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ABSTRACT 

Safety-based design can be described as an approach in which safety is considered a core design 

input and the safety performance of proposed designs that follow this approach can be expected. 

Although current-day highway design guidelines are constantly updated to incorporate recent 

advances in research, there are still several limitations associated with the current design 

approach. Perhaps the biggest drawback is that the safety levels built into existing guidelines are 

largely unknown and safety is not explicitly considered as a design input. There is little to no 

knowledge about the safety implications of deviating from standard requirements. Moreover, 

current guides do not account for the stochastic nature of design inputs. Design inputs are 

therefore represented by deterministic values assuming near worst-case scenarios to determine 

design values leading to uneconomic designs in many cases. There is no information in design 

guidelines on whether a road designed to meet the minimum requirements of guidelines is capable 

of accommodating or exceeding driver demand, resulting in uneconomic design in many cases. 

To address these limitations, many design experts have promoted using reliability analysis as a 

robust methodology to quantify the risk (known as the probability of non-compliance, Pnc) that a 

certain design would fail to meet the requirements of the road user demand.  

The majority of previous studies on reliability-based highway design focused on assessing 

the risk associated with horizontal curves considering only one criterion of non-compliance which 

is insufficient sight distance using 2D sight distance calculations. In fact, this does not represent 

the nature of the driving environment as non-compliance on curves could result from multiple 

non-compliance modes such as restricted sight distance and vehicle skidding. Also, sight distance 

can be restricted by 3D obstructions or the combination of horizontal and vertical alignments 
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which makes using a multimode, also known as a system, reliability analysis and 3D sight 

distance evaluation more realistic. More so, only a handful of studies established a link between 

Pnc and collisions. Therefore, establishing a link between the Pnc and safety utilizing 3D sight 

distance and multi-mode reliability analysis remains unexplored. 

To address these limitations, this thesis adopts a safety-based design approach whereby 

relationships between driver capabilities, curve geometric attributes, and collisions are 

established. The thesis calibrates safety-based design charts for horizontal curves considering a 

system reliability analysis where the non-compliance could result from limited sight distance and 

vehicle skidding. To enable a robust and large-scale reliability analysis, the first phase of the 

thesis develops novel algorithms that facilitate curve detection and automatic extraction of curve 

geometric attributes on highways using mobile Light Detection and Ranging (LiDAR) data. Using 

this approach, curve attributes were collected, and the Available Sight Distance (ASD) was 

assessed in a 3D environment on 244 horizontal curves in Alberta, Canada. Monte Carlo 

Simulation was then used to calculate the associated risk levels, and full-Bayes multivariate 

Poisson lognormal regression was utilized to develop statistically significant safety performance 

functions that link Pnc to collisions. Safety-based design charts were then calibrated to relate curve 

attributes to risk levels and expected collision frequency. Structural Equation Modelling (SEM) 

was also used to study the interaction between curve attributes, Pnc, and collision frequency. The 

results of SEM presented curve features that directly affect Pnc, safety, and those who have an 

indirect influence on collisions, which was mediated through Pnc. 

The results showed that there is a statistically significant relationship between 𝑃𝑛𝑐 and 

safety, indicating that higher Pnc rates are associated with higher expected crashes. The calibrated 
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charts showed the importance of using multi-mode reliability analysis, especially on curves with 

sharp radii where the difference between Pnc of a single-mode and Pnc of a multimode is 

considerable. An example of using the calibrated charts in estimating the expected safety benefits 

of geometric improvements was introduced. Guidance to practitioners on using the proposed 

charts was also provided. The developed charts are ready to use by designers and can offer 

practitioners a tool to estimate the safety consequences of design alternatives and aid the decision-

making process of rehabilitation projects. In summary, the research presented in this dissertation 

is a step forward towards adopting a safety-based design of highways and is of crucial importance 

from both theory and practical perspectives.  
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1 INTRODUCTION 

1.1 Background & Motivation 

It is globally accepted that road collisions are a major cause of death and exert a substantial 

economic burden on both individuals and governments. Several studies showed that driver 

behaviour, roadway geometric features, pavement conditions, and vehicle characteristics are major 

contributing factors to collision occurrence [1, 2]. As an example of highway geometric attributes 

that affect safety, the radius of a curved segment has generally been found to have an inverse 

relationship with collisions [3, 4]. These studies also reported that road geometry has a significant 

impact on driving behaviour and affects both the path and speed of vehicles on horizontal curves. 

Accordingly, improving the geometric design of roadways including horizontal curves would 

improve driving behaviour, decrease the potential of driver errors, and therefore improve safety. 

While vehicle manufacturers work to improve the safety of vehicles, roads should be designed to 

provide a safe driving environment for both users and vehicles.  

Although roads are designed following design guidelines, several researchers have 

consistently shown that geometric characteristics of curved segments have significant relationships 

with crash occurrence [4-7]. The design of horizontal curves has been considered to entail 

significant safety concerns for several years [8]. Collisions that occur on curves are more severe 

and often cause major injuries and fatalities [9]. For example, in the United States, about 25 percent 

of fatal road collisions on highways occur on curved sections. More so, 87 percent of these fatal 

collisions are caused by run-off-the-road and head-on crashes that are likely to occur on horizontal 
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curves [10, 11]. These statistics highlight the significant social and potential economic 

consequences of roadway collisions. It also emphasizes the importance of improving road design 

practices to better safety.  

The current practice of road safety initiatives is categorized into two main approaches, 

reactive approach and proactive approaches [12]. The reactive approach to safety involves 

targeting locations that have a high number of collisions to identify concerns and propose potential 

remedial action. This approach is based on the analysis of road collisions that have already 

occurred and therefore, any proposed countermeasure is considered reactive in nature. A major 

limitation with this approach is the reliance on a high number of fatal and injury collisions to occur 

before any safety improvements are implemented. The reactive approach is studied to a 

satisfactory degree and several case studies and statistical models that follow this approach are 

available [13-15].  

Such a reactive approach to road safety is not appropriate during the planning and design 

stages of road facilities. A more pertinent approach should be ‘proactive’ (i.e., preventing unsafe 

roadway conditions from occurring in the first place) by addressing them either at the planning or 

design phases of a road’s development life cycle. The proactive approach involves the 

development of Safety Performance Functions, SPF (i.e., statistical models) that serve as safety 

indicators aiming to assess road safety of a proposed design at early stages. A significant advantage 

of adopting such an approach is that it does not require road collisions to occur before safety 

measures are taken. In addition, making modifications during the planning and design stages is 

less costly than implementing changes to an already existing roadway facility. Thus, the proactive 
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approach to safety is of great importance to assess current designs of road facilities, and it also can 

be used to provide the necessary tools and statistical models to assess the potential safety risk 

associated with proposed designs. Unfortunately, current design guidelines do not provide a direct 

link between a proposed design and the associated safety level. When designing roads following 

today’s guidelines, the level of safety in the suggested design is uncertain, and safety is considered 

a by-product measure. Indeed, it has been established that there is a need to explicitly address road 

safety considerations in current design guides [5, 16]. 

1.1.1 Safety in Current Design Guidelines

Road facilities are currently designed following design guidelines that were developed by various 

transportation agencies. In the US, the American Association of State Highway and Transportation 

Officials, AASHTO [17], produces and updates a policy on the geometric design of highways and 

streets. In Canada, the Transportation Association of Canada (TAC) publishes books and 

guidelines that govern the design of highways in the country [18]. The highway geometric design 

process involves dimensioning the roadway elements to provide safe, comfortable, and aesthetic 

road conditions for road users. The output of this process is a set of deterministic dimensions to 

ensure a satisfactory driving environment. 

Although design guidelines are developed with some safety considerations, they do not 

provide enough information on the expected safety performance of roadways designed following 

the recommended requirements. Therefore, it is unclear how safe a road that meets the minimum 

criteria of current guidelines [19].  
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Even though highway design guidelines are continuously evolving, there are still several 

outstanding concerns. How safe is a proposed design? How do roadway elements affect the safety 

level of a proposed design or its alternatives? What are the safety consequences of deviation from 

design guidelines? Is road rehabilitation an economically feasible alternative to improve the safety 

of an existing highway? Answering questions related to the safety of a proposed design is not an 

easy task since the existing design guidelines are not capable of providing a measure of the safety 

or the reliability of an existing road or proposed design [4, 19, 20].  

The recent editions of design guides refer designers to the Highway Safety Manual (HSM) 

for information on the substantive safety impacts of design [21]. The HSM provides a predictive 

methodology to quantify the expected number of collisions of a road facility under existing road 

conditions and conditions that have not yet been implemented. This predictive procedure is used 

to estimate the anticipated number of crashes at an individual site after a highway is divided into 

homogenous sites with similar characteristics such as road segments or intersections. The 

evaluation procedure could vary by the type of road element being analyzed. The HSM prediction 

models estimate the expected number of collisions at an individual site relying on regression 

models (i.e., SPFs) developed using data of a large number of similar sites. These safety 

performance functions are usually a function of a few variables such as Average Annual Daily 

Traffic (AADT) volumes and roadway segment length.  

Although this procedure can be useful in many design-related situations, it relies on 

historical collision records at similar sites and on SPFs to be developed. Thus, this approach has 

limited utility when used as a prediction tool when designing road facilities where data about 
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similar sites are not available or inaccurate. More importantly, using this approach, a road facility 

will still have to be designed according to the current deterministic approach suggested by design 

guidelines, and it can then be evaluated when regression models (i.e., SPFs) about similar locations 

are available, knowing that these similar sites were designed and constructed following that 

deterministic approach that does not account for uncertainties in design inputs. Therefore, there is 

a need for a framework that can be used to assess the risk directly connected to the suggested 

design by highway guidelines without the reliance on data about sites similar to the road facility 

being designed. The ultimate goal of a more reliable approach is to have similar sites constructed 

based on a safety-based design approach with the availability of SPFs about these sites in later 

stages. In this case, these SPFs can be used to assess the safety risk associated with proposed design 

alternatives following a safety-based design approach.  

The main concern with the current design guidelines is that the provided level of safety is 

largely unknown, and safety is not explicitly considered as a design input [22, 23]. As a result, 

when a road is designed following the requirements of design guides, it is implicitly assumed to 

be a safe design and intended to provide a good, but unknown, level of safety [24, 25]. Moreover, 

when design values are selected, they are often considered to be on the conservative side resulting 

in an uneconomic design [16, 26]. Using these cautious values would increase the construction 

costs, becoming a hurdle towards the overall cost-effectiveness of road projects. There is little to 

no investigation into the consequences of deviating from the values provided by the current 

practices of roadway design [5, 27, 28]. Although safety levels can be maximized by applying a 

higher limit, road designers are often constrained by a limited right-of-way. The design output in 
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such a case is usually applying the minimum design requirements. When a designer has to make 

critical choices, the existing design guidelines do not provide information about the safety 

consequences for making such decisions [29, 30]. To address this concern, safety should be 

explicitly considered as a design input and safety-based design charts should be developed and 

utilized. Adopting a performance-based design approach could help road designers in quantifying 

the safety levels of different design alternatives and investigating the cost-effectiveness of various 

dimensioning scenarios.  

1.1.2 Accounting for Uncertainties in Design Guidelines 

Another big concern regarding current guidelines is that there are various sources of uncertainty 

that affect the design process. First, even though several design inputs such as vehicle operating 

speed and perception and reaction time are stochastic variables, they are currently assumed to be 

deterministic and derived from probability distributions to conservatively represent the population 

of road users [31]. The selection of such values is typically not based on quantitative safety 

measurement with known safety margins. This approach ignores the stochastic nature of design 

inputs assuming near worst-case scenarios for design inputs which could result in uneconomic 

designs [5, 32]. Researchers emphasized the presence of major issues due to the inescapable 

randomness in design variables and recommended adopting an integrated probabilistic analysis 

and reliability theory into the highway design process [5, 28, 30, 33, 34]. 

More so, highway design guides, such as AASHTO and TAC, were produced based on a 

combination of empirical research, experience, and engineering judgment [5]. For example, the 

selection of model forms, parameters, and inputs to design a certain element is based on 
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engineering theories and research [35]. These uncertainties have led to unquantifiable levels of 

safety that are currently subject to criticism by researchers [22, 23]. A common approach to 

account for this uncertainty is to use conservative values and apply the upper limits proposed by 

design guides, however, the selection of these limits is not based on a defensible framework and 

the safety margin remains unknown [35]. Moreover, applying the upper limits of design values 

could lead to higher costs of highway construction projects.  

The above discussion underlines the need to address and account for uncertainties in design 

in order to lead to a more realistic design procedure. Although it is impossible to avoid 

uncertainties when designing roadways, it can be estimated and accounted for using the reliability 

theory which aims to quantify the level of uncertainty involved in highway design. Reliability 

theory is a part of the probability theory that offers a framework to road safety professionals to 

address the safety implications of deviation from a particular design. In structural engineering, the 

reliability theory is used to estimate the probability of failure or collapse corresponding to having 

applied loads (demand) greater than the structure resistance (supply). Navin adopted a terminology 

for this probability in highway engineering as the probability of non-compliance (Pnc) [24]. This 

probability is a measure of non-performance (i.e., non-compliance) and can be defined as the 

probability that a particular element fails to perform as intended.  

Utilizing reliability analysis in road geometric design allows design engineers to investigate 

the influence of each individual element on the overall design. This was emphasized by Haukass 

[36] who indicated that using reliability analysis can help rank design inputs of a design problem 

according to their relative importance and influence in the design output, allowing targeting the 
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most important inputs to improve the overall model. He also emphasized that using the output of 

the reliability analysis, which is the Pnc, can be used in the decision-making process when 

comparing different design alternatives and can also be used in calibrating reliability-based design 

charts. 

1.2 Problem Statement  

As discussed, current highway design guidelines adopt a deterministic design approach which 

ignores the importance of the probabilistic nature of design inputs [16, 37]. The deterministic 

approach adopts near worst-case scenarios to determine a specific conservative value for each 

factor involved in the design model which leads to uneconomic design solutions. Even when using 

conservative values, this approach lacks the explicit consideration of safety and does not account 

for the variability in driver behaviour [7]. Generally, road designers assume that designs that fulfill 

the minimum requirements of the guidelines are inherently safe. However, the safety performance 

of the design output proposed by this deterministic approach is unknown. Also, there is little 

knowledge about the safety implications of deviating from standard requirements (e.g., providing 

sight distance or curve radius lower than standard values) [27, 28, 31, 38]. More so, current 

guidelines of highway geometric design do not account for uncertainty in design parameters. 

Design guides treat design inputs such as operating speed, perception and reaction time (PRT), 

and friction coefficient as deterministic parameters ignoring their stochastic characteristics [32, 

35, 39]. 
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The shortcomings of the deterministic design approach demonstrate the need for a 

performance-based design methodology or a supplementary framework that accounts for 

uncertainty in design inputs and explicitly considers the safety in the design stage. Reliability 

analysis has been considered as a firm approach to account for uncertainties in design parameters 

by treating them as random variables. In this approach, the reliability theory is used to quantify the 

risk associated with deviation from specific design values. This risk is generally referred to as the 

probability of non-compliance (Pnc), which is generally the probability that the supply provided 

by a design is exceeded by the demand. To a highway designer, the Pnc can be defined as the 

probability that a proposed design element (e.g. provided sight distance) would not be sufficient 

to meet the needs (i.e., required sight distance) of the driver population [25, 27]. For example, a 

Pnc of 0.30 associated with sight distance compliance mode indicates that 30% of the time, drivers 

would have insufficient sight distance. Using a probabilistic design approach enables estimating 

the expected risk levels associated with proposed designs, which can not be provided by current 

deterministic design guidelines. More so, risk values (i.e., Pnc) associated with different road 

elements such as horizontal curves can be linked to related historical collisions providing designers 

with a scientific-based tool to assess the influence of proposed designs on safety. Risk levels can 

also be used as targeted safety levels enabling the calibration of probabilistic design guidelines. 

The majority of previous work on reliability-based highway design focused on evaluating 

the risk associated with horizontal curves. Several studies utilized reliability analysis to quantify 

the risk corresponding to insufficient sight distance on curved segments considering the non-

compliance resulting from one failure mode, in which the non-compliance occurs when the 
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Available Sight Distance (ASD) is less than the required sight distance [16, 26, 27, 39-42]. Previous 

studies emphasized the need for future work that considers three main shortcomings related to the 

assessment of the ASD, non-compliance modes on curved segments, and relating the Pnc to safety.  

First, the importance of assessing the ASD in a three-dimensional (3D) world has been 

demonstrated in previous research [26, 43, 44]. However, except for a handful of studies, the 

majority of previous work on the reliability-based design of horizontal curves have used a two-

dimensional (2D) sight distance assessment in which the ASD is calculated using a 2D projection 

approach based on the radius and lateral clearance of the curve. Assessing drivers’ visibility based 

on 2D sight lines does not simulate the real driving environment. It could also be inaccurate since 

sight distance can be restricted by horizontal curves combined with vertical curvature or by any 

other 3D obstacles such as roadside barriers.  

Second, the majority of previous studies focused on assessing the risk for only one mode 

of non-compliance (i.e., limited ASD using 2D projection). For example, Ibrahim and Sayed 

quantified the risk associated with insufficient 2D sight distance on horizontal curve segments [5]. 

Many other studies also estimated the risk associated with sight distance limitations [16, 27, 35, 

41]. However, non-compliance on curved sections can occur due to more than one noncompliance 

mode such as insufficient sight distance and vehicle skidding [30, 31]. In this case, utilizing a 

multi-mode, also known as system reliability-based approach, that considers multi-mode of non-

compliance and 3D ASD assessment is required.  

Third, the relationship between the reliability measure (i.e., Pnc) and the collision frequency 

is not well established. There have been a handful of studies that explored the relationship between 
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risk levels and collision frequency based on 2D ASD calculations [6, 7, 34]. However, the link 

between the risk measure (Pnc) and collision frequency utilizing real-world 3D sight distance 

assessment and using system reliability (i.e., insufficient sight distance combined with vehicle 

skidding) remains unexplored [45, 46]. Understanding this relationship will provide significant 

insights into the reliability of a proposed road design and its influence on road safety in terms of 

collision impacts.  

More so, although previous work has quantified the risk (Pnc ) associated with horizontal 

curves with some recent studies developed relationships between Pnc and safety, the Pnc remains a 

statistical measure that is not informative enough to roadway designers. It does not provide them 

with enough information on the geometric attributes of road elements and their interactions with 

safety. The relationship established between reliability measures and safety focused entirely on 

developing a direct link between the Pnc and collisions without addressing either the potential 

direct influence of roadway geometric attributes on crashes or the indirect effect geometric features 

could have on collisions through their effect on the Pnc.  

In other words, although some previous studies on horizontal curves showed that there is a 

statistically significant relationship between Pnc associated with limited sight distance and 

collisions, it is unknown whether or not curve attributes confound this relationship by directly 

affecting safety or influencing safety through their effect on Pnc. Thus, there is a need to explore 

the underlying relationships between geometric attributes of roadway design elements, 

uncertainty, and safety. The impacts of geometric design attributes on the Pnc as well as the direct 

and indirect (through the impacts on Pnc) impacts of those attributes on safety need to be modelled 
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and understood. Understanding the impacts of geometric characteristics on Pnc and safety is crucial 

for design professionals. Investigating such relationships could significantly improve the 

understanding of the impacts of various curve attributes on non-compliance and safety. 

Finally, the majority of previous studies have relied on conventional techniques to extract 

curve features (i.e., radius, deflection angle, etc.) such as using as-built documents or AutoCAD 

drawings. Generally, there is a lack of as‐built plans for large highway networks as well as a lack 

of information on roadside features (e.g., vegetation) that can obstruct sight distance and are not 

normally documented on as-built drawings. In many cases, when these sources of curve attributes 

are available, they could be outdated or some information about curves might be missing or need 

to be calculated using other curve attributes [47]. Using outdated and limited information could 

affect the resulting Pnc and provide biased results about the associated safety levels. Also, 

implementing a large-scale reliability analysis using conventional data sources is challenging due 

to the large amount of manual work needed to extract the required information on all the study 

curves, assuming that data availability was not an issue. It is believed that the lack of accurate 

and/or large-scale data sets has led many previous studies to use either simulated curves or limited 

datasets with short road segments [25, 27, 30, 39].  Therefore, having an accurate and preferably 

large-scale dataset is necessary to ensure proper consideration of risk levels associated with 

roadway elements.    

1.3 Research Objectives & Significance 

While addressing the previously discussed research gaps, the ultimate goal of this thesis is to 

demonstrate one significant application of using reliability analysis in highway engineering: the 
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calibration of safety-based design charts for horizontal curves. Meeting such a goal requires 

achieving multiple objectives as detailed in the next few paragraphs:  

• The main objective of this thesis is to apply a multi-mode (system) reliability analysis to 

first calculate the probability of non-compliance (Pnc) of limited 3D ASD on horizontal 

curves combined with the probability of vehicle skidding, considering the effect of 

longitudinal grades (i.e., vertical alignment). Considering multiple modes of 

noncompliance is a better representation of the actual demand on the road. Also, using 3D 

sight lines assessment provides a better representation of the driving environment. It takes 

into account the potential effect of various obstacles that exist in the real environment such 

as roadside barriers, cut slopes, trees, etc. and which can obstruct the driver’s sight line and 

cannot be captured using a 2D assessment approach.  

• The second objective is to develop SPFs to link the system Pnc to historical collision 

frequency using Full Bayes Multivariate Poisson Log-normal (MVPLN) regression. Using 

the MVPLN help account for any potential correlation between different severity levels 

(i.e., property damage only, PDO, and injuries plus fatalities, I+F) [48]. Establishing a link 

between the system Pnc and safety is a major contribution of this work. Developing such a 

relationship would help accelerate the adoption of probabilistic design guidelines. It would 

help quantify the safety implications corresponding to proposed designs and facilitate the 

ability to evaluate the risk associated with deviation from current design guides. Moreover, 

developing SPFs that incorporate the probability of noncompliance corresponding to more 

than one mode of noncompliance can explain the influence of all possible modes of failures 
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on the collision occurrence and can improve the ability of the model to predict road 

collisions while providing a better understanding of the sources of variations in the model 

output.  

• The third objective is the calibration of safety-based design charts for horizontal curves. 

The calibrated performance-based design charts relate geometric and traffic characteristics 

of horizontal curves such as the operating speed and the ASD to the multi-mode Pnc and 

road collisions. The charts are calibrated using a system reliability approach and utilizing 

3D ASD assessment. An example is discussed to demonstrate the feasibility of using the 

developed charts to estimate the expected safety benefits, in terms of collision reductions, 

associated with potential geometric improvements of a curved segment with design 

limitations. 

• To help understand the direct and/or indirect influence of different curve attributes on 

safety, one of the objectives is to study the relationship between Pnc and collisions while 

accounting for curve attributes that could mediate and confound this relationship. In other 

words, the objective is to model the relationship between Pnc and collisions while also 

modelling the relationship between curve attributes and collisions to determine whether or 

not curve attributes affect collisions directly or indirectly (through their effect on Pnc). This 

is achieved through using a path analysis approach, a form of Structural Equation 

Modelling (SEM), to simultaneously model the relationship between Pnc and safety, curve 

attributes and safety, and the effect of curve features on Pnc and whether or not this entails 

an indirect influence on collision frequency. More specifically, the aim here is to explore 
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the indirect influence curve attributes can have on collision frequency through their impacts 

on Pnc, which is a practical motivation behind this objective.  

• To provide an accurate and rich database for the reliability analysis, this research utilizes a 

set of novel algorithms to extract horizontal and vertical curve features and assess the 

available sight distance (i.e., 3D ASD) on curved sections using Light Detection And 

Ranging (LiDAR) data. The developed algorithms facilitate the automated detection of the 

presence of curved segments on highways and the extraction of their attributes using 3D 

LiDAR point clouds. Using this approach, horizontal curves were detected, and road 

geometry information was extracted from 5,802 kilometers on 76 highways in Alberta, 

Canada. This enables access to a large amount of data and facilitates large-scale and 

reliable use of the reliability theory on horizontal curves. In fact, the benefits of the 

automated and efficient manner in which this data is extracted extend far beyond using the 

dataset in reliability analysis. The developed novel algorithms provide both transportation 

agencies and researchers with tools that enable access to an abundant amount of 

information about geometric characteristics of highway infrastructure. The developed 

algorithms can be used to build a reliable inventory of information on horizontal and 

vertical alignments that could be of great value in geometric and safety assessments of 

existing highways along with its readiness for use in several transportation studies.  

In summary, this research contributes to the body of literature by developing a link between 

theoretical noncompliance and historical collision data using 3D sight distances and system 

reliability analysis. The calibration of performance-based design charts demonstrates the value of 
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utilizing reliability analysis in highway design. The ability to evaluate the trade-offs between the 

cost of rehabilitation projects and expected safety levels requires the availability of a quantitative 

method to assess the safety of proposed modifications. As an example of geometric design code 

calibration, the calibrated charts can offer road designers the ability to estimate the safety benefits 

of proposed geometric improvements. The proposed charts can help transportation agencies to 

study the economic feasibility of rehabilitation projects of horizontal curves, especially those with 

high collision frequency associated with the studied non-compliance modes. The calibrated charts 

provide the opportunity of quantifying the safety consequences of deviation from geometric design 

guidelines. 

The developed reliability-based design framework incorporates both reactive and proactive 

approaches to road safety by developing SPFs incorporating reliability indices and by providing a 

tool that can be used in the design stage to assess the risk associated with different design 

alternatives.  From a practical perspective, the thesis provides predictive tools that can be used by 

road designers to assess the risk associated with different design alternatives and allow them to 

have a better understanding of the safety margin corresponding to each design option. It also can 

help in quantifying the safety implications of modifying the geometric conditions of existing roads. 

Overall, this research is a step forward towards developing performance-based design guidelines.  

1.4 Research Methodology & Organization 

To accomplish the research objectives, the workflow presented in Figure 1 was followed. The first 

stage involved detecting horizontal curves and extracting their geometric attributes using LiDAR 

data. To achieve this, a set of novel algorithms were developed, tested, and used to obtain 
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information on horizontal and vertical alignments along with assessing the ASD on highway curved 

sections. Collision data of the studied segments were then combined with their geometric and 

traffic data to establish the dataset needed for reliability calculations.  

The second stage included utilizing the reliability theory to assess the risk associated with 

the studied non-compliance modes. The risk was estimated for each horizontal curve while 

considering the probabilistic nature of design inputs. This was followed by establishing a link 

between risk levels and safety (i.e., historical collisions). Design charts were then calibrated to 

relate curve geometric and traffic characteristics, to risk levels and safety using the developed 

SPFs. Finally, SEM was used to simultaneously model the relationship between Pnc and safety 

while accounting for curve attributes that could mediate and confound this relationship to 

determine whether or not curve attributes affect collisions directly or indirectly (through their 

effect on Pnc). 
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Figure 1: A summary of the research framework 
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1.5 Thesis Structure  

The remainder of the thesis is divided into seven chapters that are organized in the following 

manner. 

Chapter 2 presents a literature review of the reliability theory and previous studies on the 

reliability-based design of horizontal curves. It also provides background information on LiDAR 

data and summarizes the efforts of previous work on automated detection and extraction of curve 

features including sight distance assessment.  

Chapter 3 is dedicated to utilizing LiDAR technology in data acquisition and establishing 

an inventory of curve information for reliability calculations. It provides details on different 

algorithms that were developed to detect horizontal curves on highways and extracts their 

attributes including horizontal alignment features and vertical grades. Moreover, the chapter 

includes information on current practices of sight distance assessment, highlights that using 2D 

visibility assessment could lead to misleading conclusions and presents an automated method for 

assessing sight lines in a 3D environment. The chapter contains a detailed description of the 

extraction procedure of the developed algorithms, the results of algorithm testing and validation 

as well as applying the developed procedure on a large scale. This Chapter is a combination of 

research that has been published in Transportation Research Record, the Journal of 

Transportation Research Board and the International Journal of Remote Sensing:  

• Shalkamy, A., El-Basyouny, K., & Xu, H. Y. (2020). Voxel-based methodology for 

automated 3D sight distance assessment on highways using mobile light detection and 

ranging data. Transportation Research Record, 2674(5), 587-599. 
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• Shalkamy, A., Karsten, L., Gargoum, S., & El-Basyouny, K. (2020). A framework to 

detect horizontal curves and assess their geometric properties from remotely sensed point 

clouds. International Journal of Remote Sensing, 41(21), 8328-8351. 

Chapter 4 is devoted to using reliability analysis to quantify the risk associated with 

insufficient sight distance and vehicle skidding on highway curved segments. The chapter presents 

detailed information on Limit State Functions (LSF) as well as random and deterministic variables 

associated with each LSF. Also, it includes details on using Monte Carlo simulation to estimate 

the system Pnc. The closing section of the chapter presents the results of risk assessment and their 

implications.  

Chapter 5 is dedicated to the safety-based design of highway horizontal curves. It presents 

developing safety performance functions that relate curve attributes to the system reliability 

outcome. It then provides detailed information on calibrating design charts for horizontal curves 

where curve geometric and traffic characteristics are linked to expected collision frequency. 

Moreover, the chapter presents examples of using the developed design charts to predict the 

expected collision frequency associated with a proposed design and using the charts in quantifying 

the potential safety improvements of modifying curve geometry. Also, the chapter discusses the 

difference between the calibrated charts and the current design guidelines and discusses the 

feasibility of developing similar charts by other jurisdictions.  

• The work presented in Chapters 4 and 5 was divided into two papers, one of which has 

been published in the Journal of Accident Analysis and  Prevention while the other one has 

been published in the Journal of Transportation Safety and Security: 
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• Shalkamy, A., & El-Basyouny, K. (2020). Multivariate models to investigate the 

relationship between collision risk and reliability outcomes on horizontal curves. Accident 

Analysis & Prevention, 147, 105745. 

• Shalkamy, A., & El-Basyouny, K. (2021). Calibrating Safety-based Design Charts for 

Horizontal Curves using System Reliability Analysis and Multivariate Models. Journal of 

Transportation Safety & Security. DOI: 10.1080/19439962.2021.1992552. 

Chapter 6 explores the association between Pnc, curve features, and safety. It presents using 

SEM to model the relationship between Pnc and safety while assessing the indirect effects of curve 

features on collisions that could be mediated through Pnc. A version of this chapter has been 

published in the Journal of Accident Analysis and Prevention: 

• Shalkamy, A., Gargoum, S., & El-Basyouny, K. (2021). Towards a more inclusive and 

safe design of horizontal curves: Exploring the association between curve features, 

reliability measures, and safety. Accident Analysis & Prevention, 153, 106009. 

Chapter 7 presents a summary of the research conducted in this thesis and includes a 

discussion of the contributions of this work as well as highlighting research limitations and 

potential areas for future research.  
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2 LITERATURE REVIEW 

This chapter provides an overview of the reliability theory and previous studies on the reliability-

based design of horizontal curves. It also presents background information on LiDAR data, 

horizontal curves and sight distance assessment, and summarizes previous work on curve detection 

and feature extraction including sight distance assessment.   

2.1 Reliability Analysis 

2.1.1 Reliability Theory  

The term reliability usually refers to the complement of the Pnc as shown in Equation 1. In the 

context of highway design, researchers define the Pnc as the probability that a particular design 

does not meet the standard requirements.  

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝑃𝑛𝑐                                                                                                                (1) 

Reliability can generally be defined as the ability of a system to accommodate the demand 

of a particular design element against the capacity of this element [49]. The basic elements of a 

reliability problem are two elements namely supply (S) and demand (D). The performance function 

(G) of a system is conventionally expressed as the difference between S and D and noncompliance 

occurs (i.e., G yields negative values) when the demand exceeds the supply. The performance 

function (also referred to as the limit state function; LSF) of a reliability problem can be written 

as follows: 

𝐺 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑆(𝑥1, 𝑥2, … , 𝑥𝑛) − 𝐷(𝑥1, 𝑥2, . . . , 𝑥𝑛)                                               (2) 
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where G is the performance function or LSF; S stands for Supply; D stands for Demand; X1, X2,…, 

Xn are variables (usually random variables) of supply and demand.  

The outcome of the analysis of a reliability problem is usually the probability of 

noncompliance (Pnc) as expressed by the following equation:  

𝑃𝑛𝑐 = 𝑃 (𝐺 < 0 ) =  ∫  ∫  𝑓(𝑥)𝑑𝑥 
𝐺≤0

    
…..

                                                                                  (3) 

where Pnc is the probability of noncompliance; 𝑓𝑥 is the joint probability density function (PDF) 

for the random variables; and the integration is performed over the unacceptable domain (i.e., 

where D exceeds S) 

Another way of describing the reliability of a system or a product is the reliability index (β) as 

shown by Equation 4. The reliability index is defined as the ratio between the margin of safety and 

the combined variance where the margin of safety is the difference between the expected value of 

the supply and that of demand [4].  

𝛽 =
𝐸(𝑆)−𝐸(𝐷)

√𝑉𝐴𝑅 (𝑆)+𝑉𝐴𝑅 (𝐷)
                                                                                                                                 (4) 

Where 𝛽 = the reliability index; E(S) = expected value of supply, E(D) = expected value of 

demand; VAR(S) = variance of supply; and VAR(D) = variance of demand 

The probability of noncompliance (Pnc) can also be calculated as follows:   

𝑃𝑛𝑐 = 𝜙 (−𝛽)                                                                                                                            (5) 

where 𝜙(. ) is the standard normal cumulative probability distribution function. 

If the problem has only one LSF (e.g., sight distance), it is usually referred to as a 

component reliability problem or a single mode of non-compliance. When there are two or more 
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LSFs (e.g., G1 for sight distance and G2 for vehicle skidding), this is considered a system (multi-

mode) reliability problem. 

2.1.2 System Reliability Analysis 

System reliability is concerned with design situations where two or more LSFs are defined. For 

example, if it is assumed the non-compliance on horizontal curves could result from sight distance 

deficiency and vehicle skidding, there would be two LSFs, one for each design criteria. In general, 

there are two types of system reliability commonly considered in engineering practice: (i) series 

system reliability problem in which the system failure occurs if any of the multiple LSFs yield 

negative outcomes and (ii) parallel system reliability problem where the system fails only if there 

is a failure in all the modes (i.e., all LSFs are negative) concurrently. The Pnc of the series and 

parallel systems can be calculated, as indicated in Equation 6 and Equation 7, respectively [50]. 

𝑃𝑛𝑐 = 𝑃[⋃ 𝑔𝑘 (𝑥) ≤ 0)𝑘
𝑘=1 ]                                                                                                       (6) 

𝑃𝑛𝑐 = 𝑃[⋂ 𝑔𝑘 (𝑥) ≤ 0)𝑘
𝑘=1 ]                                                                                                       (7) 

where k represents the number of limit state functions; and 𝑔𝑘 (𝑥) is kth limit state function. 

In the case of horizontal curves, the non-compliance of the system is assumed to occur if 

there is either insufficient sight distance or potential for vehicle skidding on the curve (i.e., two 

LSFs). Thus, the system reliability presented in this thesis is based on a series system reliability 

problem. It is worth noting that the system probability of non-compliance here is related to the 

design deficiencies, not individual drivers. In other words, combining the two design criteria (i.e., 

limited sight distance and vehicle skidding) is based on the assumption that sight distance can be 
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limited a long a section where vehicle skidding could happen (i.e., side friction demand is greater 

than the side friction supply).   

In a series system reliability problem with two modes of non-compliance, the probability 

of non-compliance can be calculated as follows: 

𝑃𝑛𝑐 𝑠𝑦𝑠𝑡𝑒𝑚 =  𝑃𝑛𝑐1 +  𝑃𝑛𝑐2 − 𝑃𝑛𝑐1,𝑛𝑐2                                                       (8) 

where Pnc system is the probability of non-compliance of the system; Pnc1 is the probability of non-

compliance of the first mode (i.e., insufficient sight distance); Pnc2 is the probability of non-

compliance of the second mode (i.e., vehicle skidding); and Pnc1,nc2 is the joint probability of failure 

(i.e., the intersection of the two failure events). 

The joint probability of failure is the likelihood that the two LSFs are violated at the same 

time. Assuming the failure in the first mode is event A and the failure in the second mode is event 

B, there could be two scenarios. If A and B are assumed to be statistically independent, the joint 

probability can be calculated using Equation 9. Otherwise, the joint probability can be calculated 

using the conditional probability principle, as shown in Equation 10. Although some previous 

studies assumed that failure modes on horizontal curves were independent [32], recent studies 

considered that the modes of non-compliance could fail at the same time and accounted for the 

correlation between LSFs [30, 31]. Thus, this thesis assumes that the two LSFs are correlated; 

hence, the conditional probability is used to calculate the joint probability according to Equation 

10.  

𝑃𝑛𝑐1,𝑛𝑐2 = P (A∩B) = P(A) * P(B)                                                                                                          (9) 

𝑃𝑛𝑐1,𝑛𝑐2 = P (A∩B) = P(A∣B)*  P(B)                                                                                                    (10) 
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where P(A) is the probability that the first mode fails; P(B) is the probability that the second mode 

fails; P(A∣B) is the probability that the first mode (i.e., event A) will fail given the knowledge that 

the second mode (i.e., event B) has already failed.  

2.1.3 Previous Studies on Reliability-based Design 

Reliability analysis is a commonly used approach in risk analysis in structural engineering and has 

been recently advocated as a powerful tool in transportation engineering with an emphasis on 

roadway design [49]. Navin cited many concerns regarding the implicit level of safety included in 

highway design guides [33, 51]. The study provided meaningful arguments in favor of using 

reliability analysis in road design. The author investigated the possibility of quantifying the level 

of safety built into various roadway components. The method used the basic equations of highway 

design and assumed that all variables are independent and have a normal distribution. It was 

indicated that the safety index, represented by the reliability index, may be estimated using the 

proposed method, and introduced a generic equation to be used in uncertainty-based studies in 

roadway design.  

Faghri and Demetsky [52] showed the potential of using reliability theory to assess the risk 

associated with sight distance limitations at railroad grade crossings. Easa [53] proved that using 

reliability analysis is a valuable tool that could be used to design a specific feature when he used 

a probabilistic approach to successfully design the intergreen (yellow plus all-red) time interval at 

signalized intersections. The goal was to redesign the intergreen time to eliminate the issue of 

having the driver not be able to stop or safely clear the intersection. In order to solve this research 
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problem, the author used the concept of equating the stopping sight distance with the distance 

required to clear the intersection. As a result, the author developed a closed-form model to estimate 

the intergreen times. In a different study, Easa [54] proposed a probabilistic method for sight 

distance design at railroad crossings. The method accounted for the randomness in the design 

inputs and provided information about the probability of noncompliance of the design. The author 

indicated that the results of this method were generally conservative.  

As discussed in previous sections, a poor design of horizontal curves may lead to 

significant safety problems. Several efforts advocated the use of reliability theory to assess the risk 

associated with the design of horizontal curves. Echaveguren, Bustos [55] introduced a method 

using reliability theory to calculate the safety margin of an existing horizontal curve. The margin 

of safety is represented by the reliability index. The results showed that horizontal curve radius 

and skid resistance had the highest impact on the probability of noncompliance while the 

superelevation rate had little influence. Dhahir and Hassan [56] used reliability analysis to estimate 

the probability of non-compliance based on the difference between available and demanded lateral 

friction on horizontal curves. The results of the study can be used to estimate the probability of 

non-compliance on a specific horizontal curve to determine the minimum radius required for a 

certain risk value. The findings indicated that the minimum radii values recommended by 

AASHTO would result in inconsistent values of probability of non-compliance for different design 

speeds.  

De Solminihac, Echaveguren [57] noted that design guides provide deterministic values 

considering the behaviour of drivers is uniform. In order to address this, the authors proposed a 
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methodology to estimate the risk associated with design components. They calculated the skid 

resistance reliability index for low volume roads. You, Sun [58] conducted a comparative study 

using two performance functions (skidding and rollover) on horizontal curves. Each mode of 

failure was analyzed separately as a single-mode reliability problem and the results showed 

different values of probability of failure for each one. Himes and Donnell [49] used reliability 

analysis to assess vehicle skidding (resulting from the demand side friction exceeding design side 

friction) on horizontal curves. The results showed that the values provided by current design guides 

are sufficient considering no effects of vertical grades. It was also concluded that using a reliability 

index of 3.0 is appropriate in the probabilistic approach of horizontal curve design. Dhahir and 

Hassan [28] proposed a reliability-based framework for the design of horizontal curves considering 

vehicle dynamic stability and driver comfort. The authors recommended future work to enhance 

the proposed design framework through developing safety performance functions to relate safety 

to reliability measures. 

There are multiple studies focused on using the reliability theory to estimate the risk 

associated with limited sight distance on highways using 2D sight distance assessments. Khoury, 

Hobeika [59] used Monte Carlo simulation techniques and risk analysis to develop a procedure to 

estimate the risk associated with limited passing sight distance on straight road segments. The 

study indicated that AASHTO's model for passing sight distance (PSD) overestimated the PSD 

requirements. Richl and Sayed [25] applied reliability theory to assess the risk associated with 

varying sight distance restrictions on a set of horizontal curves. The authors used horizontal curves 

with narrow medians as when the median is narrow, a driver may not be able to stop within the 
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available sight distance which is restricted by the median barrier. The probability of not being able 

to stop was estimated for different sigh distance limitation scenarios. The study concluded that the 

available sight distance is insufficient when there is a narrow median combined with a sharp 

horizontal curve. The authors recommended future research to develop a link between Pnc and 

safety. 

Wood and Donnell [41] used 2D ASD calculations to compute the probability that a driver 

would not stop within the ASD in case of approaching a curved segment and within a curve. The 

results showed that the probability that drivers would not have adequate stopping sight distance 

was greater when approaching the curve than along the curve. The study encouraged future work 

to explore whether there is a relationship between reliability measures and collisions. Sarhan and 

Hassan [26] used reliability analysis to calculate the horizontal sight offset on horizontal curves 

considering the effect of the vertical alignment. Demonstrating the feasibility of developing 

probabilistic design charts, the authors calibrated a design chart for a 400 m horizontal curve 

combined with vertical curves where the chart covers a range of design speeds from 90 to 130 

km/h. The study emphasized that using 2D-based sight distance calculations can lead to inaccurate 

results since sight distance could be limited as a result of both vertical and/or horizontal 

obstructions. The authors recommended further research on exploring the relationship between 

risk levels and safety and using real road segments.  

Sarhan and Hassan [16] used a reliability-based approach utilizing Monte Carlo Simulation 

to estimate the probability of hazard (POH) resulting from insufficient sight distance. The method 

was applied on an assumed 1-km road segment using 2D and 3D sight distance projections where 
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the sight distance was assumed to be restricted by the side slope. The results showed that the 

current deterministic approach is conservative resulting in low POH values indicating that the 

current design practice may be uneconomic. The study however showed the importance of 

considering the effects of the vertical alignment on horizontal curves. The authors recommended 

further research on the safety implications of different risk levels.  

Based on a 2D projection of sight lines and with no relation to safety, a few studies 

proposed a framework for calibration of design s guidelines as well as modifying existing 

conditions. Ismail and Sayed [35] proposed a framework for calibrating design guidelines for 

vertical crest curves to yield consistent risk (probability of non-compliance) values. Hussein and 

Sayed [27] presented a method to calibrate design charts for the middle ordinate of horizontal 

curves considering one mode of non-compliance (i.e., insufficient two-dimensional sight distance). 

The results of the study showed that the calibrated values are lower than the values proposed by 

AASHTO [17] and the difference between the two increases with the decrease of horizontal curve 

radius. The authors concluded that design guidelines are conservative at high design speeds and 

have inconsistent risk levels for different design speeds. As an example of applying reliability 

theory to redesign roadway elements, Ismail and Sayed [38] used multi-objective optimization to 

investigate the possibility of reducing the risk associated with limited sight distance on nine 

horizontal curves by re-dimensioning of cross-section elements. Using reliability analysis, an 

average risk reduction of 25% was achieved providing efficient use of the available right of way 

and suggesting re-dimensioned cross-sections with lower and more consistent risk levels. 
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 Ibrahim and Sayed [42] also used reliability analysis to re-dimension cross-section 

elements of cross-sections where available sight distance is restricted, in order to minimize the 

overall risk associated with limited sight distance. The results showed that incorporating reliability 

risk measures (Pncs) in optimizing cross-section elements resulted in a reduced expected number 

of collisions and consistent risk levels for both directions of travel. Ismail and Sayed [39] used 

different case studies to study the effect of sight distance limitations on horizontal curves, quantify 

the risk caused by deviation from design guidelines, and investigate the variation in the associated 

risk among different curved segments. For the case studies used by the authors, it was concluded 

that the proposed design was associated with high-risk levels due to sight distance restrictions and 

the risk values found to vary significantly among different road segments. The authors 

recommended more research on creating a link between collision frequency and risk measures 

(Pnc). 

In response, a link between reliability measures and collisions was established in less than 

a handful of studies based on a single mode of non-compliance (i.e., insufficient sight distance) 

and 2D sight distance assessment. Ibrahim and Sayed [6] were the first to develop statistical models 

that relate safety to the Pnc associated with insufficient sight distance using a 2D projection where 

the ASD is calculated based on the available lateral clearance and curve radius. First Order 

Reliability Method was used to estimate the risk associated with each horizontal curve. Two groups 

of Negative Binomial SPFs were developed with and without the risk measures (Pnc). The 

developed models were statistically significant, and the results showed that the developed collision 

prediction models included Pnc significantly outperformed the traditional group of models that 
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excluded the risk measures. It was also found that the predicted number of collisions increases 

with the increase in the probability of non-compliance. Jesna and Anjaneyulu [34] used two-

dimensional sight distance as a single mode of noncompliance on horizontal curves and estimated 

the corresponding risk measures. The analysis was also repeated separately to assess the risk 

associated with the superelevation and extra widening provided on horizontal curves. The authors 

developed safety performance functions (SPFs) incorporating reliability indices represented in the 

reliability index.  Safety evaluation criterion was developed and EPDO was used as a safety 

measure. The results indicate that the value of EPDO decreases with the increase of the reliability 

index In a recent study,  Dhahir and Hassan [60] used reliability analysis utilizing naturalistic 

driving data to develop SPFs that relate historical collisions to risk levels associated with 

horizontal curves. The use of naturalistic driving data helped overcome limitations associated with 

the current practice of data collection and enabled considering the effect of weather and pavement 

conditions. The sight distance assessment in this study was based on 2D projection estimating the 

available sight distance based on lateral clearance (i.e., lateral obstructions) and curve radius. This 

group of studies generally emphasized the importance of using 3D sight distance assessment and 

considering multiple modes of non-compliance when developing a link between reliability 

measures and safety. 

With most of the studies focusing on 2D sight distance evaluation, a limited number of 

studies quantified the risk associated with a single non-compliance mode (sight distance 

deficiencies) in a 3D world.  used a Geographic Information System (GIS)-based software to 

calculate the ASD along a 12-km road segment. The authors then quantified the risk at locations 
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with sight distance deficiencies. They recommended future work to relate the Pnc to historical 

collision data on road segments and compare crash occurrences and severities. In another study, 

de Santos-Berbel, Essa [45] compared using 2D and 3D methodologies of sight distance estimation 

and then used reliability analysis to estimate the risk level (probability of noncompliance) 

associated with each sight distance modelling method and investigate the safety influence of using 

each estimation technique. The results indicated that there were significant differences between 

different sight distance modelling techniques in most cases. It was also found that the sight distance 

modelling approach could have a significant effect on the estimation of the probability of 

noncompliance. The authors emphasized the importance of using 3D modelling of sight distance 

when evaluating the risk associated with road design. Hassan and Easa [61] also developed a model 

to investigate the influence on sight distance design requirements in case of considering 3D sight 

distance instead of 2D projections. The results of this study indicated that the design requirements 

of 3D-based design may be significantly different from the values corresponding to using 2D-

based design. The study concluded the need to use 3D-based design guidelines for sight distance 

modelling. 

With most previous studies focusing on studying the risk associated with only one design 

limitation, Essa and Sayed [30] used a 2D-based reliability analysis approach to estimate the risk 

corresponding to two modes of non-compliance on highway curved sections. The authors used a 

case study of five horizontal curves to evaluate the risk resulting from considering two modes of 

noncompliance and compared the results with the results of a previous study of Hussein and Sayed 

[27] that considered only one mode of noncompliance. The results showed significant differences 
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in the probability of noncompliance in the case of using two modes of failure (i.e., noncompliance) 

instead of using only one mode of failure, especially for sharp horizontal curves. The study also 

evaluated the standard design of the five horizontal curves, and it was found that there are 

inconsistencies and significant variability in the risk associated with the standard design where the 

probability of noncompliance ranged from less than 1 to 80%. Since the study used two-

dimensional sight distance in the analysis, the authors recommended using three-dimensional sight 

lines assessment in multi-mode reliability analysis and emphasized the significance of future 

research that investigates the relationship between the system reliability measures and collision 

frequency. The study also neglected the effect of vertical alignment (longitudinal grades) which 

needs further investigation.  

In a different study by You and Sun [32], the authors developed a dynamic simulation 

model to investigate the reliability of vehicle stability on horizontal curves. The study focused on 

addressing the effect of vehicle skidding and vehicle rollover. It was indicated that the probability 

of rollover is minimal, and passenger cars are likely not prone to rollover. The results also showed 

that the probability of non-compliance decreases with the increase in superelevation rate, and it 

increases with the increase in longitudinal slope. 

In a recent study, Alsaleh and Sayed [31] used a 2D projection to quantify the Pnc associated 

with three modes of non-compliance (insufficient sight distance, vehicle skidding, and vehicle 

rollover). The authors emphasized the importance of considering multiple modes of non-

compliance on horizontal curves. However, the study showed that the vehicle rollover effect is 

negligible for passenger cars indicating that the Pnc values for a system of three non-compliance 
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modes are almost the same as the Pnc values associated with two modes of non-compliance. The 

authors recommended using 3D-based sight distance evaluation and system reliability along with 

developing SPFs to relate collision frequency to reliability outcomes 

2.1.4 Discussion & Research Gaps 

As evident from the review, there have been numerous studies that utilized the reliability theory 

to quantify the risk associated with current practices of horizontal curve design. However, there 

are fundamental shortcomings and research gaps that have been identified, emphasizing the need 

for further research. First, the majority of previous studies focused on assessing the risk for only 

one mode of non-compliance with a handful of studies adopting a multi-mode reliability-based 

design of horizontal curves using 2D sight distance assessment. As discussed, the failure to meet 

the driver’s demand on horizontal curves may occur due to more than one mode of noncompliance. 

Moreover, using 2D sight distance calculations is unrealistic and does not represent the real 

conditions in the driving environment, where in many situations, the sight distance could be limited 

by the road vertical profile or by combined horizontal and vertical curves emphasising the 

importance of using 3D sight distance calculations in reliability analysis. Both using a 2D 

projection and a single mode of non-compliance were considered limitations in previous work that 

recommended further research on reliability-based design of horizontal curves using 3D sight 

distance considering multi-mode reliability analysis.  

Second, the relationship between reliability measures and the collision frequency is not 

well established. The few studies that explored the relationship between Pnc and safety were based 

on 2D sight lines evaluation and a single non-compliance mode. Indeed, the link between the risk 
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measure (Pnc) and collision frequency utilizing real-world 3D sight distance assessment whether 

using system reliability or a single mode of non-compliance remains unexplored. To the best of 

the author’s knowledge, no study, to date, has attempted the development of highway design charts 

while creating a link between proposed design guidelines and expected collision frequency. More 

so, no study, explored the interaction between curve geometric attributes, Pnc, and safety and 

whether or not curve attributes confound the relationship between Pnc and safety by directly 

affecting collision frequency or influencing safety through their effect on Pnc. This causes the Pnc 

to remain as a statistical number that does not provide enough information to roadway designers 

on the geometric attributes of road elements and their interactions with safety 

Third, due to the unavailability of accurate as-built drawings of roadways, the majority of 

previous studies used either a limited number of horizontal curves or used computer programs to 

generate data sets to be used in the analysis. This could lead to using insufficient or outdated 

information of curve characteristics which could affect the resulting Pnc and safety leading to 

biased outcomes. It also makes implementing a large-scale reliability assessment challenging due 

to the large amount of manual work needed to extract the required information on a large number 

of sites, assuming that as-built drawings are available.   

This clearly highlights the need for more research to help accelerate the move towards 

adopting a probabilistic approach for highway design. As discussed in the first chapter of this 

thesis, this research adopts a 3D safety-based multimode reliability analysis to demonstrate a 

considerable application of using reliability theory in highway engineering: the calibration of 

safety-based design charts for horizontal curves. The thesis also studies the interaction between 
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curve attributes, risk levels, and safety. This provides a framework on how risk levels could be 

translated into relationships that provide more information to highway designers on the influence 

of design elements on the expected safety level of the overall design.  

In summary, despite the presence of several efforts on reliability-based design of horizontal 

curves, the review shows that more work is still required in this area. Developing a design 

framework with safety on its core provides a needed understanding of the relationship and 

interaction between proposed designs and their safety performance. The results of this work could 

be directly applicable to assess the risk associated with a proposed design in which the minimum 

requirements of design guides are not met, which is a situation, current design guides cannot 

provide a safety margin for. Finally, this research could be of great value to the field of highway 

design and road safety from both a practical and academic perspective. 

2.2 Background on LiDAR Data  

Light Detection and Ranging (LiDAR) is a remote sensing technology that utilizes light rays 

omitted from a laser scanning system to collect positional information about surrounding objects. 

The laser scanners constantly emit light rays at surrounding objects where the information about 

the scanned targets is collected based on the properties of the reflected light beams. Information 

collected about objects includes georeferenced spatial information, the intensity of returns, 

scanning angle, and time. The continuous scanning of objects around the scanners creates a 3D 

highly dense point cloud such as that seen in Figure 2.  
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Figure 2: LiDAR point cloud sample 

There are different types of LiDAR data. Generally, LiDAR data can be airborne or 

Terrestrial. The latter can be either static when the scanning system is mounted on a tripod or 

mobile when the scanning equipment is mounted onto a moving object such as a vehicle, an 

aeroplane, or a boat. Mobile LiDAR and Airborne LiDAR are the common data sources used in a 

variety of applications in Transportation Engineering with Mobile LiDAR being the most 

prevalent. Mobile LiDAR systems provide a collection of data with higher point density, a good 

view of road pavement, and a better view of vertical surfaces such as building sides and faces of 

roadside features but cannot capture the top of buildings. Airborne LiDAR systems collect data 

with lower point density, a better view of pavement and building surfaces, but have a poor view 

of vertical faces [62]. Airborne LiDAR systems also have the advantage of providing a more 

synoptic view of scanned areas and have a wider field of view, however, such a wider range comes 

at the expense of lowered density of collected point cloud [63].  
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Various data collection methods and scanning equipment have different advantages and 

disadvantages. Vendors of laser scanning systems also recommend typical applications for their 

products. For example, more detailed information about roadside features can be obtained using 

mobile LiDAR scanning, while a wider range of areas can be covered using Airborne LiDAR. 

Airborne LiDAR can be better used in a variety of applications including mapping, road alignment 

selection, feasibility studies, vegetation planning and environmental assessment while Mobile 

LiDAR is used when more dense and accurate scanning is needed [64].  

In Mobile LiDAR scanning, the system is mounted on a data collection truck that travels 

along the highway of interest while constantly scanning the highway and surrounding 

environment. This results in a 3D point cloud image consisting of closely spaced points that 

provide a robust representation of the road environment (Figure 2). The high point density of such 

datasets allows the extraction and assessment of several roadway geometric characteristics, such 

as horizontal curve feature extraction and sight distance assessment, in a highly accurate and 

efficient manner. The advantages of using Mobile LiDAR make it a very common approach to 

transportation applications since road features can be captured with a high level of detail using this 

technique [62]. More so, one of the merits that give Mobile LiDAR the edge over other remote 

sensing techniques is its ability to capture a highly detailed representation of entire roadway 

segments and surrounding environment in a single survey pass through driving along a highway 

at posted speed limits. 



 

   

 

 

40 

 

2.3 Horizontal Curve Detection & Feature Extraction  

This section provides background information on horizontal curves and presents a review of 

literature on previous work conducted on curve detection and feature extraction.  

2.3.1 Background  

Horizontal curves are essential to creating a smooth transition between tangential road segments; 

however, they have been considered a significant safety concern for several years [65]. Research 

relating collisions to geometric road characteristics has consistently shown horizontal curves to be 

a major contributing factor to different types of severe collisions. For instance, evidence from the 

literature shows that severe run-off-road and head-on collisions are more likely to occur on curves 

[66]. In the United States, about 25 % of fatal road collisions occur on curved sections. More so, 

the National Highway Traffic Safety Administration (NHTSA) has indicated that the horizontal 

alignment of the roadway contributes to about 76 % of single-vehicle collisions in the United States 

[67]. Previous research has also shown that run-off-road crashes on horizontal curves are 1.5 to 4 

times higher than collisions on straight segments [68]. In fact, previous research has shown that 

different curve attributes including curve radius, curve length, and tangent length all influence the 

frequency of collisions on horizontal curves [69-71]. These statistics signify the importance of 

properly designing horizontal curves to improve road safety, which is the key objective of this 

thesis. 

Information about horizontal curves is of great importance to help ensure the safe operation 

of highways. For instance, evaluating the potential of vehicle skidding or rollover on curves 

requires information about the geometric characteristics of curved elements [72]. Similarly, certain 
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geometric features of curves such as curve radius, deflection angle, and curve length are essential 

to predicting operating speeds on a roadway [69]. Horizontal curves and their attributes also impact 

the amount of sight distance available on a highway [70].  

In lieu of the above, transportation agencies are often required to maintain an accurate and 

updated inventory of geometric attributes of horizontal alignment in order to make well-informed 

decisions on potential safety improvements required on curved road segments. Unfortunately, 

using traditional methods (i.e., chord offset and compass methods) to constantly maintain a record 

of horizontal curves and their attributes is an extremely challenging task, which is time-consuming, 

laborious, and sometimes inaccurate. This is particularly true when considering the size of highway 

networks in North America and the number of curves that could potentially exist on such networks.  

To overcome the challenges associated with conventional techniques, several methods 

have been used to extract information about the horizontal alignments in the past using satellite 

and aerial images [73, 74]. One common issue with such techniques is that they often utilize 

commercial software packages, such as ArcGIS and AutoCAD for the extractions. This requires 

manual digitization of the start and endpoints of each horizontal curve to obtain relatively accurate 

measurements. Such an undertaking results in a large amount of manual work, which makes using 

these techniques slightly impractical and uneconomical, especially for large-scale network-level 

analysis.  

A more efficient approach to estimating horizontal curve attributes is through using the 

Global Positioning System (GPS) points to recreate a road’s alignment. Although this helps collect 

data more efficiently, data points are typically collected along a single path, which makes 
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estimating the geometric characteristics in different lanes a challenge. Moreover, the low density 

of GPS data, its scattered nature, and low accuracy could sometimes lead to inaccurate estimation 

of curve attributes [47].   

With the limitations associated with previously discussed methods, LiDAR has recently 

been utilized to extract geometric attributes of roads. As discussed, scanning a highway using 

mobile LiDAR create a highly dense and accurate representation of the surrounding environment 

in a single survey pass and at highway speeds. This helps agencies scan large road networks in a 

short time period with minimal disruption to traffic. Previous research has shown that Mobile 

LiDAR data can be utilized to extract highway geometric features, including attributes of 

horizontal alignment in a robust and efficient manner [47, 75-77]. Moreover, unlike GPS data, the 

high density of a LiDAR point cloud means that alignment attributes extracted from the dataset 

for one lane of analysis can be replicated across all lanes on a highway.  

Although interest in using LiDAR data for transportation applications has grown 

significantly in recent years [62, 78], not much research has been done on the feasibility of utilizing 

these rich datasets to extract horizontal curve attributes on a large scale. The majority of work that 

does exist has been limited to performing extractions on a limited number of short highway 

segments [47, 79]. To address this gap and help prepare the dataset needed for reliability analysis, 

this research develops a novel algorithm utilizing LiDAR data for the automated network-level 

detection of highway horizontal curves and the extraction of their attributes. More details on the 

developed method are discussed in the next chapter. As part of the thorough literature review 
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conducted in this dissertation, the next section summarizes previous work on detecting curved 

segments and extracting their geometric characteristics.  

2.3.2 Previous Studies  

Different approaches for detecting horizontal curves and estimating their attributes have been 

proposed in the literature. Some studies attempted developing computational methods to measure 

horizontal curve features using a ball bank indicator and digital compass to record lateral 

acceleration and change in heading of a vehicle driving along a curve [80-82]. The curve radius is 

then calculated using the point-mass equation. Although such techniques are effective in 

estimating the curve radius and other attributes, they require that a test vehicle is driven at a 

constant speed along the curve while identifying the Point of Curvature (PC) and the Point of 

Tangency (PT) of each curve in advance. This makes such techniques infeasible when the detection 

of curves is required on a network level. 

Many researchers have proposed using GPS data to extract horizontal curve attributes. Li, 

Chitturi [68] proposed a methodology to extract data about horizontal curves using Geographic 

Information System (GIS) roadway maps. An algorithm was developed that uses the change in 

bearing angle between two successive segments to identify curved elements. And a curve is 

detected when the change in heading angle exceeds an adjustable threshold. The algorithm had a 

curve detection rate of 96.7 % and was validated using horizontal curve data obtained from Bing 

aerial maps.   

 Imran and Hassan [83] developed a GPS-based procedure to determine features of 

horizontal alignment on two-lane rural highways. The algorithm used the change in angle between 
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successive points to separate data points of both straight and curved elements. To detect tangent 

elements, only 75 % of the straight data points were used to avoid portions that might have 

transitional curves. The first, the middle, and the last sets of points of the mid 50 % of the curved 

element points were used to locate the center and the radius of the curve. After a number of 

iterations, the algorithm extracts curve information including curve radius and curve length. The 

authors tested the methodology on a roadway segment with nine horizontal curves with the results 

showing an average difference of 1.55 % and 16.7 % between the extracted and actual values for 

curve radii and curve lengths, respectively.  

Ai and Tsai [84] proposed a GPS-based technique where they used the Kasa Circle Fitting 

method to identify curved elements that fit several of the neighbouring points onto a circle. This 

method uses an iterative process by gradually increasing the number of points included until a 

certain error value is reached. The proposed algorithm was tested on both real and simulated data 

and was able to identify horizontal curves with a detection rate of 90.1 %. Other studies compared 

using different GIS methods and tools, such as Curve Finder, Curve Estimator, and Curve 

Calculator, to extract information about curved elements from GPS data [85, 86]. These studies 

emphasized the importance of collecting highly dense points in order to achieve higher accuracies. 

Holgado‐Barco and González‐Aguilera [79] proposed a semi-automatic method to extract 

horizontal alignment attributes from LiDAR. Extracted attributes included curve length and radius. 

The proposed method was tested on both real and simulated data reporting an average error of 2 

% for the real data. Gargoum and El-Basyouny [47] also proposed a method to extract geometric 

attributes of horizontal curves from LiDAR data. The proposed method extracts horizontal curve 
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features including curve radius, length, curve center coordinates, and deflection angle. The 

proposed procedure was tested on two, two-lane highway segments (four km each) with the authors 

reporting an average error of less than 3%.  

 Although several studies have proposed different approaches to extract information on 

highway horizontal curves with a high level of accuracy, most of these attempts used GPS data to 

estimate curve information which requires manual work to convert or process the data. In addition, 

some studies utilized commercial software packages, such as ArcGIS, to extract horizontal curve 

attributes. This makes the application at the network level a laborious task due to the manual nature 

of processing the GPS data and the interventions required for processing. Moreover, little attention 

has been dedicated to using LiDAR data to extract attributes of curved elements on a network-

level scale. As part of the data acquisition process, this thesis develops a fully automated algorithm 

to identify locations of horizontal curves and extract their attributes on a network level using 

LiDAR Data. The performance of the proposed algorithm for accurately estimating curve attributes 

was validated using as-built drawings. The validation process showed that the algorithm was able 

to estimate the attributes of curved segments with a high level of accuracy in an efficient and fully 

automated manner.  

To illustrate the feasibility of using the method on a large scale, the algorithm was 

employed to detect curves and extract their attributes on a total of 242 km of LiDAR data collected 

along different rural highways in Alberta, Canada. The algorithm was successful in the detection 

and feature extraction on all horizontal curves on the test highways at a data extraction rate of 2.32 

seconds/km. Providing a fully automated algorithm to extract curve attributes with such accuracy 
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and efficiency is a powerful tool that could be used by transportation agencies to establish a reliable 

inventory database for their road networks. This would help them make informed decisions 

regarding the safety assessment and development of roadways. 

2.4 Available Sight Distance Assessment  

This section provides background information on sight distance and sight distance evaluation; and 

presents a review of previous research performed on assessing sight lines on roadways.  

2.4.1 Background  

A key element in highway geometric design is providing sufficient sight distance to road users. 

Stopping sight distance is commonly defined as the minimum visible distance needed by a driver 

to come to a safe and complete stop before striking an obstruction on the roadway [17]. The ASD 

can be defined as the length of the visible roadway segment ahead of the driver which is required 

by road design guides to be greater than the minimum requirements. However, the sight distance 

can often be restricted by many features along the roadway horizontal and vertical alignments or 

by the pavement surface of the road [87]. On horizontal curves, the driver’s line of sight can be 

obstructed by lateral objects, such as buildings, trees, and hills. The visibility on crest vertical 

curves can be limited by the road surface along the vertical curve itself. In fact, providing adequate 

sight distance on highways is crucial for both road operation and safety. 

It is necessary for a driver to be given enough visible distance to react, in case a hazardous 

situation is encountered, in order to avoid being involved in a collision. In fact, researchers found 

that limited sight distance has a large effect on the occurrence of road collisions [6, 34]. Although 
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designing highways that meet the sight distance requirements of design guides, in theory, ensure 

that sufficient sight distance will be available along the highway, the presence of some constraints 

(e.g., practical or financial) during the design and construction stages may lead to insufficient sight 

distance at some locations [88]. In addition, highway rehabilitation and pavement maintenance 

work during the road’s service life could result in changes to the original road design, altering the 

ASD at certain locations. Therefore, assessing the ASD on in-service highways is critical to ensure 

that minimum requirements are met throughout the planned service life. 

Current practices of ASD estimation are time-consuming, labor-intensive, and sometimes 

inaccurate due to the non-consideration of the presence of roadside features that are not 

documented on 2D as-built plans. Assessment of ASD is often conducted separately for horizontal 

and vertical alignment [89]. In many situations, the sight distance obstruction can result from the 

combination of a horizontal and vertical curve at the same location. ASD is often evaluated through 

long site visits, conducting a manual graphical assessment or most commonly using Highway 

Design Software (HDS). HDS use Digital Terrain Models (DTM) including information on road 

cross-sections and horizontal and vertical alignment to perform the ASD calculations. Such an 

approach is inaccurate since common sight distance obstacles, such as trees, buildings, and 

vegetation, cannot be modelled and contained in DTMs [90]. In real conditions, the ASD is highly 

influenced by several 3D sight obstructions, such as road surface on vertical crest curves, traffic 

signposts, road barriers, fences and vehicles parked on the roadside. Thus, assessing the ASD 

considering the presence of such objects is critical to better represent the actual driving 
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environment. An accurate representation of road conditions is fundamental in order to acquire a 

reliable assessment of sight distance. 

In recent years, attention has shifted to the use of the GIS to facilitate a 3D estimation of 

ASD on roadways. GIS-based applications use Digital Surface Models (DSMs) that consider 

vegetation, buildings, and other obstacles that could reduce the driver's visibility [91]. The data 

sources used in these applications can be aerial images, LiDAR images or DTMs, including vector 

cartography (i.e., information on 3D obstacles) [92]. The majority of GIS-based applications focus 

on the evaluation of 3D ASD using ArcGIS tools [93]. Although this has been very useful, the 

manual input required during different stages of the assessment process hinders the large-scale 

implementation and, to some extent, requires a considerable amount of manual work. 

With the recent technological advances, the use of remotely sensed data in obtaining 

information on roadway elements has been increasing. LiDAR data sets can be used to assess ASD 

on highways in a fully automated and accurate manner. There have been some attempts to evaluate 

ASD on highways using LiDAR point clouds. However, a fully automated method for the 

computation of available 3D sight distance has yet to be developed. The next section summarizes 

previous studies on assessing sight lines along roadways before discussing the developed 

algorithms in the next Chapter. 

2.4.2 Previous Studies  

There have been a number of efforts to assess the sight distance on roadways. One of the earliest 

studies was conducted by Hassan and Easa [87]. They proposed a method to calculate the sight 

distance along the road’s horizontal alignment. Although the method was efficient and accurate, it 
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was solely based on road horizontal geometry. A part of their study was developing computer 

software to assess the no-passing zones on two-lane two-way roadways. Another study by Lovell 

[94] also focused on determining ASD when it is only limited by road horizontal alignment. The 

proposed procedure was recommended for use in flat areas or in the planning and preliminary 

stages of designing highway facilities. 

Although researchers have been considering determining the ASD on highways, the 

number of studies that provide an automated computation of 3D sight distance is limited. Nehate 

[89] used GIS data to compute the ASD along roadways. Piecewise parametric equations were 

used to represent the road surface and obstructing objects. The sight distance was then assessed by 

looking for the intersection between sight lines and any obstructions. Due to the smoothness of the 

second-order curves, the bumpy pavement surface on vertical curves was not accurately considered 

in the assessment. Thus, the authors attributed the model to be of moderate accuracy. In a more 

recent GIS-based study, Castro and Iglesias [92] used ArcGIS to obtain ASD on highways. The 

extraction results of ASD were compared to values estimated by road design software. There were 

no statistically significant differences between the two methods, but in many cases, the design 

software estimated shorter distances because of its ability to better detect vertical curves.   

Researchers’ interest had shifted towards utilizing LiDAR data to evaluate the ASD after 

Khattak and Shamayleh [95] tested the feasibility of using Aerial LiDAR data to obtain stopping 

and passing sight distance on a highway in Iowa state, United States. ArcGIS tools were used to 

assess the sight distance at selected locations. Some sections were found to have sight distance 

insufficiencies. Site visits to these locations were then conducted and confirmed the presence of 
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obstructing objects. In a more recent study, Castro, Anta [96] used aerial LiDAR data for sight 

distance evaluation using ArcGIS tools. The authors indicated that the processing time in this study 

is lower compared to that in Castro and Iglesias [92]. Khattak and Hallmark [44] utilized LiDAR 

data to identify potential sight distance obstructions at intersections. Using videotapes, the authors 

indicated that 90% of the actual obstructions were identified by the proposed method.  

In 2015, Bassani, Grasso [90] used mobile mapping systems to perform sight distance 

analysis. Photogrammetric images of a road segment were collected and then converted into point 

clouds. A DSM was then generated, and ArcGIS tools were used to calculate the ASD. The results 

showed successful detection of previously known obstructing features along the studied segment. 

However, the authors recommended further studies to automate the sight distance estimation 

process considering 3D models. A year later, Castro, Lopez-Cuervo [91] used both aerial and 

mobile LiDAR data in a sight distance analysis. The authors showed that DSMs created by mobile 

LiDAR provide a more accurate representation of the real road conditions due to their greater 

density.  

In a more recent study, Gargoum, El-Basyouny [88] introduced a semi-automated method 

utilizing ArcGIS tools to compute the sight distance on highway segments using mobile LiDAR 

data. A Microsoft Visual Basic code was then written to calculate the sight distance from the 

ArcGIS outputs. A location with limited sight distance was detected. The authors also indicated 

that the processing time was one of the main challenges when dealing with a high number of 

observes and targets.  
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As demonstrated throughout the literature review, the importance of considering a 3D 

assessment of ASD is well recognized. However, the progress has been limited due to the 

unavailability of 3D road models and the complexity of the computations needed for 3D analysis. 

Even when evaluating ASD in the 2D space using as-built drawings, this source of information 

sometimes could be outdated due to the regular maintenance and pavement operations that affect 

the accuracy of original as-built documents or inaccurate due to the lack of 2D as-built drawings 

for the 3D roadside features and vegetation that could represent sight obstructions. In fact, most 

previous studies that introduced 3D-based methods to evaluate the ASD on roads used GIS data 

and/or LiDAR images and utilized software tools such as ArcGIS to perform the visibility 

assessment. This requires considerable manual work which hinders the large-scale 

implementation. Therefore, a fully automated approach utilizing accurate and updated information 

that represents the current 3D road environment (i.e., LiDAR) has yet to be developed.  

While establishing an inventory for reliability-based horizontal curve design, this thesis adds 

to the existing body of literature by developing a fully automated methodology through which the 

ASD on highways can be assessed using mobile LiDAR data. The 3D nature of LiDAR point cloud 

models enables accounting for various sight obstructions that could cause visibility problems such 

as vegetation, buildings, road furniture, and the combination of both horizontal and vertical 

alignments. Not only this, the 3D models of driving environment that are made available through 

LiDAR technology represent easy-to-access highway corridors that can be visited an unlimited 

number of times, without causing any traffic disruptions, to further investigate the presence of 

sight distance deficiencies or any other safety issues. The automation of sight distance evaluation 



 

   

 

 

52 

 

could save transportation agencies large amounts of time and money if a large-scale safety audit 

is desired, assuming that sight lines can be assessed manually which is largely an invalid 

assumption. The sight distance assessment procedure presented in this thesis was tested and 

validated following recommendations of design guidelines to ensure the accuracy of the obtained 

results. The results showed that the algorithm is accurate in evaluating the ASD on highways and 

identifying locations with sight distance deficiencies. Even though this algorithm is one step 

towards the data preparation for reliability analysis, on its own, represents an appealing solution 

to departments of transportation for safety and visibility assessments on highways.  
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3 DATA EXTRACTION FROM LIDAR DATA 

This Chapter provides details about utilizing LiDAR data in developing a set of novel algorithms 

to automatically detect highway curved segments and extract their geometric attributes including 

the 3D ASD on highways to establish the dataset required for reliability analysis. The chapter is 

concluded by presenting a summary of geometric and collision data prepared for reliability 

analysis.  

3.1 Introduction 

As discussed, road geometry data used in previous reliability-based studies were manually 

obtained from Departments of Transportation (DOTs), extracted from aerial photographs, satellite 

images, or by using commercial software (i.e., AutoCAD). Information acquired using 

conventional surveying methods could be outdated due to road resurfacing operations and the 

installation of roadside features that are not normally captured as 3D objects by traditional 

surveying methods. The recent surge in computing power and the high density of LiDAR point 

cloud has led several agencies to consider using such technology to obtain information about 

various roadway elements [19, 97]. Compared to traditional methods, using LiDAR data increases 

the efficiency and robustness of the information extraction process. It also helps alleviate the 

burden associated with the conventional estimation of road geometry attributes, such as excessive 

labour work, long site visits, and traffic disruption caused during the data collection. 

According to many researchers, the ability to adopt utilizing LiDAR as an alternative to 

conventional methods relies on the development of alternative applications that enable obtaining 
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the information from LiDAR data datasets in a more efficient manner [19, 98, 99]. Jalayer, Gong 

[99] compared the efficiency of different methods such as data obtained from field visits, aerial 

maps, and remotely sensed data in developing safety performance functions. The authors 

concluded that mobile LiDAR has the potential to replace other alternatives subject to developing 

more efficient data extraction methods.    

In recent years, road feature extraction from LiDAR has gained some momentum with a 

focus on extracting road features such a lane marking, traffic signs, and light poles [100-103]. 

However, not much work has focused on obtaining information on roadway geometric 

characteristics [19]. For example, Kumar [104] dedicated a PhD thesis to the extraction of road 

edges, lane markings, and road roughness from LiDAR data. Haiyan [105] also focused on 

extracting road edges, pavement cracks, and lane markings. More so, Ai [106] devoted a PhD 

thesis on extracting traffic signs from LiDAR data. Even studies that exist on extracting geometric 

attributes of roadways suffer from various limitations with the main shortcoming being the manual 

input required when applying these proposed methods. The significant number of manual 

interventions hinders the ability to assess microscopic design elements such as ASD, especially 

when a large-scale assessment is required. Some researchers believe that the lack of full utilization 

of LiDAR data in transportation applications is attributed mainly to the lack of expertise [19, 107].  

Based on the above and the review of literature presented in the previous chapter, it is 

demonstrated that a handful of studies utilized LiDAR data to extract horizontal curve features and 

assess the available sight distance along roadways [79, 88, 92, 96]. Work conducted on extracting 

characteristics of horizontal curve suffers from the manual input needed and infeasibility and 
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applying the proposed procedure on a large scale, while sight distance assessment methodologies 

do not account for overhanging objects as well as the manual input required. Therefore, a part of 

this dissertation is dedicated to developing a set of algorithms to detect highway horizontal curves, 

extract their geometric features, and assess the ASD in a fully automated and efficient manner 

while enabling large scale implementation.  

Although the main aim of developing these algorithms is to establish a reliable data set for 

use in reliability analysis, the feature extraction procedure developed as part of this dissertation 

overcomes the aforementioned limitations and could be of great value for transportation agencies 

when aiming to assess highway networks. In fact, it is worth mentioning that in addition to using 

LiDAR data in extracting information on horizontal curves and computing ASD, the large number 

of applications for which the same LiDAR data set can be used makes this data a greatly appealing 

option for transportation agencies that can result in significant cost and time savings [44]. Langston 

and Walker [108] collected LIDAR data for a DTM of a 42-mi highway corridor and reported 

savings of $1.5 million and at least 9 months, compared with traditional methods of acquiring 

DTM data. In a different study, the Savannah-Area Geographic Information System agency 

collected countywide LIDAR data to generate contour maps for a project intended to improve 

drainage of the Hardin Canal in Georgia, USA [109]. The agency reported estimated construction 

savings of $7 million. In fact, the associated costs with LiDAR data collection can be offset through 

utilizing the same LiDAR sets in a variety of other applications including the extraction of 

information on various geometric attributes related to cross-sections, road signage and markings, 

horizontal and vertical alignments, and road safety audits applications [44, 75, 101]. Adopting 
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LiDAR data in managing highways and road networks could be a new epoch of asset management, 

design review, and safety audits techniques. 

3.2 LiDAR Data Used in this Research    

The data used in this research was collected on several two-lane two-way highways in the Province 

of Alberta, Canada. Data was collected by Alberta Transportation using a laser scanning system 

equipped with two REIGL VQ 450 scanners mounted on a data collection truck. The system has a 

scan rate of up to 1.1 million points/sec. The data collection vehicle drove along scanned highways 

at posted speed limits of up to 100 km/h, creating 3D models of scanned segments without causing 

any disruptions in traffic movement. Although point cloud density varies across the point cloud, 

densities can range from 150 to 1000 points/m2 on the pavement surface, with an average point 

density of 300 points/m2 [63]. 

Data collected along a highway is saved in several Laser (LAS) files. Each LAS file 

contains up to 30 million points representing point cloud data for a four km segment of the 

highway. Due to the high density of points collected, the size of a LAS file containing points of a 

four km section could reach 700 MB. The data was collected and stored by Alberta Transportation, 

and it was transferred to the author as zipped (compressed) files on five TB portable hard drives. 

In order to protect data privacy, these drives were kept in a secure place and were shared for 

processing under confidentiality agreements.  
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3.3 Horizontal Curve Detection & Feature Extraction 

This section provides a thorough description of the developed algorithm for detecting highway 

curved segments and extracting their geometric characteristics. It provides information on the 

methodology, algorithm testing and validation, application on a large scale, and discusses the 

performance of the algorithm.  

3.3.1 Background 

Although several approaches to extract horizontal alignment have been proposed in previous 

research, none of those studies demonstrated the feasibility of extracting such information on a 

large scale. The procedure developed in this thesis enables the automated detection of horizontal 

curves and extraction of their attributes on a network level. More so, the developed algorithm 

obtains additional information on horizontal alignment characteristics such as length of road 

straight segments (i.e., between curves, and curve superelevation rate while also identifying the 

curve direction (i.e., to the right or to the left). To the best of the authors’ knowledge, a fully 

automated estimation of horizontal curve attributes from LiDAR data on a network level has not 

been accomplished in previous research. Providing a fully automated procedure to extract such 

information could help transportation agencies to establish a reliable database of horizontal 

alignments, which, in turn, would facilitate making well-informed decisions regarding the safety 

assessment and development of roadways.  

The developed method focuses on automatically detecting highway horizontal curves on a 

large scale and estimating all their attributes including the length of straight sections between 

curves, curve direction (to the left or the right), defection angle, curve radius, superelevation rate, 
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chord length, and curve length. The method was first validated using data from both as-built 

drawings and 20 km of simulated data with predefined curve attributes. The algorithm was then 

applied on a large-scale using LiDAR data of five highways totalling 242 km.   

3.3.2 Methodology 

The method developed for detecting horizontal alignment and extracting curve attributes includes 

four main stages: i) road lane centerline definition in which points that represent the lane centerline 

are extracted, ii) horizontal curve detection utilizing changes in azimuth of vectors created from 

lane centerline points to detect locations of curved segments, iii) multiple feature extraction 

including the length of straight segments between curves, curve angle, chord length, curve radii, 

and superelevation rate of circular curves, and iv) detection and feature extraction of spiral curves 

between straight sections and circular curves. The method is explained in more detail as follows: 

3.3.2.1 Lane centerline extraction and vector definition 

The first step of the curve extraction process is to extract points that represent the centerline of the 

lane of analysis, also known as trajectory points. These are points that run along the lane of analysis 

(for which curve attributes are desired). The points typically run parallel to the road’s axis and 

cover the entirety of the road segment’s alignment. To obtain this set of points, the LiDAR dataset 

was filtered, whereby, only points that fall within the Nadir plane (i.e., a zero-degree angle) of the 

scanning system are retained. Since these points are impacted by the position of the scanning 

system and hence the vehicle on which it was mounted, occasional deviations in the orientation of 

the points due to a change in the vehicle’s yaw angle might occur. To eliminate the impact of the 
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yaw angle, the moving average technique is applied to estimate an average position for every three 

consecutive points within the trajectory path.  

To support a network-level analysis (i.e., analysis of entire highways), the code runs 

through a number of LAS files for successive road segments (i.e., 4 km each) and combines the 

extracted points to represent the lane centerline along the entire highway. The code also checks for 

continuity between the centerline points across different segments (i.e., points extracted from 

successive LAS files). This is done by sorting the points representing the centerline in ascending 

eastings and northings and then computing the distance between consecutive points. If the selected 

road segments are not continuous or if a significant gap is found within the data, this gap is flagged 

indicating that additional datasets for missing parts are needed. Figure 3 illustrates the process of 

combining successive LAS files before conducting the network-level analysis. 

 

Figure 3: Combining successive LAS files for network-level analysis 

(colour-coded by elevation ranges representing variations in vertical alignment) 
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After extracting the lane centerline points and accounting for possible deviations, multiple vectors 

along the centerline are defined between each two successive position vectors. Let Pi represents 

the start-point of a vector and Pi+1 defines the endpoint of the same vector. In this case, this vector 

(𝑽𝑗) can be defined as follows:  

𝑽𝑗 = 𝑷𝑖+1− 𝑷𝑖 
=  [

𝑥𝑖+1 −  𝑥𝑖

𝑦𝑖+1 −  𝑦𝑖

𝑧𝑖+1 −  𝑧𝑖

]                                                                                                  (11) 

where  𝑷𝑖 =  [

𝑥𝑖

𝑦𝑖

𝑧𝑖

];  𝑷𝑖+1 =  [

𝑥𝑖+1

𝑦𝑖+1

𝑧𝑖+1

];  𝑥, 𝑦, and 𝑧 are the coordinates of position vectors; i and j  

are counters starting at 1 with an increment of 1. 

The number of vectors defined varies based on the length of the road segment and the 

vector length which can be altered by the user. In this research, the length of vectors is chosen to 

be 20 m (i.e., the distance between position vectors Pi and Pi+1). Analysis of a large number of 

segments that contain curves with a wide range of radii showed that this length (i.e., 20 m) is 

appropriate to detect all curves. However, it can be altered by the user according to the foreseeable 

sharpness of curved sections (i.e., sharp curves may need a shorter distance to be detected).  It is 

worth mentioning that the procedure explained in this section utilizes the points extracted along 

the lane centerline. This can be replicated (i.e., these points can be moved) across all lanes on a 

highway to estimate curve attributes for other lanes or along the road centerline if desired.  

Trajectory points can be offset into other lanes by estimating vectors that are normal to the 

trajectory of the first lane [75]. Trajectory points can then be moved into neighbouring lanes along 

those normal vectors. The offset distance depends on the new lane for which curve attributes are 
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desired. For example, if the analysis is to be repeated for the next lane, the offset distance would 

be equal to the width of one lane (i.e., two times the width of half a lane). Once the trajectory 

points have been moved into the new lane, the same detection and extraction procedure explained 

in the following sections can be used to estimate curve attributes. It is worth noting that this thesis 

measures the curve radius along the travel lane centerline while design guidelines normally use 

the road centerline. The difference between curve radius along lane centerline and road centerline 

equals to half the width of a travel lane for two-lane two-way highways which would 

not be big enough to make a difference in the results (e.g., 0.6% difference for a curve radius of 

300 m and a lane width of 3.6 m). 

 

3.3.2.2 Curve Detection 

Horizontal alignment elements (i.e., straight sections, circular curves, and spiral transitional 

curves) can be detected and their attributes can be estimated using the centerline extracted in the 

previous section. The geometric parameters of horizontal alignment elements can be obtained 

using two alternative attributes, namely the azimuth and the curvature. The azimuth (z) of a vector 

along the centerline can be calculated as follows:  

𝑧 = arctg (
∆𝑥𝑖+1

𝑖

∆𝑦𝑖+1
𝑖 ) ×

180

π
                                                                                                               (12) 

where ∆x and ∆y are the x and y coordinate differences between consecutive points along the 

centerline (i.e., start and endpoints of trajectory vectors); π is a constant = 3.14. 

The curvature (𝑧′) can be estimated using the first derivative of the azimuth as follows:  
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𝑧′ =
𝑧𝑖+1−𝑧𝑖

𝐿𝑖→𝑖+1
                                                                                                                                 (13) 

where 𝑧𝑖 is the azimuth value at the position i and Li → i+1 is the distance between the two points. 

The segmentation of road horizontal alignment elements can be done based on azimuth or 

the curvature information. Figure 4 shows the theoretical azimuth and curvature diagrams (i.e., 

ideal case) of a horizontal curve with spiral transition curves between the tangent and curved 

sections. As shown by the azimuth diagram, straight sections correspond to horizontal lines (i.e., 

no change in azimuth), circular curves correspond to inclined lines (i.e., steady change in azimuth), 

and spiral transition curves correspond to second-degree curves (i.e., gradual change in azimuth). 

As for the curvature, straight sections have zero curvature represented by horizontal lines, circular 

curves have constant curvature (i.e., horizontal lines) and spiral transition curves have a gradual 

change in curvature (i.e., inclined lines) transitioning from straight to curved elements.  
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Figure 4: Azimuth and curvature diagrams a theoretical curve 

Since the azimuth and curvature can be used alternatively, the change in azimuth is used 

to detect the presence of horizontal curves. Figure 5 illustrates using the change in azimuth (i.e., 

bearing angle) in curve detection. To identify tangent and curved elements, the azimuth of each 

vector is calculated and compared with the azimuth of the previous vector. When the change in 

the azimuth is greater than a predefined threshold, a new curve should begin, or the currently 

detected curve should continue. However, if the change between the current vector and the 

previous one is less than the threshold, this point is considered the end of the curve and the 

beginning of a tangent element. To avoid the influence of bearing angle fluctuations on curve 

detection (false positive curves), the code requires the change in bearing angle to be persistent (i.e., 
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sustained for a particular length) to be considered a curve. Analysis of a large number of LiDAR 

data segments showed that the change in azimuth along horizontal curves with a wide range of 

radii is between 0.5° and 3.71°. A sensitivity analysis is conducted to test the influence of azimuth 

change threshold and vector length on detection accuracy. Table 1 shows detection rates resulted 

from performing a sensitivity analysis on LiDAR data of 40 km of Highway 661 using different 

values of azimuth change threshold and vector length. As shown, a detection rate of 100 % is 

obtained when using a vector length of 20 to 30 m and a change in azimuth of 0.3° to 0.5° as shown 

in the table below. However, a vector length of 20 m and an azimuth change threshold of 0.5° are 

used in this research to make sure that short curves are not missed by the algorithm when using a 

longer vector length (i.e., 30 m) and smooth curves are not missed when using a smaller change in 

azimuth (i.e., 0.3°).  

 

 

Figure 5: Curve detection using the change in Azimuth 
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Table 1: Curve detection rates at different detection parameters (%) 

Vector 

length (m) 

Change in azimuth (°) 

0.3 0.5 0.7 0.9 

10 83.3 83.3 83.3 66.7 

20 100.0 100.0 100.0 66.7 

30 100.0 100.0 83.3 66.7 

40 83.3 83.3 83.3 66.7 

 

3.3.2.3 Extraction of Curve Attributes 

After classifying the segments into straight and curved segments and identifying curve start and 

endpoints (PC and PT points) based on the change in azimuth, the next step was to identify all 

other curve-specific attributes such as the point of intersection, length of straight segments between 

curves, curve deflection angle, chord length, curve radii, and superelevation rate. Figure 6 shows 

the extracted attributes of the horizontal alignment. The next few paragraphs summarize the 

method used to estimate each of those attributes.  
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To estimate the Point of Intersection (PI) the group of points located before the PC point 

and the after the PT of a horizontal curve are classified as tangent elements of the horizontal curve. 

Two linear regression models are then estimated for the two straight sections (i.e., tangents) and 

PI is located by identifying the intersection point of the two equations. Similarly, the difference in 

bearing between the two tangents is computed to estimate the deflection angle. 

The length of straight segments (L1, L2) is estimated by calculating the Euclidean distance 

between the endpoint of the current curve (PT) and the start point of the succeeding curve (PC). 

The chord length (CL) is estimated by calculating the Euclidean distance between the curve start 

and endpoints (PC and PT) while the curve tangent (T) is computed by estimating the distance 

between the point of intersection (PI) and the curve start and endpoints. 

 

Figure 6: The extracted geometric attributes of horizontal alignment 



 

   

 

 

67 

 

For curve radii (R), lines normal to the tangents on either end of the curve were estimated 

at PC and PT. To identify the location of the curve’s center, the intersection point of the two normal 

lines was estimated. The curve radius is then estimated by calculating the Euclidean distance 

between the PC and PT points and the curve’s origin.  

Estimating the superelevation rate of each curve was done using the methodology proposed 

by Gargoum, El-Basyouny [75] which involves extracting road cross-sections and estimating their 

slopes. The algorithm involves defining vectors perpendicular to the road axis. This is followed by 

extracting points from LiDAR point cloud within proximity of these vectors representing the 

highway cross-section. Multivariate Adaptive Regression Splines are then utilized to identify 

points at which the cross-slope changes on the extracted cross-section. Finally, the cross-slope on 

curves (i.e., superelevation rate) is estimated using linear regression. It is worth mentioning that 

the algorithm is modified to estimate the superelevation rate at the mid-point of the horizontal 

curve.  

The methodology described above was coded in MATLAB [110]. The algorithm loops 

through multiple scan files collected along a highway and work on detecting curves and estimating 

their attributes in a fully automated manner. 

3.3.2.4 Spiral transition detection 

Spiral curves provide a gradual change in curvature from a straight to a curved road element. In 

order to determine whether the horizontal curve includes transition curves or not, the change in 

curvature was used. Spiral curves are usually defined using three elements: circular curve radius 
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(R), spiral length (L), and the spiral parameter (A). The spiral parameter can be obtained using the 

following equation:  

𝐴2 = 𝑅 × 𝐿                                                                                                                                (14) 

To calculate the spiral parameter, the spiral length (L) needs to be estimated. Figure 7 

shows the azimuth and curvature diagrams obtained by the algorithm from LiDAR data of a curve. 

The change in both azimuth and curvature obtained from LiDAR data (i.e., real data) follows the 

same trend of theoretical data (i.e., ideal data) as previously discussed when referring to Figure 4. 

As shown in Figure 7, the pattern of change in both the azimuth and the curvature display spiral 

transitions. As shown, the curvature equals to Zero along the tangent section; is constant along the 

circular section of the curve; and varies along the spiral element. The estimation of the length of 

spiral curves involves three steps: a) linear regression equations were developed for the points that 

represent tangent, spiral, and curved sections; b) these linear equations were then intersected 

defining the intersection knots shown in the figure; c) the spiral length was estimated as the 

distance between these points. Once the spiral length is estimated the spiral parameter can be 

calculated using equation 14. 
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Figure 7: Azimuth and curvature diagrams from LiDAR data of a curve 

3.3.3 Algorithm Testing and Validation 

The algorithm was first validated using LiDAR data of highway segments for which as-built 

drawings (i.e., ground truth data) are available. More so, it was also validated using simulated 

experimental data. To ensure the feasibility of large-scale implementation, the algorithm was then 

applied on LiDAR data of 242 km of highways.   
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3.3.3.1 As-built Drawings and Simulated Data 

As-built drawings were obtained from the Alberta Transportation database and were only available 

for an 8 km segment of Highway 36 containing two horizontal curves. One curve is circular while 

the second contains spiral transition curves. The developed methodology was tested on the LiDAR 

data collected along this section. The algorithm extracted the centerline, detected the curves and 

estimated their geometric characteristics. The obtained curve attributes were then compared to the 

information documented on the as-built drawings.  

To this end, the algorithm was validated using ground truth data (i.e., as-builts) which 

contained two curves. Due to the limited availability of as-built drawings for numerous curves, 

and to ensure that the algorithm was tested on a large scale, another simulated experimental case 

was created.   A roadway centerline with multiple horizontal curves was generated using AutoCAD 

Civil 3D software. This segment was developed based on a set of predefined curve attributes. This 

simulated data includes centerline points (i.e., simulating the trajectory points) that can be used by 

the proposed algorithm to define the centerline vectors and then execute the proposed procedure. 

The simulated segment was 20 km long and contained five horizontal curves with different degrees 

of curvature (i.e., sharp and mild curves). The algorithm was then used to detect the presence of 

horizontal curves and estimate their geometric attributes. The results obtained by the algorithm 

were compared to the predefined values that were initially used to generate the simulated 

centerline. 

Figure 8 shows the analyzed simulated segment with its corresponding change in the 

azimuth diagram along the horizontal alignment. From the figure, straight and curved elements 
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can be seen intuitively as tangent elements have no change in azimuth; however, curves have a 

constant change (in an ideal case). 

 

 

 

Figure 8: Azimuth change along the horizontal alignment of the simulated segment 

3.3.3.2 Result Validation 

Table 2 shows the results of running the code on LiDAR data of the Highway 36 subsection. It 

presents information on curve attributes obtained from as-built drawings and the corresponding 

information extracted from the LiDAR scan of the highway.  
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Table 2: Extraction results of as-built and LiDAR data for Highway 36 

Element Attribute As-built (ground truth) Detected (LiDAR) Difference (%) 

Tangent 1 Length (m) N/A 2474.32 N/A 

Curve 1 

Turn Direction Right Right N/A 

Delta (°) 24.00 23.99 0.058 

Radius (m) 1746.50 1809.00 3.580 

Curve length (m) 762.00 783.92 2.896 

Chord Length (m) 737.10 758.55 2.828 

Tangent 2 Length (m) 652.88 642.36 1.638 

Curve 2 

Turn Direction Right Right N/A 

Delta (°) 49.30 49.01 0.588 

Radius (m) 582.50 606.60 3.973 

Entry Spiral length (m) 106.68 105.61 1.000 

Exit Spiral length (m) 106.68 103.07 3.386 

Curve length (m) N/A 534.80 N/A 

Chord Length (m) N/A 512.87 N/A 

Tangent 2 Length (m) 197.00 189.40 3.858 

 

The table shows the percent difference between the actual estimates (i.e., as-builts) and 

those obtained using the proposed method. The percent difference between the estimates ranged 

from 0.058 % to 3.973 %, indicating that the code was able to extract the curve attributes 

successfully with an accuracy of 96.027 % to 99.942 %. It is also worth noting that the attributes 

of spiral transition curves were accurately extracted. The percent difference for estimating the 

spiral length was 1.000 % and 3.386 % for entry and exit spiral curves respectively.  
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It is worth noting that the highest percent difference was 3.580 % (62.50 m difference) for 

estimating the radius of curve 1 and 3.973 % (24.10 m difference) for curve 2. This difference 

could be attributed to the possibility that the code has been inexact by one or two vectors when 

locating the curve start and endpoints (PC and PT) which resulted in some differences between 

ground truth values and detected estimates. The algorithm might be inexact because the real PC 

and PT points might not be at an exact PC and/or PT point that is defined by the code. In other 

words, PC and PT points are identified based on exceeding the threshold of change in azimuth 

between vectors. When a PC or PT point is located, it would be at either a start or an end point of 

the vector at which the azimuth change threshold is exceeded. This does not necessarily mean that 

the defined PC and PT points are at the exact same locations of the real PC and PT points of the 

curve. The located curve start and end points can be shifted by one or two vectors. The impact of 

this imperfection on the estimated curve attributes is not significant as demonstrated by the 

extraction results. Based on applying the algorithm on the ground truth data, this resulted in a 

percent difference of up to 3.973 % between real values of curve attributes and those estimated by 

the proposed method. This translates to a minimum accuracy of 96.027 % in detecting curved 

sections and estimating their attributes.   

Although the algorithm was found to be accurate when validated using ground truth data 

from as-built drawings, it was also tested on a simulated road centerline of a 20 km segment. The 

actual curve attributes that were used to construct the simulated road centerline in AutoCAD Civil 

3D are shown in Table 3. Random noise was added to the planimetric coordinates (X, Y) of 

centerline points of the simulated trajectory to simulate the nature of lidar-based trajectory points. 
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Random noise was added with standard deviations of 0.02 and 0.04 m to test the influence of 

different noise levels on curve detection and feature extraction accuracy. The algorithm was tested 

on the smooth simulated data (i.e., zero noise) and data with both noise levels.  

Table 3 summarizes horizontal alignment attributes extracted by the algorithm in all cases. 

The results show that when using random noise with a standard deviation of 0.02 m, the estimated 

curve attributes are nearly identical as those resulting from using smooth simulated trajectory 

points (i.e., with zero noise). The algorithm was able to detect all curves and extract their attributes 

with percent differences between the estimated and the actual values ranging between 0 to 1.874 

% (accuracy of 98.126 % to 100 %). In the case of adding noise with a standard deviation of 0.04 

m to the simulated data, the percent differences between the estimated and the actual values were 

almost the same as the percent differences resulted from using smooth data when estimating the 

majority of curve attributes. However, for some curve features, the percent difference slightly 

increased. It ranged from 0 to 3.304 % compared to a range of 0 to 1.874 % in the case of using 

smooth data (i.e., zero noise). This indicates the algorithm was able to detect curved sections and 

estimate their geometric characteristics with an accuracy of 96.696 to 100 % from simulated 

trajectory points with different noise levels. These results show that the proposed algorithm is of 

a high level of accuracy in curve detection and feature extraction when deviations in vehicle 

trajectory are up to 0.04 m. 
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Table 3: Extraction results of actual and detected data for the simulated segment 

Element Attribute 
Actual 

(simulated) 

 

       Simulated data 

(Smooth & with 

0.02 m Noise)  

Simulated data 

(with 0.04 m Noise) 

Detected  

(LiDAR) 
Difference (%) 

Detected  

(LiDAR) 
Difference (%) 

Tangent 1 Length (m) 1431.61 1430.00 0.113 1430.00 0.113 

Curve 1 

Turn Direction Right Right NA Right - 

Delta (°) 50.69 50.69 0.000 50.69 -0.002 

Radius (m) 1200.00 1205.29 0.441 1205.25 -0.438 

Curve length (m) 1061.65 1079.97 1.726 1079.98 -1.727 

Chord  

Length (m) 
1027.37 1034.93 0.736 1034.91 -0.734 

Tangent 2 Length (m) 1025.92 1030.00 0.398 1040.00 -1.372 

Curve 2 

Turn Direction Left Left NA Left - 

Delta (°) 37.66 -37.66 0.003 -37.66 -0.002 

Radius (m) 1600.00 1610.56 0.660 1597.64 0.148 

Curve length (m) 1051.64 1069.98 1.744 1060.00 -0.795 

Chord Length (m) 1032.81 1040.73 0.767 
1031.29 

 
0.147 

Tangent 3 Length (m) 2557.27 2560.00 0.107 2570.00 -0.498 

Curve 3 

Turn Direction Left Left NA Left - 

Delta (°) 41.94 -41.94 0.001 -41.94 0.002 

Radius (m) 2400.00 2401.69 0.070 2380.54 0.818 

Curve length (m) 1756.80 1769.99 0.751 1749.98 0.390 

Chord Length (m) 1717.84 1720.83 0.174 1702.16 0.921 

Tangent 4 Length (m) 2554.36 2560.00 0.221 2559.99 -0.220 

Curve 4 

Turn Direction Right Right NA Right - 

Delta (°) 55.82 55.82 0.007 55.82 -0.007 

Radius (m) 1350.00 1362.85 0.952 1369.64 -1.455 
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Element Attribute 
Actual 

(simulated) 

 

       Simulated data 

(Smooth & with 

0.02 m Noise)  

Simulated data 

(with 0.04 m Noise) 

Detected  

(LiDAR) 
Difference (%) 

Detected  

(LiDAR) 
Difference (%) 

Curve length (m) 1315.32 1339.97 1.874 1349.97 -2.635 

Chord Length (m) 1263.91 1276.88 1.026 1285.75 -1.728 

Tangent 5 Length (m) 4049.67 4050.00 0.008 4050.00 -0.008 

Curve 5 

Turn Direction Right Right NA Right - 

Delta (°) 30.90 30.90 0.000 30.90 0.000 

Radius (m) 1750.00 1760.93 0.625 1761.57 -0.661 

Curve length (m) 943.79 959.99 1.716 960.00 -1.717 

Chord Length (m) 932.39 938.38 0.642 938.39 -0.643 

Tangent 6 Length (m) 2251.99 2230.00 0.986 2179.97 3.304 

 

3.3.4 Network-level Assessment 

3.3.4.1 Extraction Results 

The primary aim of this step is to test the feasibility of utilizing the extraction algorithm on a large 

scale. To that end, the algorithm was used to detect curves and extract their attributes on 242 km 

of five highways where LiDAR data was collected. In order to test the robustness of the algorithm, 

the segments were selected in a manner that ensures variability in their geometric characteristics, 

including the sharpness of curves, number of lanes, roadside vegetation, and functional 

classification. The 242 km were broken down as follows: 60 km on Highway 1 (HWY 1), 45.2 km 

on Highway 2 (HWY 2), 44 km on Highway 17 (HWY 17), 68.47 km on Highway 58 (HWY 58), 
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and 23.96 km on Highway 661 (HWY 661). Figure 9 shows images of LiDAR data for road test 

segments. 

 

a. Highway 1 (Station 0+000 to Station 60+000) 

 

b. Highway 2 (Station 0+000 to Station 45+199) 

 

c. Highway 17 (Station 0+000 to Station 44+000) 
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d. Highway 58 (Station 0+000 to Station 68+472) 

 

e. Highway 661 (Station 0+000 to Station 23+956) 

Figure 9: LiDAR data for 242 km of highways 1, 2, 17, 58, and 661 

 

The algorithm was successful at identifying all the curves along the five highway segments, 

with a detection rate of 100 % which has been verified using Google maps. As an example, Figure 

10 shows the azimuth diagram generated from LiDAR data of Highway 17, the figure demonstrates 

how effective the algorithm is in distinguishing between tangent elements and curved sections, 

with curved segments corresponding to changes in the slope of the azimuth diagram and straight 

segments corresponding to the flat linear portions of the diagram (five curves can be visually 

identified along this segment). 

Table 4 shows the results of running the code on all road segments. The results show that 

on Highway 2, two false-positive curves were detected (i.e., although the test data contains seven 
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curves, the algorithm detected nine). A closer examination of this anomaly revealed that two of 

the detected nine curves had a deflection angle of 0.5°, which is not reasonable for a horizontal 

curve. An in-depth examination revealed that these two curves were temporary changes in the 

horizontal alignment resulting from traffic detours during roadwork construction when the data 

was collected, as seen in Figure 11. 
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Figure 10: Azimuth change along LiDAR data of Highway 17 segment 
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Figure 11: Traffic detours detected by the algorithm 

 

Table 4: Results of algorithm application on a network-level using LiDAR data 

Highway Class Freeway Arterial Collector 

Element Attribute HWY 1 HWY 2 HWY 17 HWY 58 HYW 661 

Tangent 1 Length (m) 12645.8 623.7 1327.6 2207.2 6068.7 

Curve 1 

Direction Right Right Left Right Right 

Delta (°) 89.8 26.0 -31.5 27.8 63.9 

Radius (m) 616.8 1152.8 663.0 1081.1 501.2 

Superelevation (m/m) 0.073 0.039 0.053 0.045 0.609 

Curve length (m) 844.5 543.4 381.7 542.1 562.7 

Chord Length (m) 768.8 518.6 357.0 517.2 516.8 

Tangent 2 Length (m) 13308.1 6032.9 1246.6 682.9 321.3 
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Highway Class Freeway Arterial Collector 

Element Attribute HWY 1 HWY 2 HWY 17 HWY 58 HYW 661 

Curve 2 

Direction Left Left Right Left Left 

Delta (°) -35.6 -26.1 31.4 -34.9 -64.0 

Radius (m) 834.1 845.6 588.3 1128.2 503.9 

Superelevation (m/m) 0.051 0.037 0.055 0.026 0.069 

Curve length (m) 768.8 379.3 318.4 674.0 517.6 

Chord Length (m) 522.9 402.4 341.6 703.6 563.2 

Tangent 3 Length (m) 5508.6 5249.6 17837.1 10375.1 2270.4 

Curve 3 

Direction Left Right Right Left Left 

Delta (°) -54.5 31.7 47.0 -39.6 -58.2 

Radius (m) 1011.5 1062.0 757.6 1087.4 505.6 

Superelevation (m/m) 0.056 0.050 0.059 0.031 0.075 

Curve length (m) 964.9 602.6 623.2 763.4 522.6 

Chord Length (m) 910.1 576.5 591.3 730.9 481.9 

Tangent 4 Length (m) 10917.4 7562.1 884.3 3801.7 442.6 

Curve 4 

Direction Right Right Left Right Right 

Delta (°) 48.0 34.0 -19.0 18.5 58.2 

Radius (m) 897.6 952.6 1033.1 1007.6 489.2 

Superelevation (m/m) 0.072 0.057 0.039 0.045 0.054 

Curve length (m) 764.4 584.3 362.2 341.5 502.3 

Chord Length (m) 723.6 558.3 341.0 320.7 463.9 

Tangent 5 Length (m) 3638.5 4768.9 884.9 6353.7 3838.3 

Curve 5 

Direction Left Left Left Right Left 

Delta (°) -48.0 -50.0 -28.0 19.1 -89.9 

Radius (m) 901.0 815.9 916.8 1629.0 504.5 

Superelevation (m/m) 0.071 0.064 0.038 0.045 0.064 
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Highway Class Freeway Arterial Collector 

Element Attribute HWY 1 HWY 2 HWY 17 HWY 58 HYW 661 

Curve length (m) 763.8 724.8 462.4 562.8 783.4 

Chord Length (m) 723.8 686.2 439.6 539.9 691.9 

Tangent 6 Length (m) 10302.8 4828.2 19828.6 16207.7 422.0 

Curve 6 

Direction 

N/A 

Left 

N/A 

Right Right 

Delta (°) -16.3 16.4 89.6 

Radius (m) 571.2 1614.6 539.7 

Superelevation (m/m) N/A 0.043 0.054 

Curve length (m) 181.1 482.5 944.4 

Chord Length (m) 160.8 461.1 866.8 

Tangent 7 Length (m) N/A N/A N/A 21515.7 6953.6 

Curve 7 

Direction 

N/A 

N/A 

N/A 

Left 

N/A 

Delta (°) 0.5 -34.7 

Radius (m) 

N/A 

1066.0 

Superelevation (m/m) 0.038 

Curve length (m) 663.8 

Chord Length (m) 635.7 

Tangent 8 Length (m) N/A N/A N/A 1942.3 N/A 

Curve 8 

Direction 

N/A 

 

N/A N/A N/A 

Delta (°) -0.5 

Radius (m) 

NA 
Superelevation (m/m) 

Curve length (m) 

Chord Length (m) 

Tangent 9 Length (m) N/A 10013.8 N/A N/A N/A 

Curve 9 Direction N/A Right N/A N/A N/A 
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Highway Class Freeway Arterial Collector 

Element Attribute HWY 1 HWY 2 HWY 17 HWY 58 HYW 661 

Delta (°) 18.4 

Radius (m) 1631.9 

Superelevation (m/m) 0.039 

Curve length (m) 542.4 

Chord Length (m) 520.5 

Tangent 10 Length (m) N/A 2474.2 N/A N/A N/A 

3.3.4.2 Computer Power and Processing Time 

One important element when discussing network-level assessments is the processing time required 

to achieve such results. The horizontal curve detection and feature extraction was performed using 

a computer with a 12-core Intel E5-1650V4 CPU at 3.6 GHz with 32 GB RAM. The processing 

time ranged from 1.82 sec/km for Highway 501 to 4.42 sec/km for Highway 661. For Highway 

58, the highway with the longest test segment, the processing time was 3.08 sec/km. For Highways 

1 and 2, the processing time was 2.68 sec/km and 2.46 sec/km, respectively. The total processing 

time was 2.92 sec/km or 13 min and 32 sec to both detect and extract all horizontal alignment 

characteristics on the entire 242 km of highway segments.  

3.3.5 Algorithm Performance and Significance 

As demonstrated by the results, the algorithm is effective in efficiently and accurately detecting 

and extracting attributes of horizontal alignments on a network level. The feasibility of applying 

the algorithm on a large scale demonstrates the value of the developed procedure not only for 

establishing the data set required for reliability analysis but also for assisting departments of 
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transportation manage their road networks. Establishing an accurate inventory of curve 

information in such a robust manner could transform the way road networks are managed and help 

alleviate the burden associated with using conventional surveying methods. 

Several transportation agencies rely on information about roadway horizontal alignment in 

planning, design, and safety assessment of roadway facilities. Maintaining an up-to-date inventory 

of curve data is also useful to both these entities as well as researchers investigating the influence 

of horizontal alignment attributes on safety. Studies investigating such effects in the past have used 

a variety of conventional techniques to collect curve data [111-114]. The size of road networks 

used in these studies ranged from 46.6 km to 543 km highway segments. Curve attribute 

information was obtained from several different sources including departments of transport, aerial 

photographs, satellite images, or commercial design software (i.e., AutoCAD) combined with 

conventional surveying methods. One study by Manan, Jonsson [113] used data measured from 

Google Earth and local street maps as a result of the lack of available information on road 

geometry. The authors indicated a lack of accurate information on road geometry including the 

inability to obtain information about vital variables, such as road vertical profiles, which, could be 

extracted using LiDAR data [76]. 

A large scale inventory of horizontal curve attributes is also essential for developing 

operating speed models [115]. Such models are important for evaluating the roadway design 

consistency. The literature is full of research studies focusing on the development of speed 

prediction models using horizontal alignment attributes [116-124]. The number of sites used in 

these studies varied from 10 to 116 horizontal curves. Similar to safety studies, information on 
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horizontal alignment attributes were obtained from different sources, which are, in some cases, 

inaccurate or inefficient. Some studies extracted road geometry data from as-built drawings 

provided by the ministry of transportation or highway officials, while others used design and GIS 

software such as AutoCAD and ArcGIS to manually extract the information from design drawings 

or from survey points collected using conventional methods. The above discussion shows the 

importance of maintaining an up-to-date repository of roadway alignment information from both 

an operational and research standpoint. Therefore, adopting a robust and automated data extraction 

framework such as the developed algorithm is an appealing alternative to departments of 

transportation.  

When discussing the deployment of a technology-driven method such as the developed 

methodology, potential time and money savings should be discussed. The developed algorithm 

demonstrated the value of automation in detecting highway horizontal curves and extracting their 

attributes on a large scale. For example, the code was tested on LiDAR data of 242 km of highway 

segments, and it detected all 35 horizontal curves and estimated their geometric characteristics in 

13 min and 32 s using LiDAR data sets. To conduct a conventional survey for the same highway 

segments, a crew of at least two people would be needed and they could easily spend a day (i.e., 

eight working hours) to collect information on a single horizontal curve. Knowing that the average 

rate of a surveyor in Alberta is around $120 /hr, the total cost to survey all 35 curves would be 

approximately $ 67,200. Considering the safety risks associated with the surveyors being on or 

close to adjacent traffic, the time needed to perform manual surveys especially for long highway 

segments, and the fact that LiDAR data represent 3D models for highways that can be accessed 



 

   

 

 

87 

 

anytime, the adoption of LiDAR data in asset management could save transportation agencies 

significant amounts of time and money.  

3.4 Available Sight Distance Assessment in a 3D Environment  

This section is dedicated to the developed algorithm for sight distance assessment. It describes the 

developed procedure for 3D ASD computation and includes details about algorithm testing, 

validation, and application on a large scale.  

3.4.1 Background 

It is evident from the literature review presented in the previous chapter that there have been 

several studies dedicated to assessing ASD on highways. However, there is also a large need for 

expansion. Most of the previous work focuses on evaluating ASD using GIS data or aerial LiDAR 

images (i.e., collected by aeroplane) and utilizing commercially available software, such as 

ArcGIS. This involved manual interventions that hinder the large-scale ASD assessment and, more 

importantly, a recent study by Castro, Lopez-Cuervo [91] showed that using mobile LiDAR data 

outperforms aerial LiDAR and allows for highly accurate DSM, leading to a very accurate 

representation of the road environment. In addition, many of these previous studies have not 

provided a reliable validation procedure for the outputs of the proposed methods. This could be 

due to the absence of as-built information on the ASD since it is very hard to compute during site 

visits. Previous work considered these as limitations and recommended further research to 

automatically evaluate the ASD using 3D roadway models. Developing a method that utilizes a 
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reliable source of data to determine the ASD in an efficient and automated manner is of great value 

to road design and safety fields.  

Therefore, a part of the data acquisition phase in this thesis is developing a procedure by 

which mobile LiDAR data is used to evaluate the available sight distance on entire highways in a 

robust and fully automated approach. Mobile LiDAR data provides access to a 3D model of the 

roadway that can be used to automatically compute the available sight distance and accurately and 

investigate sight distance obstructions. Thus, this research adds to the existing body of literature 

in this area by introducing a fully automated ASD assessment framework. The method takes into 

account the 3D nature of the road environment considering the combined effects of both horizontal 

and vertical alignments and accounts for the presence of 3D obstacles such as vegetation, 

buildings, and road furniture that can obstruct the driver's sight lines.  

Prior to utilizing the developed method in establishing the curve data needed in reliability 

calculations, the algorithm was first tested by computing the ASD from LiDAR data of 20-km 

segments of highway in Alberta, Canada. A 3D based validation procedure was conducted 

following the AASHTO's recommendations to ensure the accuracy of the obtained results [17]. 

The influence of the interaction between horizontal and vertical alignment has on sight distance 

limitations was also discussed. The developed algorithm increases the efficiency and robustness 

of the sight distance evaluation process using mobile LiDAR data and helps alleviate hurdles 

associated with conventional assessment methods. 
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3.4.2 Methodology 

The sight distance assessment process involves three main stages. It first includes defining 

observer and target points to represent the driver’s eye and objects along the highway. The second 

step involves LiDAR data voxelization in which LiDAR point cloud is converted into voxels (i.e., 

3D representation of road segments) followed by mapping observers and targets onto the voxel 

grid. The last step includes assessing the visibility between observers and targets and computing 

the ASD along the analyzed segment. The method can be explained in more detail as follows: 

3.4.2.1 Defining Observer and Target Points 

The first step is to define observer and target points. Observers are points that represent the driver’s 

location along a driving lane centerline. Targets are points that represent objects (i.e., potential 

obstructions) being observed by the driver. Since the ASD is to be assessed along the vehicles’ 

path on a driving lane, observer and target points are the set of points representing the trajectory 

of the data collection truck travelling along the highway. These points are aligned parallel to the 

road axis and can be extracted from the collected LiDAR data. This set of points is obtained by 

filtering the LiDAR point cloud based on the scanning angle of points. Points collected at a zero 

scanner-angle by the scanning system are the points located right under the scanner on the roadway 

pavement surface and represent the trajectory of the data collection vehicle. Thus, after the 

algorithm reads the LAS file of a four km segment, it filters the point cloud data and deletes any 

points with a non-zero scanner angle. The remainder of the points with a zero scanner is then used 

to represent observer and target points. To enable an automatic sight distance on an entire highway, 

the code runs through a number of LAS files for successive road segments (i.e., four km each) and 
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combines the extracted points to represent the vehicle trajectory (i.e., observers and targets) along 

the entire roadway. The output is a vector of observes oi = [i, i+1, i+2, …., n] contains n points 

and a vector of targets tj = [j, j+1, j+2, …., m] contains m points.  

The number of observer and target points vary based on the interval distance at which the 

ASD is to be assessed. While evaluating ASD for every distance up to 50-m is recommended [88], 

analysis of a large number of segments showed that computing ASD at distances from 5 to 20m 

yields almost the same results. While this distance can be altered by the user (i.e., designer), the 

sight distance is assessed in this research at 20-m distance intervals. In order to be consistent with 

the design guidelines’ requirements, the height of the observer and target points should be 

accounted for. The Alberta Highway Design Guide recommends an observer height of 1.05 m 

(represents the height of the driver’s eye) and an object height of 0.38 m (represents the lead 

vehicle tail’s height) be used when evaluating the ASD [125]. Thus, after the code extracts the 

observer and target points, their elevations are modified according to the values suggested by the 

design guides. Figure 12 shows an example of observer points distributed along the road lane 

centerline. In order to verify that observer and target points are defined along the trajectory of the 

data collection truck (i.e., lane centerline) which is the same path of any vehicle would drive inside 

the lane, observers and targets were mapped onto the 3D LiDAR point cloud using the Quick 

Terrain Reader Software, visually checked, and found to be accurately defined as shown in Figure 

12. 
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Figure 12: An example of observer points along the road lane centerline 

3.4.2.2 LiDAR Point Cloud Voxelization 

LiDAR point clouds contain highly dense points that are heterogeneously distributed in the 3D  

space. Thus, a reduction in the size of the data is required in order to easily identify the features of 

interest either visually or through a methodology using the reduced data [96]. Reduction of point 

cloud data size is possible using voxelization without compromising the information on objects in 

the voxel space [62, 91, 96]. Voxelization is the process of discretizing the LiDAR data by dividing 

the LiDAR data point cloud into a 3D grid (i.e., voxels) of a certain size (i.e., user-defined). The 

word voxel is similar to the word pixel, but the voxel is a volumetric pixel in the 3D while a pixel 

is a 2D representation term used when describing normal images. Voxelization is used to discretize 
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the LiDAR data point cloud into truly 3D volumes (i.e., voxels) that best represent the continuous 

road features and are easy to handle compared to dealing with millions of discrete data points. 

Discretizing LiDAR data into voxels also makes the algorithm faster since the code processes a 

smaller number of objects “voxels” compared to processing millions of discrete LiDAR data 

points. 

In this step, the point cloud is divided into a 3D grid with millions of volumetric cubes. A unique 

code is assigned to every cubic voxel to identify them. All points in the point cloud are then 

assigned the defined voxels. Each group of points is assigned to a voxel in the voxels grid based 

on their spatial positions. To assign a point into a voxel, let P (x, y, z) denote a certain point and v 

(i, j, k) denote a voxel. If the dimensions of a voxel cell in the x, y, and z directions are ∆x, ∆y, and 

∆z; and the origin of the tri-dimensional voxel grid is denoted by x0, y0, and z0, the ID of the voxel 

v (i, j, k) that contains the point P (x, y, z) is computed as follows [64]: 

𝑖 =  
𝑖𝑛𝑡 (𝑥 −  𝑥0) 

∆𝑥
                                                                                                                                     

𝑗 =  
𝑖𝑛𝑡 (𝑦 −  𝑦0) 

∆𝑦
                                                                                                                                     

𝑘 =  
𝑖𝑛𝑡 (𝑧 −  𝑧0) 

∆𝑧
                                                                                                                                     

The voxelization of a point cloud is based on a 3D histogram counting algorithm [64]. The 

algorithm considers the size of both the entire 3D grid and the voxel size in order to classify the 

points contained in the point cloud into bins. The size of the voxel is chosen in a way that retains 

all information about feature objects. Although the voxel size can be defined by the user, it is 
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recommended that voxel dimensions be chosen based on the properties of the laser scanning 

system used to collect the data [63]. The laser scanner collected data that is used in this study has 

scan lines that are about 20-cm apart. Thus, in this research, using a 20-cm cell size for voxelization 

is considered. This would ensure that points collected from neighboring scanlines would be 

assigned into adjacent voxels. It is worth mentioning that the selected voxel size was tested to 

ensure that sight distance is not obstructed by small objects that would not normally limit the 

driver’s visibility. The outcome of the algorithm was also validated using recommendations of 

design guidelines as explained in Section 3.4.3. Figure 13 visualizes the voxelization process by 

showing a sample of LiDAR data before and after conversion into voxels.  

   

Figure 13: A sample of LiDAR point cloud before and after voxelization 

(left side: before, right side: after) 
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3.4.2.3 Available Sight Distance Computation 

Evaluation of the ASD involves three steps. The first step is mapping observers and targets onto 

the grid of voxels created for the LiDAR point cloud. The next step is constructing and assessing 

sight lines between each observer in the observers’ point set; oi and all targets in the set tj. For 

example, the algorithm checks the visibility from the first observer (i = 1) to all target points tj = 

1:m. Then, the process is repeated for each observer (oi=1:n) in the observers’ points set. To check 

the visibility between an observer and a target, a vector is created between the observer point and 

the target point. The code then goes along this vector and looks for the obstructing voxel. The 

algorithm searches for the voxel that touches the vector, which occurs when the vector position is 

lower than the position of the highest point inside the voxel and higher than the position of the 

lowest point inside the voxel.  

If there is no obstructing voxel found between the observer and the target, the code checks 

for the next target. The code continues looping through the successive targets (i.e., from the same 

observer) till the first obstructing voxel has been identified. Once a cubic voxel is found to restrict 

the visibility from an observer to a target, the distance from the observer to the last visible target 

(i.e., the previous target) is recorded as the ASD at this observer. If the code reaches the end of the 

array of targets before finding an obstructing voxel, the ASD is considered as the distance from the 

observer to the last target. Figure 14 demonstrates sightlines connected from an observer point to 

successive target points. The code repeats the same process for the entire observer’s array and 

records the ASD at each observer. Once the available sight distance has been computed at all 

observers’ locations, the code compares the ASD at each location against the requirements of 
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design guidelines to determine whether or not the minimum required sight distance is met. The 

code finally outputs and plots the available sight distance along the highway segment (i.e., or the 

entire highway).  

Finally, to facilitate further investigation about locations identified with sight distance 

deficiencies, the algorithm also exports KML (Keyhole Markup Language) files containing 

position (x,y,z) information about the obstructing objects (i.e., voxels) at these locations. These 

KML files can be imported later into the 3D point cloud in case a visual inspection is to be 

conducted.  

 

Figure 14: Sightlines connected from an observer to successive targets 
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3.4.3 Algorithm Testing and Validations 

3.4.3.1 Test Segments 

The proposed algorithm was coded using MATLAB [110]. In order to apply the introduced 

procedure to assess ASD on highways, the performance of the code should be tested and then 

validated to verify the applicability and accuracy of the results of the proposed method. For this 

purpose, the code was tested on LiDAR data for 20-km of highway segments in Alberta, Canada. 

Two highway segments were used in the testing and validation process as follows:  

• Highway 11: A 12 km segment on this highway was used. This segment is located in the 

western part of Alberta. The posted speed limit along this section is 100 km/h. This section 

contains nine horizontal curves with high variation in the vertical alignment due to its 

proximity to mountainous areas surrounding Banff National Park. The reason behind the 

selection of the segment is the fact that its location and the variation in the horizontal and 

vertical geometry indicate a high potential for having locations with insufficient ASD. This 

would help investigate the influence of horizontal and vertical alignment on sight distance 

limitations.  

• Highway 63: An eight km segment that includes two horizontal curves was selected. It is 

located in the Northeast of the City of Edmonton. The surrounding area is of rolling terrain. 

This section has a posted speed limit of 100 km/h. It is worth noting that his segment is one 

of the top ten high collision locations in the province. This indicates the importance of 

investigating the safety implications of sight distance insufficiencies if found.  
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3.4.3.2 Results and Discussion 

Based on the characteristics of the tested segments, the minimum stopping sight distance required 

by the Alberta Highway Design Guide is 235 m. The ASD was assessed using LiDAR data of the 

two highways. When the ASD and minimum requirements are compared, it was found that the 

sight distance is satisfied along the two segments except for 19 regions (numbered 1-to-19); 15 

were found on Highway 11 (i.e., located in mountainous areas), and four regions located on 

Highway 63. Figure 15 shows the ASD along the first four km of highway 11 segment. It is worth 

noting that only the ASD of the first four km of Highway 11 is shown in the figure and the ASD 

results of the remainder 20-km are summarized in Table 5. As shown in the figure, the x-axis 

represents the distance (i.e., station) at which the observer is located from the start of the segment, 

and the y-axis represents the ASD. The horizontal red line shows the minimum stopping sight 

distance required by the design guide (i.e., 235 m). The figure shows locations of regions one to 

four; out of 15 zones on Highway 11 were identified to have sight distance restrictions. The 

stationing of these regions is from (0+350 to 0+600); (1+150 to 1+450); (1+950 to 2+200); and 

(3+450 to 3+650). More details about these locations are discussed in the next few paragraphs. It 

is also worth noting that the decreasing trend of the ASD towards the end of the segment is because 

the code is approaching the end of the section (i.e., in LAS point cloud) and there was no additional 

length to conduct the assessment. 
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Figure 15: Available sight distance along Highway 11 

(Red line: minimum stopping sight distance) 

Further investigation was conducted for locations where sight distance was found to be 

insufficient. The algorithm generated KML files for locations where the code detected 

obstructions; these were imported to the LAS file of the segment to be visually inspected. Figure 

16 reveals that ASD at the first four locations was restricted due to the high variation in the vertical 

alignment of the roadway. It is clearly shown that the limitations on sight distance were caused by 

vertical crest curves; which is expected considering the location of the segment (i.e., mountainous) 

and variation in the longitudinal grades.  
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Figure 16: A sample of a location where ASD was restricted by vertical curves 

Although a number of previous studies proposed sight distance assessment methodologies, 

the validation of results of the proposed procedure, in most cases, was limited to either visual 

inspection of GIS files or by conducting site visits to locations identified with visibility problems. 

Both could be inaccurate and prone to intra- and inter-observer variability due to the reliance on 

human observers. Inter-observer variation occurs when two or more observers examine the same 

material with varying results. Conversely, intra-observer variation occurs when a single observer 

experiences varying results while observing the same material more than once. Obviously, such 

variations can have profound effects on the overall results of the assessment. This difficulty in the 

presence of a robust method for validation could be attributed to the fact that sight distance is a 
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feature that is extremely difficult to be measured in the field and/or documented in as-built 

drawings.  

This research validates the performance of the proposed algorithm considering the effect 

of both vertical and horizontal geometry along the 20-km of highway segments. Evaluating the 

ASD is usually implemented separately for road vertical and horizontal alignment [126]. For 

vertical alignment design guidelines also give recommendations about the driver’s eye height and 

the object height that should be used for assessing the vertical profile against meeting the sight 

distance requirements. For horizontal alignment, AASHTO [17] recommends that “the designer 

must use graphical methods to check sight distance on horizontal curves”. Thus, after applying the 

code on the tested segments using LiDAR data, the ASD was manually assessed against both 

vertical and horizontal alignment of the 19 locations using graphical methods. 

• For vertical alignment: The procedure involved generating the road profile along the 

centerline of the driving lane (i.e., the same lane contains the trajectory points that were 

used by the algorithm). The road vertical profile was generated using the methodology 

detailed in the study of Gargoum, El-Basyouny [76]. Vertical lines representing the driver’s 

eye height (1.05m) were drawn to scale on the vertical profile at 20-m apart (the same 

distance between observers used by the algorithm). A target was then drawn at a distance 

of 235m (i.e., the minimum sight distance) from each observer.  Several lines were drawn 

between observers and targets connecting the highest point of each. These lines represent 

the sight lines that need to be checked for continuous visibility. A visual check was then 

conducted to see whether or not the sight lines are restricted by the pavement surface. 
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Figure 17 shows the results of the graphical validation that was conducted for locations 1 

to 4 on the Highway 11 segment (i.e., the same locations that were discussed when referring 

to Figure 15). The other locations showed similar trends. It can be clearly seen from the 

figure that sight lines are not visible since they are overlaid by the pavement surface on 

crest curves. It can also be observed that, at the four locations, the ASD is limited over the 

same station ranges detected by the code and presented in Figure 15. The inspection of the 

remaining locations revealed that ASD was found to be restricted at the 19 locations, which 

is in line with the algorithm’s output. The summary of results at other locations is contained 

in Table 5. 

• For horizontal alignment: Every line of sight connecting observer and target points along 

the centerline of the driving lane on a horizontal curve should not be restricted by any 

lateral objects. To ensure this, the horizontal alignment of the vehicle trajectory lane was 

extracted from LiDAR data and imported into AutoCAD Civil 3D software as detailed in 

the study of Gargoum, El-Basyouny [47]. LAS files of each road segment were also 

imported into the software. This was followed by overlaying the trajectory points that 

represent observer and target points onto the road surface along the extracted alignment of 

the driving lane centerline. The “check sight distance” tool was used to connect sight lines 

(235 m each) between each observer and all targets. These sight lines were then visually 

inspected to look for any lateral restrictions. The investigation revealed that the sight 

distance was not restricted due to lateral obstructions at any of the identified locations.  
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Figure 17: Sight distance restrictions along the vertical alignment of Highway 11 
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 Figure 17: (Continued) Sight distance restrictions along the vertical alignment of Highway 11 
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Table 5: Results of automated assessment and graphical validation 

a(i) Pavement surface of a crest curve 

a(ii) Roadside cut slope plus pavement surface of a crest curve 

Locations from 1 to 15 are located on highway 11 

Locations from 16 to 19 are located on highway 63 

Table 5 summarizes the results of both applying the code on LiDAR data of the test 

segments and the outcome of the graphical validation procedure. Columns 2 and 3 contain 

Location  

Sections with 

 Limited ASD 

3D Graphical Validation Outcome 

Is ASD 

Limited? 

Location of ASD  

limitation (1: true; 0: false) 
Obstructing object 

From To 
HZ 

curve 

VL 

curve 

Combined HZ 

and VL curves 

1 0+350 0+600 Yes 1 1 1 a(i) (shown in Fig. 17) 

2 1+150 1+450 Yes 1 1 1 a(i) (shown in Fig. 17) 

3 1+950 2+200 Yes 0 0 0 a(i) (shown in Fig. 17) 

4 3+450 3+650 Yes 0 1 0 a(i) (shown in Fig. 17) 

5 4+060 4+320 Yes 1 1 1 a(ii) 

6 4+880 5+180 Yes 1 1 1 a(i) 

7 5+420 5+520 Yes 0 0 0 a(i) 

8 6+180 6+240 Yes 0 1 0 a(i) 

9 6+520 6+660 Yes 0 1 0 a(i) 

10 7+060 7+220 Yes 0 0 0 a(i) 

11 7+340 7+740 Yes 1 1 1 a(ii) 

12 8+440 8+640 Yes 1 1 1 a(ii) 

13 9+260 9+580 Yes 0 1 0 a(i) 

14 10+600 10+780 Yes 0 1 0 a(i) 

15 11+020 11+320 Yes 1 1 1 a(i) 

16 2+820 3+100 Yes 0 1 0 a(i) 

17 4+100 4+200 Yes 0 1 0 a(i) 

18 4+680 4+920 Yes 0 1 0 a(i) 

19 5+520 5+800 Yes 0 1 0 a(i) 
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information on the regions where the algorithm found sight lines to be restricted. Regions with 

insufficient ASD on Highway 11 are locations from 1 to 15 while the zones on Highway 63 are 

from 16 to 19. Columns 4 to 8 provide information about the results of the validation procedure. 

Column 4 indicates whether or not the ASD was found to be limited during the graphical 

assessment. Columns 5 to 7 describe whether the regions with restricted ASD fall on a horizontal 

curve, a vertical curve, or a combination of both.   

Since the interaction between horizontal and vertical alignment is critical when addressing 

the ASD [125], further inspection of the regions defined to have ASD deficiencies was done using 

the 3D point cloud model of each location. Each location was checked closely to confirm and/or 

identify any other obstructing objects. The last column in the table shows the noted obstructions 

at each location. It was found that at all locations the visibility was limited by the pavement 

surface on vertical crest curves. More so, at locations 5, 11, 12; the presence of roadside cut slope 

was found to be an additional limiting factor. It can also be seen that at all locations where a 

horizontal and a vertical curve are combined, the ASD was limited by the vertical crest curve 

suggesting that they might be contributing factors in sight distance limitations when there is a 

combination of vertical and horizontal alignment. In addition, vertical sag curves were found to 

have no influence on ASD restrictions. Finally, while there are no horizontal or vertical curves at 

locations 3, 7, and 10 (i.e., located on a longitudinal grade); it was found that the sight lines are 

restricted by vertical crest curves downstream of the observer’s location. 
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3.4.3.3 High-level Road Safety Assessment  

As the Highway 63 test segment is one of the top ten high collision locations in the province of 

Alberta, a high-level safety assessment was done to investigate whether historical collisions might 

be related to sight distance limitations. Historical collision data from 2009 to 2014 were checked 

to investigate whether or not the sight distance deficiencies might have contributed to the 

occurrence of collisions. Road collisions and regions with limited ASD were mapped using their 

coordinate information as shown in Figure 18. 

 

Figure 18: Road collisions on locations with limited ASD on Highway 63 
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The figure shows that collisions are clustered along regions with insufficient ASD. Region 16 had 

four struck animal-vehicle collisions; region 17 had two animal-vehicle collisions; region 18 had 

two animal-vehicle collisions; and region 19 has four rear-end, three animal-vehicle, and one run-

off-road collisions. The presence of multiple collisions at the same coordinates where ASD is 

found to be limited indicates that sight distance limitations might have been a contributing factor 

for collision occurrence. In addition, the nature of collisions, such as rear-end and animal-vehicle 

collisions, especially along a straight segment, indicate that there is a high chance these collisions 

might have been caused by the driver’s inability to see the obstructions (i.e., other slowed or 

stopped vehicles or animals crossing). In fact, this is in agreement with the results presented in 

Table 5. At these locations, ASD was found to be limited due to the presence of vertical crest 

curves restricting the ability to see target points from the observer locations. This explains that at 

one point between the driver and the object, the sight lines intersect with the pavement surface of 

the vertical crest curves. Thus, sight distance limitations could have been a factor in the 

occurrence of these collisions. 

3.5 Estimation of Longitudinal Grades 

As discussed when presenting the literature review on reliability-based highway design, the 

majority of previous studies ignored the longitudinal grade and assumed level terrain in reliability 

calculations due to data unavailability [6, 27, 30, 78]. Therefore, this research considers the effect 

of longitudinal grades on curved segments. The longitudinal grade (g) is a deterministic value and 

is estimated along horizontal curves from LiDAR data using the methodology explained in the 

study of Gargoum, El-Basyouny [76].  
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The procedure of computing the longitudinal grade involved centerline identification, road 

surface creation, overlaying the centerline onto the roadway surface, and road vertical profile 

generation and fitting. The feature that is used in reliability calculations is the vertical longitudinal 

grade along highway curved segments. The performance of the algorithm was tested on LiDAR 

data of Highway 1 and Highway 2 in Alberta, Canada. The values of longitudinal grades extracted 

by the code were compared to values of longitudinal grades of the same segments documented in 

as-built drawings and collected in GPS surveys. The comparison showed that the algorithm was 

very accurate in estimating the vertical grades with an average percent difference of 0.06% 

compared to as-built drawings and 0.023 to 0.061 compared to GPS data. This high degree of 

accuracy demonstrates the value of using LiDAR for road profile extraction. The detailed 

procedure of longitudinal grade estimation is explained in the study of Gargoum, El-Basyouny 

[76]. 

3.6 Geometric and Collision Data for Reliability Analysis 

As discussed, a set of novel algorithms were used to detect the presence of horizontal curves, 

extract their geometric attributes, and assess the 3D ASD on each curve. The developed algorithms 

were applied on multiple highways in Alberta, identifying locations of horizontal curves, 

extracting their attributes, and assessing the ASD. This resulted in data set of 244 horizontal curves 

on two-lane two-way highways which are used in reliability calculations.  

Previous studies on reliability-based horizontal curve design investigated sight distance 

restrictions within the most inside lane and/or the lane closest to the median in the other direction 

of travel [6, 27, 30, 31, 38]. Thus, this thesis assesses the risk associated with sight distance 
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deficiencies and vehicle skidding along the innermost travel lane (i.e., the closest to the roadside), 

which is the lane defined as the most critical lane by Highway Design Guidelines to calculate the 

lateral clearance on horizontal curves for stopping sight distance [17, 125]. Even though the 

analysis is performed on the most critical lane, the proposed framework can be repeated at any 

lane of interest.  

Using the 3D-based sight distance estimation algorithm, the ASD was assessed along the 

most inside lane on all studied horizontal curves. The minimum ASD along each curve was 

considered as the sight distance supply and is used in the reliability calculations, which is the 

standard practice in previous studies [6, 7, 27, 30, 31]. Longitudinal grades were also extracted 

along the innermost travel lane in the same direction of travel at driver locations where sight 

distance is limited.   

Traffic volumes and data of sight distance-related collisions that occurred on these curves 

from 2009 to 2014 were also added to the dataset. Only collision types that are likely occurred 

due to insufficient sight distance or vehicle skidding were considered, which is consistent with 

previous research [5, 127]. This includes rear-end collisions, same-direction sideswipe collisions, 

run-off-road crashes, and struck-animal collisions. Collision causes of the collision data set were 

also reviewed to include only relevant collisions (e.g., run-off-road collisions on curves). Table 6 

provides descriptive statistics of the dataset used in this dissertation. 
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Table 6: A Descriptive statistics of horizontal curve data 

Description Min Max Mean STDEV 

Injury and Fatal collisions/5-yrs 0.00 9.00 0.73 1.27 

Property-Damage-Only collisions/5-yrs 0.00 43.00 2.93 4.93 

Total collisions/5-yrs 0.00 47.00 3.66 5.71 

AADT (veh/day) 242 45220 3959 6670 

Curve Length (m) 181 1547 586 263 

Superelevation (m/m) 0.01 0.08 0.05 0.01 

Deflection angle (Degrees) 7.57 89.97 40.69 18.89 

Radius (m) 267 2048 867 365 

Chord Length (m) 160.29 1465.67 549.43 248.36 

Degree of Curvature 0.84 6.44 2.38 1.00 

ASD (m) 80.1 185.2 152.4 27.0 

Longitudinal grade (%) -7.41 6.30 0.12 1.95 
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4 RELIABILITY ANALYSIS & RISK ASSESSMENT  

This chapter is dedicated to quantifying the risk associated with inadequate sight distance and 

vehicle skidding on curved segments. The first part of the chapter provides examples where using 

a 2D-based approach to assess ASD could be misleading. The consequent section provides details 

on applying a multi-mode reliability analysis to estimate the risk levels at studied horizontal 

curves. It describes the limit state functions of the non-compliance modes and provides details on 

the random and deterministic variables included in the LSFs, followed by applying Monte Carlo 

Simulation to estimate the Pnc levels. The closing section of the chapter includes a discussion of 

the results and their implications.  

4.1 Using a 3D-based Sight Distance Assessment 

This thesis assesses the risk associated with non-compliance on horizontal curves resulting from 

insufficient sight distance combined with vehicle skidding. As discussed, the majority of previous 

studies used 2D ASD calculations which does not account for the 3D nature of the driving 

environment and potential sight obstructions [6, 7, 27, 30, 31, 34, 35, 38, 39, 42]. It is therefore 

of utmost importance to highlight how using 2D projection could lead to misleading conclusions 

about sight distance limitations and consequently the associated safety levels. In the 2D-based 

approach, ASD is considered to be controlled only by the available lateral clearance and curve 

radius. In this case, the ASD can be calculated using the following equation [17] : 

𝐴𝑆𝐷 =  
𝑅

28.65
∗ 𝐶𝑂𝑆−1(1 −

𝑀

𝑅
)                                                                                               (15) 
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where R = curve radius (m); M = middle ordinate (m), which is the distance between the centerline 

of the inside lane to the sight obstruction (e.g., roadside barrier).  

Although these studies have been beneficial in establishing the ground for developing 

probabilistic highway design guides, the use of 2D sight distance assessment could be inaccurate 

and misleading. Considering only the horizontal alignment in assessing the ASD without 

accounting for the vertical alignment and other 3D features (e.g., roadside barriers, embankments, 

etc.) could result in misleading conclusions that do not represent the real driving environment 

which in turn would affect the non-compliance and safety levels resulting in deceptive 

conclusions. For example, by examining the road plan (i.e., 2D approach) shown in Figure 19, 

the sightline appears to be obstructed by the presence of a hill causing the Object to be invisible. 

In this case, the ASD can be estimated using Equation 15 (i.e., limited by M and R). However, 

when using a 3D-based approach, the sightline profile reveals that the elevation of the hilltop is 

lower than that of the sightline connecting the driver's eye to the Object. This indicates the 

opposite conclusions in which the Object is visible. This affirms the need to evaluate sight lines 

in a 3D world considering the effect of both horizontal and vertical alignments along with other 

potential obstructions of roadside features. 
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Figure 19: Misleading 2D sight distance assessment 

The sight distance computation approach in this dissertation overcomes the limitations 

associated with the traditional method of sight distance calculations and considers the use of 

LiDAR data to compute the 3D ASD using the algorithm discussed in the previous chapter. This 
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accounts for the 3D nature of combing both highway horizontal and vertical alignments along 

with all 3D features that could obstruct the driver’s vision resulting in a more realistic and 

representative ASD. To demonstrate the value of utilizing LiDAR data in 3D ASD assessment and 

that it is superior to using the traditional approach, Figure 20 shows LiDAR data, Road Plan, and 

Profile of a segment for which the ASD was assessed using LiDAR data. Examination of the 

horizontal alignment revealed that there are no lateral sight distance obstructions (i.e., the 2D 

approach would conclude that there are no sight distance restrictions). However, using LiDAR 

data to compute the ASD along the segment revealed that the sight is obstructed along the 

horizontal curve due to the presence of a substandard vertical curve combined with the horizontal 

alignment, as seen in Figures 20 and 21. Also, plotting the driver’s eye height and object height 

on the road profile onto a scale (Figure 20) demonstrates that sightlines are obstructed by the 

pavement surface of a sharp vertical curve which also can be seen in the virtual image of LiDAR 

data of this highway segment (Figure 21). 
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Figure 20: Sight distance assessment for a highway segment using LiDAR data 
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Figure 21: Virtual image of LiDAR data of a horizontal curve with sight obstructions 

 

4.2 System Reliability Analysis  

The theory and structure of system reliability analysis are discussed in Section 2.1.2. This section 

discusses the limit state functions and their random and deterministic variables, provides details 

on using Monte Carlo Simulation to estimate the risk levels, and present the risk assessment 

results. 

4.2.1 Limit State Functions  

The first mode of non-compliance is insufficient sight distance and the second one is vehicle 

skidding. When designing horizontal and vertical curves, the design guidelines aim to provide a 
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sufficient length of a roadway ahead, so a driver can see any obstruction in their field of view and 

react accordingly. Hazardous locations where sight distance is restricted usually have 

countermeasures to alleviate the risk associated with the existing limitations. As discussed earlier, 

the current design guides do not provide a framework to quantify the non-compliance associated 

with limited sight distance or any other mode of noncompliance on existing curves. For 

insufficient sight distance, the limit state function of the reliability problem can be written as 

shown in Equation 16 below. The failure in this LSF occurs when the supply (i.e., ASD) is less 

than the demand (i.e., required Stopping Sight Distance: SSD), noting that estimating the demand 

is based on considering the stochastic nature of the design inputs incorporated in the SSD 

calculation model The demand (i.e., SSD) is usually calculated using the AASHTO’s model 

shown in Equation 17 [17] which has been a standard practice when using a reliability-based 

approach for the design of horizontal curves. Thus, the first limit state function can be expressed 

as shown by Equation 18. 

𝐺 = 𝐴𝑆𝐷 − 𝑆𝑆𝐷                                                                                                                  (16) 

where ASD = the available sight distance on the road (Supply, S); SSD = the required stopping 

sight distance (Demand, D), and the noncompliance occurs when the ASD is less than the SSD 

(i.e., G < 0). 

𝑆𝑆𝐷 = 0.278 𝑣 ∗ 𝑃𝑅𝑇 +
𝑣2

254(
𝑎

9.81
+𝑔)

                                                                                       (17) 
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where v is the operating speed (km/h) and is a random variable; PRT is the Perception and 

Reaction Time (seconds) and is a random variable; a is the deceleration rate (m/s2) and is a random 

variable; 𝑔 is the vertical longitudinal grade (%/100) and is a deterministic value. 

𝐿𝑆𝐹1 = 𝐴𝑆𝐷 − (0.278 𝑣 ∗ 𝑃𝑅𝑇 +
𝑣2

254(
𝑎

9.81
+𝑔)

)                                                                    (18) 

The second mode of non-compliance is vehicle skidding in which the failure occurs when the 

vehicle skids out of a curved segment. The balance of a vehicle against skidding is governed by 

design guidelines [17] as shown in Equation 19. The non-compliance occurs when the required 

side friction (Demand) exceeds the available side friction (Supply). The limit state function of 

this mode of non-compliance can be written as shown in Equation 20.   

𝑒 + 𝑓𝑠 =
𝑣2

127 𝑅
                                                                                                                          (19) 

𝐿𝑆𝐹2 = 𝑓𝑠 − (
𝑣2

127 𝑅
− 𝑒 )                                                                                                         (20) 

where e = superelevation rate (m/m) and is a deterministic value; 𝑓𝑠 = side friction factor (i.e., 

Supply) and is a random variable, and R = curve radius (m) and is a deterministic value. 

The two limit state functions (Equations 18 and 20) contain eight variables (ASD, v, PRT, a, 𝑔, 

fs, R, and e). According to the current deterministic design approach, all these design inputs are 

represented by deterministic values, leading the LSF to yield a single value. In other words, in 

current design guidelines, there is a single value for each of these variables (including the random 

variables) that is assumed to represent all drivers. As highlighted, this is a drawback in the 

deterministic design approach as the stochastic nature of random variables is ignored. Using the 

reliability-based design approach, design inputs are treated as random variables with specific 
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probability distributions, and so are the LSFs. In this research, four of these variables are random 

variables and therefore they are treated as stochastic variables (v, PRT, a, and fs). In contrast, the 

remainder of the variables (ASD, 𝑔, R, and e) are considered deterministic. The consideration of 

random variables and the estimation of deterministic variables are explained below.  

4.2.2 Random Variables  

The probability distributions of the random variables (v, PRT, a, and fs) and the corresponding 

mean and standard deviation values are shown in Table 7 and summarized below. These 

distributions are used in the majority of previous work focused on the reliability-based design of 

horizontal curves [6, 7, 13, 25, 27, 30, 31, 35, 38-40, 42]. 

• Vehicle operating speeds (v): as per the Natural Research Council (NRC), operating 

speeds are usually assumed to follow a normal distribution and are estimated using speed 

prediction models [128]. The operating speed in this research is assumed to be normally 

distributed with mean and standard deviation obtained from the speed prediction models 

of Richl and Sayed [129]; the models that have been used in the majority of studies 

focused on reliability-based horizontal curve design [25, 27, 30, 31, 39]. These speed 

prediction models are shown in Table 8. To compute the operating speed on a horizontal 

curve, geometric attributes such as curve radius (R), superelevation rate (e), curve length 

(LC), and deflection angle (I) were estimated using LiDAR data, as discussed in Section 

3.2. These attributes were then used to predict the corresponding operating speed using 

the speed prediction models. The mean value of the operating speed was considered as the 
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average of the operating speed values obtained using these models, and the standard 

deviation explains the variation between the speed values predicted by the models [6, 30, 

31, 38].  

• Perception and reaction time (PRT): In the majority of the previous work cited above, the 

PRT is assumed to be lognormally distributed with a mean of 1.5 seconds and a standard 

deviation of 0.40 seconds based on a study conducted by [130]. Thus, this has been 

adopted in this study. 

• Deceleration rate (a): The [17] assumes that the deceleration rate follows a normal 

distribution with a mean of 4.2 m/s2 and a standard deviation valued at 0.60 m/s2 as found 

by Fambro, Fitzpatrick [131] and commonly used in previous work [6, 27, 30, 31, 35, 

38].. Therefore, the analysis here assumes a is normally distributed with the same mean 

and standard deviation values. 

• For the side friction factor, fs, previous work considered the wet surface condition as the 

case in reliability calculations, since it is more critical [25, 30, 31]. The side friction factor 

is taken as a portion (0.925) of the longitudinal friction as given by Equation 21 [25, 132]. 

The friction factor in the tangential direction is assumed to follow a normal distribution 

with mean and standard deviation values depend on the operating speed as shown in Table 

9 [132]. 

𝑓𝑠 = 0.925 𝑓𝑇                                                                                                 (21) 

where 𝑓𝑠 = side friction factor; 𝑓𝑇 = the friction factor in the tangential direction.  
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Table 7: Probability distributions of design inputs 

Variable Distribution Mean Standard Deviation Reference 

PRT Lognormal 1.5 seconds 0.4 seconds [6, 30, 31, 38, 130] 

a Normal 4.2 m/s2 0.6 m/s2 [6, 17, 27, 30, 31, 35, 38, 131] 

v Normal Prediction 

models 

Prediction models [25, 27, 30, 31, 39, 129] 

fs Normal Model 0.0845 [25, 30, 31, 132] 

 

Table 8: Speed prediction models used to estimate operating speeds on curves* 

Speed Prediction Model (V85 = operating speed) R2 

V85 = 94.398 – 3188.656/R  0.79 

V85 = 95.594 – 1.597DC , where DC = 1746.38/R  0.79 

V85 = exp(4.561 – 0.0058D, where D = 5729.58/R  0.63 

V85 = 102.45 + 0.0037LC-(8995+5.73LC)/R  N/A 

V85 = 103.66 – 1.95DC  0.80 

V85 = 102.44 – 1.57DC + 0.012LC – 0.01DC x LC  0.81 

V85 = 99.61 – 2951.37/R + 0.014LC – 0.131I + 71.82e  0.84 

V85 = 129.88 – 623.10/R1/2  0.78 

V85 = 95.41 – 1.48DC – 0.012DC2  0.99 

V85 = 103.03 – 2.41DC – 0.029DC2  0.98 

V85 = 96.11 – 1.07DC  0.90 

             *From: [5, 25, 129] 
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Table 9: Coefficient of friction distributions 

Pavement condition Mean speed 

(km/h) 

Mean Standard 

deviation 

Wet distribution 80.4 0.4192 0.0913 

Wet distribution 85.0 0.4013 0.0913 

Wet distribution 90.0 0.3826 0.0913 

Wet distribution 95.0 0.3571 0.0913 

Wet distribution 99.8 0.3498 0.0913 

Dry distribution All speeds 0.8852 0.0949 

        * From: [25, 129, 132] 

4.2.3 Deterministic Variables 

The four deterministic variables used in the two LSFs are ASD, R, e, and 𝑔. These variables are 

calculated for each of the 244 horizontal curves using the set of novel algorithms and 

methodology explained in Chapter 3. This 3D ASD is a deterministic value and is estimated along 

the most inside lane of each horizontal curve using the procedure discussed in Section 3.3. The 

horizontal curve radius (R) and superelevation rate (e) are also deterministic values for each curve 

and are estimated following the procedure detailed in Section 3.2. The longitudinal grade (g) is 

another deterministic value that is calculated from using the methodology explained in Section 

3.4. Once the values of these variables were obtained from LiDAR data of the studied curves, 

they were used in the LSFs along with the distributions of the random variables to quantify the 

system Pnc associated with each curve as explained in the next section. 
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4.2.4 Monte Carlo Simulation 

Direct or exact methods are not available to estimate the Pnc when the LSF contains more than 

two variables, non-linear, and when the random variables are not normally distributed [133]. 

Under these circumstances, simulation and various approximate methods can be used to estimate 

the Pnc [25]. Simulation methods include Monte Carlo Simulation (MCS) while approximate 

methods include the Mean Value First-Order Second Moment (MVFOSM), the First Order 

Reliability Method (FORM), and the Second Order Reliability Method (SORM). The theoretical 

background of these methods can be found in various structural and transportation engineering 

studies, such as Melchers and Beck [134], Ellingwood, Galambos [133], and Dhahir [4]. 

MCS is a numerical sampling method that can be used to estimate the Pnc through 

sampling the LSF around the mean of the design inputs. In this approach, MCS is used in drawing 

samples of random variables included in the LSF following their probabilistic characteristics (i.e., 

random samples around the mean of design inputs). While this technique requires computer 

capabilities to generate a series of values for random variables included in LSFs, it is regarded as 

a robust numerical sampling method for estimating the Pnc [35, 38]. Considering the availability 

of computer abilities to perform the simulation and the use of MCS in previous work to solve 

system reliability problems [31, 58], this thesis utilizes MCS to quantify the risk levels associated 

with studied modes of non-compliance.  

To run the sampling using MCS, a MATLAB script was developed to perform the MCS 

and calculate the Pnc system incorporating the two LSFs. Using a large number of samples, every 

LSF is evaluated to determine whether or not the supply of a certain design element (i.e., non-
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compliance mode) would meet the demand requirements. For each LSF, the failure probability is 

calculated by dividing the number of failures by the total number of samples. To calculate the Pnc 

system, the joint probability of failure needs to be calculated. The code calculates the number of 

failures of the first non-compliance mode, given that the second mode has already failed. By 

multiplying this probability by the probability that the first mode fails, the joint probability can 

be calculated, as shown by Equation 10. The Pnc system is then calculated following Equation 8.  

The Pnc system can also be calculated directly by applying the definition of a series system 

reliability problem. Since the system is considered failed if there is either insufficient sight 

distance or potential for vehicle skidding, the code counts the number of samples in which the 

first and/or the second LSF yields a negative value, which represents the number of failures of 

the system. The Pnc system equals this number divided by the total number of samples used in the 

simulation. When using the MCS technique, a target coefficient of variation is typically selected 

to measure the error of the estimated Pnc value. A target coefficient of variation of 2-5% is 

commonly assumed [31]. In this research, a target coefficient of variation of 2.5% is used. An 

example of using MCS to estimate the Pnc is discussed in the next section.  

4.2.5 Reliability Outcome and Risk Measures 

As discussed, each of the studied 244 curves has its own attributes such as ASD, R, v, G, e, etc. 

Using the data set summarized in Table 6, the MCS technique was used to compute the Pnc1 and 

Pnc system associated with each curve. To illustrate the estimation process of Pnc1 and Pnc system for a 

given horizontal curve, the process involves: (i) computing the operating speed (v) on the 

horizontal curve using the speed prediction models shown in Table 8 and curve geometric 
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attributes such R, e, and DC that were extracted from LiDAR data; (ii) determining curve-specific 

values of deterministic variables (ASD, R, e, and G) that exist in the two LSFs (Equations 18 and 

20); (iii) using Monte Carlo Sampling to compute Pnc1 and Pnc system considering the values of 

deterministic variables from the previous step and the probability distributions of random 

variables shown in Table 7 (i.e., v, PRT, a, fs ).  

Using MCS, a series of values (e.g., 100,000) for each random variable in the two LSFs 

are generated following their probability distributions. For each of the 100,000 samples, the two 

LSFs are evaluated to determine whether or not the supply (e.g., ASD) fails to meet the demand 

requirements (e.g., required sight distance) which occurs when the LSF yields a negative value. 

To illustrate, let's assume that LSF1 failed (i.e., yielded a negative outcome) for 10,000 out of 

100,000 instances; LSF2 failed 7,000 times, and both LSF1 and LSF2 shared 4,000 failures. In this 

case, Pnc1 is calculated by dividing the number of failures in LSF1 by the total number of samples 

(Pnc1 =10,000/100,000 = 0.10). Similarly, Pnc2 =7,000/100,000 = 0.07. The probability 

𝑃𝑛𝑐1,𝑛𝑐2 can be calculated in two ways: (i) directly by definition (i.e., 𝑃𝑛𝑐1,𝑛𝑐2 = P (A∩B) 

=4,000/100,000 = 0.04); or (ii) using Equation 10: 𝑃nc1,nc2 = P (A∩B) = P(A∣B) * P(B) = 

(4,000/7,000) * (7,000/100,000) = 0.04. The Pnc system can then be calculated using Equation 8 

where  𝑃𝑛𝑐 𝑠𝑦𝑠𝑡𝑒𝑚 =  𝑃𝑛𝑐1 +  𝑃𝑛𝑐2 −  𝑃𝑛𝑐1,𝑛𝑐2  = 0.10 + 0.07 – 0.04 = 0.13. It is worth noting that 

using MCS, the Pnc system can be calculated directly by applying the definition of a series system 

reliability problem. Since the system is considered to fail if there is either insufficient sight 

distance or potential for vehicle skidding, therefore Pnc system can be calculated through counting 
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the number of instances in which the first or the second mode has failed (i.e., Pnc system = 

13,000/10,000 = 0.13.  

For the studied 244 curves, the Pnc system ranged from 0.01 to 0.94, with a mean of 0.22 and 

a standard deviation of 0.26. More details on the effect of curve attributes on both Pnc1 and Pnc 

system and the differences between the Pnc of a single non-compliance mode and Pnc system are 

discussed in the next chapter (Section 5.3). It should be noted that the Pnc system corresponding to 

30% of curves is greater than 0.24, indicating a high risk associated with the studied curves. Since 

the safety consequences of this non-compliance are unknown, SPFs were developed to relate the 

Pnc system to historical collisions on curved segments as discussed in the next chapter.  
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5 SAFETY-BASED DESIGN APPROACH 

This chapter is divided into three main sections. The first section gives a brief introduction to the 

safety-based design approach. The consequent section provides details on developing safety 

performance functions that relate curve attributes to the system reliability outcome and collision 

frequency. The last section of the chapter calibrates performance-based design charts where curve 

attributes are linked to risk levels and safety.  

5.1 Background 

Adopting a performance-based design approach leads to forgiving highway design that accounts 

for human fallibility. In a safety-based design framework, design elements from existing 

highways are linked to collision frequency while accounting for road users and the variation in 

their capabilities. The relationships established can then be used and integrated into the initial 

stages of the design process 

  Ghobarah [135] defines Performance-Based Design (PBD) as a framework where design 

criteria can be referred to as achieving a number of performance objectives. The ultimate goal of 

PBD of highways is to minimize the failure of a designed highway to perform as intended by 

minimizing the expected collision frequency. This is accomplished through understanding road 

users’ capabilities and accounting for the random nature of driver behaviour, in lieu of assuming 

that all drivers will drive the same way. Instead of designing highways based on the current 

deterministic design approach, the PBD approach is based on establishing a link between design 

requirements and performance metrics from highways currently in operation. Design guidelines 
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can then be updated or calibrated based on the ability of highways to serve the existing driver 

population. Predetermined levels of performance (i.e., safety) can also be used as target levels 

allowing designs to be proposed accordingly.  

For the design of horizontal curves, adopting such a safety-based approach requires 

information on the geometric attributes of curved segments, accounting for the variation in driver 

abilities, and historical collisions which are used as performance metrics. As discussed throughout 

the thesis, curve attributes were extracted along with safety performance records on the studied 

segments. The reliability theory was then utilized to translate the non-compliance on existing 

roads into risk levels that explain how far a design element is not complied with to meet the driver 

demand. The next step is to: (i) establish a link between these risk levels (Pnc) and historical 

collisions and (ii) utilize the relationship developed between Pnc and safety to calibrate 

performance-based design charts where curve attributes can be linked to both associated levels of 

non-compliance and safety performance. More details on these two steps are discussed in the next 

two sections 

5.2 Safety Performance Functions Incorporating Pnc 

This section is divided into three subsections. The first subsection provides background 

information on SPFs including model form, regression models, and parameter estimation 

methods. The following subsection discusses the methodology of developing the SPFs developed 

in this thesis. The last subsection presents the SPFs developed and discusses the results. 
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5.2.1     Background 

After using the reliability theory to quantify the risk associated with the noncompliance as a result 

of insufficient sight distance and vehicle skidding, the next step is to develop SPFs incorporating 

non-compliance levels to investigate the relationship between the Pnc system and collision 

frequency. SPFs are statistical models that are mathematically developed to relate road geometric 

features and traffic characteristics to the frequency and severity of collisions. SPFs are important 

for both existing and planned facilities. For existing roads, these models are used to quantify the 

collisions frequency due to any implemented treatments, while for planned facilities, they are 

used as a tool to estimate the predicted collision frequency [136]. Reliability analysis is not 

intended to replace the use of SPFs but rather, it complements SPFs by incorporating the risk 

associated with design non-compliance (Pnc) into the model [25]. The next few subsections 

provide background information on model form, regression models, and parameter estimation 

methods when developing SPFs. 

5.2.1.1 Model Form 

SPFs usually provide estimates of expected collision frequency as a function of roadway 

geometric and traffic characteristics. Hadayeghi [137] presented a generic form for SPFs as 

follows: 

𝜇 = 𝑓 {𝛽, 𝑋}.                                                                                                             (22) 

where μ is the expected number of collisions for the unit under the analysis; β is a vector of regression 

parameters to be estimated from the data; X is a vector of site-specific attributes 

The functional form for curved horizontal road segments can be expressed as follows [6]:  
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𝜇 = 𝐿𝛽1 (𝐹1𝑖 + 𝐹2𝑖)
𝛽2. exp (𝛽0 + 𝛽3𝑥3𝑖 + ⋯ + 𝛽𝑘𝑥𝑘𝑖)                                                    (23) 

where L is the segment length; F1,2 is traffic volumes for the two directions of travel of the road 

segment; xk are a set of site-specific traffic or geometrical attributes; β0,1,2,3,x are a set of regression 

parameters. 

5.2.1.2 Regression Models 

There are various types of regression models with different probability distributions for road 

collisions used when developing SPFs. This includes Poisson, Poisson-Gamma (also known as 

Negative-Binomial), Poisson-Lognormal (PLN), and other enhanced regression models. The 

literature indicates that most SPFs that relate road geometric attributes to collision frequency were 

developed using either PLN or NB regression model [138-142]. This thesis uses PLN as it 

accounts for outliers in crash data. 

 More specifically, this research uses Multivariate Poisson Log-normal (MVPLN) regression to 

develop SPFs. Multivariate Regression is the method of modelling multiple dependent variables 

with a single set of predictor variables. The MVPLN approach presents an opportunity to account 

for the correlations across various collision severity levels and their effect on safety analyses [48]. 

It is worth mentioning that while MVPLN can handle more than two collision severity levels, the 

collision data analyzed in this thesis involves only two severity levels namely Property Damage 

Only (PDO) and Injuries plus Fatalities (I + F), leading to a bivariate PLN. It is also important to 

note that MVPLN regression is preferred to the Multivariate Poisson model when analyzing 

multivariate collision data (i.e., multiple collision severity) because: (i) it accounts for over-
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dispersion which is frequently observed in crash data; and (ii) it allows for a full general 

correlation structure [48]. As the classical parameter estimation of the MVPLN regression models 

is not straightforward, the Markov chain Monte Carlo (MCMC) simulation method is typically 

used to estimate the model parameters [143]. 

5.2.1.3 Parameter Estimation Methods 

Calibrating the parameters of SPFs can be performed using two common methods namely; 

Empirical Bayes (EB) and the full Bayes (FB). The two methods are different in the way the prior 

parameters are determined. In the EB approach, parameters are estimated using the Maximum 

Likelihood Technique or any other technique involving the use of collision data. In the FB 

approach, the parameters are assigned a distribution to reflect some prior idea about the behaviour 

of the data.  

This research considers estimating SPFs parameters using the FB approach and MVPLN 

regression. The FB approach has been suggested as a useful, though a more complex alternative 

to the EP approach. Modelling using FB offers a number of potential advantages: (i) the 

application of an integrated procedure to obtain outcomes, (ii) the ability to better accounts for 

uncertainty in crash data used; (iii) the small sample properties of FB approach may allow 

estimating crash models with smaller sample sizes; (iv) the ability to reflect some prior knowledge 

on the values of the coefficients in the modelling along with the behaviour of the data; (v) the 

ability to specify more complex model forms; (vi) the ability to provide the posterior distributions 

of outcomes; and (vii) the ability to provide more flexibility in selecting crash count distributions 

[144, 145]. 
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5.2.2 Methodology 

Considering MVPLN regression, for a dataset of collision data at n locations with k severity 

levels, let ( )y...yyy iK2i1i

'

i
= where yik is the collision frequency at the ith location in the 

severity category k . The collisions at n locations are assumed to be independent. Given ik , 

the Poisson distribution of yik can be expressed as follows:  

( ) !yeyf
ik

y
ikikik

ikik 


−= , n,...,2,1i = ,  K,...,2,1k = .                            (24) 

To account for extra variations, let  ikikik
)ln()ln( += where 

X...X)ln( iJkJ1i1k0kik  +++= ,                                        (25) 

where X ij  represents geometric and traffic characteristics,  k = },...,,{
K21  refers to the 

vector containing the regression coefficients and  ik represent multivariate normal errors 

distributed as ),0(N~ Ki  , where 
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Where: 

Σ is an unrestricted covariance matrix; 

NK denotes K-dimensional multivariate normal distribution; and 
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The variance of yik is greater than the mean (allowing for over-dispersion) as long as the diagonal 

elements of Σ are greater than 0 

Let λ denote the set { λ1, λ2,….., λn}. To obtain the estimates of the full Bayes (λ, ∑, β) 

prior distributions for the hyper parameters ),(   need to be specified. Prior distributions are 

meant to reflect to some extent prior knowledge about the parameters of interest. If such prior 

information is available, it should be used to formulate the so-called informative priors (hyper 

parameter specification). In the absence of sufficient prior knowledge of the distributions for 

individual parameters, uninformative (vague) proper prior distributions are usually specified. The 

most commonly used priors are diffused normal distributions (with zero mean and large variance) 

for the regression parameters. 

Thus, the diffused normal distributions (with zero mean and large variance) are regularly 

used as priors for the regression parameters. A Wishart (P, r) is used as prior for 
1−
, where both 

P and Kr  .  P represents the prior guess at the order of magnitude of the precision matrix 
1−

, and r denotes the degrees of freedom. 

The MCMC sampling techniques in the open-source WinBUGS 2.2.0 statistical software 

were used to obtain the posterior distributions needed in the full Bayes approach [146]. The values 

of Brooks-Gelman-Rubin (BGR) statistics [147] (A value under 1.2 of BGR statistics indicates 

convergence), visual inspection of MCMC trace plots of model parameters, and ratios of the 

Monte Carlo errors relative to the particular standard deviations of the estimates (as a rule of 

thumb these ratios should be less than 0.05)  were all monitored to watch for the convergence. 
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The goodness-of-fit of the model was assessed using a posterior predictive approach [148] in 

which replicates under the postulated model are generated and the distribution of a discrepancy 

measure, such as the chi-square statistic, are compared to the chi-square value obtained through 

using observed data. A model is considered not a good fit for the data if the observed chi-square 

value is far from the predictive distribution; the discrepancy cannot reasonably be explained by 

chance if the p-values are close to 0 or 1 [148]. 

5.2.3  Results and Discussion 

Using the data set summarized in Table 6 and the resulting Pnc values of n = 244 curved segments, 

SPFs were developed to relate the collision frequency on these curves to their traffic, geometric 

characteristics, and their corresponding risk measures. SPFs for injury plus fatal (I+F) and 

Property Damage Only (PDO) were developed for collision data covering the period from 2009 

to 2014. Independent variables included in the final model are traffic volume, curve length, and 

Pnc. It is worth noting that including other curve attributes such as curve radius and superelevation 

rate would be redundant as these attributes were used in calculating the operating speed which is 

a major contributing factor in the Pnc calculations.  

Table 10 summarizes posterior estimates of MVPLN models and their standard errors for 

the developed SPFs. The resulting SPF models are shown in Equations 26 and 27. The analysis 

was performed in WinBUGS using two chains with 90,000 iterations each, 10,000 of which were 

excluded as a burn-in sample [48]. The BGR statistics, trace plots for model parameters, and 

ratios of the Monte Carlo errors relative to the specific standard deviations of the estimates were 

all monitored till convergence is indicated [149-152]. To assess goodness-of-fit, the distribution 
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of the chi-square discrepancy measure in replicated datasets was generated. The chi-square 

observed value was located near the center of the replicated distribution, with an associated p-

value of 0.438 and 0.629 for the PDO and I+F models, respectively. This indicates that the PLN 

models were found to perform well in terms of accommodating the variation in collision 

frequency across the curved segments. 
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Table 10: Parameter Estimates and Standard Errors of MVPLN models 

 

Model 

Injuries and Fatalities (I+F) (i) Property Damage Only (PDO) (i) 

Estimate 

 

Standard 

Error 

95% credible 

intervals 

Estimate 

 

Standard 

Error 

95% credible 

intervals 

Lower 

limit 

Upper 

limit 

Lower 

limit 

Upper 

limit 

Intercept -10.670 

 

1.645 -13.970 -7.474 -10.290 

 

1.120 -12.530 -8.113 

Ln(V)(AADT) 0.571  

 

0.085 0.404 0.741 0.635  

 

0.063 0.511 0.760 

Ln(L) 0.829  

 

0.232 0.377 1.287 0.914  

 

0.157 0.610 1.222 

Pnc system 0.784  

 

0.341 0.097 1.440 0.801  

 

0.238 0.331 1.264 

 11  
NA  NA NA  NA 0.444  

 

0.084 0.299 0.629 

 22  
0.299  

 

0.122 0.122 0.587 NA NA NA  NA 

Covariance 

 12  
Estimate = 0.16; Standard Error = 0.08 

 

0.013 0.328 

Correlation 

 221112
/=  

Estimate = 0.45; Standard Error = 0.18 

 

0.045 0.743 

DIC 1326.0 

 

(i)PDO and I+F models were significant at 95% credible interval 
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𝜇1(𝑃𝐷𝑂) =  𝑒−10.290  𝐿0.914  𝑉0.635  𝑒0.801  𝑃𝑛𝑐 𝑠𝑦𝑠𝑡𝑒𝑚                                                                   (26)                                                                                                                                                                                                                                                                                       

𝜇1(𝐼+𝐹) =  𝑒−10.670   𝐿0.829  𝑉0.571  𝑒0.784  𝑃𝑛𝑐 𝑠𝑦𝑠𝑡𝑒𝑚                                                                          (27) 

where 𝜇𝑃𝐷𝑂is the expected number of PDO collisions; 𝜇𝐼+𝐹 is the expected number of injuries 

plus fatal collisions; L is the curve length (m); V is the AADT (veh/day); Pnc is the probability of 

non-compliance. 

As shown in the table, the regression coefficients of the traffic volume (AADT), curve 

length (L), and the system probability of non-compliance (Pnc system) are all significant at 95% 

confidence level. The results presented in the table show that: (i) there is a significant and positive 

relationship between the Pnc system and predicted collisions, indicated by the positive sign of the Pnc 

system. This indicates that the expected number of collisions increases with the increase of non-

compliance resulting from sight distance limitation and the potential of vehicle skidding. More 

details on the individual influence of each non-compliance criteria on the predicted collision 

frequency will be discussed in the following section (Section 5.3.2); (ii) the coefficients of both 

AADT and L are positive, indicating a positive relationship between the traffic volume, curve 

length, and both PDO and I+F collisions. Traffic volume also has a higher impact on PDO 

collisions than on I+F collisions. This is demonstrated by the higher value of the traffic volume 

regression parameter in the PDO models compared to those of the I+F models (e.g., 0.635 for 

PDO vs. 0.571 for I+F); (iii) the Pnc estimates have a higher impact on PDO collisions than on 

I+F collisions. The regression coefficient of Pnc system is 0.801 for PDO and 0.718 for I+F 

collisions. The values of these regression parameters indicate that there is a sharper increase in 

the expected PDO crashes than I+F crashes. This may suggest that road collisions resulting from 
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the studied non-compliance modes are more likely to be less severe (i.e., PDO collisions) 

compared to, for example, overturning collisions, which are usually of high severity. This can be 

attributed to the fact that when a collision occurs due to sight distance limitations, the driver still 

has an available distance that gives them a chance to apply the brakes thereby mitigating the 

severity of the collision. 

It can also be seen that there is a statistically significant moderate correlation of 0.45 

between the two collision severity levels (i.e., PDO and I+F), indicating that horizontal curves 

with higher PDO crashes are likely to have higher I+F rates. This correlation suggests that sight 

distance deficiency and vehicle skidding could result in collisions with different severities (i.e., 

PDO and I+F) and that crash occurrences could be due to deficiencies in other design aspects.  
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5.3 Calibration of Safety-based Design Charts 

This section is divided into two subsections. The first subsection summarizes the method used in 

the calibration of design charts. The second subsection presents and discusses the design charts 

developed. It also provides information about the key differences between the developed charts 

and current design guidelines. Finally, it provides guidance to road design practitioners on the use 

and significance of the developed design charts.  

5.3.1 Calibration of Design Charts 

The next step is to develop safety-based design charts that directly link horizontal curve geometric 

and traffic attributes to collision frequency. The calibration process uses the limit state functions 

of the two non-compliance modes (Equations 18 and 20). The design inputs v, PRT, a, and fs are 

considered random variables with the distributions outlined in Table 7. The variables ASD, G, R, 

and e are considered deterministic values. Operating speed (v) values range from 70 km/h to 100 

km/h were considered. As the operating speed is calculated using speed prediction models in 

which the curve radius (R) in the main independent variable, these speed prediction models are 

the link between operating speeds and curve radius. This corresponds to R values ranging from 

150 m to 900 m using the speed prediction models shown in Table 8 [6, 25, 31, 129]. Highway 

design guides provide design charts for horizontal curves based on superelevation rates (e) of 0.06 

and 0.08, with e = 0.06 being more common. The calibration charts in this thesis are based on a 

superelevation rate of 0.06. Values of longitudinal grade (g) range from 0 to 3% were considered 

(g = 3%, g = 0, g = +3%).  
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The calibration process aims to develop design charts that incorporate Pnc values for different R, 

v, and ASD values. These charts can then be linked to another set of charts that relate Pncvalues 

to collision frequency. Design charts for ASD range from 50 m to 100 m were developed. As 

previously indicated, MCS was used to calculate the probability of non-compliance associated 

with both sight distance limitation (Pnc1) and vehicle skidding (Pnc2) modes and the system 

probability of non-compliance (Pnc system). Using the two LSFs and design parameters discussed 

above, charts were calibrated for different geometric and traffic characteristics. The calibrated 

design charts are presented and discussed in the next subsection  

5.3.2 Results and Discussion 

First, considering the case of level terrain (g = 0), Figure 22 shows the calibrated charts at different 

ASD and v values considering one mode of non-compliance (sight distance: Pnc1); and the system 

(sight distance combined with vehicle skidding: Pnc system). The figure shows that the Pnc increases 

with increasing the operating speed. The results indicate that there are significant differences 

between the non-compliance rates calculated using the system reliability (Pnc system) and those 

estimated using only one mode of non-compliance (Pnc1), especially at lower operating speeds. It 

can also be seen that the differences between the Pnc system and Pnc1 decrease as the value of 

operating speed (or R) increase. For example, at a speed of 75 km/h and an ASD of 80 m, the Pnc 

system = 0.53 and Pnc1 = 0.46 (difference = 0.07). While at a speed of 80 km/h, ASD of 80 m, the 

Pnc system = 0.65 and Pnc1 = 0.63 (difference = 0.02). These differences decrease as the value of 

operating speed increases until reaching a point (almost at 90 km/h) after which there is no 

difference between the Pnc system and Pnc1 (of limited sight distance). The reason behind this is that 



 

   

 

 

141 

 

at higher speeds, the sight distance demand is high resulting in increasing the influence of the Pnc1 

compared to the effect of Pnc2 within the system (Equation 8), making the Pnc1 prevailing (since 

Pnc1 is the major contributor to the value of Pnc system). In other words, at higher operating speeds, 

the limited sight distance controls the failure of a system of two modes. This shows the importance 

of applying system reliability on horizontal curves, especially on curves with sharp radii and low 

operating speeds where is a significant difference between Pnc1 and Pnc system as shown. 

 

Figure 22: Calibrated design charts at different geometric and traffic characteristics (G = 0 & e 

= 0.06) 

 

It can also be seen that the differences between the Pnc system and Pnc1 decrease as the ASD 

decreases. For example, at a speed of 75 km/h and an ASD of 100 m, the Pnc system = 0.32 and Pnc1= 
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0.20 (difference = 0.12) compared to Pnc system = 0.53 and Pnc1 = 0.46 (difference = 0.07) at an ASD 

of 80 m. The reason behind this is that at the same operating speed, as the value of ASD decreases, 

the Pnc1 of sight distance mode increases while the Pnc2 of vehicle skidding does not change (i.e., 

as demonstrated by Equation 20). Also, at lower ASD values, the Pnc1 is much higher than Pnc2, 

which is the reason that the effect of Pnc2 on the Pnc system is becoming lower with the decrease of 

ASD. In other words, at the same operating speed, when ASD decreases, Pnc1 increases, Pnc2 does 

not change, Pnc system increases as a result of increasing Pnc1, but the Pnc1 becomes the major 

contributor to the Pnc system compared to Pnc2, therefore, the influence of Pnc2 on the Pnc system is 

smaller.  

Figure 23 shows design charts that translate the information in the SPFs summarized in 

Table 10 into a visual guide to easily predict the collision frequency for different AADT and Pnc 

levels. Figure 23 can be used in conjunction with Figure 22 where Pnc levels (i.e., system or one 

mode) for a specific design are obtained using Figure 22 while Figure 23 can then be used to 

estimate the corresponding predicted number of crashes.  For example, a curve that has an AADT 

of 25,000 and Pnc system of 0.8 is expected to have 27 collisions/5 years for every km of curve 

length as a result of the non-compliance resulting from sight distance limitation and vehicle 

skidding.  
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Figure 23: Design charts showing the relationship between Pnc, AADT, and total collisions 

Second, considering longitudinal grades of g = -3% and g = +3%, Figure 24 shows the 

calibrated charts at different ASD and v values for both grade levels. The figure contains charts 

for G = 0 (which was previously discussed when referring to Figure 22) with newly overlaid 

charts for G = -3% and G = +3%. As shown, similar conclusions can be drawn for each of grade 

levels (i.e., G = -3% and G = +3%). However, at G = -3%, the Pnc system and Pnc1 are higher than 

those corresponding to G = 0. This is because, at downgrades, a vehicle would need a longer 

stopping distance resulting in higher SSD demand and subsequently higher Pnc values.  
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Figure 24: Calibrated design charts at different geometric and traffic characteristics (G = 0, G = 

-3 %, G = +3 % & e = 0.06). 

It is worth noting that the value of G does not influence the second non-compliance mode (Pnc2), 

and the increase in the Pnc system results from the increase in Pnc1. In upgrades (e.g., G = +3 %), 

vehicles need shorter distances to come to a complete stop resulting in lower SSD demand and 

non-compliance rates. Thus, the values of the Pnc system and Pnc1 for G = +3 % are lower than those 

corresponding to G = 0. This figure can be used to determine non-compliance levels for specific 

design scenarios when information on profile grades is available (i.e., G). Figure 23 can then be 

used to estimate the expected collision frequency.  

The proposed design charts differ from existing design guidelines in different ways. 

Compared to the calibrated charts, the design proposed by the current guidelines is associated 
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with high Pnc levels at relatively low operating speeds. For example, as per Alberta Highway 

Geometric Design Guide, a design speed of 70 km/h on a +3% upgrade segment require an ASD 

of 100 m. Using Figure 24, it can be obtained that the design proposed by current guidelines 

corresponds to Pnc system of 0.29 and  Pnc1 = 0.11 (Difference = 0.18). At higher design speeds, 

current design guidelines have shown to be conservative resulting in uneconomic designs. For 

example, at a design speed of 100km/h, on a +3% upgrade segment require an ASD of 174 m. The 

developed charts show that the non-compliance associated with the studied modes would reach 

Zero at a sight distance supply that is less the provided by current guidelines. Therefore, these 

findings indicate that (i) design guidelines are conservative at higher design speeds and associated 

with high risk levels at lower design speeds; (ii) when associated with high risk levels (i.e., at low 

design speeds), there is a significant difference between Pnc of one mode and that of two modes 

demonstrating the importance of considering multi-modes of non-compliance as discussed; and  

(iii) there is inconsistency in risk levels associated with design guidelines across various design 

speeds. 

Moreover, the design proposed by current guidelines is deterministic with unknown risks 

or safety consequences of deviation from the proposed values. Since current design guides 

provide minimum requirements, a designer could decide to provide a design value that exceeds 

the minimum requirements. This could lead to more conservative designs resulting in higher costs 

of highway construction projects. However, the safety level of these conservative designs remains 

unknown. The proposed charts however represent a scientific-based tool that can be used by 

highway design engineers to assess the risks associated with proposed design values and the 
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influence of proposed designs on safety. For example, by knowing the AADT, the expected 

collision frequency corresponding to the design values discussed above can be estimated. Also, 

using Figures 22-23, different proposed measures (e.g., reducing speed or providing more ASD) 

can be evaluated and their safety consequences can be determined, which cannot be achieved 

using current design guidelines. These charts are not only a useful tool for designers but also 

represent a tool that can provide beneficial insights to departments of transportations about the 

safety consequences of rehabilitation projects and hence their economic feasibility. In summary, 

the calibrated charts could have significant practical implications for both design engineers and 

transportation agencies. 

The results of this research demonstrate that practitioners are advised to use Pnc system in 

the design process, especially when designing curves with sharp radii. As discussed, previous 

research showed that non-compliance on horizontal curves could result from limited sight 

distance combined with vehicle skidding. The results demonstrate that there is a significant 

difference between Pnc of one mode and that of two modes especially at lower operating speeds, 

which is in line with the recommendations of previous work.  Therefore, it is important to consider 

Pnc system in the design stage especially on curves with sharp radii and low operating speeds. More 

so, practitioners could use the proposed design charts as a tool to assess the risk levels associated 

with various design options or estimate the safety benefits of different design improvements. This 

can help study the economic feasibility of rehabilitation projects of horizontal curves through 

employing a benefit-cost analysis framework to decide whether it is feasible to construct a specific 

design modification.  
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The following example demonstrates to a road designer how to estimate the expected 

collision reductions that could result from a potential geometric improvement. For a curved 

segment with a curve radius of 152 m, a longitudinal grade of +2.8%, a minimum ASD of 62 m, 

and an AADT of 4410, using Figures 23 and 24 (operating speed = 78 km/h), the Pnc system is 0.87, 

and the expected collision frequency is 8 collisions/5 year/km. A designer could use the proposed 

figures to conclude that improving the ASD from 62 m to 100 m would reduce the Pnc system to 0.29 

and the expected crashes to 5 collisions/5 year/km. A designer would also notice that 

implementing speed reduction measures that reduce the operating speed from 78 km/h to 70 km/h 

would drop the Pnc system to 0.67 and the expected crashes to 7 collisions/5 year/km. Therefore, it 

can be concluded that improving the ASD provides more safety benefits compared to speed 

reduction measures. However, a benefit-cost analysis would still be recommended to decide 

which improvement option is more feasible.  

Thus, the proposed charts are ready to use by designers in the province of Alberta, Canada, 

based on data was collected on Alberta highways. However, other jurisdictions could use the 

proposed framework to develop similar charts. This would be through utilizing geometric and 

collision data collected on highways of that province or jurisdiction. The same framework could 

then be followed to develop safety models and design charts similar to those presented in this 

thesis. Although the developed methodology focuses on horizontal curves, it could be applied to 

other highway features. 
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6 THE ASSOCIATION BETWEEN CURVE FEATURES, RELIABILITY 

MEASURES, AND SAFETY 

This chapter explores the interaction between Pnc, curve features, and safety. It provides details 

on using SEM to study the impacts of curve attributes on the Pnc as well as the direct and indirect 

(through the impacts on Pnc) impacts of those attributes on safety. The chapter is divided into four 

sections. The first section provides background information on the objectives and significance of 

studying the interaction between Pnc, curve attributes, and collision frequency. The subsequent 

section gives some details on SEM and mediation analysis. The third section is dedicated to model 

development while the last section discusses the results and the interaction between curve 

geometric characteristics, associated non-compliance levels, and safety. It also highlights the 

importance of using SEM in understanding these relationships and concludes by giving some 

guidance to road designers.  

6.1 Background 

With the majority of previous studies focusing on the mere quantification of risk levels, some 

recent studies developed relationships between reliability outcomes and safety, focusing on 

horizontal curves with limited sight distance [6, 7, 34]. However, these studies were fully 

dedicated to establishing a statistical relationship between the Pnc and collisions without 

addressing the effects of curve attributes on Pnc, the potential direct influence of curve geometric 

features on collisions or the indirect effect of geometric attributes on safety, that could be 

mediated through Pnc. Therefore, it is unknown whether or not the relationship between Pnc and 
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safety is confounded by having curve attributes directly affect collision frequency or have indirect 

effects on safety that is transferred through Pnc. The lack of information on these interactions has 

led Pnc to stand merely as a statistical measure that does not give enough to roadway designers. 

Therefore, understanding these relationships is crucial for practitioners and it could help 

understand the influence of different curve geometric attributes on design non-compliance 

corresponding and safety levels. 

As the insufficient sight distance is the prevailing non-compliance mode across the studied 

curves, the SEM in this chapter is dedicated to studying the association between curve features, 

Pnc (i.e., due to inadequate sight distance), and collision frequency. A path analysis approach is 

used to model the Pnc-safety relationship and identify different curve attributes that confound this 

relationship by directly or indirectly affecting collisions. As previously mentioned, to the best of 

the author’s knowledge, no previous studies investigated the interaction between geometric 

features, risk levels, and safety. The model presented in this chapter provides valuable insights 

on both the direct and indirect impacts of horizontal curve features on sight distance limitations 

and safety. It demonstrates that the influence of some curve attributes on safety can be indirect 

and transmitted through the impact on the probability of non-compliance to meeting SSD 

requirements. This highlight the importance of giving considerable attention to these features with 

indirect influence on collisions, which would be ignored in case these interactions are unexplored. 

This information provides more understanding to designers on the impacts different attributes 

have on non-compliance and safety levels. Indeed, this practical objective along with others 
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discussed throughout the thesis represents a step further towards developing performance-based 

design frameworks in which the interaction between proposed design and safety can be expected. 

6.2 Structural Equation Modelling 

As previously discussed, this analysis aims to study the Pnc-safety relationship while accounting 

for other geometric and traffic attributes that can mediate and confound this relationship. In this 

framework, the dependent variable (DV) is the outcome variable to be predicted. Therefore, the 

DV is considered the expected number of collisions due to non-compliance to meeting sight 

distance requirements. The mediator variable, as defined by Elvik, Christensen [153], is a risk 

factor that influences the DV if modified. It is also a variable through which other variables could 

impact the DV. In this analysis, the mediator was assumed to be the Pnc1 while confounding factors 

include traffic and geometric characteristics of horizontal curves. The hypothesized relationships 

are illustrated by the path diagram shown in Figure 25. Based on the findings of previous studies, 

it was assumed that some variables have direct effects on crashes only, Pnc only, or both Pnc and 

collisions. Variables with effects on Pnc are also tested for indirect effects on safety.  
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Figure 25: The proposed path model 

Path analysis is a form of SEM which has two significant advantages. Using SEM, 

multiple relationships can be tested simultaneously while considering potential mediation or 

moderation effects between relationships. As previously discussed, the relationship between Pnc 

and safety can be mediated or confounded by other features, especially curve attributes. To 

properly study this relationship, this mediation needs to be accounted for.  The ability to test for 

the presence of mediated effects is the second advantage of using SEM with the main aim of 

testing the validity of certain relationships. As indicated by Kline (2015), it is typically required 

that SEM can be performed only on large sample sizes (n > 200). This requirement is met in the 

analysis performed in this research (n = 244). 

Mediation analysis is a statistical approach used to test whether a variable x transmits its 

effects to another variable y and determine if the influence of x on y is (i) direct only; (ii) indirect 

only through a mediator variable (known as full mediation); or (iii) both direct and indirect 

(known as partial mediation). Mediation analysis is used to test a proposed relationship that is 

assumed based on theoretical backgrounds, logical assumptions, or research design [154]. In a 
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simple mediation model, a variable x is assumed to have a direct effect on another variable y and 

also affect y indirectly through a mediator variable m. The regression equations that represent 

these mediation models are as follows:  

𝑦𝑖 =  𝛽0 + 𝛽1𝑚𝑖 + 𝛽2𝑥𝑖 + 𝜀1𝑖                                                                                                         (28) 

𝑚𝑖 =  𝛾0 + 𝛾1𝑥𝑖 + 𝜀2𝑖                                                                                                                       (29) 

where yi represents the dependent variable (e.g., collision frequency); mi is the mediator variable; 

xi represents all independent variables; β0 and γ0 represent the intercepts of the models; β1, β2, and 

γ1 are regression coefficients; and ε1i and ε2i are error factors. 

Equation 28 combines the paths from x to y and m to y, while Equation 29 shows the path 

from x to m. The coefficient γ1 represents the magnitude of change in m corresponding with a unit 

change in x, representing the effect of x on m. Similarly, the coefficient β2 denotes the magnitude 

of change in y associated with a unit change in x, representing the direct effect of x on y. The 

coefficient β1 represents the magnitude of change in y when m changes by one unit. Thus, the 

indirect effect of x on y can be quantified using the product-of-coefficient estimator γ1 β1 [155]. 

6.3 Model Development 

Collisions are random and discrete events that cannot be modelled using linear regression, as 

presented by Equation 28. Road crashes are typically modelled using Negative Binomial 

regression [138, 139, 141]. Y denotes the collision frequency at a site. It is assumed that Y follows 

a Poisson distribution with a parameter λ. To account for the over-dispersion that usually exists 

in collisions datasets, it is regularly assumed that λ follows a gamma distribution with shape 
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parameter k and scale parameter k/µ. Thus, Y follows a negative binomial (Poisson-Gamma) 

distribution [138] with an expected value (i.e., mean) and variance expressed as follows: 

𝐸(𝑌𝑖) =  µ𝑖, 𝑉𝑎𝑟(𝑌𝑖) =  µ𝑖 + µ𝑖
2/𝑘                                                                                        (30) 

where µ is the predicted number of collisions which can be given by the following relationship:  

𝑙𝑛(µ𝑖) = 𝑙𝑛(𝛾0) + 𝛾1 𝑙𝑛(𝜃𝑖)                                                                                                   (31) 

where γ0 and γ1 represent the parameters of the model, and 𝜃I represents the model covariates. 

SEM software Mplus version 6 was used to simultaneously model: (i) the relationship 

between the exogenous variables and crash frequency; and (ii) the relationship between those 

variables and the mediator (Pnc), which was modelled using Ordinary Least Squares (OLS) 

regression as shown in Equation (29). Model parameters were computed using maximum 

likelihood estimation [154].  

6.4 Results and Discussion 

Following the hypothesized relationships illustrated by the path diagram shown in Figure 25, the 

modelling was completed using SEM software Mplus. The final path diagram is shown in Figure 

26, and the final modelling results are summarized in Table 11. The table shows a summary of 

the final model with all the statistically significant variables that have direct effects on Pnc, direct 

effects on collisions, and indirect impacts on collision frequency. Variable selection was 

conducted through a backward elimination procedure, whereby variables that did not have 

significant effects on the mediator or the response variable were removed one step at a time from 

the model. The process is repeated for the remaining variables until the significance level of all 



 

   

 

 

154 

 

of the variables included in the model is below the significance threshold. Before discussing the 

implications of the results, it is worth noting that the ASD was not included as an independent 

variable in the models as this variable was already used to compute the mediator (Pnc) and, hence, 

including it in the model again would be redundant. Also, the model fit was assessed by 

comparing multiple models based on the Akaike Information Criterion (AIC) minimization 

criteria, where the model with the lowest AIC was assumed to have the best fit. To further verify 

the model fit, the AIC of the fitted model was compared to the baseline model (i.e., without 

predictor variables). Both the AIC (Baseline = 4903.4, Fitted = 3098.7) and Bayesian Information 

Criterion (BIC) (Baseline = 4983.8, Fitted = 3182.6) were lower for the model used, indicating 

that the full model fits the data better. 

 

Figure 26: The final path model 
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Table 11: Path analysis modelling results 

 Variable 
Estimate 

(Est) 
SE Est/SE P-Value 

Effects on Pnc 
Deflection Angle 

(Degrees)  
0.005 0.001 4.239 0.000** 

 Chord Length (km) -0.362 0.074 -4.923 0.000** 

Effects on Collision 

Frequency 
PNC 0.634 0.256 2.48 0.013** 

 Curve Length (km) 1.39 0.23 6.03 0.000** 

 
Traffic Volume 

(1000s vpd) 
0.074 0.009 8.631 0.000** 

Indirect Effects on 

Collision Frequency 

Deflection Angle 

(Degrees)  
0.003 0.002 2.035 0.042** 

 Chord Length (km) -0.229 0.106 -2.165 0.030** 

** Significant at 5% level 

S.E.: Standard Error  

 

The model shows that curve geometry has statistically significant effects on both the 

mediator (i.e., the probability of non-compliance) and the response variable (i.e., the total number 

of collisions). For some independent variables, the effects on the total number of collisions were 

direct, while for other variables, the effects were mediated through the probability of non-

compliance.  

First, as for the variables that influence the Pnc, it is important to note here that the impacts 

of curve radius were already integrated into the Pnc estimate. Curve radius was the main parameter 
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in the speed prediction models that were used to predict the operating speed (v) which is a major 

contributor to Pnc calculations as shown in Equation 18. The speed prediction models used in 

predicting the operating speed include the curve radius or the degree of curvature (= 5729/R) as 

a predictor. Since curve radius was used to estimate operating speed (which was then used to 

calculate the Pnc), including the curve radius again in the model along with Pnc would be 

redundant. Thus, the curve radius should not be expected to have a significant relationship with 

the Pnc. 

In contrast, other additional curve attributes were found to have a statistically significant 

influence within the model. Curve features such as chord length and deflection angle were found 

to have statistically significant effects on the probability of non-compliance (Pnc). It should be 

noted here that none of the speed prediction models included the chord length and only one model 

included the deflection angle. Chord length was negatively proportional to the probability of non-

compliance, whereby increases in the chord length decreased the probability that the curve would 

not satisfy the SSD requirements of drivers. In contrast, the curve deflection angle was positively 

correlated with Pnc. In this case, increases in the curve deflection angle increased the probability 

that the curve would fail to satisfy driver demand for SSD. These findings are highly intuitive 

considering that increasing the chord length while keeping all other variables in the estimated 

model (including the deflection) constant reduces the sharpness of the curve (i.e., by increasing 

the radius) as demonstrated by Figure 27. As shown, when the curve deflection angle is fixed, 

increasing the chord length is possible only by increasing the curve radius.  
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Similarly, increasing the curve’s deflection angle while fixing the chord length increases 

the sharpness of the curve. The reason is that sharper curves often limit a driver’s ability to see a 

hazard in time to safely come to a complete stop. 

 

 

Figure 27: The relationship between chord length and curve length 

 

In addition to their impacts on the Pnc, both the deflection angle and the chord length also 

had indirect statistically significant effects on the number of collisions with p-values of 0.042 and 

0.030, respectively. The model shows that, despite not having direct effects on safety (i.e., not 
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directly impacting collision frequency), both the curves deflection angle and the chord length 

impact collision frequency indirectly. This indirect effect is transmitted through the effects of 

those variables on the probability of non-compliance to stopping sight distance requirements. This 

can be explained by the fact that changes in these variables influence the Pnc to sight distance 

requirements and consequently affect safety. In other words, as chord length and deflection angle 

increase/decrease they decrease/increase the likelihood of limitations to sight distance on a curve. 

This limited sight distance then contributes to an increase/decrease in collisions. This finding 

shows the importance of considering these attributes when designing horizontal curves instead of 

focusing entirely on the curve radius, which is consistent with previous literature.   

Unlike the deflection angle and the chord length, the curve length (i.e., the length of the 

curve’s arc) had direct impacts on collision frequency. The relationship was positive and 

statistically significant, indicating increases in the length of a curve increased the possibility of 

collisions occurring on that curve. Similarly, curves with higher traffic volumes were also more 

likely to experience a higher collision frequency, an effect that was also observed to be 

statistically significant in the model at a 5 % significance level. These findings are consistent with 

safety literature that shows that both segment length and traffic volume increase driver exposure 

to risk and, as a result, increase the likelihood of collision occurrence [6, 34, 60].  

Besides curve length and traffic volume, the probability of non-compliance also had 

statistically significant effects on collision frequency with a p-value of 0.013. The model shows 

that the relationship was a directly proportional relationship whereby increases in the probability 

of non-compliance were associated with increases in collision frequency on segments, as 
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expected. In other words, a higher collision frequency is expected on segments that are less likely 

to comply with stopping sight distance requirements of the driving population. It should be noted 

that the ASD is not included directly as an independent variable in the model. However, its effect 

is accounted for by the mediator (Pnc). In other words, since the ASD was used to estimate the Pnc 

of each curve, adding it as an independent variable to the model would be redundant.  

As demonstrated, this chapter proposed an approach through which direct and indirect 

effects between safety, sight distance limitations, and geometric attributes could be assessed. Such 

an approach had not been proposed in previous work. This approach helps engineers understand 

more about the underlying reasons that might result in a poor safety record. Instead of attributing 

a poor safety record to limited sight distance, designers now could understand that specific 

changes to some curve attributes might help improve safety through their effect on reducing the 

associated non-compliance rates. Ultimately, this approach helps designers have a better 

understanding of these relationships and make well-informed decisions on design improvements 

of curved segments based on the knowledge of which curve attributes have the highest influence 

on risk levels and safety. This information is essential to roadway design experts attempting to 

account for uncertainty in design while understanding how different geometric design attributes 

impact this uncertainty. Besides helping experts create safer roads, such an understanding also 

assists engineers design roads that are inclusive for all road users by accounting for the stochastic 

nature of design inputs and the variation in driver capabilities. 
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7 CONCLUSIONS 

This chapter presents a summary of the research conducted in this thesis and summarizes the main 

contributions. It also discusses research limitations and potential areas for future research.  

7.1 Research Summary 

Road design guidelines provide a framework for designers to exercise their critical engineering 

judgment when designing roadways including horizontal curves. However, there is a need to 

address the limitations associated with the current deterministic design approach including the 

uncertainties in design inputs, commonly providing conservative designs, and the unknown safety 

levels of the proposed design. This was made possible by utilizing the reliability theory to evaluate 

the risk levels corresponding to highway curved sections, followed by establishing a relationship 

between the noncompliance in design and collision frequency. The thesis then demonstrated a 

considerable application of utilizing the reliability theory in highway design where safety-based 

design charts were calibrated for horizontal curves using 3D models of highway corridors. A path 

analysis approach was then utilized to study the interaction between curve attributes, non-

compliance, and safety to provide designers and engineers with more information on the influence 

of various design elements on Pnc and safety. The work presented in this thesis can be summarized 

as follows: 

This first phase of this thesis developed a set of novel algorithms that utilize LiDAR data 

to automatically detect and extract information on horizontal alignment on a large scale. The 

developed algorithms aimed to detect horizontal curves and extract their geometric attributes and 
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perform an assessment of the ASD along highway corridors in a 3D world. The performance of 

the proposed algorithms was validated using ground truth data. The validation of proposed 

algorithms showed their robustness to detect curved sections and extract their features in a highly 

accurate and efficient manner. A comprehensive database of information on 244 horizontal curves 

including curve attributes, ASD, and longitudinal grades was established and prepared for 

reliability analysis.  

Unfortunately, performing such a large-scale reliability assessment was not possible in 

previous research due to the lack of an efficient methodology that can be used to establish an 

inventory of road geometric elements (e.g., supply of ASD). This led to previous work in this area 

to focus on 2D sight distance assessment utilizing traditional sources of curve data such as as-

built documents or aerial maps. When extracting curve attributes or evaluating ASD in a 2D space 

using as-built drawings, this source of information could be outdated due to the regular 

maintenance and pavement operations that affect the accuracy of original as-built documents.  

As opposed to previous studies, this thesis adopted the use of Mobile LiDAR data to detect 

highway curved segments, extract their geometric characteristics, and evaluate sight lines using 

a 3D approach. In many situations, the sight distance could be limited by the road’s vertical profile 

or by combined horizontal and vertical curves, emphasizing the importance of using 3D sight 

distance calculations in reliability analysis. The high density of LiDAR point cloud creates a 3D 

model of the road environment, which enables an accurate assessment of the ASD and helps 

identify potential obstacles and safety problems robustly and efficiently. The automated approach 

of data extraction minimizes human errors associated with current practices, such as subjective 
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evaluation. The reliance on mobile LiDAR is also of great benefit as it is collected without causing 

any disruptions to traffic movement.  

The automated and efficient data extraction approach makes information on horizontal 

alignment readily available to transportation agencies on an unprecedented scale providing them 

with access to an abundant amount of information about highway infrastructure. In fact, the data 

acquisition framework in this thesis, on its own, demonstrates that adopting a LiDAR-based 

method, to maintain an updated inventory of information on horizontal alignments could 

transform the way DOTs manage and assess geometric features their road networks, which is 

essential to DOTs looking to develop an effective Transportation Asset Management Plan. 

The second phase of the thesis focused on performing a multimode reliability analysis to 

quantify the risk associated with inadequate sight distance and vehicle skidding on curved 

sections. This is to assess the ability of horizontal curves to handle stochastic road user demands 

followed by quantifying the safety impacts of the failure to do so through developing SPFs 

incorporating Pnc.  The results showed that the studied curves are associated with high risk levels. 

Since the safety consequences of this non-compliance were unknown, SPFs were developed using 

MVPLN regression to relate the noncompliance rates to historical collisions on curved segments. 

This was followed by calibrating safety-based design charts that relate curve geometric and traffic 

attributes to Pnc and crashes. 

The results showed that there is a statistically significant relationship between the 𝑃𝑛𝑐 and 

the collision frequency, indicating that higher non-compliance rates are associated with higher 

expected crashes. The findings also demonstrated that there are significant differences between 
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non-compliance levels when considering system reliability analysis compared to using only one 

non-compliance mode, especially on curves with sharp radii and low operating speeds. This 

emphasises the crucial importance of considering multimode reliability assessment instead of 

single mode, especially when analyzing sharp curves with low operating speeds. More so, the 

results also showed that the 𝑃𝑛𝑐 resulting from insufficient sight distance is dominant at high 

operating speeds and very limited ASD. This demonstrates that at higher speeds, the sight distance 

demand is high and when it exceeds the ASD supply, this results in higher non-compliance levels 

due to limited sight distance compared to non-compliance associated with the potential of vehicle 

skidding. The findings also suggest that there is a moderate correlation between the PDO and I+F 

severity levels, suggesting the presence of a latent relationship between both PDO and I+F 

collisions. This correlation can be interpreted as curves with higher PDO crashes that are likely 

to experience higher I+F collisions. 

The proposed charts are ready to use by practitioners in Alberta, Canada, based on data 

was collected on Alberta highways. A designer could use the developed charts to compare 

different design alternatives from a safety perspective. The feasibility of using the calibrated 

design charts to estimate the expected benefits of potential geometric improvements was also 

demonstrated. The charts can also be used. Such a safety-based design approach facilitates the 

adoption of a PBD approach whereby highways are designed based on the demands of the driving 

population while the safety levels of proposed designs can be expected. 

Finally, the thesis utilized structural equation modeling to model the relationship between 

Pnc associated with inadequate sight distance and collision frequency while accounting for curve 
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geometric and traffic attributes that confound this relationship. Path analysis was used to (i) model 

the relationship between Pnc and safety while accounting for other variables that confound this 

relationship; (ii) model the relationship between curve features and Pnc to identify curve attributes 

that could increase the likelihood of non-compliance to sight distance requirements; and (iii) 

assess the indirect effects of curve features on collisions that could be mediated through Pnc. 

Modelling these relationships is a critical step to help design engineers understand the influence 

of curve attributes on Pnc and safety.  This helps translate non-compliance levels into acceptable 

and unacceptable geometric attributes that designers are more familiar with compared to Pnc 

statistical measures. The results of this analysis showed that the influence of curve deflection 

angle and chord length incorporate the impacts of curve radius on both Pnc and safety. The 

findings of this approach demonstrate the importance of studying and accounting for other curve 

attributes such as deflection angle and chord length instead of focusing only on the curve radius. 

7.2 Research Contributions  

Paving the way for the adoption of a safety-based design approach, this thesis presented multiple 

contributions to the state-of-the-art in the field of highway design from both theory and practice 

standpoints. The major contributions of this dissertation can be summarized as follows:  

• It contributes to the literature by assessing the risk of design non-compliance (Pnc) 

associated with multi-modes of non-compliance and establishing a link between this risk 

and collision frequency utilizing 3D sight distance calculations, which have not been 

investigated in previous work. Understanding this relationship will provide significant 

insights into the reliability of a proposed road design and its influence on road safety in 
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terms of collision impacts. Quantifying the safety influence of randomness in design 

parameters and deficiencies in design, such as limited sight distance, allows decision-

makers to study the safety benefits of implementing improvements on existing roads. 

Since the relationship between design and safety is now established, a designer can 

estimate the expected number of road collisions for a proposed design. 

• It calibrates safety-based design charts demonstrating the feasibility of adopting 

performance-based probabilistic design guides. Departments of Transportation can use the 

findings of this research as a predictive tool to estimate the safety benefits of different 

design improvements or estimate the safety consequences of deviation from a specific 

design. More so, the findings can also be used in a benefit-cost analysis framework to 

assess the economical feasibility of various design alternatives or safety countermeasures 

for highway rehabilitation projects. A road designer can use the findings as a predictive 

tool to compare different design alternatives and investigate the cost-effectiveness of 

various dimensioning scenarios.  

• It provides a framework through which a risk measure (Pnc) can be calculated to 

incorporate the inherent safety impact of random design inputs, such as operating speed, 

perception and reaction time, and deceleration rate on safety. This risk measure can be 

then used as a target safety level in future designs based on the desired level of safety.  

• The results of studying the interaction between curve attributes, risk levels, and safety 

could help design engineers understand the influence of curve attributes on Pnc and safety 

and provide invaluable insights into the interaction between various geometric features 
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and expected collisions. The findings also help designers translate non-compliance levels 

into acceptable and unacceptable geometric attributes that they are more familiar with 

compared to Pnc measures. 

• The novel algorithms developed in this research can be utilized to help transportation 

agencies establish a reliable inventory of highways curve data, which can facilitate the 

management of highway networks including safety audits and assessment of the 

compliance of existing roads to standard requirements. The efficiency of the proposed 

algorithms means that inventory of geometric features can be made readily available in a 

timely manner and can be applied on a large scale. Using the developed algorithms to 

collect information on highways from LiDAR data help avoid the hurdles associated with 

traditional methods that are time-consuming, labour-intensive, and traffic disruptive. 

More so, the automation of data extraction makes large scale data collection on highways 

feasible.  

In summary, this thesis presented a probabilistic design approach in which uncertainties in design 

inputs are considered and safety levels of the proposed design can be expected. Opposed to the 

current design approach set by existing highway design guides and supplemented by the Highway 

Safety Manual, the developed design framework can be used to assess the risk directly connected 

to the suggested design by highway guidelines without the reliance on data about sites similar to 

the road facility being designed. Indeed, the ultimate goal of a more reliable approach is to have 

similar sites constructed based on a reliability-based approach. Performance metrics about these 

sites can be later collected and then used to assess the safety risk associated with another proposed 
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design that is also designed following a probabilistic approach. This would be a new generation 

of safety assessments of proposed designs.  

The research presented in this dissertation is a step forward towards adopting a 

performance-based design of highways. The developed design framework is a safety-based 

approach that accounts for uncertainty in design inputs and the variation in road user capabilities 

which could help design more inclusive roadways that accommodate a large proportion of the 

driving population. Even though the thesis focuses on analyzing horizontal curves, the proposed 

framework can be applied to other roadway features.   

7.3 Limitations and Future Research 

Although this research has covered multiple aspects of the reliability-based design of horizontal 

curves, some areas still need further improvement and investigation. As with any research study, 

several limitations and assumptions were made. For example, probability distributions for design 

inputs used in the analysis were obtained from numerous previous studies. However, a more 

rigorous analysis would entail the development and testing of these distributions based on field 

data. Therefore, obtaining field data to validate the assumed distributions is a future area of 

research. Also, the analysis used speed prediction models that are commonly cited in previous 

reliability studies, however, using real operating speed data (when available) and studying the 

influence of using various speed prediction models on the resulting risk levels is another area of 

improvement. The analysis also assumed that there is no correlation between the design inputs, 

which requires more investigation in future work. When weather data is available, considering 
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additional factors such as various weather conditions and driving at nighttime is also 

recommended.   

Although the thesis studied the risk associated with locations where design supply is the 

most critical (e.g., minimum ASD), studying the risk levels at different locations on horizontal 

curves and beyond the curve limits (i.e., approach and departure tangents) is encouraged. The 

thesis used a 3D-based approach in calculating the ASD, however, the available and required 

coefficient of side friction were based on probability distributions obtained from previous work 

which was based on 2D analysis. Thus, when filed data is available, a 3D-based analysis of side 

friction supply and demand is recommended. Future research is suggested to extend this work by 

applying the proposed design methodology to evaluate other aspects of sight distance, such as 

passing sight distance along with studying other highway elements. As the work in this thesis 

focused on analyzing two-lane two-way highways with similar characteristics and considered a 

passenger car in the analysis, applying the proposed framework on various highway 

classifications and considering heavy vehicles while accounting for its potential of rollover is 

highly encouraged. Another possible extension of this work is establishing a benefit-cost analysis 

framework in which various proposed design alternatives can be evaluated while highlighting the 

safety benefits and economic feasibility of each option.  

This path analysis focused on studying the effect of curve attributes in the Pnc – safety 

relationship. Future work is also recommended to consider other factors such as climate 

conditions. In this study, all studied curves are located on two-lane two-way highways with the 

same class, and therefore, there was very minor (negligible) variation in some curve attributes 
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such as lane width and shoulder width among the studied segments. Therefore, the lane width and 

shoulder width do not influence the developed model. Thus, future research is recommended to 

study different highway classes and develop models that include other curve attributes such as 

lane width and shoulder width. More work is also encouraged to advance the proposed model by 

introducing a moderated mediation analysis to understand how design attributes impact Pnc and 

Safety differently in high and low-speed regimes.  
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