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Abstract 

Metabolomics refers to the characterization and quantification of small 

molecule metabolic products in a biological specimen. It is an emerging and evolving 

science studying the practice of precious medicine. Metabolomics study has been used 

to understand individual variations influenced by both genetic and environmental 

factors. Thus, measurement of metabolites has played an important role in clinical 

practice since the concept was introduced. In order to provide qualitative and 

quantitative information with high metabolite coverage, chemical isotope labeling (CIL) 

method has been developed. CIL is able to target different submetabolomes by adding 

isotope tags to improve separation, sensitivity and capability of relative quantification. 

This “divide and conquer” technology simplifies the platform of metabolomics study 

and promotes analytical performance of metabolites. 

My research focuses on utilizing CIL LC-MS approaches to profile 

amine/phenol submetabolomes to evaluate matrix effects in universal urine 

metabolome standard. In the first part of this thesis, CIL LC-MS was used to investigate 

the effect of urine sample matrix on metabolome analysis by comparing the absolute 

concentrations of selected metabolites with concentrations from external standards. The 

extent of matrix effects on labeling was evaluated by comparison of samples at different 

concentrations that were labeled using the same protocol. In the second part, CIL LC-

MS was used to profile the amine and phenol submetabolome of universal urine 
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metabolome standard. Matrix effects for a large number of identified metabolites were 

evaluated.  
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Chapter 1 Introduction 

 

1.1 Multi “omics” 

 

Biological molecules produced by cells and living organisms are complex with 

multiplex characteristics and are critical to typical biological processes. High-

throughput technologies called “omics” have been developed in order to achieve a 

better understanding about biological molecules.1 Areas of research used to assess 

comprehensive biological functions could be classified as “omics”, which include 

genomics, transcriptomics, proteomics and metabolomics.2 Genomics, as the most 

mature of the omics fields, focuses on whole genomes and genetic variants associated 

with disease or medical treatment through DNA sequencing.3 However, most available 

approaches have limited scope to determine DNA alterations, such as duplications, 

deletions and inversions.4 Transcriptomics is used to examine RNA levels genome-

wide, which includes transcription and expression levels, functions, locations, 

trafficking and degradation.5,6 Since some knowledge of transcriptome is still from gene 

predictions, this technology has been criticized that mRNA levels cannot be 

consistently used to predict the abundance of protein.7-9 

Proteomics is a new research field focusing on studying proteins on a grand 

scale, such as quantifying peptide abundance, modification, and interaction.10 And 

being revolutionized by MS-based approaches enables this technology to achieve a 

high-throughput analyses of thousands of proteins in cells and body fluids.11,12 As the 

end point of the omics cascade, metabolomics quantitatively studies multiple small 

molecule types, including amino acids, fatty acids, carbohydrates, and other products 

of metabolic functions.2,13 The multi-omics approach provides a pathway to analyze the 

comprehensive biological processes.  

 

1.2 Metabolomics  

 

1.2.1 Significance of Metabolomics 
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Metabolomics refers to the characterization and quantification of the small 

molecule metabolic products in a biological specimen, is an emerging and evolving 

science studying the practice of precious medicine.14 With small changes induced by 

diet or environment, the concentration of metabolite could be varied dramatically.15 

The detection and measurement of a huge profile of large number of metabolites enable 

the investigation of changes induced by external stimuli (e.g., drug treatment).16,17 This 

advantage makes untargeted metabolomics a useful tool in biomarker discovery.16 

Biomarkers are defined as “a characteristic that is objectively measured and evaluated 

as an indicator of normal biological processes, pathogenic processes or 

pharmacological responses to a therapeutic intervention”.18 It is reported that, 

diagnostic biomarkers could demonstrate detectable changes before disease symptoms 

become noticeable, which is important in early disease diagnosis.19,20 Therefore, 

measurements of metabolites has been playing an irreplaceable role in clinical practice 

since the concept was introduced.  

 

1.2.2 Analytical Platforms for Metabolomics 

 

In general, the analytical platforms for metabolomics studies include two 

processes: detection and separation. Nuclear magnetic resonance (NMR) and mass 

spectrometry (MS) as two major platforms are commonly used for detection. As for 

separation techniques, gas chromatography (GC), liquid chromatography (LC) and 

capillary electrophoresis (CE) are three high-throughput techniques usually 

incorporated in MS-based metabolomic analysis. To obtain comprehensive information 

of metabolites, analytical techniques are chosen based on their unique characteristics. 

NMR is known as one of the very first spectroscopic techniques used in 

metabolomics studies.21 The principle of NMR is based on atom nuclei absorb and re-

emit energy when an external magnetic field is applied.22 Due to the relatively high 

metabolome coverage and abundant database resource, it can provide detailed structural 

information and identify molecules in a short time.23,24 It does not require going through 

major sample preparation processes, which simplifies and speeds up the overall data 

acquisition time.25,26 Samples can be recovered for further observation and analysis 
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since NMR is a non-destructive technique. These strengths make NMR a commonly 

used method for exploring biomarkers in disease studies.27,28 However, the major 

drawbacks for NMR analysis are the relatively low sensitivity as detection can only be 

achieved above micromolar range; requiring a large quantity of samples. Another issue 

of NMR is the convoluted spectral signals for complex mixtures.29 In comparison, MS 

has a much higher sensitivity, and with high-resolution MS technique, the accurate 

mass measurement can be achieved.  

MS has become a widely used platform in metabolomics. There are two major 

components in a mass spectrometer: an ionization source and a mass analyzer. To have 

a high metabolome coverage, both positive and negative ion mode data are collected 

simultaneously. This can be achieved by using electrospray ionization (ESI) as an 

ionization source, which applies soft ionization energy leading to minimal 

fragmentation. The overall mechanism of ESI can be summarized as follows: After 

eluting from LC, the liquid containing analytes of interest is dispersed and charged at 

ESI capillary tip; the initial droplet is shrunk as heated dry gas is applied; with droplet 

disintegration processes repeated, small “offspring” droplets are formed. Finally, the 

field strength at droplet surface becomes large enough to assist ion escape from the 

liquid phase into the gas phase.  

Various mass analyzers can be chosen according to their detectable mass range, 

sensitivity as well as resolving power. Time of flight mass spectrometer (TOF-MS) has 

become the most commonly used mass analyzer due to its high sensitivity as well as 

high resolution. Compared with Fourier-transform ion cyclotron mass spectrometers 

(FTICR-MS), which can provide extremely high resolutions (100,000-1,000,000), the 

relatively low cost of TOF-MS is more popular for metabolomics. Each of the existing 

analyzers has its unique characteristics and shortcomings. The combination of different 

analyzers into one mass spectrometer has been widely used. For instance, quadrupole-

TOF-MS stands out for rapid screening analysis.30  

For complex mixture analyses, chromatographic separation of metabolites 

before MS has been extensively used in metabolomics.31 GC, CE and LC are three 

predominant chromatographic techniques commonly incorporated with MS. GC-MS 
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can provide fast scan speeds with mass resolution and a high level of accuracy. 

However, GC-MS can only apply to volatile, thermally and energetically stable 

compounds.32 CE-MS is suitable for the analysis of highly polar and ionic metabolites 

with a relatively low cost.33 The limitations have been summarized as low sensitivity, 

poor reproducibility and electrochemical reactions of metabolites.34 Among these 

platforms, LC-MS has been widely used due to its high sensitivity, good compatibility 

and accurate quantification ability. The development of ultra high-performance liquid 

chromatography (UHPLC) has increased chromatographic resolution and peak capacity. 

To achieve a better coverage, both hydrophilic interactions liquid chromatography 

(HILIC) and reversed-phase liquid chromatography (RPLC) are employed for different 

separation requirements. For example, HILIC is applied for polar metabolites 

separation, while RPLC is mainly served for non-polar compounds. Since one type of 

column can only be used for certain polarity of metabolites, the detection process 

remains challengeable. 

 

1.2.3 Chemical Isotope Labeling Metabolomics 

 

Metabolomics, a widely used technology, aims to provide qualitative and 

quantitative information for as many metabolites as possible. In order to achieve this 

goal, experimental design and sample preparation with high metabolite coverage, 

sensitive detection, accurate quantification and accurate metabolite identification are 

crucial in MS-based metabolomics study. However, in practice, metabolomics faces 

several challenges. Firstly, unlike genomic and proteomic methods, metabolites in 

biological samples present disparate physical and chemical properties.35 Since there is 

no single technique that could resolve all these metabolites simultaneously, 

comprehensive metabolomic technology platforms are required in complex metabolites 

separation (such as combining RPLC and HILIC).35,36 Moreover, ion suppression is 

found to be an issue when using MS to detect complex mixtures. When ESI is applied 

as an ionization source, it is easier for ions on the surface of the shrunken droplet to get 

ionized than those in the center of the droplet. Ion suppression could be caused by 

heterogeneous ionization efficiency. A proper separation method is likely to reduce ion 
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suppression, while this could double instrument time and make experiments becoming 

more complicated.  

Our lab has developed a “divide and conquer” technology and applied to divide 

the whole metabolome into four different submetabolomes based on chemical 

functional groups. Chemical isotope labeling (CIL) is used to target a particular 

functional group (submetabolome) of interest with high coverage and the combined 

results are used for the complete metabolome analysis. For submetabolome containing 

amine/phenol37, dansyl chloride (5-(dimethylamino)naphthalene-1-sulfonyl chloride, 

DnsCl) has been chosen as the labeling reagent. In this approach, experiment samples 

are labeled by 12C-DnsCl, while an internal reference sample is labeled with 13C-DnsCl. 

After mixing and LC-MS analysis, metabolites are detected as peak pairs, containing a 

lighter peak and a heavier peak with a mass-to-charge ratio (m/z) difference of 2.0067 

Da. The ratio between two peaks is used for relative or absolute quantification of 

metabolites. There are several advantages by using dansyl labeling approach. Firstly, 

the aromatic naphthyl part increases the hydrophobicity of the labeled metabolites 

which increases retention in RPLC. Secondly, the tertiary amine enhances ESI 

chargeability and further enhances ionization efficiency. Additionally, the two methyl 

groups on the tertiary amine can introduce 13C isotope, which can be used for relative 

quantification. Together, DnsCl labeling approach improves quantification and 

detection and achieves a better separation for hydrophilic compounds on RPLC column. 

In the last decade, our lab has also developed 12C-/13C DnsCl with base-activation for 

the hydroxyl submetabolome38, 12C-/13C-dimethylaminophenacyl (DmPA) bromide 

labeling for the carboxyl submetabolome39 and 12C-/13C dansylhydrazine labeling for 

the carbonyl submetabolome.40 These comprehensive techniques for metabolites 

profiling and biomarker discovery in various samples such as cells41, serum42, sweat43 

and cerebrospinal fluid (CSF)44 have been reported. 

 

1.2.4 Workflow for Metabolomics 

 

1.2.4.1 Sample Preparation 
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A typical LC-MS based metabolomics study relies heavily on experimental 

design and sample preparation. In general, experiment steps include sample preparation, 

chemical isotope labeling, sample normalization, metabolite identification and 

statistical analysis.45 Sample preparation is primarily depending on sample types. Some 

commonly used samples include cell extract, blood, urine, CSF and saliva. For cellular 

metabolomics, cell harvest and metabolism quenching are always required. When 

handling protein enriched biofluid such as blood, metabolites are extracted from 

complex matrix by protein precipitation with organic solvent. When necessary, 

extraction methods, such as liquid-liquid extraction (LLE) and solid-phase extraction 

(SPE) are used to pre-concentrate certain metabolites.    

 

1.2.4.2 Chemical Isotope Labeling 

 

As described above, experiment samples are individually labeled with 12C-

DnsCl, while an internal reference sample is labeled with 13C-DnsCl. Then the mixed 

sample is analyzed by direct injection MS, CE-MS, GC-MS or LC-MS, with LC-MS 

as the most commonly used one. In this process, each metabolite is detected as peak 

pair rather than a single mass peak. The light peak of the pair is for 12C-labeled 

individual sample, and the heavy peak belongs to 13C-labeled internal reference. 

Relative concentration can be obtained by calculating the intensity ratio of 

chromatographic peak pair. This information is important for metabolomics analysis to 

find metabolites with significant changes. Moreover, absolute quantification of selected 

biomarker candidates is able to be conducted later.  

 

1.2.4.3 Sample Normalization 

 

In biomarker discovery study, accurate quantitative analysis relies heavily on 

the sample normalization step. Some biological samples have large concentration 

variations, such as urine, depending on water intake, diet and sweating. In this case, 

concentration differences between urine samples should be excluded but the variations 

be kept due to biological differences. There are two types of sample normalization 

method which have been commonly used: pre-acquisition normalization and post-
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acquisition normalization. In pre-acquisition normalization, the total concentration of 

metabolites within each sample is determined, followed by changing injection volume 

of various samples to ensure equal amount of samples being analyzed.46-48 Creatinine 

has been commonly used as a pre-acquisition normalization reference for urine 

sample.49 As for post-acquisition normalization, samples are directly loaded on 

analytical platforms and statistical adjustment will be applied afterwards.50 In general, 

the total signal intensity is proportional to the total concentration of metabolite. 

Therefore, the concentration of individual metabolite is normalized by total intensity of 

the signal.  

 

1.2.4.4 Metabolite Identification and Statistical Analysis 

 

In disease studying and novel treatment strategies development fields, accurate 

and complete identification of metabolites play important roles by directly observing 

metabolic activities.51 For metabolite identification, putative identification information 

is firstly obtained by searching accurate mass of metabolites in metabolite database, 

such as METLIN52 and Human Metabolome Database (HMDB).53 Then, further 

experimental data are needed, including retention time and tandem mass spectrometry 

(MS/MS) spectra to obtain fragment patterns, followed by the data comparison with 

standards to get accurate identification of the metabolites of interest. Although 

metabolome coverage is still limited compared to the number of metabolites existing in 

biological samples, current metabolomics analyses are being developed to generate a 

massive amount of data. Finally, statistical tools are applied for sample classification 

and biomarker discovery studies, such as principal component analysis (PCA), partial 

least square discriminant analysis (PLS-DA), analysis of variance (ANOVA) and 

volcano plot.  

 

1.3 Scope of the Thesis 

 

The objective of this research work is to develop chemical isotope labeling 

(DnsCl labeling) LC-MS platform to analyze matrix effects in universal urine 

metabolome standard (UUMS).  
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In Chapter 2, CIL LC-MS is used as a high-coverage and quantitative 

metabolome profiling technique to investigate the effect of urine sample matrix on 

metabolome analysis. The absolute concentrations of selected metabolites from 

standard addition were compared with concentrations from external standard method 

to evaluate matrix effects. Besides, comparison of samples at different concentrations 

that were labeled using the same protocol enables the determination of the extent of 

matrix effect on labeling.  

In Chapter 3, CIL LC-MS is used to profile the amine and phenol 

submetabolome of UUMS. Matrix effects for a large number of identified metabolites 

were evaluated.  
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Chapter 2 Chemical Isotope Labeling LC-MS for Matrix Effects Test 

in Universal Urine Metabolome Standard  

 

2.1 Introduction 
 

In recent years, biomarkers are being used as an important tool for disease 

studying and novel treatment strategies development, and this is becoming an emerging 

approach in many medical areas.54,55 Many strategies have been applied to biomarker 

discovery including: metabolomics, proteomics and epigenetics.56,57 Among these 

technologies, metabolomics has been proved to be a useful technique in a number of 

research areas ranging from disease biomarker discovery to systems biology 

studies.58,59 For biomarker discovery, metabolomics is an emerging field, which 

performs quantification and identification of many small molecules in biological 

systems. Through metabolome profiling, metabolites that differentiate diseases can be 

used as potential biomarker candidates.60,61 It is important to perform accurate and 

precise measurement of metabolites concentration changes in biomarker discovery.62,63  

Chemical isotope labeling liquid chromatography mass spectrometry (CIL LC-

MS), is an analytical platform which provides qualitative and quantitative metabolomic 

information for metabolomics research.37 CIL is used to target a particular functional 

group (submetabolome) of interest with proper labeling reagent. After labeling, the 

chemical and physical properties of metabolites can be altered. In addition, chemical-

group-based submetabolome can be efficiently separated using reverse phase liquid 

chromatography (RPLC), then effectively ionized and detected by MS. This approach 

improves detection sensitivity and quantification accuracy, enables the generation of a 

comprehensive profile of the submetabolome.37 

By using differential isotope labeling of individual samples (e.g., labeled with 

12C-reagent) and their control (e.g., labeled with 13C-reagent), CIL LC-MS overcomes 

matrix effects and ion suppression associated with MS detection to a large extent. 37,39 

This method has been used as a powerful tool for relative quantification of metabolites 

in comparative samples. However, chemical labeling itself may encounter matrix 
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effects.64 In order to obtain absolute concentrations of metabolites in individual samples 

and also eliminate matrix effects at the same time, standard addition method has been 

used to achieve this goal.65,66 The process involves adding a series of small increments 

of the analyte to the sample and measuring the signal. One significant disadvantage of 

this method is the extra time required for making the additions and measurements.67,68  

In this work, we investigated the effects of urine sample matrix on metabolome 

analysis using a high-coverage and quantitative metabolome profiling technique based 

on differential CIL LC-MS. We compared absolute concentrations of selected 

metabolites from standard addition strategy with concentrations from external standard 

method to evaluate matrix effects. Besides, comparison of samples at different 

concentrations that were labeled using the same protocol enables us to determine the 

extent of matrix effect on labeling.  

 

2.2 Experimental 

 

2.2.1 Chemical and Reagents 

 

All the chemicals and reagents, unless otherwise stated, were from Sigma-

Aldrich Canada (Markham, ON, Canada). 13C-dansyl chloride was synthesized in our 

lab with the procedures published previously37 and is available from 

MCID.chem.ualberta.ca. LC-MS grade water, acetonitrile (ACN), and methanol 

(MeOH) were from Thermo Fisher Scientific (Edmonton, AB, Canada).  

 

2.2.2 Overall Workflow 

 

Figure 2.1 shows the overall workflow of this study. In this work, four amino 

acids were selected as target metabolites in universal urine metabolome standard 

(UUMS). For each amino acid, after being injected into LC-MS for analysis, the 

absolute concentration of 12C-isotope labeled amino acid in UUMS was determined by 

using a 13C-isotope labeled amino acid added as internal standard. A calibration curve 

using 12C-isotope labeled amino acid solution was built up, which was used to quantify 

the amino acids after conducting a serial dilution of 12C-isotope labeled UUMS. By 
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comparison of the concentrations of selected amino acids from two different 

approaches, the effect of dilution and matrix effects on amino acids were evaluated. 

The extent of matrix effect on labeling was determined from the results obtained when 

samples were prepared at different concentrations. The detailed experimental 

conditions in the workflow are described below. 

 

2.2.3 Dansylation Labeling  

 

The frozen urine sample was re-dissolved to 1000µL with water to reach its 

original concentration. Then 12.5 μL of 250 mM sodium carbonate/sodium bicarbonate 

buffer was added to 25 μL of urine sample. The solution was then mixed with 37.5 μL 

of freshly prepared 12C-DnsCl solution (18 mg/mL for light labeling, individual 

samples) or 13C-DnsCl solution (18 mg/mL for heavy labeling, internal standard 

samples). After incubation for 45 min at 40 °C, 7.5 μL of 250 mM sodium hydroxide 

solution was added to the reaction mixture, followed by incubation at 40 °C for another 

10 min. Finally, 30 μL of formic acid (425 mM) in 1:1 ACN/H2O was added. 

 

2.2.4 LC-MS 

 

Each 12C-labled individual sample was mixed with a 13C-labled internal 

standard by equal volume. LC-MS was done using a Themo Scientific Dionex Ultimate 

3000 UHPLC System (Sunnyvale, CA) linked to a Bruker Maxis II quadrupole time-

of-flight (Q-TOF) mass spectrometer (Bruker, Billerica, MA). The LC column was an 

Agilent reversed phase Eclipse Plus C18 Column (2.1 mm x 10 cm, 1.8 µm particle 

size). LC mobile phase A was 0.1% (v/v) formic acid in water, and mobile phase B was 

0.1% (v/v) formic acid in ACN. The gradient elution profile was as follow: t = 0 min, 

25% B; t = 10 min, 99% B; t = 13 min, 99% B; t = 13.1 min, 25% B, t = 16 min, 25% 

B. Flow rate was 400 μL/min. All mass spectra were collected in the positive ion mode. 

The MS conditions for MS were as follows: dry gas flow, 8 L/min; dry temperature, 

230 °C; capillary voltage, 4500 V; nebulizer, 1.0 bar; end plate offset, 500V; spectra 

rate, 1.0 Hz.  
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2.2.5 Data Processing, Metabolite Identification and Statistical Analysis  

 

After LC-Q-TOF-MS analysis, all the spectra were first converted to .csv files 

by Bruker Daltonis Data Analysis 4.4 software. The peak pairs were extracted from .csv 

files by IsoMS.69 Data from multiple runs were aligned by retention time and accurate 

mass. After the alignment, Zerofill program70 was applied to recover the high-

confidence peak pair ratios lost during the previous data processing steps. Based on the 

accurate mass and retention time, positive metabolite identification was performed 

using dansyl standard library search, which contains 275 unique dansylated 

amines/phenols71 (www.mycompoundid.org). Putative identification or match was 

performed by searching accurate mass against MyCompoundID library, which contains 

8,021 known human metabolites and 375,809 predicted metabolites72 

(www.mycompoundid.org).  

 

 

http://www.mycompoundid.org/
http://www.mycompoundid.org/
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Figure 2.1. Workflow for sample preparation and dansylation isotope labeling LC-MS. 

 

2.3 Result and Discussion 

 

2.3.1 Absolute Concentrations of Metabolites from Standard Addition Method 

 

Accurate measurement of metabolic changes in disease-associated processes 

and pathways is critical to discover new biomarkers. Although LC-MS is widely used 

for absolute quantification in targeted metabolomics, it often suffers matrix effects for 
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large scale untargeted analysis. To overcome matrix effects, differential CIL LC-MS 

has been used as a powerful tool for relative quantification of metabolites in 

comparative samples. A universal metabolome standard (UMS) can be used as a 

reference sample. By determining the concentrations of metabolites in UMS, absolute 

concentrations of these metabolites can be obtained. The general strategy of measuring 

the absolute concentrations of individual metabolites is from standard addition method. 

In this work, we applied this approach to evaluate the absolute concentrations of four 

amino acids in UUMS. Briefly, we started with differential CIL for selected metabolites, 

followed by preforming LC-MS for absolute concentrations determination. 

In order to obtain the absolute concentrations of selected amino acids at the 

same time, amino acid standard (AAS) solution was chosen. It contains 17 different 

amino acids with known concentrations. The standard addition approach was 

performed by adding increasing small volume of standard solution directly to the 

aliquots of analyzed sample. In this work, five different volumes of AAS solution (0, 

5, 7, 9, and 11 μL) were added into five identical UUMS solutions. The individual 

samples were labeled by 12C-dansyl chloride, a 13C-dansylation labeled sample with a 

7 μL AAS addition served as internal standard. The 13C-dansylation labeled internal 

standard was mixed with 12C-dansyl chloride labeled individual samples by same 

volume. Then the same volume of mixtures prepared from all individual samples was 

injected into LC-MS. The peak pair of 12C- and 13C-labeled metabolites were integrated 

and plotted to generate graphs which showed peak area ratio against the volume of 

targeted amino acids added. From regression equations, the absolute concentrations of 

selected amino acids in UUMS can be obtained. Figure 2.2 shows the plots generated 

from standard addition approach for four amino acids: alanine (Figure 2.2A), serine 

(Figure 2.2B), phenylalanine (Figure 2.2C) and threonine (Figure 2.2D). As calculated 

from regression equations, the absolute concentrations for alanine, serine, 

phenylalanine and threonine were: 42.4 μM, 54.1 μM, 8.42 μM and 22.0 μM, 

respectively (Table 2.1).   
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Figure 2.2. Standard addition plots for four dansyl labeled amino acids: (A) alanine, (B) serine, 

(C) phenylalanine and (D) threonine.  
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Phenylalanine 8.42 

Threonine 22.0 

Table 2.1. Absolute concentrations for alanine, serine, phenylalanine and threonine contained 

within UUMS obtained from standard addition approach. 

 

2.3.2 Concentrations of Metabolites from External Standard Method  

 

The general strategy of finding a way to rapidly measure the concentrations of 

individual metabolites in UMS is to compare the standard addition method with the 

calibration method to evaluate the extent of matrix effect on metabolites of interest. 

Because of the lack of isotope standards for many metabolites, we use chemical isotope 

labeling to create isotope standard. However, chemical labeling itself may encounter 

matrix effects. Comparison of samples at different concentrations that are labeled using 

the same protocol can determine the extent of matrix effect on labeling. In this work, 

calibration curves were built up for four selected amino acids by using 12C-isotope 

labeled AAS while 13C-isotope labeled sample served as internal standard, followed by 

conducting serial dilutions of 12C-isotope labeled UUMS and quantifying amino acids 

by using calibration curves. In order to achieve an accurate measurement for selected 

amino acids contained in different concentrations of UUMS, calibration curves were 

generated individually for serial diluted UUMS to ensure every amino acid lay in the 

middle of calibration curve. Then the effect of dilution and matrix effects on amino 

acids were evaluated by comparing the results from different diluted UUMS. Alanine, 

serine, phenylalanine and threonine were four amino acids to be evaluated, and the 

UUMS sample was diluted by 1-, 2-, 5- and 10-fold, respectively to test the extent of 

matrix effect.  

  



 18 

 

 

Figure 2.3. Calibration curves of alanine for (A) 1-, (B) 2-, (C) 5-, and (D) 10-fold diluted 

UUMS. 

 

 

 

 Figure 2.4. Calibration curves of serine for (A) 1-, (B) 2-, (C) 5-, and (D) 10-fold diluted 

UUMS. 
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  Figure 2.5. Calibration curves of phenylalanine for (A) 1-, (B) 2-, (C) 5-, and (D) 10-fold 

diluted UUMS. 

 

 

 

Figure 2.6. Calibration curves of threonine for (A) 1-, (B) 2-, (C) 5-, and (D) 10-fold diluted 

UUMS. 
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corresponding to serial diluted UUMS were built up for four selected amino acids with 

13C-isotope labeled sample used as an internal standard. 13C-isotope labeled internal 

standard was mixed with 12C-dansyl labeled individual samples by equal volume. The 

same volume of mixtures was injected in LC-MS. From Figure 2.3 to Figure 2.6, 

calibrations curves for each amino acid contained in serial diluted UUMS were plotted 

as 12C and 13C peak area ratio against the concentration of individual amino acids in 

μM. The regression equations were shown for each calibration curve. For every figure, 

A, B, C and D represent dilution factors of 1-, 2-, 5- and 10-fold, respectively.  

After quantitative analysis, concentrations for each of the selected amino acids 

contained within four diluted UUMS were calculated from calibration curves. For 

alanine, the concentrations within 1-, 2-, 5- and 10-fold diluted UUMS were: 42.1 ± 

0.11, 42.1 ± 0.11, 8.77 ± 0.22 and 4.54 ± 0.10 μM, respectively (Table 2.2A). The 

standard deviation for each concentration measurement was the result of combined 

variations in biological triplicate and experimental triplicate (n=9). The results for 

serine within four serials diluted UUMS were: 59.4 ± 0.13, 30.2 ± 0.03, 11.5 ± 0.13 and 

5.88 ± 0.16 μM, respectively (Table 2.2B). For phenylalanine, the concentrations for 

1-, 2-, 5- and 10-fold diluted UUMS were 8.07 ± 0.19, 4.35 ± 0.14, 1.69 ± 0.07 and 

0.88 ± 0.04 μM, respectively (Table 2.2C). For threonine, these were 23.3 ± 0.74, 12.0 

± 0.20, 4.72 ± 0.13 and 2.39 ± 0.06 μM in 1-, 2-, 5- and 10-fold diluted UUMS, 

respectively (Table 2.2D). 
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Table 2.2. Average concentrations (n=9) for (A) alanine, (B) serine, (C) phenylalanine and (D) 

threonine contained within 1-, 2-, 5-, and 10-fold diluted UUMS calculated from calibration 

curves. 

 

2.3.3 Matrix Effects Analysis 

 

In order to evaluate matrix effects, we compared absolute concentrations of 

alanine, serine, phenylalanine and threonine from standard addition strategy with 

concentrations from external standard method. The result in Table 2.3 presents the 

relative differences of concentrations obtained using external standard method from 

absolute concentrations in percentage for four selected amino acids. 

   

 

Table 2.3. Comparison of absolute concentrations from standard addition strategy with 

concentrations from external standard method for alanine, serine, phenylalanine and threonine, 

and the relative differences of concentrations obtained using external standard method from 

absolute concentrations in percentage.  

 

It is clear from Table 2.3, for alanine and phenylalanine, the concentrations 

obtained from calibration curve were very close to absolute values with relative errors 

being 0.71% and 4.2%, respectively. As for threonine, the concentration from external 

Amino acid

Absolute 

Concentration 

( μM)

Concentration 

from external 

standard 

method( μM)

Relative 

error (%)

Alanine 42.4 42.1 0.71

Serine 54.1 59.4 9.8

Phenylalanine 8.42 8.07 4.2

Threonine 22.0 23.3 5.9
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standard method was about ~6% different from the value generated from standard 

addition approach. Serine presented the largest relative error of ~10% for comparison 

between concentrations from calibration curve with standard addition method.   

Moreover, the extent of matrix effect on labeling can be determined by 

comparing UUMS samples at different concentrations that were labeled using the same 

protocol. As shown in Table 2.4, for alanine, serine, phenylalanine and threonine, the 

concentrations without dilution were calculated based on the values obtained from 

calibration curves (Table 2.2) times the dilution factors. And for different dilution 

factors, the relative differences between concentrations obtained using external 

standard method and standard addition were determined first (Table 2.4), then 

presented in both scatter plot (Figure 2.7) and box plot (Figure 2.8).  

 

 

 
Table 2.4. Comparison of absolute concentrations from standard addition strategy with 

concentrations from external standard method for (A) alanine, (B) serine, (C) phenylalanine 

and (D) threonine in UUMS under 1-, 2-, 5-, and 10-fold dilution factors, and also the relative 

differences of concentrations obtained using external standard method from absolute 

concentrations in percentage.  

 

(A)Alanine (B)Serine

Dilution 

factor

Concentration 

without 

dilution ( μM)

Relative 

error (%)

1 42.1 0.71

2 42.4 0

5 43.9 3.4

10 45.4 7.1

Dilution 

factor

Concentration 

without 

dilution ( μM)

Relative 

error (%)

1 59.4 9.8

2 60.4 11.6

5 57.5 6.5

10 58.8 8.9

(C)Phenylalanine (D)Threonine

Dilution 

factor

Concentration 

without 

dilution ( μM)

Relative 

error (%)

1 8.07 4.2

2 8.70 3.3

5 8.45 3.6

10 8.80 4.5

Dilution 

factor

Concentration 

without 

dilution ( μM)

Relative 

error (%)

1 23.3 5.9

2 24 9.1

5 23.6 7.3

10 23.9 8.6
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Figure 2.7. Scatter plots of the relative errors in percentage between absolute concentrations 

from standard addition strategy and concentrations from external standard method for (A) 

alanine, (B) serine, (C) phenylalanine and (D) threonine in UUMS under 1-, 2-, 5-, and 10-

fold dilution factors.  
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Figure 2.8. Box plots of the relative errors in percentage between absolute concentrations 

from standard addition strategy and concentrations from external standard method for (A) 

alanine, (B) serine, (C) phenylalanine and (D) threonine in UUMS under 1-, 2-, 5-, and 10-

fold dilution factors. 

  

As shown in Table 2.4, the relative errors between concentrations obtained from 

external standard method and absolute concentrations were determined in percentage 

and presented in the third column for each of the selected amino acids: alanine (Table 

2.4A), serine (Table 2.4B), phenylalanine (Table 2.4C) and threonine (Table 2.4D). 

From Table 2.4, for four selected amino acids under 1-, 2-, 5- and 10-fold dilution 

factors, only serine in 2-fold diluted UUMS showed a 11.6% difference from its 

absolute concentration, other values were all within 10%. Furthermore, the 

relationships between relative errors and dilution factors for individual amino acids 

were presented in both scatter plot and box plot. As shown in Figure 2.7 and Figure 2.8, 

for four selected amino acids, there were no obvious tendency showing the relative 

errors changed proportionally with dilution effects. Besides, without performing any 

dilution, the relative errors between concentrations obtained from external standard 

method and absolute concentrations were all lower than 10%.  

 

2.4 Conclusion 

 

We have used a high-coverage and quantitative metabolome profiling technique 

based on differential chemical isotope labeling LC-MS to determine the absolute 

concentrations from standard addition method for four amino acids (alanine, serine, 

phenylalanine and threonine) in UUMS. The matrix effects were evaluated by 

comparing absolute concentrations of selected amino acids from standard addition 

strategy with concentrations from external standard method. Comparison of UUMS at 

different concentrations that were labeled using the same protocol was used to 

determine the extent of matrix effect on labeling. The results show that without any 

dilution, the relative errors between absolute concentrations and concentrations from 

external standard method for four amino acids in UUMS were all lower than 10%. 

Moreover, from the results of comparing UUMS at different concentrations, there was 
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no tendency indicating that the extent of matrix effect on labeling would be lowered by 

dilution for these four selected amino acids. For future work, it is also possible to 

evaluate other metabolites of interest to increase the overall matrix effects study 

coverage. 
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Chapter 3 Chemical Isotope Labeling LC-MS for Matrix Effects of 

Identified Metabolites in Universal Urine Metabolome Standard  

 

3.1 Introduction 

 

As an easily obtained biological fluid, urine is becoming an important source 

for biomarker study in disease.73,74 Compared with other sample types such as serum 

and plasma, urine sample collections are less aggressive and easier to process.75,76 What 

is more, it is reported that urine is sensitive to show the internal changes within the 

body and is to be found as a place for early biomarkers study.77-79 It is expected that 

urine metabolomics would help us understand better dynamic changes in the body and 

identify potential disease biomarkers.80,81 However, the matrix contained in urine 

sample could interfere the accuracy and precision when measuring the change of 

metabolites concentrations in biomarkers discovery.82,83 

Different techniques have been introduced to lower the interferences caused by 

matrix, such as removing interferences during sample preparation84-86 and improving 

chromatographic selectivity to reduce the coelution of metabolites of interest with 

matrix components.87,88 When matrix phenomenon cannot be completely eliminated, 

calibration approaches are used, such as standard addition89 and quantification with 

matrix-matched calibration curves.90 One major disadvantage of calibration 

approaches is the extra time required for making the additions and measurements.91 In 

order to avoid matrix effects, dilution is found as an easy and effective method, with 

less interfering compounds existing during sample treatment and loading into 

chromatographic system.92-94 With reduced number of analytes being injected into 

system, a method for quantitative metabolomics profiling with high coverage is 

needed.95-97  

The development of new analytical techniques with high coverage and 

instrument sensitivity makes sample dilution a common approach for analysis.98-101 Our 

group has reported a differential chemical isotope labeling (CIL) LC-MS method for 

quantitative metabolomics profiling with high coverage. Dansylation labeling 
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technique can be used for profiling amine/phenol submetabolome.37 What is more, this 

technique improves MS sensitivity and quantification accuracy, enables us to generate 

a comprehensive profile of the submetabolome. In this work, we applied dansylation 

LC-MS for evaluating the effectiveness of different dilutions in metabolites analysis in 

urine matrix.  

 

3.2 Experimental 

 

3.2.1 Chemical and Reagents 

 

All the chemicals and reagents, unless otherwise stated, were from Sigma-

Aldrich Canada (Markham, ON, Canada). 13C-dansyl chloride was synthesized in our 

lab with the procedures published previously37 and is available from 

MCID.chem.ualberta.ca. LC-MS grade water, acetonitrile (ACN), and methanol 

(MeOH) were from Thermo Fisher Scientific (Edmonton, AB, Canada).  

 

3.2.2 Overall Workflow 

 

Figure 3.1 shows the overall workflow of this study. In this work, universal 

urine metabolome standard (UUMS) sample was firstly diluted into three different folds: 

5-, 10- and 20-fold. Each diluted UUMS sample was labeled by 12C-dansyl chloride 

and 13C-isotope labeled 20-fold diluted UUMS served as internal standard. Then 12C-

labled sample and 13C-labled internal standard were mixed by equal volume. After 

being mixed and injected into LC-MS for analysis, the peak pairs detected in MS were 

extracted by IsoMS. The individual peak pairs from different LC-MS runs were aligned 

together based on accurate mass and retention time to produce a metabolite peak pair 

table. The relative concentration for each metabolite was obtained by IsoMS. And 

identifications of metabolites were performed by searching MycomoundID library 

(www.mycompoundid.org). Finally, comparison of the experimental concentrations for 

every identified metabolite under different dilution factors with theoretical values were 

performed to determine the effect of dilution and matrix effects on identified 

metabolites. The detailed experimental conditions in the workflow are described below. 

http://www.mycompoundid.org/
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Figure 3.1. Workflow for sample preparation and dansylation isotope labeling LC-MS. 

 

3.2.3 Matrix Dilution Folds 

 

In order to study the matrix effect behavior when the matrix amount is reduced, 

three different dilutions of the UUMS were prepared, with dilution factors of 5, 10 and 

20. Half of the matrix was introduced from 12C-labled individual samples and the other 

half came from 13C-labled internal standard. 12C-labled individual samples were diluted 

by 5-, 10-, and 20-fold, respectively, and 13C-labled internal standard was under a 20-

fold dilution. As a result, the matrix was diluted by 4-, 7- and 11-fold, respectively.   
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The frozen urine sample was re-dissolved to 1000µL with water to reach its 

original concentration. Then 12.5 μL of 250 mM sodium carbonate/sodium bicarbonate 

buffer was added to 25 μL of urine sample. The solution was mixed with 37.5 μL of 

freshly prepared 12C-DnsCl solution (18 mg/mL for light labeling, individual samples) 

or 13C-DnsCl solution (18 mg/mL for heavy labeling, internal standard samples). After 

incubation for 45 min at 40 °C, 7.5 μL of 250 mM sodium hydroxide solution was 

added to the reaction mixture, followed by incubation at 40 °C for another 10 min. 

Finally, 30 μL of formic acid (425 mM) in 1:1 ACN/H2O was added. 

 

3.2.5 LC-MS 

 

Each 12C-labled individual sample was mixed with 13C-labled internal standard 

by equal volumes. LC-MS was done using a Themo Scientific Dionex Ultimate 3000 

UHPLC System (Sunnyvale, CA) linked to a Bruker Maxis II quadrupole time-of-flight 

(Q-TOF) mass spectrometer (Bruker, Billerica, MA). The LC column was an Agilent 

reversed phase Eclipse Plus C18 Column (2.1 mm x 10 cm, 1.8 µm particle size). LC 

mobile phase A was 0.1% (v/v) formic acid in water, and mobile phase B was 0.1% 

(v/v) formic acid in ACN. The gradient elution profile was as follow: t = 0 min, 25% 

B; t = 10 min, 99% B; t = 13 min, 99% B; t = 13.1 min, 25% B, t = 16 min, 25% B. 

Flow rate was 400 μL/min. All mass spectra were collected in the positive ion mode. 

The MS conditions for MS were as follows: dry gas flow, 8 L/min; dry temperature, 

230 °C; capillary voltage, 4500 V; nebulizer, 1.0 bar; end plate offset, 500V; spectra 

rate, 1.0 Hz.  

 

3.2.6 Data Processing, Metabolite Identification and Statistical Analysis 

 

After LC-Q-TOF-MS analysis, all the spectra were first converted to .csv files 

by Bruker Daltonis Data Analysis 4.4 software. The peak pairs were extracted from .csv 

files by IsoMS.69 Data from multiple runs were aligned by retention time and accurate 

mass. After the alignment, Zerofill program70 was applied to recover the high-

confidence peak pair ratios lost during the previous data processing steps. Based on the 

accurate mass and retention time, positive metabolite identification was performed 
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using dansyl standard library search, which contains 275 unique dansylated 

amines/phenols71 (www.mycompoundid.org). Putative identification or match was 

performed by searching accurate mass against MyCompoundID library, which contains 

8,021 known human metabolites and 375,809 predicted metabolites72 

(www.mycompoundid.org).  

 

3.3 Result and Discussion 

 

3.3.1 Metabolites Identification  

 

In this work, UUMS sample was diluted under three different dilution factors: 

5-, 10-, and 20-fold, and then labeled with 12C-dansyl chloride. Then 20-fold diluted 

UUMS was also labeled by 13C-dansyl chloride which served as the internal standard. 

For each concentration of 12C-labled individual samples, three aliquots were prepared. 

In the LC-MS analysis, the 13C-dansylation labeled internal standard was mixed with 

12C-dansylation labeled individual samples by same volume. Then the same volume of 

mixtures prepared from all individual samples was injected into LC-MS. After LC-MS 

acquisition and data processing, a total of 202 peak pairs were detected. As can be seen 

from Table 3.1 there were totally 77 metabolites being identified. Using CIL library 

search, 24 metabolites were positively identified according to accurate mass and 

retention time matched against a labeled standard compound library. For the remaining 

metabolites, using Li library searched with accurate mass and predicted retention time 

matched against a linked identity library, 53 metabolites were putatively identified with 

high confidence. As a result, we achieved a good submetabolome coverage and about 

40% of metabolites can be matched with different confidence levels for various diluted 

UUMS samples.  

 

  RT (s) Compound ID     Metabolite Name 

72 HMDB00168 Asparagine 

78.1 AFA00126000 LL-2,6-Diaminoheptanedioate/meso-2,6-

Diaminoheptanedioate 

81.4 AXA00234000 Symmetric dimethylarginine 

83.7 AAA00616000 Creatine 

http://www.mycompoundid.org/
http://www.mycompoundid.org/
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87 AXA00042000 Biopterin 

90 HMDB00641 Glutamine 

109.1 HMDB00187 Serine 

122.8 AXA00795000 Beta-Guanidinopropionic acid 

122.8 HMDB00725 4-Hydroxyproline 

127.3 AFA00118000 Tabtoxinine-beta-lactam 

133.3 AAA00624000 Threonine 

144.5 AAA00727000 Aminoadipic acid 

144.8 AAA00630000 L-Homoserine 

152.4 AAA01327000 Ethanolamine 

153.1 AFA00145000 3-Cyano-L-alanine 

159.3 HMDB00123 Glycine 

161.5 AAA00770000 4-Guanidinobutanal 

172.0 HMDB00161 Alanine 

172.7 AFA00145000 3-Cyano-L-alanine 

175.3 AFA00143000 Gamma-Amino-gamma-cyanobutanoate 

187.0 HMDB00271 Sarcosine 

192.0 HMDB00112 Gamma-Aminobutyric acid 

213.3 AXA03615000 N-Ethylglycine 

219.7 AXA00148000 7-Methylguanine 

226.5 HMDB01906 2-Aminoisobutyric acid 

230.8 AAA00437000 N-Acetylornithine 

233.0 AAA00459000 Hypoxanthine - Isomer 

233.7 AFA00216000 Methylamine 

242.5 HMDB00300 Uracil 

261.3 HMDB00883 Valine 

263.0 AAA00589000 (Z)-3-Peroxyaminoacrylate 

266.6 AFA00098000 4-Hydroxyphenylglyoxylate 

272.0 APA00823000 Homomethionine 

273.6 AAA00640000 Tryptophan 

277.0 HMDB00159 Phenylalanine 

293.6 HMDB00118 Homovanillic acid 

300.9 AAA00887000 2-Carboxy-2,3-dihydro-5,6-dihydroxyindole 

300.9 HMDB00840 Salicyluric acid 

301.0 HMDB00112_2 Gamma-Aminobutyric acid - H2O 

304.7 AAA00840000 Urocanic acid 

306.6 AAA00691000 Leucine 

309.7 AAA00287000 3-(4-Hydroxyphenyl) lactate 

311.4 AAA01692000 4-Aminobenzoate 

313.9 APA00767000 5-Aminopentanal 

326.4 AAA00674000 Cystine 

327.8 AAA01010000 5-Hydroxyindoleacetic acid 

329.9 HMDB03911_2 3-Aminoisobutanoic acid - H2O 
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354.0 AAA00902000 3-Methoxy-4-hydroxyphenylglycolaldehyde 

360.6  AAA00425000 Ornithine 

376.5  AAA00739000 Lysine 

377.3  AXA00705000 (6R)-6-(L-Erythro-1,2-Dihydroxypropyl)-5,6,7,8-

tetrahydro-4a-hydroxypterin - 2 tags 

378.0  HMDB00500 4-Hydroxybenzoic acid 

389.3  AAA00896000 3-Methoxy-4-hydroxyphenylacetaldehyde 

390.0  HMDB00669 4-Hydroxy-3-methylbenzoic acid 

390.8  AXA00322000 N8-Acetylspermidine - 2 tags 

393.1  AAA00864000 4-Hydroxyphenylacetic acid 

394.9  AAA00832000 Histidine 

402.3  APA00873000 S-(Hydroxyphenylacetothiohydroximoyl)-L-cysteine - 2 

tags 

402.3  AAA00635000 D-Lombricine - 2 tags 

404.8  AXA03600000 Diethylamine 

412.2 AAA01719000 7,8-Dihydroxanthopterin - 2 tags 

431.0  AAA00956000 4-Hydroxy-3-methoxy-benzaldehyde 

433.6  HMDB0000750_2 3-Hydroxymandelic acid - COOH 

456.0  ABA00515000 1,2-Dihydroxynaphthalene-6-sulfonate - 2 tags 

458.7  HMDB0006050 Tyrosine 

458.8  HMDB00819 Normetanephrine 

468.7  AAA00873000 Phenol 

502.6  HMDB01858 p-Cresol 

516.0  HMDB00292 Xanthine 

518.7  AAA00916000 3,4-Dihydroxyphenylpropanoate - 2 tags 

518.7  AAA00929000 3-(2,3-Dihydroxyphenyl) propanoate - 2 tags 

526.0  AAA00868000 2,5-Dihydroxybenzoate - 2 tags 

536.9  AAA00871000 Tyramine 

554.5  ABA00156000 Resorcinol - 2 tags 

554.9  HMDB04811 2,4-Dichlorophenol 

578.8  AXA02817000 4-tert-Butylphenol 

603.4  APA00413000 3,4-Dihydroxystyrene - 2 tags 

Table 3.1. Positive and high confidence putative identification results in UUMS. Order from 

lowest to highest retention time.  

 

3.3.2 Comparison Between Experimental and Theoretical Values  

 

After metabolites being identified, for each individual metabolite, the peak pair 

ratio of 12C and 13C between experimental and theoretical values were compared in 

order to test matrix effect behavior with reduction of the matrix amount. Individual 

samples were diluted by 5-, 10-, and 20-fold, respectively and labeled with 12C-dansyl 
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chloride, while 13C-labled internal standard was under 20 dilution factors. In this LC-

MS analysis, internal standard was mixed with individual samples by same volume, as 

a result, the theoretical peak pair ratio between 12C and 13C for 5-, 10-, and 20-fold 

diluted UUMS were 4, 2 and 1, respectively. As for the change in concentrations of 

matrix, since half of the matrix was introduced from 12C-labled individual samples and 

the other half came from 13C-labled internal standard, the matrix was eventually diluted 

by 4-, 7- and 11-fold, respectively. An absolute percentage of the difference between 

experimental and theoretical values within 30% was considered as no matrix effect, 

since variation would be close to the repeatability values.95  

In UUMS sample, there were totally 77 metabolites being identified, the 

relationships between relative errors and dilution factors for identified metabolites were 

presented in box plot (Figure 3.2). The standard deviation for each concentration 

measurement was the result of combined variations in biological triplicate and 

experimental triplicate (n=9).  

Table 3.2 summarizes the identifications of 64 metabolites in UUMS with 

absolute percentage differences under 30% between experimental and theoretical 

values when matrix was diluted by 4-fold. Table 3.3 presents the remaining 13 

metabolites which had more than 30% difference between experimental and theoretical 

values after being diluted by 4-fold.  
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Figure 3.2. Box plots of absolute percentage differences between experimental and theoretical 

values for 76 metabolites in UUMS when matrix was under 4-, 7- and 11-fold dilution factors. 

Order from lowest to highest retention time. 

 

Metabolite  Relative error (%) 

Asparagine 21 

LL-2,6-Diaminoheptanedioate/meso-2,6-

Diaminoheptanedioate 

17 

Symmetric dimethylarginine 23 

Biopterin 21 

Glutamine 15 

Serine 10 

Beta-Guanidinopropionic acid 30 

4-Hydroxyproline 30 

Tabtoxinine-beta-lactam 3.6 

Threonine 13 

Aminoadipic acid 17 

L-Homoserine 16 

Ethanolamine 6.8 

3-Cyano-L-alanine 25 

Glycine 9.9 

4-Guanidinobutanal 18 

Alanine 10 

3-Cyano-L-alanine 23 

Gamma-Amino-gamma-cyanobutanoate 21 

Sarcosine 15 

Gamma-Aminobutyric acid 6 

N-Ethylglycine 12 

2-Aminoisobutyric acid 6.1 

Hypoxanthine – Isomer 21 

Uracil 0.4 

Valine 14 

(Z)-3-Peroxyaminoacrylate 29 

4-Hydroxyphenylglyoxylate 14 

Homomethionine 26 

Tryptophan 15 

Phenylalanine 10 

Homovanillic acid 7.5 

2-Carboxy-2,3-dihydro-5,6 dihydroxyindole 19 

Salicyluric acid 19 

Gamma-Aminobutyric acid - H2O 2 

Urocanic acid 21 

Leucine 8.1 
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3-(4-Hydroxyphenyl) lactate 17 

5-Aminopentanal 12 

Cystine 5.8 

5-Hydroxyindoleacetic acid 23 

3-Aminoisobutanoic acid - H2O 1.9 

3-Methoxy-4-hydroxyphenylglycolaldehyde 18 

Ornithine 29 

Lysine 5.5 

(6R)-6-(L-Erythro-1,2-Dihydroxypropyl)-

5,6,7,8-tetrahydro-4a-hydroxypterin - 2 tags 

16 

4-Hydroxybenzoic acid 17 

3-Methoxy-4-hydroxyphenylacetaldehyde 23 

4-hydroxy-3-methylbenzoic acid 13 

N8-Acetylspermidine - 2 tags 9.1 

4-hydroxyphenylacetic acid 6.7 

Histidine 15 

D-Lombricine - 2 tags 24 

S-(Hydroxyphenylacetothiohydroximoyl)-L-

cysteine - 2 tags 

24 

7,8-Dihydroxanthopterin 22 

Tyrosine 9.1 

Normetanephrine 11 

Xanthine 8.6 

3,4-Dihydroxyphenylpropanoate - 2 tags 3 

3-(2,3-Dihydroxyphenyl) propanoate - 2 tags 3 

2,5-Dihydroxybenzoate - 2 tags 19 

Tyramine 4.7 

Resorcinol - 2 tags 1.6 

3,4-Dihydroxystyrene - 2 tags 2 

Table 3.2. The identifications of metabolites in UUMS with absolute percentage difference 

between experimental and theoretical values under 30% when matrix was diluted by 4-fold. 

Order from lowest to highest retention time. 

 

Metabolite Relative error (%) 

Creatine 31 

7-Methylguanine 31 

N-Acetylornithine 79 

Methylamine 33 

4-Aminobenzoate 32 

Diethylamine 67 

4-Hydroxy-3-methoxy-benzaldehyde 42 

3-Hydroxymandelic acid - COOH 32 
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1,2-Dihydroxynaphthalene-6-sulfonate - 2 

tags 

66 

Phenol 75 

p-Cresol 73 

2,4-Dichlorophenol 75 

4-tert-Butylphenol 74 

Table 3.3. The identifications of metabolites in UUMS with absolute percentage difference 

between experimental and theoretical values above 30% when matrix was diluted by 4-fold. 

Order from lowest to highest retention time. 

 

As summarized in Figure 3.3, in UUMS sample, more than 83% of the 

metabolites showed less than 30% difference from theoretical values, indicating that 

there was no large difference between experimental and theoretical values with matrix 

being diluted by 4 factors. And more than half of the remaining compounds (7%) 

showed that the matrix effects were improved after matrix being diluted by 7-fold, and 

half of the remaining compounds (7%) needed to be diluted by 11-fold. After being 

diluted by 11-fold, only 3% of the metabolites did not present any improvement which 

may be caused by their low detectable intensities.   

 

 

83%

7%

7%
3%

No matrix effect Improves with Dil. 7x

Improves with Dil. 11x Does not improve with Dil.  11x
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Figure 3.3. Distribution of identified metabolites in UUMS matrix studied according to how 

matrix effects were affected with reduction of matrix amount.  

For the rest of unidentified metabolites in UUMS sample, as presented in Figure 

3.4, about half (49%) of the metabolites were free of matrix effects when matrix was 

diluted by 4 factors, 13% needed dilution up to a dilution factor of 7. A relatively large 

percentage of compounds (29%) showed matrix effects improvement after matrix being 

diluted by 11-fold, and 9% of the metabolites did not improve, even with a dilution 

factor of 11. 

 

Figure 3.4. Distribution of unidentified metabolites in UUMS matrix studied according to how 

matrix effects were affected with reduction of matrix amount. 

 

3.4 Conclusion 

We have used a high-coverage and quantitative metabolome profiling technique 

based on differential CIL LC-MS to evaluate the effectiveness of different dilutions in 

metabolites analysis in UUMS. After LC-MS acquisition and data processing, there 

49%

13%

29%

9%

No matrix effect Improves with Dil. 7 x

Improves with Dil. 11 x Does not improve with Dil.  11 x
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were totally 202 peak pairs and 77 metabolites were identified. In order to test matrix 

effect behavior with reduction of the matrix amount, UUMS sample was diluted under 

three different factors, and peak pairs between experimental and theoretical values were 

compared for individual metabolites. Among identified metabolites, more than 83% of 

the metabolites showed no large difference between experimental and theoretical values 

with matrix being diluted by 4 factors. And more than half of the remaining compounds 

(7%) showed matrix effects improvement after matrix being diluted by 7-fold and half 

of the remaining compounds (7%) needed to be diluted by 11-fold. After being diluted 

by 11-fold, only 3% of the metabolites did not present any improvement. As for 

unidentified metabolites in UUMS sample, about half (49%) of the metabolites were 

free of matrix effects when matrix was diluted by 4 factors, 13% needed dilution up to 

a factor of 7. A relatively large percentage of compounds (29%) showed matrix effects 

improvement after matrix being diluted by 11-fold, and 9% of the metabolites did not 

improve, even with a dilution factor of 11. In the future, different approaches could be 

applied to obtain more results from the remaining unidentified metabolites. And also, 

we will evaluate the extent of matrix effect on different isotopic labeling reagents, such 

as carboxylic acids39, hydroxyls40, ketones and aldehydes38, as well as different types 

of biofluids on protocol development for CIL LC-MS based metabolomics.  
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 Chapter 4 Conclusions  

By the use of high-performance chemical isotope labeling (CIL) LC-MS 

method, matrix effects in universal urine metabolome standard (UUMS) have been 

investigated. In Chapter 2, the absolute concentrations from standard addition method 

for four amino acids (alanine, serine, phenylalanine and threonine) in UUMS were 

determined. And matrix effects were evaluated by comparing absolute concentrations 

of selected amino acids from standard addition strategy with concentrations from 

external standard method. Comparison of UUMS at different concentrations that were 

labeled using the same protocol allows us to determine the extent of matrix effect on 

labeling. Without any dilution, the relative errors between absolute concentrations and 

concentrations from external standard method for four amino acids in UUMS were all 

lower than 10%. From the results of comparing UUMS at different concentrations, there 

was no indication that the extent of matrix effect on labeling would be lowered by 

dilution for these four selected amino acids.  

In Chapter 3, the high-coverage and quantitative metabolome profiling 

technique based on differential chemical isotope labeling (CIL) LC-MS was used to 

evaluate the effectiveness of different dilutions in metabolite analysis in UUMS matrix. 

After LC-MS acquisition and data processing, there were totally 202 peak pairs with 

77 metabolites identified. In order to test matrix effect behavior with reduction of the 

matrix amount, UUMS sample was diluted under three different factors, and peak pairs 

between experimental and theoretical values were compared for individual metabolites. 

Among identified metabolites, more than 83% of the metabolites showed no large 

difference between experimental and theoretical values with matrix being diluted by 4 

factors. And more than half of the remaining compounds (7%) showed matrix effect 

improvement after matrix being diluted by 7-fold and half of the remaining compounds 

(7%) needed to be diluted by 11-fold. After being diluted by 11-fold, only 3% of the 

metabolites did not present any improvement. As for unidentified metabolites in UUMS 

sample, about half (49%) of the metabolites were free of matrix effects when matrix 

was diluted by 4 factors, 13% needed dilution up to a factor of 7. A relatively large 
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percentage of compounds (29%) showed matrix effects improvement after matrix being 

diluted by 11-fold, and 9% of the metabolites did not improve, even with a dilution 

factor of 11. These results suggest that, for most of identified metabolites, a dilution 

factor of four would be enough to minimize the influence of matrix effect, opening the 

possibility to perform quantitative analysis for these identified metabolites in urine.  
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