening of the overall structure until A = 5, when the hinging of the
girders is much more extensive. A comparison of the hinge configurations
from the two analyses is presented in FIGURE 5.15. It will be noted that
the approximate analysis has detected more extensive hinging at this load
stage than has the exact analysis.

Neither analysis was carried to failure of the structure. The
exact analysis was carried to A = 5.4375 and the approximate analysis to
A'= 5.75. The hinge configurations at these load factors are shown in
FIGURE 5.16. The exact analysis first detected cases of excessive plastic
hinge rotation at A = 5.25, and the locations of hinges where over-rotation
was noted at A = 5.375 are shown in FIGURE 5.16(a). Reference to FIGURE
5.16 indicates that, at the stage of loading considered, plastic hinging
has progressed to the point Qhere the shear wall and columns are acting
essentially as free-standing cantilevers. At ; = 5.50, thé equilibrium
roof sway defiection, assuming that the shear wall carries the entire
lateral load as a cantilever, is qbout 130 inches. The load-deflection
relationship shown in FIGURE 5.13 shows a transition from frame action to
cantilever action as the frame stiffness deteriorates. The computed de-
flection is less than 130 inches because the structure has not yet been
entirely converted into a single cantilever system.

The load-deformation relationship shown in FIGURE 5.13 indicates
that the exacf analysis detects a much more sudden and complete degeneration
of the overall stiffness of the structure than does the approximate analysis.
Apart from differences due to the Tumping procedure used in the appré&imate

analysis and the presence of self-weight in the exact analysis, the only
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~difference between the two analyses is that due to axial compressive

loads in the leeward column of the exact frame as a result of the lateral
load. In accordance with the behavioural properties of the column sections
discussed in CHAPTER III, the presence of this axial force increases the
plastic moment capacity and the stiffness of the leeward columns somewhat.
At a load level of A = 5.00, the leeward column stiffnesses are increased
by 10 to 15 percent. In the windward column, where column axial loads

are tensile, the exact analysis assumes the same values of M c and EI as

are used ih the approximate analysis. It is uniikely that t:is slight
increase in the stiffness of the leeward column could account for the
difference in response in the inelastic range.

The more rapid reduction in stiffness predicted by the exact
analysis may be partially caused by the PA effect of the self-weight of
the structure. However, with the deflected configuration predicted by the
exact analysis at A = 5.25, the PA moment at the base of the structure is
only 14,000 inch-kips compared to the applied lateral load moment of
727,000 inch-kips, assuming cantilever behaviour. This slight PA effect
is unlikely to account for the difference in the stiffness characteristics
of -the inelastic structures observed in the ahalyses.

Thus, the only explanation for the differences in inelastic
response is the lumping procedure used in the approximate analysis. The
validity of this lumping procedure has not yet been demonstrated for in-

elastic structures.

.
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CHAPTER VI

DESCRIPTION OF THE INVESTIGATION OF
BEHAVIOUR OF REINFORCED CONCRETE STRUCTURES

6.1 Introduction

A twenty storey two bay reinforced concrete structure was chosen
aé the basis for fhe study of the behaviour of multi-storey reinforced
concrete structﬁres. The properties of this basic structure were adjusted
to permit assessment of the effects of several variables on the behaviour
of the structure. The variables considered in the study are:

1. axial shortening of columns and shear wall,
2. shear wall width,

3. column slenderness ratio,

4. shear wall stiffness.

In this chapter, the design and proportioning of the basic

structure are described and the methods used to vary the parameters con-

sidered in the investigation are discussed. The results of the study will

be presented in CHAPTER VII.

6.2 Notation for the Structures

The behaviour of two series of structures, H and J, are examined
in the study. To distinguish these structures, they will be referred to

by means of a Tetter denoting the series and a number denoting the ratio

"

e of the EI of the shear wall to the sum of the EI values of the columns

c
125
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in each storey of the structure. For example, H1 refers to a series H

structure with T 1. H1 is the basic structure for the study, and its
c ‘ .
properties are altered to produce other structures considered in the

study. The difference between series H and J structures is detailed in

K

SECTION 6.8, and the methods used to a1ter~K— are discussed in SECTION
c

6.9. Additional notation used to distinguish the structures considered
in the studies of axial shortening and shear wall width effects is pre-

sented in SECTIONS 6.6 and 6.7.

6.3 Design of the Basic Multi-Storey Frame

Several authors have studied the effects of different member

d(18) and unbraced(33)

stiffness proportions on the behaviour of brace
multi-storey structures. However, since these investigations were

limited to the elastic range of behaviour, strength was not considered in
the pfoportioning. Hence, the structures usea in the studies are of Tittle
value to this investigation of elastic-plastic behaviour where proper pro-
portions for both strength and stiffness are necessary.

At the outset, it was intended that this investigation should
compare the behaviour of braced and unbraced structures. A comparison of
the braced and unbraced steel structures presented in a recent pub11cation(])
indicates that there is a difference in the proportioning of braced and un-
braced frames, particularly as regards the distribution of girder stiffness
and strength throughout the height of the structure. A braced frame re-
quires almost constant girder sizes in all floors whereas the unbrécgd frame

requires stiffer girders in the lower floors than in the upper f]oofs.

Since one object of the investigation was to study the transition from un-
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braced to braced structures, the basic structure was designed as an un-
braced frame. To simulate the transition to the braced structure, the
stiffness of the shear wall was increased with no alterations being made
in the frame portion of the structure. The alternative procedure to
conduct a comparative study, of course, would have been to design the
basic structure as a braced frame and to simulate the unbraced structure
by decreasing the shear wall stiffness. However, studies of the behaviour
indicated that the unbraced structure was sensifive to departures from the
ideal member proportioning while the braced structure was relatively in-
sensitive. Subsequent analyses indicated that the use of unbraced frame
proportions in the braced structure did not lead to unusual or early dis-
tress in the structure.

A symmetrical twenty storey two bay reinforced concrete frame
was proportioned by ultimate strength design methods. The geometry, loading
configuration and material properties of this'basic structufe are shown in
FIGURE 6.1, The values of working loads presented in TABLE 6.1 represent
reasonable values of design loads assuming a twenty foot spacing of bents

K

in the type of structure considered. Member sizes were estimated, and ra
c
was assumed to be 1.0 in all storeys of the structure.

Other
Roof Floors
Wind 2.4 kips 4.8 kips
Dead* 1.6 k/ft 2.0 k/ft
Live 0.6 k/ft 2.0 k/ft
D{exterior wall) 12 kips/storey

*Does not include member self-weight, also
considered as dead load

"TABLE 6.1
WORKING LOAD VALUES FOR FRAME H1
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Following normal design practice, the axial loads used in the
design of the columns were derived by a simple gravity load analysis based
on a tributary area concept. Bending moment distribution,performed on
the equivalent frame model described in Section 905 of the ACI Building
Code, furnished maximum column and girder moment values. The portal method
was used to derive values of wind load moments. In accordance with the
ACI Buiiding Code requirements for ultimate strength design, the forces
derived from the elastic analysis were factored to 1.25 (D + L + W) and
1.5D + 1.8L, where D, L and W represent working values for dead, 1ive and
wind loads respectively. With these factored values of ultimate load ca-
pacities, the member sections were proportioned using ACI ultimate strength

design handbooks(44'45)

» assuming material understrength factors ¢ equal
to 1.0 in all members. Since the EI values for these sections differed
from the initial estimates, the process was repeated to obtéin a final
"office" design.

This design procedure was seiected because it is reasonably
similar to the normal building design procedure. The structure designed

in this manner was altered somewhat, as described in SECTIONS 6.3.1 and

6.3.2, to derive the final H1 structure considered in the study.

6.3.1 Section Properties

In the design of the structure, member section properties were
chosen to fit within the bounds prescribed by the ACI Building Code. How-

ever, it was found that the range of choice of properties in any member

permitted significant variations in EI, resulting in noticeable irregularities

in the member EI distributions in the structure. For consistency and to
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eliminate possible relative weak spots in the structure, all members were
designed with similar non-dimensionalized section properties. A1l column
and shear wall sections were designed in accordance with the requirements
shown in FIGURE 6.2, and all girder sections have properties similar to
those shown in FIGURE 6.3.

No attempt was made to consider fhe variation in plastic moment
capacity along the length of the girders, and the values of TPRATE and
TPRATM were set at 1.00. Moreover, details of girder reiﬁforcement place-
ment were nég]ected, and all girder sections were considered to be capable

of developing Mp] regardless of the sense of the bending moment.

6.3.2 Member Section Stiffness Distribution

Again for the sake of regu]érity in the structure, the EI distri-
butions resulting from the design described in SECTION 6.2 were smoothed
to fit the distributions shown in FIGURES 6.4 and 6.5. The girder stiff-
ness distribution was found to be essentially linear. The column stiff-
ness distribution, however, was ideé]ized as a two stage linear relation-
ship. \

Employing the section properties discussed in SECTION 6.2.1 to
fit these stiffness distributions, the resultant girder sizes vafied from
9.76 inches wide by 21.52 inches deep at the roof fo 13.80 by 29.60 inches
at the ground floor. The exterior columns varied in size from 8.37 inches
square in the top storey to 21.64 inches square in the bottom storey. The
“shear wall" at the centre of the unbraced structure H1 had an EI valie
twice that of the exterior column and varied in size from 9.54 inches square

in the top storey to 25.70 inches square at the base.
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6.3.3 Verification of the Design of Frame Hl

Since the structure deéigned by ultimate strength methods as
described in SECTION 6.3 was revised somewhat to fit the section properties
and predetermined stiffness distributions discussed in SECTIONS 6.3.1 and
6.3.2, it was necessary to check that the revised structure H1 continued
to satisfy the combined strength and stiffness requirements. Second order
elastic-plastic analyses were conducted using two different cases of pro-
pdrtiona1 loading.

With loading according to A(D + L + W), the aﬁa]ysis yielded a
Toad-deformation plot as shown in FIGURE 6.6. The order of plastic hinge
formation appears in FIGURE 6.7. The first plastic hinges formed in the
girders in the Tower floors of the structure at 1.10 < A < 1.20. The
structure failed by the formafion ofka joint mechanism on the leeward side
of the frame at 1.3375 < A < 1.34375. For this loading case, the ACI
Building Code would require a load factor A = 1;25.

The ratio of total sway def]ection at the roof to the total
height of the structure was 1/300 at A = 1.0. The first order analysis
conducted later indicated at ratio of\working load sway deflection to

height of 1/350. A recent ACI Committee report(46)

suggested that this
value should be Timited to 1/500. In designing this structure, the ACI
material understrength factors, é;'Were set at 1.0. If these factors had
been used, the deflections of the structure would have been reduced.

With loading according to AG(l.SD + 1.8L + 0.1W), the structure
failed at 1.019 < AG < 1.025 by instability of several storeys. Crughing

of the shear wall at the base was also noted at this stage of loading.
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The first plastic hinges formed at 0.8 < AG < 0.9 in the girders at the
top of the structure. Fourteen girder hinges had formed at AG = 1.025.
Thus, the analyses indicate that frame Hl is a "weak girder-
strong column" structure which satisfies the building code requirements
for adeduate strength and stiffness exéept that the lateral def]ectionsv

are on the large side.

6.4 Scope of the Investigation

The investigation reported in this thesis is‘a study of the
effects of several variables on the behaviour.of braced and unbraced multi-
storey structures. These variables include:

1. axial shortening of columns and shear wall,
shear wall width,

column slenderness ratio,

AW N

shear wall stiffness.

To study the effects of these variables, appropriate adjustments
‘were made to the basic frame H1. Early in the investigation, it became
obvious that it would be necessary to separate the effects of these vari-
ables for a meaningful comparison of results. The methods used to isolate
these variables and the approaches adopted for the study are discussed in

the remaining sections of this chapter.

6.5 Details of the Analyses

In all analyses the loading was proportionally increased until
failure occurred. Results will be reported in terms of the load factbr A

in the expression A(D + L + W) where D, L and W represent the working load
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values of dead, live and wind loads presented in TABLE 6.1. Since the
primary purpose of a shear wall is to resist lateral loads, gravity loading
in the absence of wind loads was not considered.

For all analyses, the initial value of X was set at 0.50 and
the initial size of the increment at 0.10. The convergence 1imits ACCURD
and ACCURP were set at 0.005 and LIMITD and LIMITP at 500 and 200 cycles
respectively. The effects of these limits on the solution have been dis-
cussed in SECTION 4.8.

Unless otherwise specified, all analyses considered the axial
shortening of the shear wall and columns and the effects of finite shear
wall width. |

Second order elastic-plastic analyses were performed using the
computer programme presented in APPENDIX D. 1In these ana]yses; the effects
of axial loads were considered by incorporating the PA effeét, the stability
functions C and S in the shear wall and co]umﬁs, and the M-P-¢ relationship
for shear wall and column sections.

The computer programme was revised to perform a first order elastic
analysis which, of course, neglected the development of plastic hinges. ‘In
this analysis, the effects of axial loads on the M-P-¢ relationships for
the wall and column sections was included, but PA effects were neglected

and C and S were set at 4.0 and 2.0 respectively.

6.6 Study of the Effects of Axial Shortening

Two structures, H1 and H50, were analyzed to study the effects
of relative column to shear wall axial shortening. Second order elastic-

plastic analyses were conducted on both structures considering the effects
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of axial shortening based on the_shear wall area in the basic H1 structure.
Both structures were also analyzed neglecting axial shortening completely.
The structures in which axial shortening is neglected are referred to as
H1-NA and H50-NA.

In addition, H1 was analyzed with an artificially doubled shear
wall area. This structure is referred to as H1-2A. The wall area was
doubled in computing self-weight and axial shortening, but the stiffness
and moment capacity of the wall remained unchanged. Essentially, this re-
sulted in a halving of the vertical deformations of all shear wall joints.
In a similar manner, H50-4A was considered with the shear wall area artifici-
ally quadrupled.

In all cases, the finite width of the shear wall was kept constant

at the value in the basic H1 structure.

6.7 Study of the Effects of Finite Shear Wall Width

To examine the significance of the finite shear wall width on
the behaviour, the properties of H1 and H50 were again adjusted. In ad-
dition to the normal analyses of H1 and H50 considering unit shear wall
width, analyses were performed on both H1-OW and H50-0W neglecting finite
shear wall width completely. Both structures were also considered assuming
artificially incremented shear wall widths. In these analyses, the finite
wall width alone was changed, and no other properties of the structure
were altered. Since the girder loads are uniformly distributed, the total
gravity load acting on the structure is a function of the finite shear wall
width. To isolate the effects of finite wall width and minimize the djf-

ference in PA effects in the structure resulting from differences in P, the
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uniformly distributed load values were adjusted to provide the same total
girder load regardless of the finite shear wall width considered. Using
this approach, H1-2W was analyzed with an artificially doubled shear wall

width and H50-4W with an artificially quadrupled shear wall width.

6.8 Study of the Effects of Slenderness _

- To assess the effects of slenderness on the behaviour of multi-
storey structures, the series J structures were studied. The only dif-
ferehce between the structures of the H and J series 15 the storey height.

As is shown in FIGURE 6.1, series H structures have a 12 foot storey height.
In series J structures, the storey height is increased to 18 feet. The
section properties of all members are identical in both series of structures.
The applied gravity loads are the same, but in keeping with the %—ratio

of storey heights, the working lateral load values for series J structures

are reduced to %-of those shown in TABLE 6.1 for series H structures.

.6.9 Study of the Effects of Shear Wall Stiffness

The study of the effects of\re1ative shear wall stiffness RZ
on the behaviour of series H and J structures involved increasing the
shear wall stiffness in the unbraced frames H1 and J1 to simulate braced
structures.

Studies of the effects of éxiaT shortening and finite wall width
indicated that changes in either could significantly influence the behaviour
of the structure. Hence, fo isolate the effects of variation of shear wall

stiffness, the wall stiffness was assumed to increase without changiﬁg

either the shear wall area or finite width. To augment the shear wall
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stiffness, the plastic moment capacity and EI of the shear wall section
were increased by the appropriaté value of K: , as shown in EIGURE 6.8.
Physically this could be accomplished simply by increasing the shear wall
section breadth b by a factor of Kﬂ . No changes were made in the basic
frame portion of Hl1 or J1, and thecanalysis was carried out assuming no
increase in shear wall area or finite width.

The only difference between Hl and H50 is that the p1astic moment
cabacity and EI value of any shear wall section in H50 are fifty times those
at a comparable section in Hl. Thus, the braced structure H50 consists of
a frame originally designed as an unbraced frame and a shear wall with the
same finite width and area as the "shear wall" in the unbraced structure
H1 but EI and MpC values fifty times as high.

The reasons for using the same frame throughout thé Study were
discussed in SECTION 6.3. While the assumptions regarding shear wall
properties may not be consistent with the variefy of wall section shapes
possible in a braced structure, no clearcut guidelines for estimating the
rate ﬁf increase of shear wall areé and finite width as stiffness increases
are available. Since it was desired io isolate the effects of the vari-
ables in comparing the behaviour of braced and unbraced structures, the
assumptions are justifiable,

For the investigation, series H and J sfructures with values of

K

- equal to 1, 2, 6, 12, 20 and 50 were studied. H50 is considered to be

K
c ,
essentially a braced structure, with other values of ;ﬂ representing inter-
(o

mediate wall stiffnesses. First order elastic and second order elastic-

plastic analyses were conducted on each of these structures.
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M - ¢ for shear wall in_H('—(Kf”—) or J({-w—)
C

A
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FIGURE 6.8

METHOD OF INCREASING SHEAR WALL
SECTION STIFFNESS IN SERIES H AND J
STRUCTURES



CHAPTER VII
PRESENTATION AND DISCUSSION OF RESULTS

7.1 Introduction

The results of the investigation of the two series of rein-
forced concrete structures described in CHAPTER VI are presented in this
chépter. The implications of these results in the design and analysis
of reinforced concrete shear wall-frame structures are discussed.

Because of the copious quantity of behavioural data derived
from the computer analyses, it is impossible t6 include all the results
in this thesis. For each structure analyzed, the computer programme pro-
vides information regarding the load-deformation re]ationshib, failure
load, mode of failure, plastic hinge locations, the nature df load-sharing
resulting from interaction of the shear wall and frame, the occurrence of

excessive rotations at plastic hinges, and the distribution of internal

forces in the structure. Only those results pertinent to the discussion

are presented here, and of necessity, much is presented in graphical form.

7.2 General Discussion of the Behaviour and Modes of Failure of the

Structures Studied

Since it is impossible to present the complete results of the
analyses, the behaviour predicted by the analyses will be described briefly
as an introduction to the discussion of the effects of variables présgnted
in succeeding sections. ‘

.The structures, even in the more slender J series, behaved con-
142
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sistently as weak girder, strong column structures. Before failure
occurred, plastic hinges formed in the leeward column of all structures
except the slender, lightly braced J1 and J2 structures. H1 was the
only structure to form plastic hinges in the "shear wall" before failure.
FIGURES 7.1 and 7.2 indicate the location of plastic hinges in the limiting
series H and q structures at varjou§”§tagesgpf 1oagingj petai]s of -
failure conditions in all the structures studied are summarized in TABLES
7.1 and 7.2 for the loading case A(D + L + W).

Since the ACI material understrength safety parameters, ¢, were

taken equal to 1.0 in proportioning the frame, actual structures should

-statistically have failure load factors in excess of those reported here.

As might be expected, excessive plastic hinge rotations were
detected in the structures which displayed significant deformation ca-
pacity at failure. Excessive rotations were first detected-at loads close
to the fai]urer1oading condition, generally at plastic hinges which formed
early in the loading history. The hinges which experienced excessive
rotation in H1 and J1 are shown in FIGURE 7.1. The first evidence of
excessive hinge rotation in H1 occurred at A = 1.30 and in J1 at A = 1.1375.

As the wall stiffness was increased, failure deformations were reduced and

~ the number of incidents of excessive hinge rotation decreased. At failure,

J20 showed two cases of excessive rotation and H6 only one. No excessive
hinge rotations were found in H50 or J50. |

As is shown in TABLE 7.1, the majority of these structures failed
by the formation of a joint mechanism. The location of this critica]hjoint
was consistently in the leeward column near the mid-height of the structure,

as shown in FIGURE 7.1(a). It is quite probable that this weak spot in the
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structure was the result of the abrupt change in the distribution of the
column stiffness shown in FIGURE 6.4.

The frequency of joint mechanism failures in these structures
suggests that this type of failure should be studied more fully. The
formation of a joint mechanism is a mathematical possibility in this a-
nalysis because of the elastic-plastic section response characteristics
assumed. Joint mechanisms resulted from reductions in the column MpC
value due to changes in axial load after the end of the girder had hinged.
While the assumption of elastic-plastic section response is realistic
for girders and Tightly loaded columns, it is not as good for heavily
Toaded columns in which "yielding" is a much less sudden occurrence. For
this reason, the actual behaviour of a joint, where a joint mechanism is
indicated, would be quite different from that considered in theAanalysis.

If a joint mechanism were to form in an actual strUcture, the
condition would probably be replaced by indications of rotational distress
at thg Joint, or the hinge would stjffen due to strain-hardening in the
girders. With the advent of 1imit design procedures for reinforced concrete,
a good deal of work has been done to d&e]op methods of increasing the
rotation capacity of a member while retaining the essential strength pro-

perties. If joints can be designed to have the required ductility, condi-
tions of serviceability could be neglected in the inelastic analysis of
strength and stiffness properties, and the formation of an isolated joint
mechanism in a structure should not be deemed to constitute failure of the
entire structure provided the rest of the structure has not formed a mecha-

nism. As was mentioned in SECTION 4.7, the formation of a joint mechanism
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need not lead to a breakdown of the solution, and appropriate adjustments
could be made in the computer prdgramme presented in APPENDIX D to accommodate
a joint mechanism condition. With these considerations in mind, it would

be advisable to eliminate the formation of a joint mechanism as a primary

mode of failure in future applications of this analysis. As with beam
mechanisms, the occurrence of a joint mechanism could be recorded in the
course of the analysis and appropriate remedial action taken in the design
of'the structure.

For similar reasons, excessive hinge rotations of the magnitudes
recorded by the computer programme need not impair the strength properties
of the structure if the structure is detailed correctly. In the load-
deflection curves presented in this chapter, the portion of the curve
following the initial detectibn of ekcessive hinge rotations is shown by
dashed lines to indicate the need for remedial detailing of the structure

to permit attainment of the ultimate load-carrying capacity of the structure.

7.3 The Effects of Axial Shortening

| The relative axial shortening of the columns and shear wall in
a structure can influence its behaviour in two principal manners. These
are indicated in exaggerated form in FIGURE 7.3. FIGURE 7.3(a) illustrates
tﬁe effects of axial shortening of the leeward column stack relative to
the windward column stack, resulting in significant sway deflections when
the geometrical compatibility condftions are imposed in the solution. The
relative column shortening, of course, results from the application of
lateral loads, the overturning effects of which produce higher axia]-forces

in the leeward column than in the windward column. The configuration in
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FIGURE 7.3(b) illustrates the axial shortening effects in a structure where
the area of the shear wall is significantly larger relative to its axial
load than are the columns. Under gravity loading, the columns shorten
significantly more than the shear wall leading to settlement moments in
beams at the top of the structure.

The effects of these two variations of axial shortening cannot
be separated completely in this study. However, the investigation dis-
cuésed in SECTION 6.6 was set up to permit some differentiation between the
effects. The basic structure was designed to minimize the effects of
axial shortening of the type shown in FIGURE 7.3(b). Consequently, com-
parispn of the case where axial shortening effects were neglected with the
case where axial shortening was considered will permit some assessment of
the effects of axial shortening of the type depicted in FIGURE 7.3(a).
Moreover, a comparison of the behaviour of the structure with normal shear
wall area with the case where the wall area was artificially increased will
provide some indication of the effects of the type of axial shortening
ghown in FIGURE 7.3(b).

The load-deflection results from the second order elastic-
plastic analyses discussed in SECTION 6.6 are presented in FIGURES 7.4 and
7.5. | |

In the case of the unbraced'frame H1, when axial shortening of
the wall and éo]umns was neglected, the lateral deflection at the top of
the frame at working load values was underestimated by 18 percent and the
failure load was overestimated by about 2 percent. On the other hand;.when
the wall area was artificially doubled in computing axial shortening and

self-weight, the stiffness of the structure remained essentially unchanged
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at low load values. However, the reduction in axial shortening of the wall
resulted in greater relative column to wall deflections, particularly in
the upper. floors of the structure, which caused earlier plastic hinging in
the girders in the windward bay of the frame. At working loads the vertical
deformations at the top of the windward column stack,the shear wall, and
the Teeward column stack were 1.191, 1.644 and 1.616 inches respectively
for the normal H1 structure, compared with 1.039, 0.857 and 1.449 inches

in H1-2A. In H1-2A, four girder plastic hinges formed in the interval

- 0.9 <X <1.00 and an additional fifteen hinges formed in the interval

1.00 < A < 1.10. The first girder hinges in H1 formed in the interval

1.10 < XA < 1.20. As is shown in FIGURE 7.4, this earlier plastic hinging
resulted in a loss of stiffness of the structure, though the loss in
ultimate carrying capacity was less fhan 2 percent. At failure, the plastic
hinge configurations in all three variations of H1 were quite similar, and
the failure deformations were only slightly different, although all three
failed in different ways as shown in TABLES 7.1 and 7.2.

(15)

Korn » in his study of unbraced frames, reported similar axial
shortening effects. 1In unbraced framés, he found that the axial shortening
had a negligible effect on the collapse load capacities, but could sub-
stant1a11y alter the sway deflections at working 1oads At working loads,
axial deformations can effectively alter the sway deflection response of

the structure since, as is shown in FIGURE 7.3(a), larger lateral deflections
are required to meet conditions of geometrical compatibility. With the
formation of plastic hinges in the girders, however, the effects of géometrical

compatibility conditions are reduced and axial shortening deformations become

much less significant. Reference to TABLES 3.4 and 3.5 indicates that the
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sway coefficients C3 and C4 in the slope-deflections for a girder rapidly
diminish as progressive hinging of a girder occurs. This explains why the
collapse loads and deformations are much the same for all three variations
of Hl, since the hinge patterns at failure are very similar. It should,
howeVer; be noted that the unbraced structures considered by Korn and those
considered in this study were all "weak girder, strong column" systems in
which collapse occurred after the formation of a large number of girder
plastic hinges. It is conceivable that, in structures where fewer girder
hinges formed at failure, axial shortening effects cou]d influence the
collapse loads and deformations of the structure.

The effects of axial shoftening in the braced structure H50, shown
in FIGURE 7.5 were quite similar to those in H1 in the early loading stages.
The failure loads and deformations of the braced structure were influenced
by axial deformations, however. In this case, neglect of axial shortening
resulted in the roof sway deflection at working load being uhderestimated

by 22 percent, and the failure load being underestimated by 3 percent. When

"the shear wall area was artificially quadrupled, the overall stiffness of

the structure remained basically unchénged at Tow load levels, as was the
case in the unbraced frame H1. However, the loss of stiffness brought about
by earlier girder hinging in the structure with increased wall area was
somewhat more dramatic in H50 than in HI1. DespiteAthis earlier loss of
stiffness, H50-4A exhibited increased deformation capacity at failure, and
was able to support about 8 percent more load at failure than H50.

A11 three variations of the H50 structure failed by the formation
of-a joint mechanism at the leeward side of the structure. A comparison of

the hinge disposition at various stages of loading of the basic structure
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H50 and H50-4A is shown in FIGURE 7.6. The hinge pattern at failure when
axial shortening was neglected Was similar to that shown in FIGURE 7.6(a). |
Comparison of the hinge patterns demonstrates the earlier p]dstic hinge
formation in the windward girders of H50-4A, the first hinges forming before
A =0.90. At the same time, however, it will be noted that plastic hinging
progressed further in this structure before the joint mechanism was pro-
duced. Reference to the configuration shown in FIGURE 7.3(b) indicates
that the augmented shear wall area of H50-4A would tend to reduce the bend-
ing moments at the right end of the leeward girder and reduce the leeward
column stack axial loads, thus retarding the formation of the joint mecha-
nism.

It is significant that seven cases of excessive girder hinge
rotation were detected at A = 1.20 in H50-4A, whereas no excessive ro-
tations were detected in the other two structures. The locations of hinges
at whiéh excessive rotation was detected Just prior to failure are shown
in FIGURE 7.6(b). Thus, the increase in Toad-carrying capacity was obtained
at the expense of a possible serious loss of serviceability.

The results indicate that any realistic analysis of a braced or
unbraced multi-storey structure should consider the effects of axial
‘shorteniﬁg because of its effect on the sway deflections at working loads.
The alterations in the initial lateral stiffness of the structures re-
sulting from axial shortening are compared with the effects of alteration
in shear wall stiffness in SECTION 7.7. The results also suggest that
the relative axial shortening of walls and columns under gravity loads-
should be considered in the design of multi-storey structures.to eliminate

possible premature plastic hinging of the girders. In the cases investi-
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gated here, significant differences in the stress level in the shear wall
and columns induced sufficiently high girder moments due to relative axial
shortening to produce girder plastic hinges at load levels below the work-

ing load values.

7.4 The Effects of Finite Shear Wall Width

_ Invthe analysis of frames comprfsed of girders and columns, the
finite width of the members is generally neglected. In braced structures
contéining shear walls, the finite width of the wall elements is generally
considered; although it complicates the analysis. The effects of the shear
wall width were studied by analyzing three variations_of H1 and H50 as
described in SECTION 6.7. It should be noted that these structures, par-
ticularly the braced H50 structures, were highly idealized. In each case,
the "normal" width wall had the same width as the interior column in the
unbraced frame, varying from 9.8 inches wide ét the roof to 25.7 inches
wide in the bottom storey. |

The Toad-deflection relationships for the six structures studied
appear in FIGURES 7.7 and 7.8.

In the unbraced frame H1, neglect of the finite width of the
"shear wall" resulted in an 8 percent overestimation of the roof sway de-
flection at working loads and an underestimation of the failure load by
5 percent. Doubling the finite wall width accomplished similar increases
in stiffness and strength. As the width of the wall was increased, the
formation of plastic hinges was retarded. At failure, the hinge cdni
figurations in all three structures were quite similar, although each

structure'failed in a different manner as indicated in TABLE 7.2.
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The effects of shear wall finite width are much the same in the
braced structure H50. Again the hinge configurations at failure were
almost identical although H50 failed by a drop of equilibrium sway de-
flections in the Tower storeys while in the other two cases a joint
mechanism developed.

These results indicate that the consideration of finite wall
width both initially stiffens and ultimately strengthens both unbraced
and braced structures of the type studied here. The significance of the
~increase in stiffness resulting from consideration of the width of the
shear wall will be compared to the increases in stiffness resulting from
changes in the flexural stiffness of the shear wall in SECTION 7.7.

The consideration of finite width effectively increases the
stiffness of the girders which play a major part in the resistance to sway
deflections. Moreover, the results of the ana1yses 1ndicatéd that finite
width effects slightly increased the percentage of lateral load carried
by the shear wall and reduced the bending moments in the girders. This
redistribution of internal forces retarded the formation of plastic hinges.

Inspection of FIGURES 7.7 and 7.8 indicates that shear wall
finite width effects increased the ultimate strength of the structure and
decreased the failure deformations in spite of the basica]fy unaltered
hinge configurations at failure. Mathematically this can be explained by
the fact that, as plastic hinging progresses, the finite width terms in
the slope-deflection equations retain more significance in the analysis

than do the axial shortening terms mentioned in SECTION 7.3.
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7.5 The Effects of Slenderness

Two different storey hefghts were considered to study the effect
of slenderness in reinforced concrete structures. The properties of the
series H and J structures, which were identical in all respects except the
storey heights and the working values of lateral loads, were varied in
the investigation as described in SECTION 6.8.

Comparisons of the second order elastic-plastic load-deflection
prdperties of unbraced and braced structures of the H and J series appear
in FIGURE 7.9. FIGURES 7.1 and 7.2 detail the progress of plastic hing-
ing in the unbraced and braced structures respectively. Details of failure
conditions in all series H and J structures aré summarized in TABLE 7.1.

| The more slender series J structures were less stiff initially
and exhibited considerably less deformation capacity before failure than
the series H structures. Moreover, the series J structures‘failed at
lower loads than the series H structures despite the reduction in lateral
loads. Perhaps the most notable difference between the behaviour of the
gtructures was the mode of fai]ure; A11 series H structures failed by
the formation of a joint mechanism. Tﬁe series J structures with high
shear wall stiffness also failed in this manner with essentially the same
number of plastic hinges as the comparable series H structures. Thoﬁgh
plastic hinging in all cases had progressed significantly, these joint
mechanism faiiures are essentially localized in nature. By comparison, the
lightly braced slender structures J1, J2 and J6 failed by overall frame
instability extending over seven or eight storeys. At the time instability
was detected, the number of hinges present was significantly less than in

the case of the corresponding H structure. This reversion from localized
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to overall instability is reflected in the sudden drop of failure load
factor in the series J structures as they approach the unbraced frame
condition,

While this study is much too brief to adequately define the
effects of slenderness, a few general comments can be made.

The columns in the frames studiéd had %-va]ues ranging from 17
in the top storey to 6.7 in the bottom storey of the series H structures.
In the series J structures, %—va]ues ranged from 26 to 10; A study(47)
of the praética] values of %—indicated that 98 percent of all columns
in braced structures had %-1ess than 12.5 and 50 percent less than 5.75.
In unbraced structures, 98 percent of all columns had %-1ess than 18 and
50 percent less than 5.0. This indicates that the series H frames are
quite realistic, whereas the series J frames are a good dea] more slender
than a normal frame. |

These slenderness ratios correspond to column %h-values ranging
from 29 to 21 in the H frames and from 41 to 30 in the J frames, if the
frames were considered to be braced. If the frames were assumed to be
unbraced, %D-va]ues range from 50 to 46 in the H structures and 73 to 60
in the J structures.

Proposed revisions to the ACI Building Code(S]) suggest that
slenderness effects can be ignored in sway frames if %b-< 22, and in
braced frames if %h-is less than about 43 for the type of structure
studied here. A1l the braced frames studied satisfied the ]1miting.§?

value, and no serious slenderness effects were noted. However, according

to the proposed rule, slenderness effects should have been noticed in the
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lightly braced series H structures, not only in the lightly braced series
J structures. The fact that the 1ightly braced H structures were not
subject to noticeable slenderness effects suggests that the proposed
Timiting %h-va1ue for unbraced structures is excessively conservative

for the type of structure considered. However, a far more extensive study

is needed to clarify this point.

7.6 The Effects of Variation of Shear Wall Stiffness

In what follows, the effects of variation of shear wall stiff-
ness will be dealt with in terms of the response of the overall structure
and the response of individual members in the gtructure. The effects of
the shear wall stiffness on the modes of failure of the structure were
discussed in connection with the effects of the slenderness of the frame
in.the previous section. SECTION 7.6.1 is devoted to a discussion of the
effects of the variation of wall stiffness on the load-deflection response

of the structure and the interaction between the shear Wa11 and the frame.

'SECTION 7.6.2 deals with the significance of secondary PA effects in

isolated members in the structure.

7.6.1 The Influence of Shear Wall Stiffness on the Overall Response of

the Structure

Second order elastic-plastic analyses were carried out on series
K
H and J structures with Kﬂ- values of 1, 2, 6, 12, 20 and 50. The load-
c
deflection diagrams resulting from these analyses appear in FIGURES 7.10

and 7.11. From these plots, it is apparent that stiffening of the shear

wall is not an efficient méthod of inckeasing the stiffness of the overall
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structure. Although the wall and columns of H50 possess a total lateral
stiffness of 25.5 times those in the unbraced frame H1, the overall stiff-
ness of the structure increases only by a factor of 1.5. The same effect
was observed in series J structures. ‘

This inefficient utilization of increased lateral stiffness
capacity can be explained by the basic difference in behaviour of a portal
frame and a cantilever wall. FIGURE 7.12 shows bending moment diagrams
for the shear walls in HI and‘H50 at A = 1.00, prior to the formation of
any plastic hinges in the structures. Inspection of these indicates that
the stiffening function of the wall is diminished as the structure reverts
to cantilever behaviour at the base of the wall, as 1hdicated by a gradual
shift of the initial point of contraflexure up the wall as wall stiffness
increases. Thus, it appears that stiffening of the structure might better
be accomp11shed by stiffening the network ]1nk1ng the frame to the wall
then by increasing the wall stiffness.

In considering the effects of wall stiffness on the proportion
of total lateral load carried by the shear wall in these structures, it
was also evident that the loads carried by the shear wall did not increase
in direct proportion to the increase in relative stiffness of the wall.
FIGURE 7.13 shows the distribution of total lateral load carried by the
shear wall in all storeys of H1 and H50 af working loads. In the unbraced
structure H1, the "shear wall" consistently carries about one-half of the
total lateral load, as might be expected from a portal method analySis.
Increasing the shear wall stiffness does little to alter the interact}on
in the upper storeys of the structure, but does result in greater total

shear carrying properties of the base of the shear wall.
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The implication of this is that, except for structures with
extremely stiff walls, the frame members may be underdesigned if the
interaction of the shear wall and frame are neglected and the wall is
assumed to carry the entire lateral load.

(18)

Khan and Sbarounis have suggested that the enforcement of
the compatibility condition on the free deflected shapes of a shear wall
and a frame could result in a significant decrease in the proportion of

the applied shear load carried by the wall at the top of the structure.

~ In their study of the elastic behaviour of shear wall-frame structures,

they found cases where the shear wall was actually pulling on the frame
rather than supporting it in the top storeys of the structure. Guhamajumdar,
Nikhed et a1(25),investigating the e]astic-p]astic response of a twenty
four storey structure, found fhat the shear force developed in the frame

in the top storey of the structure exceeded the applied 1atéra1 force,

the effect worsening as inelastic action progressed.

In this study, no such effects were noted. In all cases the
shear wall supported some percentage of the lateral load and continued to
carry roughly the same proportion at all load stages up to failure. How-
ever, this behaviour should not be considered to be representative of all
shear wall-frame structures. There are significant differences between
the model and loading procedure used by Guhamajumdar, Nikhed et al and those
used in this study. The approximate analysis model consisted of a steel
frame which was proportioned as a braced frame. As was mentioned in
SECTION 6.3, the strength and stiffness proportions of a braced framéhdiffer
considerably from those of the unbraced frame considered here. Khan and

Sbarounis have indicated the significance of model proportions on the out-
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come of an analysis. Moreover, in the loading procedure for the approxi-
mate analysis study, full column éxia] loads were applied initially, and
only the lateral loads were incremented until failure occurred. In the
study‘comparing the Guhamajumdar and Nikhed analysis with that used here,
detailed in SECTION 5.5, the Toad-sharing characteristics compared very |
well. In that case, with a stiff prismatié shear wall, there was no
evidence of negative shear wall loads in either analysis, although as
loading progressed there was a tendency for the proportion of lateral
load carried by the shear wall in the upper storeys to diminish.

FIGURES 7.10 and 7.11 indicate that increasing shear wall stiff-
ness'accomplishes some increase in loading capacity, and at the same time
causes a decrease in the deformation capacity at failure. The results
also show that stiffening of the shear wall retards the formqtion of
plastic hinges in these structures. In considefing the failure conditions
of these structures, it should be rememberéd that all the structures ex-
cept J1, J2 and J6 failed by the formation of a joint mechanism. The
validity of the joint mechanism as a mode of failure was discussed in
SECTION 7.2.

The study conducted using the approximate analysis of .Guhamajumdar,
Nikhed et al indicated that increased shear wall stiffness substantially
increased the loading and deformation capacity at failure. The differences
between the loading history'and model proportions of the approximate analysis
structure and those considered here, discussed earlier in this sectibn3 may
influence the load-deflection characteristics. More important, howevér,

was the fact that when joint‘mechanisms were detected in this analysis,
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they constituted failure, while the joint mechanism condition was bypassed
in the approximate analysis. Undoubtedly this fact, more than any other,
led to the differences in the ultimate load-deflection behaviour predicted

by the two analyses.

7.6.2 PA Effects in Members

In conjunction with the second order e]astic-p]astié analyses
discussed in SECTION 7.6.1, first order elastic analyses were performed
on all basic H and J structures. The difference between the two analyses,
apart from the neglect of plastic hinging in the elastic analysis, is
the consideration of PA effects in the wall and columns resulting from
the changes in the value of the stability functions C and S due to the
axial load P, and PA effects in the overall structure by formulating
equilibrium conditions on the deformed structure. The resulting bending
moment values were compared to observe the significance of the secondary
PA moments in these various structures. This effect is expressed in terms
of a moment magnifier, F, equé] to‘the value of the maximum column moment
from the second order analysis divided by the corresponding moment from
the first order analysis.

The values of the moment magnifier, F, at working loads (A = 1.00)
in the leeward column of the twelfth storey of-the series H and J structures

K

are plotted as a function of K! in FIGURE 7.14. It should be noted that
c

at A = 1.00, no hinges had formed in any of the basic structures.
The two horizontal dashed 1ines appearing on these plots represent the
values of F derived using the traditional moment magnifier re]ationship(48)

given by EQUATION (7-1). The critical load, Pcrsis based on a nomographic
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evaluation of effective 1ength(48’49).

F=— (7-1)

The F values derived from the analysis never approach the va]ﬁes
computed using EQUATION (7-1) assuming the frame is free to sway. Part
of this dfscrepancy is caused by the fact that the values of the effective
column lengths used were derived(so) assuming a typical interior column
in an infinitely large rectangular structure. In addition, the effective
lengths were derived assuming only axial loads in the column, while the
frames considered here were subjected to the additioné] effects of both
wind and uniformly distributed gravity loads.

K
On the other hand, for values of Kﬂ' greater than about 6, the

moment magnifier values computed in this stugy do approach the F values
computed by EQUATION (7-1) assuming a frame braced against sidesway. As
is shown in FIGURE 7.15, similar effects were noted for the more heavily
loaded leeward column in other storeys of the H and J structures.

As the loads were increased beyond the working load values,
hinges developed in the structures at differing rates, depending on the
shear wall stiffness. As a result of the different hinge patterns in the
structures at any particular load ]evé], frregu]arities in magnification
values made a comparison of the type discussed above quite meaningless.

| The results shown in FIGURE 7.14 and TABLE 7.1 suggest that a
relatively Tow shear wall stiffness value is required to change the b;—

haviour from that of an unbraced frame to that of a braced frame with re-

spect to instability.
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A comparison of FIGURES 7.14(a) and 7.14(b) indicates that the

K
break in linearity of the plot occurs at a lower value of Kﬂ:in the H
c
structures than in the more slender J structures. This suggests that the

critical value of I which delineates the transition from unbraced to

c
braced behaviour is a function of the slenderness of the structure.
K
Before a truly dependable critical value of Kw-cou1d be defined, however,
c

a number of other types of structures should be investigated, including
unsymmetrical structures, structures with abrupt changes in shear wall
stiffness, very low structures, and structures with different loadings.
The values of the moment magnifiers presented in FIGURE 7.14
suggest that a safe approximate design procedure for multi-storey frames
of the type considered here would be to:
1. Ana]yzé forces and moments using a conventional first order
elastic analysis. |
2. Amp]ﬁfy the column moments, and where necessary the girder
moments, using a moment magnifier value given by EQUATION
(7-1). The effective 1e2gth factor for braced columns could be

used in computing P.pif Kﬂ-is greater than 6, and that for

unbraced columns if Kﬂ' is less than 6.
c

3. Design all sections to have a plastic moment capacity equal
to or greater than the moments computed in step 2.
This procedure is valid only if the wall remains elastic throughout the

loading history.



178

7.7 Significance of the Consideration of Axial Shortening and the

Finite Width of the Shear Wall in the Analysis

FIGURES 7.16 and 7.17 were prepared to illustrate the significance
of changes in the overall stiffness of braced and unbraced structures re-
sulting from the neglect of axial shortening and the width of the shear -
wall in the analysis. These plots permit assessment of the effects of
neg]ectihg these two factors in terms of changes in the observed "effective"
shear wall flexural stiffness.

| Reference to FIGURE 7.16(a) indicates that neglect of axial
shortening of the shear wé]] and columns of the unbraced frame, H1, pro-
duces results similar to an increase in the shear wall stiffness by a
factor of about five. FIGURE 7.16(b) also indicates a significant increase
in the overall stiffness of HSO. In‘this case, however, the numerical
value of the increase in "effective" shear wall stiffness is impossible to
gauge. |

In the unbraced structure, H50, considered in FIGURE 7.17(b),
the decrease in stiffness resulting from neglect of the finite width of
the shear wall is approximately equi?é]ent to a halving of the shear wall
stiffness. FIGURE 7.17(a) indicates the significant decrease in "effective"
shear wall stiffness resulting from the neglect of the finite width of the
wall in the unbraced structure,

These results clearly indicate the necessity of considering
axial shortening and finite width effects in any analysis of multi-storey

.,

reinforced concrete structures.
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7.8 Limitations of the Investigation

In considering the results of this investigation, it should
always be borne in mind that the basis for the results is one type of
shear wall-frame structure subjected to a particular loading history.

The frame portion of all structures was proportioned as an unbraced frame,
and in all cases except the basic H1 structure the shear wall element
possessed sufficient strength to remain elastic throughout the loading
history. In view of the apparent significance of member proportions,
additional studies with other structures are required.

Moreover, the studies of the effects of the variables were
not particularly extensive, and were intended primarily to provide spot
checks on the behaviour of these structures.

In spite of these limitations, the results of this investigation
should provide meaningful trends regarding there]astic-p1a§tic behavioural

characteristics of multi-storey reinforced concrete structures.



CHAPTER VIII

SUMMARY , CONCLUSIONS AND RECOMMENDATIONS

8.1 Summary

This thesis presents a method of analysis which traces the
second order elastic-plastic response of large planar reinforced concrete
sfructures as loading progresses to failure. In the analysis, conditions
of equilibrium are formulated on the deformed members and the deformed
structure to consider the secondary axial load effects in the columns
and shear walls. The analysis considers axial shortening of the columns
and shear walls and includes the effects of the finite width of the shear
wall elements. Provided the'framewdrk is regular and rectahgu]ar, appli-
cation of the analysis involves no geometrical simplification of the
frame. |

To formulate the solution, elastic-perfectly plastic moment-
curvature relationships were used to represent the response of the member
cross-sections. Rationalized methodé were developed to predict elastic-
plgstic column section moment-thrust-curvature and girder section moment-
curvature relationships. This assumption of elastic-plastic behaviour
represents perhaps the most significant limitation of the analysis. In
addition, time effects and shear deformations in the members and joints
are neglected.

In the computer programme developed for the analysis, the solu-

tion is derived by the deformation method, using slope-deflection equations

182
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modified to consider the presence of plastic hinges in the members. The
equations of equilibrium are soTved by an iterative procedure.

Using the analysis, good correlation was obtained with three
other analyses and with the results of tests of sway frames reported by
Ferguson and Breen.

To illustrate the application of the analysis and gain some
insight into the behaviour of large reinforced concrete structures, the
aha]ysis was used to investigate the behaviour of a symmetrical, twenty
storey, two bay, reinforced concrete structure designed by ultimate
strength methods. The properties of the basic structure were adjusted
to iso]afe the effects of several variables oh the behaviour of the
struéture. Spot checks were made to assess the significance of the
effects of axial shortening, the finite width of the shear wall in the
structure, slenderness, and the effects of varying shear wa}l stiffness
on the behaviour of the overall structure and individual members in the

structure.

8.2 Conclusions

The analysis presented in this thesis represents the most com-
prehensive method yet developed for large planar reinforced concrete
structures. The comparisonsobtained with the results of the frame tests
by Ferguson and Breen indicate that the method will accurately predict
the behaviour of small reinforced concrete structures. The applicability
and effecfiveness of the analysis Were demonstrated in the 1nvestiga§ion
of the behaviour of the large reinforced concrete structure.

' In view of the limitations bf the model studied and the extent
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of the investigation, the resg]ts of the study of behaviour of braced
and unbraced structures must be'regarded as trends, and should only be
interpreted in a qualitative manner. |

The study indicates that a realistic structural analysis of
a shear wall-frame structure must consider the effects of axial shorten-
ing and the finite width of the shear wall elements. In both braced
and unbraced structures, the neglect of axial shortening led fo a signij-
ficant underestimation of the sway deflections at working loads. In
- the unbraced structure, axial shortening did not significantly alter the
hinge pattern at failure, and the fai]uré Toad was not appreciably af-
fected. On the other hand, in the braced structure, the failure load
increased somewhat with the consideration of axial shortening.

The study indicates that significant differences fn'the stress
levels in the columns and shear wall can lead to premature hinging of
the girders. In this structure, the resu]tant-differential axial short-
ening produced girder hinges before the working load level was reached.
This‘suggests that axial shoftenihg should be considered, paréicu]ar]y
_ in the design of braced structures where the shear wall area may be
large relative to the axial loads it carries.

The study indicates that neglect of the finite width of the
stiff shear wall elements in an ana]yéis can lead to an underestimation
of the stiffness and failure loads of the structure. '

The investigatﬁon of slenderness effects suggests that instability
bVef several storeys can arise if the structure is sufficiently slender.
HoWever, in this particular structure, this type of overall instability

was found to be a problem only in 1lightly braced structures in which the
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slenderness ratios exceeded the normal practical range of values.

The study of the effect of variations in the shear wall stiff-
ness suggests that a relatively low value of shear wall stiffness is re-
quired to effectively brace the structure. In this type of structure,
if the ratio of shear wall stiffness to total column stiffness, Kﬂ-, ex-
ceeded a value of about six, the structure could be considered tocbe
essentially a braced structure. This effect was noted in the study of
the amplification of frame column moments resulting from the secondary
PA effects.

In this structure, it was found that increasing the shear wall
stiffness was not an efficient method of increasing the overall stiff-
ness of the system. This inefficient utilization of shear wall stiff-
ness appears to result from feversidn from portal behaviour to cantilever
behaviour at the base of the shear wall. As the shear wall stiffness is
increased, the extent of the cantilever portioﬁ of the shear wall increases,
and the shear wall element loses much of its effectiveness in stiffening
the structure against lateral loads.

Moreover, increasing of thé shear wall stiffness did not signi-
ficantly alter the failure load. In almost all cases, failure resulted
from the formation of a joint mechanism.

Even with a relatively stiff shear wall element, the frame
portion of the structure carried some proportion of the lateral load,
continuing to support this load as inelastic action progressed. This
suggests that any economical and safe design procedure for shear wali-
frame structures should consider the load-sharing nature of the inter-

action of the frame and the shear wall.
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8.3 Recommendations for Future Research

The frequency of occurrence of a joint mechanism in this study
suggests that this type of failure should be studied more fully and that
the analysis should be modified to eliminate the consideration of an
isolated joint mechanism as a mode of faijlure. A method of approach for
this modification was outlined in SECTION 7.2, and the assumptions in-
volved in the revision were discussed.

| The effects of shear défofhations in the shear wall member,
neglected in this analysis, may be significant. Tests currently being
conducted by the Portland Cement Association may clarify this issue.

‘The analysis could be extended to permit the derivation of
post-instability behaviour. This would involve major revisions as mentioned
in SECTION 4.7.

The study of the behaviour of reinforced concreté structures
presented in this thesis was limited to one type of structure subjected
to one fype of loading history. The structures were consistently weak
girder, strong column systems with a‘tapered shear wall which remained
elastic throughout the loading history. Moreover, the procedures used
to isolate the variables led to rather unrealistic structures, parti-
cularly in the case of the structures with stiff shear walls, since the
frame portion of the structure was not changed from that of the unbraced
structure. Despite these Timitations, the study serves to indicate problems
which require additional investigation. Much more extensive studies with
other types of structures are required to substantiate the findings 6f

this study.
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The most apparent requirement, however, is for large scale
laboratory tests of braced and unbraced reinforced concrete structures
v to assess the applicability and accuracy of the method of analysis in

large reinforced concrete structures.




LIST OF REFERENCES

188



189

LIST OF REFERENCES

“Plastic Design of Multi-Story Frames", Fritz Engineering Laboratory

Report No. 273.20, Lehigh University, 1965.

ACI Committee 318 - "Building Code Requirements for Reinforced Concrete

(ACI 318-63)", American Concrete Institute, 1963.

Goldberg, J.E. - "On the Lateral Bracing of Multi-Story Building

Frames with Shear Bracing”, Final Report, Sixth Congress,

International Association for Bridge and Structural Engineering,
1961, pp 231-240.

Ostapenko, A. - "Plastic Design of Multi-Story Frames", Lecture 13 -

"Behaviour of Unbraced Frames", Fritz Engineering Laboratory

Report No. 273.20, Lehigh University, 1965.

Bleich, F. - "Buckling Strength of Metal Structures", McGraw-Hill
Book Company Inc., New York, 1952.
Lu, L.W. ->"P1astic Design of Multi-Story Frames", Lecture 15 -

"Frame Buckling", Fritz Engineering Laboratory Report No. 273.20,
Lehigh University, 1965.

Merchant, W. - "The Failure Load of Rigidly Jointed Frameworks as

Influenced by Stability", The Structural Engineer, Vol. 32,

1954, pp 185-190.

Horne, M.R. - "Elastic-Plastic Failure Loads of Plane Frames", Pro-

ceedings of Royal Society of Architects, Vol. 274, 1963,
pp 343-364. |

>,

Majid, K.I. - "An Evaluation of the Elastic Critical Load and the

Rankine Load of Frames", Proceedings ICE, Vol. 36, 1967,

~ pp 579-593.



10.

11.

12.

13.

14.

15,

16.

17.

18.

19.

190

Wood, R.H. - "The Stability of Tall Buildings", Proceedings ICE,

Vol. II, 1958, pp 69-102.

Jennings, A. and Majid, K. - "An Elastic-Plastic Analysis by

Computer for Framed Structures Loaded up to Collapse", The

Structural Engineer, Vol. 43, No. 12, 1965, pp 407-412.

Livesley, R.K. and Chandler, D.B. - "Stability Functions for

Structural Frameworks", Manchester University Press, 1962.

Davies, J.M. - "The Stability of Plane Frameworks under Static and

Repeated Loading", Ph.D. Thesis, Victoria University of Manchester,

1965.

Parikh, B.P. - "Elastic-Plastic Analysis and Design of Unbraced

Multi-Story Steel Frames", Fritz Engineering Laboratory Report
No. 273.44, Lehigh University, 1966.

Korn, A. - "The Elastic-Plastic Behaviour of Multi-Story, Unbraced,

Planar Frames", Research Report No. 2, School of Engineering

and Applied Science, Washington University, Saint Louis, 1967.

Gould, P.L. - "Interaction of Shear Wall-Frame Systems in Multistory

Buildings", Proceedings ACI, Vol. 62, 1965, pp 45-69.

Bandel, H. - "Frames Combined with Shear Trusses under Lateral

Loads", Journal of the Structural Division, ASCE, Vol. 88,
No. ST6, 1962, pp 227-243.

Khan, F.R. and Sbarounis, J.A. - "Interaction of Shear Walls and

Frames", Journal of the Structural Division, ASCE, Vol. 90,
No. ST3, 1964, pp 285-335.

Parme, A.L. - "Design of Combined Frames and Shear Walls", "Tall

Buildings", Pergamon Press, London, 1967, pp 291-317.



" .

20.

21.

22.

23.

24,

25.

26.

27.

191

Cardan, B. - "Concrete Shear Walls Combined with Rigid Frames in

Multistory Buildings Subject to Lateral Loads", Proceedings

ACI, Vol. 58, 1961, pp 299-316.

Rosman, R. - "Laterally Loaded Systems Consisting of Walls and

- Frames", "Tall Buildings", Pergamon Press, London, 1967,

pp. 273-290.

Frischmann, W.W., Prabhu, S.S., and Toppler, J.F. - "Multi-Storey

Frames and Interconnected Shear-Walls Subjected to Lateral

Loads", Concrete and Constructional Engineering, Vol. LVIII,
No. 6, 1963, pp 227-234.

Rosenblueth, E. and Holtz, I. - "Elastic Ana1ysis of Shear Walls in

Tall Buildings", Proceedings ACI, Vol. 56, 1959, pp 1209-1222.

Clough, R.W., King, I.P. and Wilson, E.L. - “Structural Analysis of

Multi-Story Buildings", Journal of the Structural Division,

ASCE, Vol. 90, No. ST3, 1964, pp 19-34.
Guhamajumdar, S.N., Nikhed, R.P., MacGregor, J.G. and Adams, P.F. -

"Approximate Analysis of Frame-Shear Wall Structures", Structural

Engineering Report No. 14, Department of Civil Engineering,
University of Alberta, May 1968.

Cranston, W.B. - "Determining the Relation Between Moment, Axial

Load and Curvature for Structural Members", Technical Report,

Cement and Concrete Association, London, June 1966.

Broms, B. and Viest, I.M, - “U]timate Strength Analysis of Long

Hinged Reinforced Concrete Columns", Journal of the Structural

Division, ASCE, Vol. 84, No. ST1, 1958,



28.

29.

30.

31.

32.

33.

34.

35.

192

Pfrang, E.0., Siess, C.P. and Sozen, M.A. - "Load-Moment-Curvature

Characteristics of Reinforced Concrete Cross Sections",

Proceedings ACI, Vol. 61, 1964, pp 763-778.
Hognestad, E. - "A Study of Combined Bending and Axial Load in Rein-

forced Concrete Members", Bulletin No. 399, University of

ITT1inois Engineering Experiment Statfon, November 1951,

Manuel, R.F. and MacGregor, J.G. - "The Behaviour of Restrained

Reinforced Concrete Columns under Sustained Load", Investigation

of Reinforced Concrete Columns in Multistory Buildings, Report
No. 2, Department of Civil Engineering, University of Alberta,
January 1966.

ACI Committee 318 - "Commentary on Building Code Requirements for

Reinforced Concrete (ACI 318-63)", Publication SP-10, American
Concrete Institute, 1965; p 55,

Quast, U. - "Berechnung des Zuéétimomentes fiir Stlitzen mit

Reckteckquerschnitt", unpublished memorandum to Commission 8 -

Flambement, Comité Européen du Béton, Braunschweig, April 11,
1968.

Blume, J.A., Newmark, N.M. and Corning, L.H. - "Design of Multistory

Reinforced Concrete Buildings for Earthquake Motions",

Portland Cement Association, Chicago, 1961.

Mattock, A.H. - "Rotational Capacity of Hinging Regions ih Reinforced

Concrete Beams", Proceedings of the International Symposium,

Flexural Mechanics of Reinforced Concrete, ASCE, 1966, pp 143-181.

Corley, W.G. - "Rotational Capacity of Reinforced Concrete Beams",

Journal of the Structural Divisjon, ASCE, Vol. 92, ST5, 1966,
~ pp 121-146.



36.
I 37.

i 38.

42.

43.

39.

40.

193

Crandall, S.H. - "Engineering Analysis - A Survey of Numerical

Procedures", McGraw-Hi1l Book Company Inc., New York, 1956.

Salvadori, M.G. and Baron, M.L. - "Numerical Methods in Engineering",

Prentice-Hall Inc., Englewood Cliffs, N.J., 1962.
Neal, B.G. - "The Plastic Methods of Structural Analysis", John

Wiley and Sons, New York, 1963.
Wright, E.W. and Gaylord, E.H. - "Analysis of Unbraced Multistory

Steel Rigid Frames", Journal of the Structural Division,

ASCE, Vol. 94, No. ST5, 1968, pp 1143-1163.

Pfrang, E.0. - “The Behavior of Columns_in Reinforced Concrete
Frameworks Subject to Sidesway", Technical Report No. 5,
Department of Civil Engineering, University of Delaware,
September 1965, |

Ferguson, P.M. and Breen, J.E. - "Investigation of the>Long Concrete
Column in a Frame Subject to Lateral Loads", Symposium on
Reinforced Concrete Columns, Publication SP-13, American
Concrete Institute, 1966, pp 75-114.

MacGregor, J.G. and Barter, S.L. ; "Long Eccentrically Loaded

Concrete Columns Bent in Double Curvature", Symposium on

Reinforced Concrete Columns, Publication SP-13, American
Concrete Institute, 1966, pp 139-156.

Parme, A.L. - Discussion of "Investigation of the Long Concrete

Column in a Frame Subject to Lateral Loads", Symposium on

e

Reinforced Concrete Columns, Publication SP-13, American

Concrete Institute, 1966, pp 115-119.



44,

45,

46.

47.

48.

49,
50.

1.

194

Everard, N.J. and Cohen, E. - "Ultimate Strength Design of Reinforced

Concrete Columns", Publication SP-7, American Concrete Institute,

1964.

ACI Committee 340 - "Ultimate Strength Design Handbook - Volume 1",

- Special Publication No. 17, American Concrete Institute, 1967.

ACI Committee 435 - "Allowable Deflections", Proceedings ACI, Vol. 65,

1968, pp 433-444.

Breen, J.E. - "Report of the Subcommittee on Normal Range of Vari-

ables Encountered in Practice", unpublished memorandum to

Joint ASCE-ACI Committee 441 - Reinforced Concrete Columns,
Austin, Texas, August 2, 1967. |

"Guide to Design Criteria for Metal Compression Members", Column

Research Council of Engineering Foundation, 1960.

"Manual of Steel Construction", Sixth Edition, AISC, New York, 1963.

Grier, W.G. - "Essays on the Effective Length of Framed Columns",

Jacklin Publications, Kingston, Canada, 1966.

MacGregor, J.G., Breen, J.E. énd Pfrang, E.0. - "Proposed Revisions

to Sections 9.15 and 9.16 of ACI 318-63", paper submitted for

publication in ACI Proceedings, 1968.



|

APPENDIX A
DERIVATION OF RATIONALIZED
MOMENT - THRUST - CURVATURE
PARAMETERS FOR THE COLUMN.

CROSS-SECTIONS
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A.1 Balanced Loading Conditions

For the symmetrically feinforced column section shown in
FIGURE 3.2, the strain profile at the ultimate balanced loading con-
dition corresponds to Case 4 of Reference (27). Using the equation

provided in this reference, the "exact" value of Pb can be expressed as:

P - As(fSZ * Ts3)
f7bt T fbt
| 2y (g, - 0.85 gg)(e, - g) - 0.075 (342 - e02
+ [ 3 + ] (A'])

(gq - &) €, - €0

By definition, € - € ='¢bt’ Moreover, at the balanced failure

condition, it is safe to assume that the compression reinforcement has

yielded. Hence, fs2 = - fs3 = - fy’ and the ;ubstitution yields:

’ | 2 2
Py 1 Zeo s (eu - 0.85 so)(e4 - eo) - 0.075 (e4' - £ ):| (3-2)
fC bt ¢bt 3 | €, - €0

Assuming-a concrete stress-strain relationship as shown in

FIGURE 3.1, e, = 0.0019, €, = 0.0038 and fé' = 0.85 fé . The definition

0
of -balanced failure conditions prescribes that €4 % €, Substitution of

these numerical values into EQUATION (A-2) yields:

0.00257 fé b

P
b | o

(3-4)

In a similar manner, the following relationship for Mb can be

derived, again starting with the "exact" equation for M given in Reference
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(27) for a Case 4 strain distribution.

My = 0.5 p;bt f (d - d')

f'b

+ S (1285.3t - 323639y (y  1076) (A-3)
% %
My
By definition, ey =P - Substituting the relationships from
b
EQUATIONS (3-4) and (A-3):
-3 p,.f
_ 1.542 x 10 ' ty
e, = t[0.5 - ¢bt + 195(d - d') O fé ] (3-5)

A.2 Curvatures at the Yield Point of the Column Section

Two values of the yield curvature of a section are required to

establish the rationalized relationship shown in FIGURE 3.5. ¢yo

the yield curvature in a section subjected to pure flexure. ¢yb represents

represents

the yield curvature with applied axial force equal to Pb'
In deriving these va]ues; it was assumed that the initial yield-
ing of the tension reinforcement constituted yielding of the section.
The reasoning behind this assumption is discussed in SECTION 3.2.2. In
addition, it was assumed that the concrete exhibited a linear stress-
strain relationship. The linear relationship can be considered representative

(33) that

of the initial portion of FIGURE 3.1, and it has been suggested
the concrete stress-strain curve is approximately linear up to about 0.7 f&.
No attempt was made to check for violations of this extreme fibre stress

condition, but the rationalized values compared favourably with the "exact"

values over the range of variables investigated.
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Ad

Yield Curvature in Pure Flexure

The strain and stress profiles at yielding of a column section

in pure flexure can be represented as shown in FIGURE A.1.

A;f; +

]
2

—-fc b k

Asts

AN
%fcbkyod

FIGURE A.1

From the linear strain profile:

R Pl
Y yo Y
k, f
fc=;]-ﬁ-"7-%;)
Moreover: '
y Tk Ty

Since the section is in pure flexure, IH = 0, and Asfy =

yod .
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>

Al
If p = —%-; Bé-, substitution of expressions for fc and f; yields:

2 d'y _
: kyo + 4pnk.yO - 2pn(1 + a—) = 0
|
Solving the quadratic equation:

_ 2 dr

kyo = - 2pn + /ﬁ(pn) + 2pn(1 + g ) (3-9)
From the strain profile:
f

¢ 0= Y | | 3-10
yo T EATT - K ) (3-10)

A.2.2 Yield Curvature under Balanced Axial Force

The strain and stress profiles for the yield condition are

_ shown in FIGURE A.2.

€ f
c C
" > I
. ' Y
N v Asfs
< el 4 bkypd
>
4
r byb ,
/ Pp
/
/
/.
/
{ /
! Acf
| / € S y
! Y

FIGURE A.2
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As in SECTION A.1.2,

k. f
o kyp
fe=wm ﬁl-:- ky!'—)'b '
L d
and _ _ f; = _¥E:_Eg_' f
yb ¥
To satisfy the condition ZH = 0:
ey _]_ - =
AL + g fbkypd - AT, = Py

Substitution of expressions for fc and f;, and noting that

x>
>

. p p
2 /1 b d' b _
kyb (559 + kyb(zp + ?;53) - [p(1‘+ a—) + f;BHJ =0

Solution of this quadratic equation yields EQUATION (3-11)
given in CHAPTER III. From the strain profile,
f (3-12)
¢ =——7_L__ 3..
yb Esd 1 kyb)
It should be recognized that this value of ¢yb is somewhat
artificial since, by definition, yielding of the tension reinforcement
occurs at the instant of failure in columns developing a balanced failure,
while this procedure predicts a lower value of ¢yb‘ It does serve adequately,
however, to predict the curvature at which major non-linear behaviour begins

to develop in the cross-section. This expression is compared to the more

precise curvature values predicted by the "exact" analysis in FIGURE 3.5.
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A.3 Ultimate Curvature of a Column Section

Several assumptions were made to simplify the computation of-
the ultimate curvature, ¢u, of the column section in pure f]exure. An
approximation of the "exact" concrete stress block shown in FIGURE 3.1
was derived by assuming that the average effective concrete strength in
flexure is 0.7 fé. Tests(zg) have indicatgd that the average ultimate
compressive stress in the stress block shown in FIGURE A.3 ranges from
about 0.8 fé to 0.6 fé, the lower value corresponding to high values of

_ fé. The average value of 0.7 fé chosen here has been used by other in-

vestigators(33).

The failure criterion assumed in this study specifies that the
extreme concrete compression fibre is strained to €y In the derivation
which follows, it is assumed that the tension reinforcement has reached
the yield plateau, implying an under-reinforced section. To satisfy the
~condition of force equilibrium in the symmetrically reinforced section,
the compression reinforcement must be assumed to remain elastic at failure
in pure flexure.

Accordingly, the strain and stress profiles at failure are shown

in FIGURE A.3.

From the linear strain profile

Since the compression reinforcement behaves elastically,

fl o= Ee! .
Su SESU
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FIGURE A.3

For equilibrium of forces, IH = 0, and Asfy = AsfSu + 0.7 fcbkud.
Al

Since p = —%—= B%" substitution of the relationship for féu

x>

yields:
k 2(0.7 £') + k (pE.c. - pf) - pEe. 4= 0
u'"" 'c u'"su y sud
Solution of this quadratic equation y{elds EQUATION (3-15) given in

CHAPTER III for evaluating ku‘

From the strain profile,

] (3-16)



APPENDIX B
COMPARISON OF EXACT AND
RATIONALIZED COLUMN AND

GIRDER SECTION
MOMENT-CURVATURE DIAGRAMS



B2

B.1 Column Section M-P-¢ Relationship

To permit assessment 6f the inaccuracies involved in the use
of the rationalized elastic-plastic column section response characteristics
derived in this thesis, comparative plots of exact and rationalized
M-P-¢ curves for a representative column section are presented here. The
rationalized relationships are discussed in SECTION 3.2.2. The exact
values were derived using the approach described in Reference (28).

The section investigated was a symmetrically reinforced column
section, detailed as shown in FIGURE 3.2. Although a large number of
sections were checked in the course of the thesis, because of space

limitations, the comparisons presented here are limited to a column

having:
t = i g-l—=
fC 3000 psi T 0.10
fy = 45,000 psi b =10 in
Pt = 0.04 t =10 in

This is the column section shown in FIGURE 3.2 and is that
considered in the study discussed ih SECTION 5.2.

A comparison of the exact and rationalized values of several
basic parameters for this section appears in TABLE B.1. Graphical com-
parisons of the ultimate interaction diagram, the yield curvature-load
(¢y—P) relationship, and the ultimate curvature-load (¢pc-P) relation-
ship for this section are presented in FIGURES 3.4, 3.5 and 3.6. FIGURES
B.1 to B.5 present comparisons of the exact and rationalized M-¢ curves

with various values of axial force P on the section.
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Parameter Exact Rationalized

P, (x10% 1b) 0.42480 | 0.42480
P, (x10% 1) | 0.13005 | 0.13092
My (x10% in.1b)] 1.0319 1.0335

M, (x10% in.1b)] 0.73113 |  0.72000
6. (x1073/in) | 0.58889 | 0.58889
b |

8, (x1073/in) | 2.7649 2.7786

TABLE B.1

, ‘B.2 Girder Section M-¢ Relationship

Comparisons of exact and rationalized M-¢ relationships for a
typical girder section are presented in FIGURE B.6. The rationalized
relationships are discussed in SECTION 3.2.3, and the exact values were
derived in a manner similar to that described in Reference (28). It
should be noted that the exact analysis ignored-tension in the concrete.

The girder section considered in FIGURE B.6, reinforced only

in tension and detailed as shown in FIGURE 3.7, had properties as follows:

fé = 3000 psi d' = 1.0 in
fy = 45,000 psi b =10 in
Pp = 0.03175 d =10 in

The balanced reinforcement ratio, pb; is that defined by the ACI Building
Code(z). Several other girder sections were considered, and yielded

similar results.
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C.1 Location and Magnitude of Maximum Moment in a Column

Consider a typical deflected beam-column configuration in |
equilibrium under the action of forces as shown in FIGURE C.1. ATl de-
formations and moments are in the positive sense according to the sign
conventions illustrated in FIGURE 3.9.

To check for possible plastic hinge formation along the length
of member LU, it is necessary to compute the location and magnftude of
the maximum bending moment in the member. In the analysis, the location
of the point of maximum moment is at C, a distance x from the Tower end
L of the member.

To satisfy equilibrium:
Ry=-R = —— Pp (c-1)

The bending moment, M, at any point in the member can be written

as:

BU + BL
M=B +Py - ———x - Ppx (C-2)
L h
d2
According to small deflection theory, M = - EI —~% .
' dx
Thus,
2 B, + 8B
4%y S U S -
EI dx2 + Py h X BL + Ppx (C-3)

-

The general solution of this differential equation yields:
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L*J n91d
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B, +B

- y = A sin kx + B cos kx + 5 [2—t x - B + Ppx] (C-4)
where k =V ET"
- Applying boundary conditions to evaluate A and B, since y =0
A _
= =L
at x =0, B = p
1

y =phatx=h, A=-pg=ore [B cos kh + BU]

" Psink

Therefore, substituting for A and B in the genéra] solution,

y= Ps1nkh (B + B cos kh) sin kx
B B, + B :
+ ﬁL cos kx + l-(——U———-—l—‘-x - B+ Ppx) ‘ (Cc-5)

Substituting EQUATION (C-5) into EQUATION (C-2),

= sin kx
M =B, cos kx - (BU + BL cos kh) <in kh (c-6)

L
At the point of maximum bending moment,

M :
o 0 (C-7)

Differentiation of EQUATION (C-6) leads to:

B,, + B, cos kh

Lo U L
tan kx = - B Sin W : (0—8),
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Thus,

BU + BL cos kh)

BL sin kh

kx = tan'] (- (3-30)

If 0 < kx < kh, point C is located along the length of the
member LU, and the value of Mma should be checked.

X
From EQUATION (C-8),

. BU + BL cos kh
sin kx = % (c-9)
2 2
v/éL + BU + ZBUBL cos kh
_ Bl sin kh
cos kx = ¥ (c-10)

2 2
/%L + BU + ZBUBL cos kh

Substitution of the relationships in EQUATIONS (C-9) and (C-10)
into EQUATION (C-6) yields:

2 2
M v /QL + BU + ZBUBL cos kh

max sin kh

(3-31)

The problem of establishing the proper sign of Mmax can be

approached quite logically. Examination of the sign conventions shown
in FIGURE 3.9 and consideration of possible deflected shapes of the member
indicates that if [B | > |BU|, Muax @dopts the sign of B, , and if [B;| >

|B M adopts the opposite sign to B

LI’ max u-
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C.2 Slope-Deflection Equations for Girders

The girder configuration considered in this thesis is shown in
FIGURE 3.12. The girder is assumed to possess plastic moment capacities

as shown in FIGURE 3.13.
In CHAPTER 111, slope-deflection equations for this girder con-

figuration were presented in generalized form as:

=
n

h = Cqafa + CopBp * C3alpt * Cgplpr + Cop (3-36)

C +C +.C +C C (3-37)

=
fl

18% * Co8% * C3% * Capdar * Usp
The coefficient values for these equations for all seven cases of girder
hinging shown in FIGURE 3.14 were preéented in TABLES 3.4 and 3.5.

The derivations of the slope-deflection equations for these
- seven hinging cases are presented in the balance of this section. Equations
of -this type, originally derived by Parikh(]4), are extended to include
the effects 6f the finite width of the shear wall elements.

Throughout this presentation; the sign conventions used for
moments and deformations are those shown in FIGURE 3.9.

The effects of shear wall finite width on girder deformation
values can be seen in FIGURE C.2. Rotation of joint A' at the midpoint
of the shear wall with finite width NWL produces a vertical deformation
of point A on the face of the shear wall. Thus,
Wi,

+0,, —&5— (c-11)

Sp = Sp * O
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and
, W
v - 0

GB = &g (c-12)
The values of GA' and GB' are computed in considering axial shortening
effects in the columns and shear walls.

Since points A and B are on the face of the shear wall, eA =
eA. and 63 = 6g1-

To simplify the presentation of the slope-deflection equations,

the following substitutions will be used:

- EI '
K - L (C-]3)
WWL
WL = T (c-14)
' _ WWR
=T ‘ (C-15)
) -6
_ 'B' A' -
e (c-16)

Case 1:
Since there are no girder hinges present in this case, the

usual slope-deflection equations apply. Therefore,

8§, - 6
13 S5 SR G Bl

et T AT %7 T T (€-17)

My = M

A

-

Applying EQUATIONS (C-11) and (C-12) to reference the vertical

deformations to points A' and B', and simplifying the expression by sub-
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stituting the relationships in EQUATIONS (C-13) to (C-16);

My = M

A g ¥ (4+3W

FA L) K GA + (2 + 3 WR) K bg - 6K 5 (C-18)

~In a similar manner,

M, = M A + (2+3W)K eA + (4 + 3 W,) K eB - 6K A

B FB R) L

EQUATIONS (C-18) and (C-19) provide the coefficient values for
case 1 in TABLES 3.4 and 3.5 respectively. |
Case 2:

With the plastic hinge at point A, the left end, in this hinging

configuration,
(c-20)

where TL is the plastic moment capacity and may have either sign applied
to it as shown in FIGURE 3.13.

Because of the rotational discontinuity at A, it is necessary
to differentiate between the rotation of the wall side of the joint, eA,
and that of the girder side of the joint, o5 In EQUATION (C-18), 4KeA
represents the portion of MA resulting from end rotation of the girder, and
might more properly be referred to as 4K6AB, where eAB represents the ro-
tation on the girder side of A. On the other hand, 3 wL K eA is the_con—

tribution to M, resulting from the change in the vertical deformation of-

A
end A due to rotation of joint A'. Thus, rewriting EQUATION (C-18) and



c10

substituting EQUATION (C-20).

L

T, =M (C-21)

L B + 4Ke

+ 3W Ko, + (2 + 3 wR) KeB - 6KA

FA AB LA

Solving EQUATION (C-21) for the value of Opp» and substituting
this value in the 2K, portion of EQUATION (C-19),

M - 0.5 MFAB +-0.5 TL + 1.5 WLKG

B A

= Mepa

+ 3(1 + 0.5 wR) KeB - 3KAL (C-22)
Case 3:
Proceeding in the same manner as for the case 2 hinging con-
dition:
Mg = Tq (C-23)
MA = Meag - 0.5 Mega 0.5 TR + 3(1 + 0.5 wL) KeA
+ 1.5 WoKeg - 3KA (C-24)
Case 4:

The girder with the case 4 hinge configuration has a hinge
between its ends and can be considered to be broken into two parts, the
left side portion being treated as a case 3 girder of span X with NWR =0,

and the right side portion as a case 2 girder of span y with WWL = 0.



|- c1 -

In this analysis, only a positive hinge is considered at point

~

C with resisting moments as shown in FIGURE C.3.

Thus, for the x-portion of the girder, from EQUATION (C-24):

M. = M . = 0.5 M_.. - 0.5M +(1+ﬂ)§-5-1—e
A FAC *~ TFCA '~ plc 2X x A
- 25 (6 - 60) (c-25)
X

Similarly for the y-portion of the girder, from EQUATION (C-22):

WWp . 3F]

MB = MFBC - 0.5 MFCB + 0.5 Mp]c + (1 + §y_) B BB
Gy 2
y

Consider the free-body diagram shown in FIGURE C.3, where

M

Awx and M

Buy ® representing the moments due to uniformly distributed loads,
are always positive in the directions shown. For equilibrium of the x

portion:

R =-A__plc Awx (C-27)

+ M - M .
R = - B plc Bwy (c-28)

~ However, at the hinge,
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RCA + R., =0 (C-29)

CB
Combining EQUATIONS (C-25) to (C-29) yields:

=1 -
8¢ = 37 [X Ty (Meag = 0.5 Mpcp = 1.5 Myye * M)

-y fyx (MFBC - 0.5 Meep # 1.5 Mp]c - MBwy)]
WW )
L A'
+ _fxy[(1 + 52)0y =)
- fyx[(] + 2y )eB "y ] (C-30)
where fxy = — ]] 1
X (—§'+‘—§9
X y
: v
f =
oy b
X y
Substituting EQUATION (C-30) into EQUATION (C-25):
f M f M
= (1 - _FCAy Xy . fCB
My = (1 - S5 Mg - —57) + = (Mppe - =)
- !Bls.(1 _ Ty 3fxy) Ty Mo - Ty M
2 X y X Awx y Bwy
f
3EL _L Xy
* (1 + 2x - X ) ®a
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Wi, f
+ 3EI (] + R) Xy 0
y 2y 'y B

f
3EI Xy
+ gz (] - X ) 6AI

-.‘?’_E.l_.i).(.&'_g

) 1 (C'B])
2 B
yo v or

Similarly, substituting EQUATION (C-30) into EQUATION (C-26):

f M

f M
= (1 - X _ _FCBy L _yx FCA
M, = (1 Y(Mege - ) # )

. (Meac - 7

M 3f,, 3f, f f
BIC (L IYX LYKy YRy Xy
X y X Awx y Bwy

(c-32)

Replacement of fixed end moment terms, Mwa and MBwy"“
EQUATIONS (C-31) and (C-32) by actual values expressed in terms of the
uniformly distributed load w, Teads to the coefficient values for case 4

hinging presented in TABLES 3.4 and 3.5 respectively.
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Case 5:
The formation of two p]éstic.hinges renders the girder a
statically determinate system in which the moment values are independent

of rotations and stiffness values.

My = T, (C-33)
Using statics, it can easily be shown that:
- Y _ + Wyl -
MB (TL p]c) Mp] 2 (C-34)
Case 6}
Proceeding as was done in Case 5:
- _wd
My = Mp + (T + Mpk) v 2 (C-35)
MB = TR (C-36)
Case 7:
With plastic hinges at both ends of the girder:
MA = TL (C-37)
Mg = Tq (C-38)

These slope-deflection equations are applicable to a girder
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subjected to uniformly distributed 1oad§. The equations could easily

be adapted to consider a single ih-span concentrated load in place of.
the uniformly distributed load. Consideration of more than one in-span
cbncentrated load, however, would necessitate extension of the number of

hinging configurations considered in the analysis.

C.3 Evaluation of Plastic Hinge Rotation |

Working from the slope-deflection equations for columns and
girders, it is possible to derive equations for computing plastic hinge
rotations in terms of known values of moments and deformations. Only
the equations are presented here.

The sign conventions for hinge rotations are»shown in FIGURE 3.9.

Column Case 2:

__h . S c+s %" °% '
O cwmrB -ttt P -9 (C-39)
Column Case 3:
) 8, -8
- _h S C+S U L
%y =TT Bu-CcOL YT " Oy (C-40)
Column Case 4:
0y, = X (- SB, - CB )
DH EI(C 2 - S 2) X L X max
X X
y -,
+ (S.B,-CB__.)
EI(?yz - 2) y U y max



+ Gc - GL ) GU - GC
— y
where _
- y - -
GC c?-s 2)EI (Cy U Smeax) Yoy * 6U
Yy y
Column Case 5:
: 8§, - 8§
h U L
By = (CB,, - SB,) + -0
8§, -8
h U L
6 = (cB, - SB,,) + -8
DL EI(02 _ 52) L U h L
Girder Case 2:
eDA = - (1 +0.75 wL)eA - (0.5 + 0.75 wR)eB

where wL, WR and AL

Girder Case 3:

®nB

L
+ 1.5 AL + TET (TL - MFAB)

are defined in EQUATIONS (C-14) to (C-16).

= - (0.5 + 0.75 WL)GA - (1 +0.75 NR)OB

L

Cl6

(c-41)

(C-42)

(c-42a)

(C-43)

(C-44)

(C-45)



Girder Case 4:

%c = 7T (Mp1c Meea) - 78T M - Meca)
- %-(] + 333L)9A + %—(1 + 323R)GB
+ 37 (60 - 6p) - & (651 - &)
where 8¢ is given by EQUATION (C-30).
‘Girder Case 5:
On = geT (2T, * Mﬁ]c - ZMFAC""MFCA) - (s ggL)QA
L % o
X
where .
S = 321 [T %~ More R S f%ggﬂ
- (y +0.5 wwR)eB + GB'

=1 rx - - Y -
®c = £T [6Mrac = Mrca = TL - 2My1e) * 7lMecp - My )]

3WN
1 R
— A+ (?+_‘E/—)GB

C17

(C-46)

(c-47)

(C-48)

(C-49)
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Girder Case 6:

o8 = BFT (2Tg = Mpyc = Mepe + Mecp) - (%Jﬁ +1) 8
M i o . e (c-50)
where
| x2 X X, 3 wxL MFCA
=T - TRy Mo G2+ 5+ Mepe -2
+ (x + 0.5 wwL)eA Y (C-51)
o = g7 [- § (Morc * Meca) * 5 (Tp = 2Mgpe * Mpcg - Mege) ]
<G b gty
, 3(8 ;xaA.) GB.y- 8¢ (C-52)
Girder Case 7:
6pp = gET (2T, - T - HMepg + Mega) = (054 + 1) 0,
- 0.5 Webp + A (C-53)
008 = EFT (ZTR ST - Mgy * Meys) - 0.5 W 6,
- (0.5 Wp * 1) 0g + A . (C-54)
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D.1 Notation Used in the Computer Programme

A,B,D,F

AA,CC,DD,
EE,FF,GG

V,T,Z,U

VV,TT,ZZ,0U
CC,GL ,AG
DD,GR,AD
EE ,GA,AA
FF,GB,AB

ACCURD

ACCURP
AL(M,N)
AM(M,N)
AU(M,N)
AUGDL

AUGE
AUGL
AUGLL
BAS(M,N)

functions used to sfmp]ify consideration of Case 4 column
hinging configuration (Refer to TABLES 3.2 and 3.3)

dummy variables used in evaluating P(M,N) in Subroutine PCOL.
The significance of each is discussed on comment cards in -
the programme.

dummy variables used in computation of DH(M) in Subroutine
ITER (Refer to FIGURE 4.7)

dummy variables used for summation of V,T,Z,U

dummy variables used in computation of R(M,N) in Subroutine

ITER (Refer to FIGURE 4.4)

specified required accuracy of convergence of deformation

values for convergence:

deformation (n+1) |
(1 - ACCURD) < deformation (1) < (1 + ACCURD)

as above, for convergence of column axial load values
sign of moment at lower end hinge in column (M,N)

sign of moment at interior hinge in column (M,N)

sign of moment at upper end hinge in column (M,N)

dead load incrementing fraction, as a decimal fraction of

working load values

.column external load incrementing fraction

lateral load incrementing fraction
live load incrementing fraction

reinforcement area AS in girder (M,N) at interior support

(sq.in.)
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BB(M,N) width of compression face b in girder (M,N) (in)
BC maximum in-span girdér moment (in.1b.)
BL left end moment MA in girder (in.1b.) or Tower énd moment

BL in column

BMAX maximum interior moment in column (in.1b.)

BR right end moment My in girder (in.1b.)

BT(M,N) total depth of section t in girder (M,N) - (in.)

BU upper end moment BU in column (in.1b.)

C(M,N) stability function C for column (M,N)

CAS(M,N) total longitudinal reinforcement area 2AS in column (M,N)
(sq.in.)

CB(M,N) width of compression face b in column (M,N) (in)

CT(M,N) total depth of section t in column (M,N)-(in,)'

CX o stability function Cx in x-portion of column

CXF 7.7 ZC’_‘ 2
X X

cY stability function C ih y-portion of column

CYF —_EEX—_T?
Gy 73y

D distance, d, from extreme compressioﬁ fibre to centroid of

tension reinforcement in column section (in.)
DEL dummy used for deformations
DETF "deterioration" factor used in reducing size of load increment

as hinging progresses



DH(M)
DHC
DHCP(3)

DHH
DHI (M)

DHR

DHU

- DPB

DPC
DV(M,N)
DvC

EB
EIB(M,N)
EIC(M,N)
EN

F
FAUGDL

FAUGE

FAUGL

FAUGLL

D4

sway deflection in story (M) (in)

total sway def]eétion at top of structure (in)

the last three previous values of DHC related to stable
configurations (in)

total sway deflection 6H at interior hinge in column (in)
the value of DH(M) for the last previous stable load stage

DH(M) for cycle (n)
DH(M) for cycle (n-1)

total sway deflection GU at top of column (fn)

concrete cover d' in girder section (in)

concrete cover d' in column section (in)

vertical deformation of joint (M,N) (in)

vertical deformation, 8., at in-span hinge in girder (in.)
balanced eccentricity e, for column section (in.)

section flexural stiffness EI of girder (M,N) (1b.in2)

section flexural stiffness EI of column (M,N) (1b.in2)

- E
modular ratio n = E§-= 29,000,000 . _500

c 58,000 Vf& /e

dummy for kh
load factor with respect to working load values for dead
loads

load factor with respect to working load values for external
column Tloads

lToad factor with respect to working load values for lateral
loads

load factor with respect to working load values for live loads
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FAUGLP(3)

FC
FCB
FCC
FCW
FX
FXY
FY
FYB
FYC
FYW
FYX
H(M)

INDET

J
KB(M,N)

KBI(M,N)

KC(M,N)

KCC
KCI(M,N)
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the last three previous values of FAUGL which resulted in
stable configurations

dummy for fé

compressive strength of concrete fé in girders (psi)

compressive strength of concrete fé in columns (psi)

 compressive strength of concrete fé in shear walls (psi)

dummy for kx or ky

fxy (Refer to TABLE 3.4)

dummy for fy

yield strength of reinforcement fy in girders (psi)

yield strength of reinforcement fy in columns (psi)

yield strength of reinforcement fy in shear walls (psi)
fyx (Refer to TABLE 3.5)

centre-1line height of storey (M) - (in.)

dummy for N

degree of indeterminacy of the structure

counter in Subroutine ITER for number of cycles of iteration
number denoting plastic hingé configuration in girder (M,N)
(Refer to FIGURE 3.14)

plastic hinge configuration in girder (M,N) at last previous

stable load stage

number denoting plastic hinge configuration in column (M,N)
(Refer to FIGURE 3.11)

dummy counter in Subroutine HINGES

plastic hinge configuration in column (M,N) at last previous

stable load stage



KD
KH

KHC
KHCI

KK
KP

KR

LIMITD

LIMITP

MS

NC
NN
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counter for number of cases of inadequate convergence of
storey sway deflection values in Subroutine ITER

counter for numberﬁof new plastic hinges detecfed in oné
pass through Subroutine HINGES

total number of plastic hinges in the structure

total number of plastic hinges in the structure at the
last stable load stage

dummy for KB(M,N) or KC(M,N)

counter for number of cycles through Subroutine PCOL

at any stage of loading

counter for number of cases of inadequate convergence of
joint rotation values in Subroutine ITER

l1imiting number of cycles of jteration to convérge on de-
formation values at any load stage before instability is
assumed |

limiting number of cycles through Subroutine PCOL to con-
verge on co]umn.axiai load values at any load stage before
instability is assumed \

subscript which refers to floor or storey number, working
from the top of the structure

total number of storeys in the strucfure

subscript which refers to column line or bay number, working
from the left side of the structure

total number of column lines in the structure

total number of bays in the structure



NP
NSW
NW(N)
P(M,N)
PB

PE(N)
PEI(N)

- PEXC

PP(M,N)
PS
PU

R(M,N)
RATIO

RB
RBP(M,N)

RCP(M,N)

RDA

RDB
RDC
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counter for number of load stages considered

total number of shear walls in the structure (0 < NSW < NC)
number of column line where a shear wall is located
current value of axial load in column (M,N) (1b.)

ultimate column axial load at balanced failure condition,
Py (1b.)

current value of external load on column line (N) (1b)
working load value of external load on column Tine (N)(1b)
dummy counter to record cases in Subroutine COLS where
P(M,N) exceeds P0 ‘

the value of P(M,N) at the last previous stable load stage
reinforcement ratio p = g%- in girder or column section
ultimate axial load capécity P0 of column sectfon in
absence of flexure (1b)

rotation of joint (M,N) (radians)

a dummy used in the extrapolation procedure, representing
DHC (extrapolated for new FAUGL)

DHC (previous stable COnfiguration)
balanced curvature ¢, (in'])

permissible hinge rotation of a "half-hinge" in girder (M,N)
(radians)

permissible hinge rotation of a "ha]f—hinge" in column (M,N)
(radians)

plastic hinge rotation 6y, at Teft end of girder (radians)
plastic hinge rotation eDB at right end of girder (radians)

plastic hinge rotation 6,. at in-span hinge in girder or 6

DC DH

at interior hinge in column (radians)



RDL
RDU
RP(M,N)
RPC
RR

RU

RY

RYB

RYO
S(M,N)
SIDE

SP(N)
SR

SX

SXF

SY

SYF

B
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plastic hinge rotation eDL at lower end of column (radians)
plastic hinge rotation eDU at upper end of column (radians)
value of R(M,N) at the last previous stable load stage

ultimate curvature ¢ c of column section (in-])

R(M,N) for cycle (n)
R(M,N) for cycle (n-T1)

ultimate curvature ¢u for column section in pure flexure (in'])

yield curvature ¢y for column section (in'])

yield curvature for column section under balanced axial load
dyb (in”1)

yield curvature for column section in pure flexure ¢yo (in'])
stability function S for column (M,N)

dummy used in Subroutine PCOL to denote whether left hand

or right hand girder is under consideration

centre-line span of bay (N) (in)

girder span reduced by consideration of finite shear wall
widths (in) |

stability function Sx in x-portion of column

ultimate column moment capacity at balanced failure condition

Mb (in.1b)



TL(M,N)
TPC(M,N)
TPL(M,N)

TPRATE

TPRATM

TR(M,N)
TV

UK

W(M)
WD(M,N) -

WDI(M,N)
WI(M)
WL (M,N)
WLAT
CWLI(M,N)
WPER

WS

WTW

DO

bending moment at left end hinge of girder (M,N) (in.1b)
ultimate bending moment capacity MpC of column (M,N)} (in.1b)

ultimate bending moment capacity Mp] of girder (M,N) (in.1b)

girder exterior support Mp1

girder interior support Mp]

girder midspan Mp]
girder interior support Mp]

bending moment at righe end hinge of girder (M,N) (in.1b)
column ultimate bending moment capacity in pure flexure Mo
(in.1b) |

ku’ the proportion of d from the extreme compression fibre

to the neutral axis in a girder section

current va]Qe of lateral load at floor (M) (1b)

current value of dead load on girder (M,N) (1b/ft), neglecting
girder self-weight

working load value of WD(M,N) (1b/ft)

working load value of W(M) (1b)

current value of live load on girder (M,N) (1b/ft)

total lateral load resisted by shear wall (M,N) (1b)

working load value of WL(M,N) (1b/ft)

percentage of total lateral shear load acting on storey N
carried by shear wall (M,N)

dummy to compute total transverse shear load acting at floor (M)

dummy to consider total uniformly distributed load on a.

.girder

current value of exterior wall weight (1b/storey)
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WTWI working Toad value of WTW (1b/storey)

WWL dummy to represenf width of shear wall at left end of
girder (fn)

WWR dummy to represent width of shear wall at right end of

girder (in)

X, XX used frequently as dummies
XB(M,N) distance x from left end of girder (M,N) to an in-span
hinge (in)
- XC(M,N) ~ distance x from base of column (M,N) to an interior hinge (in)
XXX a dummy used to indicate that a condition of instability

has been detected

n

XXX = 0.0 indicates that the structure is stable

XXX

1.0 indicates that the iteration procedure in Sub-
routine ITER has failed to converge on deformation
values to the specified accuracy ACCURD after LIMITD
cycles
XXX = 2.0 indicates that a joint mechanism has been detected
in Subroutine ITER

XXX = 3.0 indicates that the structure in some storey was
unable to support the current load values at the
equilibrium sway deflection value previously computed
under Tower loads

XXX = 4.0 indicates that a storey sway mechanism has been
detected in Subroutine HINGES

XXX = 5.0 indicates that the solution has failed to converge

on column axial load vajues to the specified accuracy

ACCURP after LIMITP cycles
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XY a dummy used to indicate that bending moment values should

be written out in SUbroutine HINGES

XY = 0.0 - no moment values written
XY = 1.0 - moment values written
Y used frequently as a dummy
YBK kyb’ the proportion of d from the extreme compression ffbre
to the neutral axis with P(M,N) = PB
YOK kyo’ the proportion of d from the extreme compression fibre

to the neutral axis with P(M,N) = 0

YYy a counter used to indicate the number of load adjustments
made after first indication of instability (when YYY = 4.0,
solution stopped)

Z dummy

ZL,ZR dummies used to consider variation of Mp] in girders

D.2 Functions of the Subroutines

To perform the computer analysis, nine subroutines were employed
in conjunction with the main programme. A brief description of the functions
of these individual subroutines will aid in the understanding of the flow
charts presented in SECTION D.3.

Subroutine BEAMS computes the values of plastic moment ca-
pacity, flexural rigidity and permissible hinge rotations for all girders
in the structure.

Subroutine PCOL computes the axial loads in all co]uhnshand
shear walls, based on the current load and deformation values. ‘

Subroutine AXDEF computes the vertical deformations of all



D12

Joints resulting from axial shortening of the columns and shear walls.

Subroutine COLS, Osing the rationalized M-P-¢ relationship,
computes Mpc’ EI, C, S, and allowable hinge rotation values for a]] columns
and shear walls, based on the current values of axial loads.

| Subroutine CASE4 computes the special values of C, S, A,
B, D, F necessary for consideration of a column with the case 4 hinging
configuration.

Subroutine ITER, using the "operator" relationships dis-
cussed in CHAPTER IV, computes values of lateral sway deflections and
joint rotations by the Gauss-Seidel iteration procedure.

Subroutine HINGES checks and revises the hinge configurations
in all columns and shear walls, using the slope-deflection equations.

Subroutine BMHING performs the same function for the girders

~as Subroutine HINGES does for the columns and shear walls.

Subroutine LDPART computes the amount of lateral load re-

sisted by the shear wall elements in every storey of the structure.

D.3 Flow Diagrams for the Computer Programme

Flow diagrams for the main programme and Subroutines PCOL,
ITER, HINGES and BMHING are presented in the remainder of this section.
The other Subroutines are quite straightforward and their formulation can

be followed in the programme listing presented in SECTION D.4.



D.3.1 Flow Diagram for the Main Programme

Read and write basic
frame characteristics
Set and record
convergence limits

{

Read and write
material properties
frame geometry
section properties

Initialize some
variables

i

Read and write
working load values
load factor increments
and initial load
factor values

L - - 126

Compute Tloads on
structure based on
current load factors

!
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132
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P(M,N)
and hinge
configuration
converged?

Write out pertinent information
regarding stable equilibrium

configuration

Compute

DETF

DETF =DETF/2.

|

Store values relevant
to stable condition

f




!

Increment
load factors

Extrapolate for new
approximate deformation
values

Record source of
instability

Write out pertinent
information regarding
unstable configuration

Return structure to
last stable hinge
configuration

+

XXX=0.
YYY=YYY+1.

!

Decrement
load factors

instability detected

D16
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D.3.2 Flow Diagram for Subroutine PCOL

Compute GG,AA
N=1

-1
SIDE = +1.

f

CC=DD=EE=FF=0.

Compute CC

A [

Increment DD,EE,FF
according to value
of KB(M,N)

D17
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!

Evaluate P(M,I)

RETURN

D.3.3 Flow Diagram for Subroutine ITER

(<
1]
fn nc

Compute
V,TT,Z2Z,U0U
for storey M

v -




Compute
DH(M) ,DHR

DHR
Indicates adequate
convergence?

No

KD=KD+1

I

Choose CC,GL,AG
for girder (M,N-1)

[ Choose DD,GR,AD
for girder (M,N)

%

D19
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Choose EE,GA,AA
for column (M-1,N)

Choose FF,GB,AB
for column (M,N)

RR
indicates adequate
convergence?

RETURN

No

D20
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RETURN

| _ XXX=1.

RETURN

D.3.4 Flow Diagram for Subroutine HINGES

Compute BU,BL,BMAX,
plastic hinge rotations
5 in column (M,N).

i If a plastic hinge is -
detected, alter KC(M,N) ‘
| ' and set KH = KH + 1

_ *




1

!

Record any incidents
of detection of excessive
plastic hinge rotation

Write
column moment
values

Compute KCC

KHC=KHC+KH |

RETURN

D.3.5 Flow Diagram for Subroutine BMHING

XXX=4.




ST
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?

Compute BL,BR,BC,
plastic hinge rotations
in girder (M,N)
If a plastic hinge is
detected, alter KB(M,N)
and set KH=KH+1

!

Record any incidents
of detection of excessive
plastic h1nge rotation

Record any beam
mechanisms detected
and revert to
KB(M,N)=7 with
appropriate end
moments

No
‘ Write v
girder moment
values

RETURN




D.4 Listing of the Programme

AN OA00

LYY

[ X a¥o]

oo

ann

noo

o

MAIN » ]

ALK PRCGRAMYFE

SECOND ORDER ELASTIC-PLASTIC ANALYSIS OF A HULTISTOREY REINFORCED
CONCRETE PLANE FRAME WHICH MAY BE ETTHER UNBRACED (1E. NO SHEAR WALL)
OR BRACED WITH SHEAR WALLS IN ANY OR ALL OF THE COLUMN LINES.

THE ANALYSIS IS PERFORMED USING SLOPE-DEFLECTION EQUATIUNS RODIFIED
TO CONSIDER THE CEVELOPKENT OF *POINT! HINGES IN BEAMS AND CULUMNS.
VTHE EFFECTS OF AXIAL COLUMK LOADS ON DEFURMATIONS AND COLUNN
STIFFNESS ARE CONSIDERED, AS [S FHE FINITE SHEAR WALL WIDTH.

THLS COMMON AND DIMENSION ARE SE! UP FOR A 20 X 3 FRAME,

COMNON l'ACCURD'AL(ZOQ)"‘H|20.3’|AU(20¢3'05.8‘5'2092,033(20'2,15'
l(20'2"CI2013)vCAS(2013).CB(20'3)vCllZDn)l'CXqCXF-C'yCVF'D'Dﬂlzoio
EDHI(20)tDPBoDPC.DY(ZO.J).ElB(ZO.ZlaElCIZO'JD.F.FAUGDLpFCB.FCCnFCNv
3FVB¢FVC'FVM.HIZOD'P(ZOoJI'VElJD,R(Zl-)l.RBP(ZO.ZI'RCP(ZO-JI.SIZOoJ
QioSPlZl-SX.SXF.SV.SVF.VLIZO.Z’p'PC(ZOv)’.XPLIZO.Z).lFRAIE.IPRA'H-'
SR(IO.Z)'H(ZOl.HD(ZouzlyﬂLlZO'Zl|HIHquXB(20.2l.XCIZO.3I.XKX'XV.V.I
G'J'KB(ZO'ZI'KCIZO'S)'KH'KNC.LIHIID.H.NS'NpNC'NN'NP'NSN'NH(3)
DIMENSION OHCPU3 1, FAUGLP(3)4PEIL3)1PPL2043) JRPU20,530,MW1 (20} ,ND3 (20
162),mL1120,2),KB3E2042)¢KCTC20,3}

READ IN BASIC FRAME CHARACTERISTICS.

READ{5,6800) N5,NC,NSW
800 FORMAT(1X,313)
WRITE(64802} MS¢NC
802 FURMAT(*1',¢ SECOND ORDER ELASTIC-PLASTIC ARALYSIS OF AY,13,¢ STOR
1EY9413,¢ COLUMN LINE REINFORCED CUNCRETE FRAME®}
LF INSH.EQ.0) GO TO 100
DO 102 N=1,NSW
READIS5,800) NWIN}
WRITEL6,804) NWINY .
804 FORMATIIX,*SHEAR WALL IN COLUMN LINEd,13)
102 CONTINUE
100 READIS,806) TPRATM, YPRATE
806 FORMATIIX,2F9.6)
WRITE{6,808) YPRATH,TPRATE
FORHKAT(1X, *BEAR KIDSPAN/INTERIOR SUPPORT MPL RATIO=*F9.6,¢ EXTERI
LOR/INTERIOR SUPPORY MPL RATIO=4,F9,6)

80

SET CONVERGENCE LIMIVS.

READ(5,810) LIMITD,ACCURD LIMITP,ACCURP
810 FORHATI1Xs16,F9.6,164F9,6)
MRITE(6,812) LIRITD,ACCURD

812 FURMATI'Q',* CONVERGENCE LIMITS: FOR DEFORMATIONS-* 416, ¢ CYCLES 1O

1 A CLCSURE OF #-7,F9,6)
WRITE(6,814) LEMITP,ACCURP
814 FORMAT(21Xe* FOUR COLUMN LGADS~*416,% CYCLES TO A CLOSURE OF #-%,F9

6
READ IN MATERTAL PROPERTIES.

READ{5,816) FCB,FCCLFCN
816 FORMAT{1X,3F9,1}
WRITE(6,818) FCB)FCCoFCH
818 FORMAT(*0'," CONCREYE PROPERTIESIFC BEAMS=*4F9.1¢® FC COLUMNS=*,F9
Llely® FC WALLS=',F3.1)
READ(5:8161 FYB,FYC,FYW
WRITE(64820) FYBGFYC,FYN
820 FORMATISX,*STEEL PRUPERTIES:FY BEAMS=43F941¢! FY COLUNNS=?3F9,1,*
IFY WALLS=',F9.1)
NN=NC-1

READ IN FRAME GEOMETRY (CENTRE-LINE DIMENSIONS).

WRITE(6,822)
822 FORMATL0", % FRAME DIMENSIONS {INCHES): )
DO 104 N=1,NN
READ(5,824) SPIN) N
FORMAT{1Xy4F11.5)
WRITE(6,826) NySPUN) .
826 FORMAT(1IX,'BAY WIDTH(®,13,%)=",F11,5}
104 CONTINUE

DO 106 KM=1,M5

READ(5,824} H(M}

WRITEL64828) M HIM)
828 FORMATCLX, *STGREY HEIGHT(? 41347 )=¢,F11.5)
106 CONTINUE

82

>

READ SECTION PROPERTIES.

WRITE(6,830)
830 FORMAT{*0'y* SECTION PROPERTIES (INCHES)1¢)
READIS,824) DPB,OPC
WRITE(6,832) 0PB,0OPC
832 FARMAT(1X,8HD*BEAMS=oF11.5,11H DYCULUMNS=,F11.5,84 OR T/10)
DO 108 K=l,MS
DO 109 N=1,NN
READIS)624) BBUMIND 4 BT LM NI 4BAS (M,N)}
NOTES BAS REFERS TD AREA OF TENSION STEEL AT AN INTERIOR SUPPORT.
109 CONTINUE
08 CONTINUE
© D0 110 N=1,NC
DO 111 P=],M5
READ{5:824) CBUMNI oCTIM NI, CAS{N,N)}
311 CONYINUE
110 CONTINUE
WRITE(6,033)
833 FORMATL0 127X, *BEAM 876X *BEAN T9,5X, *BEAN AS?,20X, " BEAK Br.6X, "

aoco

C
<

Lol N T
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1BEAM T% 45Xy *BEAN ASY)
WRITEL64831)
831 FORMAT(IX,'COL B® (X, *COL T¢,6X,9C0L ASTPoOXy0COL B TR, *COL 19,6X
Lo'COL ASTS09X0'COL B*y 7X¢*COL F9,6X,°COL AST®)
00 107 p=l,NS
WR{TEL6,834) u.as(r.l!.arcn.ll.aAstn.li.aaln.zt.nr(u.zi.nAscn.zn
834 FD?HAI(lx.Iiol9l|FIl.i.lloFll.5:]!:5[1.5-]5!-5!1.5.ll.Fll.SollnFll
1.5
WRITE(6,0836) CB(N'l’cCY(Nol'uClSchll'CBINnZl'tlleZ’.CIS(HtZIoCOI
IMe3)0CTEN3) 4 CASIN, 3)
835 FURMA!(&X.F[X.S.lX.Fll.5pIX.FIl.51lX.Fll.5.lloFll.5nIl-Fll-!.‘loFl
1591 Fl1e551XoFL1eS5H
107 CONTINUE

NOW COMPUTE ALL BEAM PROPERTIES--REMAIN UNCHANGED WETH INCREASING LOAD

CALL BEAMS

WRiTE(6,830)

FORMAT(*0%,¢ BEAM PROPERTIES1*)

D0 112 p=l,NS

. WRITEL64840) MoTPLUMe1)oELBIN, 1)

840 FORMATCIX,*IN FLOOR®o13,* BEANS, MPLet g E12.5,% ELB=*,EL12.58
132 CONTINUE

83

©

NOW INTTIALIZE SOME YALUES.

XXXx0,
Yvy=0,
XvsQ.
Ki=0
KHC #0
KHC 1 =0
NP=O
00 114 K=1,NC
R(MS#1,K)=0.
00 115 Mel,Ms
OVIM,N) =0,
R N)=0,
RPIMoNI =1,
PPI{M,N} =),
DH(M)=0.
DHI(M) =0,

115 LONTINUE

114 CONT INUE

€ SET ALL BEAM AND COLUNN HINGING CONDITIONSe] AT START.--NO MINGES

00 116 WMx],M§
DO 117 N=1,NN
KB{M,N) =1
KBI(MsN)=1
CONTINUE

00 118 N=1,NC
KC{MyN) =1
KCE{K,N) =1
118 CONTINUE

116 CONTINUE

READ INITIAL EXTERNAL LOADS ON STRUCTURE AND PREPARE TO INCREMENT THEM

13

-

READ(5,824) AUGE,AUGL s AUGLL y AUGDL
WRITE(6,842) AUGE 4AUGL ¢ AUGLL 4 AUGDL
842 FORMAT(I0'y* INITIAL LOAD FACTOR INCREMENTS?! EXT COL=*oF11.5,% LAY
1=99F11e54®% LL=*oF11.5,% DL?yF11.5
NRITEL6,844)
844 FORMAT(%04,' WORKING LOADS ON STRUCTURE, KHICH WILL 8E APPLIED AS
LSPECEFIED 8Y LUAD FACTORS:*)
READ(5,846) WIWl
KRITEL64847) WIWL
847 FORMATI1X, *WORKING EXTERNAL WALL LDAD=*,F13.3,* LB/SVOREV®)
00 120 K=1,NC
READ{5,846) PEI(N}
846 FORMATU1X,2F13,3)
WRITE{(64848) NyPEIIN)
848 FORMAT{1Xy*WORKING EXTERNAL LOAD ON COLUMN LINEC® 913, 0ut FL13.3,¢
8.} .
120 CONTINUE
D0 122 P=1,MS
READIS,846) WilK]
WRITE(6,850) M WI(N)
850 FORMAT{LX,'WORKING LATERAL LOAD AT FLOORE® 5 13¢%)=%4F13.3,9 LB,.*)
122 CONTINUE
DO 124 P=1,KS
D0 125 N=L,NN
READLS,846) MLICM,N) WD {M,N)
WRITE(64852) MoN WLIIMyN) yWDIEM,N)
852 FORMATILIX,*ON BEAMIT,03,%,7,13,%)3 SORKING LIVE LOAD=',F13,3,% WOR
1KING DEAD LOAD=?,FL123,3,% LB/FTS)
125 CONTINUE
124 CUNTINUE
NOW INITIALTIZE LOAD FACTORS.
READ(5:824) FAUGEFAUGL,FAUGLL , FAUGODL

FROM TKIS PCINT ONy THE LOAD FACTORS CAN BE ADJUSTED.

126 Kp=0
NP=NP4L
WRITE(64854) FAUGE ¢ FAUGL ¢ FAUGL L + FAUGOL

854 FURMAT(*L®,* CURRENT LDAD FACTOHS WRT WORKING LUADS: EXT COL=*yF))

1e5,0 LAT=%,F11,5,* LL=%,F11.5,% DL="Fi1.5) >
MRITE(6,856)
856 FORMAT(IXy?--come




i
i
|
i
{

¢
{

{
‘.
:
]

L2

---------------------------------- Bk |
NOW IBCHENENT APPLIED LOALS.
Wla=FAUGDLE*HTWI
DU 128 K=]sNC
PLAN)=F AUGE*PETLN]}
129 CONTINUE
DN 130 P=1,MS
W(M)=FAUGL*NTIM)
DN 131 A=1yNA
WLEM NI =FAUGLL*WLE{MsN)
WDEM L) =FAUGDLAWDT{H.N)
131 CONTINUE
130 CUNTINUE

o

2 NCW COMPUTE AXTAL LOADS IN CULUMNS.
¢ 132 KP=KPe+l
CALL PCOL
é NCW COMPUTE VERTICAL DlSPL‘CENENy OF NODAL PUINTS.
¢ CALL AXDEF
g NOW COMPUTE COLUMN PRUPERTIES UNDEXR CURKRENT AXTAL LUADS.
¢ CALL COLS
E NOW COMPUTE JOINT RCYATIONS AND STOREY SwAY DEFLECTIONS.
[4

CALL [TER
TE(XXX.GT.0,0) GO TO 134
IF INSTABILITY HAS BEEN DETECYED EN *ITER®:
XXX=1.0 INOICATES THAT CONVERGENCE OF DEFUKMATIUNS TO *ACCURD® HAS
NOT BEEM ACHIEVED AFTER *LIMITOY CYCLES UF [TERATION,
XX¥=22,9_ INDICATES THAT A JGINT HECHANISM HAS BLEN DETECTED

SKEP YG END OF PRUGRAMNE ANU CECREASE LDADS.

N{tw CHECK FOR EMERGENCE OF NEW HINGES IN THE STRUCTURE.

~aOancnan

CALL HINGES
SFIXXX.GT.0.01 6G TO 134
IF INSTABILITY HAS BEEN DETECTED IN *HINGES*:
AXX=4.0 INUICATES A STOREY SWAY MECHANISM
SKIP TO END )F PROGRAMME AND DECREASE LOADS.

NOW CHECK FER CUNVERGENCE OF COLUMN AXIAL LOADS AND HINGING
CUNFIGURAT [UN,

(FEKP.GELLIMITP) XXX=25,
RXX=%5,D INDICATES THAT CONVERGENCE OF CULUMN AXIAL LOAUS 1O
SACCURPY HAS NOT BEEN ACHIEVED AFTER *LEMITP® CYCLES.
IFIKP.GELLIMITP) GO TO 134
X=0,
DO 138 M=],MS
DU 139 N=1.NC
LFIEPIMINI/PPIM NI} JGT oL #ACCURP) LURLIP(MyNI/PPIMNI ) LT a-ACCU
IRP)) X=Xel. . .
PPIM NI=P{M,NS
139 CONTINVE
138 CONTINUE
TF{X.GY 0.0 .0R.KH.6T.0) GO YO 132

[aXa S s XN alaNakahal

[
€ IF YHE VALUES OF COLURN AXIAL LUAUS AND THE HINGING CUNFIGURATION
€ HAVE NUT CCNVERGED, REITERATE UNLESS XP=LIMITP, IN WHILH CASE A
C CONDITION OF INSTABILITY Witl BE ASSUMED.
[+
DO 141 ¥=]1,MS
EFEOHIM).GELDHI (X)) GO TO 141
AXX=3,
4 XXX=3.0 INDICATES THAT STOREY SWAY [NSTABILITY HAS BLEN DETECTEU.
C IF DHIM), THE NEW EUUILTBRIUM VALUE OF SWAY DEFLECTION FOR STOREY M,
C IS LESS THAN OHI(M}y THE VALUE FOR THE LAST LOUAD STAGE WHICH LED TO
€ & STABLE CONFIGURATION, WE HAVE ENCOUNTERED A CUNDITIUN OF
L INSTABILITY, SINCE THE STRULTURE CANNOT SUPPORT THE TNCREMENTED
C LUADS AT ANYTHING BUT A REDUCED DEFLECTION.

WRITE(6,R61) MyDHE(M) DH{¥)

861 FORMATI®0%,* STRUCTURE AT STOKEY*,13,* UNABLE TU SUPPORT LOAUS AT
1PREVINUS SWAY DEFLECTIUN=®,E12,5,*oNEN EQUILIURIUM DEFLECTIUN=?,E]
22.5)

141 CONTINUE

IF(XXX.GT.N.0) GO TO 134
SKIP TO END UF PROGKAMME AND DECREASE LOADS.

IF THIS PCINY IN THE PROGRAMME 1S REACHED wlTHOUY A DETUUR TO
STATEMENTS #132 OR #134, THE CURRENT DEFORMATIIN VALUES
REPRESENT A CEFLECTED STRUCTURE IN EQUILIBRIUN UNUER THE CURRENT
EXTERNAL LOADS.

WRITE QUT THE PERTINENT VALUES.

connnmo0

WRITE(6,862) KHC
862 FORMAT('0',' A STABLE COUNFIGURATIUN WITH'yI14,? HINGES IS INDICATED
1
WRITE(G6,8E4) KP
864 FORMAT('0°,' NUHMBER OUF PASSES THRUUGH SUBROUTINE PCOL=*, (1%}
DHC =0,
WRITE(6,866)
866 FURMAT{*Q")
WRITE{6,868)
FORMATU3X,PM® 35X 0 JT ROT® 46X, *KB® 45X T ROTY,6X, KB 45Xs*dT ROT® Y
WRITE(6,870)
870 FORMATUL1X, "KL P g LTX¢ KL o LTA, KL " 06X *STUREY SwAY?)
WRITE(A,871)
B71 FORMAT{9Xe*PCCLY 415Xy *PLOL*5 15X, *PCUOLY)
WRITE{6,873)
BT3 FORMATUIX,* VUEF® s 15X *VDEF* 15X, " VOLF*)
DY 140 M=1,MS
WRITEC6,BT2)F MoR(Mel) o KBIM) 1) oRIM,2),KBIM,2DRIMy3)
FORAATURIX 4139 2X9E12450149 [492KsEL2059 1Xo14 02X E12.5)
WRITE(6+9874) KC(Mg1)oeKCUM2) KO My 3) 4 DHIN)
B74 FORMATUIX,) 415X ,14415%X, 1405X,E12.5)

.13

81

~

D25

WRITELH9BTS) PIH L) PIH, 20PN, 3)

875 FURMATISK L12.5¢ TR4EL12.50 TXyE12.5)
WRITELGBT5) UVEP1),0VIM 2),DVIN,3)
DHU=UHC +DHI M)

140 CONTINUC
WRITEC6,8TH) OHL

BT6 FURMAT{*2*,* TOTAL SWAY DEFLECTION AT TUOP OF FRAHE="4E12.5,% IN.¢)

€ RETURN TO °*HINGES® TC DERIVE MUMENT VALUES.
X¥=1.9
WRITEL6,.R60)
CALL HINGES
Xy=0. .

C COPPUTE LATERAL LOADS CARRIED BY SHEAR WALL(S).
IFINSH.GT.0) CALL LDPART .

(4
€ NOW PROCEED FO [NCREASE LOADS FOR NEXT PASS THROUGH THE PHUGRAMME,

TFLYYY.GT.0.0) GO TO 148

C YYY GY 0,0 TNOICATES THAT INSTABILITY HAS BEEN ENCUUNIEKED AT SUME

L PREVIOUS LOADING STAGEs AND WE WILL DESIRE TO AUGHENT THE LOADS

€ ACCHRDINGLY.

TRUET=IsPSH(NC-1)

C HGw LEFT U5 SET THE SIZE OF LOAD INCREKENT AS A FUNCTION OF THE DEGKEE

C UF *DETERIURATIUN® OF THE FRAME.

TFU{4*KHC).LTLINUET) DEYF=1.0
TFOINCETLLF o (4*KHU Y QAND (2¢KHC ) LT INDETY DEYF=0.5
TECINDETLLE S U2KHC Y JARD . L4*KHC ) LT (3¢ INDET)) DETF=0.25
IFCUI*INDET ) LEL{4*RHC)) DETF=0.125

‘60 10 150

148 IFLYYY.GE 4.0} GG TO 152
LE. STOP PRIGRAMME & LOAD ADJUSTMENTS BEYUND THE FIRST EVIDENCE OF
INSTABILEITY,

YYY=YYY+],
DETF=0ETF/2.

¢ MOW LET US CONSERVE SOME OF THE CURRENT VALUES. SHOULD THE REVISED

C LOADS LEAD YO EVIDENCE OF INSTABILITY, THE STRUCTURE CAN THEN HE

€ RETURNED TO ITS CURRENT STABLE.STATE.

150 KHC E=KHC

00 154 F=],M5
DHELM)=DH(N)

00 155 N=1,NC
KCT{MaNI=KC LM N}

RPUMN) =RIM,N)

CONTINUE

DO 156 N=1,NN

KBI{M,N)=KB(M,N)

156 CONTINUE
154 CUNTINUE

NUWs TU SPEED UP THE CUNVERGENCE IN *PCOL® AND *ITER®, EXTRAPOLATE FOR
NEW APPROXIMATE VALUELS OF DH{MIS AND RUM,MN}S, USING FHE RELATIUNSHIP
OF $FAUGL® VS *DHCY'(THE TOTAL SWAY DEFLECTION OF THE TUP OF THE
STRUCTURE) AS THE FUNCTION FOR EXTRAPGLATION,

FOR THE FIRST 2 LUAD INCREMENTS BEYOND INITIAL LOADS, LINEAR
EXTRAPOLATION WILL BE USED. IF,HOWEVER,AT LEAST 3 ‘PUINTS OF IHIS PLOT
HAVE REEN 1BTAINED, LAGRANGE'S EXTRAPOLATION PROCEDURE, FETTING [HE
LAST 3 PUINTS TO A QUADRATIC EQUATION, WILL BE USED.

FIRST STORE PREVIOUS VALUES OF *FAUGL® AND *UHC® FOR LATER USE.

FAUGLP{3)=FAUGLP(2)}
FAUGLP{2)=FAUGLPLL)
FAUGLP( 1) =FAUGL
DHCP{ 3) =0HCP L2}

aa

15

w

Rt N N Y NN

OHLP{1}=DHC
C NOW ALTER LOAD FACTORS
FAUGE=FAUGE +DETF *AUGE
FAUGL =FAUGL+DETF*AUGL
FAUGLL=FAUGLL#DETF*AUGLL
FAUGDL=FAUGUL 4DETF*AUGDL
IFINP.GEL3) GU TO 160
RAT10=FAUGL/FAUGLP(L)
GO TO 1862
160 RATIO={ (FAUGL-FAUGLPI2}} *{FAUGL-FAUGLP{ 3} )*UHCP (1) /LIFAUGLPL1)-FAY
L6LPL2) ) *LFAUGLPIL)~FAUGLP {31} )¢ (FAUGL-FAUGLPI 1) ) #{FAULL~FAUGLP(3}]}
2%DHCP {217 (LFAUGLPL2)~FAUGLPI1) } ${FAUGLPL2)-FAUGLPI3}) } ¢ (FAUGL -FAUG
BLPAL) B2 (FAUGL-FAUGLPIZ) ) *DHCP I3}/ (LFAUGLP(3)-FAUGLPIL) D $LFAUGLP L)
4-FAUGLP{21}}) /70HC
C C*RATIO® REPRESENTS DHCUINEW EXTRAPULATEDI/DHCIPREVEOUS CYCLE}
162 DO 164 M=],MS
DHIM}=RATIO*OHI (M}
DO 165 N=]1,NC
RIMN)I=RATIOSRP(M,N}
165 CONTINUE
164 CONTINUE
GO TO 126

1%

©

[
€ TE. RETURN wITH REVISEDU LOAD FACTURS AND EXTRAPOLATED UEFORMATION
€ VALUES, FOR ANOTHER PASS THRUUGH THE PRUGAMME.

[4
€ NOW CONSIDER THE CASE WHEN EVIOENCE OF INSTABILITY WAS ENCOUNTERED IN
C SUBROUTINE *ITER® OR *HINGES® ,OR IN SLOW CONVERGENCE OF COULUMN P*S,
4
134 WRITE(6,R78)
878 FORMAT{ 0", #*és- INSTABILITY INDICATED WITH THESE LUAD FACTORSY)
TFIXXX.EQ.1.00 GO TO 171
1F(XXX.EQ.2.0} GO 10 172
IF(XXX.£Q.3.0) GC 7O 173
TFIXXX.EG.4.0) GO TO 174
TE(XXX.EQ.5.00 6C TU 175
171 WRITE(6,860) LIMITD
880 FORMAT(®D¢,* JTERATION PRUCEDURE FOR OEFUKMATIONS FAILED TO CUNVER
IGE AFTER",16,° CYCLES®)
GU T0 177
172 WRITEL6,AR2) M, N
882 FORMAT('0¢,* JOINT MECHANISM DETECTED AT JOINT(*413,%,%,13+%1%)
GU TU 177
173 WRITE(6,884) =
8B4 FORMAT(*0%,% {NSTABILITY CF SUME STUREY 15 INDICATED®*)
G6J 10 117 N
174 wRITE(6,896) ¥
A86 FORMATL*NY, ¢ SWAY MECHANISM DETECTEU IN STOREY',13)
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can

a0 a0

2 Xz XzXaXzl

OO nO0oan

cu Y0 177
175 REIVF 1648940 ACCURP,LINITP ‘
w34 FpRMATEON,¢ s+ COLUNA LCADS FAILEC TO CONVERGE T0 A CLOSURE OF ¢,
159.¢,° AFTERY¢16,° CYCLES.®) .
177 wWelYE( B R06)
WPITE (6o8A3F KHC
FORMATL1Xs® UNSTABLE STRUCTURE CONTAINS®,[4,* HINGES®}
WRETE(6,864) KP
WRITEI6,868}
WRITE(6,870)
WRITEL64871) ¢
WRITE(64873)
DHC=0,
D0 176 ¥=1,HS
HRITE(698T2) MaRIMa1)oKBIMy L) gRIM2DKBIM,2),RIM,3)
HRITE(60874) KCUMyl)gKCUHK2) sKC{My3) 4 0H{N}
WRITETG69BT5) PUIMol)oPUM,20,P(N,3)
NRITE(6,875) DVIMyL114DVIM,2),DVIK,3)
BHC=DHC $DHI M)
176 CONTINUE
WRITE{64876) DHC
WRITE(64888) .
FORMAT(®0%,* PROCEED TO REDUCE LOADS FOR NEXT CYCLE.®)

ee3

D26

PCOL

SUBROUYINE PCOL

E COMPUTES AXIAL LOADS IN ALL COLUMNS

CUMKON A.ACCURD.AL(ZO.)).AHIZO-!"AUIZO.3).8:8AS(20.2
1(20.2).CIZO.S).CAS(ZO.!).CB(ZO.BI.CI(2093"CX-CXF'CY.é;g?;fgafzagt
ZUHIIZOI'DPB.DPC'DV(2013).818(20:2I'EIC(2013I'F;FAUGDL.FCBnFCC.Fcn'
BFVByFVC'FVHoH(ZD)-P(ZO.}IpPElJ)uR(2173l.RBP(ZOuZlvRCP(ZO-DI.Slzo 5
AD.SP(Z)'SX.SXF.SV|SVF.YL(20,2).YPC(ZO:J'.TPL(ZO.ZD'YPRAYE.IPRAIH:Y .

’SRIZOpZ!'H(ZOI.HD(ZO:Z).NL(ZO:Z).NTN.X-XB(ZO.Z)'lC(ZOoil-XXK.XY'Y.X

620 KBE2Dy23,KCU20,3) (KH KHCo LIMITD oMo M5 9Ny NCoNNys NP o NSH
00 300 toa nk v3) 4KH, , *MaNS oNyNCoNNg NP o NSHoNWE3)
D0 301 M=],M5

soe IFIYYY.GE.4.0} GO TO 152 _ GG=FAUGOL®CBIM, [)*CT(M; FIOHINI/ 12,
YYY=YYYsl. € GG REPRESENTS SELF-WEIGHT OF COLUMN -

NOW RETURN THE STRUCTURE TO ITS LAST STABLE CONFIGURATION. ::‘:E?:;li GO 10 304 . \
KHC=KHC 1 . a .
DO 189 M=1,MS 60 10 306 ~—
00 181 N=s1,NC 304 AA=PIM-1,1} S
KCIMoNI=KCI (M ¢N) € AA REPRESENTS LUAD TRANSFERRED FROM COLUMN ABOVE

181 CONTINUE 306 N=1-1 ) .
00 182 N=1,KRN C IE. YHE LEFT-HAND BEAM CONTRIBUTFONS WILL BE DEALT WITH FIRST,
KBUM N} =KBI{MNI SIDE=+y,

182 CONTINUE .C IF SIDE=+1., LHS BEAM IS BEING CONSIDERED. SIOE=~1. MEANS RHS BEAM,

180 CONTINUE € THUS WE TAKE AOVANTAGE OF THE ANTISYMMETRY OF COEFFICIENTS.
XXX=04 €C=0.

NOW CUT THE PREVIOUS LOAD INCREMENT, WHICH RESULTED IN EVIDENCE OF 0D=0,

INSTABILITY, IN HALF, AND DERIVE NEW REODUCED LOAD FACTORS TO ﬁi'g-

*ZERD IN® ON THE ACTUAL INSTABILITY LOAD FACTORS.
DETE=DETF/2. S
FAUGE=F AUGE-DETF #AUGE
FAUGL=F AUGL-DE TF # AUGL
FAUGLL=FAUGLL-DE TF#AUGLL
FAUGDL=FAUGDL-DE TF *AUGLL

NOW RETURN TG OBTAIN EXTRAPOLATED VALUES OF DHIM)S AND R(M.sNIS FOR THE

REVISED LUAD FACTORS.
60 10 158
UNLESS YYY=4.0, IN WHICH CASE, THE LAST STABLE CONFIGURATIUN, AND ITS
ACCOMPANYING LOAD FACTORS CAN BE TAKEN, WITH JUSTIFIABLE ACCURACY
AS THE FAILURE CONDITION.

152 WRITE(6,890) __—

B90 FURHATL'0% % PROGRAMME STOPPED AFTER & LOAD ADJUSTRENTS BEYOND Fiff
1ST EVIOENCE OF INSTABILITY®)

WRITE(6,892)

892 FORMATL'0%,¢ TAKE LOAD FACTURS AND DEFORMATIONS OF LAST STARLE CON
LFIGURATION AS FAILURE CONOITIONS!)
sTee
END

[

BEAMS

SUBRUUTINE BEAMS

CUMPUTES PLASTIC MOMENT CAPACITY AND EI FOR ALL BEAMS, BASED ON
ENTERIOR SUPPORY TENSION REINFORCEMENT, ASSUMING ONLY TENSIUN STEEL.
A PERMISSIBLE HINGE ROTATION VALUE 1S OERIVED BASED ON PCA LAB TESTS.

COMMON AgACCUPD,ALL2043),AN{2043),AU(20,3),B,BA51204204B8020,2)4BT
l(ZO-Z).C(ZD.SD.CAS(ZO.SO;CB(ZO.3)'Cf(20-3l'CX.CXF.CV'CVFQD.DMIZOD.
20H1{20),0P8,DPC,DVI20+3),E1B(20421,E5C020,3)yF,FAUGDL JFCB,FCCoFCHy
SFVB'FVC’FVH'H(ZOD-P(ZO.]).PE(iI.RlZl'J)'RBP(ZDvZ"RCP(ZOnil-S(ZOpJ
A1oSPU2) ¢SXsSXFeSYsSYFoTLI2042) ¢ TPCU20,3),TPLE2042) s TPRATE, TPRATH, T
5R(20.2I|¥(ZOI'HDGZO'ZD'HL(ZO.ZIvNTNvaXB(ZOle.XC(ZO'B)'xxx.XV'V'l
64d)KBL20921KCE2043) ) KHo KRGy LIMITO MoMS ¢ NyNC o NNoNP o NSHy NW{3)

EN=500,/SQRT{FCB)

B0 20N p=1,4NS

D0 201 N=1,NN

PS=BAS(M,N)/(BBIM,NI*{BT(M,N)-DPB))

NOTE: *BAS®* HERE REFERS ONLY TC SUPPORT REGION TENSION STEEL.
YOK==PS*EN¢SQRTIPSEPSFENSENS 2. #PS*EN)
RYC=FYB/130.0E6%{BT{MN}-DPBI*(1.~YOK)}

TPLIM NDI=BASIK NI SFYB#{1.-YOK/ 3, ) (BT (H,NI-DPB)

EIBIM,NI=TPLIM,N}/RYD

UK=PS*FYB/{0.T*FCB)

REPIM,N)=0,0038/2.%UK)

201 CONTINUE

200 CONTINUE

STRICTLY SPEAKING, THESE BEAM CHARACTERISTICS REFER ONLY 1O THE BEAM ¢

SECTIUN AT AN INTERIOR SUPPORT, THE EFFECTS OF VARIATION IN
REINFORCEMENT AREA ALONG THE BEAM HAVE BEEN NEGLECTED IN DERIVING ¢
VALUES OF RBP AND EIB. IT WILL BE ASSUMEU,HOWEVER, THAT THESE VALUES ¢
ARE APPLICABLE TO THE ENTIRE BEAM LENGTH. WE WILL, HOWEVER, CORKRECT
THE MPL VALUES AT EXTERIGR SUPPORTS AND AT MIDSPAN BY MULTIPLYING
THIS VALUE OF TPL{M,N} BY *TPRATE* AND *TPRATM® RESPECTIVELY, WHERE
APPLICABLE. |

RETURN

END
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C CC REPRESENTS CONTRIBUTIONS OF BEAM SELF-KEIGHT AND LIVE LOAD,

C DD REPRESENTS CONTRIBUTICNS OF BEAM LEFT HAND END ROTATION.

C EE REPRESENTS CONTRIBUTIONS OF BEAM RIGHT HAND END ROTATION,

C FF REPRESENTS CONTRIBUTIONS OF FEM'S & VERTICAL JOINT TRANSLATIONS,

IFI1.£Q.1) GO VO 318
SKIP LHS MEMBER CONSIDERATION--NO LHS MEMBER.
DEL=DVIMyNeL}-DVIN,N)
WT=(WLEMoNI+NO(H NI +FAUGDL®BB (M N)*BTI{H,N) ) /12,

WHL=0,

WWR=0, :

IF(NSW.EQ.0) GO VO 307

D0 309 K=s1,NSN

IFUSTDELEQ L 0 ANDLILEQ.NNIK)) WWR=CT(MyI)
TFUSIDELEQ 1. CLAND, L1-1) cEQ.NKIKD)) WHL=CT{M,1-1)

TFUSIDELEQe(~1,03 . AND. T.EQ.NWIK}) WHL=CTIM, 1)
TFOSTOELEQ.{-1,00.AND. {T¢1)EQuNWIK)) WWR=CT{MyIs1}

CONTINUE

SR=SP{N}-{WHL¢WKR)/ 2,
CC=CCHlIWLIMINI#WDIM N} ¢FAUGDL9BB (M NI*BTEM,N) E*SR) /24,
KK=KB(MyN)

GO TO (3114312,313,3144315,3164317)4KK

WRITE(6,900)

FORMAT(LX,*%%2-BEAK COUNTER OUT OF RANGE IN SUBROUTINE PCOL®)
DO=DD4S [DE*6 L PEIBIM,NI*R(MNI+{ 1, ¢WWL/SREZ (SR5R)
EESECOSIDE*6.*EIBIM NI *RIMN+ 1101, +WHR/SR) /( SRESR)
FF=FF-SIDE®12.ELB(¥,N) #DEL/{SRESR#SR)

60 10 318

DO=DU4SIDESL5¢ETB{My NI *R(M,N} *WHL/ {SRESR*SR}

EE=EE#SIDE* I PEIBIM,NI*( 1o +0.54MWR/SRIR( My N#1) /7 (SRESR)
FFaFF-STOES(I.#EI3IM N)SDEL/(SROSRESR)-1,5¢TLIM, NI /SR-KT®SRTB.)
GO TO 318

DO=004S IDE®3. SEIBIMNIPRIMINI*( 1, +0,5+WWL/SR}/{SR#SR)
EESEE+SIDESL.S®EIBIM,NISRIM N+ 1) ¥ WWR/ [SRESR*SR)
FFaFF-SIOE*(3.%E1BLM,NISDEL/(SR¥SR*SR)-1.5¢TRIM N}/ SR¢NTOSR/ B4}
GO To 318

X=XB(M,N}

Y=SR-X

FXY=1o/7(XOXS(1o/7{XXEXI+L.70VRYRY)))
FYX=1./CY®P8i1 /UXEXOXD+ 1o /LYSYEY)))

Z=FYX-FXY

O0=DU+SIDESI . SEIB(MINISRIKNI* {1, 40.5*NWL/XI*[1.42/X)/{X*SR}
EE=EESSIDENISEIBIMINI*REMINS 1) ¥ (1,00 SERNR/YI®{1.~2/ Y} /LY *SR)
FF=FFASIDES (I SEIBIMNI*{{Lo0Z/XDDVIMGNI/ZEXEX) =01 0-27Y DS0VIM N1}
L7UYSY)) 60, 212500TH(YSYR(L.-2/Y)-X$X2 (1o 42/ X}+4.*SROZ) -1, 5#TPRATHITP
2LUMINI (1. /X412 7YDD/SR .

GO Y0 318

X=XBIHN)

Y=SR-X

FF=FFoSIDES(ITLIM,NI-TPRATMATPL (MyN1)/X40.54WT4Y}

GO T0 318 -

X=XB{MyN)

Y=SR-X

FF=FFeSTOES({TR(M NI+ TPRATHATPLIM,N}) /Y~0,5oRT*X)

60 70 318

FF=FF+SIDE*(TR{M NI+ TLIM,NI) /SR

IF(SIDELEQ.{~1.00} GO TO 320

B8OTH LHS AND RHS BEAMS HAVE BEEN CONSIDERED.

FFU1.EG.NC) GO TO 320

THERE IS NG RHS BEAM. .
RHS BEAM WILL NCW BE CONSIDERED. ;
SIDE=-1.0 '
N=1

60 TO 31C

PUMyI)=AACCH+OD+EE+FF+GO

BFCL1EC L ORAIZEGINC) PUM II=PIMe 1) ¢WTW

CONT INUE

CONTINUE

RETURN

END




AXDEF

SUBROUTINE AXDEF

C COMPUTES VERTICAL DEFLECTIUN OF ALL NUDAL POINTS USING HOGNESTAD®S

C CONCRETE STRESS-STRAIN CURVE IN A COMPOSITE SYMMETRICALLY-REINFORCED

€ COLUMN SECTION .
4

COMMNON A.ACCURU.ALIZO.J'.AH(ZO:JIwAU(ZO.!l.B.BlS(ZO-ZD-BB(IQ'ZI'B!
1120»21.C(ZO.)IvCAS(20-3l'CB(20¢3).CT(20.3).CX.CXF.CV.CYF'U.DHIZOI.
ZDNllZﬂ).DPB.DPL'DV(ZO.3Dp&lH(ZU.ZlvEICl20.3l.F'FAUGDL.FCB-FCL'FCHv
arvu.FVC.FVN.N(ZOl.PlZOle'PK(B)'RIZI.JD.RBP(ZO'ZI.K(P(ZO.JI.S(ZO-)
i).SP(Zl.Sl,SXF.SVvSVF.TL(ZD.ZD-19((20-JI'IFL(ZO.Zlg'PRAIE.YPRAIN.'
5R(ZO.Z).N(ZOI.ND(ZO.Z).HL(ZO-Z"HYH.X.XBl20.2l.KC(ZO.J).XXI.XV.Y'I

6,J.KH(ZO¢Z).KC(20'31QKM'KHC.LlHl‘D.H.ﬁS'NqNC'NN'NPgNSHnNN(J)
00 400 N=1,NC
FC=HLC
IFINSW.£Q.0) GU TO 399
DO 401 K=14NSW
IFIN.EQ.NWIK}) FC=FCW
401 CONTINUE
399 CONTINUE
00 402 JJy=1,M5
M=MS-SSe]
LEs WORK UPWARD FROM BASE,
TFEPIMIN)LLELO.0) GO TO 404
NEGLECT LENGTHENING DUE TO TENSION IN COLUMNS.
X=0,854FC*(CBIMNIFCTIM,N)-CASIM,N)I/(0.001940.0019}
Y=L  THFCO(CASIM NI -CBAMINI*CTIH,NI)/0.0019-CASIHsN) $30.0E6
L=P(M,N)
SFULLYSY-4,4X42) LE.0.0) GC TU 406
DEL=HIMI¥{-Y-SQRY{Y*Y-4 &X*Z})/(2,¢X}
GO T0 405
406 DEL=~H{M)*V/{2,%X)
GO YU 405
404 DEL=0.
405 1F{JJ.EU.1) DVIMyNI=DEL
TFLIJe6Tol) DOVI(KINI=DV(M+L,N)+DEL
402 CONTINUE
4TC CONTINUE
RETURN
END

Lol
"
.

CoLS

SUBROUTINE COLS

MPL,EIC,ALLOWABLE HINGE RGTATION, CE&S FOR ALL COLUMNS, USING A
RATIONALIZED MOMENT~CURVATURE-THRUST RELATIONSHIP,

ancoe

COMMON A.ACCURD.AL(ZO.BI,ANiZO.3).AU(ZO:3I-B-BAS(ZO'ZI.88(20.2).8'
1‘20'2’|C(20.3,'CAS(20.3,ICB(ZOQ3"Cr(20'3,0CX'CXFOCV.CVF|D'D“‘20,'
ZDHll20).DPB:DPC.DV(ZO'S)'EIBIZO.ZluElLl20-3I'F-FAUGDL.FCB'FCC'FCHv
SFVB-FVCyFVH.HIZODpP!ZOle.PE(3lleZIyJI.RBP(ZO-Z).RCP(ZO-J}'SIZO'J
Q"SP(ZI;SX.SXF.SV.SVF.YLIZO.ZI.TPC(ZO.S).YPL(ZO-ZIrYPRAUE'YPRAYM.I
BRIZO.ZI.N(ZOI'ND(ZO'Z).HL(zovZI'VTH.I,XBlzopZIrXCIZO.3)-XXX.XV.V-l

6.J.KB(20:2)'KC(20'3I.KH;KHC,LKMITD.M'HS.N.NC.NN.NP,NSN.NH(S)
PEXC=0,
00 S00 N=21,KC
FC=FCC -
FY=FYC
IF(NSK.EQ.0) GO TO 498
DO 499 K=1,NSW
IFINLJEQ.NWIKY) FC=FCHW
TFINGEQ.NHIK)) FY=FYW
499 CONTINUE
498 EN=500,/SURT(FC)
D0 501 M=1,M5
TF{CTIHINILLE.20.0) DPC=2.0
IFICT(MINI.GTo20.0) OPC=0.1#CT{M,N}
O=CT{M,N)-DPC
RB=(0.0038+FY/30.0E6} /0
PS=CAS{M,N)/(2.%CB(M,N)&D}
X=0.T5FC
YaP$*{30,0E6%0.0038-FY)
Z=-PS5*30,.0E6%0,00384DPC/0
YY=YIY-4 oX¥T
IF{YY.LT7,0.0) GO TO 510
UK={=Y+SURT(YY)}/(2,%X]}
RU=0,0038/(UK*D)
GG 10 512
510 RU=0.0
WRITE(64900) M,N

F

FROM BASIC COLUMN SECTION PROPERTIES) USING CURRENT P VALUE, COMPUTES

900 FORMAT('0%,* #*$RU OF COLUMNE®413,%,%,(3,%) CANNGT BE COMPUTED IN

ISUBROUTINE COLSs SINCE IMAGINARY ROOT PRESENT?)

512 YUK!'Z.'PS‘ENOSQRT(4.‘P$‘PS‘EN‘EN42.‘PS’EN‘({.‘OPCIDII
RYO=FY/(30.0E64D%{].~YCK))
PB=C.00257*FCACBIM,N)/RB
X=21e/(2.%EN)
Y=2,%PS¢PB/IFYSCBIMN) D)
2=-PS*L1.4DPC/O}~PB/ (FYSCBIM,NI*D}
YOK={~YISQRI{YSY~4,0X$2))/(2.8X)
RYB=FY/(30.0E6*D*(]1,-YEK))
PU=0.858FCHCBIM,NI*(CTIN,N)-2,9PS*0)+2.8PSSCBIM,N) $DSFY

EB=CY(H.Nl’(lQS.O‘RB‘(D-DPCl'CAS(H.ND‘FV/(CB(H'N)*C'(H.N!‘FC)00.5-

11.542F~3/7(RBECTIM,NII}
TB=PB*EB
TU=0.5%CAS{HsN)*FY* (D-DPC)
€ MAVE NOW COMPUTED BASEC COLUMN SECTION BEHAVIOURAL THARACTERISTIC
£ wvALUES
€ NCw APPLY P BND OERIVE MPCLELC,RCP,CLS,
PAPPL=P{V,N)

[
4
1

[aX2XaXa¥a)

LxXaNa¥s]

aooo

D27

1F(PIMyNILGELPU) PEXCSPEXC41.0
TFUPIF.N) LGELPU) PAPPLED,.90pPY
TE. TO CUMPUTE MPC,PHIY,L PHIPC FOR CASE WHERE P GT PULT, USE &
P VALUL=0,94PULT, THIS YIELDS UNCUNSERVATIVE RESULTS.ees
TFEPUFIN)oGEWPULANDLPEXC JEQD O WRITE(6,9011 MoN,PIMN},PY
UE, NOTF UNLY THE FIRST OCCURRENCE IN EACH PASS THROUGH *CoLse,
901 FORMAT{'0%,* #eee p N COLUMN® 3 13413,% =%,E12.5,%, PULT=*,E12,5,°
LSCRUSHING FATLURESCOULD BE OTHERS®)
CJHIPIMGND LLELN.0) GU TO 505
LFEP(M,NI.GT.PB) GO TD 502 X
RY=RY(s {RVB-RYO)*P(H NI /PE
TPCUMINI=TUC2 . 61 TH-TU)CP(M,NI/PB-LTB=TUI*P (N N} $PCN,N}/ (PBEPY}
RPC=RHEPH/PIH, N}
FFERPC.GTLIRUS(1.-0.6%P(H,N)/PB)})) RPC=RUP{ 1.-0,6%P [HeNI/PRY
GD 10 504
505 RY=RYQ
TPCIM,NI=TY
RPC2RY
60 10 504
THE EFFECT OF AXIAL TENSION IN COLUNNS 1S NEGLECTED,
502 RY=kYU&(PU-PAPPL)/(PU-PB) .
© YPCUMNI=TE*{PU-PAPPL)/(PY-PB)
RPC:RB&(lDP(/CIlN'NIOO.Ol)ORU-RBI'(PAPPL-PHII(O.!OPU-PBl
TE(PIMyNI.GT, {0.89PU}) RPL=5,RUSLUPC/CT(M, N} 60,010 (1, -PAPPL/PY}
504 EICIM,NI=TPCIM,N}/RY
RCP (M NI=RPC*D/2,
THIS VALUE OF PERMISSIBLE MINGE ROTATION (DISCONTINUITY AT A PPUINT®
HINGE) 15 BASED ON BEAM TESFS CARRIED OUT BY MATTOCK AT PCA, AND
EXTENDED HERE FOR CONSIDERATION OF COLUMNS. AS COMPUTED, IT APPLIES
YO HALF A HINGE {IE. AN END HINGE).
NOW COMPUTE C & S,
IF{P{FyN},LE.O.0) GO TO 506
E=SURTIPIMINIZETCIRGN) ISHIMN)
IF(F.LE.0.1) GO TO 506
Na2,=2,9COST{FI-F$SINIF)
CUMNI=FO(SIN(FI-F¢COSLF) I /X
© SUMaN)=FS{F=SIN(FII/X

GO 10 501

506 ClM¢NI=4.0
StMyN)=2,0 :

AKY POSSIBLE STIFFENING DUE TO COLUMN AXIAL TENSILE LOAD HAS BEEN
NEGLECTED. MUREOVER, FOR SMALL P VALUES: C & S VALUES HAVE BEEN
SET, SINCE THE TRIGONOMETRIC EXPRESSIUNS FOR THESE VALUES 00 NOTY
CCNVERGE FOR SMALL P VALUES.

501 CONTINUE

500 CONTINUE

RETURN
. END

CASE4

SUBRUUTINE CASE4

COMPUTES Xy YolXoSXoCYySYoCXFoSKFoCYFySYF oA BoD,F FOR COLUMNITIoN) WITM
CASE & HINGING CONDITEION,

COMMON A4 ACCURDyAL{20,30)AM(2043),AUL2043),8,BA5120421,88020,2),8T
llZO'Zl-CIZO.Sl.CASlZOoSD.CB(ZO-JlvC'(ZOnJl'CI-CXF-C'oCVF.D-DNIZOIo
20HI(20),0P8,0PCsDV(2043),EEBE20,200E1CE20,33,FFAUGUL +FCBoFLL oFCis
IFYBIFYC  FYNHI20),P12043) ¢PEL3) RI2103)4RBPCZ0¢2)oRCPE2043045620,2
) oSPU2) oSXySXFeSYoSYFoTLU20,2)¢TPCI20,3),1PL 1204204 TPRATE, TPRATN, T
SR(ZO.ZD'H(ZO)pMD(ZO.Z),NL(ZO.ZI.HTN:I.XB(ZO.ZI:XU(ZO.ll.!ll.lv,'ol
69J9KBI20¢214KC12003)oKHIKHCILIMTITO My MS N oNCoNNoNP o NSHoRWI 3 )
X=XCLI4N)
Y=HIT}-X
TF(PLILN)LLE,0.0) GU TO S50
FX=SQRT(PIIJNIZETCLI NI }SX
IF(FX.LE.0.1) GO 10 552
KN22.~2.,%COSIFX)-FX*SIN(FX}
CX=FXS(SIN{FX}-FX*COSIFX))/XX
SX=FX¥ (FX~SIN{FX))/XX
GO TO 554
552 €Xx=4.0
$X=2.0
FX=2FX*Y/X
IF(FX.LE.0.1} GO TO 556
AX22,~2,8COS{FX}~FX*SIN{FX)
CY=FX*(SIN(FX)~FX®CUS(FX})/XX
SY=FX*{FX~SINIFX))/XX
G0 10 5539
556 CY=4,0

SY=2,0

GO TO 558
550 CX=4,0
CY=4.0
5X=2.0
$v=2.0
CXF=CX/ICX#CX~SX*SX}
SXF=SX/(CX®LX-SX*5X}
CYF=CY/(CYSCY-SY*SY)
SYFxSY/{CY#*CY-5Y*5Y) -
B=XZHELI-PULL NI SYSYSCYF/EIC(T4N)
A==PLl N)*{YRYSYECYE/ (BEH( 1)) ¢ XX*CXF}/ELCCToN]
O=Y/HULI-PLT NI EXOXSCXF/EICLT,N)
Fa-PLIyNI#(XSXOXSCXF/LOSHITI) oY OYRCYFIZENC( T, N}
RETURN
END

55

>

55
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SURRULT INF ITER

COPFUTES STUREY LATULRAL SNAY DEFLECTIONS AND JOINT ROVATIONS BY THE

GAUGSS-STEDEL TTERATSUN PROCEDURE TO A CLOSURE OF «-*ACCURD®, WITH
THSTABELITY ASSUMED AFTER *LIMITOT CYCLES OF BTERATION
COMMON BeACCURDOALIZ0 19 ARI20,314AUCZ0,33,8,BAS12042),88{20,2),81
1420420 40120,300CASE20,31,CRI20,303CT12003)4CXsCXF,LYoCYFo0,0H{20) o
ZDHT1200PEOPLIDVI20,3) o EIBI20421E1CE200330F oFAUGDL 1FEB2FLL oF Cii s
JEYBoFYC, YW HI20 4PU20430 0 PEL3) 4RU21e314RBP 120420 ,RCPE20,3),5(20,3
4YoSTU2) oSReSXT g SYeSYFoTLU209204TPCI2003),TPLI2042)s TPRATE, TPRATM, T
5“(20'21oNl?Ul.NU(ZO:Z)pHLI20.2D.HTN-K.XB(IO.Z);!CI?O.JD.lngXV.V.l
69 oKBI2702) 4 KLI2C43) s KH KHCo LEMITOMoMS oNoNC NN NP o NS, N T 3)
J=n
600 J=Jsl
kD=0
KR=9
FIRST COMPUTE STOREY LATERAL SWAY DEFLECTIONS VU AVOUID UNDERFLUW IN
ROTATION COMPUTATIONS WHEN J=t.
DO 602 M~1,MS
DHR=0.,
vv=0.
T1=9,
12=0.
Vu=0.
0O £04 N3] eNC
KK=KL M, N}

GO 1O (611+612,613,61496158,Kk
WLITE(6,802)
AN2 FORMAT(®0®,* s¢4-(CLUMN CCUNTER QUT OF RANGE IN SUBRUUTINE ITER®)
611 V=ASUHGNISCEH N) I PETCIM NIERIM, NI /HIM)
T=USIMeNIeCIMNY IRESIC (M NIORIHS LN} /HIM)
T==2.4(SUMOINISCLMNIJSETCIHNIZEHIMISHIM) D oP(N, N}
u=0.
60 10 616
AL2 VERCIMG NI SEMINI=SUM NISSEMNEDRETC LM NI *RIKe NI ZLCEH ND *HIHD §
7=0.
Z=USEMONI RSB NI -COH NI SCIMGN) DRETCUMa NI /LSRN IOHER) SHENT 4P IM,N)
U=ALIMoNIATPCUMNI®ISIMNI/CIMgNI oL, )
60 10 616
612 v=0.
TolCUMNIACIM NI -STH NI SIHINI DHETCTH NI PRIME L, NI ZCCEMND SHIMDD
l=(S(F.N)‘S(N.N)-C(M.NI’C(H.N)I‘ElClM-NDI(C(Nle‘NlH)‘N(H)l’?(ﬂle
U= AU{M NI STPL My NI SIS (M NIZCIMIND 4L, )

-

GO 70 616
6l4e 1=M
CALL CASES

Va-PIMNISYS(X/{HIMISAE) 4], /F)+R(M,N)
Te=P{H NI *XO{Y/IHIM)*F*DI21./A) SR IH+1,N}
ZPLMGNISIYH (L 4 X/UHIMISD ) D/ZEHIMISF I 4X*TL L 4Y/ LHUMI®B) )/ CHIMD*R) ¢ 1.

1
U=AFIMORISEP (Mo NIZEECIMINI DR IXOX®{SXF JACCXF/UFSDID=YOYO (SYF/E4CYF/
ROASED e XOY$LXNSXF/{EAD)-YESYF/LARB) ) ZHIM) )
GU TV 616
615 v=0,
1=0.
Z=P{M,N}
U= AL CH N R AU LMy N B TPCTM N
616 VV=VVsy
TTaTTer
LT=2142
uu=tUsy
604 CONYINUE
HAVE NUW COMPUTED AND CUMBINED V,TeZyU FOR ALL COLUMNS IN STUREY M,
NOW CORPUTE TOTAL TRANSVERSE SHEAR LCAD AT FLOOR M.
WS=0.
D0 618 I=1,M
KSxnSewll)
618 CONTINUE
1F(J.EQ.1) 6O TO 620
WOULD OTHERWISE GET QVERFLUW SINCE DH(M) ORIGINAL=O,
DHR=={WSHITM) SVVATTeUUI /L Z2*DHIM) ) N
620 DHIMI == (WSPHIMISVVeTT oL /22
TFIUHRLLE « (14 #ACCURD) o AND JDHR . GE L (14~ACCURDI) GU TO 602
KU=KD+1
FEUJLEQ.LIMITO) WRITE(6,1160) M,LIMITO,DHIM)
1160 FORMAT{1X,*SWAY DEFLECTION VALUE IN STOREY®,14,¢ NOULO NOT CONVERGL
18 AFTER® 164" CYCLES., CURRENT VALUE=",E12.5)
1F KD 15 AUGMENTED, THE NEw VALUE UF OH(M} HAS NOT CONVERGEC CLUSE
ENOUGH (If. ¢-ACCURD) TO THE OLD VALUE.
602 CUNTENUE

NCW PRUCECE TO EVALUATE ALL NCDAL POIKT ROTATIOUNS.

DO 630 Faxl,MS
DO 631 A=1,NC
RKkeQ,

FIRST CONSIUER LEFT HAND BEAM AT JOINTIM/NI-~CCoGL,AG

TF{NJEQ.1) GO ¥O 634
1€, THRERE IS ND LEFT MAND BEAPM IN THIS CASE.
{=N-1
DEL=DVIM,K)-DVIK, 1)
WEa{WL UM B I oW IM, D) 4FAUGDLAOBIM, T)00T (M, 103/12,
WHL=0,
MuR=0,o
IFINSH.EQ.0) GO TC 623
Q) 622 X=14NSW
TEE1.EQUNNIKD E WHL=CT UM, T}
THINCEULNWIKE) mudsCT{M,N}
622 CONTINUE
523 SR=SPLIl-{uklednR)/2,
[SSLLIETSS)

a oo

. o D28

Gf TO 118106420643, 644,045,646,4470 k%
2 WRITELA,H04)
B4 FORMAT(PDY, ¢ eseoyfAM COUNTER UUT GF RANGE M SURROIEIHE T1Eke)
641 COXEIRIMGIIORIN IS 102,43 0wl SKIPEL. 4awR/5R T S WNK/NK )/ 3K
6L=-5.'EIU(N'ID'UtL‘(I.ONNRISRlI(SR'SM)‘NI‘S“‘Sﬂ'll.01.'HhRISE)IIZ

AGEETIMP 1120443 UWRY (2, ¢WWR/ SR}/ SR}/ 5P,
GO 1) 448
642 CO=l P LIMy 1) OWNL UL, +0, SOWNR/SRIGRIM, 1}/ 15RO SR )
GL== 3. OLIDIPy TESUEL L 40 SPAWR/SHIZOSROSRISHTOSASSHO (], 62, SOMNRSS
TRI/B. 60,90 TLINLTIOL1, 41 SORWR/ SR}
AG=3. ¢ [HIF )20 1.90.59WR/3RISTL. 40, 50wnR/SRI/SR
GU TU 648 . )
643 CO=1.SYEIBIM, FIWnRORIM, L )01, 40.5%WWL/SRIZESRO SO}
GL==T1450E MMy 1D CUELPWRR/ LSRESRESRI$TRIM) 11901, o0, T5OWUR/SR)+ 3, #WT
ISWWP*SR/16.
AG=0L IS*ELB{M, [ A UNR O WUR/ [SHASRASR]
GO TU A48
644 X=XB(M, T}
Y=S$R-x
FXY=L0/(X8X3 1o/ UXEXEXIOL70YOVOY)})
EYX=Lo/ZUYOYS () /{XEXEXIIL,/0veYAY)))
L=FYX-F XY .
CCE3 PLIBIH LIRIM T OUL, 40, 53WNL/XIR(FYX/X00.5001 .02/ X} 4WAR/SRIZ X
GLE3HELBIM L) *EOVIM)EN*(FYR/X40.SORNRS (Lo b2 /XD /SRIZUXRXI-DVIM,N) *
RO -FYX/Y40.50UNRY(La-Z/Y)/SRI/ZLYSY I oMTO(YSYISROII 4FYXS 2, $WUWR )40
2o SOWHRF (Y-Xe3 4211 /8,40, 50 TPRATHF TPLER L) 2 {1a- 300 (FYX00.58WNROLISR
33e01./%01./7))
AGE3 SETBIM, )11 00.SMWHR/YIN(ULa-L/YIOUNR/L 2, 9SR) 0L, ~FYX/Y)
60 10 648
645 CCsC.
GL=CUTLAM, T -TPRATHETPLIM,T) )1/X90.5WT*Y)${SROCSPHNR b= TLIM, | 140, 2
159N T+SRERWR

646 CC=0, .
GL=TRAM 1140, SOuNRE {{ TPRATMATPL (Mo 1) TRIM, 1)} /Y20.54uTo Y}
AG=n,

647 CL=C,
GL=TRIM D)0, SONNRR{TRIM, [IITLIM, 1) 00, S THSRASRI /SR
AG=C,
GO TO 648
634 CCxC,
GL=0.
AG=n,
648 CUNTINUE

NCW CONSIDER THE RIGHT HAND SEAM AT JOINTIRND=-DD4GR AL

IFIN.EQ.NC) GO TO 650
TEe THERE IS NO RIGHT HAND BEAR IN THIS CASE.
DEL=DVE{MyN¢1}-DV{M,N)
WT=URLEM NI eWDEOM,N) ¢FAUGDLSBBIM NI #BTIN,N) ) /12,
WHEL =0,
WWR=0,
IFINSK.EQ.N} GO TQ 626
DO 625 K=1)NSW
FFUN.EQ.NHIK) )} WWL=CT{H,N)
IFCINS L) EQ.NWEKD ) WHR=CTIH,N+1)
625 CONTINUE .
626 SR=SP(N)-{WHL+WNKR}/2,
KX=KB{M,N)
GO I {€519652465356540655¢6564657) KK
WRITEL6,804)
651 DO=EIB(M NIYRIMNETI®(2, 42 ¢ UNR/SRe 3, 9WWL* ] 1. +WWR/SRIZSR) /SR
GR=-G.FELBIM NICDELS (L4 WNHL/SRI/ESROSRI-WT*SR*SR* {1, 43, *unl /SK1/12

-

1.
AD=EIB(F)NI# 12,43 3WHL/SRI* (2. #HWL/SRI-2.9RWL/SRI/SR
GO T0 658

. 652 DO=1.SHETDCM NI ¢RI $RUMG N+ 1) *11.40,5¢WWR/SRI/(SRESR}

TRE=1 S0 IRLIVN) SUELFwHi/ USRESAXSRI € TL M NI S0 75 %MWL *LTLIMIN} =025
1$HT*SR¥SR)/SR
AD=0. 75*ETBIM,N) YunL #NKL/ (SR®SRSR}
GO TO 658
653 DD=1.5*EIB(M NI SRIMIN+1) ¢ WWR*[ 1,00, 5¥NKL/SRI/{SR#SR}
GR=-3,8EIB (M N) SDEL*IL .40 S¥NWL/SRI/(SRISR) 40,59 FRUM, N) -nTYSHESH/ 8
140, 25%WHL* {3 8 TRIM)NI =1, 25%WTSSR¥SR) /SR
AD=I HEIBIMNI( L 40 5OnWNL/SRIB (1. #0,5WNL/SRI/SR
6U TU 658
654 X=XB{H,N)
¥=SR-X
FXY=10/(XSXO0Lo/UXBXEXTELL/LYOYRY]))
FYX2LaZUYRYR(L 7 (XRXOX) 4D /1YRYRY)))
Z=FYX-FXY
DO=3 #ETBIMNIORIMNFLIE (1040 SHWWRIY IO LomZ /Y I#WNL/ (2. %SR)SFXYIY
sy
GR2I SEIBIMNIVLCLooFXY/XS (Lot Z/XDOWML/ L2 € SRIDODYIMND /{XOX )~ FXY
LAYOL 1o/ WML/ L2 #SRIVEDVIMNS LI/ EYEY) ) 4W TR (053 Hwl* (3, 426V ~K4,
285RI-X®X=3, #SREFXY) /8440, SVTPRATHTPLAMINI $ {3, 0FXY4 (1 /X410 /Y] =10n
3Lo5WHLSZ (1o /X+1./YY)
AD=3, *EIBIMyNI (1,00 S¥RNL/XI* (0. SYRNLO (1, +2/X}/SRE L4 =FAY/X)
GO 10 658
655 DD=C.
GR=TLIM NI 40, 5#5nls ({ TLUM /NI ~TPRATHOTPLIM,N) J#SR/X~WI?X®3R/2, 1/ SR
AD=0,

656 DU=0. -
GR=TPRATHOTPLIMNI ¢ (TRIM NI 6 TPRATHOTPLIN N] I OX/Y=0.5swTsX45Hs0. 5S¢ W
INLOLETRIM NI TPRATHATPLIM NI ) ¢SR/Y-0.5¢nT8SKP (XsSR) J /5K
AD=0,
GJ TG 058

657 LDD=0.
GRETLAM NI 40,5 %aw L (TLIMNI4TEIM NI -0, S*¥UTISRASRI/SK
AD=C, T,
GU TU 658

65C Dh=0,
GPac,
Ap=t,

A58 CONTINUE



———

[

[
<
c

c

acn

€
<
c
<
[4
c

[+

O OO0 & OO0 0G

ann aon

NUW CONSIDER CCLUMN ABOVE JOINT{M,N)~~ EE+GA¢AA

TF(V.EQ.1) GO TO &59

TE« THERE 1S NO CULUNN ABOVE (MyN) IN THIS CASE

Kk=KC(M=-1¢N}

1=M-1

GO TO (661,662:6634664,665),KK

WRITE[6,802)

661 EE=STT,NI*EICII.NI*RIL,NI/HETD
GAz-(CULyNI+STT NIDIOELICILGRISDHITIZ(HITI®HIT))
AA=CLLNISEICUTRI/ZHLL)

60 TO 666

662 EE=D,

GA=ALUL NI*TPCLLWN)

»

663 EEsC.
GA=AULTyNI*TPCEEoNI ¢SCIINI/CLyNI=CCETNIOCULoNI=SETaNISSTToN) ) oE]
ACCTSNIROHUTI/ZCCHE o NI RHELD#HET ) K
AA=ECITINIRLEToNI =TT RISSTLINIISEICT I NIZECET NI*HEL D)

GU T0 666

664 CALL CASE4
EE=~PUIINI*XSYORUI NI/ {H(TI%A%B)

GA=(AMEI AN SPUTANI/CASELCHTAND } Do EXEXSSKF = YHYOCYF/B~XSYSYSSYF /1 B+H
BUERDIAPUT NIRXS UL, Y/ (BRHOI) D bODHCED/ (ARHIT))

AR=-P(I N}*X/A

GO 10 666

665 EE=0.
 GA=ALIT(NI*TPCLI NI

659 EE=0,

666 CONTINUE

NOW CONSIDER COLUMN BELOW JOINTIM¢N)=~FF,GBsAB
KK=KC{MsN]
T=n

GO TO (671,6729673,6745675) KK
NRITELG,802)
6T1 FF=SUINI*EICUT NI*REI+L4NI/ZHIT)
GB=—(CEIyNI+STTANIFREICTT JNISDHUTIZUHILI*HIT)}
AB=CUI,NI*EIC(L,NI/HLL)
G0 TO 676
672 FF=0,
GBSAL(l.Nl'TPC(er)‘S(l.N)/C(l'ND—(C(I'NI‘C(I'N)—S(loNl‘S(le)l'El
TCEE NI*DHITIZLCUT,NI*H{T DI *HLT) )
AB=(COIsNISCETINI~SUT NISSTI4N)I*ETCLT L NIZ(CUT,NISH(T))
GO 10 676 .
FF=0.
GB=AUIT+RI*TPCLIN)
AB=0,
GO TC 676
CALL CASEs
FEx=P{1 NI*XSYER(L¢1,NIZ(HLT)*F2D)
GB=LAMET yNISP UL NIZ(EICCT yNISF) }9{-YEYSSYF 4 XRXSCYF/D+XEXIYESXF 7 {HT
LINSOMI4PLTNI*YST 1, o X/ (HITI*D) DSORI T/ IFRHCT N
AB=~PLT4N)*Y/F
GO T0 676
675 FF=0,
GB=AULI N}I*TPLLT NI -
AB=0.
676 CONTINUE

w

67

w

67

»

NOW CHECK FOR A POSSIBLE JOINT MECHANESH.
IF((AG+AD+AA+AB) .EQ.0.0) GO TO 686
NOW EVALUATE R(M,N} & RR,

IF{J.EQ.1) GO YO 688
1€+ WOULD GET OVERFLOW SINCE RUMsN} DRIGINAL=0Q.
RR=-(GL4GR+GA+GB+CCHDDIEESFF)/{ (AGHAD+AA+AB) *RIM N} )

688 R{FIN)=-{GL+GR+GA+GE+CCH+ODIEEAFF)/ (AG+ADAACAL)
TFIRROLEL(1.4ACCURD) JAND.RR.GE {1,~ACCURD)) GO TO 631
KR=KR+1
PPOILEQ.LINLITON WRITE(6,1162) MyN LIRETORUH(NT

1162 FORMATULIXe®JOINT ROTATION AT(*yT144%,%,14,%) WOULD NOV CONVERGE AFY
LER® 3 169% CYCLES. CURRENT VALUE=®,EL12.5)

631 CONTINUE

630 CONTINUE

AT THIS STAGE, ONE COMPLETE CYCLE OF ITERATION HAS BEEN CUMPLETED, AND
VALUES OF DHUM)KDyR{M,N) AND KR HAVE BEEN COMPUTED..
HNOW CHECK FOR CCNVERGENCE OF CEFORMATION VALUES.
TFIKD.GT.0.LR.KRJGT.O) GO TO 692
TE. REITERATE UNLESS J=LIMITD
G0 10 498
UF WE ARRIVE AT STATEMENT#698 BY THIS ROUTE, ALL IS OKAY, THE
DEFORMATION VALUES HAVE CUNVERGED TO #-YACCURU® IN LESS THAN *LIMITU®
CYCLES.
892 TF{JJLT.LIKITD) GO TO 600
1E. REITERATE FOR CCNVERGENCE,
XXX=1,
GO 10 698

XXX=1s INDICATES INSUFFICIENT COUNVERGENCE AFTER "LIMITD® CYLLES.
686 XxX=22,

XxX=2, INDICATES THE FORMATIUN UF A JUINT MECHANISM.

638 CONTINUE

RETUAN
Enp
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HINGES

SUBROUTINE MINGES

CHECKS ANU REVISES MINGE CONFIGURATION IN ALL BEAMS AND COLUNNS .

CORMON Ay ACCURDYALI2043)9AMI20,31,AUC20431,B4BASI20,20,88(20,2),87
102052)4C12043)0CAS120,43),CBL20431,CT120,3) CXoCAFoCYyCYFoDoDHI20) s
20H1020) 40PB4DPCDVI204 310 EIBI2042) 4 E1CT120,3)9FFAUGDL yFCBFCCoFCH,y
EVBLFYC YN H{20) ¢PU20,3),PEL3) yRE21¢3] ¢RBPI2002)4RCPE20431,5(20,3
AV oSPE2) 4SXeSKFeSYoSYF o TLE20421,TPCI2043) s TPLUZ092) o TPRATE, TPRATH, T
SREZ0021 1WE200 yWOL2002) ¢ HLE20420 JWIM X XBO20921 s XCE200 35 XXXy KY, Y, |
e;J.KB(Zn.Z)'KC(20.3).KH.KHC,LINITD'N.KS.NqNCoNN-NP'NSN,NN(Jl
H=0
KH REPRESENTS THE TOTAL NUMBER OF NEW HINGES OETECTED IN FTHE CURRENT
PASS THROUGH THIS SUBROUFINE.

FIRST CHECK. ALL BEAMS FCR NEW HINGES.

IF(XY.GT.0.0) WRITE(6,900)
900 FORMAT(¥01,¢ KOMENT VALUESZ®)
© CALL BMHING

ALL BEAMS HAVE NUW HAD POSSIBLE HINGE CUNFIGURATION ADJUSTMENTS MADE,
ACCORDING 1O THE NEW LUOADING AND DEFURMATION CONDITIONS. THE CURRENT
KH VALUE REPRESENTS THE NUMBER OF NEW HINGES OETECTED. THE OCCURRENCE -
OF ANY BEAM MECHANISMS WAS NOTED, AND THE BEAM WiLL HENCEFORTH BE
ASSUMED T ACT AS A BEAM WITH KB=7 AND APPROPRIATE END MOMENTS.

ROW. CHECK ALL CCLUMNS FOR NEW HINGES.

DO 735 ¥=1,rS
DO 737 Ne)l,NC
BMAx=Q,
DEL=DH{KI/HIN)
KK=KC (M)N)
GO TO (7419742, 743,744,745) KK
2 WRITE(6,926)

926 FORMAT{*0%,* #*$COLUMN COUNTER OUT OF RANGE IN SUBROUTIKE HINGES®)

T4l BUS(EICIMINIZHIMI DS LCTHINISREKO NI SSTHINI PR IBEL NI -(CIMe NI $S(H N} I ®

10EL)

NOTE: THE CoS4EIC,MPC & P VALUES USED MERE ARE STILL THOSE
CORRESPUNDING TO DEFORMATIONS PRIOR TO THE LAST PASS THROUGH
SUBROUTINE *ITER®. WL HAVE NOT AS YEV RECYCLED THROUGH SUBROUTINE
*PLOLY WITH THESE REVISED DEFORMATIONS, BUT WE NILL CHECK FOR
CONVERGENCE OF AXIAL CULUMN LOADS TU MINIMIZE ANY ERROR.

BL=CEIC (M NI/ZHIMI IR LCUMGNIPR{HE LaNF4STMINISR{H NI ~CCEM NI 4STMoND L
1DEL)

IF(P{MyNI.LE.0.0) GO TO 750

F2SQRT(PIN NI /ELICIN,N) I*HIN)
FX=ATAN{-{BU+BL*COS(F}}/(BL*SINIF}I)) .
IF(FX.LT.C.C) FX=FX43,141593

IFIFX.LE.B.0.0R.FX.GELF} GO TO 750
BMAX=SQRT(BLABLABUSBU+2,#BU*BL*COSIF})/SINIF)
FF{ABS{BUNLT,ABS(BL)) BMAX=BL®BHAX/ABSI(BL)
1F{ABS{BLI.LE.ABSIBU)) BMAX=-BUSBMAX/ABS{BU)

G0 10 752

750 BMAX=0.

752 IF{ABS(BUI.GY.ABS(BLI) GO TO 754
IFL8ASTUMAXD L GT,ASSIBLY) GU TO 756

IFLABSEBLY.LY.TPTIR,NIY GU YO 746

KC{M,N}=2

KH=KH+1

ALIM,N}=BL/ABSIBL}

60 T0 742

IF(ABSUBMAX).GT.ABS(BU)) GO TO 756

IFLABSUBUI LY TPCUN,N}) GO TO 746

KCIMN) =3

KH=KH#+1

AU{M,N) =BUZABS(BU)

60 10 743

TFUEBS(BMAXILLT.TPCIMsNI} GO TO T46

KC(MyN)=4

KH=KH+¢1

XC(MyN)2FX*H{M) /F

AM{M,N)=BHMAX/ABSLBMAXS

G0 TO 744 .

T42 BL=ALIMsNI*XTPCIMN}

DU=(SlH.N)‘BL'(C(Nle‘ClH.N)-SiH.N)'S(K.Nll‘(ElC(H.N)/H(HIl‘(R(N.N
T1I-DEL DD ZCUMND

TF(ABS{BU).LT,TPCIN,N)) GC TO 758

KCiMyNI=5

KH=KH+1

AU(M,N)=BU/ZABSLBU)

GO TU 745

758 ROL=(HIM)I*BL/EICIMeNI=SIMNI SR (M NI+ LCIM NI #SEM,N) } ODEL I /CIN NI -RE

1M+1,4N)

IF{ABSUROLI.GT.RCPIMIN) o ANDXY.GT 0.0} WRITELG,928) MyNsROLJRCPIN,

N

15

ry

15

3

1

928 FORMAT(1X,® -%- EXCESSIVE ROTATIUN AT BOTTOM HINGE OF COLUNN(®,13,
1%¢%413,%) ROTATION="4€12.5,' PERMISSIBLE=?,E12,5)
GO T0 748

T43-BUSAUIMNI*TPCIN,N)
BLEUSIMNISBUSICIMGNISCIRINI=STM NI 6STRINI IS LETCEMsNIZHIM) ) SERINS |
1eNI=DELII/LIM,N)
IF{ABS{3LI.LY.TPCIK,N)} GO TU To60
KC(MyN)=5
KHzKH+1
AL(M,N)=BL7aBS{BL)
GO TO T45

760 ROU=(H{M)I#OU/ETCEMoNI~STF NISRINS L, NI e {COR NESSTHN) DPDELIZC IR NI~
R(MyN)
IFLABSINCU) GT JRCPIMINI W ANC. XYY .0.0) WRITE(6,930) MyNgRUUSRCPIN,
N

930 FORMATELX,® -¢- EXCESSIVE ROTATICM AT TCP HINGE OF COLUNNI " 41347,
1o03¢%) RCTATICN=%,E12.5,* PERMISSIBLE=Y4E12.5)
GO 10 748
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ngL CASES
HA) r(n.N)!:vcnn N)
USIPIMRI/F)SLEBUAX/ELCHM N IS LXSKSICAF SYSSXFZHIMY /U=YSYSSYF)-Y®
IR!M' Vo XSYSRIMSLGNIZLHIMIR0) $EYXBY/THIHI D) ) SUEL)
BLEIPIMNI/AISLIBAAXIEICIMINY IS L-YOY R (CYFSROSYE/HIM)) /B oXOXSSXFE )X
LERUMI LGN =XEYSRUFONI/EHIMDSBD S UXOROY/ EHIM)OB) ) #OEL )
1F(ABSTBUILGT.FPCUMINDY WRITE(6,932) MyN,BU,TPLIN,N)
932 FURMAT(1X+* BLAﬁT!"-lN CCLUMNE® 134" ¢%913,%) BU EXLEEDS MPC wIIH
1CASE &4 HINGING, BU=*,E12.5¢% MPC=*,£12.5)
TFCABSIBLY 46T TPCIMINI) WRITEL64934) MoNobL,TPLIM N)
934 FORMATULX,? BLASTS*%,IN COLUMNI®,13, 13053 BL EXCEEUS MPL wiTH
1CASE & FINGING. BU=®¢E12,5,° MPT ) -
COMFUTE LATERAL SWAY UEFLECTICN OF FLOOR T
DHUO. )
DU 762 1sM,¥S
DHU=DHUSDHI T}
762 LONTINUE
© DHHEUYSYZELCIMaND )#LCYFSBU-SYF#BMAX )= Y$R (MyN} +DHU
RUC2 IX/EICIMyN) )% (~SKF*3L-CXF*BMAX ) +{Y/ELIC(MyN) )% {SYF #8U- CVF'LHAK!
14 (DKH=CHUSDHE M) )/ X= {OHU-DHHI /7Y
TF(ABSIRGC) GVt 2, #RLPUMINI D JANDL XYL GT 0,01 NRITE(64936) MoN,ROCR
1CPIM,N)
936 FURMAT{IX,® =$-EXCESSIVE ROTATIUN AT INTERIUR HINGE IN CULUMNE® .13
Ba®s%s130%) KOTATIOR=*3£12.5,¢ PERHISSIBLE=®4EL245)
GO 10 746 :
745 BU=BUIMNI*TPCINGN)
BLEALIM, N)#TPCIM,N)
ROUZ (HEMIZELCAMOND DS CCEM NI *BU=SEH NI *BLI/ (LMo ND$C (M N D=S M, NI $ST
1My NI DIDEL-REM,N)
ROLEIHIMIZEICIMONI IH(CIMyNIRBL=SEMoNDSBUI/ECEM,N)SCINND-SIM NI #S 1
1M¢NIISOEL-RIH+L,N)
TF{ABS(RCU},GTLRCPEMYN) L ANDLXY 1GT 10,00 WRITE(6,9300 MoNoRLULRCPIH,

N
IFIABS(“GLI GT sRCPIMeNI CANDAXYoGT.0.0) WRETE(G,528) M.NJROL,RCPIM,
IN

746 lF(lV,Eg,O»OI Gu TO 737
WRITEL6,538) MyN,BU,BFAX,HL, TPCUMN) g ETC M N)

938 FORMATO1X,*COLUMNI® 413,¢ 39903 HU=9,E12.5," KMAX=',E12.5,% ML=*
19E12,540 MPL=1,E1245,% EI=*4E12.5)

737 CONTINUE

735 CONTINUE

ALL COLUMNS HAVE NOW HAD PGSSIBLE HINGE CONFIGURATIUN ADJUSTMENTS

"MADE, ACCORDING TO THE NEW LUADING ANO DEFURMATEION CONDITIONS., THE
CURRENT KH VALUE REPRESENTS THE NUMBER OF NEW BEAM AND COLUMN HINGES
CEVECTED.

NCW CHECK FGR A PUSSIBLE STOREY SWAY MECHANISM, RATHER THAN RETURNING
VO SUBROUTINE *ITER'y WHERE THIS CONODITIGN WUULD QUICKLY BE PICKED
UP AS A FORM OF INSTABILITY.

00 T64 M=1¢MS
KCC=0

DO 765 A=1.NC
KCC=KCL*KC(HyN}

765 CONTINUE
IF(KCC.LT.(5¥NC)) GO 10 764

¥XX=4 : NDICATES A SWAY WECHANISH IN SOME STOREY OF THE STRUCTURE.
60 Y0 7eb
764 CONTINUE
NCW COMPUTE CUMULATIVE NUMBER UF HINGES IN THE STRUCTURE.
166 xuc EHC ¢KH
RETURN
END

BMHING

SUBROUTINE BMHING

CHECKS AND REVISES HINGE CONF [GURATION IN ALL EkANS.

COVMON Ay ACCURD,ALE2053 0, AMI20,3),AUL20,3),8,845(20,23 48B020,2),87
1(20.21.c120.3).cnstzo.z».ca(zo.3).:1(20.3|.cx.cxr.cv.cvr.u.nu(zo;.
20H1120) ,UPB,DPC,DVI2043) ¢ EIB(2042),EICI20,304F FAUGOL JFCB,FCCyFlwy
3Fva.rvc.rvu.n(zon.9(20.3).PEls).x|21.3».Ruvlzo,zt.ucptzo.s).s(zo.}
41 oSPU2) ¢SXySKFSYeSYF oTL120,2) 9 TPCL2043),TPLE20,2) ¢ TPRATE,FPRATH, T
SRE2092) ¢+ HI20) ¢4WD(2052) oWl 12092) JWTH X XBI2042) ¢ XCL2093) 9 XXK s XYy ¥y |
B9dpKBI209233KCI2033) ¢ KHyKHC ) LIMITD yMeMS 9Ny NCoNNS NP o NSy NW(3)

DO 700 N=1,MS

D0 698 N=1,NN

=1,

IR=1,

WWL=0.,

WHWR=0.

1FINSH.EQ.0) GO 10 697

DO 699 K=1,NSW

IFAN.EQ.NWIK) ) WHL=CT(MyN)

TFOINST).EQUNWIKD) WwR=CT(KN®1)

699 CONTINUE
697 SR=SPIN)-{whlewkR)/2,

EFANLEY 1. AND JHWL.EW.0.0) ZL=TPRATE

BF(NJEJ NALAND. WWR.EW.0,00) ZR=TPRATE

WT=URLOM NI SWTIM o N) #F AUGDLYBB (M NI BT (M,NI}/12,

DEL={OVIH,Ke1)~DVIM,NII/SR

KK=Kg {MyN)}

GU TO (T701,762,7C3,7C4,705,706,707) 4K

1 WRITELN,3C2)
902 FORMAT(®0®,¢ sss-3EAM COUNTER OUT OF KANGE [N SUBRUUTINE HINGES®)
TCL BL=-WTHSRASK/12, +ETOUMINI IRIH NI ¥ 140 43 4 WWL/SRIYRIH NS LIN( 2,03 0w

AWR/SR -6, tDEL ) /SR

BREWTASKESR/L2, 4E1B (M, NI o (KIR NI $E2. 03, PHWL/SRESK{MNI 118 (40e3, %nm
IR/SRI-6 S CELI/SR

A=SK/2.~LELIUR)/LuT*SR)

BL=0,

o

D30

lf(x-b'.0.0.AND.}.LJ SR) BL=BLANTSSRISR/Bo=0+5% (BLABRI®(L,~ ‘BLOle
1/tuTo5ReSRY)
TF(ABSUBR/ZINS LG, SABSIBL/IL)Y GO 10 710
lF(AuS(BLIZL).L! TPLEIM,NY) 6O T0 7]2
TELABSIBL/ZLY, ll ABS(BCIIPRA(H)I GU 30 714
KB(FyN) =2
RHxKH+ ]
TFUIBLZZLYSGELTPLIMGNY) TUIM NISZLOTPLIM,N)
FFALBL/ZL)WLE ot~ TPLUKND D} TL(NuN)-—lL'YPL(H'NI
GO Tu TC2
1F(ABSIHER/ZRY LLTLTIPLIMGNY) GU TO 712
TFLADSCUR/ZZR) GLT, AuSEBC/TPRATRI) GU 10 714
K8(v,N) =3
KHaKHe]
TEGLER/IR)CGELTPLIMGND ) TRIMN)=ZROTPLIM,N)
TH(taR/ ), LEGE=TPLININI D) lRlH'Nl'-lK‘lPLlN'N)
6N TG 103
T12 TFU{BC/TPRATHI LY. TPLIMGNS) GO TO 708
T1E. N NEW HINGE IN BEAM{H,N}
T14 KHIMyN) =4
KH=Kite ]
XbIMgN) =X
GO Y0 704
702 BL=TLIMN)
Bux-ttsaosxld.oo-ﬁtuLOJ.P[IB(M.NDOIO S¢uWLeR(HINI/SReRIR,NeL)O (], +
10.5%nhR/SR)-DEL) /SR
X=SR/2,-(BL4BR)/ (WI*SR}
BC=9,
THIX BT .0, 0,ANDL XL TLSR) BL=BLAWT*SHOSR/B4~0.5%(BLBRIS(1o~{BLIBRY}
llluT‘SR‘SR))
[FEABSIUR/ZRILLTLIPLIMGNID GO TO 716
IFLABS(HR/IR) o LT, (dL/TPRATH)) GO TO 718
KBIMyN) 27
KHzKH+¢1
TFCEBRZZRICGELTPLIMGNDY TRIMGNI*ZROTPLIM,N)
UFQIBRZZR) JLE S U~TPLIMINI ) ) TREM NI =ZRETPLIMyN)
G0 10 707
716 1F(LBC/TPRATM) JLTLTPLUM,N}} 60 To 720 N
1Es NO NEW HINGE IN BEAMIMN)
718 KB{F,yA)=5
KH=KH+1
XBIMN}=X
GU ¥0 7CS
T20 ROA=~R(MyNI*(1.¢C.75%WnL/SRI-RIM,N*LI*(0.5¢0.75%WWR/SR) ¢ 1, SO0EL+0.
L25*SR¥(TL(M NI+WT4SRASR/12.J/EIBIM,N)
IF{AUSIROA) oGT JRBPEMyN} L ANDLXY o GTo0.0) WRITEIH,904) MyNsRDARBPIM,

ry

71

1N)
904 FORMAT(1Xe® ~¢-EXCESSIVE RCTATION AT LEFT HINGE OF BEAM(®4J3,%,9,1
135%) ROTATIUN=! y€12.5,° PERMISSIBLE=?E12.5)
GO 10 708
703 BR=TR{M,N)
BL=~WT*SRESK/B,40,5¢ BRI FEIBIMINI S (RIMINISIL.00.58WWL/SRIF0LSORIM
LN+ 1) *wWR/SR-DELI/SR
X=SR/2,-{BL+BR)/INT*SR)
8C=0.
IF(X.GT.0.0.AND. X, Ll.bul BC*BLeWTSSRESR/B.~0.5¢{BL4BRIS (L.~ (BLIBR)
I/{wT*SR2SR)}
TFUABSIBL/IL) LLYLTPLIMyNY) GO TO 722
TFLABSIBL/ZLI LT, {BL/TPRATHII GO YU 126
KBI{MyN} =T
KH=KH+1
TFU(BL/ZL) JGELTPLIMyNI) TLIMyNI=ZLFTPLIN,N)
IFOLAL/ZL) oLE - VPL(Hlel) TLIMNI==2LETPLIM NS
60 TO 7C7
722 LFLIBC/TPRATHILLT.TPLIM,N}) GO TO 726
1€. NO NEW HINGE IN BEAM{M,N}
T24 KBIP,N)I=6
KH=KH+1
XBIMN}=X
GQ 10 7Cs
726 RDB=~RUMyNIH{Co540 TSPHRL/SRI-RIM N411%(1.040.75¢WWR/SP)¢1.52DEL+O
1e25%SR* (TRIMyN}-NT#SR2SR/12.1/EIB{MsN}
IF[ABS(RDB) «GT RBPIM¢N) «ANDXY.GT,0.0) WRITEI6,906) M,N,ROB,RBPIN,

IN)
9C6 FORMAT(1X,* ~#%-EXCESSIVE ROTATIUN AT RIGHT HINGE OF BEAKE®,[3,9,
1134%) RCTATION=? ,EL2.5,* PERMISSIBLE=',E12.5)
GO g 7128
TC4 X=XE(M,N)
Y=5R=-X
FXV2Lo /(XX LL/(XEXOX}1a/LYBYRY)))
YRZLo/UYSYILL /{XeX4XDI+ 1o/ (¥RYRY) ) )
BL==WTS(XIX+3, SSRIFUYI/B, =0 SFTPRATMETPLIMNI®IL.-3,#FXY$(]./X¢]10/
LY I P30 1BIMINER(La~FXY/X)*(R(MNI* {140 5*Rnl/RI40VINNI/ZXD /X3, *
2ELBLANISFXYS(RIMINS LIS (1. 4Q.5%WnR/YI-DVIM,NeLI/ZY I/ (YY)
BR=WT¥{V*Y 43, ¢SREFYX)/B.40.5%TPRATMOTPLIM NI ®{1.-3.9FYX$(Lo/X41,./Y
LIP3 %EIBIMoNISFYXE(RIMINI® (160 SERWL/XI4DVIMINIZX)ZIXOX)&3, #ELBL
ZHINI S (L o=FYX/YI*(RUMINOLDS{1.40.53WWR/YI-DVIM,R¢1D/Y) /Y
IFCABSIBL/ZZL) LT ABSIBR/ZR)) GO TO 728
TFUEBL/ZL)GELTPLIMyN)) WRITE{6,908) M,N
9n8 FDRHA'(lX.' ~=¢~ d1TH CASE 4 HINGING, LEFT END MCMENT IN BEAM(®,
Le®e®el3,%) IS GT, +MPL")
TFLLBL/ZE) JGTo(-TPLIM,N))} &0 TO T73C

KBIM¢ND=5
KHsKHe1
TLAM, NY == LL*TPLIN,N)
G0 TO 765
728 16 CCBRZZRDLLE (O=TPLUM,NIY] WRITE(6,910) MoN
L0 FOKMAT(LXy® —-8~ wiTH CASE 4 HINGINGs RIGHT END MOMENT [N BEAMI®,f.
130707013040 IS LT, =MLY .
TFCCHRZZKI LT L TPLEMLND ) GC TO 730
KbiM N6
KH=KH+1
TROM,N)=LPTPLIM,N)
6 Tu 106

TIC OVL =080 225 0 mT # (X IXEXTE XYLV RYEFYX) = TPRATMOTPLIM,N) & (XSFE XYY SFY
IXF}ZELB(4, H)OFXV'(R(H'NIQ( 24D SAUNL/X)SDVIMGNI/XI~FYXO{R{M,Ne LD
21e#0,504dR/Y}=DVEANELYIY)

RDC==-T0 258 (OROTPRATMETPLIM NI¢NTR(XEXEXOYOYOY /12, 0/EIBIN,NI=0, 501
KMo 1L sl S¥RRL/RI=REM N LES(L.01o504wR/ZYEISLLOS{{OVE-OVINNIIZ
2x=4UviMyNe L)LV /Y]
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TF(ABSIRECIGT 2. 0PBPUIMINIY s ANDXY oGT a0, G) aRIFLEI64912) MoN,RUC,R
18PIM,N)

912 FORMATUIX,® —9~EXCESSIVE RCTATICN AT INTEKTOR HINGE GF HEAM(,]3,¢

1,%,13,%) RCTATION
GO 0 199

sEL2.5¢% PERMISSIBLE=28%4E12.5)

TC5 X=XBIK,N)

1F

Y25R-X

BL=TLIM,N}
BR=(BL-TPRATHSTPLIM NI IY/X-TPRATHATPLIM,N)+0.5*WTSY*SR
IF{EBRAZIRVLLT LTPLIM,NY) C TO 732
BRGT MPL A LEAM MECHANISH HAS BEEN UETELTEU. HOWEVER, THIS IS A

LOCALIZED FAILURE, AND CANNOT REALLY UOE CONSTUERED 1O (UNSTITUTE

FA
1] 4
TR

TLUKE ub THE OVERALL STRUCTURE. THE BEAM CUULD PUSSIBLY CONT INUE
HORMING TO A CATENARY SHAPE. HENCLE, REVERT TO CASE 7 HINGING WiTH
IMyNI=PPLy, AND CONTINUE THE STUDY UF OVERALL FRAME BEMAV]UUR.

MHOTE THE DETECTION OF THE BEAM MECHAN|SM,

94

732

134

167

916

736

708

920
922

524

T

MRITEIH4914) MyNKBIPN)

FORPATOLX,**%¢s BEAM MECHANESM DETECTED IN BEAMC' 13y %,13,%) WIT
IH KB=*¢13,*. CONSIVUER Xu=T AND CONTINUE.®)

KH=KH+1

TRIMNI=ZIRSTPLIM M)

KH(MeN) =17

60 TO 708

DVG=Y4Y S (BLRY/X=TPRATMSTPLIM NI ALY/ X0 1 50 4uTRYS (4, $SR-Y 1/8. ) /7{3. 0L
LIBEMeND P -RIM N4 DS IYI0.50uMRI$UVIM,N+1)

ROA=XO L2, #BLOTPRATMATPLUIM NI 40,25 WTEX*KI /Lo sFIBIMGN) J-RIM NI *(1.
100,50l /X)+{DVC-DVIHWNI /X

TFCABSERDA) cGTRBEIM NI CAND L XYL GT .0.0) WHITE{6e904) MoNRUA,RBPIM,
N)

RUC= (XD 5T AEX-BL-2,*TPRATMATPL (M NII/6.40.25%Y#(-WTOYSY/ 12,
1-TPPATHATPLAM NI D IZELBIMINI =D 5*UnLPRIMoN)/ XeRIKGNEL)$L 0,540, 75N
2RIV} LOVE-NVIMINI /X415 (DVIMoNE LI -DVC I/Y

IFCABSURDCY GT. (2. REPIMINY ) JARDL XYL GTo0,00 WRITE(6,912) MyeNyRDC, R
1BP{M,N)

GO fo 708

X=XB{H,yN}

¥=SR-X

BR=TR{M,N)} .
BL=TPRATM*TPLIM NI (BReTPRATMETPLIM)N) ) #X/Y-0.58WT®X*SR
IFCBLZZLE LG JA=-TPLIMINII) 6O TU 734

WRITELE,914) PoNyKBIM,N)

KH=XH*]

TLEMN)=~ZL3TPLIN,N}

KBIMsN)=7?

60 10 708 .
DVC=XEX¥(~BR¥X/Y-TPRATMETPLIM NI IX/Y4 1.5 )enuTeX#{4,¥SR-X) /8. / (3. %
TEIBIM NI IeR{M NI EX$Q ¥ WRL IOV IM,N)

ROB=Y*{ 2, *BR-TPRATHHTPLIM NI -0, 258N ToVY4Y) /LG *EIBIM NI F-RIMSNOLI¥(
Ll ¥0.5¢WWP/YI4(DVIM,N+L}-LVCI/Y

ROC*(=0,25%X* [TPRATM*TPLIM NI+ WTEXEX/12, b ¢YHLBR=-2,*TPRATH¢TPLIMN,N)
1-0.25%NTSY£Y) /6,0 /EIBIMIN)-RUM NI FL0.540, 75 ¢WWL/XI#0.5¢RIM, Ne 1} *WH
2R/Y#1.5%(DVC~DVINMN}I/X=(DVIM,Ne1}-DVCI/Y
IF{ABS(RCB) 4GT 4RBPIMy N} AND.XY.GT.0.0) WRITEL 6,906 MyNoROBRBPIH,
1IN

TFUABS{RDC) «GTo (2. ¥RBPIMIN) JLAND.XY .GT 20,00 WRITEL64912) MyNoRDCK
IBPIM,N}

GO T3 168

BL=TLIM,N)

BR=TRE{M,N)

X=SR/2.=-(BL4BRI/{WT*SR}

8L=0.

FF{XeGT o0.0.ANDeXoLToSR) BL=BL#WT*SR*SR/B.~0,5%(BL4BR)*{1.-{BL#BR}
1/{WT*SR*SR}}

IF{BC.LT.{TPRATMATPLUIM,N} ) GO TO 736

WRITE(6+916) NyNoX

FORMAT{IX o %#++0EAM MECHANISM ENCOUNTERED IN BEAMI®4I134%,%13,%) W
13TH KB=T7. X=%4E12.59%. RLTAIN KB=7 AND CONTINUE*}

KH=KH ¢}

GO T0 708
RDA=SR¥{2.*BL-BR43.25¢wT*SR¥SRI /(6. PEIBIM NI I=R(MsNI#{1.40.5¢WHL/S
IRI=D.5%*RIM, N+ 1} *dRR/SRIDEL .

ROB=5R* (2. *BR-BL-0.25*WT*S5RYSR}/ L6 XEIBIMIND I=C SR IMIN) *uNL/SR-R(
IMo N+ 1% {140, 5WR/SR)$OEL

IFUABS{RCA)(GTLRBPEMINILANDLXY 4 GT 40,0} WRITE(6) 904} MyNJRDAJRBPIM,

N
IF(ABS(RDOBI.GT.RBPIMyNI LAND.XY . GT 40.0) WRITELL,9N6) MyN+RDBRBP(M,

IF{BLGT N0, ANDXYLGT.N.0) WRITEL6,918) M,N,BL
JF(BR.LT 0N AND XY oGTeVe0) WRITE(6,920) MoNsBK
TFUBCLT.N0.ANDXY.GT.0.,0) WRITE(64922) MyN.BC

918 FORMAT(LX"#%*[N BEAM{'13,'4%,13,') ML [S #VE AND=*,E12.5)

FURMAT(1X,®exxIN BEAM(®,13,%,*%,[3,%) MR IS ~VE AND=*,E12.5)
FORMATLIX " *441N QEAMIT413,%, % [3,') INSPAN M [S -VE AND =*,E12.5)
TF{XY.EQ.N.0) GO TO 698

WRITE(69924) MiNy3LsBC,BRTPL{M,N)

FORMATULX,*BEAME® 313,758y 13s% )2 ML=",E12.5,° MMAX=',E12.5+" MR=',E
112.54% MPL=',E1245)

£98 CONTINUE

CONTINUE
RETURN
ENO

D31

LDPART

SUBKUUTENE LOPAKT

COMPUTES AMCUNT OF LATERAL LOAD AT EVERY FLUOR RESISTED BY THE SHEAR
WALLUSY AS A RESULT UF THE SHEAR WALL-FRAME INTERACTION,

ocon

CUMNMON AvACCURD 4 ALE20430 ) AME204 30 JAUI2003 1 ¢BeBBASTZ2042) 488020420 46T
llZO.Zl.L(ZO.!IpLASlZO'!D'(UIZD'JI.C'(ZD.));LX.C!F'CV'LVF.U.UM(ZOIv
2DHIC2AD,DPBoUPCeDVE20 oI EIBL20025 s EICI200 31, F FAUGUL ¢FCB,FCCoFCH o
BFVM.FVC.FVH.N(ZOI.P(ZD.JI.FE(S)'Rlll'JI'RBP(20¢ZlcHCPlZOpJI.S|2013
) aSPU2F ¢SXISXFSY SYF o TLI2020,TPLE2043),TPLI20,2)TPRATE, TPRATH, T
SR(ZG.Zl,hlZOIpNDlZO-Z).VL(ZOqZI.NIN'I.KG(ZO-?I-XLlZO'JDleK.xV.Vol
6o d KBL2M92) yKCI2043 e KH)KHCHLIMITUMaMS N o NL NN ¢ NP o NSH s N (3)

DU 1000 N=1,NC
00U 1002 K=1,NSW

[FIN.EQ.NWIK) ) GO TO 1904

1602 CONYINUE
6N TC 1006

1004 WRITELE,105C) N

IRSC TORMATE'0?y* LATERAL LUADS RESISYED 8Y SHEAR wALL IN CULUMN LINE®,
11440 29

00 1738 Fa2l,MS
KK=KC{M4N)

GO TO t1711,1012,1013,1014,1015),kK

199 WRITEC6,1752)
1052 FORMATIIX, ' ##9-CULUNN COUNTER OUT UF RANGE IN SUBROUTINE LDPARY®)
IP11 V=LSEMNISCIMANI IR ETC UM NI ®RIM N /HIK)

T2{SIMeN)SCIM NI IFLICIR NI PRIMS L NI/HIN)
l‘;-?-“C(NvN|0S|"-ND)‘ElC(H.Ni/(HIHl‘H(N)DOP(H.NDD‘UN(NI
U=0.

GO 10 191¢ -

1012 V=(CIMINI LMot ~SUM NI &S (M NI ) SETC IR NI *R UM, NI ZLCER, NI SHIM) )

T1=0.

= (ISEMoNIESIMNI-COMIRISCIMINI ISELIC(M NI ZECIN NISHINISHIN} ) +P LK, N
11)*0HIR)

UsALUHoNISTPCIM NI (SIM NI/CIM NI ¢14)

GO 10 1016

trr3 van,

T=ACUM NI SC UM NI =S My NIESTM N PRETCIMGNISREM+ L NI/ ECTMINISHINE)
Z=CUSEMNIOSTM NI=CUM NI *CEMND IREICTM NI ZECUMI NI SHEMI SHIR) I 4 PUM N
111 #0H (M)

Uz AUIH NI STPCIMoNI#USTM,N)/LIK NI +T 0 )

GU 70 1916

1014 [=#

CALL CASES
Vo=PULMyN)eY*(X/(HIMISASBI #L.7F)SRIM,N)

Fo2=PUM M) *XRIY/UHIMI¥FED) 41,7 AR (K41 4N)
L=P(MpNIEOHIMIELY*{ L4 X/ (HMI PO DI ZCHIMI®F e X (1o oY/ IHIMDI®BD ) ZEHIND
1%A)el.)

U=AF{M NI S (P {NGNI/ETCIMINT)S(X*XO(SXF/AYCXF/(FRD) I=YEYS{SYF/F¢CYF/
LUASBY ) e xxY®(X4SXF/LF&D)-Y*SYF/(A*B))/H{MN))

GU 10 1916

T=PUF N ISDHIM)
U=(ALIMNICAUIM, NI DRTPCIH N}
C NCW COHPUTE TUTAL LATERAL SHEAR LDAD AT FLOOR M.
1016 Ws=0.
00 1018 I=1,M : *
WS=wS4h(l) i '
1018 CONTINUE
€ NCW COMPUTE TOTAL LATERAL LOAC AND PERCENTAGE OF TOTAL LATERAL LUAD
C CARRIED 8Y SHEAR WALL AT FLUGR M.
WLAT=-(VoToL+UI/HIN)
WPER=160.%WLAT/WS
WRITE(6,1054) M, WLAT,WPER
1054 FURMATI1X,*AT FLCCKYyE44' LOAD RESISTED=?,€12,5,% LB, PERCENTAGE= S
1,€12.5)
1008 CONTINUE
1006 CONTINUE
1000 CONTINUE
RETURN
END
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BEHAVIOR OF REINFORCED CONCRETE SHEAR WALL-FRAME STRUCTURES
ASSUMING THE JOINT MECHANISM IS NOT A VALID MODE OF FAILURE

The analysis presented in the body of this report assumed that
failure occurred when one of several conditions occurred. Twelve of the
20 frames considered in Chapter 7 failed due to the formation of a joint
mechanism. As discussed in Section 7.2, however, the joint mechanism
generally will not be a valid mode of failure for the type of frames
considered. For this reason, the basic program was modified to bypass the
joint mechanism failure provided that the entire structure remained
stable.

Seven of the frames listed in Tables 7.1 and 7.2 were
re-analyzed using the modified program. The results of these analyses are
presented in Table E1 which corresponds to Tables 7.1 and 7.2 on Pages 146
and 147. Load-roof sway deflection curves are presented in Figures E1 and
E2 whicH resemble Figure 7.5 on'Page 153-and-Figure 7.10 on Page 166,
respectively. In these figures the dashéd lines refer to the behavior of
the frame after some hinge had exceeded its rotation capacity. The order
of hinge formation in Frames H50 and H50-4A is shown in Figure E3 assuming
joint mechanisms are not primary mode of failure. This figure is
similar to Figure 7.6 on Page 157.

Figures E1 and E3 compare the behavior of frames H50 and H50-4A,
The Tatter had an increased wall area to simulate the case in which the:

axial stresses in the wall are less than those in the columns. The

E2



[

E3

resulting differential shortening of the wall and columns in this structure
resulted in earlier hinging and earlier excessive hinge rotations in this
frame. However, if it is assumed that both of these: failure modes can be
neglected, it can be seen that both structures will fail at essentially

the same failure loads and deflections. »Invstructure H50, overall
instability occurred after hinges: had reduced: the structure to one column
and a wall, each restrained by beams hinged at the far.end. Structure
H50-4A failed by sway instability of: the top storey- after the loss of the

rotational restraint of the wall by beams in. the top two storeys.



E4

. Number of Roof sway A value at
Structure Failure Load plastic hinges deflection at which excessive Mode of Failure
A interval detected at last stable hinge rotation i
these X values A value first noted A

(in.)

Beams Columns

H1 - 1.338 -'1.348 34 - 38 21.53 . 1.30 - drop in equilibrium sway
deflection in storeys
2 to 6 and 15 to 20

H2 1.409 - 1.413 46 - 49 23.79 1.35 1.40 drop in equilibrium sway
deflection in storeys
15 to 19

H6 1.472 - 1.475 60 - 139 24.77 1.35 1.40 sway mechanism in storey
10

H12 1.500 - 1.502 61 - 66 25.81 1.45 1.40 drop in equilibrium sway
deflection in all storeys

H20 1.500 - 1.503 58 - 177 20.91 1.45 1.40 sway mechanism in storey
4

H50 1.625 - 1.628 65 - 71 24.23 1.55 1.50 drop in equilibrium sway
deflection in all storeys

H50-4A 1.622 - 1.624 52 - 58 24.53 1.20 1.55 sway mechanism in storey
1

*Storeys are numbered from the roof. Coordinates refer to storey and column number, respectively, column 3
being on the leeward side.

TABLE E1
FAILURE CONDITIONS OF BASIC SERIES H' STRUCTURES - IGNORING JOINT MECHANISMS
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