
 

 

 

 

 

There is no quality in this world that is not what it is merely by contrast. 

Nothing exists in itself.      
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Abstract 

 

Comparative analysis is an essential part of understanding how and why things work the 

way they do. How have the rich fared in comparison to the poor in the last decade? Why 

do we find more men in Science and Engineering as compared to women? Do 

postgraduate degree holders really earn more money than those with an undergraduate 

degree? What do some customers prefer to buy online vs. those that do not? What factors 

contribute to pre-term births? Why are some students more successful than others? All 

the above questions require comparison between various classes. Contrast-set mining was 

first proposed as a way to identify those attributes that significantly differentiate between 

various groups (or classes) for the case of discrete data. Contrast-set mining has now 

been applied in every conceivable field to find contrast-sets (conjunction of attribute-

value pairs) that aid in differentiating between different groups; however no clear picture 

seems to have emerged regarding how to extract the contrast-sets that discriminate most 

between the classes. Various interestingness-measures and usefulness-measures have 

been proposed in the form of different contrast-set mining techniques claiming to find 

more meaningful contrast-sets than those found by the previous technique. It has been 

proven in literature that contrast-set mining is a special case of rule discovery task; in 

this thesis we try to address the problem of finding meaningful contrast sets by applying a 

methodology that is based on the foundations of contrast-set mining – Association Rule 

Mining. Amongst the many surprising results that we obtain, we also report a family of 

contrast-sets that were previously not known in the literature. We also show as to why we 

should expect contrast-sets of only a certain kind for any data. Finally, we present and 

compare the results of our experiments with the well known algorithm for contrast-set 

mining – STUCCO.  
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Chapter 1         
   

 

Introduction 
 

 

The problem of identification of significant differences between contrasting 

groups or classes has been well studied, and has been the focus of many 

statisticians and data miners. A commonly asked question for data analysis in any 

discipline is: ―How can several contrasting groups be compared against each 

other?‖ Depending on the context this leads to specific questions like-which 

categories of students are more likely to accept an admission offer from a 

University? What are the specific characteristics that best differentiate between 

patients with a specific disease and normal patients? What distinguishes between 

the customers that buy more than some value and those that buy less than another 

threshold? What is the difference between male and female managers, all other 

things being equal? Do postgraduate degree holders fare better in their career than 

those who hold only an undergraduate degree?  

 

Dong and Li proposed Emerging Patterns as a mechanism to identify differences 

between contrasting classes [1]. In their seminal paper Bay and Pazzani [2, 3] 

proposed contrast-sets to bring forth a contrast between different classes that led 

to the creation of a new sub-field in data mining — Contrast-set mining. Webb et. 

al. used techniques that had previously been applied in rule-discovery to 

successfully perform contrast-set mining tasks thus proving that contrast-set 

mining is a special case of the rule-discovery task [4].  

 

Contrast-set mining is being applied in many diverse fields to identify attributes 

that provide greatest contrast between various classes. It has been successfully 

applied to predict patients with brain stroke from those with other severe 

neurological disorders with both the groups showing somewhat similar symptoms 

[5, 6, 7]. Contrast-set mining has been used to study the reasons behind the 
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disparity between successful students from those that are less successful using the 

data collected from a web based educational system [8, 9]. Contrast-sets have 

been applied to study time-series and multimedia data [10], and have also been 

used to attach a label to clusters obtained after the clustering process [11].  

Contrast-sets have also been used to identify patterns of factors that result in 

aircraft accidents [12].  

 

A number of variations and improvements have been proposed. An et. al. have 

applied a variation of contrast-sets for mining data in large databases [13]. 

Loekito and Bailey explore the second order differentiation – ―contrast of 

contrasts‖ [14].  In a separate study Loekito and Bailey consider the issue of 

contrasting in case of dynamically changing data [15]. Simeon and Hilderman 

consider the issue of discretizing quantitative attributes for contrast-sets [16, 17], 

and introduce the concept of ―jumping‖ contrast-sets. Wong and Tseng explore 

the problems associated with mining negative contrast-sets [18].  

 

1.1 Background, Challenges and Approach  
 

Contrast-set mining is valid only for categorical data, and is based on search-

techniques of those attribute-value pairs that provide the best 

contrast/discrimination between various classes.  

 

Attribute Name Attribute Values 

Income low, high, medium 

Job Profile customer service rep, front-desk 

employee, manager 

Sex male, female, other 

race caucasian, south asian, oriental, african 

age <30 yr., 30-50 yr., >50 yr. 

 
Table 1: A hypothetical Census Dataset 
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As an example consider a small hypothetical census dataset (Table 1) where one 

might be interested in finding out any long-term differences between the salaries 

of subjects with an undergraduate degree vs. those with a post-graduate degree.  

In table 1 we list the (categorical) attributes in the first column, and the 

categorical values that they take in the second column. It is clear from the above 

description that we have two classes
1
: Undergraduate and Postgraduate that 

represent the undergraduate degree holders and the postgraduate degree holders, 

respectively.  Let us assume that there is a substantial difference between the 

conditional probabilities for the two classes involving the conjunction of same 

attribute-value pairs for as follows:  

 

P (Degree = Undergraduate | Income = high ^ Job Profile = manager) = 0.23,  

and 

P (Degree = Postgraduate | Income = high ^ Job Profile = manager) = 0.73 

 

In the above case the difference between the probabilities is 0.50; let us assume 

that the minimum required probability difference between the two classes for the 

conjunct attributes to form a contrast-set is 0.3 (a user defined value). Then   

Income = high ^ Job Profile = manager is called a contrast-set; it is a 

conjunction of the two attributes: Income and Job Profile, and satisfies the 

probability difference condition. Note that for a contrast-set the values that the 

attributes can take (such as ―high‖ and ―manager‖) should be the same amongst 

the two classes. We discuss this example in more detail in the next section.  

   

The fundamental question of what constitutes an interesting and useful contrast-

set has received fair bit of attention in the field of contrast-set mining. Various 

interestingness-measures and usefulness-measures have been proposed in the 

form of alternate contrast-set mining techniques [4, 19, 20] that claim to find 

more meaningful contrast-sets than those obtained by STUCCO – the algorithm 

proposed in the seminal paper by Bay and Pazzani [3]; however no clear picture 

seems to have emerged.  

                                                 
1
 In the literaure the terms groups and classes are used interchangably  
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All the previous attempts made to find interesting and meaningful contrast-sets 

have adopted an approach based on applying statistical tests for the independence 

of variables –  the only difference in these attempts lies in the fact that some focus 

on controlling Type I error while others focus on controlling type II error
2
. It has 

been shown in [4] that contrast-set mining is a special case of rule discovery 

task, and yet none of the contrast-set mining techniques that have been proposed 

so far (including the one proposed by Bay and Pazzani) employ rule-based 

analysis.  

 

Hypothesis 1: Contrast-set mining based on Association Rule analysis can provide 

superior results as compared to the statistical techniques employed in the previous 

literature.  

 

In this thesis we try to address the problem of finding meaningful contrast-

sets by applying a methodology that is based on the foundations of contrast-

set mining – Association Rule Mining. 

 

We propose the following high-level algorithm in order to verify the hypothesis:  

 

1. Divide the whole dataset into as many files as there are classes such that 

the data regarding each class should be in a separate file.  

2. Apply association-rule mining for each class separately. 

3. Compare the mined association-rules to find contrast-sets that satisfy the 

probability-difference condition.   

 

In order to validate our hypothesis we run our code (that is based on the above 

algorithm) on various datasets, and then run STUCCO on the same datasets. We 

provide a ranking mechanism for the contrast-sets obtained using our algorithm, 

                                                 
2
 In common parlance Type I error is also called ‗False Positives‘ while Type II error is called 

‗False Negatives‘. 
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and we then compare our contrast-sets with those that were obtained using 

STUCCO.  The findings of our experiments are as follows:   

 

1. There exists a new family of contrast-sets that was hitherto undiscovered; 

2. There seem to be two kinds of association-rules mentioned in the literature 

for contrast-set mining, however we prove that only one kind of 

association-rules can lead to contrast-sets; 

3. All the interesting contrast-sets discovered by STUCCO are also found by 

the association-rule based technique, however there are several interesting 

contrast-sets that STUCCO seems to have missed.   

 

1.2 Dissertation Organization  
 

 

The rest of the thesis is organized as follows. The terminology and the definition 

of the problem are introduced in chapter 2. A review of previous literature is 

carried out in chapter 3. In chapter 4 we discuss the drawbacks with previous 

approaches to contrast-set mining, and present a new mechanism based on 

association-rule mining; we also introduce a new family of contrast-sets. A 

discussion of the datasets, experiments carried out on the datasets, and an analysis 

of the results of the experiments is presented in chapter 5. We present a 

comprehensive summary and analysis of our research in chapter 6.  

 

The research work here was presented in the form of a paper [21] at IDEAS-2007 

Conference. 
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Chapter 2 
 

 

Background, Problem Definition and   

Terminology  
 

First we provide a background of the association-rule mining problem. Then we 

discuss the terminology related to contrast-sets. Finally we provide a formal 

definition of the problem.  

 

2.1 The Association Rule Mining Problem 

 

We consider the hypothetical census dataset (table 1) once again:  

 

Attribute Name Attribute Values 

Income low, high, medium 

Job Profile customer service rep, front-desk 

employee, manager 

Sex male, female, other 

Race  aucasian, south asian, oriental, african 

Age <30 yr., 30-50 yr., >50 yr. 

   

                      Table 1: A hypothetical Census Dataset 
 

For the attributes and attribute values considered above we have ten 

―transactions‖ in Table 2 (below). The data in each individual row represents a 

different subject/person, and each row is called a transaction. This is a 

terminology that has been borrowed from the context of market-basket data 

analysis.  
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Subject 

Number 

Degree  Income Job 

Profile 

Sex Race Age 

S1 Postgraduate high manager male caucasian <30 yr.  

S2 Undergraduate high csr female oriental 30-50 yr.  

S3 Postgraduate high manager male oriental <30 yr. 

S4 Postgraduate high manager male african <30 yr. 

S5 Undergraduate high manager female oriental 30-50 yr. 

S6 Postgraduate high manager female caucasian 30-50 yr. 

S7 Undergraduate low front-

desk 

male caucasian <30 yr. 

S8 Postgraduate high manager male oriental <30 yr. 

S9 Postgraduate low csr female caucasian >50 yr. 

S10 Undergraduate low csr female south 

asian  

>50 yr. 

 

Table 2: Transactions (hypothetical) in the Census Dataset 
 

Association rules are relations between variables of the form A  B where A can 

either be a single attribute-value pair, or it can be a conjunction of attribute-value 

pairs. There are two terms that are used frequently in the context of association-

rules:  

 

 Support: Support of an association-rule (A  B) is the percentage of 

transactions that contain both the itemsets A and B. The support of a rule 

is a measure of how often does that rule occur in the dataset.  

                  Support (A  B) = Probability (A  B) = 
n

 B) (A  # 
 

                  where n is the total number of transactions in the dataset.  

 Confidence: The confidence of an association-rule (A  B) is the ratio of 

number of transactions that contain both itemsets A and B to the number 

of itemsets that contain itemset A. The confidence of a rule is a measure 

of the strength of the rule.    
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      Confidence (A  B) = Probablility (B/A) =  
A#

 B) (A  # 
  

 

Here we provide an example for calculating the Support and Confidence values 

for the rule: Income = high ^ Job profile = manager  Degree = Postgraduate  

 

The support-value for the above association rule = 5/10 = 0.5, or 50% 

The confidence-value for the above association-rule = 5/6 = 0.833, or 83.3% 

  

2.2 Terminology 

 

We define contrast-sets by borrowing the terminology introduced by Bay and 

Pazzani [3]. The dataset D is considered to be a set of transactions (rows) with 

each transaction having m attributes (columns). One of the attributes is used to 

divide the dataset D into n mutually exclusive groups G1, G2 …Gn such 

that    G   G ji   where n is the number of groups for the class attribute in D.             

      

Definition 1.  Let A1, A2 …Am be a set of m variables that form the attributes for 

the dataset D. Each attribute Ai can take values from the set {Ai1, Ai2 … Aik}. Then 

a contrast-set is a conjunction of attribute value pairs defined on groups G1, G2 

…Gn such that no Ai occurs more than once.  

 

Example 1. A potential contrast set:  Income = high ^ Job Profile = manager is 

defined on the two groups: Degree = Undergraduate and Degree = Postgraduate 

 

It is important to emphasize that the above potential contrast-set is equivalent to 

the association-rules (for the two groups):  

  

Income = high ^ Job Profile = manager  Degree = Undergraduate (0.1, 0.17) 

                                                                                                                         … (1) 

and 
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Income = high ^ Job Profile = manager  Degree = Postgraduate (0.5, 0.83) 

                                                                                                                          … (2) 

We have added the values for support and confidence in equations 1 and 2 from 

the calculations of the previous section. Equations 1 and 2 can also be 

mathematically expressed in terms of conditional probabilities:  

 

P (Degree = Undergraduate | Income = high ^ Job Profile = manager) = 0.1, 

and 

P (Degree = Postgraduate | Income = high ^ Job Profile = manager) = 0.5  

 

It is clear from the following definition that the value of support for a contrast-set 

w.r.t. a particular group is equivalent to the support for the corresponding 

association-rule w.r.t. the same group. 

 

Definition 2.  The support of a contrast-set with respect to a group G is the 

percentage of examples in G where the contrast-set is true. 

 

In light of the above definition the question of whether the potential contrast-set 

in example 1 actually forms a contrast-set depends on the satisfiability of the 

following conditions:   

 

)|( iGTruecsetijP    )|( jGTruecsetP                  … (3) 

ij

|max support ),( iGcset support |),( jGcset              …(4) 

where δ is a user defined threshold called minimum support difference.   

 

Condition 3 is called the Significance condition while condition 4 is called the 

Largeness condition. If both the conditions are satisfied then it is called a 

Deviation. As mentioned earlier the value of support used in the Largeness 

condition for the contrast-sets would be the same as the value of support for their 

corresponding association-rules in the same group.  
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2.3 Problem Definition 

 

Given a dataset D with n groups we generate association-rules for each of the 

groups separately, and then compare the association-rules to find potential 

contrast-sets that satisfy the largeness condition. The foundations of contrast-set 

mining lie in association-rule analysis; we believe that building up contrast-sets 

from association-rules will not only be able to replicate the results from statistical 

techniques that have previously been used in the literature, but can also find many 

other interesting contrast-sets. Many questions have been raised in the literature 

around what constitutes interesting and useful contrast-sets – we believe that our 

method will provide better insight into this issue.    
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Chapter 3  

Related Works 

 

3.1 Statistical Techniques  

 

The contrast-set mining problem was proposed by Bay and Pazzani [2, 3] wherein 

they apply statistical techniques to validate their hypothesis that the support for 

every contrast-set is independent of group membership (or alternately that the 

support-value is equal across all groups). As mentioned earlier the terminology 

discussed in section 2.2 was borrowed from [2, 3]. In the discussion below we 

will be using the same terminology.   

 

Bay and Pazzani look for those contrast-sets (cset) that satisfy the two conditions 

(equations 3 and 4 that were discussed in the previous chapter):  

  

)|( iGTruecsetijP    )|( jGTruecsetP                  … (3) 

ij

|max support ),( iGcset support |),( jGcset              …(4) 

 

δ is the minimum support difference, which is a user-defined threshold. Contrast-

sets for which equation (3) is statistically valid is called significant, and those for 

that satisfy equation (4) are called large. If both the conditions are met then it is 

called a deviation.  

 

We present a scenario based on [20] to show that it is possible that a contrast set 

may satisfy the largeness condition, but may not satisfy the significance 

condition.  
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 Degree = undergraduate Degree = 

postgraduate 

Σ Row 

Income = high 

¬(Income = high) 

194 

360 

355 

511 

549 

871 

Σ Column 554 866 1420 

     

Table 3: Contingency table for χ2
-testing (based on [20]) 

 

Largeness Condition  

Using the values for the support from Table 3 we calculate the support-difference 

for the contrast-set: Income = high. It is not easy to visualize one-dimensional 

contrast-sets, hence one may look at them in terms of their corresponding 

association-rules:  

 

 Income = high   Degree = undergraduate, and 

 Income = high   Degree = postgraduate    

 

Support-difference = | Support (Income = high | undergraduate) – Support 

(Income = high | postgraduate) | = | 194/554 – 355/866| = 0.06. If the value of δ 

is 0.05 then the support-difference is greater than the threshold, and the contrast-

set is considered to be sufficiently ―large‖.  

 

Significance Condition 

The significance condition for a contrast-set tests, statistically, whether the 

support for that contrast-set is ―significantly different‖ across the different groups. 

In other words one needs to determine whether the contrast-set support is 

independent of group membership. Bay and Pazzani start with the null hypothesis 

that contrast-set support is equal across all groups, and form a 2 X G contingency 

table (with G being the number of groups), and apply the standard test of the 

independence of variables – chi-square test. The χ
2 

statistic tests the null 
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hypothesis that the row and column totals are not related (i.e. are independent), 

and is given by:  


 




r

i

c

j ij

ijij

E

EO

1 1

2

2
)(

  

Oij is the observed frequency count for the cell in row i and column j. Eij is the 

expected frequency count in cell ij assuming that the rows and the column 

variables are independent calculated as: NOOE

i

ij

j

ijij / , where N is the total 

number of observations.  

                                  

 Χ
2 

= 5.08 using the data in the contingency table (Table 3). If we evaluate results 

at 5% significance (α = 0.05) then χ
2 

= 3.84. As 5.08 > 3.84 the null hypothesis is 

rejected meaning that Degree and Income are related.  

 

Thus we see that even when the largeness condition is satisfied it is possible that 

the significance condition may not be satisfied. It is mainly because of the role of 

α which controls maximum probability of falsely rejecting the null hypothesis in a 

single χ2 test (also known as Type I error, or false positives)  

 

As discussed below Bay and Pazzani convert the contrast-set search problem into 

a tree-search problem with more generalized contrast-sets (single attribute-value 

pairs) forming the top-nodes, and the more specialized contrast-sets (conjunctions 

of attribute-value pairs) forming the nodes below. As is clear the size of the 

search-space will depends not only on the total number of attributes, but also on 

the number of unique values that each attribute can take. Thus multiple 

hypotheses are required to test for the deviations for all the attributes both at the 

same level and also at the different levels in the tree. For α = 0.05 one can expect 

that the null hypothesis will be wrongly rejected on account of pure chance once 

in 20 tests – type I error, of false positive.  In order to control Type I errors Bay 

and Pazzani make use of the Bonferroni inequality whereby they use a different 

value of α at different levels in the search space. The modified value of α is given 

by:  
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),||)2(min(
1


ii

i
i C  , where |Ci | is the number of candidates at level i.  

Bonferroni inequality ensures that α becomes more restrictive as one descends 

down the tree decreasing by a factor of half as one descends down the tree.  

 

As mentioned earlier Bay and Pazzani convert the contrast-set mining problem 

into a tree-search problem. They use a canonical ordering of nodes in the search 

space by employing set-enumeration trees thereby ensuring that each node is 

visited only once, or not at all if it can be pruned. Here is an example of a search 

tree borrowed from [2]  

 

 

 
Figure 1: Set-enumeration Trees (from [2]) 

 

Pruning Strategies 

 

Pruning of nodes is done when no specializations of that node can result in a 

deviation. Nodes are pruned based on the following strategies: 

 

Minimum Deviation Size Pruning: If for a node the maximum of the support-

difference between any two groups is less than the minimum threshold then that 

node can be pruned; this is because it is guaranteed that if minimum deviation size 

condition is not met for the parent node then it will not be met for any of the child 
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nodes. This is similar to the subset-infrequency pruning that is employed in case 

of Association-rule mining.  

 

Expected Cell Frequencies Pruning: If the expected cell frequencies in the top 

row of the contingency table are too small (ranging from 1 to 5) then the node can 

be pruned because no valid inferences can be made in such a case, and also one 

needs to take into account the fact that the expected cell frequencies as we go 

down the tree.  

 

Χ
2 

—
 
value pruning: It is obvious that as one descends down the set-

enumeration tree the number of attribute-value pairs in a contrast-set increases 

leading to a bound on the support for the contrast-set on all descendents. As an 

example consider the association-rule/contrast-set at node j: Degree = 

undergraduate => Income = high (25%). The value in the bracket is the support 

for the association-rule/contrast-set. The node associated with this contrast-set 

may have a child node j+1 such as: Degree = undergraduate => Income = high 

^ Job Profile = manager. We know for a fact that the support for this 

association-rule/contrast-set cannot be greater than 25%. Thus the support for the 

parent rule becomes an upper bound on the support for all descendents in the 

search space. Inversely, the support for the child rule becomes a lower bound for 

all ancestors for all ancestors in the search space. These bounds on the support 

values lead to bounds on the observed frequencies in the contingency table 

leading further to an upper bound on the value of χ
2
, which can then be used for 

pruning.  

 

Interest-based Pruning: If the addition of an attribute value-pair to an existing 

contrast-set (i.e. specialization of the contrast-set from the parent) does not lead to 

a change in the support value then STUCCO considers it to be non-interesting, 

and prunes the specialized rule from the search space. The logic behind this 

pruning is that in the absence of any change in the support-value the specialized 

rule does not provide any more information than what the parent does.   
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Statistical Surprise Pruning: A contrast-set is considered statistically surprising 

when the observed frequencies are different from the expected frequencies. We 

use an example from [20] to illustrate this point. The expected frequency is the 

product of the observed frequencies for the case where two variables are involved 

(for complex cases iterative proportional fitting is advised [22]). If P (Income = 

high | Degree = undergraduate) = 40% and P (Income = high | Job profile = 

manager) = 65%, then the expected frequency is given by: P(Income = high ^  Job 

profile = manager | Degree = undergraduate) = 26%. Bay and Pazzani prune all 

those contrast-sets for which the expected frequencies lie within a certain 

threshold of the observed frequencies because they consider such contrast-sets to 

be providing no new information – not surprising, and hence not useful.       

 

Bay and Pazzani proposed an algorithm called STUCCO (Search and Testing for 

Understandable Consistent Contrasts) for mining contrast-sets. Here we 

reproduce their algorithm (borrowed from [2]). 

 

 

Figure 2: Algorithm for STUCCO (from [2]) 
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 Hilderman and Peckham [19] provide an alternate approach for mining contrast-

sets. Their algorithm CIGAR (ContrastIng Grouped Association Rules) provides 

a variation on the popular algorithm STUCCO.  Hilderman and Peckham provide 

a variation to the 2xn contingency table approach of STUCCO by breaking it 

down into a series of 2x2 contingency tables. They employ three additional 

constraints to the STUCCO framework:   

support (X, Gi)                                                             … (5) 

                correlation(X, Gi, Gj)                                                     … (6) 

|correlation(X, Gi, Gj) — correlation(child(X, Gi, Gj))|     …(7) 

 

where: X is a contrast-set, Gk is a group, β is a user-defined minimum threshold, λ 

is the user-defined minimum correlation threshold, and γ is the user-defined 

minimum correlation difference.  

  

Contrast-sets satisfying condition I are called frequent. Contrast-sets satisfying 

condition (D) are called strong. Contrast-sets that satisfy the two constraints set 

by STUCCO and constraints C and D that are imposed by CIGAR are called 

deviations, however those contrast-sets that do not satisfy condition E are called 

spurious, and pruned from the search space. The fact that CIGAR employs 

additional constraints implies that in addition to the pruning strategies of 

STUCCO there are more pruning strategies that are based on these new 

constraints.    

 

Also, the phi correlation coefficient is employed to measure the degree of 

association between the variables in the 2x2 contingency tables. CIGAR seeks to 

control Type II error (or false negatives) in contrast to STUCCO that focuses on 

controlling Type I error.  

 

Hilderman and Peckham use three datasets: Mushroom, GSS Social and Adult 

Census, and run both STUCCO and CIGAR on these datasets. They then compare 

the results to find that in most of the cases the contrast-sets match for the two 

algorithms. For the cases where the contrast-sets do not match for the two 
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algorithms the authors provide reasons as to why either those contrast-sets were 

wrongly pruned by STUCCO, or why they were (rightly) pruned by CIGAR (and 

thereby failed to be pruned by STUCCO). Hilderman and Peckham conclude that 

while STUCCO and CIGAR are based on different statistical philosophies and 

assumptions both the approaches can be used to generate interesting contrast-sets.       

   

3.2 Non-Statistical Techniques  

 

In order to capture emerging trends in time stamped databases Dong and Li 

propose a new kind of pattern called Emerging Patterns (EP‘s). EP‘s can also be 

used to provide contrast between different classes in a dataset [1].  The authors 

provide EP-mining algorithms that manipulate only the ―borders‖ of datasets – as 

discussed in the description later. Given the fact that Apriori property does not 

hold in case of EP-mining, and the fact that there may be too many candidates for 

the case of large datasets the border manipulation technique of Dong and Li 

provides an efficient pruning mechanism in the search space. EP‘s are defined as 

item-sets whose support increases significantly from one dataset D1 to another D2. 

A more precise definition of EP‘s is that these are item-sets whose growth rate – 

the ratio of their support values in D2 over D1 (or vice versa) – is larger than a 

user supplied threshold value ρ.  

 

For data-sets D1 and D2 with X as an item-set with suppi (X) denoting the support 

of item-set X in Di (the definition for support remains the same as was introduced 

earlier in case of Association-rule mining) the growth rate of an item-set X, 

denoted as GrowthRate(X) is defined as:  

  

Also, an item-set X is said to be an emerging pattern if for a given growth rate 

threshold ρ > 1 if GrowthRate (X)   ρ. For a given growth rate threshold ρ the 

EP-mining problem is to find all ρ-EP‘s.        
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Dong and Li then introduce the concept of borders – they define a border as an 

ordered pair < L, R > such that (a) (b) of definition 3.2 where L and R are called 

the left hand bound of the border and the right hand bound of the border 

respectively. Essentially a border is a collection of large item-sets that satisfies the 

previous conditions. They also show that if certain conditions are satisfied then 

every collection S of sets has a unique border < L, R > where L is a collection of 

minimal sets in S, and R is a collection of maximal sets in S. They then provide 

three algorithms, each one an improvement over the previous one, to illustrate the 

use of borders in pruning the search for Emerging Patterns – their algorithms take 

borders (collection of large item-sets) as input, manipulate the borders, and then 

again produce borders as output – representing EP‘s. More details can be found in 

[1]. 

 

Webb et. al. [4] use a commercial rule discovery system called Magnum Opus, 

and also use C4.5rules, which is a classification-rule discovery system; they apply 

these rule discovery systems on two-day sales data of a departmental store. Their 

objective is to contrast the retail activity on two different days in order to identify 

the effect of specific market promotions. Finally, they run STUCCO on the same 

data, and carry out a comparison of the contrast-sets produced by the trio.  

 

While Magnum Opus is a commercial rule discovery system that looks for rules 

of the form antecedent  consequent, it is important to note that it differs from 

association-rule like systems in that it does not employ frequent-itemset strategy. 

Unlike other association-rule discovery systems Magnum Opus does not require 

minimum support value for extracting the rules – instead it requires parameters 

called strength (same as confidence for association-rules), maximum number of 

rules to be returned, lift, coverage and leverage. Coverage is merely the support of 

the antecedent and hence if the consequent is a group then the antecedent might 

be the contrast-set, and coverage the support value for the contrast-set. Leverage 

measures the degree to which the ―observed joint frequency of the antecedent and 

consequent differ from the joint frequency that would be expected if the 
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antecedent and the consequent were independent of each other‖ [4]. While 

STUCCO uses the χ
2 

test of significance Magnum Opus uses a binomial sign test, 

and unlike STUCCO Magnum Opus does not make corrections for multiple 

comparisons – according to the authors this is to avoid the risk of increasing type 

II errors.   

 

For the departmental store data (discussed earlier) Magnum Opus produced 83 

rules, STUCCO discovered 19 contrast-sets, and C4.5 produced 24 rules.  It was 

found that the rules produced by classification-rules discovery – C4.5 system had 

two major problems: Firstly, they were missing some key contrasts, and secondly 

there were many negative rules that are very hard to interpret. Hence the rules 

obtained from C4.5 were dropped from further analysis. The authors report that 

Magnum Opus had produced rules corresponding to all the contrast-sets found by 

STUCCO.  The authors then go on to prove that the constraints used by STUCCO 

and Magnum Opus are equivalent (a point that is disputed in [23], and we discuss 

that further), and they hold the view that the main respect in which the two 

systems differ is the application of the filters. The authors are of the view that 

Magnum Opus‘ filter is much more lenient than that of STUCCO thus leading 

Magnum Opus to find many more rules as compared to STUCCO. It was also 

found that many more rules found by Magnum Opus were considered surprising 

by the experts as compared to the contrast-sets discovered by STUCCO. The 

authors conclude that some of the rules that were not found by STUCCO, but 

were discovered by Magnum Opus (and were considered potentially useful) 

support the lenient filters applied by Magnum Opus. On the other hand there were 

some rules discovered by Magnum Opus that were spurious because of the 

leniency of the filter, and such rules were pruned by STUCCO leading the authors 

to conclude that neither STUCCO nor Magnum Opus is applying a perfect filter. 

They advocate further studies to find a better filter that finds a middle ground 

between the two systems.  
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Chapter 4 

An Alternate Approach  
 

4.1 Drawbacks of Previous Approaches 

 

In their concluding remarks in [4] the authors mention that ―neither STUCCO nor 

Magnum Opus is applying a perfect filter‖, and that while STUCCO seemed to 

discard some contrasts of potential value, Magnum Opus appears to include 

contrast-sets that were probably spurious, thus highlighting the inadequacy of the 

two approaches. In [23], the authors discuss how Magnum Opus actually does a 

within-groups comparison rather than a between-groups comparison and thus 

generates only a subset of the contrast-sets generated by STUCCO. Given that 

Magnum Opus does only a within-groups comparison the claim of the authors in 

[4] seems to be surprising that Magnum Opus could produce all the contrast-sets 

(an exercise that requires a between-groups comparison) that were generated by 

STUCCO and a few more interesting ones that STUCCO failed to produce. 

Hilderman and Peckham apply a completely different filter (that minimizes type 

II errors) than STUCCO, and claim that their method is able to find all the 

contrast-sets discovered by STUCCO. Thus there seems to be no consensus on the 

kind of filter to be used to prune the search space. All of these divergent views 

and results seem to be adding more confusion to the field. In light of the above 

issues it appears that all the approaches so far have been unable to tackle the root 

of the problem, and this issue is far from closed. 

 

In [2, 3, 19, 20] the contrast-sets are reported as belonging to the association-rules 

such as Group  Contrast-set (for brevity we will, hence forth, refer to these 

kinds of contrast-sets as the ―first kind‖). The authors do not consider other kind 

of contrast-sets (henceforth referred to as the ―second kind‖) that come from the 



 22 

rules of the type Contrast set  Group. In [4], the authors consider only the 

second kind of contrast-sets. Later, we show that only the second kinds of 

contrast-sets can exist – our experimental results show that  where the first kind of 

contrast-sets do exist, they cannot have more than one attribute.   

  

4.2 Association-rule based approach 

 

As quoted in [4] Bay and Pazzani oppose the association-rules based approach 

because 

[association rule discovery will not]  return group differences, and 

the results will be difficult to interpret. [with reference to an 

example]. First, there are too many rules to compare. Second, the 

results are difficult to interpret because the rule learner does not 

enforce consistent contrasts (i.e. using the same attributes to 

separate groups) … Finally, even with matched rules, we still need 

a proper statistical comparison to see if differences in support and 

confidence are significant.  

 

Even though Webb et. al. use Magnum Opus – a rule-based discovery system 

(although not an association-rule based approach) for contrast-set mining they 

tend to be critical of using association-rule mining for contrast-set discovery:  

 

To assess the importance of [the] difference [between using 

statistical-filters and association-rule mining] we applied Christian 

Borgelt’s implementation of Apriori to the data … There was no 

obvious way, however, to configure the system to filter the most 

useful rules for this application.          

 

From the above we observe that the biggest criticism against using association-

rule mining for generating contrast-sets is the lack of knowledge in how it could 

be possible. Bay and Pazzani point have a number of objections: 
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1 If association-rule mining does not return group-differences how will one 

generate contrast-sets 

2 There are too many rules to compare 

3 The rules are difficult to interpret because we need to isolate rules of the 

kind group  precedent, which is not an easy task. 

4 In some cases, there are rules in one group that have no match amongst 

any of the other groups. How does one interpret those?   

5 Even for the case of matched rules one needs to do a statistical comparison 

to check if the differences in the support and confidence are significant;  

 

We concede that the first and the fifth assertions are true – there indeed could be 

too many rules, however, that only affects the total run-time and not the accuracy.  

Regarding the last issue we argue that one does not need to do statistical 

comparisons if one is not creating a tree. The significance condition can be 

applied mathematically (in terms of probabilities) – the advantage with statistical 

comparisons comes in case of a tree-setup where one can do a lot of statistical 

pruning.  

 

The argument laid down by Bay and Pazzani regarding a particular association-

rule existing for only one group, and missing in the rest of the groups has 

implications on the accuracy of the results, however, having found a way to 

overcome this issue we decided to use association-rules to investigate the problem 

of finding contrast-sets because of the inadequacies of the earlier mentioned 

techniques, and their conflicting conclusions. Association-rules form the 

backbone of all the previously mentioned approaches, and hence the accuracy of 

the results obtained by this approach cannot be questioned, even if this approach 

might be slower. Our hypothesis was that association-rules, being the foundation 

of this problem, will generate all the ―interesting‖ and ―useful‖ contrast-sets that 

were generated by STUCCO and potentially many more. While our approach still 

aims at identifying the contrast-sets that satisfy the deviation conditions of 

STUCCO (i.e. to find the significant and large contrast-sets), it does so using 
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association-rules, and in the process does not suffer from the shortcomings that 

other techniques do.  

 

4.3 Finding Deviations 

 

First we will provide a brief introduction as to how we extract the association-

rules – this is important in the understanding of the modifications that we make to 

the largeness condition. Given a dataset D with the class (group) being an 

attribute we break it up into n datasets D1 … Dn where n is the number of distinct 

groups in D such that a dataset Di corresponds to the group Gi. Then we run 

Christian Borgelt‘s association-rule mining code [24] on each of the Di‗s 

separately; this requires a minimum support value and a minimum confidence 

value to be provided as an input parameter to the code. For the example below let 

us assume that the (min-support, min-confidence) values are: (10%, 7%). All 

association-rules for which the support and confidence values exceed the 

respective user-input-minimum-values are extracted, and the rest are pruned
3
. 

This implies that it is possible that an association- rule may satisfy the minimum 

support and confidence thresholds for one group such as: Degree = Postgraduate 

 Income = high ^ Job Profile = manager (16%, 19%) with the values in the 

brackets standing for (min-support, min-confidence) respectively. It is possible 

that the corresponding association-rule may be absent in all other groups because 

the minimum-support and minimum-confidence conditions may not be satisfied. 

As an example for the group of undergraduate degree holders we may have:  

 

 Degree = Undergraduate  Income = high ^ Job Profile = manager (9%, 3%)   

As 9<10, and 7<3 the above rule will not be present in the group Degree = 

Undergraduate. If there were more groups assume that the contrast-set is absent 

from all of those as well.     

                                                 
3
 Note that we choose very low values of minimum support and minimum confidence so that the 

set of pruned association rules is small; this also ensures that the association rules that are 

discarded are of low ―significance‖.  
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Now that we know that it is possible that a contrast-set may be present in only of 

the groups, and may be absent in the rest of the groups we are in a position to talk 

about the modification that we had to make in the largeness condition for the case 

of single contrast-sets. 

 

Consider the two association-rules assuming that we have the two groups: Degree 

= Undergraduate and Degree = Postgraduate 

    

Degree = Undergraduate  Income = high ^ Job Profile = manager  

and 

Degree = Postgraduate     Income = high ^ Job Profile = manager  

 

If the support values for the above association-rules satisfy the two deviation 

conditions then the association-rules are equivalent to the contrast-set:  Income = 

high ^ Job Profile = manager. We coined a term for such contrast-sets – β-

contrast-sets – those contrast-sets for which the association-rules exists for at 

least two groups.  These are the normal contrast-sets that satisfy the deviation 

conditions given by Bay and Pazzani.  

 

Consider a situation where we have association-rule corresponding to only one 

group
4
:   

 

Degree = Postgraduate  Income = high ^ Job Profile = manager  

 

If the corresponding rule does not exist for the other group: Degree = 

Undergraduate then while such a situation does not violate any conditions for it to 

be a deviation, however it cannot be handled by the deviation conditions given by 

Bay and Pazzani. We call such contrast-sets α-contrast-sets. In the case of α-

contrast-sets the largeness condition cannot be applied owing to the absence of a 

support-value for all the other groups. The normal largeness condition is:  

                                                 
4
 As discussed earlier 
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Maxij | support (cset, Gi ) – support(cset, G j )|  ≥ min_dev 

 

With the support-value available for only one group the normal deviation 

condition will not work:  

 

Maxij |support (cset, Gi) – support (absent_cset, Gj) | ≥ min_dev 

 

Notice that we are looking for the maximum value on the left-hand-side. As the 

contrast-set does not exist in other groups we have no idea for its support-value 

(or equivalently the support-value for the corresponding association-rule). If the 

minimum-support-value at which the association-rules were extracted is 10% it is 

possible that the support value for the absent contrast-set may be 9.9%, because of 

which it was pruned, or it may be close to 0% – we have no idea as to what is the 

case. However an upper-bound for this value will certainly be 10% (the 

minimum-support-value at which the association-rules were extracted – call it 

sup-min-Gj_ub) because if the value was 10% (or higher) it would form a 

contrast-set.   

 

We propose that the upper bound sup-min-Gj_ub should instead be used in the 

largeness condition in place of support (absent_cset, Gj). The justification for 

using the upper bound is that it will minimize the quantity: |support (cset, Gi) – 

support (absent_cset, Gj)|, and thus will make the condition more stringent. If we 

find that even if the minimum value of |support (cset, Gi) – support (absent_cset, 

Gj)| is greater than min_dev then it implies that the support for the contrast-set in 

the lone group is quite large, and in our opinion it makes a strong case for being 

considered a contrast-set even when the contrast-set is absent in the other groups. 

Thus the modified largeness condition is given by:  

 

Maxij |support (cset, Gi ) − sup-min-Gj_ub | ≥ min_dev 
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The above represents the worst case analysis in the largeness condition, and if the 

potential α-contrast set (cset) satisfies this condition then it should be considered 

to satisfy the largeness condition. By employing this condition we were able to 

keep a significant number of contrast-sets that would have been wrongly pruned. 

Later on we discuss about the following ratio for the datasets that we used for our 

experiments:   

                            
sets-contrast  potential ofNumber 

sets-contrast  potential ofNumber 




   

For the datasets considered we found the value of η to be close to 100, meaning 

that for every single potential β-contrast-set in the data there are 100 α-contrast-

sets. We emphasize that prior to our publication, α-contrast-sets had never been 

considered in the literature – on the contrary Bay and Pazzani had hinted on the 

problems of comparison of association rules where a rule exists only in a single 

group.  

 

Note that the assumption that the support for a contrast set is zero because it does 

not appear in the set of association-rules (Ã) would be wrong; consider the case 

that the actual support in the dataset for a particular association-rule was 1.9% 

(for e.g.) while the min_support used in the Apriori code (association-rule 

generator) was 2.0%, and hence that association-rule did not appear in Ã. This 

does not imply a support of 0% for that association-rule – had we used 1.9% as 

the value for min_support we would have found that particular association-rule in 

Ã. 

 

4.4 Contrast-sets – First and Second Kind 

 

As mentioned earlier we coined a term for the contrast-set that comes from 

association-rules of the type: Group  Contrast-set: Contrast-set of the ―first 

kind‖, while the contrast-set that comes from association-rules of the type 

Contrast set  Group is called a contrast-set of the ―second-kind‖. In the 

literature we found both types of contrast-sets being used (sometimes 
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interchangeably). We ran an association-rule program
5
 on our data-sets and 

discovered that the number of association-rules generated for the first kind of 

contrast-sets was far too less (always less than 1%) than the number of 

association-rules corresponding to the second kind of contrast-sets. Also, the first 

kinds of contrast-sets were always composed of only single attributes. Initially we 

found these results quite puzzling, however, on a deeper examination we found 

that this result made perfect sense. Consider attributes A, B and C and assume that 

we have two groups in the data set. Also assume that they occur approximately 

equally in the data-thus 50% of the records belong to group 1 while the other 50% 

belong to group 2. The support value for the ―first kind‖ of association-rule: 

Group1  A, B, C is: 

       

                        P (A ∩ B ∩ C ∩ Group1)/P(Group1) 

 

Given that P(Group1) is very high (~0.5) the support for it will be very low. In 

order to extract association-rules, and the corresponding contrast-sets, we need to 

run Apriori with a very low value for minimum support. We used a value of 1% 

for the minimum support and found that only single item-sets on the right hand 

side such as A, or B, or C are able to meet these conditions. On the other hand for 

the rules of the second kind: A, B, C  Group, the support-value is:  

 

P (A ∩ B ∩ C ∩ Group1)/ P(A ∩ B ∩ C) 

 

The quantity in the denominator: P(A ∩ B ∩ C) is small and hence the support-

value for the contrast-set is higher than that of the ―first kind‖ of contrast-set.This 

implies that the minimum support that goes into Apriori code can be relatively 

high. We believe that the above analysis will provide clarity around the issue of 

different kinds of contrast-sets being reported in the literature – for our analysis 

we decided to consider only contrast-sets (and hence association-rules) of the 

―second kind‖. Having laid the theoretical groundwork we discuss our 

experimental results in the next section.  

                                                 
5
 Christian Borgelt‘s implementation of Apriori version 4.28 [24] 
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Chapter 5 
 

 

Contrast-set Mining Experiments 

 

5.1 Background Information  

 

In this chapter we present our algorithm, and the results of our experiments. For 

the first set of experiments we compare the contrast-sets obtained from STUCCO 

and those obtained from our approach based on association-rules. STUCCO is 

implemented in C++ and was compiled using g++ (version 3.4.4) run on Linux 

(2.6.9-42.0.3Elsmp). We implemented our code in Java 1.4.1 and ran it on a 

Linux Kernel (version 2.6.9- 42.0.3Elsmp) PC with a 2.4 GHz. AMD 64 bit 

Processor (4000+) and 2 GB of memory. The Apriori code [24] is based on the 

Apriori Algorithm [25], and is written in C. Our Java code encapsulates Apriori, 

and compares the association-rules extracted by Apriori to find those contrast-sets 

that satisfy the deviation conditions. 

  

In the next set of experiments we look for ways in which an association-rule 

based contrast-set mining approach can help in increasing the accuracy of 

different classification techniques. We use a dataset of historic maternal and 

newborn records to predict pre-term births. First, we apply various classification 

techniques such as Naïve Bayes, Decision trees, SVM, logistic regression, 

associative classifier etc. on our dataset to find the performance measures such as 

Precision, Recall, F-measure, AUC etc. We then apply the contrast-set mining 

technique to select features from the dataset that can provide maximum contrast 

between the two classes – normal birth, and pre-term birth. The first set 

experiments are repeated again with only the selected features from the previous 

step being used this time. This work was carried out in association with Yavar 

Naddaf and Mojdeh Jalali Heravi.  
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5.2 Properties of Datasets   

 

We ran STUCCO and our code on several datasets, and we present results for 

three datasets here: Mushroom, Breast Cancer and Adult Census. The Mushroom 

dataset describes characteristics of gilled mushrooms; it is available from the UCI 

Machine Learning Repository (www.ics.uci.edu/~mlearn/MLRepository.html). 

The Adult Census dataset is a small subset of the Census Income (1994/1995) 

dataset – a survey dataset from the U.S. Census Bureau. The Breast Cancer 

dataset, again obtained from the UCI Machine Learning Repository, was collected 

by physicians and the data contains two groups: recurring and non-recurring. The 

characteristics of the datasets are shown in Table 4 where the first column 

describes the number of tuples in the dataset, the second column describes the 

number of attributes, the third column describes the number of unique values 

contained in the attributes, and the last column describes the number of distinct 

groups – as defined by the number of unique values in the grouping attribute. 

 

Dataset Tuples Attributes Values Groups 

Mushroom 8142 23 130 2 

Adult Census 826 13 129 2 

Breast Cancer 286 9 53 2 

 

Table 4: Properties of the datasets 
 

The dataset related to maternal and foetal data was collected by Northern and 

Central Alberta Perinatal Outreach Program between 1992 and 2003. It contains 

maternal and newborn data for 243948 cases, including 21193 preterm cases. 

There are 244 attributes, containing ―maternal demographic information, medial 

history such as pre-existing chronic illness, lifestyle information such as smoking 

and alcohol use, past reproductive history including previous [preterm] or [small 

for gestational age] delivery, and history with the current pregnancy such as 
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presence of hypertension or toxaemia. As quite a few were collected during or 

after delivery, and thus cannot be used for predicting preterm birth. We list the 46 

attributes that were collected before delivery in Appendix A. The attributes 

―Group B Step‖, ―Maternal Hepatitis B‖, and ―Steroid During Pregnancy‖ have a 

high ratio of missing values, and were therefore discarded. Also, there are 2107 

records with missing class labels, which are also omitted  

 

5.3 Algorithm ARCS 

 

Herein we present a high level view of our algorithm – ARCS (Association Rule-

based Contrast Sets). We assume that the dataset D is divided into n datasets D1 

… Dn where n is the number of groups in dataset D. Also, as mentioned earlier, 

we only test for contrast-sets of the second kind i.e. Group  Contrast-set 

 

Algorithm ARCS (min_support, min_confidence) 

 

Begin 

 

/* n is the total number of groups (classes) in the dataset */ 

for i=1, n  

   Run Apriori (min_support, min_confidence) on each Di separately; 

   Store association-rules (contrast-sets) in file Ai;    
end; 

 

Dictionary-sort the contrast-sets in each (file) Ai separately; 

Read first line (contrast-set) from each (file) Ai; 

While (not-end-of-all-files) 

{ 

    If (contrast-sets do not match) /* A contrast-sets exists in only one group */  

     
            Test for the Deviation conditions for α-contrast-sets; 

           Read a new line from the corresponding file; 

     Else /* A contrast-sets exists in at least two groups */ 

 

          Test for the Deviation conditions for β-contrast-sets; 

          Read a new line from the corresponding files;  
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} 

 

End ARCS 

 

5.4 Effect of Maximal Number of Item-sets  

 

The experiments mentioned in this section clearly show the significant differences 

that exist between the α-contrast-sets and the β-contrast-sets. In order to carry out 

the experiments mentioned in section 5.5 we needed to use Christian Borgelt‘s 

code for generating association-rules using Apriori analysis; the code requires an 

input value called maximal number of items per set (m), which corresponds to the 

maximum number of attribute-value pairs in a discovered contrast set. As we did 

not have a good approximation for an optimal value of m we decided to vary this 

number, and we tracked the number of association rules generated by Apriori and 

also the number of α and β-contrast-sets generated.  

 

The results of our experiments related to maximal number of item-sets are 

presented in Figures 3 and 4 for two data sets. For the sake of efficiency the plot 

for the Mushroom dataset was clipped to 7 maximal items per rule otherwise with 

the huge amount of association rules generated the code would have taken a long 

time to process those. However, we were still able to capture the trend. There are 

several inferences that can be drawn from Figures 3 and 4: 

 As the maximal number of items per rule increase, the number of contrast-

sets (both α-contrast-sets and the β-contrast-sets) increase, and eventually 

the curve becomes flat. A similar behaviour is observed for the curves for 

association-rules for the two the groups.  

 In Figure 3, the maximal number of items per rule at which the curve for 

the number of association-rules become almost flat is approximately 11. 

While the curve for the number of β-contrast-sets becomes flat at 8 

maximal items per association-rule, the corresponding number for the α-
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contrast-sets is 10, showing that the behaviour of the α-contrast-sets is 

different from that of β- contrast-sets.  

  The number of α-contrast-sets is higher than the number of β-contrast-sets 

by a factor of two orders of magnitude (approximately).  

 

Figure 3: Behaviour of association-rules with maximal number of items for 

the Adult dataset (“bach” stands for bachelor; “doc” stands for doctorate – 

the two groups) 

 

For the case of Mushroom data set it is clear that the curve for the number of α-

contrast-sets seems to follow the curve for the number of association-rules for 

both the groups, and also the fact that the curve for β-contrast-sets seems to be 

close to flattening out while the other curves still have a rising trend. Figures 3 

and 4 clearly show that there is a marked distinction between the α-contrast-

sets and the β-contrast-sets, and ignoring α-contrast-sets amounts to 

throwing away useful information. We repeated the above mentioned 

experiments for several datasets; however in all cases the trend remained the 

same.  
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Figure 4: Behaviour of association-rules with contrast-sets for the 

Mushroom dataset  

 

5.5 Comparison of results with STUCCO 

A comparison of the results based on our approach, and those based on STUCCO 

is summarized in Table 5 

 

Dataset No. of STUCCO 

contrast-sets 

No. of contrast-

set from our 

approach 

All CS of STUCCO found? 

Mushroom — Top 50 Not Applicable 

Adult Census 24 Top 50 Yes 

Breast Cancer 5 Top 50 Yes 

 

Table 5: Comparison of results with STUCCO  

 

For the Adult data set STUCCO found 24 interesting contrast-sets out of a total 

number of 919 identified deviations. All the contrast-sets found by STUCCO 
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were also present in the list of Top 50 contrast-sets that were generated using our 

approach. We ranked the contrast-sets from our code in terms of their 

interestingness (i.e. support differential). There seemed to be many interesting 

contrast-sets in our list that STUCCO missed – STUCCO‘s result did not include 

any the α-contrast-sets, and as can be seen from Table 6, α-contrast-sets can 

constitute (approximately) anywhere from 10% to 20% of all contrast-sets.  

 

Dataset Top 10 Top 20 Top 50 

Adult Census 10% 10% 18% 

Breast Cancer 0 15% 14% 

 

Table 6: Percentage of α-contrast-sets found in our Top N contrast-sets 

 

Table 7 shows the highest ranked STUCCO contrast-set in our list of Top 50, and 

also the lowest ranked contrast-set in the same list – for the adult census dataset 

the highest ranked STUCCO contrast-set in our Top 50 list lies at number 3, while 

the lowest ranked contrast-set lies at number 43. It is clear that STUCCO missed a 

number of contrast-set with a high value of support differential (the ones that 

provide the best contrast).  

 

Dataset No. of 

STUCCO 

contrast-sets 

Highest Ranked 

STUCCO  contrast-set 

in our Top 50 list 

Lowest Ranked 

STUCCO  contrast-

set in our Top 50 list 

Adult 

Census 

24 3 43 

Breast 

Cancer 

5 5 37 

 

Table 7: Spread of STUCCO‘s contrast-sets in our Top 50 list 
 

For the Breast Cancer data set STUCCO found only 18 deviations and 5 

interesting contrast-sets, again all of these belonged to our list of discovered 

interesting contrast-sets. STUCCO did not produce any α-contrast-sets while our 

code was able to extract them. The highest ranked STUCCO-contrast-set was at 
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number 5 in our list of Top 50 while the lowest ranked contrast-set was at number 

37; clearly this is a fairly wide spread, and STUCCO seems to have missed all our 

top four contrast-sets besides missing several other top contrast-sets. A 

comparative analysis for the Mushroom data set could not be performed because 

STUCCO did not output any results in a legible format for that dataset while our 

approach pinpointed many relevant contrast-sets. 

 

5.6 Experiments for Preterm Birth Prediction  

 

Pre-term birth is one that takes place after at least 20 completed weeks of 

gestation, but is less than 37 completed weeks of gestation. Pre-term births can 

cause moderate to severe disability, and extreme complications in infancy and 

childhood. With more than two-thirds of all prenatal deaths caused due to pre-

term births decision support tools are needed for doctors to be able to predict pre-

term births early on.  

 

The objective of this experiment was to determine whether contrast-set can help 

in increasing the accuracy of a classifier. The experiments were carried out in two 

phases, such that in the first phase various classification methods were applied to 

the dataset, and measures such as precision, recall, AUC etc. were calculated for 

the results. In the second phase contrast-set mining was carried out on the dataset 

to carry out feature selection – determine a few features (attributes) that 

discriminate most between the two classes – natural birth and pre-term birth. The 

classification experiments were re-run with only a reduced set of attributes in the 

hopes of achieving better accuracy.  

  

As mentioned earlier this work was carried out in association with Yavar Naddaf 

and Mojdeh Jalali Heravi – for the sake of completeness and understanding we 

will describe the whole experimental process, and will mention the part that was 

carried out specifically by us. In the first step the dataset was converted into a 

transactional database with each transaction being a record of a unique patient. 

Eclat – a depth first search algorithm developed by Zaki et. al. [26], and 
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implemented by Christian Borgelt [27] was used because the transaction volume 

is extremely large (241841 transactions with and average of 41 items per 

transaction).  

 

Measure  

 

Algorithm 

 

True 

+ve 

Rate 

False 

-ve Rate 

Preci

—sion 

Recall F- 

Measure  

AUC 

Weka 

AUC 

Haneley 

And 

McNeill 

Naïve Bayes 0.281 0.036 0.564 0.281 0.375 0.716 0.622 

Logistic 

Regression 
0.207 0.014 0.713 0.207 0.321 0.724 0.597 

SVM 

Linear 

Kernel 

0.155 0.008 0.757 0.155 0.257 0.573 0.573 

ZC 4.5 

Decision Tree 
0.197 0.013 0.708 0.197 0.308 0.666 0.592 

Neural 

Networks 
0.228 0.020 0.657 0.228 0.338 0.711 0.604 

Associative 

Classifier 
0.218 0.029 0.419 0.218 0.286 N/A 0.594 

 

Table 8: Performance of various classification methods  
 

It was hoped that Eclat would be more efficient than Apriori however, it was 

found that for the volumes of transactions involved (241841) the algorithm takes 

about a month to generate all the rules. Due to time limitations we started with a 

very small subset of the dataset (1% of the original dataset), and then increased 

the size gradually. An associative classifier was used for classification of the 

records into the two classes: normal birth and pre-term birth. After trying a 

number of confidence values the minimum confidence chosen was 85%, and the 

minimum support was set to 1%. A number of other classifiers (mentioned in 
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table 5) were also used; these classifiers are available in Weka [28] – an open-

source data-mining package – the default optimized values of parameters were 

used.  Various performance measures are recorded, and the best value amongst all 

these measures is highlighted in bold (see Table 8). AUC is the area under the 

Receiver Operating Characteristic (ROC) curve; it provides an estimate of the 

false positive and false negative error rate. For estimating the AUC value we use a 

method provided by Haneley and McNeil [29], and also the method provided in 

the Weka package. All the classification methods perform poorly – within the 

classification methods tried Naïve Bayes provides the best value for the AUC 

(0.662).  

 

Measure  

 

Algorithm 

 

True 

+ve 

Rate 

False 

-ve Rate 

Preci

—sion 

Recall F- 

Measure  

AUC 

Weka 

AUC 

Haneley 

And 

McNeill 

Naïve Bayes 0.181 0.014 0.678 0.181 0.286 0.676 0.584 

Logistic 

Regression 
0.171 0.012 0.698 0.171 0.275 0.676 0.579 

SVM 

Linear 

Kernel 

0.133 0.009 0.711 0.133 0.224 0.562 0.562 

ZC 4.5 

Decision 

Tree 

0.164 0.011 0.712 0.164 0.266 0.629 0.576 

Neural 

Networks 
0.195 0.020 0.617 0.195 0.296 0.677 0.587 

Associative 

Classifier 
0.137 0.013 0.513 0.137 0.216 N/A 0.562 

 

Table 9: Performance of classification methods after feature selection   
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Next we tried contrast-set mining on the dataset for selecting those attributes that 

provide the best contrast between the two classes. The approach mentioned in 

Satsangi and Zaiane [21] was applied to the association rules generated earlier. 

The original program was modified to accommodate for the different format, and 

a different logic used for pruning the rules. This exercise was carried out by us. 

After feature selection all the classification experiments performed earlier were 

repeated, but with a reduced set of attributes (obtained from contrast-set mining) 

in the hopes of an improvement in the performance. In Table 9 we present the 

classification results obtained after feature selection based on contrast-set mining.  

 

 

Figure 5: Comparison of classification results before and after feature 

selection 

 

In figure 5 we show a comparison of the classification results before and after the 

feature selection was implemented.   As is clear from figure 5 the prediction 

performance worsens after feature selection. 

 

5.7 Analysis of Feature Selection Results 

 

We went back to analyze the causes behind the worsened performance after 

feature selection. We tried changing parameters in our code as well as Weka, and 
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re-running the experiments to analyze the results behind the worsening of 

performance after feature selection, however there was no improvement in the 

results. We could not find any works related to contrast-set mining for maternal 

and foetal data in the literature; however we did come across research on using 

classifiers to predict pre-term birth; one such work was by Goodwin and Maher 

[30] wherein the authors use five different classification techniques: Neural 

Networks, Logistic Regression, CART Decision Trees, and two custom software 

Packages: PVRuleMiner and FactMiner. They use 32 demographice variables and 

393 clinical variables – each classification technique is applied once on the 

demographic variables only, and once on all the variables. The performance of the 

various classifiers is evaluated by the area under the ROC curve. Their prediction 

performance is comparable to ours results – for e.g. by applying Neural Networks 

to the demographic variables only the AUC found was 0.64 while with the 

addition of 393 additional variables the value of AUC was 0.66. The best 

performance came from the custom software package: FactMiner with an AUC of 

0.725 when applied on demographic variables only, and an AUC of 0.757 when 

applied on all the variables. Thus it seems that including 393 clinical variables 

does not make any significant improvement in the results that are obtained from 

the 32 demographic variables. Given the fact that the attributes on which the data 

was collected in our dataset is very similar to their attributes it seems that most of 

our clinical variables are redundant too. Also Goodwin and Maher analyze some 

of the leading risk assessment tools, and they report that the ability of these tools 

to predict pre-term birth is very poor (17% - 38%). The authors quote Dr. Creesy, 

who is a leading expert on pre-term risk scoring tools, as acknowledging that the 

pre-term risk scoring tools have not worked.  

 

Thus it seems that most of the datasets available for pre-term births, including 

ours, seem to be collecting data for the parameters that may not have much 

significance while missing out on some other important parameters – one such 

possibility could be related to the genetic makeup (gene profile) and genetic 
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analysis of the subject; we did not come across any study that looked at the role of 

genes and complex genetics in this problem in a wholesome manner.  

  

In our opinion the absence of some important parameters and very poor accuracy 

of the classification methods is the reason behind feature selection giving poor 

results in every case. Feature selection works by considering the attributes that 

provide the best contrast between the groups while dropping the rest of the 

attributes, but in case of the pre-term birth datasets available so far it seems that 

the attributes that provide the best contrast are missing from the datasets – one 

reason why the accuracy of the classification methods is so poor.  
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Chapter 6  

 

Conclusion and Future Work 

 

Our analysis on various datasets show that Association-rule based analysis is 

more correct; it is able to find all the contrast-sets that are found by STUCCO, 

and some more potentially interesting ones that STUCCO fails to discover. We 

have also shown that only one kind of Association-rules make sense – the second 

kind. We were able to discover a new family of contrast-sets – α-contrast-sets that 

are based on a novel approach for calculating support values. Α-contrast-sets had 

always been pruned in the literature due to the absence of a satisfactory 

method to handle them. Our experiments clearly show that α-contrast-sets have 

markedly different properties and behaviour from that of β-contrast-sets. Also, the 

number of potential α-contrast-sets exceeds the number of potential β-contrast-

sets by a factor of 100 (approximately) for most datasets. Thus we see no 

justification in throwing away such useful information.   

 

While our work on maternal and foetal data did not produce any results that were 

better than the previous efforts we argue that none of the works in literature have 

been able to get satisfactory results implying that some essential attributes are 

missing, and hence contrast-set mining is not able to select features that can 

improve upon the accuracy of the results obtained from various classification 

methods. 

 

Our research has proved beyond doubt that contrast-set mining that is based on 

association-rules mining can not obtain all the contrast-sets that are obtained from 

other methods that are based on statistical techniques, however we do concede 

that it is based more on a ―proof-of-concept‖ scenario rather than worrying about 

issues such as efficiency etc. A well developed code that uses a tree structure for 

efficient pruning, does not generate association rules for each and every attribute, 
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but generates α-contrast-sets and β-contrast-sets directly for only the group (class) 

attribute can speed up the whole process. It will also allow contrast-set mining on 

very large datasets – a problem that exists today. 

    

We believe that our work also has implications both for clustering using the 

contrast-sets obtained from the data, and analyzing the quality of clustering that is 

carried out by any of the known methods. Contrast-sets can discriminate among 

clusters and thus help describe and label clustering results. 
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Appendix A  
 

Table A.1: Attributes in the pre-term birth dataset 
 

 

  




