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Abstract 

Seismic velocity dispersion in crystalline rock is investigated through experimental 

measurements on two natural quartzite specimens.  The quartzites are thermally 

damaged to induce low aspect ratio cracks and the shear and Young’s moduli are 

measured across a range of effective pressures, from 10-150 MPa, under dry, argon 

saturated and water saturated conditions.  High frequency measurements (1 MHz) are 

made using the standard pulse transmission technique, while low frequency (0.01-1 Hz) 

shear measurements are made by forced torsional oscillation with the Australian 

National University apparatus.  Low frequency Young’s modulus measurements are 

made using the innovative forced flexural method.  Dry moduli do not show significant 

differences between low and high frequency results.  Stiffening of argon saturated 

moduli is observed at high frequency, however, the low amplitude means it is not 

possible to confirm dispersion when compared to low frequency measurements.  Both 

water saturated specimens display substantial dispersion, particularly at lower effective 

pressures when crack porosity is higher.  Experimental results from one of the quartzites 

are compared to Gassmann and a combination of Biot and squirt flow elastic theories.  

Experimental low frequency shear moduli are invariant to pore fluid saturation as 

predicted by Gassmann, and Biot and squirt flow theory accurately describes the high 

frequency argon saturated shear modulus of the quartzite.  Neither theory, however, 

adequately describes the behaviour of the Young’s modulus.  The high frequency water 

saturated shear and Young’s moduli of the quartzites are substantially stiffer than is 

predicted by theory. 
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1.0 Introduction 

Seismology is a geophysical technique used to map the acoustic properties of the 

Earth at all scales.  The seismic signal travels as a wave through the Earth; the velocity, 

attenuation and phase of the wave at the receiver can be used to measure the 

properties of the medium it travelled through.  Seismic waves are sensitive to rock 

properties at a scale proportional to their wavelength.  Low frequency teleseismic waves 

generated by earthquakes (<10 Hz) can provide information on the depth and 

composition of the Earth’s mantle and core (e.g. Dziewonski and Anderson, 1981).  

Higher frequency seismic surveys, typically with artificially generated sources (~10-300 

Hz) are used to map the structure of the crust (e.g. Hammer et al. 2010), or localized 

properties of an area at the ore deposit or oil field scale (e.g. Schijns et al. 2012).  Sonic 

logging (kilohertz) can be used to measure properties at a still more localized borehole 

scale (e.g. Liner and Fei, 2006).  Finally, ultrasonic measurements (megahertz) can be 

used to measure the seismic properties of core in the laboratory (e.g. Lassila et al. 

2010). 

It is often desired to compare localized seismic properties to a broader region, or 

vice versa.  This is problematic, however, as much of the Earth’s crust is anticipated to 

have fluid-filled fractures (Crampin and Lovell, 1991) and saturated cracks or pores in 

rock cause the rock to behave fundamentally differently depending on the frequency of 

the measurement.  The behaviour of fluid within the rock is dependent on the timescale 

of the applied stress, or frequency of the propagating seismic wave.  As the seismic 

waves sample the bulk properties of the rock, they are sensitive to the behaviour of 



2 

 

fluid within the rock.  This dependence of seismic velocity on frequency is called 

dispersion. 

 

1.1 Motivation 

Joint interpretation of seismic measurements acquired at different frequencies is 

a common occurrence (e.g. De et al., 1994, Lüschen et al., 1996, Dey-Barsukov et al., 

2000, Smithson et al., 2000, Prioul and Jocker, 2009, Elbra et al., 2011), but in order for 

it to be sucessful it is necessary to account for dispersion.  The problem is a well known 

one within the geophysical community, and numerous theoretical models have been 

developed to allow an estimation of the effects of fluid saturation and frequency of 

measurement on seismic properties (e.g. Gassmann, 1951, Biot, 1956, Geertsma and 

Smit, 1961, Walsh, 1965, Kuster and Toksoz, 1974, O'Connell and Budiansky, 1974, 

Hudson, 1981, Schoenberg, 1980).  Very few dispersion measurements have been 

acquired, however, and the theoretical models largely remain unconstrained 

experimentally.  The accuracy of the models is therefore poorly known and it is currently 

not possible to gauge the uncertainty in predicted dispersion for a given rock type or 

frequency regime. 

In order to avoid effects of heterogeneity, it is necessary to make dispersion 

measurements in the laboratory on core scale samples through which an ultrasonic 

wave can propagate.  The lack of widespread dispersion measurements remains an 

unsolved problem as a result of the difficulty of making low frequency measurements on 
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such small specimens.  Low frequency measurements require extremely specialized 

equipment and only a very few laboratories worldwide currently have this capability. 

 

1.2 Content 

This thesis seeks to partially address the lack of experimental constraint on 

dispersion models through seismic dispersion measurements on two natural, cracked 

quartzite samples and subsequent comparison to theoretical models.  The thesis begins 

with a theoretical review of elastic wave theory and some popular theoretical dispersion 

models.  A literature review of the experimental work completed to date follows in 

Chapter Two. 

The third chapter of the thesis includes a characterization of the physical 

properties of the two quartzite specimens used in the study, with an examination of the 

mineralogy, porosity, permeability and crack shape and distribution within the samples.  

The chapter presents shear modulus measurements across a range of frequencies to 

allow quantification of dispersion in the shear modulus and shear-wave velocity of the 

quartzites.  The shear modulus measurements are compared to theoretical models and 

predictions. 

The Young’s modulus chapter, Chapter Four, introduces the newly adapted low 

frequency flexural measurement apparatus of the Australian National University (ANU).  

As the apparatus had not previously been used to make flexural measurements, the 

calibration process for the low frequency measurements is documented prior to the 

presentation of Young’s modulus dispersion measurements on the two quartzites.  With 
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the acquisition of two independent elastic moduli, it was possible to conduct a more 

thorough comparison of experimental data with theoretical predictions.  This 

comparison is included within the chapter as well. 

Chapter Five summarizes and reaches conclusions about the dispersion 

measurements and their relationship with current theory.  Future work is proposed to 

continue with the study of experimentally measured dispersion.  Each chapter is 

intended to be somewhat capsular in nature which results in some limited repetition of 

key concepts, ideas and background. 

Two appendices are included within the thesis; pulse transmission measurement 

is a relatively commonly used technique that is not documented within the body of the 

thesis, but which nonetheless forms an important component of the dispersion 

measurements contained herein.  Appendix A comprises a description of the ultrasonic 

pulse transmission technique used to make high frequency measurements in the 

laboratory.  The low frequency measurements are more specialized as the ANU 

apparatus is unique.  Numerous low frequency torsional measurements have been 

acquired historically and the technique is well described by numerous scientific papers 

(Jackson et al., 1984, Jackson and Paterson, 1993), but the low frequency flexural 

measurements are a new adaptation of the apparatus.  Appendix B describes the 

apparatus and method, and presents some of the earlier work on fused quartz which 

demonstrates the technique’s viability. 

Although this thesis focuses on measurements of seismic velocity dispersion, 

significant work has been completed during the course of these studies on seismic 
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velocity anisotropy, including a refereed paper (Schijns et al. 2012) and numerous 

extended abstracts (Schijns et al., 2009a, Schijns et al., 2009c, Schijns et al., 2009d, 

Schijns et al., 2010, Schijns et al., 2013).  In addition, further extended abstracts have 

been published on contributions to work in hard rock seismology, including zero offset 

vertical seismic profiles (VSP) and reflection seismic profiles across the Outokumpu, 

Finland volcanogenic massive sulphide deposit (Duo et al., 2009, Duo et al., 2010, 

Heinonen et al., 2009) and the New Zealand Alpine fault (Kovacs et al., 2011). 
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2.0 Background 

This thesis presents velocity dispersion measurements made on two low porosity 

quartzite specimens with thermally induced low aspect ratio microcracks.  This chapter 

serves as a qualitative and quantitative introduction to the topic of seismic velocity 

dispersion.  The causes of dispersion and theoretical models are described, in addition 

to methods of measuring dispersion and a summary of some of the previous work on 

this topic.    Finally, a brief outline of the dispersion study undertaken is presented. 

 

2.1 Elastic wave theory 

Exploration seismology is an important geophysical technique commonly used to 

map the subsurface.  In its simplest form, seismic waves produced by a source at surface 

travel downwards until they are reflected back up to the surface at a lithological 

boundary.  Various types of seismic receivers (accelerometers, geophones, 

seismometers) on the surface record the motions of the ground in response to the 

arriving seismic waves.  The traveltime of the seismic wave from source to receiver is 

interpreted from these seismic records; this time is converted to a depth to a lithological 

boundary with knowledge of the wave velocity. 

There are two types of seismic body waves:  the P- and the S-wave.  Both are 

linearly polarized in an isotropic medium.  Measurements of both body waves, when 

combined with measurement of the rock density, allow the rock to be described in 

terms of its elastic moduli.  The P-wave is the first arriving wave, and travels as a 
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longitudinal mode wave with the particles oscillating in the direction of propagation.  

Exploration geophysics predominantly makes use of the P-wave; since it is the first 

arriving wave its signal is undistorted by superposition with other seismic waves.  The S-

wave is a transverse wave, with particles oscillating perpendicular to the direction of 

propagation.  The S-wave is made up of two perpendicular components.  In an isotropic 

earth, seismologists consider the SV-wave to travel with particle motions in the vertical 

plane, and the SH-wave to travel with motions in the horizontal plane.  In an isotropic 

medium the SV- and SH-waves travel at the same speed and arrive simultaneously. 

The velocity of a seismic wave is governed by the bulk density of the rock and the 

rock’s effective elastic stiffness modulus.  The elastic stiffness, Cijkl, relates stress, , and 

strain, , as illustrated by Hooke’s Law using the Einstein summation convention (Auld, 

1973): 

klijklij C    i,j,k,l=1,2,3 (2.1) 

The infinitesimal strain can be described by  
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Here u is displacement, x is position,  is rock density and t is time.  Symmetries within 

Cijkl, where: 

klijijlkjiklijkl CCCC  , i,j,k,l=1,2,3 (2.5) 

allow the reduction of Equation 2.4 to: 
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 If u can be described by harmonic oscillation, 
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where A is the wave amplitude, b the polarization direction,  the angular frequency 

and v the velocity, the equations can be combined to yield a system of linear equations: 

  02  kljijkl bvnnC  . i,j,k,l=1,2,3 (2.8) 

The variable n is a direction cosine.   If, and only if, the determinant of the coefficient 

matrix is zero, the solution is non-trivial.  This allows seismic velocities to be related to 

the elastic stiffness using the Christoffel equations 
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where  is the Christoffel symbol, with ij = Cijklnjnl.  The symmetry of the elastic stiffness 

tensor ensures that  is both symmetric and real, and the determinant results in three 
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distinct phase velocities, the P-wave and two S-waves.  Further, the symmetries in C 

mean that, while as a fourth order tensor C has 81 variables, only 21 of these are 

independent.  This allows Cijkl to be represented as a 6 x 6 matrix, CIJ, in Voigt notation.  

The indices of elastic stiffness relate to each other as (Nye, 1985): 

ij, kl = 11 22 33 23,32 31,13 12,21 

I, J = 1 2 3 4 5 6 

This indices relationship holds for the elastic stiffness and the stress, but a factor of two 

is introduced in some of the strains when moving to Voigt notation: 
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It is important to note that the Voigt representation, CIJ, only represents a fourth order 

tensor, and does not itself transform as a second order tensor.  The notation does, 

however, simplify the notation of some of the relationships.  Using the Voigt 

representations of the stress, , strain, , and elastic stiffness, C, tensors defined in 

Equations 2.10 through 2.12, Hooke’s law can be simplified: 
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In the case of an isotropic medium, the velocities of the two S-wave components 

will be equal and the elastic stiffness requires only two physical moduli to describe it.  In 

terms of the shear modulus, , and the Young’s modulus, E, the elastic stiffness can be 

defined as: 
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C IJ  I,J=1,2,3…6 (2.14) 

As the complexity of the symmetry of the elastic stiffness and its inverse, the elastic 

compliance, S, increase, more independent parameters are required to describe the 

tensor.  Transversely isotropic (TI), also known as hexagonal, symmetry requires 5 
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independent parameters, while 9 are required for orthorhombic symmetry (Nye, 1985).  

The shear and Young’s moduli can be used to determine other important physical 

moduli and physical parameters including the bulk modulus, K, the Poisson ratio, , and 

the first Lamé parameter, : 
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The shear modulus, , is also known as the second of the two Lamé parameters.  These 

moduli relate back to the P-wave velocity, vP, and the S-wave velocity, vS.  In an isotropic 

case:   
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


Sv   (2.19) 

 

In this thesis the materials were assumed to be mechanically isotropic and hence 

only two independent elastic moduli were required to describe their behaviour.  This is a 

common assumption in geophysics and is valid for rocks which have minimal aligned 

cracks, shape or lattice preferred orientation of mineral grains or layering which could 
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cause anisotropy.  Depending on the situation, calculations in this thesis variously 

employ the Young’s modulus, E, that relates the ratio of the extensional stress to the 

extensional strain in a uniaxial stress state, 

3333  E , 11 = 22 = 12 = 23 = 13 = 0 (2.20) 

the shear modulus, , which defines the ratio of the shear stress to the shear strain 

ijij  2 . i ≠ j (2.21) 

and the bulk modulus, K, that essentially defines the relationship between applied 

pressure or stress and the volumetric change of the material, 

i
i

i
i

K 
3

1

3

1 3

1

 .  (2.22) 

The effective elastic stiffness, and therefore seismic velocity through a rock, is strongly 

affected by the presence of any fractures or cracks.  Fluid-filled cracks can cause seismic 

velocity dispersion, while aligned cracks can additionally cause seismic velocity 

anisotropy. 

 

2.2 Velocity dispersion 

Velocity dispersion refers to the dependence of seismic wave speeds on the 

frequency of the seismic wave.  Seismic velocity measurements are made in a variety of 

different ways, including passive and active source in-situ seismic, sonic well logs and 

laboratory measurements.  These techniques offer different geophysical insights, and, 

while it is often desirable to jointly interpret the velocity measurements, comparison is 

complicated not only by differences in the scale of measurement, but also by 
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differences in the frequencies used in each method.  Passive source seismic is often 

measured in the millihertz to hertz range, active source seismic in the hertz range, sonic 

logs in the kilohertz range and laboratory measurements in the megahertz range, with 

the possibilities spanning nine decades in frequency.  While this range in frequency is 

not expected to have much effect on dry or unfractured rocks, much of the Earth’s crust 

is expected to have fluid-filled fractures that remain open from  from deviatoric stress 

(Crampin and Lovell, 1991).  Stress is comprised of a hydrostatic component and a 

deviatoric component, with deviatoric stress causing distortion of the rock and the 

accompanying dilation of cracks.  The behaviour of fluid within rock pores and fractures 

is extremely frequency dependent when exposed to the stress of a seismic signal and 

must be considered when comparing measurements made at different frequencies. 

Pore fluids can contribute to the stiffness of a saturated rock and thereby alter 

the seismic properties of the rock.  The behaviour of the pores can be described by one 

of three regimes (Fig. 2.1):  i) saturated isolated, ii) saturated isobaric or iii) drained 

(O'Connell and Budiansky, 1977).  Specifically, these regimes are defined by 

i) The high frequency “saturated isolated” regime describes a situation 

where the viscosity of the pore fluid and the frequency of the acoustic 

wave are high enough that the pore fluid is not able to flow out of the 

pore space on the timescale of measurement.  This regime is also referred 

to as “unrelaxed,” and laboratory-based ultrasonic measurements 

conducted on core samples typically fall into this regime. 
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Figure 2.1: Fluid-flow regimes and effective elastic moduli for cracked, fluid saturated 

rocks (O’Connell and Budiansky, 1977).  The upper panels show the response of the 

crack to hydrostatic (top row) and shear (second row) pressure, while the lower graphs 

show the expected bulk and shear modulus behaviour in each regime as a function of 

angular frequency, .  P1 and P2 are the pore pressures in the cracks, with their 

relationship depending on fluid flow regime and crack orientation.  This figure has been 

modified and reproduced from Figure #1 of the Geological Society of Australia Special 

Publication Number 17, The Australian Lithosphere, edited by B. Drummond, 1991, page 

86, the Petrophysical Basis for the Interpretation of Seismological Models for the 

Continental Lithosphere, by Ian Jackson, with permission from the Geological Society of 

Australia Inc.  
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ii) The mid-range frequency “saturated isobaric” regime describes the 

behaviour of the pore fluid when sufficient time is allowed for the flow of 

the pore fluid to eliminate any pressure gradients between pores.  While 

the pores experience isobaric pressure, the timescale is too short to allow 

bulk migration of the fluid out of the region of interest.  Most active-

source in-situ seismic and passive source teleseismic measurements are 

expected to fall into this regime. 

iii) The very low frequency “drained” regime is unlikely to occur on the 

timescales of experimental geophysical measurements.  In this regime the 

rock essentially undergoes consolidation:  the pore fluid flows out of the 

pores and out of the region of interest.  While both the “saturated 

isobaric” and “drained” regimes could be termed “relaxed,” the term is 

usually used to indicate the former regime since most low frequency 

measurements fall into this regime rather than the latter. 

 In the transition zone between regimes the pore fluid may display some aspects of both 

regimes involved.  Of course, in the above the transition frequency between high and 

low will shift from rock type to rock type depending on numerous factors affecting the 

timescale of fluid flow, including porosity, permeability, fluid viscosity and tortuosity. 

 

2.3 Theoretical Background 

If velocity dispersion is present in a rock, it is necessary to estimate the magnitude 

of the dispersion in order to allow joint interpretation across data sets comprised of 

measurements at different frequencies.  Theoretical modelling is commonly used to 
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estimate the elastic properties of a rock under different measurement conditions.  

While most minerals have well characterized elastic moduli, this cannot be the case for 

all rocks, due to the virtually unique composition of one rock to another.  At their most 

basic, the models allow the estimation of the elastic moduli of rocks if their composition 

is known.  More complex models allow the estimation of the effects of the integration 

of cracks, pores and fluids into the rock matrix.  Ultimately, these models can be used to 

estimate the magnitude of dispersion and can contribute to successful comparison of 

measurements made at different frequencies. 

2.3.1 Effective media theory 

Theoretical models of the effects of cracks on the physical moduli of rocks must, 

by necessity, make numerous approximations.  Rocks are rarely composed of a single 

mineral and the problem of determining the moduli of the background rock must be 

addressed before the inclusion of any cracks or fractures into the model.  Voigt (1928) 

and Reuss (1929) first estimated the elastic moduli of polycrystalline aggregates by 

averaging the elastic stiffnesses and compliances, respectively, of the component 

minerals.  The Voigt average is the equivalent of assuming a boundary condition of 

uniform strain, 

i
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 ,  (2.23) 

while the Reuss average assumes uniform stress at the boundary, 
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where N is the number of minerals present and  is the volumetric proportion of each 

mineral. 

Hill (1952) showed that these two methods form the upper and lower boundaries 

on the moduli.  Hashin and Shtrikman (1962, 1963) developed bounds on the elastic 

moduli of aggregates which are much closer together and which are not limited by the 

assumption that the anisotropy of the constituent mineral crystals is small.  When there 

are only two constituents, the Hashin-Shtrikman bounds are: 
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The upper and lower bounds are computed by interchanging the index of the two 

constituents, where K1 and 1 belong to one constituent, and K2 and 2 to the other. 

The Voigt-Reuss-Hill and Hashin-Shtrikman formulations are simply bounds on the 

expected solid mixture’s properties.  They can, of course, be applied to cracked minerals 

but the results, particularly for the shear properties, are not very useful if we want to 

understand the physics of the fluid motions induced by deformation; more sophisticated 

approaches that incorporate some of the geometry of the pore space must be used.  

These attempts to model cracked media mostly by the introduction of an inclusion using 

one scheme or another are briefly reviewed here. 
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Effective media theory for cracks is predicated on the assumption that the 

problem is in the limit where seismic waves are large compared to the size of the 

inclusions in a rock; the seismic wave does not “see” the inclusions individually, and the 

elastic stiffness of a rock with inclusions can be replaced by an effective elastic stiffness 

that is representative of the properties of the media as a whole.  MacKenzie (1950) 

assumed an isotropic and homogeneous host rock and developed approximations for 

the effective bulk and shear moduli of a rock with dry spherical pores.  Eshelby (1957) 

extended this theory to ellipsoidal pores.  Walsh (1965a) examined the elastic stiffness 

of dry penny-shaped cracks and ellipsoidal cracks in uniform strain and in uniform 

stress.  Walsh (1965a) found that the differences between regimes of uniform strain and 

hydrostatic stress are negligible and for the most part can be ignored, however, uniaxial 

compression causes significant differences in the Young’s modulus compared with 

hydrostatic compression due to frictional sliding between crack faces (Walsh, 1965b).  

These initial theoretical forays made use of the non-interaction approximation (NIA), 

which requires the cracks to be sufficiently ‘dilute’ (i.e. far enough apart) that any 

interactions between the cracks are minimal.  The accuracy of the NIA assumption 

continues to be debated (e.g. Grechka and Kachanov, 2006b, Saenger et al., 2004).  In 

one attempt to overcome this problem, O’Connell and Budiansky (O’Connell and 

Budiansky 1974, 1977, Budiansky and O’Connell 1976) used a self-consistent method 

where an approximation of crack interaction was accounted for; additionally they 

developed solutions for fully and partially saturated isolated cracks.  Their solution is 

appropriate for the high-frequency regime due to the isolated nature of the cracks. 
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2.3.2 Theoretical models of velocity dispersion 

A theoretical model of the behaviour of saturated fluids at low frequency had 

previously been developed by Gassmann (1951).  Gassmann’s relation is one of the most 

commonly used theories to predict the effects of saturation, or of fluid substitution 

within a saturated rock: 
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where Ksat is the bulk modulus of the saturated rock, Kdry is the modulus of the dry rock 

with no pore fluids, K0 is the modulus of the constituent mineral of the rock, Kfl is the 

bulk modulus of the pore fluid, and  is the porosity of the rock.  The theory requires the 

shear modulus to be invariant to saturation, which is widely held to be true at low 

frequencies: 

drysat     (2.28) 

Gassmann’s equation assumes fluid is able to flow between pores on the 

timescale of a half-seismic wavelength and that pore pressure is therefore in equilibrium 

throughout the rock.  For this reason, it is generally held in the geophysical community 

that the theory performs best for low frequency seismic wave propagation in the Earth 

below about ~200 Hz.  Gassmann theory further assumes that the rock is seismically 

isotropic and is composed of a single mineral.  Brown and Korringa (1975) expanded on 

Gassmann’s equation to allow for mixed mineralogy.  Neither the formulations of 

Gassmann nor of Brown and Korringa assume that the shear modulus remains 

unchanged upon saturation of the rock, however Berryman (1999) demonstrated that 
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the constant shear modulus tenet is intrinsic to the theory and is a result of the 

derivation.  In fact, this assumption may not always hold.  In some real cases, the shear 

modulus is not always static between dry and saturated conditions.  Baechle et al. 

(2009) experimentally measured that water saturation causes weakening of the shear 

modulus in some carbonates which results in poor predictions of saturated P- and S-

wave velocities by Gassmann theory; such saturation effects on the shear modulus are 

examples of a chemical mineral-fluid interaction occurring, which violates the 

theoretical assumption of an invariant shear modulus. 

Biot (1956) developed a model to predict frequency dependent velocities of 

saturated rocks.  In the low frequency limit Biot’s theory reduces to Gassmann’s 

equation.  In the high frequency limit, the equations (in the notation of Johnson and 

Plona (1982)) give vp and vs as: 
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    fl  11 011   (2.35)
 

fl 22   (2.36)
 

  fl  112   (2.37)
 

   fl 10   (2.38)
 

where dry is the shear modulus of the dry rock, 0 is the mineral density, fl is the pore 

fluid density and  is the tortuosity (≥1).  As a result of the multiple solutions to the 

equation for the P-wave velocity (Eq. 2.29), Biot theory predicts a slow P-wave as well as 

the regular, fast P-wave.  This Biot slow-wave has been observed in the laboratory 

(Johnson and Plona, 1982, Bouzidi and Schmitt, 2009), but has yet to be observed in-

situ.  Biot theory assumes attenuation results only from the motion of the pore fluid 

with respect to the solid rock.  When viscous effects within the fluid are accounted for, a 

slow S-wave is derived in addition to the slow P-wave (Sahay, 2008). 

Biot theory assumes cylindrical pores, but in crystalline rocks, where the pore 

space is more predominantly composed of low aspect ratio cracks and fractures, Biot 

dispersion is typically not the dominant form of dispersion and it is often necessary to 

account for ‘squirt dispersion’ as well.  Mavko and Jizba (1991) derived equations to 

predict the effect of squirt dispersion on the moduli of saturated rocks at high 

frequency, Kuf and uf: 



22 

 

soft

flhPdryuf KKKK














 0

1111
  (2.39) 



























dryufdryuf KK

11

15

411


  (2.40) 

where soft is the amount of porosity that closes at high pressure and Kdry-hP is the bulk 

modulus of the dry rock at high pressure.  Generally, both Biot and squirt dispersion 

must be considered; Kuf and uf are usually substituted into the Biot equations for Kdry 

and dry to account for both fluid saturation effects. 

The theories can be combined to account for both squirt flow and Biot dispersion 

at high frequency by substituting the high frequency saturated moduli calculated using 

squirt-flow theory into the Biot equations.  Good estimates of vP and vS in saturated 

rocks can be obtained by using the combined results of Biot’s and Mavko and Jizba’s 

theories, however; it can also be useful to determine whether Biot or squirt dispersion is 

the dominant effect within the rock as this will affect the characteristic frequency which 

marks the transition from a high to low frequency regime for pore fluid behaviour.  Biot 

gives the characteristic frequency, fB, as: 

fl
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  (2.41)

 

where  is the viscosity of the pore fluid and  is the permeability.   

The above Biot and squirt flow relations are appropriate for high frequency, but 

the Biot characteristic frequency can be used to approximate velocities at lower 

frequencies as well.  Geertsma and Smit (1961) developed approximations for Biot’s 
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relations at low and middle frequencies.  In the Geertsma and Smit approximation, the 

P-wave velocity is related to the high frequency Biot P-wave velocity, vP-hf, and low 

frequency Biot-Gassmann P-wave velocity, vP0, with the frequency, f, and characteristic 

Biot frequency: 
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The characteristic frequency for squirt flow differs from that for Biot dispersion, 

and depends on the aspect ratio, , of the crack.  For squirt flow, O’Connell and 

Budiansky (1977) give the characteristic frequency as 
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Cracks are commonly approximated to be ellipsoidal in shape, and are then described by 

their aspect ratio c/a, where a is the length of the two equal semi-axes of the ellipsoid, 

and c is the length of the third axis, the axis of rotational symmetry (Douma, 1988).  As 

viscosity figures in both equations, if the rocks being studied can be saturated with 

fluids of different viscosities in the laboratory, the characteristic frequency should vary 

either directly or inversely with fluid viscosity and thereby allow the determination of 

the principle cause of dispersion within the rock. 

Due to the assumption of cylindrical pores, Biot theory may not be appropriate 

for low aspect ratio cracks.  In these cases, a self-consistent approximation such as that 

derived by O’Connell and Budiansky (1974, 1977) may yield better results.  The self-

consistent approximation uses the mathematical solution for the deformation of a single 

ellipsoidal inclusion and extends it to multiple inclusions by approximating the crack 
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interactions through the replacement of the background medium with an as-yet 

unknown effective medium.  O’Connell and Budiansky derived an effective Young’s 

modulus, E*, and shear modulus, *: 
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where E0 and 0 are the moduli of the uncracked rock,  the crack density and  the 

effective Poisson ratio.  In order to calculate the effective Young’s and shear moduli, it is 

necessary to first solve for the effective Poisson ratio by relating it back to the crack 

density and Poisson ratio of the uncracked rock: 
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In rocks with dilute cracks, alternate effective media models such as the Hudson 

(1981) model may be applicable as well.  Hudson calculated a first order approximation 

of the changes to the effective elastic stiffness tensor, C, as well as attenuation, 

resulting from dry and saturated penny-shaped cracks within an otherwise isotropic 

host: 

10
IJIJIJ CCC  . I,J=1,2,3,...,6 (2.47) 

Here C0 is the isotropic background matrix and C1 is the first order correction term for 

the introduction of cracks.  Hudson solved for a variety of crack conditions and 

orientation, but the most applicable for this thesis is the correction for randomly 

oriented fluid filled cracks.  Hudson calculated Lamé parameters, 1 and 1, which can 
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be used to solve for E1 (Eq. 2.17) and substituted into the isotropic elastic stiffness 

formulation (Eq. 2.14) to give C1: 
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where N is the number density of cracks and a is the crack radius of the penny shaped 

cracks, linking the correction factor to the number and shape of cracks within the rock.  

The Lamé parameters  and  are from the uncracked nonporous rock. 

Hudson model is limited by requiring a low crack density, as crack interactions are 

not accounted for, and performs best for low aspect ratio cracks.  Most metamorphic 

rocks, which commonly have low aspect ratio cracks, are good candidates for the model.  

The model has since been extended to include second order crack interaction (Hudson, 

1986) and intrinsic anisotropy of the host rock (Hudson, 1994), and remains a relatively 

popular model. 

Schoenberg’s (1995) model adds the effect of cracks in elastic compliance to 

obtain an effective elastic compliance, S: 

10
IJIJIJ SSS   I,J=1,2,3,...,6 (2.50) 

where S0 is the intrinsic compliance of the rock and S1 is the additional compliance 

caused by cracks.  The authors show that the compliance tensor of a rotationally 

invariant set of cracks can be determined from the normal, ZN, and tangential, ZT, 

compliance of the cracks (in Voigt notation): 
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While this approach is more flexible in that it does not require the cracks to be 

ellipsoidal in shape or of low aspect ratio, the crack compliance tensor can still be 

related to the geometry of penny-shaped cracks (Schoenberg and Douma, 1988).  

Hudson’s and Schoenberg’s models yield relatively similar results for saturated cracks, 

but Schoenberg’s model has been shown to be superior for dry cracks (Grechka and 

Kachanov, 2006a). 

Biot and squirt flow theory have been expanded upon numerous times to 

formally combine Biot and squirt dispersion (Dvorkin and Nur, 1993), account for flow 

between pores and cracks (Chapman et al., 2002) as well as account for anisotropic 

rocks (Mukerji and Mavko, 1994); numerous other inclusion models exist, such as Brown 

and Korringa (1975) and Kuster Toksöz (1974).  None of these models can yet be 

considered ‘standard’ models.  The difficulties in measuring velocity dispersion mean 

that few experimental measurements exist with which to constrain theoretical models. 

 

2.4 Experimental Results 

2.4.1 Experimental work in velocity dispersion 

There are several approaches to experimentally quantifying dispersion effects.  

Some research has focused on measuring the elastic properties of the cracks 
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themselves.  The compliance of any cracks or fractures is a necessary input into models 

like Schoenberg (1980) and this research allows separation of the elastic properties of 

the cracks and fluid flow effects.  Lubbe et al. (2008) and Worthington and Lubbe (2007) 

measured high frequency dry and saturated crack compliances which could be input 

into theoretical models.  They found a correlation between fracture size and compliance 

for a given aspect ratio and determined that the ratio of normal to tangential 

compliance is less than was commonly assumed theoretically for gas-filled cracks.  

Pyrak-Nolte et al. (1990) examined the transmission of seismic waves across single 

natural fractures and quantified the frequency dependent stiffness and attenuation of 

the cracks.  Interestingly, they found that in order to account for their experimental 

results it was necessary to model the cracks as having a specific viscosity significantly in 

excess of the viscosity of the saturating fluid, in addition to the more expected necessity 

of specifying a specific stiffness, indicating that the fundamental behaviour of the cracks 

themselves may be frequency dependent.  Crack compliances on the whole, however, 

remain largely unconstrained experimentally. 

Crack compliance measurements yield important information on crack behaviour, 

but still require integration with theoretical models to provide values for the effective 

elastic properties of cracked rocks necessary for seismic interpretation.  A more 

straightforward constraint on theoretical models is direct measurement of effective 

elastic stiffness.  Most such work is laboratory based out of necessity, but some work 

continues to be done in the field.  Low frequency in-situ measurements are on the scale 

of kilometres, while high frequency ultrasonic measurements are usually made on 

centimetre scale core samples. Since geological formations are rarely homogeneous 
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over these large differences in scale it can be difficult to make accurate measurements 

of velocity dispersion using direct comparison.  Field measurements do, nonetheless, 

provide evidence of dispersion as well as some insights and constraints.  Field based 

studies, such as Sams et al. (1997) and Schmitt (1999), usually compare some 

combination of ultrasonic measurements on core samples from a borehole, sonic 

logging at kilohertz frequencies and vertical seismic profiles (VSP) at frequencies on the 

order of 10-100 Hz.  Both Sams et al. and Schmitt measured dispersion in porous, 

saturated rocks; Sams et al. quantified the observed dispersion as a ~20% increase in 

the P-wave velocity at high frequency for their experimental site. 

Ideally, heterogeneity issues can be eliminated by making measurements on the 

same sample at both high and low frequencies to avoid scale effects.  In practice, 

ultrasonic waves undergo significant scattering due to their wavelength typically being 

on the order of the size of the rock’s mineral grains or any cracks or pores.  It is difficult 

to propagate ultrasonic waves through more than a few centimetres of rock due to the 

resulting loss of energy.  Avoiding heterogeneity issues therefore requires making low 

frequency measurements on core samples.  High frequency measurements are relatively 

straightforward on core samples and are commonly made by propagating seismic waves 

through the sample using piezoelectric transducers in the ultrasonic pulse transmission 

technique.  Developing an apparatus that can measure low frequency elastic moduli of 

core samples is, however, difficult as a result of the sensitivity of the moduli to strain 

(e.g. Iwasaki et al., 1978).  In order to make measurements comparable to exploration 

seismic wave propagation, it is necessary to make low frequency measurements on 

samples at seismic strain amplitudes of ~10-7 or less (Batzle et al., 2006).  The basic 
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experimental methods to make low frequency and low strain amplitude measurements 

are resonance and forced deformation, but it is a challenge to make such small strain 

measurements. 

In the resonance technique long narrow samples are sinusoidally driven into 

resonant vibration, and the moduli are then determined by the frequency of the 

resonance.  Some of the first laboratory-based low frequency measurements were 

collected using this technique (Murphy, 1984, Tittmann et al., 1984, Winkler and Nur, 

1979, Winkler, 1986).  The forced deformation technique, meanwhile, applies very small 

amplitude stresses to deform the sample in torsion, flexure or axially.  The small 

deformations mean that extremely sensitive measurements must be made, usually with 

capacitive, magnetic or optical transducers (Batzle et al., 2006).  Jackson et al. (1984), 

Peselnick et al. (1979), Spencer (1981) and Batzle et al. (2006) have conducted some of 

the first work using this stress-strain method. 

As a result of the difficulty in acquiring low frequency measurements on core 

samples, relatively few dispersion measurements have been made to date, and only a 

handful of laboratories worldwide are able to work on this.  Historically, most have 

focused on rocks with relatively high porosity and spherical pores.  Spencer (1981) 

reported Young’s modulus dispersion in saturated sandstones and limestones across a 

frequency range of 4-400 Hz.  More recently, Adam et al. (2009) measured bulk and 

shear modulus dispersion in carbonates from 10-1000 Hz and David et al. (2013) 

measured bulk modulus dispersion in sandstone samples from 0.02-0.1 Hz.  

Characterization of porosity distribution is not always simple, and Adelinet et al. (2010) 

measured dispersion in basalt with bimodal porosity composed of both equant pores 
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and of low aspect ratio cracks.  The authors measure the bulk modulus at frequencies 

0.01-0.1 Hz and at 1 MHz.  Adam and Otheim (2013) characterized bulk and shear 

modulus dispersion in a basalt with both cracks and vesicles at frequencies 2-300 Hz and 

at 0.8 MHz.  Murphy (1984) provided rare dispersion measurements in a low porosity 

cracked rock, measuring 5% dispersion in a microcracked granite from 2-7 kHz.  

Recently, Madonna and Tisato (2013) built a new apparatus for low frequency Young’s 

modulus measurements and completed measurements on Berea sandstone from 0.01-

100 Hz. 

 

2.5 Study Overview 

Very little experimental research has been conducted on seismic wave 

propagation in low porosity fractured rock, with the result that the applicability of the 

necessarily simplified theoretical models remains unknown.  There is a necessity to 

acquire further experimental observations of dispersion in rocks with low aspect ratio 

cracks, and to assess which, if any, theoretical models are best able to predict observed 

effects of fluid saturation on these cracked rocks.  Models typically make numerous 

assumptions:  the most common are that the frame of the rock is an isotropic, 

homogeneous medium of known elastic moduli, and that inclusions are evenly 

distributed.  Often, random orientation of the cracks or pores is assumed as well. 

Two natural quartzite specimens were selected for the study and low aspect ratio 

cracks were induced in both samples.  The petrophysical properties of the samples were 

characterized using numerous techniques including SEM and mercury porosimetry, 

however, timescales of fluid flow and hence dispersion is largely controlled by sample 
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permeability and fluid viscosity.  The permeability of the samples was comprehensively 

measured across a range of effective pressures, and the elastic moduli were measured 

with two saturating fluids of differing viscosity, as well as dry.  The samples were 

measured while fully saturated with either argon (viscosity of 0.025 mPa·s at a pressure 

of 10 MPa and temperature of 20°C) or water (viscosity of 1 mPa·s) pore fluid.  The 

shear and Young’s modulus of the samples were measured using ultrasonic pulse 

transmission across a range of effective pressures and under the different saturating 

conditions.  In order to measure dispersion, low frequency measurements were made 

using unique equipment (Fig. 2.2) from Australian National University (ANU).  Shear 

modulus measurements were made using torsional forced oscillation (Jackson et al., 

1984) and Young’s modulus measurements were made with flexural forced oscillation 

(Jackson et al., 2011) under similar pressures and saturation conditions as the high 

frequency measurements.  The flexural method is an innovative method, and the 

calibration and measurement methods are described in detail. 

An important component of experimental measurement is a comparison with 

theoretically predicted results.  As indicated previously, numerous theoretical models 

exist and it is not reasonable to compare results with all of them.  Commonly used 

models include Gassmann (1951), Biot (1956) and squirt-flow (Mavko and Jizba, 1991); 

all the terms in these models were well characterized experimentally for the quartzites 

and most modeling of the experimental results focused on comparing to the dispersion 

in the moduli to these theories.  In addition, however, some limited aspects of Hudson 

theory (1981) and the self-consistent theory of O’Connell and Budiansky (1977) relating 

to characterizing crack density and fluid flow behaviour were examined. 
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Figure 2.2: Forced oscillation pressure vessel at Australian National University for 0.001-

1 Hz shear and Young’s modulus measurements. 
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3.0 Shear Modulus Dispersion 

3.1 Introduction 

Seismic methods are among the principal tools used in oil and gas exploration, 

and are commonly used in environmental and engineering studies.  Increasingly, the 

applicability of seismic methods in other areas, such as CO2 sequestration monitoring 

and mineral exploration, is being investigated.  Numerical modeling of rock acoustic 

properties can give an indication of the likelihood of successfully imaging subsurface 

features not historically targeted using seismic methods, however, these physical 

properties are typically measured in the laboratory or in a borehole. 

One complication is that the seismic wave speeds used to do this can depend on 

frequency.  Laboratory or borehole measurements of the acoustic properties of rock in 

mega- and kilohertz range, respectively, can be subject to seismic velocity dispersion 

when compared to exploration seismic surveys (typically 10-300 Hz).  At high 

frequencies, when the timescale of measurement is such that fluid does not have 

sufficient time to flow between pores and cracks, the pores and cracks effectively act as 

if they are isolated from each other.  If the pore fluid is relatively incompressible, this 

inability to engage in stress-induced flow results in a stiffening of the elastic moduli of 

the saturated rocks at higher frequencies.  Numerous theories have been developed to 

quantify the magnitude of velocity dispersion that can be expected between different 

frequency regimes, but experimental measurements with which to constrain these 

theories are more limited.  Due to the prevalent usage of seismic methods in oil and gas 

exploration, studies have frequently focused on rocks with higher porosities or more 

equant pores (Adam et al., 2009, Batzle et al., 2006, Spencer, 1981, Winkler and Nur, 
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1982, Yin et al., 1992).  The geometry of the porosity, however, has a significant effect 

on the amount of dispersion expected:  the effect of spherical pores on the overall 

compressibility of the rock is correlated to the porosity, while bulk compressibility 

caused by low aspect ratio cracks is correlated to the rate of change of porosity with 

pressure.  At low porosities spherical pores therefore have only a small effect, while 

highly compressible cracks can still significantly affect the moduli of the rock (Walsh, 

1965a).  As seismic methods becomes more commonly used in crystalline rocks (e.g. 

Hajnal et al., 2010, Heinonen et al., 2013, Koivisto et al., 2012, Malehmir et al., 2012, 

Milkereit et al., 1996, Schijns et al., 2009b, White and Malinowski, 2012), which typically 

exhibit these low aspect ratio cracks, the importance of quantifying the dispersion 

caused by cracks increases.  However, there have been very few direct experimental 

observations of dispersion in low porosity rocks with low aspect ratio cracks.   

In this study, the shear modulus dispersion of cracked quartzite specimens from 

Cape Sorell, Australia and Alberta, Canada were measured over the frequency range 

0.01-1 Hz and at 1 MHz when the samples were dry, argon saturated and water 

saturated.  The mineralogy of the quartzites was examined using XRD and SEM analysis, 

while the grain sizes and induced cracks were characterized using thin sections and 

mercury porosimetry.  Additionally, permeability as a function of pressure was 

measured for a comprehensive quantification of the properties of the quartzite.  

Dispersion measurements were made at effective pressures of 10-150 MPa to 

investigate the effects of crack closure.   
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3.2 Characterization of rock specimens 

Two quartzite specimens, one from Cape Sorell, Tasmania, Australia and one from 

Alberta, Canada were selected for their relative homogeneity and near mono-minerallic 

nature.  In order to aid in understanding the effect of fluid-filled porosity on bulk elastic 

properties of the rock it was necessary to characterize the matrix material as well as the 

shape, volume and connectivity of the pore space as thoroughly as possible.  Therefore, 

the samples were characterized using scanning electron microscope (SEM), thin 

sections, mercury porosimetry, and, for the Alberta quartzite, x-ray diffraction (XRD).  

Permeability measurements as a function of pressure were also undertaken for both 

samples. 

3.2.1 Density measurements 

Both specimens are dominated by quartz grains of ~0.5 mm diameter.  The Cape 

Sorell specimen (Fig. 3.1) is translucent light grey in appearance, and has been shown to 

be more than 99% quartz by volume, with <1% muscovite at the grain boundaries (Lu 

and Jackson, 1998).  XRD and SEM confirmed that the Alberta quartzite, by comparison, 

is composed of quartz grains with a thin film of iron oxide at the grain boundaries (Fig. 

3.2).  The appearance of the Alberta quartzite appears to largely be controlled by the 

iron; initially the quartzite was an opaque brown-beige colour, but upon heating the 

sample to induce crack porosity the quartzite changed to a pale pink colour, indicating 

oxidization of the iron.  The volumes of the quartzites were calculated from dimensional 

measurements made using vernier calipers on the thermally cracked precision ground 

samples.  The sample mass and mercury porosimetry derived porosity were used in 

conjunction with the measured volume to calculate a grain density of 2708±7 kg/m3 for  
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Figure 3.1:  Thin section image of the Cape Sorell quartzite under transmitted light with 

cross polarized filter prior to thermal cracking (a), with transmitted light after thermal 

cracking (b), with reflected light showing a cross-section of the edge of the core sample 

after thermal cracking (c) and SEM image of the quartzite after (d) thermal cracking.  

The muscovite at the grain boundaries is clearly seen in (a), while the relatively random 

distribution of cracks can be seen in (b) and (c). 
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Figure 3.2:  Alberta quartzite thin section with transmitted light and cross-polarized 

filter (a) and reflected light (b), as well as SEM image (c) prior to thermal cracking as well 

as SEM image after thermal cracking (d).  The iron oxide film at grain boundaries is 

particularly evident in (a) while the low aspect ratio nature of the cracks is highlighted in 

(d). 
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the Cape Sorell quartzite; the Alberta sample was measured to have a grain density of 

2659±7 kg/m3.  The Alberta sample grain density calculated by dimensional 

measurement agrees with the grain density measured by mercury porosimetry, 2664 

kg/m3, within error. Mercury porosimetry for the Cape Sorell quartzite, however, 

returned a grain density of 2644 kg/m3; similar to the grain density of 2637 kg/m3 

measured by Lu and Jackson (1998) using Archimedes principle but ~2% different from 

that obtained through caliper measurement here.  This small discrepancy may be 

indicative of local heterogeneity in the porosity or mineralogy of the measured Cape 

Sorell samples.  Comparatively, Smyth and McCormick (1995) measured the x-ray 

density of pure quartz to be 2648 kg/m3, similar to the results for both quartzites, again 

indicating that the quartzites are relatively pure.  The quartz dominated mineralogy of 

the two samples simplifies comparison between experimental and theoretical results. 

3.2.2 Porosity measurements 

Thin section images of the quartzites showed that they initially did not have 

significant crack porosity (Figs. 3.1, 3.2); saturating with distilled water in a vacuum 

measured an initial porosity of 0.3% in the Cape Sorell quartzite (Lu and Jackson, 1998), 

and mercury porosimetry measured 0.8% initial porosity in the Alberta quartzite.  In 

order to increase the crack porosity and thereby increase the signal to noise of any 

measurement of dispersion effects in the samples it was necessary to induce additional 

cracks.  The low frequency forced oscillation measurement of the shear modulus used in 

this study is particularly sensitive to cracks at the outer diameter of a cylindrical sample, 

as the applied torque of the forced oscillation is related to the shear modulus through 

the moment of inertia and is therefore proportional to the radius raised to the fourth 
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power.  Meanwhile, the ultrasonic pulse transmission method used for the high 

frequency measurement is more sensitive to cracks in the centre of the sample as the 

piezoelectric sources are centred on the axis of the sample.  Comparison between 

measurements of the two frequency regimes would be further complicated by an 

anisotropic distribution of cracks, and it was therefore desirable to induce a crack 

distribution as uniformly distributed and as randomly oriented as possible in the 

quartzites.  Both quartzite samples were heated to 1100°C, and then the Cape Sorell 

quartzite was quenched in liquid nitrogen while the Alberta quartzite was quenched in 

water.  Mercury porosimetry confirmed that this increased the porosities of the samples 

to 2.3% and 2.4%, respectively.  Thin section images showed that the treatment caused 

significant cracking of the specimens (Figs. 3.1, 3.2), while achieving a relatively isotropic 

crack distribution with fairly random crack orientation.  Mercury porosimetry showed 

that the low aspect ratio cracks exhibit little variation in pore throat diameter, with a 

distribution of pore throat sizes centred around 0.4 m and 0.7 m, respectively, for 

each quartzite (Fig. 3.3).  SEM images confirmed in a more qualitative sense that the low 

aspect ratio cracks display little variation in size.  

3.2.3 Permeability measurements 

Permeability measurements were made on the specimens using the ANU 

Australian National University) forced oscillation apparatus (Lu and Jackson, 2006).  The 

apparatus allows the independent monitoring and adjustment of pore fluid pressure at 

either end of a cylindrical sample; when the pressure is increased or decreased in one of 

the pore fluid reservoirs, the change in pressure with time of the other reservoir can be 

monitored to measure permeability within the sample using the transient-flow method.   
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Figure 3.3:  Mercury porosimetry of the Cape Sorell and Alberta quartzites shows that 

the cracks are distributed around a single pore throat size for each quartzite, 0.4 and 0.7 

m, respectively. 
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In principle, when a state of uniform fluid pressure, P0, is established throughout both 

pore pressure reservoirs and the sample, the permeability, , and storage capacity of 

the sample can be measured by perturbing the system by a small pressure increment, 

P, in the upper reservoir and measuring the decay or growth (depending if loading or 

unloading measurements are being undertaken) of pressure (Neuzil et al., 1981).  In the 

case of the quartzites, however, the storage capacity of the samples themselves is 

sufficiently small compared to the capacity of the upper and lower pore pressure 

reservoirs, Su and Sd.  This allowed permeability to be obtained using the approximation 

of Hsieh et al. (1981) for negligible storage capacity (Lu and Jackson, 2006): 
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Here As is the cross-sectional area of the sample, Ls is the length of the sample, P(t) is 

the pressure of the upper reservoir and  is the viscosity of the fluid.  The ANU 

apparatus originally only allowed argon gas as a pore fluid but has recently been 

modified to additionally allow condensed liquid pore fluids such as water (Jackson et al., 

2011).  As the equation assumes that the fluid properties are constant over the induced 

pressure gradient, permeability measurements were made when the quartzites were 

saturated with water rather than argon.  Over the pressure increments used the 
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physical properties of water showed very little change and an approximation of constant 

properties is reasonable.  Equation 3.1 can be rearranged to: 
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Equation 3.3 can be graphed in order to find the slope (-A), allowing an experimental 

measurement of the permeability . 

Measurements were made by enclosing the specimen in an annealed copper 

jacket and collapsing the jacket under high effective pressure.  In practice this was done 

with no pore pressure in the system and a confining pressure of >80 MPa.  This caused 

the copper jacket to mold closely to the outside of the sample, preventing fluid flow at 

the jacket-specimen boundary.  Under confining pressure the lower reservoir, with 

volume 40 000 mm3 (Lu, 1996), was then pressurized with water and the water was 

allowed to flow to the upper reservoir (volume 1163 mm3) until the pressures in each 

reservoir equilibrated and the specimen was fully saturated.  The pore fluid flowed into 

and out of the 15 mm diameter samples via an opening with diameter 2 mm.  Pressure 

measurements in each reservoir were made using high pressure transducers (Precise 

Sensors, model 114) with a resolution of 0.1 mV/10 V (equivalent to about 0.02 MPa at 

the maximum pore pressure used, 150 MPa), which were calibrated against a Bourdon-

tube (Heise) pressure gauge.  The data was recorded digitally using LabView software 

(National Instruments) and a multichannel acquisition card.  Permeability 

measurements were then taken by changing the pore pressure in the upper reservoir 

and monitoring the growth or decay of pressure.  It was sometimes necessary to adjust 

the pressure in the upper or lower reservoir in the middle of this decay/growth in order 
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to achieve appropriate final effective pressures for the shear modulus measurements; in 

these instances the data during and after this mid-measurement adjustment was not 

used in determining the permeability, reducing the overall measurement time.  A least-

squares fit, constrained to pass through the origin, over the time from the initial 

adjustment until either equilibrium was reached or the pressures were further manually 

adjusted, was applied to the data and the permeability was calculated (Fig. 3.4).  Only 

one permeability measurement was made at each reported effective pressure due to 

time constraints.   

Measuring the timescale of pressure equilibration between the two reservoirs by 

fluid flow through the sample served the dual purpose of allowing a measurement of 

permeability and ensuring that pore pressure within the sample was equilibrated prior 

to the commencement of forced oscillation measurements.  Further, the required 

equilibration time was used as a guide to ensure pore pressure was constant throughout 

the sample prior to the acquisition of any high frequency measurements as well. 

 

3.3 Method 

3.3.2 Low frequency measurements 

Low frequency measurements (0.01-1 Hz) were made using the ANU forced 

oscillation apparatus in torsional mode (Jackson et al., 1984, Jackson and Paterson, 

1993).  The apparatus consists of a long, thin beam which is fixed at one end and free at 

the other, where it is sinusoidally twisted by a pair of opposing electromagnetic drivers.  

The cylindrical core sample (15 mm x 150 mm), sandwiched between two polycrystalline 
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Figure 3.4: Measure of permeability (from Equation 3.4) over nearly 6 hours for the 

Cape Sorell (a) and Alberta (b) quartzites at ~100 MPa of effective pressure.  Note the 

different y-axis scales in (a) and (b).  Measurements of the low permeability (1.16 x 10-21 

m2 at this pressure) of the Canadian quartzite are approaching the resolution limit of the 

pore-pressure transducers as evidenced by the digitization noise apparent in the data.  

Lines of best fit shown as red dashed lines. 
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(Duramic) alumina rods and encased in a 0.5 mm thick annealed copper jacket, was 

placed in the top of the apparatus, above a hollow steel elastic standard.  Torsional 

mode displacements were measured at two locations along the beam: one immediately 

below the sample, but above the elastic standard, and one below both the sample and 

the elastic standard.  Measurements of the angular displacement caused by the applied 

force from the electromagnetic drivers were made using parallel plate capacitors 

mounted at the end of lever arms for mechanical advantage (Fig. 3.5).  The measured 

angular displacement, d1, above the elastic standard and below the specimen assembly 

is related to the applied torque, T0, by the equation 
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where D is the radial length of the parallel plate capacitors from the axis of the beam,  

is the angular frequency,  is the loss angle, t is the time, A is the shear modulus of the 

specimen assembly comprised of the copper jacket, alumina rods and quartzite and IA is 

the polar moment of inertia of the specimen assembly.  Here, the shear modulus of the 

assembly and the loss angle are unknown; the radial distance is measured and the 

moment of inertia is calculated from vernier caliper measurements of the specimen 

assembly.  The angular displacement below both the specimen assembly and above the 

elastic standard, d2, is measured to determine the magnitude of the applied torque: 
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Figure 3.5: Schematic of ANU attenuation apparatus used to make low frequency 

torsional measurements (modified from Jackson et al. (2011), with permission). 
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The steel elastic standard has a known shear modulus, s, and moment of inertia, Is, 

which allows the shear modulus of the specimen assembly to be expressed in terms of 

known and experimentally measured parameters: 

A
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1

12
   (3.6) 

As the contributions of the alumina rods and the annealed copper jacket to the overall 

shear modulus of the specimen assembly are poorly known at the measured effective 

pressures, it is necessary to compare the shear modulus of this experimental assembly 

to that of an assembly with a sample of known shear modulus, AFQ.  The shear modulus 

of the rock specimen itself, R, can then be solved 

AFQAFQR    (3.7) 

and rearranged 

FQ   AFQAR . (3.8) 

Note that while the shear modulus of the standard substituted for the rock specimen, 

FQ, must be known, the shear modulus of the overall assembly comprised of the 

alumina rods, copper jacket and standard, AFQ, is measured experimentally (Jackson 

and Paterson, 1993). 

Fused quartz is frequently used as a standard and has a well known shear 

modulus (McSkimin et al., 1965).  An experimental assembly where the quartzite was 

replaced with fused quartz was measured over the same effective pressures as the 



48 

 

quartzite assembly to allow the calculation of the shear modulus of the two quartzites 

at the various pressures under the different saturation conditions. 

The low frequency shear moduli of the quartzites were measured over effective 

pressures from 10-180 MPa while dry, argon saturated and water saturated. During 

water saturated measurements it was necessary to slightly dilute the water with an anti-

rust agent to avoid corrosion of the steel components of the low frequency apparatus.  

3.3.2 High frequency measurements 

High frequency measurements were undertaken at 1 MHz using ultrasonic pulse 

transmission (Appendix A).  The quartzite shear moduli were again measured dry, argon 

saturated and water saturated (Tables 3.1 – 3.6).  Piezoelectric transducers capable of 

generating 1 MHz P- and S-waves were affixed to aluminum buffers and the quartzite 

samples were placed in between the buffers and encased in flexible tubing.  They were 

then subjected to confining hydrostatic pressure only for the dry measurements, and to 

confining and pore pressure for the argon and water saturated measurements.   

In order to calculate the high frequency shear modulus, the S-wave travel time 

through the sample and buffers was measured.  The travel time through the quartzite 

sample alone, ts, was determined by measuring the travel time through the two buffers 

when no sample was present, and subtracting that from the overall time (Fig. 3.6).  

Pressure effects on the buffers were removed by calibrating the buffers over the same 

range of pressures as the buffer and sample combination.  S-wave travel time was used 

in conjunction with the sample bulk density to obtain the high frequency shear 

modulus: 
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Figure 3.6:  At pressures >80MPa, when the cracks are closed, the differences between 

the water saturated and dry or argon saturated shear wave velocities of the Cape Sorell 

quartzite are minimal, however, water filled cracks cause significant stiffening of the 

shear modulus at lower effective pressures.   
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where H is the high frequency shear modulus, LS the sample length,  the bulk density 

and Peff the effective pressure.  Volumetric changes of the frame between 0-150 MPa 

were calculated using the isothermal bulk modulus and pressure derivative values of 

single crystal quartz (Liu, 1993) as input into the Birch-Murnaghan equation of state 

(Birch, 1947), but were found to be small, causing a volume change of <0.4% across the 

range of measured pressures.  Volumetric changes resulting from crack closure were 

more substantial, as the ~2% porosity is anticipated to undergo almost complete closure 

by 150 MPa of pressure, but still quite small.  For the purposes of estimating the 

volumetric change resulting from crack closure, the cracks were assumed to close 

logarithmically.  The initial sample length was measured at atmospheric pressure using 

vernier calipers and the effects of the total volumetric changes on both sample length 

and bulk density were calculated.   The P-wave velocities were also measured at high 

frequency across a similar range of pressure, but presentation of these is delayed until 

Chapter 4.  

Dry measurements were made after the samples were vacuum oven dried 

overnight, and then left at ambient conditions and atmospheric humidity for several 

days in an effort to avoid artefacts from being ‘over dried’ (Cadoret, 1993).  During ‘dry’ 

measurements from 10-150 MPa of pressure, the pore space was filled with air at 

atmospheric temperature and pressure. 

Argon saturated measurements were made next.  Measurements with pore 

pressure were made by vacuuming the specimens prior to the introduction of pore fluid.  
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Pore pressure was then introduced through a small diameter hole in the topmost buffer 

and given time to equilibrate, allowing complete saturation, prior to the shear modulus 

measurement.  The required equilibration time was estimated from the stabilization of 

the pore fluid pressure gauge as well as from the permeability measurements.  The 

allowed time varied from 15 minutes at the lowest effective pressures (10 MPa) and for 

the lower viscosity argon pore fluid to >8 hours at the highest effective pressures (140 

MPa) for the higher viscosity water pore fluid.  As an additional check that sufficient 

equilibration time had been allotted, the quartzites were measured during loading and 

unloading, when possible, to ensure repeatability of the measurements.  Argon 

saturated measurements were made over effective pressures from 10-150 MPa.  For 

safety reasons, it was not possible to pressurize the argon pore fluid beyond 10 MPa 

during the high frequency measurements, so the desired effective pressures were 

obtained by keeping the argon pore pressure at 10 MPa and varying the confining 

pressure as necessary.  At room temperature, argon is a supercritical fluid at pressures 

>5 MPa (NIST, 2012); keeping the pore pressure at 10 MPa allowed the high and low 

frequency measurements to be made with argon in the same phase. 

Water saturated measurements were made after saturating the sample with 

distilled water overnight at an effective pressure <5 MPa.  For the quartzites’ estimated 

permeabilities of >1 x 10-20 m2 at this effective pressure, Rice and Cleary (1976) have 

shown that this should be more than sufficient time to equilibrate the pore pressure 

gradient across the ~3 cm long samples and achieve complete saturation.  During water 

saturated measurements, the confining pressure was kept constant at 150 MPa and the 

pore pressure was varied to obtain the appropriate effective pressures of 10-150 MPa.  
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The low permeabilities of the quartzites meant that equilibration times of >8 hours were 

required to ensure an even distribution of water pore fluid in the sample at the highest 

effective pressures. 

 

3.4 Experimental results 

Both quartzites showed extremely low permeability (Fig. 3.7), with measurements 

ranging from 3.05 x 10-19 m2 to 1.16 x 10-21 m2 (309 nD to 1.18 nD).  The Cape Sorell 

quartzite showed a well behaved exponential decrease in permeability with increased 

effective pressure.  The Alberta quartzite permeability, while still showing a clear 

decrease with effective pressure, did not show a straightforward relationship with 

effective pressure.  The Alberta quartzite underwent a sharp decrease in permeability at 

effective pressures greater than 50 MPa. 

Measurements of the shear moduli of both quartzites showed the shear moduli 

increasing with effective pressure as the cracks in the samples underwent progressive 

closure.  This effect was quite strong, and the modulus of the dry Alberta quartzite 

increased from 11.9±0.3 GPa to 34.88±0.08 GPa over confining pressures 10-150 MPa at 

high frequency; an increase of 193%.  Similarly, the shear modulus of the Cape Sorell 

quartzite increased from 10.9±0.9 GPa to 36.03±0.09 GPa from 10-130 MPa confining 

pressure (Fig. 3.8).  The quartzites both exhibited substantial increases in shear modulus 

stiffness up to effective pressures of ~80 MPa; above this effective pressure the increase 

in shear modulus became less rapid and more linear. 

The Cape Sorell quartzite was measured at both low and high frequency while 
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Figure 3.7:  Permeability (dotted lines) on the left y-axis and measurement time (bars) 

on the right y-axis against effective pressure, showing the logarithmic relationship 

between permeability and pressure for the Cape Sorell quartzite and the more complex 

pressure dependence of permeability for the Alberta quartzite, possibly partly resulting 

from differences in the length of the time series available for analysis.  
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Figure 3.8:  The water saturated samples have a significantly stiffer shear modulus at 1 

MHz. 
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dry, argon saturated and water saturated.  Due to experimental difficulties, however, 

the Alberta quartzite was measured in all three states at high frequency, but only in a 

water saturated state at low frequency.  Dry and argon saturated dispersion 

measurements were therefore limited to the results from the Cape Sorell quartzite.  The 

dry Cape Sorell quartzite, as expected, did not exhibit any shear modulus dispersion, 

with consistent shear modulus measurements observed from 0.01 Hz to 1 MHz.  The 

argon saturated case was more complicated; no stiffening appeared to occur at low 

frequency when the dry Cape Sorell quartzite was saturated with argon pore fluid, while 

a slight stiffening was seen at high frequency.  This change in behaviour may be 

indicative of dispersion, although the differences between the low and high frequency 

results were close to the errors of the experimental uncertainty.  The Cape Sorell 

quartzite exhibited a slightly stiffer shear modulus at 1 MHz at all effective pressures 

when argon saturated, while the Alberta quartzite exhibited a stiffer shear modulus at 

effective pressures 10-50 MPa.   

The water saturated measurements showed clear evidence of substantial 

dispersion for both quartzites.  Measurements between 1 mHz and 1 Hz appeared to be 

frequency independent, but substantial dispersion occurred between 1 Hz and 1 MHz.  

For the water saturated Cape Sorell quartzite at 20 MPa the 1 Hz shear modulus was 

16.4 GPa, while the 1 MHz shear modulus was 28.5 GPa; the Alberta quartzite ranged 

from 12.2 GPa to 24.1 GPa at the same pressure and frequencies.  Dispersion was most 

significant at lower effective pressure when crack porosity was highest, but was evident 

at all measured pressures.   
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3.5 Theoretical modeling 

Numerous models, including those derived by Budiansky and O’Connell (1976) 

and Hudson (1981) use the crack density and pore fluid properties (if any) to calculate 

the effect of dry and saturated cracks on the rock moduli.  Here the shear modulus 

stiffening was directly experimentally measured, and it was possible to instead use the 

models to estimate crack density from the amount of shear modulus stiffening. The 

crack density of the samples, , is defined as 

3Na  (3.10) 

with N the number density and a the radius of the cracks. Hudson (1980, 1981) shows 

the shear modulus of the cracked rock, , can be approximated by a correction term, 1, 

to the shear modulus of the uncracked rock, 0:     

10    (3.11) 

To first order for a distribution of randomly oriented cracks, Hudson (1981) gives the 

correction 1 as 
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for the case where the cracks are filled with a highly compressible material with 

negligible shear modulus.  Here and  are the Lamé parameters of the uncracked 

rock and J is given by 
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where c is the minor axis length of the cracks, and Kfl is the bulk modulus of the material 

in the cracks.  Approximating the cracks as perfect ellipsoids allows the crack 

concentration to be related to the porosity, : 

c

a






4

3
 . (3.14) 

This assumes that the cracks are all of similar size and aspect ratio, and further, that 

they are ellipsoidal in shape.  Substituting Equation 3.14 into Equation 3.12 and 

reorganizing yields a quadratic equation that may be solved for the inverse of the crack 

aspect ratio. 
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 (3.15) 

The minor axis of the crack, c, was taken to be half of the mercury porosimetry-

measured pore throat diameter, although this may not be strictly true as mercury 

porosimetry provides only a minimum size.  The uncracked shear modulus,  was 

approximated by the measured high frequency dry shear modulus, H, at the highest 

measured confining pressures (130 MPa for the Cape Sorell quartzite and 150 MPa for 

the Alberta quartzite), and the correction term, 1, by the difference between the high 

frequency dry shear modulus at the lowest measured confining pressure (10 MPa) and 

the high pressure shear modulus.   The shear modulus of the uncracked rock was taken 

to be the high pressure shear modulus of the quartzite as opposed to the shear modulus 

of pure polycrystalline quartz in order to better incorporate any effects from the small 

amount of muscovite at the quartz grain boundaries of the sample.  Finally, if  is 
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calculated from the high frequency, high pressure P-wave velocity (see Chapter 4), then 

Equation 3.15 can be solved for the crack radius, a.  When the samples were dry, Kfl was 

negligible, as it could be approximated as the bulk modulus of nitrogen gas at room 

temperature and atmospheric pressure, 101 kPa (NIST, 2012).  The quartzites were 

connected to pore pressure tubing filled with air at atmospheric temperature and 

pressure when they were dry; the comparatively large storage capacity of the tubing 

meant that changes in pore space volume resulted in negligible changes to the pore 

pressure of the dry samples at high confining pressures. 

The model put forward by Hudson (1981), as shown in Equation 3.15, 

approximated the crack radius of the Cape Sorell quartzite sample to be 16 m, and for 

the Alberta quartzite, 24 m.  The second solution to the quadratic was negative and 

cannot be real.  While the radius of the cracks of the two samples could only be visually 

estimated from SEM and light microscope images, they appeared to be on the order of 

the grain sizes; ~500 m in both cases, or more than an order of magnitude different 

from the theoretical estimations.  This was likely because Hudson (1981) assumes the 

concentration of cracks is dilute and the cracks therefore do not interact, e.g. <0.1 

(Hudson, 1986). In practice, this was potentially inaccurate for these samples at low 

effective pressure.  For the Cape Sorell quartzite with porosity 2.3% and pore throat size 

~0.4 m, a would need to be <3.6 m to achieve <0.1, which is not supported by either 

the experimental observations or the theoretical results.  The Alberta quartzite had a 

similarly high crack density at low pressure.  

In both the high and low frequency measurements in all saturating condition, the 

shear modulus entered a more linear regime at ~80 MPa of effective pressure and 
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above, indicating that the cracks reached maximum effective closure around this 

pressure.  As the shear modulus at higher pressures continued to be lower than the 44.4 

GPa calculated for a polycrystalline aggregate (Watt and Peselnick, 1980) from single 

crystal quartz values (McSkimin et al., 1965), it was likely the quartzite still had non-zero 

porosity.  Walsh (1965a) gives the effective pressure needed to close a randomly 

oriented distribution of penny-shaped cracks as: 

)1(2 0

0






effP  (3.16) 

where 0 is the mineral Poisson ratio.  Since the pressure required for crack closure was 

known, this could be rearranged to solve for the crack aspect ratio, .  The shear 

modulus for quartz at room temperature and pressure, 44.4 GPa (McSkimin et al., 1965, 

Watt and Peselnick, 1980), and the Poisson ratio, 0.073, calculated from the bulk 

modulus given by Liu (1993), yielded an aspect ratio of 0.001.  This corresponded to a 

crack radius of 0.4 mm for the Cape Sorell quartzite and 0.7 mm for the Alberta 

quartzite, which agreed well with the visually observed estimate of ~0.5 mm crack 

length in both cases. 

 

3.6 Discussion 

The Cape Sorell and Alberta quartzite shared relatively similar physical properties; 

both had a largely monominerallic quartz composition, grain sizes of approximately 0.5 

mm, porosity on the order of ~2% and pore throat sizes <1 m.   Interestingly, however, 

their permeability differed somewhat in behaviour.  While the Cape Sorell quartzite 
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showed a well-behaved exponential decrease in permeability with increasing effective 

pressure, the Alberta quartzite showed a sharp decline in permeability at effective 

pressures >50 MPa .  This may result from a difference in how the measurements were 

made, or may be an actual effect in the rock.  The Cape Sorell measurements were 

made over a nearly constant confining pressure (varying from 139-140 MPa) with the 

majority of the changes in effective pressure being attributable to changes in pore 

pressure.  Difficulties in obtaining the desired final pore pressure for the Alberta 

quartzite meant that adjustments to the pore pressure in the middle of the pressure 

equilibration were made more frequently, with the result that virtually all permeability 

measurements on the Alberta quartzite were obtained over a shorter time frame than 

the equivalent measurements on the Cape Sorell quartzite.  The effective permeability 

measured on the Alberta quartzite appears to show some dependence on measurement 

interval (Fig. 3.4b), with higher apparent permeability at early times. The length of 

measurement may account for some of the higher permeability seen in the Alberta 

quartzite at low effective pressures during short measurements (Fig. 3.7), however, it 

likely does not completely explain the significant permeability decrease beyond 50 MPa 

of pressure.  The variability in effective permeability seen in the Alberta quartzite with 

time indicates the pore throats may have become clogged at higher effective pressure 

by particulate matter, or that there might have been some slight heterogeneity in the 

permeability of the sample along its length.  Indeed, as the Alberta quartzite, originally 

cored at a 2.54 cm (1 inch) diameter but reduced post thermal cracking to the required 

15 mm diameter through high precision grinding, was pressurized, it was noted that at 

low effective pressures the sample was cylindrical but at high pressures, when 

substantial amounts of crack closure had occurred, the sample took on a slight 
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curvature (<0.25 mm displacement from central axis) along its 150 mm length.  This was 

likely the result of some very slight anisotropy in the crack distribution within the 

sample.  The Cape Sorell quartzite was prepared in a different laboratory for logistical 

reasons and was thermally fractured after precision grinding.  Possibly as a result of the 

different method of preparation, the Cape Sorell quartzite did not appear to show this 

curvature at either low or high pressures.  The abrupt change in permeability beyond 50 

MPa of effective pressure may also have resulted from the mineralogy of the Alberta 

quartzite.  As seen on the thin section and SEM images, the crack and grain boundaries 

of the Alberta quartzite are quite clean and smooth.  At high effective pressures it may 

be that many of the pore throats closed completely, effectively isolating many of the 

cracks from each other.  The muscovite at the grain boundaries of the Cape Sorell 

quartzite may have served to keep most of the intercrack pathways open even at high 

effective pressures. 

A second difference in behaviour between the two quartzites was observed 

during the argon saturated high frequency measurements.  The Cape Sorell quartzite 

had a stiffer argon saturated shear modulus than dry shear modulus at all measured 

effective pressures, while this was true only for measurements made from 10-50 MPa 

for the Alberta quartzite.  Here, the difference in behaviour likely resulted from some 

slight additional cracking occurring in the Alberta quartzite under the initial 

pressurization when dry measurements were made.  The difference in composition or in 

preparation may have made the Alberta quartzite more susceptible to brittle behaviour.  

Subsequent argon and water saturated high frequency measurements then had a 

slightly different crack porosity and behaviour. 
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Figure 3.9:  Between 0.01 – 1 Hz, the dry, argon and water saturated shear moduli of the 

Cape Sorell quartzite do not show any velocity dispersion.  The quartzite shows 

significant dispersion between 1 Hz and 1 MHz when it is water saturated, particularly at 

low effective pressures. 
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Figure 3.10:  The quartzite shows significant dispersion between 1 Hz and 1 MHz when it 

is water saturated, particularly at low effective pressures.  Measurements are made 

during the ‘up’ cycle of pressurization, showing shear moduli during loading.  Listed 

effective pressures are those corresponding to the high frequency measurement (low 

frequency measurements may vary from the listed pressure by up to 3 MPa). 
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In most ways, however, both quartzites behaved quite similarly.  At low 

frequencies between 0.01 and 1 Hz, neither quartzite showed any saturation-dependent 

variation in its shear moduli while dry, argon saturated or water saturated (Figs. 3.9, 

3.10).  Gassmann (1951) predicted that the dry and saturated shear moduli of a rock are 

equal when the rock is in a saturated isobaric fluid flow regime, and this lack of 

stiffening at <1 Hz may be evidence that the frequencies measured here were 

sufficiently low to allow pore pressure equilibration during the course of the 

measurement.  Although the bulk density of the sample increased slightly with 

saturation, the effect of the dry and saturated shear moduli being equivalent did not 

result in significant variations in the calculated low frequency shear wave speeds due to 

the low porosity of the samples (Fig. 3.11). 

Dispersion was evident between 1 Hz and 1 MHz in some of the measurements.  

While high frequency dry measurements agreed with their low frequency counterparts, 

saturation with argon caused slight stiffening in some high frequency measurements.  

Comparison between low and high frequency measurements was complicated due to 

variable argon pore pressures and therefore variable pore fluid properties (Fig. 3.12) as 

well as small differences in effective pressures measured.  Nonetheless, it seems 

apparent that a small amount of dispersion occurred as a result of argon saturation, 

indicating a fluid flow regime change between 1 Hz and 1 MHz. 

Water saturation resulted in substantial dispersion, evidenced by the stiffening of 

the shear moduli of both quartzite specimens:  up to 251% for the Cape Sorell and up to 

185% for the Alberta quartzite, at 1 MHz (Figs. 3.8-3.10) when compared to dry 



65 

 

 

Figure 3.11:  Calculated low frequency shear wave velocities compared to Gassmann 

predictions for the Cape Sorell quartzite.  Estimated errors in Gassmann predictions 

shown as shaded area. 
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Figure 3.12:  Physical properties of the argon and water used to saturate the quartzite 

samples.  Values from NIST (2012). 
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measurements.  The low frequency water saturated measurements agreed with low 

frequency dry and argon saturated measurements, likely indicating that at frequencies 

<1 Hz the water saturated quartzites, similar to when argon saturated, behaved as in the 

saturated isobaric fluid flow regime.  The dispersion between 1 Hz and 1 MHz was most 

pronounced at lower effective pressures, likely resulting from the higher crack porosity 

present when the cracks were open.  At pressures >80 MPa, when the cracks were 

closed, the differences between the water saturated and dry or argon saturated shear 

wave velocities were less (Fig. 3.8), but were non-zero.  This indicates that, even at the 

highest effective pressures measured here, some porosity still existed, with the 

saturated cracks having reduced compliance.  The substantial stiffening from 1 Hz to 1 

MHz indicates a fluid flow regime change, with the 1 MHz measurements likely in the 

saturated isolated regime.  Although water has a viscosity (1 mPa·s) substantially greater 

than that of argon (0.03 mPa·s at 10 MPa to 0.12 mPa·s at 150 MPa cP) at these 

temperatures and pressures (NIST, 2012), the quartzites appeared to transition between 

the isobaric and isolated fluid flow regimes between 1 Hz and 1 MHz when saturated 

with either pore fluid. 

 

3.7 Conclusions 

The two quartzites studied, from Cape Sorell, Australia, and Alberta, Canada, 

show a single population of low aspect ratio cracks in a near monominerallic quartz 

frame.  Shear wave velocity dispersion was successfully measured on both samples, 

providing important experimental results for a field largely dominated by theoretical 

work.  As expected, the dry shear modulus of the quartzites is a function only of 
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effective pressure, not of frequency.  The dry shear modulus of the cracked Cape Sorell 

quartzite at 10 MPa of effective pressure and 1 MHz is 10.9±0.9 GPa and varies from 

13.1±0.1 GPa to 13.2±0.1 GPa rom 0.01-1 Hz during loading.  Similarly, the Alberta 

quartzite has a dry shear modulus of 11.9±0.3 GPa at 1 MHz. 

 No dispersion was observed in the shear modulus of the argon saturated 

quartzites, however, stiffening of the argon saturated ultrasonic measurements 

compared to the dry indicates that dispersion is likely occurring but has an amplitude 

lower than the experimental error, due in part to pore fluid property variations between 

frequencies.  At 20 MPa, the argon saturated Cape Sorell quartzite has a shear modulus 

varying from 17.5±0.2 GPa to 17.6±0.2 GPa between 0.01 and 1 Hz during loading.  The 

1 MHz shear modulus, 17.2±0.4 GPa, agrees with the low frequency measurements 

within error, but is 11% stiffer than its dry high frequency counterpart (15.4±0.2 GPa). 

The water saturated quartzites show substantial frequency-dependent dispersion 

in their shear moduli.  High frequency water saturated shear moduli are substantially 

stiffer than those measured at low frequencies.  Water saturated moduli measured at 1 

MHz and 20 MPa of effective pressure are 74% higher than their 1 Hz counterparts for 

the Cape Sorell quartzite and 98% stiffer for the Alberta quartzite.  The amount of 

dispersion grows less with increasing effective pressure as a result of crack closure, 

however, even at maximum effective crack closure the water continues to cause 

additional stiffening at high frequencies.  This indicates that the cracks do not 

completely close over the range of effective pressures measured, but that when 

measured at high frequency the pore fluid is not able to flow between cracks and the 

cracks behave as in the saturated isolated regime.  The Cape Sorell quartzite shows a 9% 
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increase between the 1 Hz and 1 MHz measurements at 120 MPa of effective pressure, 

while the Alberta quartzite shows a 10% increase at 130 MPa.  At low frequencies (0.01-

1 Hz) no dispersion is seen, with 0.01 Hz measurements in agreement with 1 Hz 

measurements.  This indicates that both water saturated specimens behave as in the 

saturated isobaric regime where fluid has sufficient time to flow between cracks on the 

timescale of measurement, allowing pore pressure equilibration at frequencies ≤1 Hz.  

The low frequency water saturated shear moduli are in agreement with the shear 

moduli measured when the samples were dry or argon saturated, as predicted by 

Gassmann.   

The samples were pressurized multiple times, but their shear moduli were 

frequently measured during both loading and unloading in order to determine the 

repeatability of the measurements.  The samples show excellent repeatability overall, 

indicating crack growth and hysteresis was minimal.  The exception to this was a 

lessening of the argon saturated stiffness of the Alberta quartzite during ultrasonic 

measurements at pressures >50 MPa, possibly indicating some additional cracking 

occurred in the dry measurement run immediately preceding the argon saturated 

measurements. 

Both quartzites consistently undergo large changes in their shear moduli up to 

~80 MPa of effective pressure.  At higher pressures their shear moduli have a more 

linear relationship with pressure, and this is interpreted to indicate that maximum crack 

closure occurs around ~80 MPa.  This result supports the relationship between pressure 

necessary to effect crack closure and crack aspect ratio proposed by O’Connell and 

Budiansky (1977); the theory proposed by Hudson (1981) was unable to model the 



70 

 

quartzite results as it is limited by an assumption of low crack concentration which is 

inaccurate for these samples.  In addition to shear moduli, permeability was measured 

as a function of pressure.  The Cape Sorell quartzite show a logarithmic decrease in 

permeability as a function of pressure up to the highest effective pressure measured, 

100 MPa.  The Alberta quartzite, however, show a more complicated relationship 

between permeability and pressure, with a sudden strong decrease in permeability 

between 50 and 80 MPa of effective pressure.  This is likely largely attributable to the 

difference in mineralogy between the two samples, as the Alberta quartzite appears to 

have clean, smooth grain boundaries in thin section images which may be capable of 

more complete closure of the intergranular space than the muscovite edged grains of 

the Cape Sorell quartzite, preventing fluid flow between cracks, but may be the result in 

anisotropic crack distribution or particulate matter clogging pore throats during the 

permeability measurements. 

As the shear modulus affects both P- and S-wave seismic velocities, the 

experimental results measured on the two quartzite specimens show that dispersion 

can have an extremely large effect on velocity measurements of both body waves and 

has important implications for seismic acquisition and modeling of cracked crystalline 

rocks.  It is generally thought that the majority of the Earth’s crystalline crust has fluid-

filled cracks and these can be expected to cause significant velocity dispersion between 

seismic measurements acquired across a broad range of frequencies.  This data set 

provides necessary experimental data with which to constrain theoretical models. 
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Table 3.1:  Cape Sorell quartzite dry shear modulus measurements 
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10/12/10 * * * 13.202 19.469 13.064 19.469 13.165 19.469 13.147 19.469 13.124 19.469 13.249 19.469 13.235 19.469 9.85 * 

20 * * * 17.503 21.285 17.513 21.334 17.49 21.239 17.484 21.315 17.537 21.327 17.523 21.299 17.564 21.285 15.41 * 

30 * * * 20.599 26.842 20.569 26.814 20.513 26.793 20.514 26.812 20.569 26.848 20.567 26.723 20.687 26.733 19.38 * 

40 * * * * * * * * * * * * * * * * * 22.87 * 

50/51/50 * * * 26.483 30.775 26.181 30.707 26.27 30.722 26.443 30.937 26.394 30.788 26.37 30.809 26.393 30.659 25.29 * 

60 * * * * * * * * * * * * * * * * * 27.15 * 

70 * * * * * * * * * * * * * * * * * 28.84 * 

74/75/* * * * 30.713 34.071 30.548 34.277 30.603 34.225 30.868 34.231 30.716 34.123 30.751 34.154 30.787 34.03 * * 

80 * * * * * * * * * * * * * * * * * 30.50 * 

90 * * * * * * * * * * * * * * * * * 31.95 * 

100 * * * 32.849 36.137 32.768 36.15 32.52 36.07 32.622 36.213 32.701 36.242 32.738 36.321 32.971 36.729 33.12 * 

110 * * * * * * * * * * * * * * * * * 34.11 * 

120 * * * * * * * * * * * * * * * * * 35.33 * 

130/131/130 * * * 35.712 37.829 35.842 37.911 35.945 37.854 36.021 37.892 35.823 37.762 35.683 37.521 35.705 37.571 35.99 * 

140 * * * * * * * * * * * * * * * * * * * 

150 * * * * * * * * * * * * * * * * * * * 

160/161/* * * * 37.208 37.046 37.189 37.251 37.269 37.127 37.247 37.084 37.068 36.906 36.766 36.542 36.843 36.622 * * 

187 * * * 38.58 * 38.864 * 39.069 * 39.264 * 39.3 * 39.356 * 39.355 * * * 

* Where multiple pressures are shown, the first indicates the low frequency pressure during loading (up), the second the low frequency pressure 

during unloading (down) and the third the high frequency pressure during both loading and unloading measurements, where applicable.    
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Table 3.2:  Cape Sorell quartzite argon saturated shear modulus measurements 
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10 * * * * 14.103 * 14.128 * 14.16 * 14.18 * 14.179 * 14.236 * 14.244 12.28 * 

20 * * * 17.592 18.446 17.552 18.387 17.605 18.445 17.526 18.436 17.551 18.47 17.538 18.519 17.616 18.566 17.16 * 

30 * * * 20.656 21.703 20.628 21.731 20.588 21.721 20.662 21.724 20.648 21.749 20.678 21.814 20.693 21.832 21.51 * 

40 * * * * * * * * * * * * * * * * * 25.11 * 

49/48/50 * * * 26.049 27.107 26.009 27.128 26.017 27.172 26.163 27.272 25.877 27.204 25.916 27.228 25.927 27.086 27.28 * 

60 * * * * * * * * * * * * * * * * * 28.98 * 

70 * * * * * * * * * * * * * * * * * 30.52 * 

75/74/75 * * * 30.116 32.786 30 32.721 29.963 32.644 30.169 32.838 30.071 32.778 30.155 32.742 30.284 32.604 * * 

80 * * * * * * * * * * * * * * * * * 32.11 * 

90 * * * * * * * * * * * * * * * * * 33.59 * 

100/98/100 * * * 34.443 35.312 34.865 35.359 34.751 35.308 34.879 35.526 34.884 35.479 34.91 35.542 34.981 35.749 34.45 * 

110 * * * * * * * * * * * * * * * * * 35.26 * 

120 * * * * * * * * * * * * * * * * * 36.01 * 

129/130/130 * * * 36.43 36.071 36.521 36.208 36.585 36.235 36.566 36.283 36.466 36.184 36.185 35.916 36.183 35.984 36.69 * 

140 * * * * * * * * * * * * * * * * * 37.4 * 

150 * * * * * * * * * * * * * * * * * 37.76 * 
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Table 3.3:  Cape Sorell quartzite water saturated shear modulus measurements 
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10 * * * * * * * * * * * * * * * * * 24.73 26.32 

14 * * * 14.669 * 14.703 * 14.76 * 14.776 * 14.814 * 14.822 * 14.886 * * * 

19/*/20 * * * 16.524 * 16.52 * 16.541 * 16.488 * 16.474 * 16.409 * 16.362 * 28.46 30.08 

30 * * * 19.099 * 18.951 * 18.909 * 18.858 * 18.835 * 18.783 * 18.828 * 31.36 32.73 

40 * * * * * * * * * * * * * * * * * 33.31 34.41 

49/*/50 * * * 25.229 * 25.238 * 25.203 * 25.424 * 25.334 * 25.491 * 25.512 * 34.95 35.79 

60 * * * * * * * * * * * * * * * * * 35.77 36.72 

70 * * * * * * * * * * * * * * * * * 36.70 37.42 

75 * * * 30.851 * 30.723 * 30.662 * 30.896 * 30.74 * 30.686 * 30.754 * * * 

80 * * * * * * * * * * * * * * * * * 37.68 38.14 

90 * * * * * * * * * * * * * * * * * 37.94 38.60 

99/*/100 * 34.407 34.12 33.784 * 33.83 * 33.822 * 33.935 
 

33.903 
 

34.003 
 

34.226 
 

38.29 39.06 

110 * * * * * * * * * * * * * * * * * 38.66 39.34 

117/*/120 * * * 35.636 * 35.606 * 35.571 * 35.713 
 

35.762 
 

35.808 
 

35.979 
 

39.23 39.52 

130 * * * * * * * * * * * * * * * * * 39.31 39.71 

135 * * * 36.68 * 36.805 * 36.76 * 36.729 
 

36.582 
 

36.343 
 

36.43 
 

* * 

140 * * * * * * * * * * * * * * * * * 39.49 39.79 

150 * * * * * * * * * * * * * * * * * 39.68 * 
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Table 3.4: Alberta quartzite dry shear modulus measurements 
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10 * * * * * * * * * * * * * * * * * 11.89 * 

20 * * * * * * * * * * * * * * * * * 14.92 20.33 

30 * * * * * * * * * * * * * * * * * 18.37 22.92 

40 * * * * * * * * * * * * * * * * * 21.75 24.80 

50 * * * * * * * * * * * * * * * * * 23.54 26.36 

60 * * * * * * * * * * * * * * * * * 25.62 29.48 

70 * * * * * * * * * * * * * * * * * 27.81 30.67 

80 * * * * * * * * * * * * * * * * * 29.42 31.65 

90 * * * * * * * * * * * * * * * * * 30.55 32.37 

100 * * * * * * * * * * * * * * * * * 31.67 33.03 

110 * * * * * * * * * * * * * * * * * 32.49 33.58 

120 * * * * * * * * * * * * * * * * * 33.10 33.90 

130 * * * * * * * * * * * * * * * * * 33.89 34.31 

140 * * * * * * * * * * * * * * * * * 34.47 34.63 

150 * * * * * * * * * * * * * * * * * 34.88 * 
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Table 3.5: Alberta quartzite argon saturated shear modulus measurements 
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10 * * * * * * * * * * * * * * * * * 12.06 18.45 

20 * * * * * * * * * * * * * * * * * 15.99 20.95 

30 * * * * * * * * * * * * * * * * * 19.31 23.24 

40 * * * * * * * * * * * * * * * * * 22.70 24.70 

50 * * * * * * * * * * * * * * * * * 24.51 25.70 

60 * * * * * * * * * * * * * * * * * 25.67 26.33 

70 * * * * * * * * * * * * * * * * * 27.75 29.71 

80 * * * * * * * * * * * * * * * * * 28.97 30.71 

90 * * * * * * * * * * * * * * * * * 29.93 31.40 

100 * * * * * * * * * * * * * * * * * 30.87 32.11 

110 * * * * * * * * * * * * * * * * * 31.88 32.87 

120 * * * * * * * * * * * * * * * * * 32.56 33.26 

130 * * * * * * * * * * * * * * * * * 33.41 33.89 

140 * * * * * * * * * * * * * * * * * 33.97 34.22 

150 * * * * * * * * * * * * * * * * * 34.54 * 
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Table 3.6: Alberta quartzite water saturated shear modulus measurements 

 

Frequency 

P
re

ss
u

re
 (

G
P

a)
 

  1
 m

H
z 

(u
p

) 

2
.1

 m
H

z 
(u

p
) 

4
.7

 m
H

z 
(u

p
) 

9
.9

 m
H

z 
(u

p
) 

9
.9

 m
H

z 
(d

o
w

n
) 

0
.0

2
1

 H
z 

(u
p

) 

0
.0

2
1

 H
z 

(d
o

w
n

) 

0
.0

4
6

 H
z 

(u
p

) 

0
.0

4
6

 H
z 

(d
o

w
n

) 

0
.0

8
7

 H
z 

(u
p

) 

0
.0

8
7

 H
z 

(d
o

w
n

) 

0
.1

6
 H

z 
(u

p
) 

0
.1

6
 H

z 
(d

o
w

n
) 

0
.2

6
 H

z 
(u

p
) 

0
.2

6
 H

z 
(d

o
w

n
) 

0
.7

8
 H

z 
(u

p
) 

0
.7

8
 H

z 
(d

o
w

n
) 

1
 M

H
z 

(u
p

) 

1
 M

H
z 

(d
o

w
n

) 

                    

14/*/10 * * * 10.851 * 10.793 * 10.803 * 10.784 * 10.768 * 10.802 * 10.778 * 21.97 24.47 

21/*/20 12.716 12.618 12.474 12.293 * 12.263 * 12.249 * 12.312 * 12.291 * 12.265 * 12.216 * 24.13 29.75 

30 * * * 15.378 * 15.394 * 15.437 * 15.473 * 15.602 * 15.565 * 15.48 * 26.91 30.22 

40 * * * * * * * * * * * * * * * * * 28.73 30.93 

47/*/50 * * * 18.932 * 18.854 * 19.093 * 19.02 * 19.01 * 19.116 * 19.105 * 29.46 32.34 

60 * * * * * * * * * * * * * * * * * 30.92 32.38 

66/*/70 * * * 25.015 * 24.894 * 25.042 * 25.005 * 25.014 * 25.111 * 25.106 * 31.53 33.75 

80 * * * * * * * * * * * * * * * * * 32.47 34.45 

90 * * * * * * * * * * * * * * * * * 33.21 34.67 

103/*/100 29.354 28.975 28.67 28.533 * 28.272 * 28.27 * 28.281 * 28.253 * 29.054 * 29.09 * 33.82 35.07 

110 * * * * * * * * * * * * * * * * * 34.47 35.58 

120 * * * * * * * * * * * * * * * * * 35.22 35.75 

129/*/130 * * * 32.506 * 32.492 * 32.524 * 32.456 * 32.55 * 32.659 * 32.71 * 35.83 36.27 

140 * * * * * * * * * * * * * * * * * 36.09 36.45 

150 * * * * * * * * * * * * * * * * * 36.44 * 

158 * * * 34.659 * 34.531 * 34.533 * 34.668 * 34.616 * 34.627 * 34.644 * * * 
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4.0 Young’s Modulus Dispersion 

4.1 Introduction 

Seismic velocities in rocks with fluid-filled cracks are expected to show a strong 

dependence on the frequencies at which the velocities are measured.  The behaviour of 

the fluid in the cracks can be described by one of three regimes, depending on the 

timescale of measurement:  “saturated isolated,” where the fluid does not have time to 

flow between cracks, “saturated isobaric,” where sufficient time exists for pore fluid 

pressure to flow and equilibrate between cracks and “drained,” where the fluid is 

exchanged with an external reservoir (O'Connell and Budiansky, 1977, Jackson, 1991).   

Numerous theoretical models exist, with some of the more commonly used 

including the self-consistent model (Budiansky and O'Connell, 1976, O'Connell and 

Budiansky, 1977), Hudson theory (Hudson, 1981), the Gassmann model (Gassmann, 

1951), Biot theory (Biot, 1956a, 1956b) and squirt flow theory (Mavko and Jizba, 1991).  

The theories differ in their formulations: Gassmann theory predicts changes in bulk 

modulus properties related to changes in saturating pore fluid, but does not assume a 

particular crack or pore shape and is not limited to lower porosities.  It is the theory that 

is believed to be the most applicable to low frequency measurements as it assumes a 

saturated isobaric regime.  The self consistent method calculates a solution for 

inclusions of known shape within a background material of as-yet-unknown effective 

elastic stiffness, while Hudson theory deals with dilute penny-shaped cracks in a 

material with known elastic properties.  All of these theories assume that the 

wavelength of the passing wave is much larger than the dimensions of the cracks or 

pores, and all but Gassmann theory assume that the fluid in the cracks is isolated from 
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neighbouring cracks.  Biot and squirt flow theory predict elastic properties for materials 

with fluid filled inclusions at higher frequencies, although Biot theory reduces to the 

Gassmann equation at its low frequency limit.  Biot theory predicts the result of the 

inertial interaction between pore fluid and the rock matrix on the effective elastic 

properties, while squirt flow theory estimates local fluid flow effects at the grain scale.   

Theoretical models of dispersion have long been hindered by the difficulty of 

testing the models experimentally.  Comparison between in-situ and laboratory results 

is complicated by issues of heterogeneity and scale, while low frequency measurements 

are difficult to make in the laboratory setting as a result of the sensitivity of the elastic 

moduli to the amplitude of strain applied (Batzle et al., 2006).  Experimental work on 

cracked rock has increased in recent years (e.g. Adam et al., 2006, Batzle et al., 2006, 

Adelinet et al., 2010), however, these measurements remain few and far between, and 

there are few apparatuses capable of making low frequency laboratory measurements 

in the seismic strain regime.  Recently, ANU (Australian National University) developed 

the capability of measuring low frequency Young’s moduli (Jackson et al., 2011).  The 

ANU apparatus had previously been regularly used for low frequency shear moduli 

measurements (Jackson and Paterson, 1993), and recent modification now allows both 

the shear and Young’s moduli to be measured at frequencies of 1 mHz – 1 Hz over a 

range of pressures and under a variety of saturation regimes. 

In this study, low (0.01-1 Hz) and high (1 MHz) frequency Young’s modulus 

experimental measurements were made on two quartzites; one from Cape Sorell, 

Australia and one from Alberta, Canada.  Both quartzites had thermally induced low 

aspect ratio cracks.  The Young’s modulus was measured while the quartzites were dry, 
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argon saturated and water saturated across a range of effective pressures (10-150 

MPa).  Low frequency measurements were made using the forced flexural oscillation 

apparatus newly developed at Australian National University (ANU), while high 

frequency measurements were made using the relatively standard ultrasonic pulse 

technique at the University of Alberta.  Here, the low frequency Young’s modulus 

measurement method is described, and the low frequency measurements are compared 

to their 1 MHz counterparts.  The Young’s modulus of the quartzites showed significant 

stiffening with water saturation at high frequency, and significant dispersion was 

observed.  The dispersion measurements were compared to the predictions of 

Gassmann theory and to predictions incorporating the high frequency limit of Biot and 

squirt flow theory. 

 

4.2 Low frequency measurements 

4.2.1 ANU apparatus flexural measurement theory 

Low frequency Young’s modulus measurements were undertaken using the ANU 

apparatus (Jackson et al., 2011).  The apparatus is an approximately 1 m long beam 

cantilevered at the top and propped at the lower boundary.  A ~150 mm long specimen 

is located near the top of the beam and is sandwiched between two hollow 

polycrystalline (Duramic™) alumina rods; the specimen assembly is jacketed.  Below the 

specimen assembly is an elastic element, comprised of a hollow steel tube.  Flexure is 

measured by parallel plate capacitors between the specimen assembly and elastic 

element and below the elastic element, at distances l1 and l2, respectively, below the 

upper cantilevered end of the assembly.  The beam is sinusoidally driven by 
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electromagnetic drivers moving in opposition at the bottom of the beam, at l3 (Figure 

4.1).  The parallel plate capacitors measure a displacement di(t) with time t at a distance 

D from the axis of the beam: 

   tlDvtd ii ,'  i=1,2 (4.1) 

Here v’ is the angle of flexure, dv/dx. 

These displacements are used to calculate a normalized flexural modulus, SNF, 

which is the ratio of change in angle of flexure across the specimen assembly to that for 

the elastic element: 

 
   12

1

12

1

''

'

lvlv

lv

dd

d
SNF





   (4.2) 

The flexure of the beam at any given point is controlled mainly by longitudinal extension 

and contraction, and is related to the Young’s modulus, E, the diametral moment of 

inertia, I, and the local bending moment, M, through the equation: 

     xM
x

v
xIxE 



2

2

  (4.3) 

The local bending moment is related to the bending moment applied at x = l3, Ma, and 

the lateral reaction force at the propped end of the beam, RL: 

  aL MxLRxM )(  0 ≤ x < l3 (4.4) 

   )xLRxM L   l3 < x ≤ L (4.5) 

where L is the lower, propped end of the beam. 
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Figure 4.1:  Schematic of the low frequency apparatus in flexural mode showing 

exaggerated flexure.  The top of the apparatus is held vertical while the bottom is held 

in place but allowed to vary in angle. 

 

  



82 

 

Substituting Equation 4.4 into Equation 4.3 and integrating allows for v’ at x < l3 to be 

solved for: 
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The normalized flexural modulus is therefore related to the Young’s modulus of the 

beam by substituting Equation 4.6 into Equation 4.2: 
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Here Smod is the theoretical value of the normalized modulus, as opposed to SNF which is 

the measured value.  Where the shear stress at the interfaces between adjacent 

filaments is negligible, as demonstrated by Jackson et al. (2011), Smod and SNF should be 

equivalent.  In order to solve for Smod using finite difference code in MATLAB™, the beam 

is discretized into N intervals of length h = L/N.  The second derivative of displacement, 

v”, can then be calculated: 
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This can be substituted into Equation 4.3: 
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The boundary conditions of a cantilevered, propped beam require that v(x0) = v(xN) = 0 

and that v’(x0) = 0, which requires v(x-1) = v(x1).  These conditions are applied, and the N 

simultaneous linear equations are solved (Jackson et al., 2011): 
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Smod is calculated from the local x-derivative of vi at x =  l1 and x = l2.  The Young’s moduli 

and diametral moments of inertia of the components of the steel beam and the copper 

jacket of the specimen assembly are accurately known at standard pressure, however, 

as effective pressures of up to 200 MPa are applied it is necessary to account for 

changes in these parameters.  These changes are estimated based on published values 

for the changes in shear and Young’s moduli with pressure (Simmons and Wang, 1971). 

4.2.2 Calibration of the ANU apparatus 

During this experimental study it was desired to deliver pore fluids to the sample.  

The sample, which was precision ground to a 15 mm diameter, was therefore 

sandwiched within the specimen assembly between two hollow polycrystalline alumina 

rods which allowed fluid to flow from the pore fluid reservoirs into the sample.  While 

the dimensions of the polycrystalline alumina rods were well-measured, their Young’s 

modulus was not accurately known.  In order to determine their effective elastic 
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stiffness, measurements were made while they sandwiched a fused quartz sample of 

known elastic stiffness in order that their Young’s modulus was the only unknown in the 

system.  Fused quartz is a commonly used standard; the Young’s modulus of the fused 

quartz sample used here was measured using ultrasonic interferometry and found to be 

72.6 GPa, similar to values found in other published literature (e.g. Gerlich and Kennedy, 

1978, Meister et al., 1980).  The pressure dependence of its dimensions and Young’s 

modulus was estimated from values measured by Ohno et al. (2000), G’=-3.5 and K’=-

6.0. 

Experimental measurements of the fused quartz assembly were made in two 

separate runs, #1206 and #12081, over a range of effective pressures.  During run #1206, 

the fused quartz was enclosed bare within the copper jacket, and argon pore pressure 

was introduced during measurements at 28 MPa and 103 MPa of effective pressure.  

During run #1208, only confining pressure was used, but the fused quartz was wrapped 

in Teflon tape before being inserted in the copper jacket in an effort to further minimize 

the possibility of fluid flow along the boundary of the sample in future measurements 

where pore fluid could potentially be used.  Measurements from run #1208 did not 

appear to agree well with the measurements of run #1206, likely due to issues with the 

Teflon, such as not accounting for the additional diameter added to the assembly by the 

tape.  Run #1206 was therefore used to determine the normalized modulus of the fused 

quartz assembly, and permeability measurements later showed that longitudinal fluid 

flow along the jacket-sample boundary was negligible.  Comparison of the #1206 

                                                           
1 Each pressurization cycle of the ANU apparatus since conception has a unique, 
sequential run number.  Pressurization is required for specimen jacket collapse (e.g. run 
#1207), and a pressurization cycle does not necessarily include data measurement.  
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measurements made with confining pressure only versus those made with pore 

pressure showed good agreement, indicating that lateral fluid flow between the side of 

the sample instantaneously in compression and the side in extension was also minimal 

along the sample boundary.  Teflon tape was therefore not used in any of the 

experimental measurements. 

The normalized modulus of the assembly was found to be pressure dependent, 

well in excess of the pressure dependence that could be accounted for by the variation 

in Young’s moduli or the dimensions of components of the beam (Fig. 4.2).  This was not 

fully understood, however, it was hypothesized that the change in compliance was 

caused by interfacial effects between the fused quartz, the alumina rods and the rest of 

the assembly, as these components were coupled solely by friction and could potentially 

undergo a slight amount of creeping during measurement.  A combination of the 

Young’s modulus of the alumina rods and the interfacial coupling effects was captured 

by allowing the effective Young’s modulus of the polycrystalline alumina to vary with 

pressure over and above the E’ = 4.7 measured by Gieske and Barsch (1968).  A 3rd order 

polynomial was fitted to the normalized modulus measurements of the fused silica 

assembly (Fig. 4.2).  The Young’s modulus of the alumina rods sandwiching the fused 

quartz specimen was varied within the finite difference model until the calculated 

normalized modulus, Smod, matched the value calculated from the curve fit to the 

experimental fused quartz normalized moduli, SNF.  Thus the flexural oscillation data for 

the fused quartz assembly were effectively used to solve for the least well constrained 

parameter, namely a mildly pressure dependent effective Young’s modulus for the 

hollow alumina rods. 
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Figure 4.2:  Normalized modulus of fused quartz assembly measured over a range of 

effective pressures, showing the dependence of the normalized modulus of the 

assembly on effective pressure – approximated by the third order polynomial function 

represented by the dashed curve. 
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The normalized flexural modulus calculated by the finite difference model was 

somewhat dependent on the number of elements, N, used in the calculation.  The 

model solution typically converged when the beam was discretized into >2500 parts, 

however, due to discretization effects as well as machine precision, some scatter 

remained (Fig. 4.3).  In order to have consistent quality in the results of the model, the 

normalized modulus was calculated multiple times using different discretization 

regimes, and averaged.  The normalized modulus for a beam of 4100 to 5000 elements, 

in increments of 100, was calculated for a total of 10 normalized flexural modulus 

calculations.  The mean of these 10 moduli was taken to be the converged normalized 

modulus.  In practice, the maximum observed standard deviation in the set of ten 

normalized moduli was 8 x 10-5; and the average standard deviation was 5 x 10-5.  In 

order to save processing time, when the standard deviation of the normalized moduli is 

<5 x 10-5 after a minimum of four normalized modulus calculations, the compliance was 

deemed to have converged and in these cases the mean of these compliances was used 

as the converged compliance even though the mean was based on a fewer number of 

calculations.  A standard deviation of 5 x 10-5 translated to an error of <0.02% for the 

unitless normalized moduli measured experimentally, however, this refers only to the 

error caused by discretization and machine precision.  The overall experimental error 

was typically larger, as discussed later in the text. 

The rods required an effective Young’s modulus varying mildly with pressure from 

235 GPa at 5 MPa of pressure to 272 GPa at 190 MPa of pressure to return theoretical 

normalized moduli equal to those measured experimentally for the fused quartz 

specimen assembly (Fig. 4.4).  Unfortunately, no published results for Duramic 
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Figure 4.3:  Normalized modulus calculated using the finite difference model as a 

function of the number of elements, N, used in the calculation for the fused quartz 

assembly at a confining pressure of 20 MPa, showing the convergence of the modulus 

for N > 2500.  The 10 results from N=4100-5000 that are averaged to produce the 

accepted value of the modulus are shown in red. 
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Figure 4.4:  The effective Young’s modulus of the polycrystalline alumina rods required 

for the finite difference code to return an Smod value equal to the normalized moduli, SNF, 

measured experimentally by run 1206 with a fused quartz assembly. 
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polycrystalline alumina were found, however, these values do not appear unreasonable 

when compared to published results for Lucalox polycrystalline alumina which measure 

a Young’s modulus on the order of 400 GPa (Schreiber and Anderson, 1965).  Lucalox is 

a purer, less porous ceramic; the increased material porosity of the Duramic alumina, 

both intrinsic porosity and crack porosity induced by repeated pressure and high 

temperature cycling during repeated experimental use of the Duramic rods, would be 

expected to result in a much reduced Young’s modulus.  Further, the compliance at the 

interfaces between the rods and the fused quartz specimen was likely not negligible.  

The ends of the rods were ground but not lapped, while the ends of the fused quartz 

sample were lapped. 

Substitution of these Young’s modulus values for the alumina rods into the finite 

difference model meant that, when the fused quartz was replaced by another sample 

specimen, the Young’s modulus of the sample specimen was the only unknown.  This 

allowed the unknown Young’s modulus of a sample to be measured using the 

apparatus, through the change in the experimental response relative to that for the 

standard fused quartz. 

4.2.3 Low frequency Young’s modulus measurements on experimental samples 

Two quartzite samples, one from Cape Sorell, Australia, and one from Alberta, 

Canada, were chosen for measurement.  The shear moduli of the two samples had 

previously been measured under similar saturation and pressure conditions across a 

similar range of frequencies to those measured here; in addition, the porosity, 

permeability and composition of the quartzites has been well characterized (see 

Chapter 3).  The quartzites had been thermally cracked by heating to 1100°C and 
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quenching in liquid nitrogen (for the Cape Sorell quartzite) and water (for the Alberta 

quartzite).  After cracking, the quartzites both had low aspect ratio (i.e. aperture to 

diameter ratio of ~0.001) cracks.  At ambient pressure, the porosity of the Cape Sorell 

quartzite was 2.3% and that of the Alberta quartzite was 2.4%.  Their permeabilities 

were 5 x 10-20 m2 and 3 x 10-19 m2, respectively, at low effective pressure but had been 

measured to decrease with pressure as crack closure was effected. 

Flexural measurements were made on the Cape Sorell quartzite under dry, argon 

saturated and water saturated conditions, as well as on the dry Alberta quartzite.  It was 

not possible to measure the saturated Alberta quartzite in flexural mode due to bending 

of the sample under pressure.  Although the magnitude of the bending was extremely 

small, it nonetheless rendered the measurements impossible as the bending caused the 

sample to rub on the sides of the pressure vessel and introduced additional stiffness 

into the system which could not be properly quantified.  Saturated measurements of the 

Cape Sorell quartzite were made following pore pressure equilibration throughout the 

specimen by fluid flow from the lower to the upper reservoir.  The Young’s moduli at 

frequencies 0.01 - 1 Hz were numerically modelled using the experimentally determined 

values for the Young’s modulus of the polycrystalline alumina rods.  Errors in the 

Young’s moduli of the quartzites were estimated from the Young’s moduli 

measurements of the fused quartz.  As the Young’s modulus of the fused quartz itself 

can be expected to be independent of frequency as a result of the extremely low 

attenuation of the non porous material, any frequency-dependent variation must be as 

a result of measurement error.  Each fused quartz measurement was undertaken at 7 

frequencies at equal logarithmic spacing between 0.01 - 1 Hz.  At each pressure, the 
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small error observed in the fused quartz measurement at different frequencies was 

likely a result of minor noise in the movement of the electromagnetic flexural drivers 

due to higher order harmonics (Fig. 4.5) as well as the interaction of the parallel plate 

capacitors measuring the flexure of the beam with the argon pressurizing fluid.  The 

parallel plate capacitors of the apparatus are exposed to the argon induced confining 

pressure, with the central plate of the triple plate capacitor moving through the argon 

fluid.  At high confining pressures the viscosity of the argon is increased and may have 

caused a small amount of drag on the moving capacitor plate, particularly at higher 

frequencies.  In the fused quartz measurements, the average standard deviation in the 

measurement of the normalized modulus at each pressure was 0.04%; the standard 

deviation in the experimental measurements did not appear to have any pressure 

dependence.  The error in the normalized modulus measurement was assumed to be 

two standard deviations, 0.1%, in order to reasonably encompass the majority of the 

data.  The errors in the Young’s moduli of the quartzites were propagated by modeling 

the moduli resulting from this error estimate in normalized modulus: the Young’s 

modulus corresponding to a normalized modulus 0.1% larger and one 0.1% smaller than 

measured was calculated, and half of this range was used as the error in the Young’s 

modulus.  There may be other errors in the low frequency Young’s modulus 

measurements, such as those relating to the calibration of the moduli for the alumina 

rods.  Further, as discussed previously, the normalized modulus could only be solved for 

within a <0.02% error and this error estimate should be taken as a minimum error.   

The error of 0.1% in the normalized modulus may appear quite small; however, 

the fairly low sensitivity of the apparatus to the Young’s modulus means that even quite  
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Figure 4.5: Fourier transform of raw flexural data at 0.26 Hz (black), showing the signal 

level of the 0.26 Hz driving frequency (red dotted line) is approximately two orders of 

magnitude greater than harmonic and other noise (shaded area). 
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small variations in the normalized modulus can indicate larger magnitude errors in the 

Young’s modulus.  Measurements of Young’s moduli at high effective pressure, in 

particular, have significantly higher errors due to the lower sensitivity of the apparatus 

with increasing sample stiffness.  This is a result of the location of the sample within the 

apparatus:  maximum flexure occurs between the two measuring locations, l1 and l2, and 

near the top of the cantilevered beam, with relatively little occurring in the specimen 

itself (Fig. 4.6).  As evidenced in Equation 4.3, the curvature of the assembly is greatest 

where the assembly has both a low Young’s modulus and low moment of inertia.  The 

normalized compliance reflects the relative gradients at l1 and l2, which are influenced 

by the geometry and material properties of the assembly.  For a given effective pressure 

and associated Young’s modulus of the Duramic rods sandwiching the specimen, there is 

in fact a maximum modulus that can be returned by numerical modeling.  This occurs 

when the Young’s modulus of the specimen is high enough that no flexure is induced in 

the specimen during measurement.  The maximum theoretical normalized modulus is 

then controlled exclusively by the flexure occurring within the other components of the 

apparatus; the contribution of the polycrystalline alumina rods is the only component 

which has not been independently measured.  Experimentally, however, the theoretical 

maximum of the normalized modulus has been exceeded in some cases, with 

experimental measurements of the modulus at times larger than the maximum modulus 

achievable with the current numerical modeling program.  

A discrepancy between measurements and modeling arose for the water 

saturated quartzite samples, which consistently had experimental normalized moduli  
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Figure 4.6: Typical displacement along the beam of the apparatus while in flexural 

mode, with red points showing locations l1 and l2 where the parallel plate capacitors 

measure flexure.  Note that the diagram is horizontally exaggerated. 
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measurements that were higher than those theoretically possible with the Young’s 

modulus values of the polycrystalline alumina rods calibrated from run #1206.  At this 

early stage of technique development the origin of this additional stiffness in the 

apparatus is incompletely understood, although it may be related to the influence of 

water within alumina rods cracked from prior thermal cycling or to the interfacial 

coupling between the components of the assembly.  Time constraints meant that the 

Young’s modulus of the polycrystalline rods had been measured through the use of the 

fused quartz standard only while dry and argon saturated, and not while saturated with 

water pore fluid.  It was therefore not possible to estimate the effect of water 

saturation on the Young’s modulus of the rods.  The additional stiffening observed was 

assumed to be a consistent system response and, along with the interfacial coupling 

effects, was captured within the Young’s modulus value of the polycrystalline alumina 

rods through modeling of the water saturated quartzites:  it was assumed that at high 

effective pressures the cracks in the quartzites would be effectively closed and the 

Young’s modulus of the rocks would have a linear relationship with pressure.  Such a 

linear variation of the Young’s moduli measured on the Cape Sorell quartzite, both dry 

and argon saturated, at effective pressures >75 MPa and at a frequency of 0.09 Hz 

(during both loading and unloading) was used to estimate a value for the low frequency 

Young’s modulus at 140 MPa effective pressure.  The water saturated Cape Sorell 

quartzite had been measured at 140 MPa and 142 MPa of effective pressure at low 

frequency, and the stiffness of the polycrystalline alumina rods was adjusted so that the 

average of the normalized moduli of these two water saturated measurements at 0.09 

Hz returned the same Young’s modulus as the normalized modulus for the dry and 

argon saturated measurements at 140 MPa.  This required an 89.5 GPa increase in the 
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effective Young’s modulus of the alumina rods.  As a first approximation to the system 

response, this 89.5 GPa correction was assumed to be independent of pressure.  All 

other water saturated measurements were then modeled with a Young’s modulus for 

polycrystalline alumina subject to the same upward adjustment, based on the 

assumption of identical Young’s moduli of the Cape Sorell quartzite measured at 140 

MPa whether dry, argon or water saturated. 

 

4.3 High frequency measurements 

High frequency measurements were made on both of the quartzites at 1 MHz 

using piezoelectric transducers.  The samples were placed between two aluminum 

buffers affixed with P- and S-wave piezoelectric transducers.  Argon and water were 

introduced through a small opening in one of the buffers.  For safety reasons, argon 

pore fluid pressure was maintained at 10 MPa for argon saturated measurements, and 

effective pressures were achieved by varying the confining pressure only.  In the case of 

water saturation however, the confining pressure was kept fixed and the water pore 

fluid pressure was varied to obtain the desired effective pressure.  Traveltime 

measurements were made for both P- and S-waves under dry, argon saturated and 

water saturated conditions from 10-150 MPa of effective pressure.  P- and S-wave 

velocities through the quartzites were determined by accounting for travel-times 

through the aluminum buffers and dimensional changes of the quartzites based on pure 

quartz mineralogy, as the quartzites have been shown to have only minimal 

contamination by other minerals.  S-wave and shear modulus measurements are 

described in the previous chapter.  Seismic velocities were then used in conjunction with 
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the bulk density of the quartzites to calculate the Young’s moduli under the various 

pressure and saturation conditions.  As in Equation 2.18 the P-wave velocity can be 

described by the bulk density, shear and Young’s moduli; combining Equation 2.18 with 

Equation 2.19, which describes the S-wave velocity in terms of the bulk density and 

shear modulus allows the isolation of the Young’s modulus: 
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where  is the bulk density, vP the P-wave velocity and vS the S-wave velocity. 

 

4.4 Results 

The low frequency Cape Sorell quartzite measurements were made by frictionally 

coupling three 5 cm long pieces in series to achieve the 15 cm sample length necessary 

for the apparatus, while the Alberta quartzite sample was composed of a single 15 cm 

long core.  The Alberta quartzite had been precision ground to the necessary 1.5 cm 

diameter after thermal cracking was used to induce low aspect ratio cracks.  The Cape 

Sorell quartzite, however, was precision ground prior to thermal cracking.  While the 

thermal cracking technique was quite successful at inducing a relatively isotropic, 

randomly oriented distribution of cracks, it was not perfect and, during crack closure 

under pressurization, the cylindrical Alberta quartzite sample acquired a very slight 

curvature.  Lateral clearance in the low frequency apparatus is quite small, and it was 

difficult to orient the quartzite in such a manner that the pressure-induced curvature 

did not cause the quartzite to contact the sides of the pressure vessel when the sample 
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was undergoing forced oscillation.  While the Cape Sorell quartzite was measured at low 

frequency under dry, argon and water saturated conditions, the Young’s modulus of the 

Alberta quartzite was only successfully measured while dry, and for confining pressures 

<100 MPa.  High frequency measurements were possible under all saturation and 

pressure conditions for both quartzites due to the different mechanism of measurement 

(Figs. 4.7, 4.8, 4.9). 

The Young’s moduli of the quartzites behaved similarly to the shear moduli (see 

chapter 2), showing a significant increase in stiffness from 0-80 MPa of effective 

pressure, apparently reflecting crack closure, before entering a regime with milder, 

linear pressure dependence at pressures >80 MPa.   

As expected, no frequency dispersion occurred in the dry quartzites.  The low and 

high frequency measurements showed good agreement across the measured frequency 

bands from 0.01 Hz – 1 MHz.  The Young’s modulus of the Alberta quartzite agreed 

particularly well, while the Cape Sorell quartzite exhibited a minor but somewhat 

systematic difference between its low and high frequency results at 10 and 20 MPa of 

pressure where low frequency measurements had slightly lower Young’s moduli.   

When the Cape Sorell quartzite was saturated with argon pore fluid, its behaviour 

was similar to when it was dry.  If dispersion was occurring, it was of low amplitude, as 

the low and high frequency Young’s modulus measurements broadly agreed.  The 

Alberta quartzite was not measured at low frequency while argon or water saturated; it 

was therefore only possible to compare its high frequency argon saturated  
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Figure 4.7: Dispersion measurements of Cape Sorell quartzite, showing low (0.01-1 Hz) 

and high (1 MHz) measurements with the sample dry (top), argon saturated (middle) 

and water saturated (bottom) at various effective pressures.  
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Figure 4.8:  Dispersion measurements of the Young’s modulus of the Alberta quartzite, 

showing low (0.01-1 Hz) and high (1 MHz) measurements on the dry sample over a 

range of confining pressures. 
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Figure 4.9:  Measurements on the dry Alberta quartzite (a) at 0.1 Hz, and dry, argon 

saturated and water saturated Alberta quartzite at 1 MHz, as well as measurements on 

the dry, argon saturated and water saturated Cape Sorell quartzite quartzite (b) at 0.1 

Hz and 1 MHz, showing the significant stiffening of the Young’s modulus with water 

saturation. 
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measurements to its dry measurements.  At low effective pressures, both the Alberta 

and the Cape Sorell quartzite showed some slight additional stiffening in their Young’s 

moduli at high frequency when saturated with argon compared to when dry.  The 1 MHz 

argon saturated Cape Sorell quartzite Young’s modulus was 24.1% higher than when 

measured dry at 10 MPa of effective pressure (25.8±0.4 GPa versus 20.8±0.7 GPa).  

Meanwhile, the Alberta quartzite had an argon saturated Young’s modulus that was 

12.5% higher than its dry counterpart at the same effective pressure (28.0±0.2 GPa 

compared to 25.3±0.3 GPa).   At higher effective pressures (>70 MPa), however, the 1 

MHz argon saturated Young’s modulus of the Alberta quartzite was lower than the dry 

Young’s modulus.  Similarly, when the Alberta sample was saturated with water at high 

pressure, the Young’s modulus was again lower than the dry Young’s modulus. 

Substantial dispersion was observed when the Cape Sorell quartzite was 

saturated with water; the Young’s modulus was seen to increase slightly from 0.01 Hz to 

1 Hz and a significant increase in stiffness is measured between 1 Hz and 1 MHz.  This 

difference in behaviour between the argon and water saturated specimens was not 

unexpected as the properties of the liquid water and supercritical argon fluids differ 

greatly.  At the experimental temperatures and pressures the viscosity of water is 0.001 

Pa·s (NIST, 2012), 40 times greater than that of argon.  The incompressibility of water is 

also much higher, ranging from 2.2 – 3.0 GPa over the range of pressures measured, 

more than 200 times higher than that of argon.  At 10 MPa effective pressure, the water 

saturated Cape Sorell quartzite had a Young’s modulus of 60.5±0.1 GPa when measured 

at 1 MHz:  almost three times larger than the modulus of 23.9±0.8 GPa measured at 1 

Hz and 12 MPa of pressure.  At 0.01 Hz, the water saturated measurement was lower 
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still, approaching the low frequency dry and argon saturated values measured at similar 

effective pressures, with a Young’s modulus of only 17.8±0.6 GPa.  Although the Alberta 

quartzite was not measured at low frequency while water saturated, it could be 

expected to show similar dispersion results as at high frequency the Young’s modulus 

increased from 25.3±0.3 GPa when dry to 51.7±0.1 GPa when water saturated. 

This strong dispersion in the Young’s modulus can be expected to impact 

comparisons between seismic surveys and ultrasonic measurements as it translates to a 

significant dispersion of the P-wave velocity as well.  Using an interpolated value for the 

water saturated Young’s modulus at 0.1 Hz, it was possible to calculate the low 

frequency P-wave velocity of the Cape Sorell quartzite (with shear modulus 

measurements reported in Chapter 3), 2882±6 m/s at 14 MPa of effective pressure.  At 

1 MHz the velocity was substantially higher, 5120±20 m/s at 10 MPa of effective 

pressure, indicating a minimum of 56% dispersion at these pressures when the sample 

was water saturated (Fig. 4.10). 

 

4.5 Modeling 

In order to assess the accuracy of various theoretical models for a cracked 

specimen it is necessary to compare experimental results with those calculated from 

commonly used theories.  The Biot (1956a, 1956b) model is frequently used to predict 

moduli at high frequencies.  However, in cracked materials, dispersion as a result of 

“squirt” flow is considered to be at least as important as Biot dispersion (Mavko and 

Jizba, 1991), and the two theories can be combined to provide an estimate of the  
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Figure 4.10:  Measured high frequency P-wave velocities compared to calculated low 

frequency velocities for the Cape Sorell quartzite. 
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Young’s and shear moduli at the high frequency limit when the pore fluid is expected to 

behave as in the saturated isolated regime.  Gassmann’s (1951) model is the low-

frequency limit of the Biot model and is commonly applied to low frequency 

measurements made under different saturation conditions when sufficient time exists 

for the pore fluid to equilibrate between cracks as in the saturated isobaric regime. 

O’Connell and Budiansky (1977), for highly cracked rocks, estimate the 

characteristic frequency for the squirt flow between elliptically shaped cracks that 

separates the saturated-isolated and saturated-isobaric regimes for the self-consistent 

theory as: 





2

3

0KfOB   (2.43 revisited) 

where  is the aspect ratio of the cracks,  is the pore fluid viscosity and K0 is the dry 

bulk modulus of the rock.  When frequencies are >>f, they fall into the saturated-

isolated regime, while frequencies << fOB fall into the low frequency regime.  For both of 

these quartzites, the characteristic frequency was calculated assuming the aspect ratio 

is related to the pore throat size measured by mercury porosimetry (0.4 m and 0.7 m 

for the Cape Sorell and Alberta quartzites, respectively) with a pore diameter similar to 

the grain size visually estimated from thin sections (~0.5 mm for both quartzites).  For 

the Alberta quartzite the calculated characteristic frequency ranged from ~16 kHz for 

the more viscous water saturation to 170-660 kHz for the argon saturated experimental 

conditions applied in this study.  The characteristic frequency had a broader range for 

the argon saturated measurements due to argon’s strongly pressure dependent 

viscosity.  While low frequency measurements used a varying argon pore pressure, the 
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high frequency measurements used a constant 10 MPa argon pore pressure due to 

safety considerations resulting from the different setup for these measurements.  The 

argon saturated high frequency measurements therefore had a more consistent 

characteristic frequency; 640-660 kHz for the 1 MHz measurements.  It was calculated 

that the Cape Sorell quartzite has cracks with a slightly lower aspect ratio, and the 

characteristic frequency was estimated to range from 3-140 kHz, depending on the pore 

fluid properties.  For both quartzites the characteristic frequency calculated by the 

formulation of O’Connell and Budiansky (1977) (as in Equation 2.43) separated the low 

(0.01-0.78 Hz) frequency measurements into the saturated isobaric fluid flow regime 

and the high (1 MHz) frequency measurements into the saturated isolated regime.  The 

1 MHz measurement frequency, however, closely approaches the 660 kHz characteristic 

frequency estimated for the argon saturated Alberta quartzite, indicating that the argon 

saturated high frequency measurements may have sampled part of the transition zone 

between fluid flow regimes. 

Biot’s (1956a, 1956b) formulations do not assume a particular pore shape, and 

instead have a reference frequency given by: 





fl

Bf
2

  (2.41 revisited) 

The Biot reference frequency distinguishes at what frequency the effect of inertial 

coupling between the fluid and matrix becomes more important than viscous coupling.  

In the case of these measurements the permeabilities of the quartzites are so low that 

even at the lowest measured effective pressures fB>>1 GHz.  Biot theory reduces to the 

Gassmann equation at its low frequency limit.  Gassmann theory is therefore applicable 
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at measurement frequencies below the Biot reference frequency, f<<fB, and it is 

worthwhile to compare both the experimental measurements made between 0.01 – 1 

Hz and those made at 1 MHz with the Gassmann prediction. 

Meanwhile, the self-consistent theory predicts that, in fact, the 1 MHz 

measurements fall within the high frequency saturated isolated fluid flow regime, 1 

MHz>fOB.  As significant dispersion was observed in the water saturated quartzites this 

seems a likely possibility and implies the 1 MHz measurements can be usefully 

compared to theoretical models estimating the high frequency limit of the Young’s 

modulus.  Here, the measurements were compared to estimations accounting for both 

Biot and squirt-flow dispersion.  Modeling was conducted on the Cape Sorell quartzite 

as a more comprehensive data set was acquired for the Cape Sorell sample than the 

Alberta quartzite. 

4.5.1 Gassmann 

Gassmann’s model (1951) predicts the bulk modulus of a fluid saturated rock 

based on the porosity, bulk modulus of the dry rock, Kdry, the mineral, K0, and the 

saturating fluid, Kfl.  A constant shear modulus, , is assumed: 
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The bulk modulus is related to the Young’s modulus through the relation: 
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The dry bulk moduli of the Cape Sorell quartzite at 1 MHz were calculated using the 

Young’s and shear (see Chapter 2) moduli and substituted into Equation 2.27; porosity 

was assumed to decrease exponentially with increasing pressure.  As measurements at 1 

MHz were made on the dry quartzite only up to a confining pressure of 130 MPa due to 

concerns about leaks it was necessary to estimate dry moduli values at 140 and 150 

MPa of pressure.  The elastic moduli were in a fairly linear regime after crack closure at 

~100 MPa; therefore a line of best fit was applied to the measured shear and Young’s 

modulus from 110-130 MPa to calculate the moduli at 140 and 150 MPa of pressure. 

Gassmann theory fails to adequately describe the stiffening effect of either the 

argon or the water saturated crack porosity on the quartzite at 1 MHz (Fig. 4.11).  The 

Young’s modulus result from Gassmann, 26.7±3.5 GPa for water saturation at 10 MPa of 

effective pressure is 56% smaller than the 1 MHz measured results of 60.5±1.8 GPa, and, 

at 21.0±9.5 GPa for argon saturation, is 19% smaller than the measured value at 10 

MPa, 25.8±4.0 GPa.  The Gassmann prediction begins to converge with the measured 

Young’s modulus at pressures ≥130 MPa for the argon saturated quartzite and 

presumably at pressures >150 MPa for the water saturated quartzite. 

The saturated Young’s modulus values estimated from Gassmann (1951) were 

also compared to the quartzite measurements made at frequencies <1 Hz to determine 

if Gassmann theory was more applicable to these low frequency measurements.  Due to 

the higher variability in the pressure increments at which measurements were taken, a 

curve was fit to the 0.1 Hz dry shear and Young’s moduli measurements of the Cape 

Sorell quartzite and the fitted values were used to calculate values of Kdry for the 

appropriate effective pressures representative of the 0.1 Hz timescale.  These values of  
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Figure 4.11: Comparison of the Young’s modulus of the Cape Sorell quartzite measured 

at 1 MHz while dry, argon and water saturated with the predictions from Gassmann’s 

(1951) equation.  Error bars of measurements in some instances smaller than the 

marker size; error in theoretical estimate shown as shaded region. 
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Kdry were used as input into Equation 2.27.  The Young’s moduli estimated from 

Gassmann’s equation were compared to the Young’s moduli of the argon and water 

saturated Cape Sorell quartzite measured at 0.1 Hz (Fig. 4.12).  At 0.1 Hz, Gassmann’s 

equation predicts significantly stiffer Young’s moduli values than are observed at low 

effective pressures.  The Gassmann prediction for water saturation is 87% higher than 

the Young’s modulus measured at 0.1 Hz and 12 MPa (36.5±1.8 GPa and 19.5±0.6 GPa, 

respectively) as well as 87% higher than the argon saturated modulus at 10 MPa 

(predicted to be 30.1±2.1 GPa and measured as 16.1±0.5 GPa).  Gassmann equation 

does not account for the significant additional compliance of the bulk modulus caused 

by cracks, even at very low porosities.  At the low porosity limit, the saturated bulk 

modulus predicted by Gassmann equation (Eq. 2.27) reduces to the mineral bulk 

modulus, as opposed to the dry bulk modulus of the rock: 
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 (4.15) 

The treatment of the saturated bulk modulus differs from the treatment of the 

saturated shear modulus, which is approximated by the dry shear modulus.  At the low 

porosities of the quartzites, the Gassmann prediction is therefore closer to the bulk 

modulus of quartz, 37.3 GPa at 10 MPa of effective pressure (Liu, 1993) than the 

calculated bulk modulus of the dry Cape Sorrel quartzite, 2.0±0.7 GPa. 
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Figure 4.12: Comparison of the Young’s modulus of the Cape Sorell quartzite measured 

at 0. 1 Hz while dry, argon and water saturated with the predictions from Gassmann’s 

(1951) equation.  Error in Gassmann estimate shown as shaded region. 
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Above pressures of 50 MPa the theoretical values predicted by Gassmann and the 

experimentally measured values begin to converge for both the argon and water 

saturated measurements as the compliance caused by crack porosity is reduced. 

4.5.2 Biot-Squirt Flow 

As the Gassmann model (1951) does not adequately predict the stiffening caused 

by water saturation in the quartzite measurements made at 1 MHz, Biot (1956a, 1956b) 

theory was combined with squirt-flow theory (Mavko and Jizba, 1991) to investigate 

whether it is better able to predict the saturated Young’s moduli of the quartzites 

measured at 1 MHz.  Effective high frequency, unrelaxed, wet frame bulk and shear 

moduli, Kuf and uf, were estimated using squirt flow theory and then substituted into 

Biot’s relations (Eqs. 2.29 – 2.38).  The squirt flow moduli were calculated using the 

formulation of Mavko and Jizba (1991): 
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where Kdry and dry are the dry bulk and shear moduli of the rock, Kdry-hiP is the bulk 

modulus of the dry rock at very high pressure and soft is the soft porosity which closes 

at high pressure.  The Cape Sorell quartzite had an initial porosity of 0.3% (Lu and 

Jackson, 1998) which was increased to 2.3% after thermal cracking.  Here, soft at 

atmospheric pressure was assumed to be the 2.0% of the porosity which had been 

induced by thermal cracking.   
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In addition to Kuf, uf and the physical properties of the saturating fluid, Biot’s 

relations depend on the total porosity, , and tortuosity, , of the rock.  Tortuosity was 

not measured directly during the experiment and it was necessary to calculate it.  Flow 

through the low aspect ratio cracks was approximated as flow between two parallel 

walls and, using Darcy’s law (1856), tortuosity can be related to permeability, , crack 

aperture, c, and porosity (e.g. Mavko et al., 2009): 






12
c  (4.16) 

As tortuosity is dependent on porosity and permeability in Equation 4.16, both of which 

are dependent on pressure, the calculated tortuosity was also dependent on pressure.  

Crack aperture and porosity were measured using mercury porosimetry; porosity was 

assumed to decrease in an exponential fashion with increasing pressure.  This resulted 

in a tortuosity that varied from =69 at 10 MPa up to =152 at 150 MPa of effective 

pressure for the Cape Sorell quartzite.  In practice, the tortuosity had little effect on the 

theoretical predictions in this case.  The porosity of the sample (2.3%) is low enough 

that, as the tortuosity appears in Biot’s relation only in multiplication with the porosity, 

it has negligible effect on the results. 

Biot-squirt flow theory provides an excellent estimation of the stiffening effect of 

argon on the shear modulus of the Cape Sorell quartzite at 1 MHz.  At 10 MPa of 

effective pressure, Biot-squirt flow predicts an argon saturated shear modulus of 13±3 

GPa, while the argon saturated shear modulus, within error of the prediction, was 

measured to be 12.3±0.4 GPa.  The Young’s modulus prediction,  of 35±1 GPa at 10 MPa 
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of effective pressure is30% different from the measured argon saturated modulus of 

25.8±0.4 GPa. 

Biot-squirt flow theory, however, fails by a substantial margin to predict the 

increase in elastic stiffness that was measured when the quartzite was water saturated 

(Figs. 4.13, 4.14). The theoretical predictions do not agree with the experimentally 

observed values until pressures above 130 MPa.  The velocity dispersion predictions of 

the theory are largely dominated by squirt-flow effects.  As the total porosity and 

assumed soft porosity of the sample are small, effects of fluid compressibility are 

negligible to the squirt-flow predictions in this case (Eq. 2.39), leading to similar 

predictions for both argon and water saturated conditions.  At 10 MPa of effective 

pressure, Biot-squirt flow predicts a water saturated shear modulus of 13±3 GPa, similar 

to the prediction for argon saturation.  The experimentally measured results differ 

substantially under the different saturation conditions, however, and the water 

saturated shear modulus was measured to be 24.7±0.1 GPa, well outside the range of 

error in the Biot-squirt flow estimate.  Biot-squirt flow also underpredicts the water 

saturated Young’s modulus.  Biot-squirt flow predicts a Young’s modulus of 35±1 GPa at 

10 MPa of effective pressure for the water saturated quartzite, while measured results 

were substantially higher, at 60.5±0.1 GPa.   
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Figure 4.13: Comparison of the Young’s modulus of the Cape Sorell quartzite measured 

at 1 MHz while dry, argon and water saturated with the predictions from Biot-Squirt 

Flow theory.  Error bars of measurements in some instances smaller than the marker 

size; error in theoretical estimate shown as shaded region.  
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Figure 4.14: Comparison of the shear modulus of the Cape Sorell quartzite measured at 

1 MHz while dry, argon and water saturated with the predictions from Biot-Squirt Flow 

theory.  Error bars of measurements in some instances smaller than the marker size; 

error in theoretical estimate shown as shaded region. 
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4.6 Discussion 

Strong Young’s modulus dispersion is definitively observed in the water saturated 

Cape Sorell quartzite, with a similar magnitude of dispersion expected in the Alberta 

quartzite from its measured high frequency water saturated modulus and low frequency 

dry modulus.  The substantial stiffening of the Young’s modulus at high frequencies 

indicates that the quartzite must have been in a higher frequency fluid flow regime at 1 

MHz than at measurements <1 Hz.  Likely, the quartzites are in the saturated isolated 

regime at 1 MHz.  The Cape Sorell quartzite measurements between 0.01 and 1 Hz show 

some slight ongoing stiffening of the Young’s modulus, as might be expected during a 

fluid flow regime transition.  The dispersion is highest at lower effective pressures when 

cracks are open.  The cause of this is not completely clear; it may be that the 

characteristic frequency separating the isolated saturated and isolated isobaric is lower 

than anticipated and the stiffening is resulting from nearing a saturated isolated fluid 

flow regime.  Alternatively, this may result from boundary effects at the surface of the 

cylinder (Dunn, 1986, Dunn, 1987). 

The theoretical models tested fail to adequately estimate the stiffening effect of 

water saturation at high frequency for both quartzites.  While Gassmann, Biot and 

squirt-flow theory do not explicitly depend on pore shape, they appear to perform 

poorly for low aspect ratio crack porosity.  This highlights the need to determine a 

suitable theoretical model capable of accurately estimating dispersion in the cracked 

crystalline crust. 

At low frequencies, Gassmann overestimates the stiffening caused by water 

saturation, predicting a Young’s modulus of 37±2 GPa at 12 MPa of effective pressure 
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for the Cape Sorell quartzite, while a modulus of only 19.5±0.6 GPa was measured at 0.1 

Hz.  The low frequency estimation has a stiffer Young’s modulus than the high frequency 

estimation at low effective pressures here (27±1 GPa at 10 MPa of pressure), as a result 

of differences in the moduli measured at low and high frequency.  The 1 MHz dry shear 

modulus was previously measured to be significantly lower than the 0.1 Hz shear 

modulus, 9.9 GPa and 13.1 GPa respectively (Chapter 3), impacting the Gassmann 

prediction.  The difference in shear modulus measurements may result from error in 

picking the high frequency shear-wave arrival time at the lower signal to noise ratios 

present at low effective pressures during ultrasonic pulse transmission (Fig. 3.6).  An 

erroneously low shear modulus would result in an increase in the Young’s modulus 

calculated from the 1 MHz P- and S-wave velocities.  Indeed, the high frequency dry 

Young’s modulus was measured to be higher than the 0.1 Hz Young’s modulus, 20.8±0.7 

GPa and 12±3 GPa, respectively.  Nonetheless, both Gassmann estimations 

overestimate the stiffening effect of water at low frequencies.  There are several 

possible reasons for this.  Global fluid flow (e.g. Dunn, 1986, Dunn, 1987) between the 

side of the specimen in extension and the side simultaneously in compression during the 

low frequency flexural oscillation may provide some of the answer.  Alternatively, the 

transition between fluid flow regimes indicated by the increasing Young’s modulus 

measurements between 0.01 and 1 Hz may be indicative of a transition between the 

drained regime and the saturated isobaric regime, as opposed to between the saturated 

isobaric and saturated isolated, as indicated by the self-consistent theory.  Permeability 

measurements indicate it is unlikely that the water could flow completely out of the 

sample on the timescale of measurement, however, and this is considered unlikely.  

Finally, it is possible that Gassmann, while a robust model at higher porosities with more 
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equant pores, performs poorly for low porosity cracked crystalline rock.  While the 

compliance introduced by spherical pores is proportional to the porosity, crack induced 

compliance is instead proportional to the rate of change of porosity (Walsh, 1965a).  As 

a result, the Gassmann prediction that at low porosity the saturated bulk modulus tends 

towards the bulk modulus of the mineral as opposed to towards the measured dry bulk 

modulus of the rock may not be correct for low porosity rocks with low aspect ratio 

cracks. 

It is evident in the 1 MHz measurements that both the argon saturated Cape 

Sorell and Alberta quartzites have stiffer Young’s moduli than when dry.  For the Alberta 

quartzite this is true only at effective pressures <80 MPa.  As the dry measurements 

were undertaken first, it appears this may be the result of some additional cracking 

induced during the initial pressurization run.  Porosity measurement of the Alberta 

sample was made exclusively using mercury porosimetry, a destructive technique, and it 

was therefore only possible to measure the porosity after the completion of all 

measurements.  The amplitude of the stiffening seen at high frequency is low, and with 

the higher error in the low frequency measurements it is not clear if the low frequency 

measurements see a similar stiffening with argon pore fluid or not.  Potential 

observations of dispersion are further complicated by the different mechanisms of 

measurement at low and high frequencies.   At low effective pressures high frequency 

measurements were made with argon at a low pore pressure (10 MPa) for safety 

reasons while low frequency measurements were made with argon at a high pore 

pressure (137, 127 and 117 MPa for effective pressures 10, 20 30 MPa, respectively) as 

these were logistically simpler for the low frequency apparatus.  At high frequencies, the 
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pore fluid therefore had a bulk modulus of 0.01 GPa, while at low frequencies, the bulk 

modulus of the pore fluid was as high as 0.04 GPa (NIST, 2012).  The amount of 

stiffening caused by argon at <1 Hz is similar to at 1 MHz; at 20 MPa the Young’s 

modulus stiffens by 4.2±1.6 GPa and 4.5±0.6 GPa, respectively.  It is possible that the 

higher bulk modulus of the saturating argon at low frequencies is helping to mask any 

subtle dispersion response, if it exists.   

No dispersion is observed in the dry quartzites, with excellent agreement evident 

across the measured frequencies of the Alberta quartzite in particular.  A small 

discrepancy is observed between the <1 Hz and 1 MHz measurements of the Cape Sorell 

quartzite at effective pressures <75 MPa.  This could have several possible explanations.  

Potentially, this could indicate that the interfacial effects and compliance of the 

polycrystalline alumina rods have been slightly underestimated in the low frequency 

measurements by the fit of the fused quartz normalized modulus data.  The fused 

quartz data (Fig. 4.2) appears to imply these aspects of the rod have a strong pressure 

dependence at effective pressures <75 MPa, but few fused quartz data have been 

acquired to constrain them at these lower pressures.  As noted above, however, the 

Alberta quartzite shows excellent agreement between the low and high frequency 

measurements from 10-30 MPa, rendering this an unlikely culprit.  A comparison of the 

measured high frequency P-wave velocities with calculated low frequency P-wave 

velocities for the Cape Sorell quartzite shows good agreement, even at low effective 

pressures (Fig. 4.10).  This implies that the discrepancy in the low effective pressure 

Young’s modulus measurements likely results from low signal-to-noise levels in the high 
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frequency shear wave travel time picks required to calculate the high frequency Young’s 

modulus. 

 

4.7 Conclusions 

The ANU apparatus successfully measures the dry and argon saturated Young’s 

moduli of the dry Alberta and Cape Sorell quartzites and argon saturated Cape Sorell 

quartzite at frequencies 0.01 – 1 Hz using forced flexural oscillation.  The apparatus 

successfully measures the Young’s modulus of the water saturated Cape Sorell quartzite 

as well, but requires an empirical correction in the numerical modelling.  The empirical 

correction required is potentially related to the behaviour of the polycrystalline alumina 

rods which form part of the apparatus and sandwiched the quartzite specimens during 

measurement.  The rods have undergone repeated pressure and temperature cycling 

during their history.  Cracks may have been induced in the rods as a result, which caused 

the change in observed behaviour of the apparatus during water saturation.  

Alternatively, the effect may be caused by water-induced changes in the frictional 

coefficients of the interfacially coupled components of the apparatus.  Confirmation of 

the cause of the differing behaviour of the apparatus during water saturation requires 

further work in order to allow it to be analytically incorporated into the modelling.  In all 

cases, the apparatus is less sensitive to Young’s moduli of stiffer specimen and therefore 

loses sensitivity here at higher effective pressures as the samples undergo progressive 

crack closure.  Future work may explore an alternative mode of flexural oscillation 

excited by an oscillating bending force rather than a bending moment with the lower 

end of the cantilevered beam only weakly propped.  Instead of flexure being induced by 
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two electromagnetic drivers working in opposition parallel to the beam, bending could 

be achieved by the electromagnetic drivers working together to exert force in a 

direction perpendicular to the beam.  This change in experimental setup would reduce 

the setup time required for each experiment.  Significant changes to the amplitude of 

the experimentally measured normalized modulus could be achieved by changing the 

lower boundary condition of the experimental assembly which could potentially result 

in higher signal to noise in the flexural measurements. 

High (1 MHz) and low (0.01-1 Hz) frequency Young’s modulus measurements 

were compared for both the Alberta and Cape Sorell quartzites.  As expected, no 

dispersion was observed while the quartzites are dry.  Some disagreement between the 

low and high frequency results is observed, but this is likely caused by difficulty in 

picking ultrasonic shear wave traveltimes.    No dispersion in the Young’s modulus can 

be confidently identified during argon saturation of the Cape Sorell quartzite, although 

both quartzites show a stiffening of up to ~20% of their Young’s moduli at high 

frequency when saturated.  The water saturated Cape Sorell quartzite shows substantial 

dispersion, with the high frequency Young’s modulus at 10 MPa of effective pressure 

more than three times larger than the low frequency modulus at 12 MPa of effective 

pressure (103% different).  Although the Alberta quartzite was not measured at low 

frequencies while water saturated, similar dispersion is expected.  The high frequency 

modulus of the Alberta quartzite increases significantly under water saturation 

conditions, from 25.3 GPa when measured dry to 55.2 GPa when saturated. 

Due to the extremely low permeability of the samples the measurements 

undertaken at 1 MHz fall below the Biot reference frequency which theoretically 
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differentiates between the low and high frequency measurement regimes, however, 

both Gassmann and Biot-squirt flow fail to account for the full magnitude of the 

dispersion observed in the water saturated Cape Sorell quartzite.  Gassmann theory 

underestimates the 1 MHz saturated measurements, with Gassmann predictions for the 

water saturated quartzite as much as 56% lower than the measured Young’s modulus, 

and as much as 19% lower than the measured Young’s modulus of the argon saturated 

quartzite.  Despite the 1 MHz measurements falling below the Biot reference frequency, 

Biot-squirt flow theory performs better.  The theory successfully predicts the 1 MHz 

argon saturated shear modulus.  The 1 MHz argon saturated Young’s modulus, however, 

is overestimated by the theory, with Biot-squirt flow predicting a Young’s modulus that 

is 36% higher than the measured argon saturated Young’s modulus.  The theory fails to 

predict the effects of water saturation, significantly underestimating the 1 MHz moduli.  

The Biot-squirt flow Young’s and shear moduli are, respectively, as much as 42% and 

47% lower than the measured water saturated moduli.  Both Gassmann and Biot-squirt 

flow give poor predictions of the dispersion of this sample, likely as a result of its very 

low porosity in conjunction with its very low aspect ratio cracks. 

Although the mineralogy and crack distribution of the quartzites is relatively 

simple in terms of experimental samples, the physical properties of the quartzites are 

quite complex when compared to theoretical expectations with complicated crack 

shapes and the associated complications of fluid flow between cracks. 
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Table 4.1: Fused quartz normalized flexural modulus 
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61 40 1206 
0.29782 0.29775 0.29777 0.29768 0.2979 0.29792 0.29793 

62 * 1206 
0.29796 0.29812 0.29794 0.29807 0.2981 0.29802 0.29817 

102 * 1206 
0.29801 0.29828 0.29824 0.29816 0.29799 0.29824 0.29834 

103 * 1208 0.29907 0.29909 0.29924 0.29915 0.29924 0.2992 0.29922 

104 * 1206 0.29853 0.29841 0.29844 0.2985 0.29856 0.29868 0.29883 
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189 * 1206 
0.29939 0.29943 0.29954 0.2993 0.29946 0.29922 0.2994 

 

  

       Table 4.1:  Normalized modulus measurements of fused quartz at varying effective 

pressures.  During run 1206 the fused quartz was inserted directly into the copper 

jacket; during run 1208 the quartz was wrapped in Teflon tape prior to insertion into the 

copper jacket. 
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Table 4.2: Dry Cape Sorell quartzite Young’s modulus 
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9/9/10 11 11.2 11 11.7 11 12.2 11 13 11.1 13.7 11.1 14.6 11.1 15.5 20.76 * 
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30/31/30 36.4 * 36.7 35.1 37.9 * 38 35.9 39 * 40.4 37.2 39.1 37.7 42.39 * 

40 * * * * * * * * * * * * * * 50.31 * 

50 65.3 * 66.1 * 66.3 * 69 * 70.4 * 72.7 * 69.3 * 55.68 * 

60 25.229 * 25.238 * 25.203 * 25.424 * 25.334 * 25.491 * 25.512 * 60.21 * 

70 * * * * * * * * * * * * * * 64.07 * 

75 58.8 59.9 59.5 61.9 60.8 62 57.2 62.2 59.8 65.1 61.7 67.1 58.1 66.5 * * 

80 * * * * * * * * * * * * * * 67.44 * 

90 * * * * * * * * * * * * * * 70.34 * 

101/*/100 71.9 * 72.5 * 74.4 * 75.4 * 77.5 * 80.4 * 77.3 * 72.97 * 

110 * * * * * * * * * * * * * * 75.05 * 

120 * * * * * * * * * * * * * * 77.35 * 

129/130/130 109.1 * 91 76.5 79.2 * 74 75.2 73.8 * 77.1 75.4 72.5 72.7 78.75 * 

140 * * * * * * * * * * * * * * * * 

149/*/150 182.3 * 101.2 * 90 * 85.1 * 85.4 * 85.6 * 85.6 * * * 

               

 

      * Where multiple pressures are shown, the first indicates the low frequency pressure during loading (up), the second the low frequency pressure 

during unloading (down) and the third the high frequency pressure during both loading and unloading measurements, where applicable.   
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Table 4.3: Argon saturated Cape Sorell quartzite Young’s modulus 
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10 * 15.5 * 15.5 * 15.9 * 16.1 * 16.4 * 16.7 * 16.1 25.76 * 

20 * 27.9 * 27 * 27.1 * 27.3 * 27.9 * 28.6 * 28 37.68 * 

30 33 34.4 33 33.9 33.5 34.5 34.1 34.5 34.7 35.3 35.3 36.1 34.5 35.1 48.40 * 

40 * * * * * * * * * * * * * * 56.19 * 

50 * 58.7 * 57.5 * 58.4 * 59.3 * 60.1 * 63.8 * 61.5 60.81 * 

60 * * * * * * * * * * * * * * 64.73 * 

70 * * * * * * * * * * * * * * 67.90 * 

74 * 72.6 61.8 67.9 * 69.5 62.3 71.1 * 73 63.2 76.6 61.4 73.2 71.10 * 

80 * * * * * * * * * * * * * * 73.68 * 

90 * * * * * * * * * * * * * * 75.85 * 

*/99/100 * 79.9 * 73.3 * 68.4 * 70 * 74.5 * 75.2 * 67.4 77.68 * 

110 * * * * * * * * * * * * * * 79.15 * 

120 * * * * * * * * * * * * * * 80.60 * 

130 * 325.2 81.2 180 * 144 80.7 147.8 * 124.5 81.6 127.8 80.1 113.8 82.08 * 

140 * * * * * * * * * * * * * * 82.93 * 

150 * * * * * * * * * * * * * * 25.76 * 
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Table 4.4: Water saturated Cape Sorell quartzite Young’s modulus 
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*/12/10 * * * * 17.8 * 18.7 * 19.3 * 19.5 * 20.2 * 21.1 * 23.9 60.47 63.76 

23/*/20 26.6 28.1 28.7 28.3 * 28.8 * 30.6 * 31 * 31.2 * 31.7 * 31.4 * 67.51 70.59 

*/32/30 * * * * 4.04 * 41.1 * 41.4 * 42.8 * 43.8 * 45.5 * 49.7 72.59 74.92 

40 * * * * * * * * * * * * * * * * * 75.93 77.80 

47/46/50 * * * 48.1 * 49.8 57.3 50.4 * 50.1 58.8 47.8 * 49.3 57.9 52.8 57.4 78.77 80.23 

60 * * * * * * * * * * * * * * * * * 80.00 81.55 

73/*/70 * * * 60.4 * 61.2 * 60.1 * 63.6 * 66.9 * 66.9 * 72.3 * 81.87 82.85 

80 * * * * * * * * * * * * * * * * * 83.22 83.98 

90 * * * * * * * * * * * * * * * * * 83.59 84.71 

97/*/100 * * * 75.1 * 75.9 * 78.5 * 78.3 * 81.7 * 85.8 * 86.6 * 84.04 85.23 

110 * * * * * * * * * * * * * * * * * 84.49 85.61 

118/*/120 * * * 67.1 * 68.8 * 71.1 * 70.7 * 70.8 * 71 * 69.9 * 84.85 85.48 

130 * * * * * * * * * * * * * * * * * 85.10 85.80 

142/140/140 * * * 78.6 81.6 79.6 85.4 81.1 76.5 80.9 82.1 84.3 82.1 81.8 81.6 88.2 84.6 85.19 85.60 

150 * * * * * * * * * * * * * * * * * 85.52 * 

 

 

 

 

 

 

Table 4.5: Dry Alberta Quartzite Young’s modulus 
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10/*/10 26.6 * 27.2 * 26.9 * 26.7 * 26.5 * 26.5 * 27.5 * 25.30 * 

21/*/20 40.9 * 40.8 * 39.9 * 39.6 * 39.6 * 39.5 * 39.8 * 35.07 44.57 

30 45.6 * 45.6 * 44.9 * 44.8 * 44.7 * 44.8 * 45.2 * 43.07 51.77 

40 * * * * * * * * * * * * * * 50.24 56.29 

50/*/50 54.4 * 54.8 * 54.4 * 55.1 * 55.4 * 55.6 * 55.7 * 54.60 60.93 

60 * * * * * * * * * * * * * * 58.86 65.69 

70 * * * * * * * * * * * * * * 62.84 68.22 

75 64.9 * 65.2 * 65.2 * 65.8 * 66.2 * 65.9 * 65.3 * * * 

80 * * * * * * * * * * * * * * 66.23 70.81 

90 * * * * * * * * * * * * * * 68.75 72.33 

100 * * * * * * * * * * * * * * 71.35 73.83 

110 * * * * * * * * * * * * * * 73.16 74.96 

120 * * * * * * * * * * * * * * 74.51 75.89 

130 * * * * * * * * * * * * * * 76.04 76.92 

140 * * * * * * * * * * * * * * 77.05 77.37 

150 * * * * * * * * * * * * * * 78.11 * 
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Table 4.6: Argon saturated Alberta Quartzite Young’s modulus 
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10/*/10 * * * * * * * * * * * * * * 28.46 32.50 

21/*/20 * * * * * * * * * * * * * * 37.64 45.25 

30 * * * * * * * * * * * * * * 45.36 52.16 

40 * * * * * * * * * * * * * * 52.51 56.76 

50/*/50 * * * * * * * * * * * * * * 56.42 59.67 

60 * * * * * * * * * * * * * * 59.51 61.26 

70 * * * * * * * * * * * * * * 62.54 65.70 

75 * * * * * * * * * * * * * * * * 

80 * * * * * * * * * * * * * * 65.02 67.92 

90 * * * * * * * * * * * * * * 67.35 69.65 

100 * * * * * * * * * * * * * * 69.16 71.13 

110 * * * * * * * * * * * * * * 70.93 72.71 

120 * * * * * * * * * * * * * * 72.60 74.01 

130 * * * * * * * * * * * * * * 74.13 75.20 

140 * * * * * * * * * * * * * * 75.26 75.84 

150 * * * * * * * * * * * * * * 76.41 * 
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Table 4.7: Water saturated Alberta Quartzite Young’s modulus 
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10 * * * * * * * * * * * * * * 55.23 60.26 

20 * * * * * * * * * * * * * * 59.75 70.47 

30 * * * * * * * * * * * * * * 65.11 41.35 

40 * * * * * * * * * * * * * * 68.43 72.44 

50 * * * * * * * * * * * * * * 69.91 75.01 

60 * * * * * * * * * * * * * * 72.34 75.01 

70 * * * * * * * * * * * * * * 73.56 77.37 

80 * * * * * * * * * * * * * * 75.18 78.71 

90 * * * * * * * * * * * * * * 76.42 78.74 

100 * * * * * * * * * * * * * * 77.35 79.26 

110 * * * * * * * * * * * * * * 78.33 79.91 

120 * * * * * * * * * * * * * * 79.39 80.41 

130 * * * * * * * * * * * * * * 80.30 80.87 

140 * * * * * * * * * * * * * * 80.52 81.01 

150 * * * * * * * * * * * * * * 81.00 * 
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5.0 Conclusions 

Seismic velocity is used to process seismic refraction and seismic reflection data.  

The quality of the velocity information is often directly linked to the quality of the 

processed survey images (e.g. Heinonen et al., 2013, Schijns et al., 2009b).  There are 

numerous ways to measure seismic velocity including in-situ methods such as velocities 

from refracted waves, semblance methods and vertical seismic profiles.  In-situ data 

can, however, be costly and logistically difficult to acquire.  It is often necessary, or 

preferred, to model the seismic response of a survey area prior to collecting any in-situ 

data in order to optimize survey design.  For these reasons, it is beneficial and certainly 

more cost effective to acquire laboratory measurements of seismic velocities.  

Laboratory measurements, however, are typically made in the megahertz frequency 

range, while active source seismic is typically measured on the order of 10-300 Hz and 

passive seismic at even lower frequencies, typically in the millihertz range.  Fluid in 

pores and cracks in rocks affect the bulk elastic properties of the rock.  The fluid takes a 

finite amount of time to flow between pore spaces, with the result that pore pressure is 

dependent on the period of the seismic wave inducing the stress.  As seismic velocities 

are directly correlated with elastic stiffness, these fluid-filled inclusions result in 

frequency dependent seismic velocities, or velocity dispersion.  Fluid filled low aspect 

ratio cracks can have a particularly strong dispersion effect on velocities due to the high 

compliance of the cracks when they are relaxed.  It is necessary to determine how well 

current theoretical models predict the dispersion caused by fluid in cracks in order to 

increase our ability to accurately compare in-situ and laboratory results. 
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5.1 Summary 

This thesis presents elastic moduli results acquired over a range of frequencies on 

two quartzite specimens.  The majority of the Earth’s crust is anticipated to be 

composed of crystalline rock with fluid-filled cracks (Crampin and Lovell, 1991), and 

these cracked natural crystalline rock specimens are considered representative of 

potential crustal lithology.  Shear and Young’s modulus measurements were made from 

0.01-1 Hz and at 1 MHz under dry, argon saturated and water saturated conditions. 

The two quartzites were thermally shocked in order to induce low aspect ratio 

cracks.  The quartzites were well characterized, with density, permeability and porosity 

measured.  Mercury porosimetry was used to give information on the distribution of the 

crack population in terms of size.  Further, the mineralogy and cracks of the quartzites 

were well imaged with light microscope and SEM. 

Low frequency measurements are difficult to make in the laboratory; here, low 

frequency shear modulus measurements were made using the well established forced 

torsional oscillation method using the ANU (Australia National University) apparatus 

(Jackson et al., 1984, Jackson and Paterson, 1993), while Young’s modulus 

measurements were made by innovatively adapting the ANU apparatus to make forced 

flexural measurements (Jackson et al., 2011).  This thesis presents the calibration 

process and analysis method and the first experimental results from the forced flexural 

measurement technique, as well as the first water saturated results from the apparatus.  

Previously, low frequency flexural measurements had been made on experimental 

specimens composed of fused quartz and copper with known moduli by Jackson et al. 

(2011).  Here, a finite difference model was used to determine the elastic stiffness of 
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polycrystalline alumina (Duramic) rods which formed an important component of the 

overall specimen assembly, as they were hollow and allowed pore fluid to be delivered 

to the sample.  The finite difference model was then used in conjunction with the 

experimentally determined stiffness of the alumina rods to calculate the Young’s moduli 

of the two quartzite specimens under varying effective pressures.  A further calibration 

of the rods was required for the water saturated quartzites. 

High frequency measurements of P- and S-wave velocities were made using 

ultrasonic pulse transmission.  Shear and Young’s moduli were calculated from the high 

frequency velocities and densities of the samples and used in conjunction with the low 

frequency measurements to characterize the velocity dispersion in the samples.  The 

experimental measurements were compared to several theoretical formulations, with 

aspects compared to Gassmann (1951), Biot-Squirt flow (Biot, 1956, Mavko and Jizba, 

1991), Hudson theory (Hudson, 1981) and the self-consistent theory (O'Connell and 

Budiansky, 1977). 

 

5.2 Discussion 

This research took advantage of the innovative adaptation to the ANU apparatus 

which allowed flexural forced oscillation low frequency measurements to study 

dispersion of the elastic stiffness.  The flexural method successfully measured the 

Young’s moduli of the two quartzites at frequencies ≤1 Hz.  A slight pressure 

dependence of the experimental results on fused quartz using the apparatus was 

expected to result from interfacial effects between frictionally coupled components of 
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the apparatus.  These effects were accounted for by allowing slight variation in the 

Young’s modulus of the apparatus’ polycrystalline alumina rods within the finite 

difference model used to calculate the Young’s modulus of the specimen.  Water 

saturation similarly affected the experimental measurements.  The mechanism of this is 

not completely clear, but it is hypothesized that the stiffer moduli observed result from 

small cracks induced in the polycrystalline alumina rods during historic repeated 

pressure and temperature cycling.  Allowing further variation in the elastic stiffness of 

the rods during the modeling accounts for this variation and allowed low frequency 

water saturated Young’s modulus measurements. 

During both low and high frequency measurements, the shear and Young’s 

moduli of the quartzites were observed to be strongly pressure dependent.  The moduli 

stiffened substantially as a result of crack closure as effective pressure was increased.  

The pressure at which the majority of the cracks close has been theoretically linked to 

the aspect ratio of the cracks and the elastic properties of the rock; the self-consistent 

theory (Walsh, 1965a) results agree with experimental observations of the quartzite 

accurately estimating the aspect ratio of the cracks.  The Hudson model (1981) was 

investigated as well but was not a good fit in this case, likely due to the high crack 

density of the thermally shocked rocks.  Alternatively, the models are predicated on 

rather simple geometrical assumptions with regards to crack shapes.  Real cracks, as 

seen in the microscopic images presented, are substantially more complex; the existing 

theories may not be adequate to describe such real cracks. 

Moduli measurements were undertaken under both loading and unloading.  

Moduli measured during unloading appear to be stiffer than those measured during 



136 

 

loading.  This appears to be simple hysteresis in the response of the cracks to pressure, 

as, for the most part, loading cycles are repeatable. 

Although the elastic moduli of the dry quartzites showed the pressure 

dependence seen in all the measurements, a comparison of the low and high frequency 

results at any given pressure shows no dispersion occured when the samples are dry.  

This is an expected result and confirms dispersion is caused by pore fluid in these rocks.  

Low frequency shear modulus measurements of both the argon and water saturated 

quartzites agreed with their dry counterparts, as did the low frequency saturated 

Young’s modulus measurements.   

High frequency shear and Young’s moduli stiffened when saturated with argon or 

water pore fluid.  The only limitation to this result was the behaviour of the argon 

saturated Alberta quartzite at effective pressures >50 MPa.  It is not clear why these 

higher pressure argon saturated measurements had anomalous shear and Young’s 

moduli values, but it is expected that this relates to additional cracking which may have 

occurred in previous pressurization runs, or that the sudden decrease in permeability of 

the Alberta sample at pressures >50 MPa resulted in insufficient equilibration time for 

the argon pore fluid.  If the argon did not have sufficient time to flow out of the cracks 

as pressures were increased then these higher pore pressures could mean effective 

pressures were actually lower than recorded.  This second possibility seems unlikely 

however as, at 10 MPa of pressure, the argon has a viscosity one hundred times less 

than that of water and an expected required equilibration time in the quartzite on the 

order of minutes.  The otherwise stiffer high frequency moduli indicate that dispersion is 

occurring.  As a result of the higher bulk modulus and viscosity of water, dispersion is 
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most significant in the water saturated samples.  Water saturation of the quartzites 

causes the high frequency shear modulus to be as much as 189% stiffer than the low 

frequency modulus.  This is significant dispersion, by any measure, but it pales in 

comparison to the magnitude of dispersion seen in the Young’s modulus.  The Cape 

Sorell quartzite records a 1 MHz Young’s modulus that is 253% stiffer than its 1 Hz 

modulus, and 339% stiffer than its 0.01 Hz modulus.  The actual dispersion may be even 

stronger than observed:  the high frequency measurements were made during loading, 

while the low frequency measurements were made during unloading for logistical 

reasons.  Due to the aforementioned crack hysteresis, it is likely low frequency 

measurements made during loading would have been still more compliant. 

The water saturated Young’s modulus appears to show dispersion even between 

0.01 and 1 Hz, possibly indicating that these measurements lie near a fluid flow regime 

transition zone.  The invariance of the water saturated shear modulus at low frequency, 

however, indicates that the 0.01-1 Hz measurements do lie in the saturated isobaric, or 

relaxed, fluid flow regime.  This agrees with Gassmann’s (1951) prediction of a shear 

modulus independent of pore fluid saturation.  Gassmann’s relation fails, however, to 

predict the low frequency behaviour of the Young’s modulus.  A combination of Biot 

(1956) and squirt flow (Mavko and Jizba, 1991) theory accounts for the stiffening of the 

shear modulus with argon saturation, indicating that all the high frequency saturated 

measurements are in the saturated isolated, or unrelaxed, fluid flow regime at 1 MHz.  

The characteristic frequency of Biot, however, falsely indicates that the rocks remain in 

a relaxed state.  In the case of these quartzites, the characteristic frequency predicted 

by the self-consistent model (O'Connell and Budiansky, 1977) performs much better for 
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the cracked rocks, accurately predicting a regime transition between 1 Hz and 1 MHz.  

Although the self-consistent model accurately predicts the characteristic frequency in 

this case, its theoretical predictions of the moduli themselves were not examined here, 

and it is therefore not clear if it would accurately predict the elastic moduli.  The 

combined Biot and squirt flow theory substantially underestimates the stiffening effect 

of the water on the elastic moduli. 

This work presents the first experimental low frequency Young’s modulus 

measurements made using the Australian National University apparatus.  It 

demonstrates the flexural mode adaptation is a viable technique for allowing the 

acquisition of a second independent modulus using the apparatus, in addition to the 

historically acquired shear modulus measurements.  Further, following adaptation of the 

pore fluid system, this work presents the first experimental measurements made using 

liquid (water) pore fluid in the apparatus.  Very few laboratories worldwide have low 

frequency measurement capability and fewer still the ability to measure two 

independent moduli.  These adaptations of the Australian National University apparatus 

are critically important to the advancement of the study of dispersion. 

The dispersion results presented in this thesis indicate that some of the most 

commonly used theories significantly underestimate observed dispersion.  It is 

extremely important to experimentally constrain dispersion theory in order to allow 

joint interpretation of complementary data sets acquired in different frequency bands.  

These results are, to the author’s knowledge, the first dispersion measurements made 

on quartzites, and amongst only a very few dispersion measurements made on cracked 

rock.  As the results include two independent moduli and a characterization of the 
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physical properties of the rocks, they are well placed to advance theoretical 

understanding of dispersion.  In addition, few, if any, measurements of dispersion with 

supercritical argon pore fluid have been made to date.  Most models to date have 

focused on liquids, gases or weak solids in the pore space; experimental measurement 

of the dispersive effects of supercritical fluid may serve to further advance theory. 

 

5.3 Conclusions 

Most crystalline rocks have porosity dominated by low aspect ratio cracks.  The 

flexural mode adaptation of the ANU apparatus successfully measured Young’s moduli 

of two cracked quartzite specimens at frequencies 0.01-1 Hz.  In conjunction with the 

proven forced torsional oscillation mode of the apparatus and 1 MHz pulse transmission 

measurements, the elastic properties of the quartzites are fully described across a range 

of frequencies spanning nine decades.  Despite their significant crack porosity, the 

quartzites are observed to have low permeability, and both permeability and elastic 

moduli are highly pressure dependent due to crack closure with increasing pressure. 

Argon saturation and water saturation are observed to affect the behaviour of the 

shear and Young’s moduli at high frequency, with dramatic stiffening of the moduli 

occurring when the quartzites are water saturated.  Continued frequency dependence 

of the Young’s modulus appears evident in the water saturated results even at 

frequencies <1 Hz, indicating that dispersion effects may need to be accounted for even 

within passive seismic measurements of the crystalline crust. 
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Gassmann, Biot and squirt flow models in general perform quite poorly and are 

inadequate in estimating both the effects of fluid saturation on the elastic moduli of the 

quartzites as well as the characteristic frequency of the quartzites.  The self-consistent 

model seems to do somewhat better, accurately predicting the characteristic frequency 

between fluid flow regimes and the aspect ratio of the rocks, but the estimations of the 

moduli are not compared here. 

Dispersion is observed to have strong effects on the elastic moduli, and therefore 

the seismic velocities, of crystalline rocks with low aspect ratio cracks.  Joint 

interpretation of data sets involving saturated crystalline rocks need to account for the 

dispersive effects of fluid flow in order to accurately compare measurements made in 

different fluid flow regimes.  This likely requires significant further experimental work to 

characterize dispersion in a variety of crystalline rocks, as well as work towards 

improved theoretical models. 

 

5.4 Future work 

Future work on this data set may include comparisons to alternate theoretical 

models, including a comparison of the moduli predictions of the self-consistent theory.  

Models with differing crack geometry and interaction assumptions may provide better 

fits to the experimental results obtained here. 

Both the low and high frequency measurements could be analyzed to obtain 

attenuation information as well.  Phase lags of the sample response compared to that of 

the elastic standard contain shear attenuation information and, although not presented 



141 

 

here, were acquired as part of the low frequency torsional measurements.  Similarly, 

phase lag measurements were collected in the low frequency flexural mode, but 

additional theoretical work is required to correlate them to an attenuation parameter.  

The flexural attenuation data would then require modeling and calibration against fused 

quartz data prior to interpretation of attenuation results for the quartzites.  Spectral 

analysis of the high frequency P- and S-wave data could provide attenuation 

measurements at 1 MHz, however, it is difficult to determine if the signal to noise levels 

would be sufficient for this method without further work.  Attenuation measurements 

would provide a second data set for comparison to theoretical models, and increase 

understanding of the effects of these fluid-filled cracks on seismic data. 

Additional experimental work on the two quartzite samples using a low frequency 

apparatus capable of making measurements in the rather large gap between 1 Hz and 1 

MHz would allow further understanding of when and how the water saturated moduli 

begin to stiffen.  Determining the characteristic frequency which separates the fluid flow 

regimes would allow greater understanding of when velocity dispersion must be 

accounted for in seismological measurements. 

In terms of the experimental method, the learnings from this study have been 

examined and the flexural mode of the ANU apparatus will undergo further work to 

attempt to provide greater sensitivity to the Young’s moduli of the specimens.  The work 

will include investigations to determine whether different modes of motion (e.g. the 

electromagnetic drivers working cooperatively in the horizontal plane, rather than in 

opposition in the vertical plane), boundary conditions on the beam (e.g. with the 

bottom of the beam weakly propped as opposed to fully propped) or specimen 
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placement (with the specimen moved higher or lower within the experimental 

assembly) can improve the sensitivity. 
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Appendix A:  High Frequency Measurement 

Seismic properties of a rock can often inform of its porosity, saturation or 

lithology, while well defined seismic velocities can aid in improving the quality of seismic 

reflection imaging.  There are many reasons to require accurate knowledge of the 

seismic properties, but it is often logistically difficult or costly to acquire in-situ 

measurements, and results may be more difficult to interpret due to heterogeneity 

within a survey area.  Laboratory measurements on core samples provide a relatively 

inexpensive method of obtaining this information, and ultrasonic pulse transmission is 

commonly used for this purpose (Adam et al., 2006, Adelinet et al., 2010, Batzle et al., 

2006, Cholach et al., 2005, Kern et al., 2008, Martinez and Schmitt, 2013).  This appendix 

describes the technique and the University of Alberta equipment. 

 

A.1 Preparation of Transducers and Experimental Set Up 

Ultrasonic pulse transmission is typically undertaken using piezoelectric 

transducers excited by a pulsed voltage.  The voltage stimulates a piezoelectric at one 

end of the sample and produces an acoustic wave.  The acoustic wave travels through 

the sample and is received by a piezoelectric at the other end where it is converted back 

into a voltage.  The resulting voltage is recorded by an oscilloscope.  Here, the setup 

includes a pressure vessel which allows confining and pore pressure (either liquid or gas) 

to be applied independently of each other to the sample (Fig. A.1). 
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Figure A.1:  Set up for ultrasonic measurement of core samples in the University of 

Alberta pressure vessel. 
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The building of the piezoelectric transducers is somewhat involved.  Two 

piezoelectric ceramics, one polarized to produce P-waves and one polarized for S-wave 

transmission, are affixed to aluminum buffers which are coupled with the sample.  

There are multiple reasons for not affixing the piezoelectrics to the sample directly.  

First and foremost, the aluminum buffers, in conjunction with a jacket made of plastic 

tubing, allow the sample to be isolated from the confining fluid.  This allows the 

introduction and independent control of pore fluid into the sample via a small pore fluid 

inlet in one of the aluminum buffers.  Although time of flight calculations, determining 

the travel time through the sample, are complicated by the necessity of subtracting the 

travel time through the aluminum buffers, building the transducers as separate entities 

from the core samples allows the transducers to be used on multiple samples.  This 

increases consistency in the signal and decreases labour overall.  Finally, the 

piezoelectric material has a ‘rise’ time which means that the onset of the voltage 

stimulation does not correspond exactly with the onset of the deformation of the 

piezoelectric ceramic.  The PR35 pulser (JSR Ultrasonics, New York) transmits a fast (5 

ns) rise square wave, with voltage of ~30-100 V peak-to-peak across the piezoelectric 

ceramic, depending on experimental parameters.  The transmitted signal, recorded by 

an oscilloscope (LabView, National Instruments, Texas) at a sampling rate of 10 ns, 

shows a slight delay.  Experiments done with the piezoelectrics mounted directly onto 

fused quartz specimens of varying length indicate that the lead zirconate titanate (PZT) 

SP5-A piezoelectrics (Sparkler Ceramics Pvt. Ltd., India) used here do not produce a peak 

pressure (or acceleration) until ~0.4 s after they are stimulated with a voltage (Fig. 

A.2). 
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Figure A.2:  Experimental measurements done with the piezoelectrics mounted directly 

onto fused quartz specimens of varying length indicate that both the P- and S-wave 

ceramics require a finite amount of time to produce an acoustic pulse (0.47 s and 0.42 

s, respectively). 
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The aluminum buffers have the S-wave ceramic mounted flush against their 

surface using a silver epoxy.  The silver epoxy electrically couples the piezoelectric 

ceramic to the buffer, and a grounding wire is connected to the buffer to provide for the 

negative lead from the ceramic.  A flat copper sheet is cut slightly larger than the S-wave 

ceramic and epoxied on top of it.  The positive lead for the shear-wave is soldered to the 

edge of the copper, and also serves as the negative lead for the P-wave ceramic which is 

stacked on top of both the S-wave ceramic and copper sheet.  A final copper sheet and 

wire is attached on top of the P-wave ceramic to allow the provision of voltage across 

the P-wave piezoelectric.  As the aluminum buffer and the ceramics themselves are 

fairly linearly elastic, a damping material is affixed to the top of the P-wave ceramic to 

provide damping to both the P- and S-wave signals.  The damping material is composed 

of Flexane® 80 (Devcon, Massachussets), a viscous urethane compound, and lead 

powder.  Finally, the piezoelectrics and damping material are sealed in a coating of 

Flexane® 80 in order to protect them from the pressurizing fluid (oil) of the University of 

Alberta pressure vessel.  The Flexane® 80, even with the aid of primers, does not bond 

strongly with the aluminum surface of the buffers, and the transducers typically have a 

limited life before the highly pressurized oil delaminates the piezoelectrics from the 

surface of the buffer and the tranducer must be rebuilt. 

After preparation of the transducers, the sample is placed in a Tygon® (Saint-

Gobain, France) tubing jacket. One buffer is placed on top and one below the sample, 

with the bottom half of each aluminum buffer being inserted into the tubing jacket as 

well.  The bottom of each aluminum buffer is of the same diameter as the sample (1.5 

cm), and has two o-rings to seal against the Tygon®.  The buffers are rotated so as to 
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align the S-wave piezoelectrics and the samples and buffers are placed in a drill press.  

The drill press is used to obtain contact between the sample and the adjoining surfaces 

of the buffers.  While they are being held together by the drill press, a steel hose-clamp 

is tightened around the tubing, one on top of each o-ring.  This ensures that jacket is 

able to seal the sample from the pressurizing fluid at confining pressures up to 200 MPa. 

The pore pressure tubing is connected to the sample, and the prepared sample is 

inserted into the pressure vessel.  The transducer wires are connected through feed-

throughs in the pressure vessel to the pulser and oscilloscope.  Confining and/or pore 

pressure are applied, and, after sufficient time has been allowed for the pressurized 

fluid to return to room temperature, and the sample to be evenly saturated (if pore 

pressure is being applied), measurement on the sample can commence. 

It is necessary to measure the travel time through the buffers alone as well, and in 

this case the preparation is as above except the sample is not placed in between the 

buffers and, instead, the buffers are in direct contact with each other.  The travel time 

through the buffers is measured for the same effective pressures as the sample is 

subjected to, in order to capture the effects of pressure on the buffers (Fig. A.3).  Two 

sets of buffers were used in this experiment, buffers #100711 and buffers #101204.  In 

order to account for any potential differences in travel time due to varying thicknesses 

of epoxy or copper sheeting in the building of the transducers, as well as the signal itself 

as a result of differences in the damping or manufacturing of the ceramics, it is 

necessary to measure the travel times through both sets in order to properly remove 

this time from the overall transit time and determine the travel time through the sample 

alone (Fig. A.4).  The final travel time through the sample is calculated by subtracting the  
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Figure A.3:  The waveform transmitted by the buffer arrives earlier, and changes 

characteristic shape with increasing effective pressure as the buffers couple better to 

each other (or the sample, if it is present) and the damping material is compressed to a 

denser form.  

 



150 

 

 

Figure A.4:  Different characteristic waveforms of the P- (a) and S-waves (b) of the two 

transducers used in the experiment. 
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Figure A.5:  The final P-wave travel time through the dry Alberta quartzite at 150 MPa of 

confining pressure is determined by subtracting the travel time through the buffer alone 

from the total travel time; both first extremums are highlighted with arrows. 
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through the use of the fused quartz standard travel time through the buffer at 

equivalent effective pressure (Fig. A.5).  In all cases, the first extremum that could be 

picked through the whole pressure record was used, with the corresponding aspect of 

buffer waveform picked as the buffer travel time.  This was typically the first extremum, 

but for the S-waves, where there was occasionally P-wave contamination in the record, 

the second, higher amplitude, extremum was required on some occasions for the dry 

and argon saturated samples in order to have confidence in the time pick.  In order to 

increase the signal to noise ratio of the first arrival as much as possible, the signal was 

stacked.  An acceptable signal to noise ratio was usually achieved with ~1000 stacks. 

 

A.2 Waveform characteristics 

It is necessary to investigate the properties of the ultrasonic wave transmitted 

through the samples; in particular the frequency content of the nominally 1 MHz 

piezoelectric ceramics and the induced strain of the measurements.  The piezoelectrics 

are manufactured to have a frequency centred around 1 MHz, although some spread in 

the frequency content is typically expected.  A fast Fourier transform of the P- and S-

waves through the buffers at high pressure (150 MPa) shows that while the S-waves are 

indeed centred around 1 MHz, the transmitted P-waves appear to be slightly lower than 

the nominal frequency, with a centre frequency around 800 kHz (Fig. A.6).  For both the 

P- and S-waves there is significant higher frequency noise present.  The wires are only 

thinly insulated, as they must pass through feed throughs to enter or exit the pressure 

vessel, and some of the noise is electrical.  Most, however, is acoustic, and it is more 

pronounced at lower pressures where the coupling between the buffers and sample is  
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Figure A.6:  Frequency content of the transmitted waves from the P- (a) and S-wave (b) 

buffers at 150 MPa of pressure.  The P-wave has a peak around 800 kHz, while the S-

wave peaks around 1 MHz; both have significant higher frequency noise. 
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less firm and allows for more ‘bouncing.’  In these cases it is occasionally necessary to 

apply a low pass filter prior to picking travel times; usually removing frequencies >6 

MHz.  If a bandpass filter is applied to the signal for a given effective pressure, it is 

applied to the buffer-only record as well in order to maintain consistency in time picks. 

The strain induced in the rock samples is more difficult to measure.  Seismic 

velocity measurements are strongly dependent on the magnitude of applied strain 

(Iwasaki et al., 1978) and it is necessary to ensure laboratory measurements are made in 

the same strain regime as in-situ seismic techniques.  In practice, this typically requires a 

strain amplitude below ~10-6.  The P-wave ceramic is circular in shape and 2 mm thick, 

with a piezoelectric voltage constant, g, of 25 mV·m/N according to the manufacturer.  

When excited by the PR35 pulse (JSR Ultrasonics, New York), typically the mechanical 

stress, ij, can be calculated: 

ijt

ij
gd

V
  i,j = 1,2,3 (A1.1) 

using the electric field calculated from the voltage, V, and thickness of the ceramic, dt.  

Measurements from the almost perfectly elastic aluminum buffers, without a sample, 

register a voltage of ~10 mV for the P- and S-wave transducers.  The stress is on the 

order of 200 Pa.  For the S-wave ceramic, with voltage constant -11 mV·m/N and 

thickness of 0.8 mm, the stress is somewhat higher, with a magnitude around 1 kPa.  

The stress is across the surface area of the ceramic; the P-wave is a disk with diameter 

18 mm, while the S-wave is a square shape with length and width 15 mm.  Although 
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some dissipation and reflection occurs, the majority of the force is applied to the surface 

of the cylindrical samples, with diameter 15 mm.  The resulting stress is related to the 

induced strain, ij through the Young’s modulus, E, of the rock by Hooke’s Law: 

E

ij

ij


  . i,j = 1,2,3 (A1.2) 

For the samples in this study, with Young’s moduli spanning almost an order of 

magnitude, from approximately 10-80 GPa, this results in theoretical strains on the 

order of 10-7 to 10-8 for the S-wave and ~10-8 for the P-wave.  These strains are 

maximums, as they assume complete transmission of the seismic wave.  The strains are 

well within the seismic regime, rendering the ultrasonic measurements appropriate for 

extrapolation to in-situ seismic results. 
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Appendix B: A versatile facility for laboratory studies of viscoelastic 

and poroelastic behaviour of rocks2 
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, Junjie Muc, Alison Delmenicoc

 

a Research School of Earth Sciences, Australian National University, Canberra ACT, 

Australia 

b Department of Physics, University of Alberta, Edmonton, Alberta, Canada 

c Department of Engineering, Australian National University, Canberra ACT, Australia 

 

B.1 Introduction 

Because empty (or air-filled) cracks are highly compliant both in shear and 

compression, crack porosity has a disproportionately large effect on elastic moduli. For 

example, for the case of a crack porosity  of only 0.001 (i. e. 0.1% by volume) and 

aspect ratio  of 0.001 (e. g., m aperture for grain-boundary cracks of mm length in a 

tight crystalline rock) the bulk and shear moduli, and the associated compressional and 

shear wave speeds VP and VS are estimated to decrease by 44, 26, 20 and 14%, 

respectively 1, 2. 

Saturation of the crack network with a fluid of moderate incompressibility (such 

as water) has the potential to significantly reduce the crack compliance, particularly in 

compression.  However, there is an additional major complication.  The differential 

compliance of different parts of the pore space (cracks of different aspect ratio and/or 

                                                           
2
 A version of this chapter has been published. Jackson, I., Schijns, H., Schmitt, D.R., Mu, J.J. & 

Delmenico, A., 2011. A versatile facility for laboratory studies of viscoelastic and poroelastic 
behaviour of rocks, Review of Scientific Instruments, 82. 
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different orientation relative to the applied stress) will result in a spatially variable pore 

pressure driving a fluid flux proportional to permeability divided by viscosity. The 

potential for such redistribution of pore fluid during mechanical loading on sufficiently 

long timescales means that the effective elastic moduli of cracked and fluid-saturated 

rocks must inevitably be strongly frequency dependent. With decreasing frequency, the 

fluid becomes amenable to stress-induced redistribution by bulk fluid flow. The spatial 

scale, and hence characteristic timescale or frequency, for the stress-induced fluid flow 

range widely from that of individual grains (~ mm) through the typical dimensions (1-10 

cm) of laboratory rock specimens to those of joints in rock masses and seismic 

wavelengths. 

The result is a series of conceptually distinct fluid-flow regimes between which 

significant partial relaxations of the effective moduli and associated attenuation are 

expected 3. Within the saturated-isolated regime, encountered at sufficiently high 

frequencies, fluid flow even between adjacent parts of the pore space of different 

orientation or aspect ratio is precluded. However, for somewhat lower frequencies, 

‘squirt’ flow of fluid between adjacent cracks of different orientation is predicted to 

cause a partial relaxation of the shear modulus 4.  A similar relaxation of the bulk 

modulus associated with the transition to saturated-isobaric conditions requires the 

existence of a distribution p() of aspect ratios and fluid flow, for example, between 

cracks and more nearly equant pores. Such dissipation of compressive energy and 

associated partial relaxation of the bulk modulus are thus vitally important in media 

containing a fluid phase substantially more compressible than the crystalline matrix 

(e.g., aqueous fluid or melt) but also in materials containing coexisting low- and high-

pressure crystalline phases of different specific volume. 



158 

 

The frequency-dependence of elastic wave speeds and associated attenuation in 

cracked and fluid-saturated media, predicted by such theoretical models, remains 

largely untested against experimental data because of the scarcity of experimental 

measurements at frequencies lower than those (~ MHz) of ultrasonic wave propagation. 

However, there is growing interest in the development of low-frequency/broadband 

laboratory methods for the study of such frequency dependence of seismic wave speeds 

in fluid-saturated rocks5-9 . Forced-oscillation methods have been intensively used 

during the past decade in seismic-frequency (mHz-Hz) laboratory studies of high-

temperature shear-mode viscoelasticity10,11, but much less attention has been paid to 

the relaxation of the bulk modulus. This phenomenon is also experimentally accessible 

with forced-oscillation methods - involving either oscillating confining pressure9, 

alternating compression-extension 5,6,8,12, or flexure. 

In extensional oscillation, the oscillating fluid flow between the stressed interior 

of a rock specimen and an external reservoir, maintained at constant fluid pressure, 

establishes drained conditions for frequencies < fD = kKf/R2 13-16 – of order Hz for 

water-saturation of tight crystalline rocks. Here,  and k are the porosity and 

permeability of a cylindrical rock specimen of radius R, and Kf and  are the fluid 

incompressibility and viscosity, respectively. For flexural oscillation (as for the torsional 

mode), there is no stress-induced change in the spatially averaged pore pressure within 

the specimen (of constant volume), so that draining is not an issue.  However, lateral 

fluid flow between the opposite sides of a flexural-mode specimen instantaneously 

experiencing compression and extension, will result in poroelastic relaxation more 

pronounced than for draining in the extensional mode, and at similar frequencies 14.  
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The dissipation peak, and modulus relaxation, associated with such specimen-

scale fluid flow is thus a significant artifact to be anticipated in flexural mode laboratory 

measurements on fluid-saturated media 13-15. It can be identified from its characteristic 

frequency fD, if the permeability and other parameters appearing in the expression for fD 

are known 13,14 with confirmation potentially provided by the expected fD ~ R-2 

dependence 15. Moreover, the characteristic frequency fF = Kf
3/ 3 for squirt of water 

between adjacent cracks of aspect ratio  in tight, fine-grained crystalline rock, is 

expected to exceed fD by a factor of ~1000. Under such conditions, the relaxations 

associated with local and global (sample-wide) fluid flow should be widely separated in 

frequency. Finally, the systematic use of complementary torsional and flexural mode 

measurements on the same, simple synthetic cracked/porous media such as thermally 

cracked ceramics and synthetic sandstones of low porosity prepared by sintering glass 

beads 17, will also help separate the relaxations associated with local and global fluid 

flow. 

Further work, beyond the scope of this study, will focus on the development of 

such strategies to distinguish between the relaxations associated with fluid flow 

(‘squirt’) between adjacent parts of the pore space and sample-wide fluid flow in 

cracked and fluid-saturated media. Here, however, our purpose is to demonstrate the 

technical feasibility of sub-microstrain flexural-oscillation methods for use alongside the 

established torsional mode capability of the ANU rock physics laboratory – for which 

purpose we use a fused silica control specimen. 
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B.2 Experimental method 

B.2.1 The modified forced-oscillation apparatus 

Novel equipment for seismic-frequency torsional forced-oscillation 

measurements under conditions of simultaneous high pressure and temperature, 

previously described in detail 10, has recently been modified to provide access also to 

the flexural oscillation mode by using alternative polarisations of the electromagnetic 

driver and capacitance displacement transducers (Fig. B.1). The combination of more 

powerful electromagnetic drivers (incorporating rare-earth magnets) and the same 

mechanical advantage as available for the torsional mode (Fig. B.1) allows flexural mode 

measurements with high signal/noise ratio as demonstrated below. 

 

 

 

Figure B.1:  Experimental arrangement for forced-oscillation studies in (a) flexure and (b) 

torsion with alternative driver/displacement transducer polarizations.  
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The distortion of the experimental assembly undergoing forced oscillation is 

measured by sensitive three-plate capacitance displacement transducers operated in 

pairs at locations above and below the hollow steel elastic element (Fig. B.1). Diagonally 

opposite capacitors are connected in parallel (Fig. B.1) in order to maximise the 

sensitivity to torsional or flexural mode distortions of the column for the alternative 

driver/transducer polarizations, and to minimize the response to any subsidiary 

excitation of the flexural or extensional modes, respectively. At each measurement 

station, the parallel combinations of diagonally opposite capacitors, are connected to a 

ratio transformer to form an AC bridge, operated at 10 kHz with either 3 or 30 V 

excitation. Under static operational conditions, the bridge is balanced by adjustment of 

the transformer ratio. The bridge out-of-balance signal associated with 

torsional/flexural oscillation is subject to synchronous detection, followed by low-pass 

(1 Hz) filtering, analogue/digital conversion and digital data acquisition (Fig. B.1a). 

Calibration of the resulting voltage-versus-time signals is done by measuring the voltage 

offset associated with reversed switching of the transformer ratio through an 

appropriate increment. The experimental arrangements, with application to torsional 

mode measurements, have previously been described in detail 10. 

The raw experimental data obtained in flexural oscillation (at periods currently 

between 1 and 1000 s, although shorter periods to ~ 0.1 s may ultimately prove feasible) 

are thus sinusoidally time-varying displacements d1(t) and d2(t) measured by the parallel 

combinations of capacitance displacement transducers, located respectively above and 

below the elastic element (Fig. B.1a). These displacements di(t), (i = 1, 2), measured at a 

distance D from the axis of the specimen assembly at distances x = li from the upper, 
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cantilevered end of the specimen assembly, are related to the flexure v(x) by 

 

di(t) = Dv(li,t), (B.1) 

 

v(li,t) being the instantaneous value of the local angle of flexure, i.e. v/x. 

 

B.2.2 Pore-fluid system 

In anticipation of the application of our forced-oscillation methods to cracked and 

fluid-saturated rocks and synthetic analogues, we have constructed and tested a system 

for the delivery, pressurisation and monitoring of pore fluid – either argon gas or 

condensed pore fluids such as water (Fig. B.2). For this purpose, a cylindrical rock 

specimen of 15 mm diameter is sandwiched between hollow ceramic and steel pistons 

enclosed within an annealed copper tube of 0.25 mm wall thickness, that is sealed with 

an O-ring at either end to exclude the argon pressure medium. The hollow ceramic and 

steel pistons connect the pores space within the jacketted specimen to the upper and 

lower pore-fluid reservoirs. This arrangement allows independent variation of confining 

and pore-fluid pressures to 200 MPa. The capacity to isolate the upstream and 

downstream reservoirs provides for the in situ measurement of permeability through 

observation of the return to equilibrium following the imposition of a small fluid-

pressure differential between the two reservoirs 18. The pore-fluid volumometer, 

previously used in the ANU Rock Physics laboratory, allows measurement of pressure-

dependent changes in pore-fluid volume and hence storage capacity 19. 
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Figure B.2: Arrangements for independent control of the argon confining pressure 

(black) and either gaseous (argon - red) or condensed (blue) pore fluid pressure. 

 

B.2.3 Specimen assemblies tested in this study 

The specimen assemblies employed in trialling the new flexural mode capability 

consist of cylindrical fused silica specimens sandwiched between disks of annealed 

copper (Fig. B.3). These components are assembled within a thin-walled sleeve (15.0 

mm I.D.  15.5 mm O.D.) of annealed copper that is sealed with O-rings against hollow 

steel members above and below. 
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Figure B.3: Experimental assemblies of diameter 15 mm (14.89 mm for fused silica) and 

total length 338-339 mm, enclosed in Cu sleeves of 0.25 mm wall thickness, that were 

used in trials of the flexural oscillation technique. 

 

B.2.4 Interim analysis of experimental data 

The zero-to-peak displacement amplitudes |d1| and |d2| and their relative phase, 

estimated by Fourier analysis, are first used to calculated the amplitude and phase of 

the difference signal d12 = d2 – d1, representing the distortion of the elastic element.  As 

an interim measure, pending inversion of the experimental data for the complex 

Young’s modulus of the specimen itself, the results of the flexural oscillation 

measurements will be presented here as the distortion of the entire specimen assembly 

comprising the specimen and spacers (Fig. B.3), and the hollow steel members between 

which they are sandwiched (Fig. B.1). In comparing d1, a measure of the flexure of the 

specimen assembly, to that (d12) of the elastic element, we define a normalised flexural 

‘modulus’ SNF as  

 

SNF = |d1/d12| = |d1/(d2 – d1)| (B.2) 
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and the loss angle  (rad) as the phase lag of d1 relative to d12, reflecting any strain 

energy dissipation associated with poroelastic or viscoelastic behaviour of the specimen. 

The maximum strain amplitude xx for the most highly stressed part of the 

cylindrical surface of the specimen can be estimated from its radius of curvature Rc = 

|d2v/dx2|-1, with the curvature d2v/dx2 approximated by v(l1)/Ls, where Ls is the length 

of the specimen, where the flexure of the specimen assembly is concentrated. Thus, 

with the help of eq. (B.1), we derive the relationship 

 

xx = ds/2Rc = dsd1/2DLs  (B.3) 

 

where ds is the diameter of the specimen. 

 

B.3 Numerical modelling 

B.3.1 Finite-difference modelling of the flexure of a thin beam 

In parallel with the experimental work, we have used numerical modelling 

methods to simulate the flexural response of the experimental assembly.  The static 

lateral deflection v(x) of a long thin beam (0 < x < L) is controlled mainly by the 

extension/contraction of its constituent longitudinal filaments through the differential 

equation 

 

E(x)I(x)2v/x2 = -M(x) (B.4) 

 



166 

 

where E, I and M are respectively the Young’s modulus, the diametral moment of inertia 

of the beam cross-section, and the local bending moment 20. At this level of 

approximation, the shear stresses acting at the interfaces between adjacent filaments 

are ignored, and a finite-difference approach may be used to solve equation (B.4) 

subject to the appropriate boundary conditions. Implementation of the finite-difference 

strategy is described in the Appendix. 

For comparison with the experimentally determined normalised flexural modulus 

(eq. 2), we extract from the results of the finite-difference (and finite-element) 

modelling the corresponding quantity 

 

Smod = |v(l1)/[v(l2)  v(l1)]|. (B.5) 

 

The significance of Smod as a measure of the mechanical response of the specimen 

assembly, and ultimately of the specimen itself, is assessed by integrating eq. (B.2) with 

the local bending moment M(x) appropriately specified by eq. (A3) to obtain 

 



v (x)  Ma 0

x

 dx /[E(x)I(x)]RL 0

x

 (L  x)dx /[E(x)I(x)] (B.6)  

 

In the absence of the terminal reaction force, i.e. for RL = 0, and with the bending 

moment Ma applied at x = l3 within the interval (l2, L), the local angle of flexure per unit 

bending moment v(x)/Ma assumes the simple form 

 



v (x) /(Ma x)  (1/x)
0

x

 dx /[E(x)I(x)] (B.7) 
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that is readily interpreted as the integral flexural compliance, [E(x)I(x)]-1 being the 

reciprocal of the flexural rigidity. Appropriately, this integral flexural compliance (eq. 

B.7) is not weighted by position x along the beam, and increases monotonically with 

increasing x, and decreases with increasing E(x), as expected from crack closure under 

increasing confining pressure, for example. 

In the presence of a non-zero terminal load RL only, responsible for a local 

bending moment M(x) = RL(L-x), the angle of deflection per unit terminal bending 

moment is 

 

)]()(/[)/1(/)(
0

xIxEdxLxLRxv
x

L    (B.8) 

 

which is a different measure of integral flexural compliance, being the integral of the 

reciprocal flexural rigidity [E(x)I(x)]-1 weighted by the fractional length 1 – x/L of the 

mechanical lever. This quantity also increases monotonically with increasing x, and 

decreases with increasing E(x). 

For the propped cantilevered beam, the responses to the applied bending 

moment Ma and to the terminal reaction force are combined with opposite signs (eq. 6), 

and the fact that the statically indeterminate reaction force RL is itself part of the 

solution (see eqs. A5-A9 of the Appendix), further complicates the situation. Under 

these circumstances, Smod given by eq. (B.5) becomes 
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that cannot be interpreted as a compliance. It is for this reason that we use the neutral 

term ‘normalised flexural modulus’ given previously for SNF (eq. B.2). 

 

B.3.2 Finite-element modelling 

Complementary finite-element calculations were performed with Strand7TM 

software. A model for the entire experimental assembly was constructed from a total of 

23 segments – each of specified geometry and material properties (Young’s modulus E 

and shear modulus G), with those forming part of the copper-jacketted specimen 

assembly treated as radially compound, as required. Segments immediately above and 

below the compliant part of the hollow steel elastic element, involving tapers in outer 

diameter between 37 and 16 mm diameter, were approximated as hollow cylinders of 

fixed outer diameter 37 and 16 mm, respectively. The set of nodes at either end of each 

segment was supplemented with additional nodes at ~ 10 mm spacing within the longer 

segments in order to facilitate plotting of the computed flexure at appropriate 

resolution. The linear static solver was used to compute the response, i.e. v(x) and 

hence Smod, to the application of unit bending moment at x = l3 (l2 < l3 < L) with the 

appropriate boundary conditions (Section B.7). 

 

  



169 

 

B.3.3. Amplitude of the applied bending moment 

The results of the numerical modelling can be combined with flexural-oscillation 

data to infer the amplitude Ma of the experimentally applied oscillating bending 

moment as follows. Numerical differentiation of the model deflection v(x) yields the 

local angle of flexure, e.g. v(li) (i = 1, 2) for unit bending moment. The corresponding 

experimentally derived quantity di/D (i = 1, 2, eq. 1) is the response to a bending 

moment of unknown amplitude Ma. With the entirely reasonable assumption of linearity 

at low strain amplitudes, we obtain  

 

Ma = di/Dv(li). (B.10) 

 

B.4 Results 

B.4.1 Results for the Fused silica/Cu assembly I 

Representative data, for 16 consecutive cycles of flexural oscillation at 1.28 s 

period, are shown in Fig. B.4a. The two time series represent the displacements d1(t) 

and d12(t) = d2(t) - d1(t) associated with the flexural mode distortions of the specimen 

assembly and elastic element, respectively. Their out-of-phase relationship reflects the 

fact that the displacements d1(t) and d2(t), measured by the transducer pairs above and 

below the elastic element, are out-of-phase. The implication is that the maximum 

deflection v of the propped, cantilevered beam, at which the angle of flexure v changes 

sign, occurs within the elastic element. Fourier analysis of the time series is used to 

estimate the amplitude and phase of each of the sinusoidally time-varying 

displacements di(t), and therefore also of their difference d12(t).  
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Figure B.4: Representative flexural oscillation results for the Fused silica/Cu assembly I 

(a) Time series representing the displacements d1(t) and d12(t) = d2(t) - d1(t) for 16 

consecutive cycles of oscillation at 1.28 s period and 23 MPa confining pressure. (b) Plot 

against integer frequency of log10 of the modulus (absolute value) of the discrete Fourier 

transform of the raw (voltage versus time) data corresponding to d1(t) data in panel (a). 

 

The Fourier transform plotted in Fig. B.4b shows that the signal amplitude at the 

driving frequency exceeds the background due to the 12-bit A/D quantisation by a factor 

of ~3000. The low level harmonic distortion also evident in the Fourier-transformed data 

is closely consistent on the two displacement channels – suggesting a common origin in 

non-linear conversion of coil current to force in the electromagnetic drivers. 

Such flexural mode measurements have been performed on the Fused silica/Cu I 

specimen assembly (Fig. B.3) at oscillation periods between 1 and 100 s. As anticipated, 

the normalised flexural modulus SNF is essentially independent of oscillation period (Fig. 

B.5a) and the loss angle  is essentially zero (Fig. B.5b). These observations are 
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qualitatively consistent with the expectation of ideal elastic behaviour for pressures, 

and hence normal stresses at the interfaces within the assembly, sufficiently high to 

ensure effective mechanical coupling. 

 

A more quantitative assessment of the experimental observations is provided by 

the results of the numerical modelling. Finite-difference calculations performed with 

progressively finer division of the length L of the beam into N intervals (100 ≤ N ≤ 5000) 

showed convergence of Smod within 0.02 % for N ≥ 2000, corresponding to an interval h ≤ 

0.5 mm. 
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Figure B.5: The results of flexural-oscillation experiments on the Fused silica/Cu 

assembly I (Fig. B.3) at 23 MPa (with optimal transducer alignment, filled symbols) and 

at 49 MPa (inferior transducer alignment, open symbols). (a) Normalised flexural 

modulus SNF versus oscillation period. Data indicated by the plotting symbols and 

interpolating curves are compared with the outcomes of the finite-difference (FD) and 
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finite-element (FE) modelling. For the finite-difference modelling of the assembly 

inclusive of tapers within the elastic element, the solid black line corresponds to the 

nominal value of the Young’s modulus E (73.1 GPa) for fused silica and the broken lines 

to perturbations E of 1 and 2%. For the assembly in which the tapers are 

approximated by uniform cylindrical segments (see text), the solid and dashed lines 

represent the results for the alternative finite-element and finite-difference models. (b) 

Loss angle  (radian), being the phase lag between the distortion d12(t) of the elastic 

element and d1(t) of the specimen assembly. 

With N = 2000 and a nominal value E = 73.1 GPa for fused silica 21, the calculated 

value of Smod is 0.24145, with a sensitivity to the variation of the Young’s modulus for 

fused silica of 9.0  10-4 GPa-1, or 0.51% per % change in E). The finite-difference value of 

Smod is thus 1.2% lower than the average 0.24449(3) of the experimental SNF data at 23 

MPa, obtained with near-optimal transducer alignment (Fig. B.5a). 

In order to more tightly constrain the elastic properties of the fused silica control 

specimen, a disk of ~8 mm length was prepared from the recovered Fused silica/Cu 

assembly I, with faces ground and lapped parallel. The compressional and shear wave 

speeds, measured by phase comparison ultrasonic interferometry 22 at ~20 MHz, were 

VP = 5.937(2) km s-1 and VS = 3.766(2) km s-1, respectively. With a density  of 2.2014(2) 

g cm-3 determined by immersion in ethanol, the Young’s and shear moduli, E and G, 

were calculated to be 72.64(5) GPa, and 31.22(3) GPa, respectively – closely consistent 

with published data (73.1 and 31.2 GPa, respectively) 21. 

The possibility that the small but significant discrepancy between measured SNF 

and calculated Smod might result from the neglect of shear stress in the filament 

elongation model implemented in the finite-difference calculation was tested through 
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the complementary finite-element modelling. The results of a finite-element calculation 

(in which the role of shear stress is explicitly included) are compared with the finite-

difference solution v(x) for the Fused silica/Cu I assembly in Fig. B.6. The close 

consistency between the plotted deflections strongly suggests that allowance for shear 

stresses contributes negligibly to the flexural stiffness of the beam. The finite-element 

value for Smod of 0.23943, with the tapers approximated by segments of uniform 

diameter (as previously described), is closely comparable with the result (0.23933) of 

the N = 2000 finite-difference calculation for the same beam geometry (Fig. B.6). 

Moreover, finite-difference calculations indicate that the cylindrical approximation to 

the tapers reduces Smod by 0.9% from 0.24145 to 0.23933. Taken together, these results 

suggest a finite-element value of Smod for the tapered beam of 0.24155, indistinguishable 

from the result of the finite-element calculation, and 1.2% less than observed in the 

forced-oscillation experiments (Fig. B.5a). 
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Figure B.6: A comparison of the results of the finite-difference (red symbols) and finite-

element (black crosses) modelling, with the tapered segments of the elastic element 

approximated as hollow cylinders as described in the text. The deflection v(x), induced 

by a bending moment of 1 Nm applied at x = l3, is plotted as a function of the distance x 

from the cantilevered upper end of the beam. Displacement transducers measure the 

local angle of flexure at x = l1 and x = l2, respectively. 

 

The approach outlined in the previous section has been used to infer an 

amplitude of 0.17 Nm for the bending moment applied in flexural oscillation of the 

Fused silica/Cu assembly I, and a maximum extensional strain amplitude xx of 1.3  10-7. 

 

B.4.2 Results for the Fused silica/Cu assembly II 

The sensitivities of the flexural-oscillation results to variation of the argon 

confining pressure and the magnitude of the oscillating bending moment were assessed 
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in a more comprehensive series of experiments on another fused silica/Cu assembly 

(assembly II of Fig. B.3). 

 

 

 

Figure B.7: Flexural-oscillation data for the Fused silica/Cu II assembly, demonstrating 

the sensitivities of the normalised flexural modulus SNF and loss angle  to variation of 

confining pressure and the amplitude of the oscillating bending moment. The symbol ‘+’ 
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and ‘-’ symbols associated with pressure, label data obtained during pressurisation and 

depressurisation, respectively. The pair of numbers associated with each curve in panels 

(g) and (h) represent the amplitude of the bending moment (Nm), and the AC bridge 

excitation voltage (V), respectively. 

 

The geometry of Fused silica/Cu assembly II is only slightly different from 

assembly I (Fig. B.3), and accordingly, the values of Smod calculated from the (N =2000) 

finite-difference models are also closely similar: 0.24378 and 0.24145, respectively. The 

flexural response experimentally observed for assembly II is also somewhat different 

than for assembly I, with values of SNF tightly clustered in the range 0.235-0.238, and 

generally small values of  ranging between -0.015 and +0.005 rad (Fig. B.7).  The effect 

of pressure was most thoroughly examined with the amplitude of the applied bending 

moment fixed at 0.68 Nm. Neither SNF nor  varies significantly with pressure within the 

range 50-150 MPa (Fig. B.7c & d). However, there may be a measurable influence of the 

amplitude of the bending moment. For the lowest such amplitudes ( 0.17 Nm), a 

period-independent value of SNF of 0.237-0.238 is combined with a very small, but 

apparently systematically period-dependent, loss angle in the range -0.0008 <  < 

0.0002 rad (Fig. B.7g & h). For larger amplitudes of the bending moment, SNF becomes 

somewhat lower (0.235-0.237) and || somewhat higher (to 0.015 rad), and each of 

these quantities develops a significant dependence upon oscillation period (Fig. B.7 a-d). 
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B.5 Discussions/Conclusions 

The generally close consistency between the experimentally determined values of 

the normalised flexural modulus SNF and the corresponding quantity Smod estimated by 

numerical modelling establishes the viability of the flexural-oscillation method at strain 

amplitudes as low as 10-7. Failure to observe the stiffening expected of the inclusion of 

shear stress in the finite-element calculations is attributed to the fact that this effect 

would be greatest in the least compliant segments of largest diameter, located between 

the more compliant specimen and elastic element which dominate the overall flexural 

response of the experimental assembly. 

The observed pressure independence of SNF and the near-zero values of the loss 

angle  indicate a close approach to perfectly elastic behaviour for each of the Fused 

silica/Cu test assemblies – suggesting, in particular, that the interfaces in the beam do 

not cause major complications. 

The onset of significant sensitivity of SNF and  to the amplitude Ma of the bending 

moment for Ma  0.68 Nm, coupled with systematic variations with oscillation period, 

may result from interaction between the flexing assembly and the dense and viscous 

argon pressure medium – especially the effect of subsidiary bending moments exerted 

on the assembly by the central transducer plates (Fig. B.1). Quantification of these 

effects is the subject of ongoing research. Another direction for future work is 

assessment of the influence of pressure on the flexural response of the experimental 

assembly though dimensional changes with their magnified influence on the moment of 

inertia. 
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Finally, on the basis of appropriate forward modelling of the flexure of the 

experimental assembly, we plan to develop a strategy for the inversion of the 

experimental data SNF and  for the complex Young’s modulus associated with the 

poroelastic behaviour of cracked and fluid-saturated rocks and simpler synthetic 

analogues. However, before such inversion can be meaningful, it will be necessary to 

develop appropriate strategies for identification and modelling of the relaxation 

associated with specimen-scale fluid flow. 
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B.7 Appendix 

B.7.1 The finite-difference strategy for analysis of the filament-elongation model 

(equation B.3)  

For the finite difference calculation, the length L of the entire experimental 

assembly, treated as a propped compound cantilever, is split into a series of N small 

intervals (xi-1, xi) (i = 1, N) each of the same width h. The flexural rigidity (EI)i = E(xi)I(xi) 

and local bending moment Mi = M(xi) are specified at each of the xi (i = 0, N), and we 

wish to solve for the deflections  vi = v(xi). With the first and second derivatives of v(x) 

approximated by the central differences  

 

v(xi) = (vi+1–vi-1)/2h 
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v(xi) = [(vi+1–vi)/h – (vi–vi-1)/h]/h = (vi-1–2vi+vi+1)/h2, (B.a1) 

 

the equations to be solved for the vi are each of the form  

 

vi-1 – 2vi + vi+1 = – h2Mi/(EI)i. (B.a2) 

 

The local bending moment Mi = M(xi) is related to the bending moment Ma applied at x 

= l3 and the lateral reaction force RL at the propped end (x = L), through an analysis of 

static equilibrium: 

 

Mi = RL(L – xi ) – Ma for 0 ≤ xi < l3 (B.a3) 

 

and 

 

Mi = RL(L – xi) for l3 < xi ≤  L.  (B.a4) 

 

The boundary conditions requiring zero deflection at either end of the beam imply that 

v0 = v(x0) = vN = v(xN) = 0. The further boundary condition 

 

v(x0) = (v1–v-1)/2h = 0  

 

requires that v-1 = v1. Finally the use of MN = 0 in eq. (A2) requires that 

 

vN-1 – 2vN + vN+1 = – h2MN/(EI)N = 0 
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so that vN+1 = –vN-1. There remain N equations (eq. (A2) with i = 0, N-1) as follows.  

 

The finite difference equation for i = 0 becomes  

 

 [h2L/(EI)0]RL + 2v1 = h2Ma/(EI)0. (B.a5) 

 

For arbitrary i  1 such that (0  x < l3), 

 

 [h2(L-xi )/(EI)i]RL + vi-1 – 2vi + vi+1 = h2Ma/(EI)i.  (B.a6) 

 

In particular, for i = 1, because v0 = 0,  

 

[h2(L–x1 )/(EI)1]RL – 2v1 + v2 = h2Ma/(EI)1. (B.a7) 

 

For l3 < x  L 

 

[h2(L–xi)/(EI)i]RL + vi-1 – 2vi + vi+1 =  0. (B.a8) 

 

In particular, for i = N-1, because vN = 0, 

 

[h2(L–xN-1)/(EI)N-1]RL + vN-2 – 2vN-1  =  0 (B.a9) 
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Thus, for given applied bending moment Ma, equations (A5-A9) constitute a set of 

N simultaneous linear equations (for i = 0, N-1) that were solved with MatlabTM code for 

the N unknowns, being the vi (i = 1, N-1) along with the statically indeterminate terminal 

reaction force RL. 

 



183 

 

B.8 Endnotes 

1 J. B. Walsh. Journal of Geophysical Research, 74, 4333 (1969). 

2 I. Jackson. Geol. Soc. Aust. Spec. Publ., 17, 81 (1991). 

3 R. J. O'Connell & B. Budiansky. Journal of Geophysical Research, 82, 5719 (1977). 

4 G. M. Mavko & A. Nur. J. Geophys. Res., 80, 1444, (1975). 

5 J.W. Spencer. J. Geophys. Res., 86, 1803 (1981). 

6 R.H. Cherry, H.A. Spetzler, H. & J. Paffenholz. Rev. Sci. Instrum. 67, 215 (1995). 

7 C. Lu & I. Jackson. Geophysics, 71, 147, (2006). 

8 L. Adam, M. Batzle, K. T. Lewallen & K. van Wijk. Journal Geophysical Research, 114, 
B06208, (2009). 

9 M. Adelinet, J. Fortin, Y. Gueguen, A. Schubnel & L. Geoffeoy. Geophysical Research 
Letters, 37, L02303, (2010). 

10 I. Jackson & M. S. Paterson. PAGEOPH, 141, 445 (1993). 

11 T. T. Gribb & R. F. Cooper. Rev. Sci. Instrum., 69, 559 (1998). 

12 L. Li & D. J. Weidner. Rev. Sci. Instrum., 78, 053902 (2007). 

13 J.E. White. Geophysics 51: 742-745 (1986). 

14 K.-J. Dunn.  J. Acoust. Soc. Am. 79: 1709 (1986). 

15 K.-J. Dunn.  J. Acoust. Soc. Am. 81: 1259 (1987). 

16 I. Jackson. In The Australian Lithosphere, Geol. Soc. Aust. Spec. Publ. 17: 81 (1991). 

17 P.A. Berge, B.P. Bonner & J. G. Berryman. Geophysics 60: 108 (1995). 

18 W. F. Brace, J. B. Walsh & W. T. Frangos. J. Geophys. Res., 73, 2225 (1968). 

19 S. Zhang, M. S. Paterson & S. F. Cox. J. Geophys. Res., 99, 15741 (1994). 

20S. P. Timoshenko & J. M. Gere. 1973. Mechanics of Materials. (Van Nostrand Reinhold, 
London). 

21G. W. C. Kaye & T. H. Laby. 1973. Tables of physical and chemical constants and some 
mathematical functions. (Longman, London). 



184 

 

22 I. Jackson, H. Niesler & D. J. Weidner. J. Geophys. Res, 86, 3736, (1981). 

 

  



185 

 

Bibliography 

Adam, L., Batzle, M. & Brevik, L., 2006. Gassmann's fluid substitution and shear modulus 
variability in carbonates at laboratory seismic and ultrasonic frequencies, 
Geophysics, 71, F173-F183. 

Adam, L., Batzle, M., Lewallen, K.T. & van Wijk, K., 2009. Seismic wave attenuation in 
carbonates, Journal of Geophysical Research-Solid Earth, 114, 14. 

Adam, L. & Otheim, T., 2013. Elastic laboratory measurements and modeling of 
saturated basalts, Journal of Geophysical Research-Solid Earth, 118, 840-851. 

Adelinet, M., Fortin, J., Gueguen, Y., Schubnel, A. & Geoffroy, L., 2010. Frequency and 
fluid effects on elastic properties of basalt: Experimental investigations, 
Geophysical Research Letters, 37, 4. 

Auld, B.A., 1973. Acoustic fields and waves in solids, Wiley-Interscience Publication, New 
York, pp. 423. 

Baechle, G.T., Eberli, G.P., Weger, R.J. & Massaferro, J.L., 2009. Changes in dynamic 
shear moduli of carbonate rocks with fluid substitution, Geophysics, 74, E135-
E147. 

Batzle, M.L., Han, D.H. & Hofmann, R., 2006. Fluid mobility and frequency-dependent 
seismic velocity - Direct measurements, Geophysics, 71, N1-N9. 

Berge, P.A., Bonner, B.P. & Berryman, J.G., 1995. Ultrasonic velocity porosity 
relationships for sandstone analogs made from fused glass-beads, Geophysics, 
60, 108-119. 

Berryman, J.G., 1999. Origin of Gassmann's equations, Geophysics, 64, 1627-1629. 

Biot, M.A., 1956. Theory of propagation of elastic wave in a fluid-saturated porous solid 
I. Low frequency range II. Higher frequency range, Journal of the Acoustical 
Society of America, 28, 168-191. 

Birch, F., 1947. Finite elastic strain of cubic crystals, Physical Review, 71, 809-824. 

Bouzidi, Y. & Schmitt, D.R., 2009. Measurement of the speed and attenuation of the Biot 
slow wave using a large ultrasonic transmitter, Journal of Geophysical Research-
Solid Earth, 114. 

Brace, W.F., Walsh, J.B. & Frangos, W.T., 1968. Permeability of granite under high 
pressure, Journal of Geophysical Research, 73, 2225-2236. 

Brown, R.J.S. & Korringa, J., 1975. Dependence of elastic properties of a porous rock on 
compressibility of pore fluid, Geophysics, 40, 608-616. 



186 

 

Budiansky, B. & O'Connell, R.J., 1976. Elastic moduli of a cracked solid, International 
Journal of Solids and Structures, 12, 81-97. 

Cadoret, T., 1993. Effet de la Saturation Eau/Gaz sur les Propriétés Acoustiques des 
Roches, Ph.D., University of Paris, VII. 

Chapman, M., Zatsepin, S.V. & Crampin, S., 2002. Derivation of a microstructural 
poroelastic model, Geophysical Journal International, 151, 427-451. 

Cherry, R.H., Spetzler, H.A. & Paffenholz, J., 1996. A new wideband (1 mHz to 100 Hz) 
seismic spectrometer, Review of Scientific Instruments, 67, 215-221. 

Cholach, P.Y., Molyneux, J.B. & Schmitt, D.R., 2005. Flin Flon Belt seismic anisotropy: 
elastic symmetry, heterogeneity, and shear-wave splitting, Canadian Journal of 
Earth Sciences, 42, 533-554. 

Crampin, S. & Lovell, J.H., 1991. A decade of shear-wave splitting in the Earth's crust:  
what does it mean?  what use can we make of it? and what should we do next?, 
Geophysical Journal International, 107, 387-407. 

Darcy, H., 1856. Les Fontaines Publiques de la Ville de DijonDalmont, Paris. 

David, E.C., Fortin, J., Schubnel, A., Gueguen, Y. & Zimmerman, R.W., 2013. Laboratory 
measurements of low- and high-frequency elastic moduli in Fontainebleau 
sandstone, Geophysics, 78, D367-D377. 

De, G.S., Winterstein, D.F. & Meadows, M.A., 1994. Comparison of P-wave and S-wave 
velocities and Qs from VSP and sonic long data, Geophysics, 59, 1512-1529. 

Dey-Barsukov, S., Durrast, H., Rabbel, W., Siegesmund, S. & Wende, S., 2000. Aligned 
fractures in carbonate rocks: laboratory and in situ measurements of seismic 
anisotropy, International Journal of Earth Sciences, 88, 829-839. 

Douma, J., 1988. The effect of the aspect ratio on crack-induced anisotropy, Geophysical 
Prospecting, 36, 614-632. 

Dunn, K.J., 1986. Acoustic attenuation in fluid-saturated porous cylinders at low 
frequencies, Journal of the Acoustical Society of America, 79, 1709-1721. 

Dunn, K.J., 1987. Sample boundary effect in acoustic attenuation of fluid-saturated 
porous cylinders, Journal of the Acoustical Society of America, 81, 1259-1266. 

Duo, X., Schijns, H., Schmitt, D.R., Heinonen, S., Kukkonen, I.T. & Heikkinen, P., 2009. 
High Resolution VSP in Outokumpu, SEG Expanded Abstracts, Houston, United 
States, 25-30 Oct 



187 

 

Duo, X., Schijns, H., Schmitt, D.R., Heinonen, S., Kukkonen, I.T. & Heikkinen, P., 2010. 
High Resolution VSP in Outokumpu, GeoCanada Expanded Abstracts, Calgary, 
Canada, 10-14 May. 

Dvorkin, J. & Nur, A., 1993. Dynamic poroelasticity - a unified model with the squirt and 
the Biot mechanisms, Geophysics, 58, 524-533. 

Dziewonski, A.M. & Anderson, D.L., 1981. Preliminary reference Earth model, Physics of 
the Earth and Planetary Interiors, 25, 297-356. 

Elbra, T., Karlqvist, R., Lassila, I., Haeggstrom, E. & Pesonen, L.J., 2011. Laboratory 
measurements of the seismic velocities and other petrophysical properties of 
the Outokumpu deep drill core samples, eastern Finland, Geophysical Journal 
International, 184, 405-415. 

Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal inclusion, and 
related problems, Proceedings of the Royal Society of London Series a-
Mathematical and Physical Sciences, 241, 376-396. 

Gassmann, F., 1951. Uber die elastizitat pososer medien, Vier. der Natur. Gesellschaft, 
96, 1-23. 

Geertsma, J. & Smit, D.C., 1961. Some aspects of elastic wave propagation in fluid-
saturated porous solids, Geophysics, 26, 169-181. 

 
Gerlich, D. & Kennedy, G.C., 1978. 2nd Pressure derivative of elastic-moduli of fused 

quartz, Journal of Physics and Chemistry of Solids, 39, 1189-1191. 

Gieske, J.H. & Barsch, G.R., 1968. Pressure dependence of elastic constants of single 
crystalline aluminum oxide, Physica Status Solidi, 29, 121-&. 

Grechka, V. & Kachanov, M., 2006a. Effective elasticity of fractured rocks: A snapshot of 
the work in progress, Geophysics, 71, W45-W58. 

Grechka, V. & Kachanov, M., 2006b. Seismic characterization of multiple fracture sets: 
Does orthotropy suffice?, Geophysics, 71, D93-D105. 

Gribb, T.T. & Cooper, R.F., 1998. A high-temperature torsion apparatus for the high-
resolution characterization of internal friction and creep in refractory metals 
and ceramics: Application to the seismic-frequency, dynamic response of Earth's 
upper mantle, Review of Scientific Instruments, 69, 559-564. 

Hajnal, Z., White, D.J., Takacs, E., Gyorfi, I., Annesley, I.R., Wood, G., O'Dowd, C. & 
Nimeck, G., 2010. Application of modern 2-D and 3-D seismic-reflection 
techniques for uranium exploration in the Athabasca Basin, Canadian Journal of 
Earth Sciences, 47, 761-782. 



188 

 

Hammer, P.T.C., Clowes, R.M., Cook, F.A., van der Velden, A.J. & Vasudevan, K., 2010. 
The Lithoprobe trans-continental lithospheric cross sections: imaging the 
internal structure of the North American continent, Canadian Journal of Earth 
Sciences, 47, 821-857. 

Hashin, Z. & Shtrikman, S., 1962. A variational approach to the theory of the elastic 
behaviour of polycrystals, Journal of the Mechanics and Physics of Solids, 10, 
343-352. 

Hashin, Z. & Shtrikman, S., 1963. A variational approach to the theory of elastic wave 
behaviour of multiphase materials, Journal of the Mechanics and Physics of 
Solids, 11, 127-140. 

Heinonen, S., Heikkinen, P.J., Kousa, J., Kukkonen, L.T. & Snyder, D.B., 2013. Enhancing 
hardrock seismic images: Reprocessing of high resolution seismic reflection data 
from Vihanti, Finland, Journal of Applied Geophysics, 93, 1-11. 

Heinonen, S., Schijns, H., Schmitt, D.R., Heikkinen, P.J. & Kukkonen, I.T., 2009. High 
resolution reflection seismic profiling in Outokumpu. in Outokumpu Deep 
Drilling Project, 3rd International Workshop, pp. 17-21, ed Kukkonen, I. T. 
Geological Survey of Finland, unpublished report Q10.2/2009/61, Espoo, 
Finland. 

Hill, R., 1952. The elastic behaviour of a crystalline aggregate, Proceedings of the 
Physical Society of London Section A, 65, 349-355. 

Hsieh, P.A., Tracy, J.V., Neuzil, C.E., Bredehoeft, J.D. & Silliman, S.E., 1981. A transient 
laboratory method for determining the hydraulic properties of 'tight' rocks - I. 
Theory, International Journal of Rock Mechanics and Mining Sciences, 18, 245-
252. 

Hudson, J.A., 1980. Overall properties of a cracked solid, Mathematical Proceedings of 
the Cambridge Philosophical Society, 88, 371-384. 

Hudson, J.A., 1981. Wave speeds and attenuation of elastic-waves in material containing 
cracks, Geophysical Journal of the Royal Astronomical Society, 64, 133-150. 

Hudson, J.A., 1986. A higher-order approximation to the wave-propagation constants 
for a cracked solid, Geophysical Journal of the Royal Astronomical Society, 87, 
265-274. 

Hudson, J.A., 1994. Overall properties of anisotropic materials containing cracks, 
Geophysical Journal International, 116, 279-282. 

Iwasaki, T., Tasuoka, F. & Takagi, Y., 1978. Shear moduli of sand under cyclic torsional 
shear loading, Soils and Foundations, 18, 39-56. 



189 

 

Jackson, I., 1991. The petrophysical basis for the interpretation of seismological models 
for the continental lithosphere, Geological Society of Australia Special 
Publication, 17, 81-114. 

Jackson, I., Niesler, H. & Weidner, D.J., 1981. Explicit correction of ultrasonically 
determined elastic wave velocities for transducer-bond phase-shifts, Journal of 
Geophysical Research, 86, 3736-3748. 

Jackson, I. & Paterson, M.S., 1993. A high-pressure, high-temperature apparatus for 
studies of seismic-wave dispersion and attenuation, Pure and Applied 
Geophysics, 141, 445-466. 

Jackson, I., Paterson, M.S., Niesler, H. & Waterford, R.M., 1984. Rock anelasticity 
measurements at high-pressure, low strain amplitude and seismic frequency, 
Geophysical Research Letters, 11, 1235-1238. 

Jackson, I., Schijns, H., Schmitt, D.R., Mu, J.J. & Delmenico, A., 2011. A versatile facility 
for laboratory studies of viscoelastic and poroelastic behaviour of rocks, Review 
of Scientific Instruments, 82. 

Johnson, D.L. & Plona, T.J., 1982. Acoustic slow waves and the consolidation transition, 
Journal of the Acoustical Society of America, 72, 556-565. 

Kaye, G.W.C. & Laby, T.H., 1973. Tables of physical and chemical constants and some 
mathematical functions, Longman, London. 

Kern, H., Ivankina, T.I., Nikitin, A.N., Lokajicek, T. & Pros, Z., 2008. The effect of oriented 
microcracks and crystallographic and shape preferred orientation on bulk elastic 
anisotropy of a foliated biotite gneiss from Outokumpu, Tectonophysics, 457, 
143-149. 

Koivisto, E., Malehmir, A., Heikkinen, P., Heinonen, S. & Kukkonen, I., 2012. 2D reflection 
seismic investigations at the Kevitsa Ni-Cu-PGE deposit, northern Finland, 
Geophysics, 77, WC149-WC162. 

Kovacs, A., Gorman, A.R., Buske, S., Schmitt, D.R., Eccles, J.D., Toy, V.G., Sutherland, R., 
Townend, J., Norris, R., Pooley, B., Cooper, J., Bruce, C., Smilie, M., Bain, S., 
Hellwig, O., Hlousek, F., Hellmich, J., Riedel, M. & Schijns, H., 2011. Imaging the 
Alpine Fault to depths of more than 2 km - Initial results from the 2011 
WhataDUSIE seismic reflection profile, Whataroa Valley, New Zealand, Abstract 
#T11A-2283, American Geophysical Union Fall Meeting, San Francisco, 5-9 Dec. 

Kuster, G.T. & Toksoz, M.N., 1974. Velocity and attenuation of seismic waves in 2 phase 
media: Part I. Theoretical formulations, Geophysics, 39, 587-606. 

Lassila, I., Karlqvist, R., Elbra, T., Gates, F.K., Pesonen, L.J. & Haeggstrom, E., 2010. 
Ultrasonic velocity of the upper gneiss series rocks from the Outokumpu deep 



190 

 

drill hole, Fennoscandian shield - Comparing uniaxial to triaxial loading, Journal 
of Applied Geophysics, 72, 178-183. 

Li, L. & Weidner, D.J., 2007. Energy dissipation of materials at high pressure and high 
temperature, Review of Scientific Instruments, 78. 

Liner, C.L. & Fei, T.W., 2006. Layer-induced seismic anisotropy from full-wave sonic logs: 
Theory, application, and validation, Geophysics, 71, D183-D190. 

Liu, L.G., 1993. Bulk moduli of SiO2 polymorphs: quartz, coesite and stishovite, 
Mechanics of Materials, 14, 283-290. 

Lu, C., 1996. Shear mode anelasticity of thermally cracked and fluid-saturated rocks, 
Ph.D., Australian National University. 

Lu, C. & Jackson, I., 1998. Seismic-frequency laboratory measurements of shear mode 
viscoelasticity in crustal rocks - II: Thermally stressed quartzite and granite, Pure 
and Applied Geophysics, 153, 441-473. 

Lu, C. & Jackson, I., 2006. Low-frequency seismic properties of thermally cracked and 
argon-saturated granite, Geophysics, 71, F147-F159. 

Lubbe, R., Sothcott, J., Worthington, M.H. & McCann, C., 2008. Laboratory estimates of 
normal and shear fracture compliance, Geophysical Prospecting, 56, 239-247. 

Luschen, E., Bram, K., Sollner, W. & Sobolev, S., 1996. Nature of seismic reflections and 
velocities from VSP-experiments and borehole measurements at the KTB deep 
drilling site in southeast Germany, Tectonophysics, 264, 309-326. 

Mackenzie, J.K., 1950. The elastic constants of a solid containing spherical holes, 
Proceedings of the Physical Society of London Section B, 63, 2-11. 

Madonna, C. & Tisato, N., 2013. A new Seismic Wave Attenuation Module to 
experimentally measure low-frequency attenuation in extensional mode, 
Geophysical Prospecting, 61, 302-314. 

Malehmir, A., Juhlin, C., Wijns, C., Urosevic, M., Valasti, P. & Koivisto, E., 2012. 3D 
reflection seismic imaging for open-pit mine planning and deep exploration in 
the Kevitsa Ni-Cu-PGE deposit, northern Finland, Geophysics, 77, WC95-WC108. 

Martinez, J.M. & Schmitt, D.R., 2013. Anisotropic elastic moduli of carbonates and 
evaporites from the Weyburn-Midale reservoir and seal rocks, Geophysical 
Prospecting, 61, 363-379. 

Mavko, G. & Jizba, D., 1991. Estimating grain-scale fluid effects on velocity dispersion in 
rocks, Geophysics, 56, 1940-1949. 



191 

 

Mavko, G. & Nur, A., 1975. Melt squirt in athenosphere, Journal of Geophysical 
Research, 80, 1444-1448. 

Mavko, G., Mukerji, T. & Dvorkin, J., 2009. The rock physics handbook: tools for seismic 
analysis of porous media, 2nd edn, Vol., pp. Pages, University Press, Cambridge. 

McSkimin, H.J., Andreatch, P. & Thurston, R.N., 1965. Elastic moduli of quartz versus 
hydrostatic pressure at 25 degrees and -195.8 degrees C, Journal of Applied 
Physics, 36, 1624-&. 

Meister, R., Robertson, E.C., Werre, R.W. & Raspet, R., 1980. Elastic-moduli of rock 
glasses under pressure to 8 kilobars and geophysical implications, Journal of 
Geophysical Research, 85, 6461-6470. 

Milkereit, B., Eaton, D., Wu, J., Perron, G., Salisbury, M., Berrer, E.K. & Morrison, G., 
1996. Seismic imaging of massive sulfide deposits .2. Reflection seismic profiling, 
Economic Geology and the Bulletin of the Society of Economic Geologists, 91, 
829-834. 

Mukerji, T. & Mavko, G., 1994. Pore fluid effects on seismic velocity in anisotropic rocks, 
Geophysics, 59, 233-244. 

Murphy, W.F., 1984. Seismic to ultrasonic velocity drift - intrinsic absorption and 
dispersion in crystalline rock, Geophysical Research Letters, 11, 1239-1242. 

Neuzil, C.E., Cooley, C., Silliman, S.E., Bredehoeft, J.D. & Hsieh, P.A., 1981. A transient 
laboratory method for determining the hydraulic properties of 'tight' rocks - II. 
Application, International Journal of Rock Mechanics and Mining Sciences, 18, 
253-258. 

NIST, 2012. NIST Standard Reference Database 203 Web Thermo Tables (WTT) - 
Professional Edition. 

Nye, J.F., 1985. Physical Properties of Crystals, Oxford Science Publications, Oxford. 

O'Connell, R.J. & Budiansky, B., 1974. Seismic velocities in dry and saturated cracked 
solids, Journal of Geophysical Research, 79, 5412-5426. 

O'Connell, R.J. & Budiansky, B., 1977. Viscoelastic properties of fluid-saturated cracked 
solids, Journal of Geophysical Research, 82, 5719-5735. 

Ohno, I., Abe, M., Kimura, M., Hanayama, Y., Oda, H. & Suzuki, I., 2000. Elasticity 
measurement of silica glass under gas pressure, American Mineralogist, 85, 288-
291. 

Peselnick, L., Liu, H.P. & Harper, K.R., 1979. Observations of details of hysteresis loops in 
Westerly granite, Geophysical Research Letters, 6, 693-696. 



192 

 

Prioul, R. & Jocker, J., 2009. Fracture characterization at multiple scales using borehole 
images, sonic logs, and walkaround vertical seismic profile, AAPG Bulletin, 93, 
1503-1516. 

Pyrak-Nolte, L.J., Myer, L.R. & Cook, N.G.W., 1990. Transmission of seismic waves across 
single natural fractures, Journal of Geophysical Research-Solid Earth and Planets, 
95, 8617-8638. 

Reuss, A., 1929. Berechnung der Fliebgrenze von Mischkristallen aufgrund der 
Plastizitatsbedingung fur Einkristalle, Z.  Angew. Math. Mech., 9, 49-58. 

Rice, J.R. & Cleary, M.P., 1976. Some basic stress diffusion solutions for fluid-saturated 
elastic porous-media with compressible constituents, Reviews of Geophysics, 14, 
227-241. 

Saenger, E.H., Kruger, O.S. & Shapiro, S.A., 2004. Effective elastic properties of randomly 
fractured soils: 3D numerical experiments, Geophysical Prospecting, 52, 183-
195. 

Sahay, P.N., 2008. On the Biot slow S-wave, Geophysics, 73, N19-N33. 

Sams, M.S., Neep, J.P., Worthington, M.H. & King, M.S., 1997. The measurement of 
velocity dispersion and frequency-dependent intrinsic attenuation in 
sedimentary rocks, Geophysics, 62, 1456-1464. 

Schijns, H., Duo, X., Schmitt, D.R., Kukkonen, I.T. & Heikkinen, P., 2009a. ICDP 
Outokumpu Borehole Seismic Anisotropy: Measurements and Theoretical 
Model, Outokumpu Deep Drilling Project: 3rd International Workshop 
Programme and Abstracts, Espoo, Finland, 12-13 Nov. 

Schijns, H., Heinonen, S., Schmitt, D.R., Heikkinen, P. & Kukkonen, I.T., 2009b. Seismic 
refraction traveltime inversion for static corrections in a glaciated shield rock 
environment: a case study, Geophysical Prospecting, 57, 997-1008. 

Schijns, H., Schmitt, D.R., Heikkinen, P. & Kukkonen, I.T., 2010. Anisotropy of Fractured 
Mica-rich Schist from Outokumpu, Finland: VSP Measurements, Laboratory 
Measurements and Theoretical Model, SEG Expanded Abstracts, Denver, United 
States, 17-22 Oct. 

Schijns, H., Schmitt, D.R., Heikkinen, P. & Kukkonen, I.T., 2013. Seismic anisotropy in 
cracked crystalline rock from Outokumpu, Finland, ASEG Extended Abstracts, 
Melbourne, Australia, 11-14 Aug.  

Schijns, H., Schmitt, D.R., Heikkinen, P.J. & Kukkonen, I.T., 2012. Seismic anisotropy in 
the crystalline upper crust: observations and modelling from the Outokumpu 
scientific borehole, Finland, Geophysical Journal International, 189, 541-553. 



193 

 

Schijns, H., Schmitt, D.R., Kukkonen, I.T. & Heikkinen, P., 2009c. Seismic Anisotropy 
Measurements and Theoretical Model of Fractured Rock Using Multi-Depth 
Multi-Azimuth Walk-Away VSP from Outokumpu, Finland, SEG Expanded 
Abstracts, Houston, United States, 25-30 Oct. 

Schijns, H., Schmitt, D.R., Kukkonen, I.T. & Heikkinen, P., 2009d. Seismic Anisotropy 
Measurements from the ICDP Outokumpu Borehole Compared to Theoretical 
Model, Abstract #GA21A-01, Joint Assembly of the American Geophysical Union, 
Toronto, Canada, 24-27 May. 

Schmitt, D.R., 1999. Seismic attributes for monitoring of a shallow heated heavy oil 
reservoir: A case study, Geophysics, 64, 368-377. 

Schoenberg, M., 1980. Elastic wave behaviour across linear slip interfaces, Journal of the 
Acoustical Society of America, 68, 1516-1521. 

Schoenberg, M. & Douma, J., 1988. Elastic wave propagation in media with parallel 
fractures and aligned cracks, Geophysical Prospecting, 36, 571-590. 

Schoenberg, M. & Sayers, C.M., 1995. Seismic anisotropy of fractured rock, Geophysics, 
60, 204-211. 

Schreiber, E. & Anderson, O.L., 1965. Pressure derivatives of sound velocities of 
polycrystalline alumina (Lucalox), American Ceramic Society Bulletin, 44, 637-&. 

Simmons, G. & Wang, H., 1971. Single crystal elastic constants and calculated aggregate 
properties: a handbook, 2nd edn, Vol., pp. Pages, The MIT Press. 

Smithson, S.B., Wenzel, F., Ganchin, Y.V. & Morozov, I.B., 2000. Seismic results at Kola 
and KTB deep scientific boreholes: velocities, reflections, fluids, and crustal 
composition, Tectonophysics, 329, 301-317. 

Smyth, J.R. & McCormick, T.C., 1995. Crystallographic data for minerals. in Mineral 
Physics and Crystallography, A Handbook of Physical Constants, pp. 1-17, ed. 
Ahrens, T. J. AGU, Washington. 

Spencer, J.W., 1981. Stress relaxations at low-frequencies in fluid-saturated rocks – 
attenuation and modulus dispersion, Journal of Geophysical Research, 86, 1803-
1812. 

Timoshenko, S.P. & Gere, J.M., 1973. Mechanics of Materials, Van Nostrand Reinhold, 
London. 

Tittmann, B.R., Bulau, J.R. & Abdelgawad, M., 1984. Dissipation of elastic waves in fluid 
saturated rocks, AIP Conference Proceedings, 131-143. 

Voigt, W., 1928. Lehrbuch der KristallphysikTeubner-Verlag, Leipzig, Germany. 



194 

 

Walsh, J.B., 1965a. Effect of cracks on compressibility of rock, Journal of Geophysical 
Research, 70, 381-389. 

Walsh, J.B., 1965b. Effect of cracks on uniaxial elastic compression of rocks, Journal of 
Geophysical Research, 70, 399-411. 

Walsh, J.B., 1969. New analysis of attenuation in partially melted rock, Journal of 
Geophysical Research, 74, 4333-4337. 

Watt, J.P. & Peselnick, L., 1980. Clarification of the Hasin-Shtrikman bounds on the 
effective elastic moduli of polycrystals with hexagonal, trigonal, and tegragonal 
symmetries, Journal of Applied Physics, 51, 1525-1531. 

White, J.E., 1986. Biot-Gardner theory of extensional waves in porous rods, Geophysics, 
51, 742-745. 

 
White, D.J. & Malinowski, M., 2012. Interpretation of 2D seismic profiles in complex 

geological terrains: Examples from the Flin Flon mining camp, Canada, 
Geophysics, 77, WC37-WC46. 

Winkler, K. & Nur, A., 1979. Pore fluids and seismic attenuation in rocks, Geophysical 
Research Letters, 6, 1-4. 

Winkler, K.W. & Nur, A., 1982. Seismic attenuation - effects of pore fluids and frictional 
sliding, Geophysics, 47, 1-15. 

Winkler, K.W., 1986. Estimates of velocity dispersion between seismic and ultrasonic 
frequencies, Geophysics, 51, 183-189. 

Worthington, M.H. & Lubbe, R., 2007. The scaling of fracture compliance. in Fractured 
Reservoirs, pp. 73-82, eds. Lonergan, L., Jolly, R. J. H., Rawnsley, K. & Sanderson, 
D. J. 

Yin, C.S., Batzle, M.L. & Smith, B.J., 1992. Effects of partial liquid gas saturation on 
extensional wave attenuation in Berea sandstone, Geophysical Research Letters, 
19, 1399-1402. 

Zhang, S.Q., Paterson, M.S. & Cox, S.F., 1994. Porosity and permeability evolution during 
hot isostatic pressing of calcite aggregates, Journal of Geophysical Research-
Solid Earth, 99, 15741-15760. 

 

 


