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Abstract

Over the last few decades, model-driven code generation has been the flagship paradigm used to

promote adoption of model-driven engineering among the general software-engineering community.

Model-driven code generators integrate model-to-model and model-to-text transformations to build

applications that systematically differ from each other. Typically, generators use multi-step trans-

formation chains to translate high-level application specifications, captured using domain-specific

languages, into executable artifacts such as code and deployment scripts.

A key challenge in the construction of development environments for model transformations

involves the analysis and visualization of traceability information. Access to fine-grained traceability

links enables developers to assess evolutionary scenarios in transformation ecosystems, to effectively

debug complex binding expressions, and to accurately determine the metamodel coverage of

transformation chains.

Unfortunately, current traceability-analysis techniques do not consider implicit bindings when

collecting traceability information from complex transformation expressions. Implicit bindings

manipulate, constrain, or navigate the structure of a metamodel in order to realize the final intent of

a transformation expression. Furthermore, they do not conceive model-to-model and model-to-text

transformations as equal constituent elements of a unified model-driven engineering toolbox. This

effectively limits their usability in the context of non-trivial model-driven code generators. To

the best of our knowledge, the effectiveness of current traceability analysis, and the development

environments built on top of them, has not been validated in empirical studies with real developers.

In this work, we address these shortcomings. We propose an end-to-end fine-grained traceability-

analysis technique for individual model-to-model and model-to-text transformations, as well as

model-transformation chains combining the two. Our analysis technique is based on a traceabil-

ity framework that considers traceability links as symbolic dependencies between metamodels,

transformation expressions, and generated artifacts. Furthermore, we introduce ChainTracker, a

traceability-analysis environment. We evaluated the completeness of our traceability-analysis tech-

nique using 25 model-to-model and 18 model-to-text transformations from the ATLZoo and the

Acceleo Example Repository. Our analysis technique achieved an overall fine-grained traceability

coverage of 91% and 85%, respectively. Furthermore, we evaluated the usability of ChainTracker

in an empirical study in which 25 developers completed traceability-driven tasks in two model-

driven code generators of different complexity. We found statistically significant evidence that

ChainTracker improves the accuracy and efficiency of developers by between 22% and 900%.
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1

Introduction

The main goal of model-driven engineering (MDE) is to boost the productivity of developers by

enabling them to work at a higher level of abstraction [1, 2]. In principle, MDE promotes the use of

domain-specific languages (DSLs) ruled by metamodels, with concepts closer to the domain of the

desired application, rather than the ones offered by a general-purpose programing language [3].

Over the last few decades, model-driven code generation has been the flagship paradigm used

to promote adoption of model-driven engineering among the general software-engineering com-

munity. Model-driven code generators integrate model-to-model (M2M) and model-to-text (M2T)

transformations to build applications that systematically differ from each other. Typically, gener-

ators use multi-step transformation chains (MTCs) that gradually translate high-level application

specifications into executable artifacts, such as code and deployment scripts. In the transformation

process, M2M transformations are used to split, merge, or augment the information provided in

the initial specification, potentially producing multiple intermediate models that capture different

system concerns [4]. In turn, M2T transformations take the intermediate models, and produce

executable artifacts based on templates that have been previously engineered for reuse.

Although model-driven code generators offer multiple opportunities for the development of

software systems, including faster time-to-market, higher code quality, and a more inclusive de-

velopment experience, adoption of the paradigm continues to be slow [2]. Empirical studies have

reported that although model-driven code generators increase the productivity of developers by

between 20% and 800% [1, 2], in most cases, their maintenance costs penalize developers with 27%

of reduced productivity [2, 5].

Like any software system, model-driven code generators are bound to evolve. Evolutionary

changes in model-driven code generators can be classified in two scenarios of evolution: metamodel

evolution and platform evolution [6, 7]. In the metamodel-evolution scenario, changes to the gen-
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erator’s underlying languages are required to improve their expressiveness, and to better capture

information relevant to the to-be-constructed systems. In the platform-evolution scenario, changes

to generated artifacts are required to meet new requirements not captured by the generation infras-

tructure. Such modifications also include code refactoring for design improvement, performance

tuning for mission-critical systems, energy consumption optimization, and bug fixes [8]. In both

scenarios of evolution, M2M and M2T transformations potentially need to be modified in order to

reflect changes in a systematic way. Due to the numerous dependent artifacts in a transformation

ecosystem, supporting its evolution is a challenging and error-prone task [9, 10, 11]

1.1 Problem Statement

In order to increase the adoption of MDE practices, we need development environments specifically

tailored to support the construction and maintenance of model transformations [5, 11, 12]. This is

particularly relevant in the context of modern software developers who continuously experiment with

development technologies and quickly abandon tools with no evident economic return [13, 14, 5].

Unfortunately, current development environments for model transformations do not consider M2M

and M2T transformation as a part of a unified model-driven engineering toolbox, effectively

limiting their usability in the construction of non-trivial model-driven code generators. In fact,

empirical studies conducted with industrial practitioners, have shown that 30% of developers

consider development environments as one of the main barriers to adoption [5].

A key challenge in the construction of development environments for model transformations

involves the analysis of traceability information [9]. In this thesis, we are interested in providing a

transformation-analysis technique, and corresponding traceability-analysis environment, to enable

developers to find the right code to look at during the construction and maintenance of model-

driven code generators. Traceability information is fundamental to enable developers answer

traceability-driven questions in the following activities.

• Supporting change impact analysis in evolving metamodels, transformations, and generated

codebases: End-to-end traceability links enable developers to assess the impact of metamodel

and platform evolution in individual transformations, as well as in transformation chains.

[15, 16, 17]. This activity is based on the following questions.

– What metamodel elements are derived using a given metamodel element or property?

i.e., metamodel-downstream dependency analysis.

– What binding expressions does a given metamodel element or property depend on? i.e.,

metamodel-upstream dependency analysis.

2
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– What metamodel elements and properties does a given template line depend on? i.e.,

template-upstream dependency analysis.

– What transformation bindings intervene in the generation of a given line of code? i.e.,

code-upstream dependency analysis.

• Debugging transformations during development and maintenance: Fine-grained traceability

links enable developers to evaluate the correctness of transformations whether in isolation or

in transformation chains [18]. This activity motivates additional questions, such as:

– What metamodel elements and attributes are used in a given binding expression?

– What underlying dependency relationships exist due to binding expressions that use

helper rules?

• Evaluating the design of a transformation composition to improve its qualities: Fine-grained

traceability links can be used to visualize the execution mechanics of complex transformation

ecosystems. This enables developers to efficiently evaluate metamodel design alternatives,

and transformation-modularization strategies [19, 20, 21, 10]. This activity involves questions,

such as:

– What is the order of precedence for the correct execution of the transformations in my

ecosystem? Are there interdependent branches in my transformation chain?

– How are individual binding expressions linked throughout my entire transformation

chain? i.e., binding-expression dependency analysis.

• Supporting the assessment of metamodel coverage and the analysis of orphan metamodel

elements: Precise coverage measurements help developers to prune evolving metamodels,

and to design transformation oracles [22, 23, 24]. This task relies on the ability of developers

to answer questions, such as:

– Are there unused binding expressions or transformations rules in the transformations of

my ecosystem? i.e., transformation refactoring.

– How well is the information captured by the metamodels in my ecosystem used by

my transformations? Are there uncovered elements or attributes? i.e., fine-grained

metamodel coverage analysis.

Unfortunately, the term traceability does not have a universally accepted definition in the MDE

community [17]. This has caused a research landscape in which the usability and completeness of

traceability-analysis approaches can not be precisely assessed. Surveys [25, 17, 26] have compiled
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the existing work towards collecting traceability links from M2M and M2T transformations. They

conceive traceability links as dependency relationships between a variety of transformation artifacts,

at different levels of granularity and abstraction. One line of research [27, 28, 29, 30, 31, 32]

considers traceability links as dependency relationships between the models used by a transformation

and those produced after its execution, i.e., traceability at the model level. Yet another [20, 33, 21]

conceives traceability links as the symbolic dependencies between the metamodels used by a

transformation, and its corresponding binding expressions, i.e., traceability at the metamodel level.

Traceability at the model level is mainly concerned in supporting model co-evolution; it enables

developers to synchronize models with evolving metamodels and vice versa. On the other hand,

traceability at the metamodel level focuses on supporting developers maintaining transformations

and metamodels as generation specifications change over time [34].

Current traceability-analysis techniques, and the analysis environments built on them, suffer from

multiple limitations. They are unable to analyze fine-grained end-to-end traceability information in

M2M and M2T transformation chains. Furthermore, they do not consider implicit bindings when

collecting traceability information from complex transformation expressions. Implicit bindings

manipulate, constrain, or navigate the structure of a metamodel in order to realize the final intent of

a transformation expression. This limits their usability in the context of transformation ecosystems,

whose main purpose is to generate textual/executable artifacts from high-level specifications. More

importantly, the evaluation of current traceability-analysis techniques is often based on simplified

or conceptual transformation examples. Typically, these evaluations only include one example to

illustrate the mechanics of the analysis, rather than their technical completeness, i.e., the binding

expressions they are able to analyse, and the granularity level of their traceability links. Indeed, the

practical limitations of current analysis techniques are yet to be explored. Finally, researchers claim

that current transformation-analysis environments make developers more efficient and effective at

maintaining model-driven code generators. However, to the best of our knowledge, their usability

has not been validated in empirical studies.

In view of these shortcomings, this thesis presents a metamodel-level end-to-end traceability

framework and analysis technique for model transformations. Our traceability-analysis technique

has been implemented in ChainTracker [35, 36, 37] an integrated analysis environment for ATL

[38] and Acceleo [39] transformation technologies. Our traceability framework is generalizable

to transformation languages that use OCL [40] as their underlying model manipulation language.

It conceives traceability information in individual M2M and M2T transformations, as well as in

transformation chains combining the two. We have evaluated the completeness of our analysis

technique in the context of 14 individual transformation projects from the ATLZoo1, and 5 code-
1https://www.eclipse.org/atl/atlTransformations/

4

https://www.eclipse.org/atl/atlTransformations/


1.2. Thesis Contributions

generation projects from the Acceleo Repository2. Furthermore, we have evaluated the usability of

ChainTracker in an empirical study with 25 developers completing traceability-driven tasks in two

non-trivial model-driven code generators, i.e., PhyDSL and ScreenFlow.

1.2 Thesis Contributions

In summary, the contributions of this thesis are three: (C1) a traceability conceptual framework

and model-transformation analysis technique to gather fine-grained metamodel-level traceability

links from M2M and M2T transformations; (C2) a curated traceability evaluation dataset with

25 ATL (M2M) transformations and 18 Acceleo (M2T) transformations, and two fully-featured

model-driven code generators in the context of physics-based video games, and mobile graphic user

interfaces; and finally, (C3) an integrated end-to-end analysis environment for individual model

transformations, and model transformation chains, namely ChainTracker.

C1: A Traceability Framework and Analysis Technique for End-to-end Traceability

Our traceability framework considers model transformations individually, and in transformation

chains. We propose a formal traceability link definition in the context of M2M and M2T trans-

formations. We formally characterize traceability links as dependency relationships derived from

the execution semantics of explicit and implicit binding expressions. Furthermore, we formally

introduce dependent traceability links and end-to-end traceability links, as semantic elements

to represent the transitive dependency relationships that arise between the diverse artifacts of a

model-transformation chain (Chapter 4).

We present a collection of static-analysis algorithms based on our traceability conceptual

framework. They (i) summarize the metamodel-navigation paths used by M2M and M2T binding

expressions, and (ii) collect their corresponding fine-grained traceability links. Our analysis tech-

nique has been instantiated in the context of ATL and Acceleo M2M and M2T transformations,

respectively. However, it can be generalized to other transformation languages as long as they

use OCL or OCL-like formalisms as underlying model-manipulation languages. In our evaluation

dataset (C2) our analysis technique achieved a fine-grained traceability coverage of 91% and 85%

for M2M and M2T transformations, respectively (Chapter 5).

C2: A Traceability Analysis and Usability Evaluation Dataset

The evaluation of our traceability-analysis technique was based on 25 M2M transformations, and 18

M2T transformations. They correspond to 14 individual transformation projects from the ATLZoo,

and 5 individual code-generation projects from the Acceleo Example Repository. We contribute a
2https://github.com/eclipse/acceleo/tree/master/examples
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characterization of the binding expressions and existing traceability links for all the transformations

in our evaluation dataset. The characterization process was conducted manually by two software-

engineering researchers with with 6 and 2 years of experience in model-transformation technologies

(Chapter 5.4).

In order to increase our understanding on the challenges and opportunities of model-driven

engineering in the construction of software systems, we have built two fully-featured model-

driven code generators, i.e., PhyDSL and ScreenFlow (Chapter 3). We have used their underlying

transformation ecosystems in the usability evaluation of ChainTracker (C3).

PhyDSL [41, 42] is a game engine and authoring environment for mobile 2D physics-based

games. It consists of a textual domain-specific language for gameplay design, and a multi-

branched transformation chain that takes high-level gameplay specifications and translates them

into executable code for mobile devices. PhyDSL is currently used by the Faculty of Reha-

bilitation Medicine at the University of Alberta, the Knowledge Media Design Institute at the

University of Toronto, and the Sapporo Medical University in Japan, to create cost-effective mo-

bile games for rehabilitation therapy. ScreenFlow is a design environment for mobile applica-

tion storyboards. It enables developers to quickly translate user-interface sketches into appli-

cation skeletons, including interface navigation logic. It consists of a textual domain-specific

language, and a linear model-transformation chain. ScreenFlow is designed for novice Android

application developers and for rapid software prototyping environments, such as hackathons.

PhyDSL and ScreenFlow are publicly available in https://guana.github.io/phydsl/

and https://guana.github.io/screenflow/.

C3: The ChainTracker Integrated Traceability Analysis Environment

In order to make traceability information available to model-transformation developers, we present

ChainTracker, an integrated traceability analysis environment for M2M and M2T transformations,

and transformation chains combining the two. ChainTracker includes interactive traceability visual-

izations inspired by parallel-coordinate visualizations. Furthermore, it includes projectional code

editors that enable developers to explore information obtained from transformation visualizations

onto transformation editors, and vice versa. ChainTracker provides developer-oriented features such

as binding filters, contextual tables, and transformation highlighters (Chapter 6).

Considering that most developers are used to the execution semantics of imperative programing

languages [43], e.g., Java and C++, ChainTracker is designed to lower the cognitive challenges

that developers face when first introduced to the declarative semantics of relational transformation

languages, e.g., ATL and ETL [44]. ChainTracker’s features enable developers to more efficiently

complete traceability-driven tasks such as, assessing the impact of metamodel changes, and debug-
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ging non-trivial transformation chains. ChainTarcker is currently being released in private beta at

https://guana.github.io/chaintracker/

Finally, we contribute an empirical study that investigates the performance of developers

when reflecting on the execution semantics of M2M and M2T transformations. We measured the

accuracy and efficiency of developers when asked to identify dependency relationships between

transformation artifacts using ChainTracker. Furthermore, we compared their performance with that

of developers using Eclipse Modeling (with ATL and Acceleo plugins) as the industry baseline. In

this empirical study, we investigated two research questions:

• RQ1: Do developers using ChainTracker identify metamodel and generation dependencies in

transformation ecosystems more accurately and efficiently than those using Eclipse Modeling?

• RQ2: Do the size and complexity of transformation ecosystems affect the effectiveness of

ChainTracker in helping developers identify their metamodel and generation dependencies?

We found that when using Eclipse Modeling most developers could not effectively identify

metamodel dependencies defined in non-trivial M2M transformations. Furthermore, we observed

that developers were unable to precisely pinpoint dependencies between metamodels and generated

textual artifacts in the context of M2T transformations. Our study also revealed that developers

often fail to identify chained upstream and downstream metamodel dependencies in both linear

and multi-branched model-transformation chains. We found statistically significant evidence that

ChainTracker improves the accuracy and efficiency of developers by between 22% and 900% in five

families of traceability-driven tasks (Chapter 7).

1.3 Thesis Outline

The content of this thesis is structured as follows. Chapter 2 describes the conceptual foundations

of MDE and clarifies the terminology used throughout this thesis. Furthermore, it presents a

literature review of the research relevant to our work, including traceability analysis and visualization

approaches. Chapter 3 introduces the PhyDSL and ScreenFlow model-driven code generators.

Chapter 4 presents our formal conceptual framework for end-to-end traceability at the metamodel

level. Moreover, Chapter 4 introduces a model-transformation chain running example, which is

used throughout the next two chapters of this thesis. Chapter 5 presents our traceability-analysis

technique for M2M and M2T transformation, including its corresponding analysis algorithms.

Chapter 5 also discusses the evaluation of our analysis technique. Chapter 6 presents ChainTracker

and its development-oriented features. Chapter 7 presents the usability evaluation of ChainTracker

and highlights its main take home messages. Finally, Chapter 5 revisits our contributions, and

summarizes our future avenues of research.
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2

Related Work

In this chapter, we discuss the work related to our research. Section 2.1, introduces domain-specific

languages, Section 2.2 reviews the fundamentals of MDE. Section 2.6 presets the definition of

traceability that our research adheres to. Section 2.7 categorizes the existing work towards collecting

traceability information in MDE. Section 2.9 discusses current strategies to visualize traceability in

model-driven code generators.

2.1 Domain-specific Languages

Domain-specific languages (DSLs) are languages tailored to a specific application domain. [45, 46].

They implement graphical or textual concrete syntaxes that offer substantial gains in expressiveness

and ease of use when compared to general-purpose programing languages (GPLs), such as Java or C,

in their application domain. Typically, the abstract syntax of a DSL is determined by a metamodel

that defines its concepts and their relationships. DSLs provide a simplified development interface,

with constructs that simplify –or completely abstract– the execution semantics of an application.

According to Fowler [47], DSLs can be classified in three categories; namely external DSLs, internal

DSLs, and language workbenches. An external DSL is a language that is completely separate from a

general-purpose programming language. It consists of a self-contained abstract and concrete syntax

suitable for expressing an application specification from a concern-specific or high-level perspective.

An internal DSL is a particular way of using a GPL. They use a subset of the language constructs

included in a GPL to handle one small aspect of the to-be constructed system. Finally, a language

workbench is a specialized integrated development environment (IDE) for defining DSLs. There

are two main approaches to build execution engines for DSLs [46]: translation (i.e. generation)

and interpretation. The translation approach focuses in the transformation of a DSL program into a
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language for which an execution engine exists. Typically, this is code in a GPL. In the interpretation

approach, a customized execution engine is built in order to interpret and execute DSLs programs

directly. In this thesis, we focus on external DSLs supported by translational execution approaches.

2.2 Model-driven Engineering Foundations

Model-driven engineering [48] (MDE) is conceived as an alternative methodology for building

software systems in which models are an integral part of the design, construction, and maintenance

of an application, during its entire life-cycle. Although MDE can be used to tackle numerous

software-engineering tasks, over the last few decades model-driven code generation has been the

flagship paradigm used to promote its adoption among the general software-engineering community.

In MDE, models capture the structural, functional, and behavioral properties of a software

system. They are typically defined using a textual and/or graphical concrete syntax associated with

a domain-specific language (DSL), and then transformed into executable or deployable artifacts

using M2M and M2T transformations. Using MDE techniques, a self-contained domain language

can be designed to, for example, describe the security concerns of an application, e.g., authoriza-

tion mechanisms, and data-access policies. Previously engineered transformations translate such

definitions into executable or deployable artifacts such as source-code text, configuration files, and

deployment scripts.

It is worth noticing that MDE is surrounded by terminological predicaments. Model-Driven

Architecture (MDA) [49, 50] is an OMG standard of an early MDE vision. It prescribes a collection

of abstraction layers required in the construction of a model-driven code generator. On the other

hand, proposals like [51] conceive a more general incarnation of MDE in which models, defined in

using formalisms without prescribed levels of abstraction, can be used to completely –or partially–

describe a software system. Furthermore, proposals like Model-driven Software Product Lines

(MD-SPL) [52] combine MDE concepts, together with the asset management techniques of software

product lines, to automate the production of families of software systems.
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In this thesis, we focus in the concept of model-driven code generators as a general

incarnation of MDE principles. A model-driven code generator is understood to involve

a (number of) domain language(s), used to describe a family of software systems

that systematically differ across well-defined dimensions. Moreover, they involve

transformation ecosystems, relying on a composition of model transformations, capable

of translating system specifications captured using domain-specific languages into

executable and/or deployment artifacts, including, but not limited to, source-code, and

deployment and testing scripts.

2.3 Model Transformations

Model transformations can be classified in two major types: model-to-model and model-to-text

transformations [53].

Model-to-Model (M2M) Transformations

M2M transformations translate information captured in a source model into a target model. These

models can be instances of the same or different metamodels, i.e., endogenous and exogenous

transformations [54], respectively. Model transformations can be categorized into three main

approaches, namely direct-manipulation approaches, graph-based approaches, and relational

approaches [53].

Direct-manipulation approaches are often implemented using object-oriented programming

languages, e.g., C++ and Java. They rely on developers encoding transformation algorithms

using imperative instructions [3]. An advantage of using a direct manipulation approach is that

developers generally do not need additional training to write transformations. However, encoding

transformation algorithms in imperative languages can be time-consuming, error prone, and the

transformation algorithms may be difficult to maintain [3].

Graph-based approaches rely on the theoretical work on graph transformations [55]. A graph-

based transformation rule consists of two graphs, a left-hand side (LHS) and a right-hand side

(RHS) graph. If a LHS is found in the input model, the rule is triggered, causing the matched

sub-graph to be replaced with its corresponding RHS. Concretely, this type of transformations

operate on typed, attributed, labeled graphs, which are suitable to represent UML-like models [53].

Transformation technologies that follow this approach include VIATRA [56], PROGRES [57],

GReAT [58], AToM3 [59],and Henshin [60]. GReAT provides a visual language to specify a rule’s

LHS and RHS, and a separate language to describe the rule execution order. Unfortunately, its
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non-deterministic nature, and the complexity of its composition constructs, has drastically limited its

adoption [3]. Other graph-based languages such as Maude [61], are built on logic-based languages

in which metamodels are treated as theories, and transformations behave as logic-rewriting rules.

Considering that most developers have little experience on logic-based programming languages, its

readability and understandability can be limited.

Relational approaches use declarative languages based on mathematical relations and mapping

rules. In their most basic form, relational approaches use predicates to define correspondence

relationships between source and target metamodel elements. Declarative languages can hide

the complexity of non-trivial transformation algorithms behind a simple syntax, e.g., algorithms

that require depth-first traversals and backtracking strategies in front of deep hierarchical models.

Relational approaches are often based on the principle of defining what to do instead of how to

do it, which has boosted their popularity among the MDE community. Examples of relational-

transformation approaches include ATL [38], RubyTL [62], and ETL [63]. Most of the technologies

in this category use the Object Constraint Language (OCL) [40], or OCL-like formalisms such

as the Epsilon Object Language (EOL) [64], as underlying model-manipulation languages. Even

though relational approaches are effective at hiding the complexity of non-trivial transformation

algorithms, their maintenance and debugging are challenging since visualizing their execution is a

not a straight forward process [43, 54].

Finally, transformations may be unidirectional or bidirectional [53, 65]. Declarative transforma-

tion rules can be applied in reverse direction in order to obtain the input model used to produce a

given output model. This is highly useful in the context of synchronization between models, e.g.,

system architecture views that can be modified independently. However, since different inputs might

produce the same output, a bidirectional transformation might produce multiple solutions. This not

only depends on the invertibility of transformation rules, but also on the invertibility of its execution

order [53]. Most modern transformation languages do not provide bidirectionality.

Model-to-Text (M2T) Transformations

M2T transformations can be categorized in two main categories: visitor-based approaches and

template-based approaches [53]. Visitor-based approaches implement imperative mechanisms to

traverse the tree-based internal representation of a model, and generate textual artifacts for each one

of its elements [66]. Transformation technologies in this category include Jamda [67], and Melange

[68].

Template-based approaches rely on templates that capture the text shared by all instances of

the transformation process. Furthermore, templates include binding expressions that inject variable

snippets of code using information captured in models. Compared to a visitor-based transformation,
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the structure of a template resembles more closely the textual artifacts to be generated [66]. This

facilitates their iterative development as they can be derived easily from instances of the to-be-

constructed systems. Modern examples of template-based transformation languages include the

Epsilon Generation Language (EGL) [63] and Acceleo [39].

Given their popularity and predominant adoption, we focus on relational and rule-based

model-to-model transformations and template-based model-to-text transformations. We

use the term transformation ecosystem to denote the set of artifacts that comprise one

or multiple transformation chains that work cooperatively in a model-driven software-

engineering tool [10].

2.4 Model-Transformation Compositions

Transformations can be composed using internal or external composition strategies to accomplish

complex software-engineering tasks [4, 69]. In a model-transformation composition, each transfor-

mation encapsulates a set of binding expressions that deal with a specific step of the transformation

process. External composition allows the integration of transformations developed using (poten-

tially) multiple transformation languages. They are usually specified in a pipeline architecture,

where the output of a transformation serves as the input for the next one, resulting in a “chain” of

model-to-model and/or model-to-text transformations [70]. Internal composition is characterized by

the “compilation” of multiple transformation rules into a single transformation unit, which is often

implemented using a single transformation language [69, 71]. From the developer’s perspective,

using an external composition strategy implies that the execution of a transformation step is seman-

tically isolated from other steps in the transformation chain.

A basic activity of the software design process is the modularization of the software specifi-

cation into a collection of modules that, together, satisfy a set of functional and non-functional

requirements [72]. The theoretical criteria for software modularization include increased software

cohesion, reduced coupling, and information hiding [73, 74]. In model-driven code generators,

two composition strategies support transformation modularity. Vertical modularization is used to

gradually reduce the semantic gap between a system specification, and its corresponding executable

artifacts. Thus, intermediate metamodels and transformations focus on the separation of different

abstraction layers that isolate the high-level specifications from implementation-specific constructs.

Horizontal modularization is used to isolate the a collection of language concepts in individual
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language implementations. In this context, DSLs can be modularized to describe different system

concerns, architectural views, and application abstraction levels. Thus, individual transformation

ecosystems can be developed to target smaller languages in a self-contained fashion. This is the

basis for meta-model extensibility through generator extensibility [4].

As a concrete example, a domain-specific language can be defined to capture the security

policies of a web application. These policies might be sufficiently concise so its corresponding

model-driven code generator can be implemented using a single M2T transformation. However, in

the case of a domain-specific language for the construction of video games, its potentially broad

semantics can be divided into sub-domains. This modularizes its corresponding model-driven code

generator into multiple transformation branches, e.g., the artificial intelligence of its gameplay

entities, their corresponding control mechanics, as well as their graphical rendering properties.

We focus on model-driven code generators implemented using externally-composed

transformations, modularized using both vertical and horizontal modularization strate-

gies (Figure 2.1).
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Figure 2.1: Model-driven Code Generator - Transformation Chain

2.5 Model-driven Code Generator Life-Cycle

The role of an environment developer is to design, build and maintain a DSL and its underlying

transformation ecosystem. This category of developers includes requirements engineers, domain

analysts, and other software engineers managing artifacts such as, context-free grammars, model

transformations, and code templates, as well as the generator’s underlying development environ-
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ments i.e., graphical and syntax-directed editors. In turn, the role of an application developer

is to utilize a domain-specific language, and its underlying transformation engine, to create an

application specification and derive its corresponding executable artifacts. Application developers

may be able to augment or maintain a generated application instance. In this case, a model-driven

code generator is used as a one-time bootstrapping tool [75], rather than a continuous development

environment. Figure 2.2 summarizes the activities that environment developers and application

developers perform during the life-cycle of a model-driven code generator.
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Figure 2.2: Model-driven Code Generator - Developer Activities

In this thesis, we focus on supporting environment developers answering traceability

driven questions while completing construction and maintenance activities in model-

driven code generators.

2.6 Traceability

Software traceability is understood as the ability to relate heterogeneous development artifacts

created during the construction and maintenance of a software system, and used to describe a system

from different perspectives and levels of abstraction [76, 77]. These artifacts are typically created
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by potentially multiple stakeholders to capture functional requirements, bug reports, deployment

metrics, quality attributes, graphic user interface designs, and codebases, among many others, [76].

According to Ramesh et al. [78], traceability relations capture overlap, dependency, evolution,

satisfiability, conflict, generalization and refinement associations between diverse software artifacts.

Maintaining traceability links between software artifacts improves software maintainability, and

helps developers assessing the impact of changes in front of evolution [79]. Unfortunately, manually

maintaining traceability links among multiple, and individually evolving, artifacts is extremely

impractical [79]. Numerous automatic traceability approaches have been proposed to address this

issue in the requirements engineering field of study, e.g. recovering traceability links between code

and documentation [80, 81, 82, 83, 84], detection of logical coupling based on release history [85],

recovering traceability links as software artifacts evolve in repositories [86, 87].

Classic traceability analysis approaches have to analyse semantically disjunct artifacts in order

to identify their relationships. Thus, most of them are based on information retrieval (IR) techniques

[76, 88, 89]. Conversely, the artifacts involved in the construction of a model-driven software system

are captured in models described using well-formed languages (DSLs). Furthermore, these models

are explicitly linked by means of transformations with the purpose of isolating the levels of abstrac-

tion and the views of a system while, at the same time, enabling their automatic synchronization and

generation. Traceability analysis approaches in MDE are mostly concerned about understanding the

execution semantics of transformation codebases and the artifact relationships they capture. In this

context, a variety of traceability-analysis techniques have been proposed to support the development

and maintenance of model-driven code generators. These include, but are not limited to, assess-

ing the impact of metamodel evolution [15, 16, 20], testing transformations [90, 91, 22, 30, 92],

optimizing transformations to improve their qualities [93, 94, 95], and visualizing transformation

execution [96, 97, 21, 98].

Unfortunately, the term traceability is not consistently used by authors in the MDE community

[17]. We elaborate on the traceability definition proposed by Winkler et al. [17] in which traceability

is conceived as “the ability to collect traceability links from a set of transformation-binding expres-

sions." Traceability links are understood as the dependency relations between a set of artifacts in a

transformation ecosystem, including a transformation’s codebase, its source and target metamodels,

corresponding model instances, and potential generated artifacts. Moreover, a traceability link is

understood as a “dependency relationship between two artifacts a1 and a2, in which a2 relies on the

existence of a1, or that changes in a1 potentially result in changes in a2" [17, 99, 100].

15



2.7. Model-to-Model Traceability Analysis

2.7 Model-to-Model Traceability Analysis

Given the loose definition of traceability in the field of MDE, categorizing the existing work on

traceability analysis is a challenging task. Authors such as in [27, 28, 29, 30, 31] have proposed

traceability-analysis techniques for M2M transformations. They conceive traceability links as

dependency relationships between the models used by a transformation and those produced after its

execution, i.e., traceability at the model level. Yet other researchers, such as in [20, 21, 33],

conceive traceability links as the symbolic dependencies between the metamodels used by a

transformation, and its corresponding binding expressions, i.e., traceability at the metamodel level.

Most of the aforementioned techniques identify dependency relationships by means of instrumenting

and executing the transformations under analysis, thereby obtaining traceability information as a

byproduct of a transformation execution itself. Other techniques, however, identify dependency

relationships by comparing the input and output models of a transformation in order to infer its

execution mechanics. Traceability techniques such as in [101, 102, 103, 104] investigate how to

collect traceability links in M2T transformations. They conceive traceability links as dependency

relationships between metamodels, code templates, and generated textual artifacts.

Another dimension where one can distinguish traceability techniques is in terms of their level of

granularity. Analysis techniques such as in [27, 28, 98], consider traceability links as dependency

relationships between the metamodel elements of an ecosystem, i.e., coarse-grained traceability.

Other techniques, such as in [105, 20, 20, 104, 29] include their constituent attributes, in addition to

their top-tier elements, i.e., fine-grained traceability. To the best of our knowledge, there are no

proposals that provide a unified traceability analysis technique for heterogeneous transformation

compositions, i.e., transformation chains that combine both M2M and M2T transformations. None of

the existing techniques provide analysis capabilities to identify end-to-end fine-grained traceability

links.

The execution of a model transformation is defined using binding expressions. A binding

expression consists of one (or multiple) individual binding statement(s) that derive a target attribute,

based on potentially multiple source attributes. In our research, we categorize bindings in two

main types, namely explicit bindings, and implicit bindings [36, 106]. Implicit bindings manipulate,

constrain, and navigate the structure of a metamodel in order to realize the intent of a transformation.

Explicit bindings effectively assign the value of a source attribute into a target attribute. Traceability

links represent dependency relationships given by the execution semantics of explicit and implicit

bindings. In Chapter 4, we formally define these concepts. Figure 2.3 portrays an example of

explicit and implicit bindings in the context of UML2Java [107], a popular M2M transformation

from the ATLZoo. In this case, the Operation2Method (O2M) transformation rule contains a binding

expression with multiple binding statements. These statements define dependency relationships
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between the (return) type of a Java Method, and multiple elements (and attributes) of the UML

metamodel, including the parameters of an Operation and its corresponding type and kind attributes.

Figure 2.3: Operation2Method (O2M) - Implicit and Explicit Binding Example

Collecting complete and fine-grained traceability information is a fundamental requirement for

the construction of pragmatic model-driven software engineering tools. However, to the best of

our knowledge, current traceability-analysis techniques do not consider implicit bindings in their

analysis. Table 2.1 summarizes the traceability-analysis techniques most relevant to our research.

Our summary classifies the techniques according to the type of transformations they analyze, the

level of abstraction and granularity of their traceability links, and whether they have been included

in developer-oriented tools. Table 2.1 also includes information on whether their evaluation is

based on non-trivial transformations, or simple conceptual examples. Moreover, Table 2.1 presents

whether the reviewed techniques propose traceability-visualization strategies1 (Section 2.9). Let us

now briefly discuss the reviewed traceability-analysis techniques.

2.7.1 Metamodel-Level Traceability Analysis

Van Amstel et al. [21] present a traceability-analysis technique for ATL (M2M) transformations.

It conceives traceability links as dependency relationships between the binding expressions of a

transformation, and its corresponding source and target metamodels. It analyzes the abstract-syntax

tree of individual transformations in order to collect coarse-grained traceability links. It does not

consider implicit bindings as a part of its analysis. This work is evaluated using a research case

study in the context of concurrency management systems. In [98], Van Amstel et al. present an

extended version of their work with the purpose of collecting traceability information at the model

level of abstraction. The latter version is in turn evaluated using a minimal pedagogical example.

Van Amstel et al. export traceability information in a textual file that can be interpreted by TraceVis

[113], a generic tool proposed to visualize the interactions of software artifacts.

In [20], Di Rocco et al., propose a traceability-analysis framework for M2M transformations.

This technique uses weaving models [114] in order to specify and manipulate correspondences

between evolving transformation artifacts. It identifies fine-grained traceability links at the meta-
1(GB) Graph Based, (CR) Cross-Reference Based, (MB) Matrix Based
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Table 2.1: Traceability Analysis and Visualization Techniques in Model-driven Engineering

Transformation Type Granularity Evaluation Developer Support
Technique M2M M2T MTC Coarse Fine Non-Trivial Conceptual Tooling Visualization

Meta
Level

Van Amstel et al. [21] ATL � � � � GB
Di Rocco et al. [20] ATL � � � GB
Di Ruscio et al. [33] ATL � �

Olsen et al. [103] MOFScript � � � CR
Glitia et al. [105] Gaspard � �

Guana et al. [35, 36, 37, 10] ATL Acceleo � � � � � GB

Model
Level

Drivalos et al. [108] NA NA � �

Falleri et al. [27] Kermeta � � � GB
Van Amstel et al. [98] ATL � � � GB
Von Pilgrim et al. [29] ATL, MTF � � � � GB
Santiago et al. [31] ATL � � � GB
Jouault [28] ATL � �

Matragkas et al. [30] ETL � � � CR
Kolovos et al. [109] NA NA � � � CR
Grammel et al. [32] ATL � �

Santiago et al. [104] ATL � � MB
Oldevik et al. [101] MOFScript � �

Grammel et al. [110] QVTo Xpand � �

Garcia et al. [102] MOFScript � � � CR
ATL Eclipse Plugin [111] ATL � � � CR
Acceleo Eclipse Plugin [112] Acceleo � � � CR

model level. However, it does not identify traceability links from implicit bindings. Similarly to Van

Amstel et al. [21], Di Rocco et al. export traceability information to be visualized with TraceVis.

This framework has been evaluated using the PetriNet2PNML example from the ATLZoo. In [115],

Di Rocco’s et al. include their traceability analysis framework in MDEForge, a community-based

modeling environment.

Di Ruscio et al. [33] present a methodology to build textual editors for metamodel definitions.

It includes a technique to support the propagation of changes between metamodels and their

corresponding textual representations. In order to support their change-propagation mechanism, Di

Ruscio et al. propose a metamodel-level traceability-analysis technique. It uses the TCS domain-

specific language [116] to define mappings between metamodels and their corresponding syntactical

elements. This technique is comprised of three main steps: (a) identifying the dependencies between

a given metamodel and its concrete syntax definition, (b) classifying the identified changes according

to their impact, and (c) defining syntax adaptations to restore its consistency. Di Ruscio’s work uses

the PetriNet2PNML example from ATLZoo as a running example.

In [105], Glita et al. present a conceptual traceability framework for the Gaspard Modeling

Environment [117]. The analysis framework conceives traceability links as fine-grained metamodel

dependencies in M2M transformations. Although the authors argue that they have included traceabil-
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ity capabilities in the Gaspard transformation engine, details of its implementation are not formally

introduced.

In [108], Drivalos et al. present the Traceability Metamodeling Language (TML), a language

designed to manually describe metamodel-level coarse-grained traceability links. Similarly to Di

Ruscio et al. [33], this technique is limited by the ability of developers to manually define traceability

constructs. This is a time consuming and error prone task. The expressibility of the language is

evaluated a using the i* and the KAOS ecosystems [118] from the requirements engineering domain.

2.7.2 Model-Level Traceability Analysis

Jouault [28] presents a strategy to collect model-level coarse-grained traceability links from ATL

(M2M) transformations. This technique relies on developers manually augmenting model transfor-

mations, in order to derive traceability information as a byproduct of its execution. However, given

that transformations are polluted with additional binding expressions, the resulting codebases are

harder to build and maintain [105]. This technique is one of the first traceability-analysis approaches

in the MDE literature, and its evaluation is limited to conceptual examples.

Similarly to Jouault [28], Falleri, et al. [27] propose a traceability-analysis framework that relies

on developers augmenting transformations to obtain model-level traceability links. The proposed

mechanism is comprised of an imperative language designed to augment M2M transformations,

and a metamodel designed to capture traceability information. This framework is targeted at

M2M transformations defined in Kermeta [97], a transformation language developed by the same

authors. Falleri, et al. use GraphViz [119] to graphically represent traceability information in

model-transformation chains. The usability of the framework is discussed in terms of a simplified

database translation example.

In [29], Von Pilgrim et al. present a traceability visualization framework for ATL and MTF

model-transformation languages. In [120], Von Pilgrim et al. introduce UNITI , an Eclipse plugin

to visualize model-level fine-grained traceability links. Similar to Jouault [28] and Falleri [27], this

technique relies on developers augmenting transformations with expressions that derive traceability

information at runtime. This technique does not consider implicit bindings. The visualization

framework is evaluated using the Class2ER transformation from the ATLZoo.

In [109], Kolovos et al. present the Epsilon Merging Language (EML). The EML can be used as

a mechanism to gather model-level traceability from M2M transformations. This technique includes

a family of metamodel stereotypes, and a collection of transformations that compare metamodels

with stereotyped elements. The evaluation of this work is based on UML models that have been

manually stereotyped to make their traceability analysis possible. More recently, Grammel et al.

[32] present a similar model-matching technique to collect model-level fine-rained traceability
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links in ATL. The evaluation of this work includes large-scale business transformations, as well as

transformations from the ATLZoo.

In [31], Santiago et al. introduce iTrace, a model-level traceability-analysis environment for ATL.

iTrace follows a transformation augmentation strategy similar to Falleri’s in [27]. In this case, the

augmentation process is supported by High Order Transformations (HOT) based on transformation-

rule signatures. In effect, this technique does not consider implicit binding expressions. In [104],

Santiago et al. present an extension of their traceability visualizations for M2T transformations.

However, a M2T traceability-analysis technique is not formally introduced.

Matragkas et al. [30] preset a traceability-driven approach for M2T transformation verifica-

tion. The authors propose an extension of the Epsilon Transformation Language (ETL) [44] to

automatically collect model-level traceability information. Unfortunately, Matragkas et al. do not

provide details on their traceability-analysis technique. Most of their work focuses on the definition

of traceability contracts, and an Eclipse plugin that notifies developers when contracts are violated.

Grammel et al. [110] propose a traceability framework that enables developers to manually

extend transformation engines with traceability-analysis capabilities. The framework includes

Trace-DSL, a domain-specific language to capture traceability in a well-formed fashion, and a

programming interface with traceability-analysis services. Trace-DSL considers traceability links at

the model level. It conceives four types of traceability links: create links, update links, delete links,

and query links. In [110], two traceability implementations are presented as a proof-of-concept of the

framework, including an interface for the Xpand2 M2M transformation language, and an interface

for the QVT-o3 M2T transformation language. The Xpand implementation collects fine-grained

traceability, while the QVT-o implementation collects coarse-grained traceability.

2.8 Model-to-Text Traceability Analysis

Olsen et al. [103] introduce a traceability-analysis technique for MOFScript M2T transformations.

It uses template annotations to define traceable segments of code. It considers traceability links as

generation dependencies between generated text files and metamodel properties. This technique

only considers explicit bindings when analyzing traceability information. Olsen et al. present an

Eclipse plugin to explore M2T traceability links in a tabular fashion.

In [102], Garcia et al. describe HandyMOF, a web-based testing facility for M2T transforma-

tions. HandyMOF measures the coverage of transformation test suites by analyzing the binding

expressions they execute. HandyMOF uses an analysis technique based on annotations similar to

Olsen et al. [103]. It conceives traceability links as dependency relationships between metamodels,
2http://www.eclipse.org/modeling/m2t/?project=xpand
3http://wiki.eclipse.org/QVTo
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transformation codebases, and generated files. HandyMOF’s evaluation is based on a web-based

application for geolocation services. This technique only considers traceability analysis from explicit

binding expressions.

In summary, current traceability-analysis techniques do not consider implicit bind-

ings when collecting traceability information. With the exception of Grammel et al.

[32], their evaluation is often based on a single transformation example, thus their

practical limitations are not thoroughly explored. Most of the analysis techniques de-

scribe domain-specific languages to capture traceability links in a well-formed fashion.

However, only few of them present a detailed description of their traceability-analysis

process. Furthermore, current analysis techniques do not consider M2M and M2T

transformation as a part of a unified model-driven engineering toolbox. This effectively

limits their usability in the context heterogeneous model-transformation chains, and

model-driven code generators.
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2.9 Traceability Visualization

Multiple techniques have been proposed to diagrammatically depict traceability information in

software systems. Most of these techniques have been developed in the field of requirements

engineering [17]. They have inspired little, but precious work on visualizing traceability information

in the context of MDE. According to Wieringa [121], traceability visualizations can be categorized

in three main groups: matrices (MB), cross-references (CR), and graph-based representations

(GB) (Table 2.1). Let us briefly discuss each one of them, and provide examples of traceability

visualizations that follow their design guidelines.

2.9.1 Matrix Representations

Traceability matrices portray traceability links between a two-dimensional set of software artifacts.

They follow a grid-based layout in which rows and columns capture information about two fam-

ilies of related entities. Primitive traceability matrices represent the existence of a dependency

relationship between two artifacts by placing a mark, such as a black box, in their corresponding

intersecting cell [17]. Almeida et al. in [96] use a matrix-based representation to study the con-

formance relationships between the implementation of a M2M transformation and its application

domain (Figure 2.4). Traceability matrices provide developers with little information about the

type of relationship that a traceability link represents. However, enhancements can be made to

matrices in order to enrich the information that they convey [121]. For example, matrices can be

made interactive as to allow navigation to specific linked artifacts, such as using pop ups [122] or

color encoded properties [123].

Figure 2.4: Traceability cross-table used in [96] to relate the models, application requirements, and
transformations scripts of an ecosystem.

Traceability matrices are easy to understand by expert and novice developers. However, they

have several limitations when used to represent the traceability links in a transformation chain. A

matrix representing the symbolic dependencies between the source and target metamodels of a

transformation can be extremely cluttered and overwhelmingly large. Furthermore, the size of such
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a traceability matrix will depend on the size of each underlying metamodel, and the complexity of

the transformations under analysis. Research has shown that large traceability matrices become

unreadable very quickly [124, 125], and that their two-dimensional nature makes them unsuitable

to represent n-ary traceability links, or links between hierarchical artifacts [17]. This is a common

scenario in the context of transformation ecosystems, in which artifacts such as metamodels and

transformations have hierarchal structures.

Figure 2.5: Aceeleo Eclipse Plug-in: In-line Cross-referencing Editor [112]

Figure 2.6: ATL Eclipse Plug-in: Cross-referencing Multi-panel Editor [111]

2.9.2 Cross-reference Representations

Traceability links can be expressed as cross-references embedded in the artifacts of a software system

[126]. Cross-references can be represented using natural language, or using interactive referencing

features such as hyperlinks. In their most simple from, cross-references can be found as in-line

documentation in source code and design documents. In the context of rule-based transformation

languages such as ATL, RubyTL and ETL, it is a widespread practice to document the source code

of every transformation rule with cross-referencing notes, e.g., “This rule transforms element A into

element B" or “This rule uses helper X."

Hyperlinks enable developers to navigate through the traceability links of a given artifact, in

order to switch between their different contexts. A limitation of this approach is that hyperlinks can

only reveal localized outgoing and upcoming traces between two artifacts [17]. Cross-referencing is

very common in modern integrated development environments. For example, the Eclipse plug-ins

for transformation technologies, such as ATL and Acceleo, allow developers to use interactive

23



2.9. Traceability Visualization

code editors, and navigate through their execution dependencies via cross-referencing hyperlinks.

Developers can click on the procedural calls between transformation rules in order to have access to

their definition from outlying segments of code (Figures 2.5 and 2.6). Similarly, techniques such

as in [103, 30, 102] enable developers to explore detailed information about individual metamodel

elements, by means of hyperlinks that open views with detailed listings describing their relationships

with other transformation artifacts.

Even though cross-reference representations allow the navigation of interdependent traceability

links, they do so at the cost of limiting the visible scope to one single artifact at a time. This

makes cross-referencing a poor alternative to portray global dependency views between artifacts in

model-transformation chains. Furthermore, using cross reference representations to visualize n-ary

links is highly impractical [17]. Representing n-ary traceability links is a fundamental requirement

in model-transformation ecosystems. Complex ecosystems usually involve multiple fine-grained

artifacts with multiple outgoing and upcoming dependency relationships. As a concrete example,

consider the dependency relationships between a M2T transformation and a generated segment of

code: a metamodel element can be used in the generation of multiple lines of code, and a line of code

may be the result of querying multiple metamodel elements in a single binding expression [102].

2.9.3 Graph-based Representations

Most artifacts in model-driven software engineering tools are represented using both graphical and

textual concrete syntax, e.g., a metamodel can be studied in its textual structured form, or as a class

diagram that captures its elements and properties. The dual nature of artifacts in transformation

ecosystems makes diagrams and general graph-based representations the most common mechanism

to represent their traceability information [17]. Let us now review current graph-based approaches

to represent traceability information in transformation ecosystems.

Falleri et al. [27] represent traceability information in Kermeta as a bipartite graph in which

nodes represent individual model elements, and edges their dependency relationships. Falleri et

al. use Graphviz [119] in order to create a simple visual representation of their trace graph. It is

important to mention that due to the static nature of the visualization, no additional information can

be obtained by means of interacting with it.

In [29], Von Pilgrim et al. present a traceability-visualization strategy based one GEF3D [120].

This strategy visualizes a collection of overlapped 2D class diagrams linked by edges in a 3D

space (Figure 2.7). Each layer of the visualization captures a diagram corresponding to the models

resulting from the execution of each step of a transformation chain. The 3D visualizations presented

in this tool have numerous scalability issues. Considering that model instances may contain several

elements, handling the visualization of large class diagrams is challenging in terms of memory

24



2.9. Traceability Visualization

space [127]. Furthermore, in terms of usability, research has shown that large class diagrams pose

significant cognitive challenges to developers when filtering, isolating, and summarizing information

[128, 129], which is exacerbated by the 3D overlapping nature of the proposal.

Figure 2.7: Traceability 3D visualization created using GEF3D [29]

Van Amstel et al. [21, 98] use TraceVis [130] to visualize traceability information in ATL

(M2M) transformations. The visualization highlights the hierarchical structure of the transformation

expressions that determine the presence of symbolic dependencies between source and target

metamodel elements, e.g., grouping them in helpers, matched rules, lazy matched rules, unique lazy

matched rules, and called rules. TraceVis supports hierarchical edge bundling which makes both

tools highly scalable in front of large ecosystems [131]. A similar visualization approach based on

TaceVis is presented by Di Rocco et al. in [20].

Santiago et al. introduce iTrace [31], a framework for the management and analysis of trace-

ability information in MDE. iTrace offers two visualization dashboards to the end user, namely the

overview dashboard, and workload dashboard. The overview dashboard presents a tabular view that

summarizes the metamodel elements used by a transformation. The workload dashboard presents

information about a transformation’s runtime behavior, including the number of elements processed

by each of its transformation rules. In [104], iTrace was extended to support the visualization

of M2T transformations using a multi-panel editor. The editor includes information such as the

model elements used by a M2T transformation, and the textual artifacts derived from its execution.

Unfortunately, iTrace has not been designed to support the visualization of model-transformation

chains; it considers traceability links in M2M and M2T separately, and in different levels of abstrac-
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tion. Furthermore, iTrace portrays traceability links using interactive two-dimensional tables, thus

suffering from the limitations of matrix-based representations discussed in Section 2.9.1.

None of the reviewed techniques proposes a traceability visualization for M2T trans-

formations as a part of a model-transformation chain. More importantly, even though

most proposals claim that their traceability collection and visualization techniques help

developers to build and maintain transformation ecosystems in a more effective or

efficient fashion, none of them has been empirically validated in controlled experiments

with real developers. Moreover, none of the tools reviewed in this section is publicly

available for download to be studied or compared by other research teams. To the

best of our knowledge, ChainTracker (Chapter 6) is the first traceability collection and

visualization technique to be formally evaluated with real developers using non-trivial

case studies.
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PhyDSL and ScreenFlow

In this chapter, we present PhyDSL and ScreenFlow, two model-driven code generators in the

context of video game and mobile application development, respectively. The motivation behind the

construction of PhyDSL and ScreenFlow has been to increase our understanding on the challenges

and opportunities of model-driven engineering in the construction of complex software systems.

We have used their underlying transformation ecosystems in usability evaluation of ChainTracker

(Chapter 7).

3.1 PhyDSL

PhyDSL [41, 42] is a game engine and authoring environment for mobile 2D physics-based games.

It consists of a textual domain-specific language for gameplay design and a multi-branched transfor-

mation chain that takes high-level gameplay specifications and translates them into executable code

for mobile (Android) devices. PhyDSL’s transformation chain includes four M2M transformations

implemented using ATL, and four template-based M2T transformations written in Acceleo (Figure

3.1). PhyDSL is currently used by the Faculty of Rehabilitation Medicine at the University of Al-

berta, the Knowledge Media Design Institute at the University of Toronto, and the Sapporo Medical

University in Japan, to create cost-effective mobile games for rehabilitation therapy [132, 133]. The

PhyDSL official website can be found at https://guana.github.io/phydsl/.

As mobile devices become intrinsic to people’s everyday lives, so does mobile gaming [134].

Currently, mobile gaming accounts for 42% of the gaming market, with an estimated total revenue

of $46 billion [135]. The challenges of mobile-game development include, short times-to-market,

deploying in evolving platforms, and answering to a heterogeneous population of game consumers

[136]. These challenges are exacerbated by the diversity of the video-game development teams,
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Figure 3.1: PhyDSL’s multi-branch model-transformation chain: 4 (M2M) ATL transformations
comprised of 14 matched rules and 2 helpers, and 4 (M2T) Acceleo transformations containing 172
binding expressions.

and the highly iterative nature of video-game design, i.e., several gameplay designs have to be

prototyped and evaluated before deciding which one to implement fully.

Video games are designed by teams with diverse skills. These teams include storytellers,

artists, graphic designers, and software engineers [136]. However, more often than not, video-

game authoring environments are designed for software developers, supporting programming tasks

agnostic of the needs of the non-computer experts on the team. Callele et al. [137] identify two

main stages of video-game development: pre-production and production: in the former stage

developers reduce design uncertainty by defining the game story, characters, and visual effects; the

latter stage involves the formalization of the game’s requirements, architecture, and implementation

details. Furthermore, considering the roles of the two major groups participating in both of these

stages, game designers produce the documents that contain a game concept and gameplay structure,

and the software engineers formalize the game requirements and implement the designers’ vision.

According to Callele et al., the transition process between the pre-production and production stages is

challenging due to the absence of generally accepted practices that facilitate the interaction between

the two teams; game designers do not necessarily understand the limitations of the implementation

technologies and software engineers often limit the designers’ creative vision. Acknowledging

these challenges, Tang and Hanneghan [138] highlight the need of game-authoring environments to

facilitate the rapid prototyping of games by non-computer experts.
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Video game development is a fundamentally iterative process. In the early stages of video game

prototyping, variable versions of a game need to be implemented and analyzed in order to improve

its overall design [139]. Among many others, perceived gameplay difficulty, visual aesthetics, actor

mechanics, and goal cohesion, are some gameplay features that need to be experimented with in

order to shape games to their target audiences [140].

In [141], Johnson-Laird presented mental models as the main concept behind human

reasoning. Johnson-Laird argued that mental models are key to capturing human

perception, imagination, and structural understanding of reality. In the context of

video-game development, game developers implement gameplay designs using mostly

general-purpose programming languages. In this process, game developers have to

translate their gameplay mental models into the operational semantics of a programming

language. This task is cognitively challenging and often frustrating for developers, since

general programming languages are not designed to capture the gameplay mechanics in

the developers’ vision of the game.

The semantic gap between the developers’ mental model of a game and the implementation

artifacts that make this model executable, poses significant challenges to non-programming experts

when reflecting about a gameplay design. In the context of video-game design, Tang et al. [142]

studied the benefits of using model-driven engineering techniques as a means to abstract the

implementation details of video games, and allow non-programming experts to prototype, and

efficiently create gameplay designs.

In our work, we have focused on physics-based games that represent a large segment of the

casual-games and rehabilitation-games markets, including platform, shoot ’em up, puzzle and maze

games. This segment includes popular titles such as Angry Birds1, and platformers such as Rayman

Fiesta Run2. We have proposed PhyDSL as a model-driven prototyping environment for this broad

class of games. PhyDSL enables non-programming experts to sketch out gameplay designs using

high-level textual language, including their visual layout, interaction alternatives, and feedback

mechanisms, and to automatically obtain their corresponding executable codebase based on an

architecture designed for reuse. PhyDSL enables developers to quickly perform design changes,

and to create alternative gameplay designs for agile gameplay testing.
1https://www.angrybirds.com/
2https://www.ubisoft.com/en-us/game/rayman-fiesta-run
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3.1.1 Background

Although numerous tools exist to support the flexible prototyping of video games, relatively few

academic articles have been published describing their technical implementation, or evaluating their

ease of use. Let us now review some of them.

Furtado and Santos [143] present SharpLudus, a code-generation environment for stand-alone

action-adventure games. SharpLudus includes two graphic domain-specific languages to model

game layouts and character behaviors, and a generation engine targeted at C# built-on Microsoft’s

DirectX. SharpLudus is specifically tailored for the creation of top-down room-based gameplay

designs. It enables developers to specify characters with health counters, and non-playable characters

(NPCs) with primitive artificial intelligence (AI) behaviors. Although it is not clear whether

SharpLudus implements model-driven engineering techniques, it gives developers access to the

generated codebases for post-generation edition and refinement.

Reyno et al. [144] present a game-authoring prototype based on model-driven engineering

techniques. The tool produces C++ code from UML models extended with game-specific stereotypes.

It allows developers to define the structure and behavior of standalone platformers. Although

concrete examples of game specifications are provided, the underlying language is not described in

detail. More recently, Palmer [145] introduced Fictitious, a domain-specific language to specify

textual interactive stories in which players make decisions by navigating through a world with

immersive narratives.

In [146], Robenalt proposed a model-driven engineering framework to develop multiplatform 3D

games. The proposal envisions the usage of the Eclipse Modeling Framework (EMF) together with

model-transformation technologies, in order to describe platform-independent models that capture

the geometry, textures, lighting, animations, and sounds of a game. These high-level specifications

provide the basis for automatically generating code targeted at 3D game engines. Karamanos et al.

[147] describe a 2D graphical authoring environment to create 3D action role-playing games. It

enables developers with limited technical background to specify 3D spaces using 2D projections.

The environment allows game developers to specify the location and attributes of the gameplay

elements. It creates a rendering client capable of materializing the high-level definitions using the

OpenGL-ES API.

Finally, proprietary authoring environments such as GameSalad3, GameMaker4, Stencyl5, and

Construct26 provide multi-platform game construction mechanisms integrated with visual editors

that enable the creation of video games through drag-and-drop operations, action events, and
3http://gamesalad.com/
4https://www.yoyogames.com/studio
5http://www.stencyl.com/
6https://www.scirra.com/construct2
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advanced scripting. Although proprietary environments are highly flexible, and provide powerful

generation capabilities, they often present developers with a steep learning curve. More often than

not, proprietary environments do not allow developers to have access to the code that they produce.

PhyDSL enables developers to understand dynamic gameplay interactions that otherwise are

not easily represented using graphical syntaxes. This includes collision events and corresponding

event actions, time-based activities, physical interactions, and game control mechanics. PhyDSL

combines a succinct textual syntax with declarative constructs that are easy to understand, along

with a graphical interpreter that analyzes gameplay specifications, and diagrammatically portrays

their visual layout. This helps developers to quickly envision the organization of the graphical assets

of a game while, at the same time, interpreting its dynamic properties without advanced training.

Moreover, PhyDSL enables developers to access generated codebases, so prototypes can be used as

boilerplates for further development.

3.1.2 The PhyDSL Language

Considering the three major design components for gameplay specification presented by Hunicke

et al. in [148], namely Mechanics, Dynamics, and Aesthetics, PhyDSL consists of five gameplay

definition sections: (i) mobile and static actor definition, (ii) environment and layout definition, (iii)

activities definition, (iv) scoring rules definition, and (v) controllers definition. PhyDSL has been

implemented as an Eclipse-based syntax-directed editor using Xtext7. In this section, we explore the

PhyDSL language through the specification of Alien Miner (Figure 3.2), a physics-based platformer

with similar gameplay characteristics to Asteroids (Atari, 1979). The main actor of the Alien Miner

is an adventurous alien whose primary mission is to collect precious gems while exploring the

galaxy.

Figure 3.2: Alien Miner - Gameplay Example

7https://eclipse.org/Xtext/

31



3.1. PhyDSL

In this version of Alien Miner, the main actor of the game is found inside a cave with hidden

treasures and dangerous meteorites. The goal of the game is to guide the alien through the cave

while collecting its precious treasures. For every emerald and diamond collected, the player will

receive 30 and 20 points, respectively. Emeralds are collected when the alien collides with them,

and diamonds are collected when the player taps on their screen position. If the alien gets hit by a

meteorite, the player loses 20 points. The game has a total duration of 80 seconds. However, if the

player reaches a teleportation portal at the end of the level, the game ends.

Using The Type System

PhyDSL offers an enumeration-based type system that allows developers to specify concrete values

for a wide range of variables to be used throughout a gameplay design (Figure 3.3).

Figure 3.3: PhyDSL - Type System

The type system includes physical properties that will be used in the creation of the game actors,

such as “elasticity”, “friction”, “density”, and “size”. Furthermore, vector and scalar variables can

be declared such as “linear speed”, “angular velocity”, “gravity” and “acceleration”. They are used

to describe the properties of a game’s environment, as well as its control patterns, and non-player

activity properties. In turn, “resources” are used to create references to the graphical and sound

assets of a game.

Defining The Game Actors

Using PhyDSL’s mobile and static actor definition section, game designers specify the game actors

and their physical properties. An actor is defined using eight different properties (Figure 3.4). The

first three, namely “density”, “elasticity” and “friction” define the way an actor behave in the physics

simulation of the game, e.g., collisions and gravity forces. Conversely, the properties “image”, “size”
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and “shape” determine the actor’s look and feel. All the properties assume concrete values specified

in the type section of a gameplay definition.

Figure 3.4: PhyDSL - Actor Definition

The “shape” property can assume two values, i.e. circle and square. This property allows

PhyDSL to precisely calculate the effects of collision events in the simulation of a game.

PhyDSL distinguishes between mobile and static actors; while mobile actors can be affected by

collisions and the game’s environmental forces, such as gravity or acceleration vectors, static actors

are not affected by any force. The “mobility” property can be defined by two concrete values, i.e.,

dynamic and static. In Alien Miner, mobile actors can be used to model the game’s meteorites, along

with its main actor. In turn, static actors can be used to define layout elements, such as the individual

bricks that comprise a platform, or gameplay elements, such as the diamonds and emeralds that the

player must collect.

Finally, the “type” property specifies whether an actor is an “abstract”, “concrete” or a “main

actor”. Abstract actors do not interact with any other actor in the game. They can be used as

“immutable” graphical elements to enrich the environment of a game. As a concrete example, if

a developer wants to add a tree as a part of the background of the game, she can do so using an

abstract actor defined using the image of a tree. In effect, the physical properties of an abstract actor

are ignored by the physics engine, and no events are generated upon collision with other actors. It is

important to mention that even though abstract actors are not considered in the physics simulation

of a game, they can trigger touch events, e.g., checkpoints. In the case of Alien Miner, diamonds

are abstract actors. The idea behind this design decision is to make diamonds “immutable” for the

physics engine, yet allowing the player to collect them using touchscreen events.
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Concrete actors are the most commonly used in classic gameplay designs. They observe all the

physical interactions supported by the physics engine, such as collisions and gravity forces. Finally,

labeling an actor as a main actor enables PhyDSL to provide complex camera behaviors, and

on-screen controls. Below, we present the different camera behaviors that can be defined in PhyDSL.

All camera tracking patterns are inherently linked to the main actor of the game. Furthermore, we

explore how developers can design on-screen controls i.e., buttons and keypads, or interactive game

elements that manipulate the position of its main actor. It is important to mention that not all games

need a main actor; games like Candy Crush8 and Bejeweled9 do not have one.

Defining The Game Layout and Environment

PhyDSL uses a floating point 2D grid-based coordinate system to manage the location of the actors

and non-player activities in a gameplay design. Using the coordinate system, developers can create

different layouts and place actors within the game’s canvas to create engaging and challenging

experiences. As mentioned before, PhyDSL offers a graphical interpreter that analyzes textual

gameplay specifications, and diagrammatically portrays their visual layout10.

Figure 3.5: PhyDSL - Layout and Environment Definition

In PhyDSL, the origin of the coordinate system is located in the upper-left corner of the world.

Furthermore, the size of the world is determined by the size of its background. In Alien Miner, we

are interested in building a variety of platforms using “brick” actors. Furthermore, we would like to
8https://king.com/game/candycrush
9http://www.bejeweled.com/

10A video demo of this feature can be found at https://youtu.be/9HZ637bplGw
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place assorted gems in different locations of the world to provide positive feedback to the players

(Figure 3.5). The main actor of the game, i.e., “alien”, has an initial position corresponding to the

coordinate (x=1.0, y=1.0). Since the “alien” actor is mobile, it will be affected by collisions and the

gravitational forces of the game simulation as soon as the game starts. The gravity of the game can

be defined in the environment section of the gameplay design using the property “gravity”. In Alien

Miner, the gravity of the planet where the game takes place is equivalent to that of Earth’s moon.

The environment and layout definition section also contains the property “background” which

defines the background image of the game (Figure 3.5). Since Alien Miner is a platformer that takes

place inside of an extraterrestrial cave, a large horizontal background is needed to provide a deep

sense of immersion for the player. This is common in modern platformer games such as Jetpack

Joyride11, Super Meat Boy12, and Sword of Xolan13. In order to specify the background of a game,

two variables are used, i.e., “image” and “segments”. The “image” variable specifies the name of

the graphical assets that comprise the background. The “segments” variable indicates the number of

individual slices that comprise a background image. A single background image can be comprised

by multiple background slices identified by consecutive numerical identifiers. PhyDSL horizontally

assembles the slices provided by the developer in execution time (Figure 3.6).

It is worth noticing that developers may use a single-slice strategy in order to manage the

background assets of a game. However, we have observed that this causes an unnecessary mem-

ory overhead for the rendering engine of PhyDSL. Indeed, single-slice backgrounds need to be

completely loaded during the initialization of the game, which causes jittery gameplay experiences.

In the environment section, the property “touch screen” can be set to true or false in order to

enable players interacting with the game actors using touchscreen gestures. In Alien Miner, this

variable is set to false. Below, we explore the definition of on-screen controls as the main interaction

mechanism of this particular game.

Defining The Game Camera

The environment and layout definition section also includes the “camera” property. This property

captures the camera-tracking behaviors of the game. The “camera” property can be set in three

possible ways, i.e., continuous, discrete or none.

If the camera property is set to none, the first background slice loaded by the game is presented to

the player. This setting is appropriate for single scene games that conform to gameplay designs such

as in Candy Crush and other board-based games. A continuous camera follows the main actor of the

game while keeping it at the center of the screen. This type of camera provides a continuous flow
11https://halfbrick.com/our-games/jetpack-joyride/
12http://supermeatboy.com/
13https://www.swordofxolan.com
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Figure 3.6: Alien Miner Background Slices

of movement through the world of the game (Figure 3.7-A). We have chosen a continuous camera

behavior for Alien Miner. Finally, a discrete camera will swap background scenes as the main actor

approaches the boundaries of the screen (Figure 3.7-B). A discrete camera is suitable for games

with high-density backgrounds and for games with large screen-size to actor-size ratio. In both

cases, the scene swapping will not be frequent, thus minimizing potential continuity disruptions.

Defining The Game Activities

Let us now introduce PhyDSL’s activity concept, which allows game developers to add interactive

elements in their gameplay design. The activity concept is used to define the interactive gameplay

elements dictated by time, such as the appearance and movement of mobile actors. They are modeled

as Event - Condition - Action rules, associated with a given actor. Specifically, two types of rules can

be modeled in the form of “When <timer condition> actor <actor ID> moves <MoveProperties>”

and “When <TimerCondition> actor <actor ID> appears <AppearanceProperties>”.

Appear Activities describe the iterative appearance of an actor dictated by time. Appear

Activities are comprised by a name along with five different properties, i.e., the “actor” of interest,

the appearance “frequency”, its “angular velocity” and “linear speed”, and the “position” of the
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Figure 3.7: PhyDSL - Camera Behaviors

appearance event. In Alien Miner, two appearance activities are defined to model meteorites that

spawn every 4 and 8 seconds (Figure 3.8).

Since appearance events are typically linked to mobile actors, their position determines the

initial location of their corresponding actor in the coordinate system. Gameplay designs that include

elements such as cannons, particle sprays, and shooters, can be modeled with this type of events.

Furthermore, static elements can be used with appear activities to model scenarios such as opening

and closing doors. In fact, the usefulness of activities to model gameplay elements is limited only

by the designer’s imagination.

Defining The Game Scoring Rules

A big component of any gameplay design is the ability to define scoring rules that provide feedback

and motivate the player [149]. Similarly to activities, PhyDSL’s scoring rules use an Event -

Condition - Action structure. Scoring rules can be triggered by time events, collision events, or

touch-screen events. Furthermore, each scoring rule can result in four possible actions: (i) the point

count of the game changes positively or negatively; (ii) the game comes to an end; (iii) the player

receives auditory or haptic feedback, and (iv) one of the associated actors disappear.
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Figure 3.8: PhyDSL - Activities

The signature of a scoring rule depends on its type. Collision Rules include the name of the

actors that, upon collision, will activate or trigger the scoring rule (Figure 3.9-A and B). Touch Rules

are defined by specifying the name of the actor that will trigger the rule if touched by the player

(Figure 3.9-C). Finally, Time rules are specified by setting a countdown timer which zero-event will

trigger the rule (Figure 3.9-D).

All scoring rules include three mandatory properties regardless of their type, i.e., “points”,

“game ends”, and “haptic feedback”. The property “points” can positively or negatively affect

the point count of the game. The property “game ends” indicates whether the rule will end the

game immediately after the rule is triggered. Furthermore, the property “haptic feedback” indicates

whether the device will vibrate if the rule is triggered.

Scoring rules include two optional properties, namely “actor disappears” and “sound feedback”.

The former indicates whether there is an actor that disappears if the rule is triggered. In Alien Miner,

meteorites will disappear upon collision with the alien. Moreover, gems will disappear if they are

collected (either by collision with the alien or by touchscreen event). Finally, the “sound feedback”

property specifies whether the game will use a sound asset to provide auditory feedback to the player

once a rule is triggered. In Alien Miner, a crashing sound will provide feedback when a diamond is

collected.

Defining The Game Controls

The final step on the creation of a gameplay design is to optionally specify a set of controls for the

main actor of the game. This section is only available when the game has a main actor, and it is

particularly suitable for games in which touchscreen events on actors are disabled. Control elements
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Figure 3.9: PhyDSL - Scoring Rules - Collision- Touch- and Time-based
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are on-screen touch-enabled artifacts defined using a "name" that specifies its unique identifier, an

“image” and a “position” which determine the rendering properties of the control element, and a

“moves” property which specifies the vectorial force that will be applied to the main actor when the

control is touched. In Alien Miner, three controls are defined to manipulate its main actor: left (left

arrow), right (right arrow), and upwards (“A” button) (Figure 3.10).

Figure 3.10: PhyDSL - Controls
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3.1.3 The PhyDSL Game Catalogue

A catalogue of community-submitted games built using PhyDSL can be found at https://

guana.github.io/phydsl/catalogue.html. Currently, the catalogue includes a plat-

former, i.e., Snowy the Penguin (Figure 3.11), a top-down view game, i.e., Volcanic Maze (Fig-

ure 3.11), and a reaction-based game inspired by the widely popular Flappy Bird14, i.e., Castle

Barrage (Figure 3.13).

Figure 3.11: PhyDSL - Snowy The Penguin

Figure 3.12: PhyDSL - Volcanic Maze

Figure 3.13: PhyDSL - Castle Barrage

14https://flappybird.io/
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3.2 ScreenFlow

ScreenFlow is a design environment for mobile application storyboards. It enables developers to

quickly translate user-interface sketches into application skeletons, including interface navigation

logic. ScreenFlow consists of a textual domain-specific language, and a linear model-transformation

chain that includes one M2M transformation, and two M2T transformations written in ATL and

Acceleo, respectively (Figure 3.14). ScreenFlow is designed for novice Android application

developers and for rapid software prototyping environments, such as hackathons. A complete

description and demo video of ScreenFlow can be found at https://guana.github.io/

screenflow.

Acceleo M2T x2
     199 LOC

  Platform
Generation

ATL-M2M
 56 LOC

Intermediate
 Metamodel

     Root
Metamodel

Java
Code

GUI
4 Elements

Mockup
10 Elements

Figure 3.14: ScreenFlow’s linear model-transformation chain: 1 (M2M) ATL transformation
comprised by 4 matched rules and 1 helper, and 2 (M2T) Acceleo transformations containing 43
binding expressions.

3.2.1 The ScreenFlow Language

In the early stages of a mobile application’s design, storyboards give developers a way of visualizing

its navigation patterns and execution flow. Furthermore, storyboards highlight triggers, such as

buttons and drop-down menus, that make an application transition between different screens. Mo-

bile development platforms, such as Android and PhoneGap, implement a Model-View-Controller

(MVC) architecture in their applications. More often than not, these platforms use structured file de-

scriptors to define an application’s layout and event handlers, i.e., isolating the application’s control

infrastructure in self-contained units of code. Initializing and synchronizing the diverse development

artifacts in a mobile application is a challenging and error prone task [150]. ScreenFlow enables

developers to textually describe an application’s screens, triggers, screen transitions, and hardware

permissions in order to generate an extensible and synchronized MVC boilerplate. Similarly to

PhyDSL, ScreenFlow has been implemented as an Eclipse-based syntax-directed editor using Xtext.
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Figure 3.15, presents a brief example of ScreenFlow in the context of a sound recording

application inspired by SoundCloud15. In this example, the application consists of five screens, i.e.,

login, playlist, subscribe, recording and settings. The login screen is the main/landing screen of

the application. Moreover, four triggers can be found in the application definition, i.e., loginButton,

subscribeButton, recordButton, and settingsButton. The former two are regular buttons; the later

are hidden in the application’s menu. In this example, four transitions define the navigation paths

available between screens, i.e., toPlaylist and toSubscribe which transition the application from the

login screen to the playlist and subscription screens, and toRecord and toSettings, which transition

the application from the playlist screen to the recording and settings screens, respectively. Each

trigger is included in an application screen or menu if a transition has been defined with it. The final

location of a trigger is determined by its originating transition screen. If the same trigger is used to

transition from two screens, a unique identifier is assigned to each of them during the generation.

Finally, the application is set to allow networking and storage access permissions.

Figure 3.15: The ScreenFlow Language

15https://soundcloud.com/ - a fully featured video demo of ScreenFlow can be found at https://guana.github.
io/screenflow
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4

A Traceability Conceptual
Framework

In this chapter, we present a formal conceptual framework for end-to-end traceability at the meta-

model level. Section 4.1 presents Library to Anonymous Index, a pedagogical model-transformation

chain that we will use to illustrate our traceability conceptual framework. Sections 4.2 briefly

discusses binding expressions in the context of OCL. Section 4.3 and 4.4 define traceability links

in the context of M2M and M2T transformations. Section 4.5 formally describes our conceptual

framework in model-transformation chains.

4.1 A Model Transformation Chain Example

In this section, we present Library to Anonymous Index, a simple model-transformation chain

inspired by the popular Book2Publication transformation example [151]. It consists of one ATL

(M2M) transformation and one Acceleo (M2T) transformation, Book2Publication (Listing 4.1) and

Publication2HTML (Listing 4.2), correspondingly.

Book2Publication is a simple (M2M) transformation in which a model describing a library is

transformed into a simpler anonymous publication database (Figure 4.1). The source metamodel of

the transformation is Book, which consists of four metamodel elements: Library, Book, Chapter,

and Summary. The root element of the metamodel is Library which contains a collection of books1.

The element Book contains a set of chapters. A Chapter contains a digest of its contents in the

form of a Summary. The target metamodel, i.e., Publication, is simpler. It contains two metamodel

elements: Database and Publication. The Publication element represents an anonymous-database

entry, consisting of a book’s title, prologue, and total number of pages, i.e., nbPages.
1We use italics to denote metamodel element attributes. We use the terms attribute and property interchangeably.
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        1
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       books
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Publication
title: String
prologue: String
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content: String
nbWords: Int

Chapter
title: String
nbPages: Int
author: String

Book
title: String

Figure 4.1: Book and Publication Metamodels

1 module Book2Publication;
2 create OUT : Publication from IN : Book;
3
4 −− Main matched rule.
5 rule Main{
6 from
7 l : Book!Library
8 to
9 db : Publication !Database(

10 publications <− l.books
11 )
12 }
13
14 −− Transforms a book into an anonymus publication entry
15 rule Book2Publication{
16 from
17 b : Book!Book
18 to
19 p : Publication ! Publication (
20 title <− b. title ,
21 prologue <− b.chapters . first (). digest . content ,
22 nbPages <− b.getSumPages()
23 )
24 }
25
26 −− Computes the sum of all pages given a Book
27 helper context Book!Book def : getSumPages() : Integer =
28 self . chapters−>collect( f | f .nbPages).sum()
29 ;

Listing 4.1: Book2Publication Model-to-Model Transformation

The Book2Publication transformation consists of three transformation rules, namely Main,

Book2Publication and getSumPages() (Listing 4.1, lines 5-13, 15-24, and 27-29, respec-

tively). Main is the entry point of the transformation, while Book2Publication flattens the

contents of a Book into an anonymous-publication entry. In turn, getSumPages() serves as a

helper rule that calculates the total length of a book. In summary, the transformation considers

all the chapters of a book to calculate the total number of pages of its corresponding publication.

Furthermore, the summary of the first chapter of a book is used as the prologue of its corresponding

publication entry.
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1 [module generateIndex(’ http :// ualberta . ssrg . publication ’)]
2 [template public generateIndex (aDatabase : Database)]
3 [comment @main/]
4 [ file (’ index .html ’, false , ’UTF−8’)]
5 <h2> Publication Database </h2>
6 <table border="" style ="with:50%">
7 [ for (p : Publication | publications )]
8 <tr>
9 <td>

10 <p><h4>[p. title /]</ h4></p>
11 <p>[p.prologue /]</ p>
12 <p>Total Pages: [p.nbPages/]</p>
13 </td>
14 </ tr >
15 [/ for ]
16 </ table >
17 [/ file ]
18 [/ template]

Listing 4.2: Publication2HTML - Model-to-Text Transformation

The Publication2HTML (M2T) transformation generates an HTML index with the anonymous

entries contained in a publication Database. An HTML table is populated using an iterative binding

expression (Listing 4.2, line 7). Each row in the table contains a publication’s content, prologue,

and total number of pages, i.e., nbPages (Listing 4.2, lines 10, 11, and 12, respectively).

4.2 Binding Expressions

In rule-based M2M transformations, binding expressions determine the mappings between source

and target metamodel elements. The role of transformation rules is to group binding expressions

according to their metamodel-root context. In template-based M2T transformations, binding

expressions, defined in expansion rules, derive snippets of text using templates designed for reuse

[53]. We present a traceability conceptual framework for M2M and M2T binding expressions

defined in OCL. A binding expression is defined in terms of four main elements [40]:

1. a collection of variables that define the metamodel-root context of the expression (i.e., a

source metamodel element);

2. a collection of variables that define the target of the expression (i.e., a target metamodel

element in a model-to-model transformation, or a target template position in a model-to-text

transformation);

3. a collection of metamodel element properties (i.e., the source attributes manipulated by

the expression, and in the case of model-to-model transformations, the expression’s target

attribute);
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4. a collection of operations (e.g., arithmetic, string concatenation, iterator) that manipulate one

or more properties (e.g., concatenating two attributes, or selecting elements form a collection);

and set of keywords (e.g., if, then, else, and, or, not) used to constrain the execution of the

expression.

Our traceability conceptual framework considers fine-grained traceability links as depen-

dency relationships created by the semantics of a transformation’s binding expressions.

A binding expression navigates a source metamodel to manipulate one (or multiple)

source attribute(s) in order to derive a target attribute. The starting point of the meta-

model path followed by an expression is determined by its metamodel-root context.

This path is known as the metamodel footprints of a binding expression [152]. It is

worth noticing that since a binding expression might navigate multiple source attributes,

it might define multiple bindings between a target element and several source elements.

Therefore, numerous traceability links can be derived from the execution semantics of a

single binding expression.

We consider M2M traceability links as dependency relationships between a transformation’s

source and target metamodel elements and properties. We conceive M2T traceability links as

dependency relationships between a transformation’s source metamodel elements and properties, and

its template lines. Let us briefly discuss two binding expressions defined in Library to Anonymous

Index.

In the Book2Publication (M2M) transformation, we observe the prologue<-b.chapters.

first().digest.content binding expression (Listing 4.1, line 21). It binds the source attribute

content of Summary, to the target attribute prologue of Publication. Furthermore, it uses the variable

b to gain access to the expression metamodel-root context, i.e., Book (Listing 4.1, line 17). The

expression uses a collection of statements and operations, e.g., first(), to navigate from its

metamodel-root context, to the source attribute of interest. The metamodel footprints of this binding

expression can be characterized as chapters.digest.content. The navigation path followed by this

binding expression, not only defines a dependency relationship between the source attribute content

and the target attribute prologue, but also with the source attributes chapters and digest.

The Publication2HTML (M2T) transformation contains the [p.title/] binding expression

(Listing 4.2, 10). This expression binds the attribute tile of Publication, to the line 10 of the

transformation template. It uses the variable p in order to access the metamodel-root context of

the expression, i.e., Publication. In this case, the root-context element is not determined by a

transformation rule, but by a preceding –iterative– binding expression (Listing 4.2, 7). We discuss in
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detail the different types of binding expressions in M2M and M2T transformations in Chapter 5. As

mentioned before, we distinguish between two different types of bindings, namely explicit bindings

and implicit bindings. In the remainder of this chapter we formalize our traceability-link definition

in the context of M2M and M2T transformations, and explore the definitions of explicit and implicit

bindings.

4.3 A Formal Traceability Framework for M2M Transformations

Let us now formalize our traceability conceptual framework for model-to-model transformations.

• Let M2M : {SE, TE,E} be a model-to-model transformation.

• Let SE : {s1, s2, ..., si} be the set of all the source-metamodel elements in M2M . A

source-metamodel element contains a collection of source attributes si : {sisa1, ..., sisaj}.

• Let TE : {t1, t2, ..., tr} be the set of all the target-metamodel elements in M2M . A target-

metamodel element contains a collection of target attributes tr : {trta1, ..., trtak}.

• Let E : {e1, e2, ..., en} be the collection of binding expressions in M2M . A binding

expression consists of the collection of binding tuples in its metamodel-navigation path

en : {enb1, enb2, ..., enbw}. A binding tuple enbw : {trtak, sisaj} defines a dependency

relationship between a source attribute sisaj and a target attribute trtak.

• Let < en,4> be a partially ordered set, then {enba, enbb} ∈< en,4> if the source attribute

in enba is required to reach the source attribute in enbb from the metamodel-root context of

en.

• Let enbx ∈ en be an explicit-binding tuple if there is no binding tuple enby ∈ en that satisfies

enebx 4 enby.

• Let enby ∈ en be an implicit-binding tuple if there is a binding tuple enbx ∈ en that satisfies

enby 4 benbx.

• Finally, let TLM{tlm1, tlm2, ..., tlmp} be the set of M2M traceability links, consisting of

fine-grained traceability links tlm : {si, tr, sisaj , trtak, en}, where

(∀ tlm|tlm ∈ TLM : (∃e ∈ E,∃b ∈ e : tlmsisaj = bsisaj ∧ tlmtrtak = btrtak ∧ tlmen = e)

A M2M traceability link, tlm : {si, tr, sisaj , trtak, en} represents a dependency between a

source element si and a target element tr, if there is a binding tuple b defined in the footprints of
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a binding expression e, whose source and target attributes are sisaj and trtak. It is important to

note that in our framework a traceability link exists whether its associated binding tuple is implicit

or explicit. Let us now discuss our traceability link definition for M2M transformations using the

Book2Publication transformation (Listing 4.1).

Publication Metamodel (TE)
Database (t1) Publication (t2)

publications (t1ta1) title (t2ta1) prologue (t2ta2) nbPages (t2ta3)

B
oo

k
M

et
am

od
el

(S
E

) Library (s1) books (s1sa1) tlm1 : e1b1 ∅ ∅ ∅

Book (s2)
title (s2sa1) ∅ tlm2 : e2b1 ∅ ∅
chapters (s2sa2) ∅ ∅ tlm3 : e3b1∗ tlm6 : e4b1∗

Chapter (s3)

title (s3sa1) ∅ ∅ ∅ ∅
nbPages (s3sa2) ∅ ∅ ∅ tlm7 : e4b2
author (s3sa3) ∅ ∅ ∅ ∅
digest (s3sa4) ∅ ∅ tlm4 : e3b2∗ ∅

Summary (s4)
content (s4sa8) ∅ ∅ tlm5 : e3b3 ∅
nbWords (s4sa9) ∅ ∅ ∅ ∅

Table 4.1: Fine-grained M2M Traceability Links in Book2Publication (*) implicit binding, (∅) no binding.

Table 4.1 summarizes the fine-grained M2M traceability links (tlm) in Book2Publication.

Its main transformation rule contains one binding expression, e1 : publication<- l.books

(Listing 4.1, line 10) with one explicit-binding tuple, e1b1 : {publications, books}. In turn,

its Book2Publication rule contains three binding expressions, i.e., e2 : title<-b.title,

e3 : prologue <- b.chapters.first().digest.content, and e4 : nbPages<-b.getSum

Pages() (Listing 4.1, lines 20, 21, and 22, respectively). The expression e2 : title<- b.title

contains one explicit-binding tuple, e2b1 : {title, title}. The expression e3 : prologue<-

b.chapters.first().digest.content is more complex; it contains two implicit-binding

tuples, i.e., e3b1 : {prologue, chapters} and e3b2 : {prologue, digest}, and one explicit-binding

tuple, e3b3 : {prologue, content}. Finally, the expression e4 : nbPages<-b.getSum Pages()

uses a helper rule. In ATL, helper rules enable developers to factorize commonly used binding expres-

sions; this is a common feature in modern transformation languages. We can in-line the bindings de-

fined in e4 : getSumPages() as follows, nbPages<-b.chapters ->collect(f|f.nbPages)

.sum(). This expression contains one implicit-binding tuple, e4b1 : {nbPages, chapters} and

one explicit-binding tuple, e4b2 : {nbPages, nbPages}. In summary, Book2Publication contains

four binding expressions, i.e., e1−4, with seven fine-grained traceability links, i.e., tlm1−7; four of

them are due to explicit bindings, i.e., tlm1, tlm2, tlm5, tlm7, while the remaining three to implicit

bindings, i.e., tlm3, tlm4, tlm6.
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4.4 A Formal Traceability Framework for M2T Transformations

Let us now extend our conceptual framework to include model-to-text transformations.

• Let M2T : {SE,E} be a model-to-text transformation.

• Let SE : {s1, s2, ..., si} be the set of all the source-metamodel elements in M2T . A source-

metamodel element contains a collection of source attributes si : {sisa1, ..., sisaj}.

• Let E : {e1, e2, ..., en} be the collection of binding expressions in M2T . A binding

expression consists of the collection of binding tuples in its metamodel-navigation path

en : {enb1, enb2, ..., enbw}. A binding tuple enbw : {sisaj , tlk−p} defines a dependency

relationship between a source attribute sisaj and the template line(s) tlk−p where en is

defined.

• Let < en,4> be a partially ordered set, then {ba, bb} ∈< en,4> if the source attribute in ba

is required to reach the source attribute in bb from the root context of en.

• Let enbx ∈ en be an explicit-binding tuple if there is no binding tuple enby ∈ en that satisfies

enebx 4 enby.

• Let enby ∈ en be an implicit-binding tuple if there is a binding tuple enbx ∈ en that satisfies

enby 4 benbx.

• Finally, let TLT{tlt1, tlt2, ..., tltq} be the set of M2T traceability links, consisting of fine-

grained traceability links tlt : {s,sisaj , tlg, en}, where

(∀ tlt|tlt ∈ TLT : (∃e ∈ E,∃b ∈ e : tltsisaj = bsisaj ∧ tlttlg <= btlp ∧ tlttlg >=

btlk ∧ tlten = e)

An M2T traceability link tlt : {sisaj , tlk, en} represents a dependency relationship between a

source element si and a template line tlk, if there is a binding tuple b in an expression e defined

in a template line tlk, whose source attribute is sisaj . Similarly to traceability links in M2M

transformations, a M2T traceability link exists whether its underlying binding tuple is implicit or

explicit. Let us now discuss our traceability link definition for M2T transformations in the context

of Publication2HTML (Listing 4.2).

Table 4.2 summarizes the fine-grained M2T traceability links (ttl) in Publication2HTML. The

expressions defined in template lines tl10−12 contain three explicit bindings, i.e., e1b1 : {title, 10}
in e1 : [p.title/], e2b1 : {prologue, 11} in e2 :[p.prologue/], and e3b1 : {nbPages, 12}
in e3 :[p.nbPages/]. Iterative expressions such as in e4 : [for (p : Publication |
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publications)] (Listing 4.2, line 7) determine multiple traceability links. There is a dependency

relationship between the metamodel elements used to define iterative or conditional invariants,

and their contained template lines. In this case, nine explicit bindings can be identified, i.e.,

e4b1−9 {publications, 7− 15}. In Chapter 5, we explore the multi-line binding pattern of iterative

and conditional binding expressions in template-based M2T transformations.

Publication Metamodel (SE)
Database (s5) Publication (s6)

publications (s5sa1) title (s6sa1) prologue (s6sa2) nbPages (s6sa3)

Pu
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L

Te
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(t
l 7
−
1
5
) 7 tlt4 : e4b1 ∅ ∅ ∅

8 tlt5 : e4b2 ∅ ∅ ∅
9 tlt6 : e4b3 ∅ ∅ ∅

10 tlt7 : e4b4 tlt1 : e1b1 ∅ ∅
11 tlt8 : e4b5 ∅ tlt2 : e2b1 ∅
12 tlt9 : e4b6 ∅ ∅ tlt3 : e3b1
13 tlt10 : e4b7 ∅ ∅ ∅
14 tlt11 : e4b8 ∅ ∅ ∅
15 tlt12 : e4b9 ∅ ∅ ∅

Table 4.2: Fine-grained M2T Traceability Links in Publication2HTML (∅) no binding.

4.5 A Formal Traceability Framework for MTCs

So far we have considered M2M and M2T transformations individually. However, as we mentioned

before, a key challenge in the construction model-driven software engineering tools involves the

analysis of traceability information in heterogeneous model-transformation chains.

Model-transformation chains (MTCs) are specified in a pipeline architecture, where the output

of a transformation serves as the input for the next one. Thus, transitive dependency relationships

arise between the metamodels and transformations that comprise a transformation chain. Let us

now formally define the concepts of dependent traceability links and end-to-end traceability links.

• Let MTC : {M2M1,M2T1, ...,M2Mi,M2Tj} be a model-transformation chain, consist-

ing of multiple model-to-model and model-to-text transformations.

• Let TLC : {tlc1, tlc2, ..., tlck} be the set of traceability links in the transformations of a

model-transformation chain regardless of their type:

(∀ tlc ∈ TLC : (∃M2M ∈MTC,∃M2T ∈MTC : tlc ∈M2MTLM ∨ tlc ∈M2T ∈
M2TTLT ))

• Let < TLC,⇐> be a partially ordered set, then (tlca, tlb) ∈< TLC,⇐> if tlcb is dependent

of tlca. A dependency relationship exists if the target attribute of a traceability link is the

source attribute of another.
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• Let ete : {tlc1, tlc2, ..., tlcx} be a tuple representing an end-to-end traceability link composed

by individual traceability links, where

(∀ tlca ∈ ete : (∃tlcb ∈ ete : tlca ⇐ tlcb ∨ tlcb ⇐ tlca)

An end-to-end traceability link is a collection of dependent traceability links found in the

transformations of a model-transformation chain.

As mentioned before, understanding end-to-end dependencies enable developers to interpret the

execution semantics of complex transformation ecosystems. As a concrete example, let us examine

the following question: What metamodel elements, attributes, and binding expressions should be

considered when debugging potential errors in the total number of pages reported for a publication?

Publication
Database (t1, s5) Publication (t2, s6)

publications (t1ta1, s5s1) nbPages (t2ta3, s6sa3)

B
oo

k Library (s1) books (s1sa1) ete1 : {tlt8, tlm1} ∅
tl12 P2

H
.

Book (s2) chapters (s2sa2) ∅ ete2 : {tlt3, tlm6}
Chapter (s3) nbPages (s3sa2) ∅ ete3 : {tlt3, tlm7}

Table 4.3: Library to Anonymous Index End-to-End Traceability Links Publication2HTML (12)

In order to address this question, developers need to identify the end-to-end traceability links

of Library to Anonymous Index that involve line 12 of Publication2HTML, i.e., ete11, ete2, ete3
(Table 4.3). In summary, the template line 12 in Publication2HTML depends on five metamodel

element attributes in five corresponding metamodel elements. These dependencies are defined

in four explicit binding tuples, i.e., e3b1 and e4b6 in Publication2HTML, and e1b1 and e4b2 in

Book2Publication, and one implicit binding tuple, i.e., e4b4 in Book2Publication (Tables 4.1 and

4.2). Furthermore, the related bindings are located in two M2M binding expressions e1 and e4

(Listing 4.2, lines 10 and 20-22), and two M2T binding expressions, i.e., e4 and e3 (Listing 4.2, lines

7 and 12). Determining the traceability links in Library to Anonymous Index is a relatively simple

task. This is an illustrative example with simple binding expressions. However, as the complexity of

the transformations and metamodels in an ecosystem increase, so does the difficulty of reflecting on

its execution semantics [10].
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A Traceability Analysis Technique

In this chapter, we present a metamodel-level traceability-analysis technique for M2M and M2T

transformations. This analysis technique is based on the conceptual framework introduced in

Chapter 4. This chapter is structured as follows: Section 5.1 presents a high-level overview of

our analysis technique. Sections 5.2 and 5.3 present our traceability-analysis technique for M2M

and M2T transformations, respectively. Section 5.4 discusses our evaluation and its corresponding

threats to validity.

5.1 Overview

Modern transformation languages use different syntaxes to enable developers define binding ex-

pressions (Chapter 2.3). Our traceability-analysis technique has been instantiated in the context of

ATL and Acceleo transformation languages. However, it can be generalized to other transformation

languages based on OCL.

In ATL, the main goal of our technique is to analyze the abstract-syntax tree of a transformation

in order to isolate the binding expressions defined in its transformation rules. Next, our technique

analyzes the footprints of the binding expressions in order to individualize their constituent binding

tuples. Finally, our technique identifies the metamodel elements corresponding to the attributes in

each tuple, and exports their (M2M) traceability links (Section 5.2).

In Acceleo, our analysis technique follows a tokenization strategy that isolates binding expres-

sions from a textual template. Once binding expressions have been isolated, their corresponding

footprints are identified, along with their constituent binding tuples. Our technique identifies

the metamodel elements to which the attributes in the binding tuples belong, and exports their

corresponding (M2T) traceability links (Section 5.3).
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In order to implement a robust traceability analysis for a transformation language, we need to

consider its concrete and abstract syntax. For example, ATL enables developers to factorize binding

expressions in helper rules that can be used by other expressions in outlying segments of code.

Moreover, in ATL, the metamodel-root context of a binding expression is determined by the rule

where the expression is located. The implementation of helper rules, and the mechanisms to access

metamodel-root contexts vary across transformation languages. In the following sections we explore

in detail the language abstractions of ATL and Acceleo, while discussing our traceability-analysis

technique.

5.2 A Traceability Analysis for M2M Transformations (ATL)

Figure 5.1 diagrammatically depicts our traceability-analysis technique for ATL (M2M) transfor-

mations. It consists of three main steps; (i) abstract syntax tree extraction, (ii) binding expression

analysis, and (iii) binding tuple individualization.

Memory SharingFile Sharing

Traceability Links 
(.json)

Source Metamodel
(.ecore)

Aggregated
Footprints

ATL
AST Instance (.xmi)

ATL
Transformation (.atl)

3. Binding Tuple
Individualization

2. Binding Expression
Analysis

1. Abstract Syntax Tree
Extraction

Figure 5.1: ATL Traceability Analysis Technique

5.2.1 Abstract Syntax Tree Extraction

In ATL, there are four types of transformation rules, i.e., matched rules, lazy rules, called rules and

helper rules. In their canonical form, matched rules contain declarative expressions that bind to

one source metamodel element, in order to derive one (or multiple) target element(s). A matched

rule might include an action block where imperative statements can be defined. A called rule must

be invoked from an action block in order to be executed [38]. As mentioned before, helper rules

enable developers to factorize commonly used expressions. In this thesis, we focus on completely

declarative model transformations, i.e., transformations without lazy or called rules [93].

Similarly to Van Amstel [98], we use the ATL Compiler to obtain the abstract-syntax tree of

a transformation, given its textual representation. Figure 5.2 presents the concepts that comprise
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the syntax tree of ATL’s matched and helper rules (A and B, respectively). Figure 5.3 graphically

portrays the mappings between the textual tokens of Book2Publication (Listing 4.1) and their

corresponding syntax-tree nodes. We have removed some of the example’s binding expressions and

non-terminal symbols to improve its readability.
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Figure 5.2: ATL - Matched and Helper Rules Simplified AST

Figure 5.3: An Example of Book2Publication Tokens
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The syntax tree of a matched rule consists of a collection of InPattern and OutPattern nodes that

represent the source and target elements operated by the rule (Figure 5.3, lines 17 - 19). Binding

expressions are captured by Binding nodes. They define the mappings between a transformation’s

InPattern and OutPattern properties. The target property of a Binding is captured by its corresponding

Value. A binding expression is symbolized by a list of Source nodes contained by a Value node.

A Source node symbolizes individual binding statements. It can be defined in four forms, i.e.,

NavigationOrAttributeCalls, OperationCalls, VariableCalls and Iterators (Figure 5.3, lines 21 and

22). A NavigationOrAttributeCall is used to symbolize the navigation of a source attribute; an

OperationCall is used to symbolize access to OCL operations, e.g., first() and sum(), and calls

to helper rules, e.g., getSumPages() (Figure 5.3, line 27); VariableCalls symbolize access to local

variables, and Iterators access to iterator variables (Figure 5.3, line 28).

The syntax tree of a helper rule includes two constructs that determine the scope of its binding

expressions, namely Return Type and Context. The former represents the expected output of the

helper rule, while the latter has a role similar to that of InPattern in the syntax tree of a matched

rule; symbolizing the helper’s metamodel-root context. Moreover, the Body concept captures the

binding expressions of the rule. It contains a collection of Source nodes with individual binding

statements, including metamodel navigation statements, calls to other helper rules, and references

to variables where intermediate binding expressions can be defined.

5.2.2 Binding-Expression Analysis (M2M)

The main goal of this step is to analyze the abstract-syntax tree of a M2M transformation looking for

the metamodel footprints of its binding expressions. We capture the footprints of a transformation

in an intermediate representation. We refer to this representation as the aggregated footprints of

a transformation. We propose a static-analysis algorithm to effectively isolate a transformations’

binding expressions based on its abstract-syntax tree. In the later stages of our analysis, we use a

transformation’s aggregated footprints to determine its individual binding tuples, and corresponding

traceability links. Figure 5.4 diagrammatically depicts a simplified version of the metamodel used

to capture the aggregated footprints of a M2M transformation.

The aggregated footprints of a transformation consist of a collection of rules. A rule contains a

source element, and one or multiple target elements. A target element consists of one (or multiple)

expression(s) used to derive its attributes. An expression captures the metamodel footprints of a

binding expression starting from its metamodel-root context. Futhermore, an expression might be

defined as a call concept, which represents the usage of a helper rule. An expression might contain

references to one (or multiple) helper rule(s) in its stack.
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Figure 5.4: M2M Aggregated Footprints

Figure 5.5 presents the aggregated footprints of Book2Publication (Listing 4.1). The binding

expressions in this example are simple in nature; they do not include binding expressions that use

multiple helper rules, nor helper rules with inner calls. Let us now review some of the most relevant

functions that comprise our transformation analysis algorithm.

«Aggregated Footprints»
Book2Publication.atl

«Expression: Call»

targetAttribute: "nbPages"
footprints: "chapters.nbPages"
name: "getSumPages"
returnType: "Integer"

«Expression»

targetAttribute: "prologue"
footprints: "chapters.digest.content"

«Target Element»
Publication

«Source Element»
Book

«Rule» 
Book2Publication

Figure 5.5: M2M Aggregated Footprints Instance - Book2Publication
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We use the Document Object Model (DOM) Java API1 in order to treat the syntax tree of a

transformation as a collection of hierarchical nodes. In order to select, prune, and flatten concepts

of the syntax tree we have implemented two utility functions, namely getASTNodeByTag() and

getASTNodeByType(). These functions recursively extract concepts depending on their simple-

and extended-types, respectively. The main function of our algorithm is AnalyzeMatchedRules()

(Algorithm 1). It receives the root of a transformation syntax tree, and a list where its aggregated

footprints will be stored. The functions described in this section use a non-return value strategy;

they modify the value of one or more of their parameters to reflect the result of their execution.

Algorithm 1
1: procedure ANALYZEMATCHEDRULES(transformationRoot, rules)
2: matchedRules← GETASTNODEBYTAG(transformationRoot, "MatchedRule")
3: for all matched ∈ matchedRules do
4: rule← INIT(matched)
5: se← ANALYZESOURCEELEMENT(matched→getChildNodes())
6: targets← null
7: ANALYZETARGETELEMENT(matched→getChildNodes(), targets)
8: rule.se← se
9: rule.targets← targets

10: rules→ add(rule)

Algorithm 2
1: procedure ANALYZESOURCEELEMENT(ruleNodeList)
2: inPattern← GETASTNODEBYTAG(ruleNodeList, "InPattern")
3: return INIT(inPattern)
4:

5: procedure ANALYZETARGETELEMENT(ruleNodeList, targets, se)
6: outPatterns← GETASTNODEBYTAG(ruleNodeList, "OutPattern")
7:

8: for all out ∈ outPatterns do
9: te← INIT(out)

10: bindings← GETASTNODEBYTAG(out→ getChildNodes(), "Binding")
11:

12: for all binding ∈ bindings do
13: INIT(expression, binding)
14: firstStatement← GETASTNODEBYTAG(binding, "Value")
15: expression.root← se
16: path← empty
17:

18: GETFOOTPRINTS(firstStatement, expression, path, null)
19: te→ add(expression)
20: targets→ add(expression)

1org.w3c.dom (Java Platform SE 7)
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The function AnalyzeMatchedRules() traverses all the matched rules contained in a trans-

formation’s syntax tree. The init() function (Algorithm 1, line 4) is used to initialize a rule

concept in its aggregated footprints representation, e.g., its signature and file location within a

transformation file. Two functions are used to drive the analysis of its source element and potentially

multiple target elements based on the InPattern and OutPattern nodes of the matched rule under

analysis, i.e., AnalyzeSourceElement() and AnalyzeTargetElement() (Algorithm 2, lines

1 and 5, respectively).

The role of AnalyzeSourceElement() is to initialize the rule’s source element in its aggre-

gated bindings representation (Algorithm 2, line 2). The AnalyzeTargetElement() function is

more complex; it navigates all the potential OutPattern nodes in the rule’s syntax tree and builds

their corresponding target elements (Algorithm 2, line 6). In order to initialize the expressions

that derive the attributes of a target element, AnalyzeTargetElement() traverses all the Binding

nodes in the OutPattern under analysis (Algorithm 2, line 13-19).

In order to identify the source attributes navigated by a binding expression to derive a tar-

get attribute, each Binding node in the AST is analyzed individually. A Binding node con-

tains a list of linked Source nodes that capture the individual statements of an expression. The

GetFootprints() function is used to recursively traverse this list while tracking its metamodel

footprints (Algorithm 3).

Algorithm 3
1: procedure GETFOOTPRINTS(currentStatement, expression, path, context)
2: if currentStatement is a ModelOrNavigationCall then
3: path→ APPEND(currentStatement.name)
4: else if currentStatement is a OperationCall then
5: path→ APPEND(#)→ APPEND(currentStatement.name)
6: GETCALLSTACK(currentStatement, expression)
7: else if currentStatement is a VARIABLE then
8: expression.root← SOLVEVARREFERENCE(currentStatement.var)
9:

10: nextStatement← currentStatement→ getChildNodes()
11: if nextStatement.length == 0 then
12: expression.footprints← path // last statement
13: if context ! = null then
14: expression.root← context
15: else
16: GETFOOTPRINTS(nextStatement, expression, path, context)

The GetFootprints() function recursively analyses a Source node depending of its sub-

type. If the Source node is a NavigationOrAttributeCall it will append its value into the path
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parameter (Algorithm 3, line 2); this parameter will be recursively accumulated as the function

iterates throughout the individual Source nodes in a Binding. The final value will then be assigned

to the footprints of its corresponding expression during backtracking (Algorithm 3, line 12). If the

Source under analysis is an OperationCall, the function will append its name to the path preceded

by a pound sign (#) (Algorithm 3, line 5). This information will be used in the second step of our

analysis to solve the metamodel-context switches caused by potential calls to helper rules within the

expression. This is necessary to determine the metamodel elements to which subsequent navigated

attributes belong. If the Source under analysis is an OperationCall (Algorithm 3, line 6), a recursive

function, namely AnalyzeCall(), is used to complete its analysis (Algorithm 4).

As a concrete example, assume a binding expression such as a <- b.x.y.foo().z.bar();

its resulting footprints are x.y.#foo.z.#bar. A call is instantiated for both of its helper calls i.e., foo()

and bar(), thus capturing the footprints of their inner-binding expressions. Furthermore, if foo()

or bar() use helper rules, their corresponding stacks are recursively initialized. Each helper call

represents a potential metamodel-context switch in a metamodel navigation path. It is important

to note that if the Source under analysis is a VariableCall (Algorithm 3, line 7) the algorithm will

process the last statement of a binding expression, or an intermediate iterator-based statement, e.g.,

collect()2.

Algorithm 4
Require: contextIndex - return types of analyzed helpers.

1: procedure ANALYZECALL(statement, expression)
2: call← INIT(statement)
3: call.name← statement.name
4: call.returnType← statement.return
5: call.root← getHelperContext(statement)
6: call.parameters← getHelperParameters(statement)
7: contextIndex→ put(call.name, call.returnType)
8:

9: firstStatement← GETASTNODEBYTAG(source, "Body")
10: GETFOOTPRINTS(firstStatement, call, append, call.context)
11: expression.stack→ add(call)

In order to analyze a Source node that represents the use of a helper rule, AnalyzeCall()

creates a call with its corresponding root context, returnType, and list of parameters (Algorithm 4,

line 2-6). It then extracts the Source nodes corresponding to its syntax sub-tree (Figure 5.2).

As mentioned before, binding expressions inside helper rules have the same syntax tree as

those in conventional matched rules. Thus, AnalyzeCall() uses the GetFootprints() func-
2This case is further analyzed by the SolveVarReference() function which can be found at https:

//github.com/guana/ct/tree/master/atl.
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tion to obtain the footprints of the helper’s binding expressions (Algorithm 4, line 9). Both

GetFootprints() and AnalyzeCall() implement a tail-recursion strategy. In effect, the

expression parameter is used to add potential nested calls to the stack during backtracking

(Algorithm 4 line 10-11). To complete the binding analysis step, AnalyzeCall() stores the return

type of each helper rule using a context index (Algorithm 4, line 7). The context index is used in

the third step of our analysis to solve the context switches of a binding expression due to helper rule

calls.

5.2.3 Binding Tuple Individualization (M2M)

The main goal of this step is to use the aggregated footprints of a transformation in order to identify

the binding tuples of its binding expressions (Chapter 4). We use the transformation’s source

metamodel to determine the elements that own every source attribute navigated by the expressions,

and export their corresponding traceability links. In our analysis technique, we assume that the

metamodels used by a transformation conform to the Ecore meta-metamodel (Figure 5.6). However,

it can be generalized to other metamodeling formalisms such as KM3 [153].

eStructuralFeatures

eOpposite    
 
0..1

eOpposite    0..1

eAttributeType

EAttributeEReference
containment: boolean

eReferenceType

 *

 
         

EStructuralFeature
name: String
lowerBound: int
upperBound: int

 *

eSuperTypes

EClass
abstract: boolean

EDataType

*

eClasifiers
EClassifier

name: String
EPackage

name: String
nsUri: String

Figure 5.6: Simplified Ecore Metamodel [154]

The main function of our individualization step is IndividualizeM2MBindingTuples()

(Algorithm 5). It receives as a parameter the aggregated footprints of a transformation. This function

traverses the rules of a transformation, along with their corresponding target elements (te) and

associated expressions (exs).
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Algorithm 5
Require: contextIndex - return types of analyzed helpers.

1: procedure INDIVIDUALIZEM2MBINDINGTUPLES(rules)
2: for all rule ∈ rules do
3: for all te ∈ rule.targets do
4: for all ex ∈ te.exs do
5: SOLVEIMPLICITBINDINGS(rule, te, ex, ex.root)
6:

7: procedure SOLVEIMPLICITBINDINGS(rule, te, expression, root)
8: i← 0
9: step← expression.footprints[i]

10: contiguous← step
11: while step ̸= null do
12: if step→ CONTAINS(#) then
13: root← contextIndex→ GET(step)
14: contiguous← empty
15: else
16: se← GETOWNERELEMENT(contiguous, root, 0)
17: INITM2MTRACEABILITYLINK(rule, se, step, te, expression.value)
18: i← i+1
19: step← expression.footprints[i]
20: contiguous→ APPEND(step)
21: for all call ∈ expression.stack do
22: SOLVEIMPLICITBINDINGS(rule, te, call, call.root)

The SolveImplicitBindings() function traverses the footprints of an expression and ana-

lyzes each one of its navigation steps (Algorithm 5, line 9). It determines whether a step is a source

attribute (Algorithm 5, line 15) or a call to a helper rule (Algorithm 5, line 12). In the former case,

the GetOwnerElement() function is used to obtain the source element (se) to which a navigated

source attribute belongs (Algorithm 5, line 16). It uses the root context of the expression as the

entry-point to prune the transformation’s source metamodel, in order to find the element that contains

the source attribute of interest (Figure 5.6 and Algorithm 6, lines 7-24). If GetOwnerElement()

is unable to find the navigated source attribute in the list of EStructuralFeatures corresponding

to its metamodel-root context, it calls itself recursively to continue the search in its super classes

(Algorithm 6, lines 21-23).

As a concrete example, in the case of the footprints that describe the navigation path of the

binding expression b.chapters.first().digest.content (Listing 4.1, line 21), i.e., chap-

ters.digest.content (Figure 5.5), the GetOwnerElement() function is called once per navigation

step with the following arguments.
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Algorithm 6
Require: metamodel - root node of the source metamodel XMI.

1: procedure GETOWNERELEMENT(path, root, stepIndex)
2: classes← GETASTNODEBYTYPE(metamodel, "EClass")
3: for all class ∈ classes do
4: if class == root then
5: i← stepIndex
6: step← path[i]
7: while step ̸= null do
8: feats← GETASTNODEBYTAG(class, "EStrcuturalFeature")
9: for all feature ∈ feats do

10: if feature is a "ERefference" then
11: if feature.type == step then
12: if i == path.length-1 then
13: return root
14: else
15: root← INIT(reference.type)
16: i← i+1
17: step← path[i]
18: else if feature is a "EAttribute" then
19: if feature.name == step then
20: return root
21: super← GETASTNODEBYTAG(class, "eSuperTypes")
22: for all parent ∈ super do
23: return GETOWNERELEMENT(path, parent, i)
24: return null

• Step 0: contiguous:= chapters, root:= Book (return→ Book)

• Step 1: contiguous:= chapters.digest, root:= Book (return→ Chapter)

• Step 2: contiguous: chapters.digest.content, root:= Book (return→ Summary)

Please notice how the contiguous variable is used to store metamodel-navigation paths that

share a common metamodel-root context (Algorithm 5, line 20). In the latter case, if a helper rule is

found in the footprints of an expression (Algorithm 5, line 12) the contextIndex is used in order

to update the metamodel-root context for the remaining steps under analysis (Algorithm 5, line

13). In this case, the contiguous variable is flushed out since the current metamodel-root context

could have changed (Algorithm 5, line 14). In turn, the SolveImplicitBindings() function is

recursively called to process the calls contained in the expression’s stack (Figure 5.4 and Algorithm

5, line 21). Finally, the function InitM2MTraceabilityLink() (Algorithm 5, line 17) exports

a traceability link in a well-formed JSON (Appendix A.3) following the formalism presented in

Chapter 4.
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5.3 A Traceability Analysis for M2T Transformations (Acceleo)

In this section we present our traceability-analysis technique for Acceleo M2T transformations

(Figure 5.7). The technique involves five steps: (i) binding expression analysis, (ii) binding

tuple individualization, (iii) template traceability injection, (iv) transformation execution, and (v)

generation link recovery.

File Sharing Memory Sharing

4. Transformation
Execution

Model Instance
(.ecore)

Source
Metamodel (.ecore)

2. Binding Tuple
Individualization

Traceability Links
(.json)

Annotated Generated 
Text (e.g. .java, .py)

Annotated Acceleo
Transformation (.mtl)

5. Generation Link
Recovery

Generatio Links
(.json)

Acceleo Expression and
Context Table

Acceleo
Transformation (.mtl)

3. Template Traceability
Injection

1. Binding Expression
Analysis

Figure 5.7: Acceleo Traceability Analysis Technique

The first step uses a custom parser in order to obtain a list of binding expressions from a template

under analysis. In the second step, each expression is analyzed using a process similar to the one

presented in Section 5.2. The last three steps of our technique identify generation dependencies

between a template, and the lines of text generated after its execution. In order to do so, we follow

a strategy similar to Olsen, et al. [103]; templates are annotated with traceability information and

executed; the generated text is analyzed to identify its generation dependencies.

5.3.1 Binding Expression Analysis (M2T)

In Acceleo, there are three types of binding expressions, i.e., loops, conditionals and simple

expressions. This step uses a programmatic tokenizing technique that classifies M2T binding

expressions depending on their type. It considers spaces, line breaks, and other Acceleo non-

terminal symbols in order to isolate their metamodel footprints3.

Similarly to our binding analysis for M2M transformations, this step captures the aggregated

footprints of a M2T transformation using a metamodel (Figure 5.8), and produces a context table

with the metamodel-root contexts available to the expressions in the different segments of a template.
3A complete implementation of our tokenization algorithm can be found at https://github.com/guana/

ct/tree/master/acceleo.
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target
* 1

Target Block
startLine
endLine
startCol
endCol

expressions

Expression
type
footprints

Aggregated Footprints

Figure 5.8: M2T Aggregated Footprints

1 [module generateIndex(’ http :// ualberta . ssrg . publication ’)]
2 [template public generateIndex (aDatabase : Database)]
3 [comment @main/]
4 [ file (’ index .html ’, false , ’UTF−8’)]
5 <h2> Publication Database </h2>
6 <table border="" style ="with:50%">
7 [ for (p : Publication | publications )]
8 <tr>
9 <td>

10 <p><h4>[p. title /]</ h4></p>
11 <p>[p.prologue /]</ p>
12 [ if (p.prologue . size ()> 1000)]
13 <p>Pages: [p.nbPages−p.prologue.size ()/200/]</ p>
14 [ else ]
15 <p>Pages: [p.nbPages/]</p>
16 [/ if ]
17 </td>
18 </ tr >
19 [/ for ]
20 </ table >
21 [/ file ]
22 [/ template]

Listing 5.1: Publication2HTML (Conditional Version)

In Acceleo, the metamodel-root context of an expression can be defined by means of iterator

variables found in loop expressions. The context of an expression can also be defined by means

of global variables found in the header of a transformation template. In order to understand how

metamodel contexts are defined in M2T transformations, let us briefly discuss a modified version of

Publication2HTML (Listing 5.1). We will use this example to illustrate the process of collecting the

traceability links and generation dependencies in M2T transformations with loop and conditional

binding expressions. In this version of Publication2HTML, the reported page count of a Publication

is recalculated depending on the length of its prologue. If the prologue of a Publication contains

more than 1000 characters, its total page count will be reduced by a factor of one for every two

hundred of those characters (Listing 5.1, lines 12-16)

Table 5.1 presents the metamodel-root contexts defined in Publication2HTML. The header of

the transformation (Listing 5.1, line 2) defines the global-root context for all the expressions in the

transformation, i.e., Database. Any binding expression might use the Database element as the

entry-point for its metamodel-navigation statements. The expression for (p : Publication
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| publications) (Listing 5.1, line 7), defines an additional metamodel-root context, i.e., Publi-

cation, which can be used by any expression declared inside of the loop (Listing 5.1, lines 7-19).

Figure 5.9 presents the footprints of the binding expressions in Publication2HTML. For readability

purposes, we have not included the start and end column of the expressions.

Start Line End Line Context Variable
2 22 Database aDatabase
7 19 Publication p

Table 5.1: Publication2HTML - Metamodel Context Table

«Target Block»
startLine: 15
endLine: 15

«Expression»
type: "simple"
footprints: "nbPages"

«Expression»
type: "simple"
footprints: "prologue"

«Target Block»
startLine: 13
endLine: 13

«Expression»
type: "simple"
footprints: "nbPages"

«Target Block»
startLine: 13
endLine: 13

«Target Block»
startLine: 12
endLine: 16

«Expression»
type: "conditional"
footprints: "prologue"

«Target Block»
startLine: 11
endLine: 11

«Target Block»
startLine: 10
endLine: 10

«Expression»
type: "simple"
footprints: "prologue"

«Expression»
type: "simple"
footprints: "title"

«Target Block»
startLine: 7
endLine: 18

«Expression»
type: "loop"
footprints: "publications"

«Aggregated Footprints»
Publication2HTML.mtl

Figure 5.9: M2T Aggregated Footprints Instance - Publication2HTML

5.3.2 Binding Tuple Individualization (M2T)

Given that binding expressions in different template locations might have access to multiple

metamodel-root contexts, it is necessary to precisely pinpoint the context element used by each

binding expression. This is particularly important when analyzing transformations that rely on

nested loops and conditionals.
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Algorithm 7
1: procedure INDIVIDUALIZEM2TBINDINGTUPLES(expressions, contexts)
2: for all exp ∈ expressions do
3: i← 0
4: step← exp.footprints[i]
5: contiguous← step
6: while step ̸= null do
7: if ¬ ISCONTEXTVARIABLE(step) then
8: for all ctx ∈ contexts do
9: sourceElem← GETOWNER(contiguous, ctx)

10: if se ! = null then
11: sourceAttr← INIT(step)
12: INITM2TTRACEABILITYLINK(sourceElem, sourceAttr, exp)
13: break
14: i← i+1
15: step← exp.footprints[i]
16: contiguous→ APPEND(step)

The function IndividualizeM2TBindingTuples() (Algorithm 7) initializes a template’s

traceability links considering the binding tuples existing in its footprints. It receives as a pa-

rameter the aggregated footprints of a template and its contexts table. The function navigates

each step in the footprints of an expression in order to identify its context element (Algorithm 7,

line 9). IndividualizeM2TBindingTuples() also uses the GetOwnerElement() function

(Section 5.2) in order to identify the elements that own the source attributes in the footprints of

a binding expression. In this case, if GetOwnerElement() returns a valid metamodel element

with any of the elements in the context table, a M2T traceability link is initialized using the

InitM2TTraceabilityLink() function (Algorithm 7, line 12). In the case of loop and condi-

tional expressions, InitM2TTraceabilityLink() will export a traceability link for each of their

contained lines. Our implementation exports traceability links in a JSON file (Appendix A.3).

5.3.3 Template Traceability Injection and Execution

The last three steps of our analysis technique are designed to obtain the dependency relationships

between a M2T transformation, and the files generated after its execution. We call these dependen-

cies generation links. To do so, a M2T transformation is annotated with its aggregated footprints. In

the annotation process, each binding expression is surrounded by specially-formatted identifiers that

will be transfered to the generated files during execution. We have developed a customized Acceleo

Launcher4 capable of (a) injecting aggregated footprints annotations, (b) compiling and executing

transformations, and (c) removing annotations after they have been analyzed. This launcher allows

developers to collect generation links in a seamless manner.
4https://github.com/guana/ct/tree/master/accelo
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Figure 5.10-A presents the Publication2HTML transformation with its footprints annotations.

Figure 5.10-B portrays the HTML report generated after its execution. In this example, a simple

input model has been provided in order to execute the transformation. It contains two publications,

namely, Thinking Python (Figure 5.10 (b), lines 4-18) and Head First Design Patterns (Figure

5.10b), lines 29-33). Figure 5.10-C depicts the generated report as seen in a web browser.

Figure 5.10: (A) Annotated Publication2HTML, (B) HTML Report Generation Instance, (C) HTML
Report Web Browser View

An identifier is comprised of an opening statement, i.e., //@gen <template-line, binding

-footprints, binding-type, binding-id> and a closing statement, i.e., //> @gen temp

late-line. In the case of a simple binding expression, a traceability identifier is injected surround-

ing the line where it is defined (e.g., Figure 5.10 (a), lines 11-13). In the case of lines with multiple

binding expressions, a single identifier is used to capture multiple generation links (e.g., Figure 5.10

(a), line 19). In the case of loop expressions, an identifier is injected before and after their opening

and closing statements (e.g., Figure 5.10 (a), lines 7 and 33).

In Acceleo, there are three types of conditional expressions; namely, if, if/else, and if/else-if.

In the case of an if conditional, identifiers are injected immediately after its opening line, and

immediately before its closing line. Indeed, only expressions in conditional blocks whose invariants
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are satisfied during execution are effectively binded. if/else conditionals are annotated following

a similar strategy. In this case, the identifier used to annotate an if block is used to annotate

its corresponding else block (e.g., Figure 5.10 (a), lines 18-22 and 24-28). Expressions in both

conditional blocks are alternatively executed, thus creating a generation link with the same line in a

transformation template. Finally, in the case of if/else-if conditionals, an identifier is included in

the else block in order to capture the generation links that stem from the bindings in its alternative

conditional invariant.

5.3.4 Generation Link Recovery

Algorithm 8 presents the function that drives our generation-link recovery process, i.e., Collect

GenerationLinks(). It analyzes the lines of generated files looking for footprints annotations.

When an opening statement is identified, an annotation is initialized and indexed in the annotation

table (Algorithm 8, lines 5-8). When its corresponding closing statement is found, the annotation

is removed (Algorithm 8, lines 9-12). If a generated line is found, a generation link is created for

all of the open annotations in the annotation table (Algorithm 8, lines 13-15). It is important to

mention that the number of generated lines is recalculated as annotations are found (Algorithm 8,

lines 8 and 12). This is required since generated files will be striped out of annotations after being

analyzed. The function InitGenerationLink() will then export a generation link for each of

the binding tuples found in the annotation footprints. Similarly to M2M and M2T traceability links,

our current implementation exports generation links using JSON.

Algorithm 8
1: procedure COLLECTGENERATIONLINKS(generatedF iles)
2: for all file ∈ generatedFiles do
3: genLine← 0
4: for all line ∈ file do
5: if line← CONTAINS(//@gen <) then
6: annotation← INITANNOTATION(line, file)
7: open← PUT(annotation.line, annotation)
8: genLine← genLine - 1
9: else if line← CONTAINS(// > @gen) then

10: annotation← INITANNOTATION(line)
11: open← REMOVE(annotation.line)
12: genLine← genLine - 1
13: else
14: for all note ∈ annotation do
15: INITGENERATIONLINK(genLine, note)
16: genLine← genLine + 1
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In Chapter 6, we discuss ChainTracker. An integrated traceability-analysis environment

that makes traceability information available to developers. ChainTracker identifies and

visualizes the dependent traceability links of a model-transformation chain based on

the traceability links identified in its individual M2M and M2T transformations.

5.4 Traceability-Analysis Evaluation

We evaluated our traceability-analysis technique using 25 model-to-model transformations, and 18

model-to-text transformations. The former correspond to the 14 Ecore-based transformation projects

available in the ATLZoo (Table 5.2). The latter have been obtained from the Acceleo Example

Repository5 and correspond to 5 individual code-generation projects (Table 5.4).

All transformations were manually inspected to characterize their binding expressions and

corresponding binding tuples. The inspection process was conducted by two software engineering

researchers (the author and a colleague) with 6 and 2 years of experience in model-transformation

technologies, respectively. Researchers examined the transformations separately. Next, they had a

final inspection meeting in order to resolve characterization discrepancies.

5.4.1 Evaluation: Model-to-Model Traceability Analysis (ATL)

Table 5.3 presents the traceability coverage of our analysis technique for M2M transformations. It

presents the number of implicit and explicit binding tuples in the 25 ATL transformations under

analysis. The traceability coverage reflects the number of traceability links that were successfully

collected out of all the links found in their comprising binding expressions, i.e., recall.

Our traceability-analysis technique for M2M transformations obtained an average

coverage of 91%. We observed a traceability coverage of 100% in 13 of 25 transfor-

mations.

27.4% of the M2M binding tuples in the evaluation dataset are implicit. Transformations are

predominantly comprised by simple binding expressions (43%), i.e., expressions that do not rely on

iterative expressions, e.g., select() and collect(). Only 2% of binding tuples were found in

iterative expressions. 6% of binding expressions use helper rules (Table 5.2).
5https://github.com/eclipse/acceleo/tree/master/examples
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Table 5.2: ATLZoo (Ecore-based) Transformations - Expression Metrics

Project Transformation Simple
Exp.

Iterator
Exp.

Helper
Exp.

Helper
Att.

Lazy
Rules

Target E.
Cross-Ref.

Using
Exp.

Resolve
Temp

Constant
Exp.

Action
Blocks

ATL2BindingDebugger ATL2BindingDebugger 9 0 0 0 0 2 0 0 1 0
ATL2Problem ATL-WFR 33 0 0 0 0 0 0 0 18 0
CPL2SPL CPL2SPL 12 1 0 0 3 32 0 0 15 0

DSLBridge DSL2KM3 34 0 3 0 0 3 0 0 8 0
KM32DSL 31 0 18 4 0 6 0 0 19 0

Grafcet2PetriNet
Grafcet2PetriNet 24 0 0 0 0 0 0 0 0 0
PetriNet2PNML 16 0 0 0 0 11 0 2 0 0
PNML2XML 6 12 0 0 0 28 0 3 23 0

OWL2XML OWL2XML 2 1 28 0 2 23 0 0 60 0
SimpleClass2RDBMS SimpleClass2RDBMS 1 0 0 0 0 3 8 0 0 0

SoftwareQuality2Bugzilla Bugzilla2XML 30 0 0 0 0 30 13 0 42 0
SoftwareQuality2Bugzilla 13 0 0 0 0 1 0 0 21 0

SoftwareQuality2Mantis Mantis2XML 31 0 0 0 0 41 19 0 61 0
SoftwareQuality2Mantis 7 0 1 0 0 9 1 0 31 0

Table2MicrosoftExcel SpreadsheetML2XML 4 0 1 0 0 2 1 0 24 0
Table2SpreadsheetML 0 0 0 0 0 6 2 0 3 0

TruthTable2DecisionTree TT2BDD 8 0 1 0 0 0 2 0 0 0

VisualRepCodeClone

CloneDr2Codelone 8 0 1 0 0 0 0 0 1 0
CodeClone2SVG 13 0 0 0 0 7 0 0 43 0
Simian2CodeClone 8 0 1 0 0 0 0 0 1 0
SVG2XML 8 0 0 0 0 7 0 0 11 8

WSDL2R2ML R2ML2WSDL 19 0 0 0 0 14 0 0 5 0
WSDL2R2ML 16 0 0 0 1 1 0 0 2 0

XSLT2XQuery XSL2XML 31 0 0 0 0 0 0 0 2 0
XSLT2XQuery 12 0 0 0 0 14 0 0 6 0

Table 5.3: ATLZoo (Ecore-based) Transformations - Traceability Analysis Metrics

Project Transformation Explicit
Bindings

Implicit
Bindings

Total
Bindings

Bindings
Succesfully
Analyzed

Bindings
Missed Coverage %

ATL2BindingDebugger ATL2BindingDebugger 11 4 15 15 0 100.0
ATL2Problem ATL-WFR 38 9 47 42 5 89.4
CPL2SPL CPL2SPL 29 9 38 30 8 78.9

DSLBridge DSL2KM3 44 19 63 63 0 100.0
KM32DSL 81 17 98 85 13 86.7

Grafcet2PetriNet
Grafcet2PetriNet 24 0 24 24 0 100.0
PetriNet2PNML 17 0 17 15 2 88.2
PNML2XML 18 30 48 48 0 100.0

OWL2XML OWL2XML 76 29 105 105 0 100.0
SimpleClass2RDBMS SimpleClass2RDBMS 1 0 1 1 0 100.0

SoftwareQuality2Bugzilla Bugzilla2XML 36 0 36 36 0 100.0
SoftwareQuality2Bugzilla 15 6 21 21 0 100.0

SoftwareQuality2Mantis Mantis2XML 35 16 51 51 0 100.0
SoftwareQuality2Mantis 10 4 14 13 1 92.9

Table2MicrosoftExcel SpreadsheetML2XML 26 0 26 26 0 100.0
Table2SpreadsheetML 2 0 2 2 0 100.0

TruthTable2DecisionTree TT2BDD 8 18 26 9 17 34.6

VisualRepCodeClone

CloneDr2Codelone 9 1 10 6 4 60.0
CodeClone2SVG 29 18 47 47 0 100.0
Simian2CodeClone 9 1 10 6 4 60.0
SVG2XML 17 0 17 17 0 100.0

WSDL2R2ML R2ML2WSDL 47 10 57 42 1 73.7
WSDL2R2ML 26 30 56 34 22 60.7

XSLT2XQuery XSL2XML 29 16 45 45 0 100.0
XSLT2XQuery 11 2 13 12 1 92.3
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Less than 5% of binding tuples are defined in imperative expressions. Only 6 lazy rules and 8

action blocks were found in the 25 transformations that we studied. It is important to note that the

use of lazy rules and action blocks is highly discouraged by the ATL Developer Guide6. Finally, 35%

of binding expressions contain constant values that are directly assigned to target attributes. This is

mainly observed in transformations that manipulate structured-textual files, e.g., Bugzilla2XML,

Mantis2XML, and PNML2XML, and in transformations used to digest communication protocols,

e.g., CPL2SPL (Table 5.2). This binding strategy is widely recognized as a transformation anti-

pattern, i.e., “magic literals” [155].

Limitations

Let us now discuss the limitations of our analysis technique, and the (M2M) transformations where

it obtained a subpar traceability coverage.

1. Downcasting binding expressions: In order to deal with metamodels with complex inheritance

hierarchies, helper rules can be called using metamodel elements that extend their context type. In

this pattern, binding expressions perform type-checks, i.e., oclIsKindOf() or oclIsTypeOf()

to access attributes only available to the rule’s context and parameter sub-types.

Our current implementation considers binding expressions that use attributes inherited from

a rule’s context element super-type (Algorithm 6), and it is unable to analyze the footprints of

downcasting expressions, i.e., binding expressions that use attributes defined in its context or param-

eter subtypes [155]. This binding pattern was found 17 times in TruthTable2BinaryDecisionTree,

a transformation used to simplify the design of digital logic circuits. In this transformation, our

analysis technique obtained a traceability coverage of 34.6% (Table 5.3). Downcasting expressions

are rare and highly discouraged [94, 155].

2. Cross-referenced target elements: In ATL, matched rules can produce multiple target ele-

ments from a source element. A target element tea is cross-referenced with a target element teb if

they are both initialized by the same matched rule, and the binding expressions used to initialize tea,

use teb as a metamodel-root context. Our analysis technique assumes that the aggregated footprints

of a matched rule share a common metamodel-root context (Figure 5.4). This precondition is not

guaranteed in binding expressions with cross-referenced target elements. In CPL2SPL, a transfor-

mation used to translate telephony control protocols, 8 out of 38 bindings contain cross-referenced

target elements; the traceability coverage of our analysis in this case was 79%. This limitation was

also observed in the analysis of PetriNet2PNML and R2ML2WSDL, where our analysis technique

obtained a traceability coverage of 88% and 73.7%, respectively (Table 5.3).

6https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language
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3. Context-less Helper Attributes: In ATL, helper attributes can be seen as helper rules without

parameters. They are commonly used to define context-dependent constants. The context of a helper

attribute can be omitted in order to make it globally accessible to the expressions of a transformation,

regardless of their scope. Our analysis technique does not guarantee the correct individualization of

binding tuples in context-less helper attributes. In fact, 3 context-less helper attributes were found

in KM32DSL (Table 5.2). This transformation also contains 6 cross-referenced target attributes. In

this case, the presence of both types of binding expressions limited the traceability coverage of our

technique to 86.7% (Table 5.3).

4. Local Variables in Matched Rules: In ATL, a matched rule can optionally include a using

section in order to define local variables. In the 25 transformations under analysis, local variables

were used to flatten source attributes with high multiplicity, into collections of primitive types,

i.e., SimpleClass2SimpleRDBMS (8 local variables, Table 5.2), and to initialize default attributes

in malformed source elements, i.e., Mantis2XML (19 local variables, Table 5.2). Even though

our analysis technique considers local variables defined in helper rules, it does not consider those

defined in matched rules. The use of local variables in matched rules is relatively rare in our

evaluation dataset. However, we believe they can be highly useful to practitioners and researchers

alike. The ability of collecting traceability links from local variables defined outside helper rules

will be included in our future work.

5.4.2 Evaluation: Model-to-Text Traceability Analysis (Acceleo)

The 18 M2T transformations used in the evaluation of our traceability-analysis technique correspond

to the 5 code-generation projects available in the Acceleo Example Repository:

1. AcceleoAndroid - Obeo: a code generator for the construction of multi-layered Android

applications.

2. Ecore2Python: a code generator for the rapid prototyping of object-oriented architectures in

Python.

3. Ecore2UnitTests: a code generator to support the the orchestration of test suits built-on JUnit.

4. UML2JAVA, and UML2Java - Helios: two code generators for the construction of Java

applications based on high-level specifications.

Table 5.4 presents the characterization of the binding expressions in our M2T evaluation

dataset. Table 5.5 presents the traceability coverage of our traceability-analysis technique for M2T

transformations.
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Our traceability-analysis technique for M2T transformations obtained an average

coverage of 85.4%.

Table 5.4: Acceleo Transformations - Expression Metrics

Project Transformation Simple Exp. Loop Exp. Conditional Exp. Template Queries

AcceleoAndroid - Obeo

AndroidManifestXML 2 0 0 0
DBadapter 28 0 0 2
Edit 34 0 0 1
EditXML 12 0 0 0
List 17 0 0 0
ListXML 1 0 0 0
ListRowXML 2 0 0 0
StringsXML 3 0 0 0

Ecore2Python Factory 13 4 0 2
Init 16 3 1 7

Ecore2UnitTests
AbstractTestClass 1 0 0 1
CommonFiles 3 0 0 0
EnumerationTest 17 0 0 1

UML2Java
ClassJavaFile 25 6 6 13
EnumJavaFile 4 1 0 4
InterfaceJavaFile 9 4 2 5

UML2Java - Helios ClassBody 33 4 6 12
InterfaceBody 2 3 1 4

Table 5.5: Acceleo Traceability Analysis - Metrics

Project Transformation Explicit
Bindings

Implicit
Bindings

Total
Bindings

Bindings
Collected

Bindings
Missed

%
Collected

AcceleoAndroidExample

AndroidManifestXML 2 0 2 2 0 100.0
DBAdapter 29 0 29 28 1 96.6
Edit 35 0 35 34 1 97.1
EditXML 12 0 12 12 0 100.0
List 17 0 17 16 1 94.1
ListXML 1 0 1 1 0 100.0
ListRowXML 2 0 2 2 0 100.0
StringsXML 3 0 3 3 0 100.0

Ecore2Python Factory 17 4 21 17 4 81.0
Init 22 5 27 26 1 96.3

Ecore2UnitTests
AbstractTestClass 2 0 2 1 1 50.0
CommonFiles 3 0 3 3 0 100.0
EnumerationTest 18 18 36 17 19 47.2

UML2Java
ClassJavaFile 42 6 48 30 18 62.5
EnumJavaFile 5 0 5 5 0 100.0
InterfaceJavaFile 17 2 19 16 3 84.2

UML2Java - Helios ClassBody 48 9 57 30 27 52.6
InterfaceBody 7 1 8 6 2 75.0

In our evaluation dataset, 13% of the M2T binding tuples are implicit. Similarly to M2M

transformations, 66% of M2T binding expressions in our evaluation dataset are simple. 7% of all

binding tuples were found in loop expressions, and 5% in conditionals. Finally, 18% of the binding

expressions use template queries.
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Limitations

Let us now discuss the limitations of our analysis technique for M2T transformations and the cases

where it obtained a low traceability coverage.

1. Template Queries: Similarly to helper rules in ATL, Acceleo enables developers to define

template queries in order to encapsulate factorized binding expressions. Our current implementation

does not include a mechanism to gather traceability links from template queries. The main challenge

behind the analysis of template queries is to determine their location within a transformation

codebase. This requires a static analysis technique to interpret the import statements in the header of a

transformation template, in order to in-line their corresponding binding expressions. Transformations

such as Factory in Ecore2Python, ClassJavaFile in UML2Java, InterfaceBody in UML2Java, and

EnumerationTest in Ecore2Python, heavily rely on utility templates that are exclusively comprised

of template queries. This effectively limited the traceability coverage of our technique to 81%, 62%,

75%, and 42%, respectively (Table 5.5).

2. Template Cross-referencing: Cross-referenced templates import other templates, and use

their generation capabilities from outlying sections of code. Our current analysis technique does not

analyze cross-referenced templates, as they pose similar analysis challenges to template queries.

As a concrete example, Init in Ecore2Python includes multiple cross-referenced templates, which

reduced the traceability coverage of our analysis technique, i.e., 96%.

5.5 Threats to Validity

5.5.1 Internal Validity

Are there unknown factors which might affect the outcome of the evaluation? – In order to evaluate

our traceability-analysis technique we measured its traceability coverage in the context of 25 ATL

M2M transformations, and 18 M2T transformations. The transformations used in our evaluation

were manually inspected by two researchers with 2 and 6 years of experience. The main goal of

the inspection process was to characterize the binding expressions of the transformations and their

corresponding traceability links.

In order to mitigate potential errors, the two researchers inspected the transformations indi-

vidually. In turn, a conflict resolution meeting was conducted in order to examine categorization

disagreements. Researchers compared the traceability links collected by our analysis tool, with those

obtained in the manual inspection process. The traceability coverage of each transformation was

evaluated by both researchers independently. Their results were consolidated in a final inspection

meeting. We do not see any significant threats to the internal validity of our evaluation.
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5.5.2 External Validity

To what extent is it possible to generalize the findings? – The limited number of model trans-

formations used to measure the coverage of our analysis technique is a concern for the external

validity of our evaluation. The 25 ATL M2M transformations were obtained from the ATLZoo, a

research-oriented transformation repository. Furthermore, the 18 Acceleo M2T transformations

were obtained from the Acceleo Example Repository. This repository is hosted by Obeo, the

principal strategic partner of the Eclipse Foundation for model-transformation technologies. We

can not claim that the results of our evaluation process can be generalized to other transformation

languages. However, our conceptual framework is generalizable to any transformation language

built-on OCL. Furthermore, Acceleo and ATL are aligned to the OMG’s Query/View/Transformation

(QVT) standard for M2M transformations [156], and the Model to Text Transformation Language

(MOF) standard for M2T transformations [157], respectively. Therefore, the effectiveness of our

analysis technique provides considerable insights regarding its extensibility to other relational and

template-based transformation languages that comply with the same set of standards.

Given that the transformations used in our evaluation have only been used in a research en-

vironment, we can not claim that the results of our evaluation can be generalized to industrial

transformation ecosystems. To the best of our knowledge, our traceability-analysis technique

is the first of its kind to be evaluated using a non-trivial evaluation dataset. Considering that

model-transformation languages are a fairly new technology, and are yet to be adopted by the

software-engineering community at large, our work provides a first step towards increasing the

evaluation rigor of metamodel-level traceability-analysis techniques.
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6

ChainTracker

In this chapter, we present ChainTracker, a metamodel-level traceability-analysis environment for

model transformations. ChainTracker implements the traceability-analysis technique presented in

Chapter 5, and it adheres to the traceability conceptual framework presented in Chapter 4. The

usability of ChainTracker is evaluated in Chapter 7.

6.1 The ChainTracker Analysis Environment

ChainTracker identifies and visualizes the end-to-end traceability links of a transformation chain

based on the traceability links collected from individual M2M and M2T transformations. It

takes as input one or multiple model transformations, along with their corresponding source

and target metamodels, and optionally model instances that conform to these metamodels. The

analysis environment considers traceability links as symbolic dependencies between three main

artifacts, (a) a transformation’s source metamodel, (b) a transformation’s target metamodel, and

(c) a transformation’s binding expressions. Likewise, ChainTracker considers traceability in M2T

transformations as symbolic dependencies between (a) a transformation’s source metamodel, (b) a

transformation’s binding expressions, and (c) the lines of text generated after its execution.

A transformation ecosystem can be understood as implementation units with runtime behaviors,

or as a collection of static elements that are bound to each other at development time. The

ChainTracker analysis environment presents two views of a transformation ecosystem using an

interactive multi-view approach. According to Clements et al. [158], a view can be understood as

the representation of a set of system elements and the relationships associated with them. Each

view defines the concrete and abstract syntaxes of the elements and relationships of the system.

The goal of having multiple views for a software system is to enable developers to think about the
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architecture of a software system in multiple ways simultaneously. In the context of model-driven

engineering, the GEMOC Studio [159, 160] integrates different language workbenches by means of

multiple views that represent their operational semantics at the model-level (Chapter 2). In [161],

Soni et al. present the four types of views that allow developers to reflect on a system’s architecture

using complementary perspectives:

1. The conceptual view describes a system in terms of its design elements and relationships.

2. The module view presents a system as a set of implementation or functional units.

3. The execution view reflects on the the runtime behavior and interactions of a system.

4. The code view portrays how a system’s implementation units relate to non-software elements

in its environment.

ChainTracker proposes a visualization technique for the module and execution views of a

transformation ecosystem. It enables developers to visualize the different artifacts that comprise an

ecosystem and its execution mechanics (at the metamodel-level), as well as to use projectional code

editors to simultaneously explore its underlying transformation codebases.

Figure 6.1: The ChainTracker Traceability Analysis Environment

The ChainTracker analysis environment is divided in three main areas: the transformation

visualizations, the projectional code editors, and the contextual tables (Figure 6.1-A, B, and C,

respectively). Each area of the analysis environment is synchronized with each other to provide
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developers with an unified and context-aware experience. ChainTracker helps developers to investi-

gate how source-metamodel elements and their attributes are transformed into different intermediate

metamodels, and into final textual files. ChainTracker not only allows developers to explore the

visualizations of M2M and M2T transformations, but also to project their information onto the

analyzed codebases using text highlighters. Furthermore, if concrete model instances are provided

to the analysis environment, ChainTracker is capable of executing transformation ecosystems, in

order to include generated textual files in the traceability analysis and visualization process. Let

us briefly discuss each one of the areas of the environment using the Library to Anonymous Index

example presented in Chapter 4.

6.1.1 The Transformation Visualizations

ChainTracker provides two different types of transformation visualizations: the overview visual-

ization (Figure 6.2) and the branch visualization (Figure 6.3). Developers can switch between

visualization types using ChainTracker’s command menu (Figure 6.1-D)

The ChainTracker Overview Visualization

The overview visualization presents a module view of the ecosystem under analysis. This view

enables developers to abstract the complexity of individual and isolated transformation scripts, into

a single picture that summarizes its compositional structure. It follows a graph-based approach in

which blue nodes represent the source and target artifacts of a transformation step. In the case of

M2M transformations, blue nodes portray source and target metamodels. In M2T transformations,

blue nodes portray textual templates and generated textual artifacts such as code. Edges in this

visualization diagrammatically depict dependencies between the steps of a transformation chain. As

a concrete example, Figure 6.2 portrays the overview visualization of the Library to Anonymous

Index example.

The overview visualization can be used to quickly obtain information about the order of prece-

dence of the transformation in a complex transformation ecosystem. Developers can click on the

edges of the visualization to obtain information boxes with details about the ecosystem’s transfor-

mation scripts, code templates, and generated textual artifacts. For example, Figure 6.2-A presents

information corresponding to the transformation rules contained in the Book2Publication transfor-

mation (Listing 4.1, line 5 and 15, respectively), Figure 6.2-B portrays the templates comprised of

the Publicationt2HTML transformation (Listing 4.2, line 2), and Figure 6.2-C presents the list of

the generated files derived after its execution, i.e., index.html.

ChainTracker automatically identifies the dependencies between transformation scripts and

determines its order of precedence in the case of model-transformation chains. The overview
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Figure 6.2: The ChainTracker Overview Visualization

visualization provides quick insights on the branching structure of a composition, by creating a

graphical representation of its major implementation units. Summarizing information about the

ecosystem’s high-level structure enables developers to assess and, potentially, optimize its overall

design and correctness [162].

In order to study how well the information captured by the metamodels of an ecosystem is

used by its transformations, developers can click on the nodes of the overview visualization to

determine their coverage throughout the different steps of a transformation chain (Figure 6.2-D).

Coverage metrics provide insights about how well the information captured by a metamodel is

used by the transformations of an ecosystem. In effect, coverage information is a vital component

when reflecting about the quality of a transformation composition, or when assessing the impact of

evolutionary changes. In ChainTracker, coverage metrics are summarized in contextual pie-charts

that contain in- and out-coverage metrics. The in-coverage metric reports the percentage of elements

in a metamodel that are effectively targeted by the bindings defined in the transformations of an

ecosystem. The out-coverage metric represents the percentage of elements in a metamodel used by

transformation bindings to either generate textual artifacts, or to derive intermediate models in a

multi-step transformation chain. This information might lead developers to remove unused elements

from a metamodel, or to take advantage of their semantic value and include them in the scope of a

transformation. Maximizing metamodel coverage makes transformations less convoluted and less

error prone while, at the same time, freeing metamodels from unused semantic constructs [22].

In the Library to Anonymous Index example, the out-coverage of the Publication metamodel is

100% (Figure 6.2-D). This means that all the elements of the Publication metamodel are used by the

Bank2Report transformation. Conversely, the in-coverage metric for the same metamodel is 100%
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uncovered since it is the root of the transformation chain, and no binding targets its elements.

The ChainTracker Branch Visualization

The branch visualization presents an execution view of the transformation ecosystem under analysis

(Figure 6.3). The goal of the branch visualization is to present information about the fine-grained

traceability links that exist throughout a transformation ecosystem. This visualization aims at

portraying all the symbolic dependencies that individual binding expressions establish between

metamodel elements and their properties, textual templates, and potential generated artifacts.

Figure 6.3: The ChainTracker Branch Visualization

The branch visualization follows a graphical notation inspired by parallel-coordinate visualiza-

tions for hyper-dimensional data [163]. Parallel coordinates have been widely used to represent the

relationships between multidimensional datasets. They are commonly used to represent relation-

ships between continuous numerical variables grouped in interdependent classes1. In the context

of transformation ecosystems, the artifacts in each step of a transformation chain, including the

resulting files obtained after its execution, can be considered as an interdependent set of categorical

information. Each set is interconnected by means of transformation expressions that bind their

comprising elements.

The ultimate purpose of a transformation chain is to reduce, split, merge, or augment the infor-

mation provided as input to systematically transform it, into one or multiple output representations

that conform to a textual or metamodel syntax. In transformation ecosystems that involve M2M and

M2T transformations we can find at least three semantic dimensions in the transformation process:

metamodels, textual templates, and generated textual artifacts. The branch visualization captures

each step of a transformation composition and portrays its corresponding artifacts in individual
1Multiple examples of parallel coordinate visualizations are available at https://syntagmatic.github.io/parallel-

coordinates/
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coordinate dimensions.

Figure 6.3 portrays the branch visualization of the Library to Anonymous Index case study.

Each semantic dimension of its underlying transformation chain is represented using vertical

lines. Depending on the nature of each transformation step, its corresponding graphical notation

contains a different set of artifacts. In the case of M2M transformations, vertical lines contain

blue boxes that portray the elements of its source and target metamodels; black dots inside these

boxes represent their corresponding properties (Figure 6.3, Book and Publication metamodels). For

M2T transformations, vertical lines contain blue boxes that represent individual template modules,

and black dots portray binding statements embedded in templates that access the properties of a

metamodel element (Figure 6.3: generateHTML.mtl). Moreover, in the context of generated textual

artifacts, each blue box represents a generated text file, and black dots individual lines of text

generated inside the file (Figure 6.3: index.html). Blue boxes are multipurpose visual elements for

artifacts that have hierarchical structure, such as metamodels (that contain elements and properties),

templates (that contain template modules and individual binding statements), and generated textual

files (that include non-variable text snippets, and variable generated lines of text). The branch

visualization combines the multidimensional properties of parallel-coordinate visualizations, and

the scalability and filtering power of hierarchical edges [131] to visualize adjacency relations in

hierarchical data.

Figure 6.3 also presents the different types of edges used to represent traceability links in a

transformation ecosystem. These include M2M transformation bindings (Figure 6.3 - A), M2T

transformation bindings (Figure 6.3 - B) and generation links (Figure 6.3 - C). As mentioned

before, bindings represent all the potential fine-grained traceability links between artifacts of the

transformation ecosystem. They dictate how the properties of a metamodel element are used in

order to derive a target metamodel property (in the case of M2M transformations) or a line of

text (in the case of a M2T transformation). Furthermore, generation links are understood as the

runtime dependencies between a M2T transformation and a generated textual file. They represent

the dependency relationships between a textual template, and the lines of text generated after its

execution (Chapter 5).

The branch visualization can be used to grain access to end-to-end traceability information of a

transformation chain. It can be used to identify the metamodel and binding expressions that intervene

in the generation of a line of code. Furthermore, this visualization enables developers to identify

upstream and downstream metamodel dependencies in isolated or composed M2M transformations.

In order to help developers to more accurately identify such dependencies, ChainTracker visually

distinguishes between explicit and implicit bindings (Chapter 4) (Figure 6.3, green and red edges,

respectively). As mentioned before, explicit bindings reflect the dependency relationships caused by
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assignment expressions in a transformation, while implicit bindings portray dependency relationships

given by intermediate statements that manipulate, constrain, or navigate the structure of a metamodel.

Distinguishing between explicit and implicit bindings enables developers to study the coarse-

grained dependencies when assessing the impact of changes in a transformation ecosystem. Further-

more, it also helps them to consider individual statements in complex expressions, and potentially

discover fine-grained artifacts that are indirectly bound by navigation or constraint statements. In the

Library to Anonymous Index example, there are multiple implicit bindings between the properties of

the Book and Chapter source elements, and the properties of the Publication target element (Figure

6.3 and Table 4.1).

The ChainTracker Binding Filters

ChainTracker includes two main filtering mechanisms to isolate elements and bindings of interest,

namely element filters and binding filters. Using element filters (Figure 6.4 - A) developers can

select multiple metamodel elements to study all of its dependencies. Furthermore, using binding

filters (Figure 6.4 - B) developers can select one or multiple elements in the visualization, and isolate

all of its related upstream or downstream binding expressions.

Figure 6.4: ChainTracker - Branch Visualization Filtered

Figure 6.4 presents the branch visualization of the Library to Anonymous Index transformation

chain (Chapter 4). It portrays the result of applying a binding filter to investigate the origins of

the generated line 14 in index.html. This line is generated by the template line 12 in Publica-

tion2HTML.mtl, by querying the property nbPages of the Publication element in the Publication

metamodel. Moreover, it depends on the template line 7 which iterates over the publications property

of the same element. Furthermore, the property nbPages is in turn derived by Book2Publication

using the properties nbPages, chapters, and books of the Book, Chapter, and Library elements,
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respectively (Listing 4.1, lines 20 and 31).

As metamodels and transformations grow in size and complexity, so does the number of ar-

tifacts that need be represented in the ecosystem’s views. As a result, our parallel-coordinate

implementations can potentially become cluttered when dealing with extremely large ecosystems.

We have adopted a parallel coordinate arrangement similar to the one presented in [164]. Each

categorical dimension is placed equidistant to each other and perpendicular to the x-axis. Fur-

thermore, each category is allocated space proportional to the number of its comprising elements.

We have found that for most of the ecosystems available in the literature, our current rendering

parameters make visualizations scalable and easy to understand. Nevertheless, ChainTracker allows

developers to manually modify the distance between dimensions in order to increase the usability of

its visualizations with larger ecosystems.

6.1.2 The ChainTracker Projectional Code Editors

It is important to mention that none of the existing approaches allow developers to

project information obtained from their interaction with the transformation visualiza-

tions onto transformation editors. This fundamentally limits their usability in the context

of supporting developers building and maintaining transformation ecosystems [165].

In [166], Myers et al. explored how conventional human-computer interaction (HCI) methods

can help researchers to better understand the needs of developers when dealing with complex

software artifacts. Particularly, Myers et al. have found that a key use for code visualizations is

to guide developers to the right code to look at, instead of being an aid to understanding on their

own. Following this principle, ChainTracker enables developers to project information they have

discovered in the visualizations onto textual editors, and vice versa.

ChainTracker offers a code projection menu where developers can find three types of projections,

namely downstream projections, upstream projections, and single binding projections (Figure 6.5).

In all cases, developers can select artifacts in the visualizations, in order to find their original textual

representation. To understand their usage, let us briefly examine four examples.

1. Figure 6.5-A showcases the use of downstream projections in order to isolate the textual

representation of the bindings associated to the Book element of the Book metamodel. In

this case all the related bindings are located in the Book2Publication (M2M) transformation

(Listing 4.1). However, in Chapter 3 we discuss how downstream dependencies in multi-
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Figure 6.5: ChainTracker - M2M Binding Projections

branched transformation ecosystems can be found in multiple transformations. In effect,

M2M binding expressions are highlighted by first locating the rule where each expression

is located (yellow shadow), the rule’s name (cyan), the property targeted by the binding

(blue), and its comprising binding tuples (green and red for explicit and implicit bindings,

respectively).

2. Figure 6.5-B presents the result of applying downstream projections to obtain the textual rep-

resentation of bindings associated to the Chapter element of the Book metamodel. A similar

result will be obtained when applying upstream projections to elements of the Publication

metamodel. ChainTracker identifies helper calls as implicit bindings, and helps developers to

follow their execution using code projections.

3. Figure 6.5-C presents the result of applying a single binding projection in order to isolate the

expressions that realize the binding between the “books" property of the Library element, and

the “publications" property of the Database element.

4. Figure 6.6-A depicts the result of selecting a M2T binding, and projecting it onto the textual

editor (B). In this particular case the editor showcases the contents of the Publication2HTML

(M2T) transformation (Listing 4.2). It highlights the binding expression that uses the property

“prologue" of the Publication element in the Publication metamodel. Information relevant to

the current selection is conveyed in the contextual tables of the environment (C). Moreover,

generation links can also be subject of the projections onto generated textual files.
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Figure 6.6: ChainTracker - M2T Binding Projections

Code projections help developers to navigate the visualizations and map their semantics onto

the expressions that they represent. They also provide a straight forward strategy to find unused

code in transformation scripts, so they can be refactored or deleted. In this context, a portion of a

transformation script can be considered orphan if it remains clear after projecting all of its associated

bindings from the branch visualization. ChainTracker also includes a reverse code projection feature.

It enables developers to select portions of text in templates and generated files, in order to investigate

its precise graphical representation (Figure 6.1-D)2.

6.1.3 The ChainTracker Contextual Tables

One of the strategies that ChainTracker uses to minimize the amount of information displayed in

its visualizations is to omit details about the names and properties of the metamodel elements and

binding expressions. However, this information might be of high value to developers debugging

complex transformation expressions. The contextual tables present information that reveal details

not available in the visualizations of the environment (Figure 6.1-C).

Developers can select a metamodel element in the visualizations, and the three contextual

tables will display information about the name and type of its properties, related upstream bindings

(bindings that have as target the selected element), and related downstream bindings (bindings

that use the selected element as the source for the creation of another element). Developers can

also select individual bindings to obtain information about the transformation where the binding is

located. When a binding is selected, the three contextual tables will portray information regarding

the name of its corresponding transformation, and binded elements and properties. If the selected

binding is a M2T binding, its template location will be presented along with its expression type, i.e.,

binding due to a simple expression, conditional expression, or loop expression (Chapter 5).

2A more elaborated example of this feature can be found in https://guana.github.io/chaintracker/
tutorial.html.
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7

ChainTracker Usability Evaluation

In this chapter, we present an empirical study that evaluates the usability of ChainTracker using

Eclipse Modeling (with ATL and Acceleo plugins) as the industry baseline. This chapter is structured

as follows: Section 7.1 presents the design of our study, including our hypotheses, dependent and

independent variables, participants, and the traceability-driven tasks proposed in the study. Section

7.2 discusses the protocol of the study. Section 7.3 presents our results. Section 7.4 presents our

analysis. Finally, Section 7.5 presents the threats to validity and our mitigation strategies.

7.1 Empirical Study Design

We investigate the performance of developers when reflecting on the execution semantics of M2M

and M2T transformations. We measure the accuracy and efficiency of developers when asked

to identify dependency relationships between transformation artifacts using ChainTracker, and

compare their performance with that of developers using Eclipse Modeling. We use PhyDSL and

ScreenFlow (Chapter 3) as the evaluation object systems. Concretely, we investigate two research

questions:

• RQ1: Do developers using ChainTracker identify metamodel and generation dependencies in

transformation ecosystems more accurately and efficiently than those using Eclipse Modeling?

• RQ2: Do the size and complexity of transformation ecosystems affect the effectiveness of

ChainTracker in helping developers identify their metamodel and generation dependencies?
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7.1.1 Hypotheses

In this study, we hypothesize that enabling developers to interactively explore the execution seman-

tics of a transformation ecosystem can significantly improve their performance when reflecting

on an ecosystem’s metamodel and generation dependencies. In order to investigate our research

questions, we outlined two individual null hypotheses:

• H01: Developers spend an equal amount of time identifying metamodel and generation

dependencies in model transformations using ChainTracker and Eclipse Modeling editors.

• H02: Developers provide equally correct answers identifying metamodel and generation

dependencies in model transformations using ChainTracker and Eclipse Modeling editors.

7.1.2 Dependent Variables

Considering the hypotheses H01 and H02, our experiment has two dependent variables on which

our treatments are compared:

• V arA: Time developers spend solving each task.

• V arB: Developers’ accuracy solving each task.

7.1.3 Independent Variables

The four independent variables of this study are summarized in Table 7.1. Variables V arCT1 and

V arEM1 represent the tasks designed to evaluate the performance of developers working in the

context of ScreenFlow, and V arCT2 and V arEM2 in the context of PhyDSL, using ChainTracker

(CT) and Eclipse Modeling (EM), respectively.

Object System Tasks CT Tasks EM
Object 1: ScreenFlow V arCT1 V arEM1

Object 2: PhyDSL V arCT2 V arEM2

Table 7.1: ChainTracker Evaluation - Independent Variables.

7.1.4 Tasks

In this study, we measured the performance of developers when asked to identify dependency

relationships between artifacts in two transformation ecosystems of different complexity. In order to

do so, we created a set of task templates that aim at understanding how developers identify depen-

dency relationships at different levels of granularity, using different tool treatments. These tasks are

grouped in five main families, namely, (a) determining metamodel coverage and expression location,
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(b) identifying metamodel dependencies in M2M transformations, (c) identifying metamodel depen-

dencies in M2T transformations, (d) identifying generation dependencies in M2T transformations,

and e) identifying generation dependencies in model transformation chains (Section 7.1.4 - 7.1.4).

The proposed question templates can be used to replicate this study with different object systems.

Appendix A.1 presents the questionnaires that instantiate the proposed templates in the context of

PhyDSL and ScreenFlow1. Let us briefly present each family of tasks.

Determining Metamodel Coverage and Expression Location

The goal of this family of tasks is to investigate how developers identify the major components of a

transformation ecosystem, and measure their performance when inferring its high-level composi-

tional structure. Tasks in this family use the following templates:

• Are there any unused elements in the [metamodel-name] metamodel? if so which ones?

• What transformation rule contains the binding expression [expression]?

• What transformation script contains the [rule-name] rule?

• What files does the [template-name] template generate?

Identifying Metamodel Dependencies in M2M Transformations

This set of tasks requires developers to identify the dependencies that exist between the source and

target metamodels of a single M2M transformation. This family of tasks is divided in two categories,

namely element- and property-level dependency tasks.

More often than not, property-level dependencies are localized in non-trivial binding expressions

that realize the intent of a transformation script; these include metamodel navigation statements

or procedural calls to helpers. Tasks in this family are also distinguished by the direction of the

dependencies that need to be identified. While some tasks require developers to identify upstream

dependencies, other tasks investigate their performance identifying downstream dependencies. Tasks

in this family are specified using the following templates:

• What metamodel elements are used in the creation of the [metamodel-name ! element-name]

element? (i.e., element upstream dependencies)

• What metamodel elements are created using the [metamodel-name ! element-name] element?

(i.e., element downstream dependencies)
1The PhyDSL and ScreenFlow source code, and corresponding ChainTracker visualizations can be found at:

https://github.com/guana/chaintracker-eval.
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• What metamodel elements are created using the property [property-name] of the [metamodel-

name ! element-name] element? (i.e., property downstream dependencies)

Identifying Metamodel Dependencies in M2T Transformations

This family of tasks investigates how developers identify upstream dependencies in M2T transfor-

mations. Concretely, they ask developers to determine the metamodel elements required for the

execution of one or multiple bindings expressions in a M2T transformation. Furthermore, they ask

developers to evaluate whether such elements have upstream dependencies in M2M transformations

that are potentially linked in previous steps of a transformation chain. Tasks in this family follow

the template:

• Considering the entire transformation chain, what metamodel elements does the template line

[line-number] in [template-name] depend on?

Identifying Generation Dependencies in M2T Transformations

This set of questions requires developers to identify dependencies between generated textual artifacts,

e.g., code, and their originating M2T transformations. They are presented to the participants using

the following template:

• What template lines in [template-name] are used in the generation of line [line-number] in

[generated-file-name]?

Identifying Generation Dependencies in MTCs

This collection of tasks investigate how developers identify the dependencies of a generated textual

artifact in a holistic fashion. They ask developers to determine all the metamodel elements and

properties that intervene in the generation of one or multiple lines in a generated textual artifact.

They are also divided in two categories; namely, element- and property-level dependency tasks. The

tasks in this family use the following templates:

• Considering the entire transformation chain, what metamodel elements does the generation of

line [line-number] in [generated-file-name] depend on?

• Considering the entire transformation chain, what metamodel properties does the generation

of line [line-number] in [generated-file-name] depend on?

7.1.5 Detailed Hypotheses

Taking into account our two high-level null hypotheses and our two object systems, this study tries

to reject four detailed hypothesis:
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H0V arA1 : Ṽ arACT1 = Ṽ arAEE1

H0V arA2 : Ṽ arACT2 = Ṽ arAEE2

H0V arB1 : Ṽ arBCT1 = Ṽ arBEE1

H0V arB2 : Ṽ arBCT2 = Ṽ arBEE2

Hypotheses H0V arA1 and H0V arA2 compare the median time spent by developers solving the

proposed tasks in single and multi-branched transformation chains, respectively (i.e., developers

spend an equal amount of time solving questions using ChainTracker and Eclipse editors for

single and multi-branched transformation chains). Moreover, hypotheses H0V arB1 and H0V arB2

compare the median accuracy (in terms of task solution correctness) of developers solving the

proposed tasks on single and multi-branched transformation chains, respectively (i.e., developers

provide equally correct answers using ChainTracker than they do using Eclipse editors for single

and multi-branched transformation chains).

7.1.6 Participants

This study involved 25 software engineers with an average of 7.5 years of software development

experience in industry. All participants were enrolled in a professional masters program which

includes an intensive course on software-engineering automation using model transformation

languages. The participants had an average of 6 months of training in rule- and template-based

model-transformation languages. Their training also included Eclipse Modeling as their main

development environment for model transformations. All of the participants reported having used

Eclipse in their professional development practice, and Eclipse Modeling in the context of their

graduate course in model transformation technologies. None of the participants had experience with

model transformation technologies in an industrial setting. Furthermore, none of the participants had

previous knowledge of the case studies used in this study. Our pool of participants is representative

of a community in which developers have only introductory training on model-transformation

technologies, yet considerable experience in the general software engineering field.

7.1.7 Data Analysis

Given the sample size and the non-normal distribution of the data collected in this study, we adopted

a Mann-Whitney “U” non-parametric test to investigate our hypothesis propositions. The Mann-

Whitney compares the median of the observations for datasets with pronounced outliers. This makes

the test a suitable analysis tool for small unpaired datasets with skewed distributions. All of our

hypotheses were evaluated using a two-tailed version of test. In this study, we consider an alpha

level with a p-value lower than 5%, thus we consider an acceptable probability of 0.05 for Type-I

error, i.e., rejecting the null hypothesis when it is true.
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7.2 Empirical Study Protocol

The protocol of the study was divided in three sessions conducted in the course of one week (Figure

7.1). Session 1 (training session) involved an introductory tutorial on the features of ChainTracker.

Sessions 2 and 3 involved two independent working sessions in which 25 participants solved the

tasks assigned for the object systems of the study.

Group B1: 5 Participants - ChainTracker

Group B2: 5 Participants - Eclipse Modeling

Session 3: Working Session B (Day 3)

Group A1: 7 Participants - ChainTracker

Group A2: 8 Participants - Eclipse Modeling

Session 2: Working Session A (Day 2)
Session 1: Training

25 Participants
(Day 1)

Figure 7.1: The Empirical Study Protocol

7.2.1 Training

The training session was structured in two 60 minute parts divided by a 15 minute break. The first

half of the session involved a tutorial on the use of ChainTracker. The second half consisted of a

laboratory workshop that provided hands on experience with the analysis environment.

The 25 participants received a presentation that introduced a case study of similar complexity

to Library to Anonymous Index in Chapter 4. The case study was used to explore the features of

ChainTracker and the graphical notation of its visualizations. Additionally, participants completed

a worksheet with questions conforming to the templates described in Section 7.1.4. Two research

assistants helped participants to solve questions as they completed the guide2. At the end of the first

session, the 25 participants were randomly divided in two groups of 15 and 10 participants, namely,

Group A and B, respectively. Group A was assigned to the working session A, and Group B to the

working session B.

7.2.2 Working Sessions

Participants assigned to Group A were randomly divided in two sub-groups of 7 and 8 participants,

namely Group A1 and A2, respectively. Similarly, participants in Group B were randomly divided

in two sub-groups of 5 participants, namely Group B1 and B2. Each sub-group was assigned

to individual computer laboratories with virtual machines containing ChainTracker and Eclipse

Modeling with ATL and Acceleo plug-ins. Participants in Working Sessions A and B were assigned

ScreenFlow and PhyDSL as their case studies, respectively.
2The training material and case study can be found at https://guana.github.io/chaintracker/

tutorial.html.
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At the beginning of each session, participants received a 15 minute presentation on the major

components of their corresponding case studies. This presentation included 10 minutes of questions

and final setup. All participants received a printed copy of the metamodels that comprise their

assigned case study. Finally, the participants in Groups A1 and B1 were instructed to solve 25 tasks

using ChainTracker, and participants in Groups A2 and B2 using Eclipse Modeling (Appendix A.1).

Both working sessions had a maximum time restriction of 2.5 hours. Each computer laboratory

was supervised by a research assistant who was available to answer high-level questions about both

Eclipse and ChainTracker, as well as the setup of the virtual machines. At the end of both working

sessions participants were rewarded with a gift card equivalent to $25CAD for their time.

7.2.3 Data Collection

The working sessions were instrumented with a survey application developed by our research team3.

Each participant logged into the survey application using a unique ID assigned before the beginning

of the session. The application presents one task at the time until all tasks in the questionnaire are

answered. The application does not allow participants to skip tasks. Furthermore, it does not allow

participants to return to a task once it has been completed. Our survey application measures the

total time spent by the participant in each task. The total time is calculated as the time between a

task is presented to the participant, and the time a valid answer is submitted.

The survey application is capable of presenting three types of questions, namely, multiple-

choice questions, list-based questions, and multiple-selection questions. Each type captures the

participant’s answers using different mechanisms. Multiple choice questions receive one answer

from a predefined set of options. List-based questions receive one or multiple open-ended answers,

and multiple selection questions receive one or multiple answers from a predefined set of options.

Our survey application stores the results of a session in a remote server using a REST API.

It is important to mention that tasks in each questionnaire were organized to make the experience

of the participants engaging and balanced throughout the entire session. Similar tasks (i.e., tasks

belonging in the same family) were distributed throughout the questionnaires, in almost regular

intervals, and their level of difficulty was considered to avoid having collections of consecutive

task with disproportionate complexity level. We categorized the difficulty of the each task in three

increasing levels –easy, medium, and hard– based on our observations during the preliminary pilot

studies. The questionnaires took this classification into account and they do not present more than

two hard questions or more than three medium questions, one after the other. Since participants

only use one tool treatment throughout the course of the study, counterbalancing was not sought.

3https://www.github.com/guana/surveygen
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In order to quantify the developers’ accuracy for each task, we designed a point-based scoring

mechanism similar to the one used in [167] and [168]. Each task in the questionnaire is scored

individually. For multiple choice questions each participant is given a single point if the selected

answer is correct. In the case of multiple selection questions, one point is given for each correct

option selected. Furthermore, half a point is taken for every incorrect option selected, as well as

for every correct option missed. Similarly, for list-based questions one point is given for correct

answers, and half a point is taken for incorrect or missed options.

7.3 Results

In this section, we present the results of our study. We use summary tables to present the performance

of developers in each family of tasks (Appendix A.2). Result summary tables are divided in two

main areas. The first area presents the p-values corresponding to the statistical evaluation of our

hypotheses. We present individual p-values for each of the dependent variables under consideration,

namely the time and accuracy of developers completing a task. The second area compares the mean,

standard deviation (SD), and median of the dependent variables across treatments. Furthermore,

summary tables include the maximum attainable score for each task, and two box and whisker

diagrams that portray the distribution of the recorded measurements for both variables under

consideration. In all diagrams, green boxes portray the distribution of measurements for participants

using ChainTracker (CT), and purple boxes for participants using Eclipse (EC).

7.3.1 Determining Metamodel Coverage and Expression Location

The goal of this family of tasks is to investigate the performance of developers identifying the

major components of a transformation ecosystem, and the high-level compositional structure of

its underlying transformations. Concretely, these tasks require developers (a) to identify the files

generated by a given M2T transformation, (b) to locate individual binding expressions in the

transformations of an ecosystem, and (c) to evaluate the coverage of an ecosystem’s metamodels.

Tables A.3 and A.4 (Appendix A.1) summarize the results for this family of tasks.

1. When identifying the files generated by a given M2T transformation in ScreenFlow (Q9

and Q10, Table A.3) developers were on average 63% more efficient with Eclipse than with

ChainTracker. This effect is less pronounced, i.e., 22%, in the case of developers working on

PhyDSL (Q9 and Q10, Table A.4). However, there is no substantial difference regarding the

accuracy of both groups of developers.

2. When asked to isolate individual binding expressions in ScreenFlow (Q1 and Q2, Table A.3),

developers supported by Eclipse were on average 29% more efficient than those using Chain-
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Tracker. In the context of PhyDSL, no performance difference was observed. Furthermore,

there is no difference regarding the accuracy of developers in the ecosystems under study.

3. Developers assessing the coverage of metamodels using ChainTracker were on average 46%

more efficient and 72% more accurate that those using Eclipse in ScreenFlow (Q17 and Q18,

Table A.3). On cursory examination, developers using Eclipse seem to be more efficient

assessing metamodel coverage in PhyDSL (Q17 and Q18, Table A.4). However, considering

their lower accuracy, we believe this group of developers only submitted partial answers.

Participants using ChainTracker were on average 200% more accurate assessing the coverage

of metamodels in PhyDSL.

There is no statistically significant evidence to reject any of our hypothesis propositions for

developers completing this family of tasks.

7.3.2 Identifying Metamodel Dependencies in M2M Transformations

This set of tasks investigates the performance of developers identifying the upstream and downstream

dependencies between a collection of metamodels, in the context of individual M2M transformations.

The results for this family of tasks are divided in two levels of granularity, namely identifying

element-level dependencies (Tables A.5 and A.6), and identifying property-level dependencies

(Tables A.7 and A.8, Appendix A.1).

1. ChainTracker improved the accuracy of developers assessing element-level dependencies in

the context of individual M2M transformations (Q3, Q4, Q11, and Q12, Tables A.5 and A.8).

Developers using ChainTracker were on average 83% more accurate, and 48% more efficient

than those using Eclipse, in both ecosystems under analysis.

2. Participants using ChainTracker were significantly more accurate than those using Eclipse

when determining property-level dependencies (Q23 and Q13, Tables A.7 and A.8), almost

900% more accurate, in fact. In terms of efficiency, participants using ChainTracker were on

average 36% faster than those supported by Eclipse in PhyDSL.

Considering our accuracy-related hypotheses, we can reject H0V arB1 (Q11: p=0.0310, and

Q12: p=0.0006), and H0V arB2 (Q11: p=0.0310, Q4: 0.0072, Q3: p=0.0065, and Q12: p=0.0065)

for developers identifying element-level dependencies. We can also reject our efficiency-related

hypothesis H0V arA1 (Q11: p=0.0021, Q4: p= 0.0139, and Q12: p=0.0012) in the case of developers

working on ScreenFlow. However, there is not statistically significant evidence to reject H0V arA2.

Finally, we have statistically significant evidence to reject our accuracy-related hypotheses, namely
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H0V arB1 (Q23: p=0.0046 and Q13: p=0.0491) and H0V arB2 (Q23 p=0.0412 and Q13 p=0.0393)

for developers identifying property-level dependencies.

7.3.3 Identifying Metamodel Dependencies in M2T Transformations

This family of tasks requires developers to identify the metamodel elements consumed by one, or

multiple, binding expressions in a M2T transformation, and to evaluate whether these elements

have upstream dependencies in a model-transformation chain. Tables A.9 and A.10 (Appendix A.1)

summarize the relevant results.

1. Developers using ChainTracker were on average 55% more accurate than those using Eclipse

(Q5, Q15, and Q22, Table A.9) in ScreenFlow. In the case of PhyDSL, the ChainTracker

advantage is even more pronounced. Developers using ChainTracker were 90% more accurate

than those using Eclipse (Table A.10).

We found statistically significant evidence to reject our accuracy-related hypotheses H0V arB1

(Q5: p= 0.0119 and Q22: p=0.0025), and H0V arB2 (Q5: p=0.0072, Q15: p=0.0097 and Q22:

p=0.0117) for developers identifying metamodel dependencies in M2T transformations. There is no

significant difference in the efficiency of developers completing this family of tasks.

7.3.4 Identifying Generation Dependencies in M2T Transformations

This set of tasks requires developers to identify dependencies between individual lines of text, e.g.,

code, and their originating M2T transformations. Tables A.11 and A.12 (Appendix A.1) summarize

the relevant results.

1. Developers using ChainTracker were on average 19% more efficient and 94% more accurate

than those using Eclipse (Q6, Q16, and Q25).

Although this difference is statistically significant for Q25 in ScreenFlow, and Q6 in PhyDSL,

there is no significant evidence to reject any of our hypothesis propositions for developers completing

this family of tasks.

7.3.5 Identifying Generation Dependencies in MTCs

This collection of tasks investigates how developers identify the upstream dependencies of a

generated textual artifact, i.e., the metamodel elements needed for the generation of one or multiple

lines of code. It is important to mention that this family of tasks inquires about the metamodel

dependencies throughout an entire transformation chain. The performance measurements for this

family of tasks are also divided in two levels of granularity, namely identifying element-level
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dependencies (Tables A.13 and A.14), and identifying property-level dependencies (Tables A.15

and A.16, Appendix A.1).

1. When identifying element-level dependencies in ScreenFlow, developers using ChainTracker

were on average 62% more accurate than developers using Eclipse. This effect is significantly

more pronounced in PhyDSL where developers were 100% more accurate (Q7, Q8, Q19,

Q20, and Q21, Tables A.13 and A.14). This observation is statistically significant for all the

tasks under consideration.

2. Developers using ChainTracker were 66% more efficient than those using Eclipse in Screen-

Flow. This finding is statistically significant for all tasks. In PhyDSL, we observed that

even though the median time spent by developers in these tasks is lower for developers using

ChainTracker, the difference is significant only in Q8.

3. When tracing property-level dependencies, ChainTracker developers were on average 68%

more accurate than those using Eclipse in both ecosystems under study (Q14, and Q24, Tables

A.15 and A.16). Similar to element-level dependencies, we observed that identifying end-to-

end property-level dependencies, in both linear and multi-branched transformation chains is a

challenging task. In this context, participants using Eclipse obtained a median accuracy score

of 0.5 and 1.0 for tasks with maximum attainable scores of 8.0 (Q14 in ScreenFlow) and 4.0

(Q14 in PhyDSL), respectively.

We found statistically significant evidence to reject our accuracy-related hypotheses, namely

H0V arB1 (Q7: p=0.0032, Q8: p=0.0073, Q19: P=0.0443, Q20: p=0.0007, and Q21: p=0.0007),

and H0V arB2 (Q7: p=0.0094, Q8: p=0.0072, Q19: p=0.0066, Q20: p=0.0055, and Q21: p=0.0055)

for developers identifying end-to-end element-level dependencies. Furthermore, we can reject

our efficiency-related hypothesis H0V arA1 (Q7: p=0.0093, Q8 p= 0.0012, Q19: p=0.0037, Q20:

p=0.0003, and Q21: p= 0.0003).

We can also reject our accuracy-related hypotheses, namely H0V arB1 (Q14: p= 0.0090, and

Q24: p= 0.04871), and H0V arB1 (Q14: p= 0.0066 and Q24: p=0.0248) for developers identifying

end-to-end property-level dependencies. With respect to our efficiency-related hypothesis, we

found statistically significant evidence that ChainTracker outperforms Eclipse Modeling in helping

developers analyzing end-to-end property-level dependencies. However, we believe that most of the

time, observations can not be fairly analyzed considering that most developers using Eclipse were

highly inaccurate. We require further analysis and additional empirical information to validate our

hypotheses for developers completing this type of task.
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7.4 Discussion

7.4.1 Determining Metamodel Coverage and Expression Location

Developers using ChainTracker performed less efficiently than developers using

Eclipse in locating individual binding expressions across the ecosystems under study.

At the same time, ChainTracker developers were considerably more accurate and

more efficient when determining the coverage of their metamodels. None of these

results, however, are statistically significant.

Tasks Q1 and Q2 require developers to isolate individual binding expressions in the the ecosys-

tems under study. Furthermore, Tasks Q9 and Q10 require developers to identify the files generated

by a given M2T transformation (Tables A.1 and A.2). We noticed that developers using Eclipse

relied on the pattern-matching features of the environment to complete these tasks. As shown in

Tables A.3 and A.4, this strategy proved very effective. Eclipse developers were between 24% and

51% more efficient than those supported by ChainTracker in Q1 and Q2, and between 22% and

63% more efficient in Q9 and Q10. As ChainTracker does not offer pattern-matching capabili-

ties, developers had to manually explore the transformations of the ecosystems to complete the

aforementioned tasks.

Tasks Q17 and Q18 require developers to determine the coverage of two metamodels in their

respective ecosystems, namely Mockup and GUI for ScreenFlow, and PhyDSL and Dynamics for

PhyDSL (Tables A.1 and A.2). Eclipse developers had to manually explore all the upstream and

downstream bindings that operate on each metamodel to evaluate its coverage. In ScreenFlow,

they had to examine 56 lines of code, corresponding to its single M2M transformation (Figure

3.14). In PhyDSL, they had to study a total of 243 lines of code, corresponding to its four M2M

transformations (Figure 3.1). Moreover, the Mockup and GUI metamodels of ScreenFlow have a

total of 14 metamodel elements, and the PhyDSL and Dynamics metamodels of PhyDSL have 47

elements. Indeed, manually examining large transformation codebases, looking for the usage of

dozens of metamodel elements, is a daunting, if not impossible, task.

Participants using ChainTracker were not required to manually study transformation codebases

to identify uncovered metamodel elements. Coverage information is presented in the overview visu-

alization using pie-charts that summarize the in- and out-coverage metrics for all of the metamodels

of an ecosystem. Furthermore, using ChainTracker’s branch visualization, developers were able

to identify metamodel elements that have no bindings attached to them, which makes uncovered

elements easy to identify (Figure 6.3). This information can be effectively used to precisely remove

unused metamodel elements and properties, and to identify portions of code that are never executed.
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7.4.2 Identifying Metamodel Dependencies in M2M Transformations

Developers using ChainTracker are significantly more accurate and more efficient than

those using Eclipse at identifying element-level dependencies in M2M transformations.

In effect, identifying downstream dependencies is significantly more difficult to

developers, than pinpointing their upstream counterparts.

We believe that most of the positive impact that ChainTracker had on the accuracy of developers

stems from the usability of its branch visualization, which presents a unified view of the traceability

links contained in the transformations of an ecosystem.

Identifying downstream dependencies (Q4 and Q12) in rule-based transformations is funda-

mentally more difficult than identifying upstream dependencies (Q2 and Q11, Tables A.1 and A.2).

To complete both sets of tasks, developers need to examine the transformations and interpret their

execution semantics. In order to identify upstream dependencies, developers only need to examine

the binding expressions located in the matched rule corresponding to the element of interest. These

expressions determine the metamodel elements that are used for its creation. In contrast, developers

looking for an element’s downstream dependencies, require to pinpoint all the binding expressions

located in potentially multiple transformation rules, used to create an undetermined number of target

elements. In both cases, developers need to consider all the implicit and explicit binding expressions

that use the element of interest to either constrain their execution, or gain access to other metamodel

elements.

ChainTracker interactive-filtering capabilities proved effective in isolating information corre-

sponding to individual metamodel elements, and their related binding expressions. This enabled

developers to analyze the downstream and upstream dependencies despite of the size of the visual-

izations. Furthermore, ChainTracker enables developers to quickly identify implicit and explicit

bindings in complex OCL expressions. Our empirical observations revealed that the automatic

reasoning of model transformations, and the quick access to fine-grained traceability links, enabled

developers to identify dependency relationships in a more efficient and accurate manner. As shown

in Tables A.5 and A.6, developers using Eclipse had a very low accuracy in tasks that included the

analysis of expressions with multiple implicit bindings (Q4, and Q12).
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Identifying property-level dependencies in M2M transformation is particularly dif-

ficult due to the large search spaces that need to be explored to complete this task.

ChainTracker developers were significantly more accurate in identifying property-

level dependencies than participants using Eclipse. This phenomenon is more pro-

nounced as the complexity of the ecosystem increases.

Similarly to tasks that require developers to identify downstream element dependencies, identi-

fying property-level dependencies requires developers to manually interpret the binding expressions

of all the transformations in an ecosystem. We observed that Eclipse users used its pattern-matching

capabilities to find all the expressions that used a property of interest. This strategy is somehow

effective in the case of properties with very distinctive names, such as in the case of “fromScreen”

in Q23 (Table A.1). However, for properties with common names, such as “value" or “name” (Q23

and Q13 in Table A.2) the text-based search approach proved ineffective.

7.4.3 Identifying Metamodel Dependencies in M2T Transformations

Developers using ChainTracker were significantly more accurate than those using

Eclipse in identifying upstream metamodel dependencies in M2T transformations.

This effect is more pronounced in PhyDSL, which suggests that the complexity

of these tasks, and the usefulness of ChainTracker, increases in multi-branched

transformation chains.

Developers using Eclipse appeared to be more efficient than those using ChainTracker when

addressing Q5, Q15, and Q22. However, they were much less accurate. Due to the small set of

participants in each working session, we are unable to isolate developers that use Eclipse and that

obtained high accuracy scores, in order to make a fair statistical analysis of our time-dependent

hypotheses. It is worth noticing that developers using ChainTracker obtained a perfect accuracy

score for all task in this family. Conversely, Eclipse developers had a sparse accuracy distribution

(Table A.9). This suggests that Eclipse developers struggle to identify upstream dependencies in

multi-step transformation chains, even when these are due to simple binding expressions, e.g., Q15

in ScreenFlow.

As a concrete example of the challenges that developers face completing this family of tasks,

let us briefly explore Q15 in the context of PhyDSL (Table A.2). This task requires developers to

find the element dependencies of the expressions located in line 110 of the generateScoring.mtl
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transformation (Figure 7.2 - A). Furthermore, developers need to determine whether there are

additional metamodel dependencies due to potential upstream M2M transformations in PhyDSL

(Figure 7.3 - B).

Figure 7.2: PhyDSL - generateScoring.mtl (M2T)

Figure 7.3: PhyDSL - Effect2Action and solveBool() (M2M)

Figure 7.4 presents the ChainTracker visualization, relevant to task Q15 for PhyDSL. Line 110

in generateScoring.mtl uses two attributes corresponding to two elements in the Scoring metamodel,

namely Action and CollisionRule (Figure 7.4 - A). This line generates a portion of code that imple-

ments the scoring mechanisms of the video games generated by PhyDSL. The Action element is

created by the Effect2Action rule (Figure 7.3). This rule uses the solveBool() helper to

complete its transformation intent. As shown in Figure 7.4 - B, the Action element has multiple

implicit dependencies given by binding expressions that include helper calls, and metamodel navi-

gation statements. Due to the complexity of the binding expressions, manually locating the usage

of the metamodel of interest, and interpreting their corresponding dependency relationships is a

challenging task.
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Figure 7.4: PhyDSL - Task Q15 ChainTracker Visualization

Our observations during the study suggest that ChainTracker’s branch visualization, and its

code-projection capabilities, enabled developers to gain end-to-end traceability information, and to

quickly filter upstream metamodel dependencies in both ecosystems under analysis.

7.4.4 Identifying Generation Dependencies in M2T Transformations

We observed that participants using Eclipse use the Acceleo Profiler [112] in order to find generation

dependencies in the M2T transformations under study. The Acceleo Profiler enables developers to

debug M2T transformations, and to identify the binding expressions responsible for the generation

of a particular line of code. On the other hand, ChainTracker developers were able to select portions

of generated code, and obtain their corresponding generation dependencies using its reverse code

projection capabilities. The projections not only highlighted the M2T bindings that originated the

selected portions of code, but provided quick access to the metamodel elements and properties, used

for their generation.

ChainTracker developers were on average 19% more efficient in identifying generation depen-

dencies in M2T transformations. We believe this is because reverse code projections do not require

to interactively execute transformations to study their bindings. Instead, they offer a self-contained

view that can be studied as a whole, regardless of the complexity of the transformations under anal-

ysis, or the number of steps required for their execution. Our observations during the study suggest

that interactive traceability visualizations are as useful as off-the-shelf transformation debuggers to

identify generation dependencies in M2T transformations.
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7.4.5 Identifying Generation Dependencies in MTCs

ChainTracker developers were significantly more accurate and more efficient at

identifying end-to-end generation dependencies. Fifty percent of Eclipse developers

obtained accuracy scores below their observed medians, which in most cases was

50% less of the maximum attainable score.

ChainTracker provides a significant advantage in the accuracy of developers interpreting binding

expressions in both M2M and M2T transformations. The average median difference with respect to

the accuracy of developers is more pronounced for those working on PhyDSL. Our results suggest

that the benefits of using traceability visualization techniques are magnified in scenarios where

the ecosystems are composed in non-trivial transformation chains. It is important to mention that

all developers using ChainTracker had a perfect accuracy score when identifying element-level

generation dependencies (Tables A.13 and A.14), and property-level generation dependencies

(Tables A.15 and A.16).

We believe that the effectiveness of developers using ChainTracker to identify multi-step

generation dependencies is due to the quick access that they have to implicit and explicit binding

information. We found that not only the branch visualization is highly useful to developers, but also

the active use of editors that allow the projective interactions between graphical representations and

transformation codebases.

7.5 Threats to Validity

7.5.1 Construct Validity

Do we measure what is intended? – In this study we measured the performance of developers

identifying dependency relationships in M2M and M2T transformations. We compared two tools

namely, ChainTracker and Eclipse Modeling (with ATL and Acceleo plugins). We used two model-

driven code generators of different complexity to investigate the effect of their size on the usability

of ChainTracker. Moreover, we understand developers’ performance in terms of the time they take

completing each task and their solution correctness.

We have developed an in-house survey application that presents participants with tasks that

reflect on their ability to identify metamodel and generation dependencies at different levels of

granularity, and between different artifacts of a transformation ecosystem. Our survey application

has been extensively tested and did not present any failures during the execution of the study.

Furthermore, we have carefully instantiated our question templates in the context of the two case
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studies under consideration. The correctness of each expected solution has been validated by three

model-transformation experts with 6, 1, and 2 years of experience in model-transformation technolo-

gies, respectively. The questions were designed in an iterative fashion, looking for representative

tasks of different complexity inside each of the case studies.

An early version of the protocol used for this empirical study was presented in the 1st Interna-

tional Workshop on Human Factors in Modeling collocated at the MODELS conference in 2015

[169]. The protocol of the study and the proposed task templates were discussed and reformulated

based on feedback gained in informal meetings with industry and academic practitioners. We chose

Eclipse Modeling as an industry baseline given that it is the official, and most popular, development

environment for both ATL and Acceleo technologies. None of the alternative traceability visualiza-

tion and analysis frameworks reviewed in Chapter 2 are available to the public. We do not see any

significant threats to the construct validity of this study.

7.5.2 Internal Validity

Are there unknown factors which might affect the outcome of the experiments? – The limited number

of participants and their heterogeneous expertise on model-driven development technologies is a

concern for the internal validity of the study. However, this study was conducted with a pool of

participants with a broad industrial development experience, and an intensive 6-month course in

model transformation technologies. Considering that model-transformation languages are a fairly

new technology, and are yet to be adopted by the software-engineering community at large, our pool

of participants is representative of most model-driven engineering practitioners.

We are aware that the learning curve of ChainTracker and Eclipse Modeling may impact the

developers performance. In order to minimize the impact of this threat to validity, we included an

introductory tutorial in the training session of our protocol (Section 7.2.1). The first half of the

training session involved a tutorial on the use of ChainTracker. The second half consisted of a

laboratory workshop that provided hands on experience with the analysis environment. The training

session was structured in two 60 minute parts divided by a 15 minute break. Our protocol did not

include an introductory tutorial on Eclipse Modeling. In effect, all participants received 6 months of

training in Eclipse Modeling as a part of their graduate course, which included by-weekly hands-on

tutorials. Furthermore, all participants reported having used Eclipse as a development environment

in professional and academic settings.

Participants were not allowed to return to a task once it was completed. This strategy might

fail to account for the exploratory nature of model-transformation comprehension. Developers

might want to review previously answered questions based on understanding gained throughout

the course of the working sessions. Limiting our survey application to a strictly linear answering
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mechanism was motivated by our desire to precisely measure the efficiency of developers solving

individual tasks. We minimize this threat to validity in two ways. First, each of our working

sessions includes a 15 minute presentation that explores the metamodels and transformations of

their corresponding case studies. Additionally, a 10 minute window was allocated to allow further

discussion on the implementation details of each ecosystem. Second, our questionnaires minimize

the overlapping between segments of code that need to be analyzed throughout each session. More

sophisticated mechanisms are needed to allow a more flexible answering strategy, thus increasing

the generality of our results. However, the strategy used in this paper is realistic in the context of

state-of-the art program comprehension studies, that measure the efficiency of developers using

linear questionnaires, such as in [170, 171] and [172].

Our survey application presents three types of questions, namely, multiple-choice questions,

list-based questions, and multiple-selection questions. We are aware that multiple-choice and

multiple-selection questions may provide hints to participants, guiding them to investigate specific

artifacts, thus reducing the precision of our performance measurements. In order to minimize this

threat to validity, multiple-choice and multiple-selection questions presented a comprehensive list of

artifacts needed to be considered in each task at hand. As a concrete example, tasks with the general

form “what metamodel elements are used in the creation of the [metamodel-name ! element-name]

element”, included all of the metamodel elements found in the corresponding ecosystem under

analysis. This effectively avoids drawing the attention of participants to specific artifacts, as well as

narrowing their search to specific segments of code4.

Concretely, 22 out of 25 questions in both questionnaires are multiple-choice or multiple-

selection questions. The remaining 3 questions are list-based, which receive one or multiple

open-ended answers. List-based questions were used in tasks that require developers identifying

bindings in M2T transformations. All multiple-choice and multiple-selection questions in the

ScreenFlow questionnaire included a comprehensive list of their potential answers, i.e., metamodel

elements and properties, transformation rules, and generated files. In the case of the PhyDSL, 20

questions provide all possible answers. The remaining 2 questions (which require the selection of

metamodel element properties) provide a reduced, yet large number of answer possibilities. We do

not believe that the nature of our type questions provided significant hints to developers during the

completion of our study.

The study was divided in three sessions that took place over the span of a week. Our protocol

was designed to minimize the fatigue of developers, and allowed them to review the training material

in between sessions. We believe this can potentially increase the developers’ familiarity with the

proposed families of tasks. Finally, during the last two years, we have iterated over ChainTracker’s
4An example of how this is presented to developers can be found here: https://github.com/guana/

chaintracker-eval.
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graphic user interface. We have conducted informal focus groups in order to make its features

accessible and intuitive for developers. We have integrated the lessons learned in the tool demo

sessions where ChainTracker has been showcased, i.e., the International Conference on Software

Maintenance and Evolution (ICSME) in 2014 [36], the International Conference on Model Driven

Engineering Languages and Systems in 2015 [37], and the IBM Technology Showcase in 2015.

7.5.3 External Validity

To what extent is it possible to generalize the findings? – The case studies of our study are two

model-driven code generators implemented using ATL, a rule-based M2M transformation language,

and Acceleo, a template-based M2T transformation technology. Therefore, any conclusions drawn

from this study cannot be fully generalized to the performance of developers solving software-

engineering tasks on other model-transformation technologies. However, both Acceleo and ATL

are widely adopted by academic and industry practitioners. More importantly, both languages are

aligned to the OMG’s Query/View/Transformation (QVT) standard for M2M transformations [156],

and the Model to Text Transformation Language (MOF) standard for M2T transformations [157],

respectively. The observations of this study can potentially be generalized to developers completing

the same set of tasks, in ecosystems of similar size and complexity, and built using relational and

template-based transformation languages that comply with the same set of standards.

The case studies used in this study were developed in a research environment. We can not claim

that the results in this study can be generalized to industrial ecosystems. However, both case studies

have been used in real software-construction scenarios. Furthermore, they both have been through

development cycles that included platform and metamodel evolution scenarios, in order to meet the

requirements of different clients. Considering the scope of our research, and the limited availability

of industrial transformation ecosystems, we believe that the results of this study provide substantial

insights on how developers trace and pinpoint metamodel and generation dependencies between the

artifacts of a transformation ecosystem.

Even though the case studies considered in this study are model-transformation chains, the

structure of the questionnaires included tasks that investigated the performance of developers

dealing with individual transformation steps, both M2M and M2T. The results of this study can be

generalized to the performance of developers dealing with transformations used in isolation, as well

as in non-trivial transformation chains.
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Conclusions and Future Work

Even though MDE can be used to solve complex software-engineering tasks, its adoption among

the general software-engineering community faces multiple economical, cultural, and technical

challenges [2]. Development environments, specifically tailored to support the construction and

maintenance of model transformations, are a fundamental requirement to increase the adoption of

model-driven engineering practices [5, 11, 12]. The construction of these environments involves the

analysis and visualization of traceability information [11]. Access to metamodel-level fine-grained

traceability links enables developers to assess evolutionary scenarios in transformation ecosystems,

to effectively debug complex binding expressions, and to accurately determine the metamodel

coverage in transformation chains.

Unfortunately, current traceability-analysis techniques do not consider implicit bindings when

collecting traceability information from complex transformation expressions, and do not conceive

M2M and M2T transformations as equal constituent elements of a unified MDE toolbox. This

effectively limits their usability in the construction and maintenance of non-trivial model-driven

code generators. Furthermore, to the best of our knowledge, the effectiveness of current traceability

analyses, and the development environments built on top of them, has yet to be validated in

empirical studies with real developers. We believe this contributes to the skepticism of the software-

engineering community regarding the evaluation rigorosity of model-driven engineering practices,

as well as the pragmatism of their development tools. Let us briefly summarize the contributions of

this thesis to tackle these shortcomings.
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8.1 Contributions

C1: A Traceability Framework and Analysis Technique for End-to-end Traceability

In this thesis, we present a formal conceptual framework for end-to-end traceability at the metamodel

level. Our conceptual formalization presents a technology-agnostic foundation towards conceiving

a unified traceability vision accessible to the community at large (Chapter 4). Furthermore, we

contribute a traceability-analysis technique to gather metamodel-level fine-grained traceability links

from individual M2M and M2T transformations, and transformation chains combining the two

(Chapter 5). Our conceptual framework and analysis techniques are generalizable to transformation

languages built-on OCL.

We validated the traceability coverage of our analysis technique with 25 ATL M2M transforma-

tions and 18 Acceleo M2T transformations. The traceability coverage of our analysis was 91% and

85.4% for M2M and M2T transformations, respectively. It is important to mention that, to the best

of our knowledge, current traceability-analysis techniques do not consider implicit bindings when

collecting traceability information. Thus, our traceability coverage can not be compared effectively

to that of other analysis techniques at the metamodel-level. Indeed, our analysis technique is the

first of its kind to be evaluated using a non-trivial evaluation dataset.

C2: A Traceability Analysis and Usability Evaluation Dataset

We present a curated traceability evaluation dataset with 14 individual transformation projects

from the ATLZoo, and 5 individual code generators from the Acceleo Example Repository. These

transformations were manually inspected to characterize their binding expressions, and correspond-

ing traceability links (Chapter 5). Furthermore, we introduced two fully featured model-driven

code generators, namely PhyDSL and ScreenFlow. PhyDSL has been developed in the context

of physics-based video games, while ScreenFlow is focused on user-interface prototyping (Chap-

ter 3). We used PhyDSL and ScreenFlow to evaluate the usability of ChainTracker, an integrated

traceability-analysis environment built on our analysis technique.

C3: The ChainTracker Integrated Traceability Analysis Environment

We introduced ChainTracker, a developer-oriented traceability analysis environment for M2M and

M2T transformations, as well as for heterogeneous model transformation chains (Chapter 6). It

provides transformation visualizations, projectional code editors, and contextual tables. Each area

of the analysis environment is synchronized with each other and provides interactive features that

in conjunction help developers to reflect about the execution of a transformation ecosystem. Our

work has been driven by the belief that enabling developers to interactively explore the execution

semantics of a transformation ecosystem can significantly improve their performance when reflecting

on an ecosystem’s design and evolution.
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In order to evaluate ChainTracker’s usability, we conducted an empirical study in the context of

two fully-featured model-driven code generators, i.e. PhyDSL and ScreenFlow, and proposed a

collection of traceability-driven tasks in order to understand how developers reflect on the execution

semantics of a transformation ecosystem (Chapter 7). These tasks were grouped in five main

families: (a) determining metamodel coverage and expression location, (b) identifying metamodel

dependencies in M2M transformations, (c) identifying metamodel dependencies in M2T trans-

formations, (d) identifying generation dependencies in M2T transformations, and (e) identifying

generation dependencies in model-transformation chains. These tasks are the practical backbone

of model-transformation construction and maintenance processes. To recapitulate, the two main

research questions driving our empirical study are discussed below.

RQ1: Do developers using ChainTracker identify metamodel and generation dependencies in

transformation ecosystems more accurately and efficiently than those using Eclipse Modeling?

• Developers using ChainTracker had statistically significantly higher performance identifying

metamodel dependencies in M2M transformations than those supported by Eclipse Modeling,

i.e., 83% in element-level dependencies, and between 36% and 900% in property-level

dependencies.

• Developers assessing the coverage of metamodels using ChainTracker were between 72%

and 200% more accurate, and 46% more efficient than those using Eclipse Modeling.

• Due to the lack of pattern-matching capabilities in ChainTracker, its developers performed

worse in finding individual transformation expressions, i.e., 63% less accurate. We believe

supporting this type of task is extremely useful to detect duplicate binding expressions, i.e.,

code clones, as well as identifying transformation refactoring opportunities. Our future work

includes extending ChainTracker with pattern-matching capabilities to efficiently support

developers locating bindings of interest in large transformation codebases.

• The performance of developers using Eclipse Modeling was much worse identifying meta-

model downstream-element dependencies than metamodel upstream-element dependencies,

in M2M transformations. This is mostly due to the large code spaces that need to be manually

analyzed if not supported by automatic reasoning tools. The impact of ChainTracker on the

performance of developers was significantly higher when they were required to analyze model

transformation chains, and to determine end-to-end metamodel dependencies caused by the

interdependent execution of M2M and M2T transformations.

• Manually examining large transformation codebases, looking for the usage of dozens of

metamodel elements is a daunting, if not impossible, task. Developers using Eclipse performed

very poorly identifying generation dependencies in model transformation chains. Most of
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them obtained accuracy scores below the observed medians for this type of task, which overall

was less than 50% of the maximum attainable score. Conversely, developers supported by

ChainTracker were 100% accurate, and were on average 60% more efficient.

• Our empirical observations suggest that interactive traceability visualizations are as useful as

runtime transformation debuggers, to identify generation dependencies in M2T transforma-

tions. In the case of model-transformation chains, developers using ChainTracker were able

to identify element- and property-level generation dependencies in transformation chains 66%

more efficiently and 68% more accurately, than developers using Eclipse Modeling.

RQ2: Do the size and complexity of transformation ecosystems affect the effectiveness of

ChainTracker in helping developers identify their metamodel and generation dependencies?

• For the five families of traceability-driven tasks in this study, their complexity is considerably

exacerbated by the size of the transformations, and the number of metamodel elements, in the

ecosystem under analysis. The impact of ChainTracker on the performance of developers was

more pronounced in the context of a multi-branched transformation chain, i.e., PhyDSL, than

in a linear-transformation ecosystem, i.e., ScreenFlow.

• We believe that the overall higher performance of developers using ChainTracker is due to

the support that it provides identifying implicit and explicit bindings in complex OCL expres-

sions. Considering that most developers are used to the execution semantics of imperative

programing languages, ChainTracker considerably lowers the cognitive challenges that they

face when getting used to declarative programing semantics. In effect, the use of editors that

allow two-way interactions between visualizations and transformation codebases was proved

as an effective mechanism to investigate metamodel and generation dependencies.

8.2 Future Work

Our future avenues of investigation include the development of additional static-analysis features to

collect traceability links from cross-referenced target elements, helper attributes, and local variables

defined in matched rules, in the context of M2M transformations. We recognize these expressions

can be potentially more predominant in industrial-size transformation ecosystems. Furthermore, we

are working on analysis capabilities to collect traceability links from template queries and cross-

referenced templates in the context of M2T transformations. Considering the state-of-the-art of

metamodel-level traceability-analysis approaches, we believe our work is an important contribution

towards increasing their technical robustness, and their evaluation rigorosity.
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Our traceability-analysis technique focuses on completely declarative model transformations

[93]. However, transformation languages such as ATL and ETL implement a hybrid approach with

both declarative and imperative semantics. In ATL, for example, action blocks enable developers

to derive model elements using imperative instructions. Our future work includes extending our

analysis technique to collect traceability information from imperative binding expressions in hybrid

transformation languages, and other direct manipulation approaches (Chapter 2.3).

In this thesis, we gained important insights about the performance of developers using Chain-

Tracker and Eclipse Modeling. Furthermore, we increased the understanding of the field on the

challenges developers face while interpreting the execution semantics of non-trivial transformation

ecosystems. However, further research is needed to identify alternative developer-oriented features

to be implemented in ChainTracker.

The ChainTracker branch visualization portrays metamodel elements without explicitly pre-

senting their inheritance and containment relationships. We are currently developing synchronized

visualizations that enable developers use the branch visualization to reflect on an element’s trans-

formation dependencies, while at the same time, obtaining filtered and contextual information

using their classic (UML-like) syntax. We believe this is particularly useful to developers assessing

the impact of changes in transformation ecosystems with highly hierarchical metamodels. Future

extensions to the ChainTracker branch visualization also include the development of context-aware

tooltips, as a complementary feature to contextual tables, in order to make attribute names more

easily accessible to developers.

A natural extension of our work includes the integration of ChainTracker with metamodel and

transformation version control systems (VCS) [173, 174, 175]. We believe this will further enable

developers to explore the impact of changes in different scenarios of evolution, and at different

points during the life-cycle of a transformation ecosystem. Furthermore, research work in the

field of model management and analysis tools as service (MaaS) [176] motivates the integration

of our traceability-analysis engine into web-based development tools, e.g., MDEForge [115], by

means of Web APIs that expose the ChainTracker analysis and visualization services. Moreover,

with the advance of scalable model-driven engineering [177], and the emerging fields of parallel

model transformation execution [178], we want to extend ChainTracker with visualizations that

enable developers monitoring the execution of transformation chains in distributed computational

platforms.

Finally, the software-engineering community requires access to empirical evidence regarding

the advantages of model-driven engineering techniques, and truthful insights about its limitations,

in order to invest in significant model-driven development efforts. Access to industrial-size model-

driven development infrastructures with realistic life-cycles, is a challenging endeavor. Our future

111



8.2. Future Work

work includes investigating the characteristics of metamodel and platform evolution scenarios

in non-academic model-driven code generators. We would like to evaluate the performance of

developers completing traceability-driven tasks to fix, synchronize, and optimize the design of

industrial-size transformation ecosystems using ChainTracker.
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A.1. Evaluation Questionnaires

A.1 Evaluation Questionnaires

Table A.1: Session A: ScreenFlow Questionnaire
N. Question
Q1 What ATL script contains the ‘Trigger2Button’ rule?

Q2
In Mockup2GUI.atl, what transformation rule
contains the binding expression isMain<-
mockscreen.main.toString().endsWith(‘true’)?

Q3 What metamodel elements are used in the creation
of the GUI!Application element?

Q4 What metamodel elements are created using the
Mockup!TriggerSection element?

Q5
Considering the entire transformation chain,
what metamodel elements does the template
line 24 in generateControlles.mtl depend on?

Q6
What template lines in generateControlles.mtl
are used in the generation of line 21 in
PlayerActivity.java?

Q7
Considering the entire transformation chain, what
metamodel elements does the generation of
line 4 in login.xml depend on?

Q8
Considering the entire transformation chain, what
metamodel elements does the generation of line 34
in AndroidManifest.xml depend on?

Q9 What files does the generateControllers.mtl template
generate?

Q10 What files does the generateViews.mtl template
generate?

Q11 What metamodel elements are used in the creation
of the GUI!Screen element?

Q12 What metamodel elements are created using the
Mockup!ScreenSection element?

Q13 What metamodel elements are created using the
property ‘name’ of the Mockup!Screen element?

Q14
Considering the entire transformation chain, what
metamodel properties does the generation of line
17 in login_activity.xml depend on?

Q15
Considering the entire transformation chain, what
metamodel elements does the template line 19
in generateViews.mtl depend on?

Q16
What template lines in generateControllers.mtl are
used in the generation of line 37
in LoginActivity.java?

Q17 Are there any unused elements in the Mockup
metamodel? If so, which ones?

Q18 Are there any unused elements in the GUI
metamodel?

Q19
Considering the entire transformation chain, what
metamodel elements does the generation of line 14
in AndroidManifest.xml depend on?

Q20
Considering the entire transformation chain, what
metamodel elements does the generation of line 38
in LoginActivity.java depend on?

Q21
Considering the entire transformation chain, what
metamodel elements does the generation of line 14
in login_activity.xml depend on?

Q22
Considering the entire transformation chain, what
metamodel elements does the template lines 41-44
in generateControllers.mtl depend on?

Q23
What metamodel elements are created using the
property ‘fromScreen’ of the Mockup!Transition
element?

Q24
Considering the entire transformation chain, what
metamodel properties does the generation of line 8
in login_activity.xml depend on?

Q25 What template lines in generateViews.mtl are used
in the generation of line 27 in AndroidManifest.java?

Table A.2: Session B: PhyDSL Questionnaire

N. Question
Q1 What ATL script contains the ‘Effect2Action’ rule?

Q2
In Game2Layout.atl, what transformation rule
contains the binding expression isBall<-r.actor
Definition.first().isBall.boolean.solveBool()?

Q3 What metamodel elements are used in the
creation of the Scoring!TouchRule element?

Q4 What metamodel elements are created using the
PhyDSL!Coordinate element?

Q5
Considering the entire transformation chain,
what metamodel elements does the template
line 148 in generateDynamics.mtl depend on?

Q6
What template lines in generateScoring.mtl
are used in the generation of line 102 in
ScoringManager.java?

Q7
Considering the entire transformation chain,
what metamodel elements does the generation of
line 100 in ScoringManager.java depend on?

Q8
Considering the entire transformation chain,
what metamodel elements does the generation of
line 220 in DrawingHelper.java depend on?

Q9 What files does the generateLayout.mtl template
generate?

Q10 What files does the generateGraphics.mtl template
generate?

Q11 What metamodel elements are used in the creation
of the Scoring!CollisionRule element?

Q12 What metamodel elements are created using the
PhyDSL!Ends element?

Q13 What metamodel elements are created using the
property ‘name’ of the PhyDSL!Actor element?

Q14
Considering the entire transformation chain,
what metamodel properties does the generation of line
76 in ScoringManager.java depend on?

Q15
Considering the entire transformation chain,
what metamodel elements does the template line 110
in generateScoring.mtl depend on?

Q16 What template lines in generateLayout.mtl are used
in the generation of line 264 in PhysicsView.java?

Q17 Are there any unused elements in the PhyDSL
metamodel? If so, which ones?

Q18 Are there any unused elements in the Dynamics
metamodel? If so, which ones?

Q19
Considering the entire transformation chain,
what metamodel elements does the generation
of line 141 in MainActivity.java depend on?

Q20
Considering the entire transformation chain,
what metamodel elements does the generation
of line 29 in ControlManager.java depend on?

Q21
Considering the entire transformation chain,
what metamodel elements does the generation of
line 281 in PhysicsView.java depend on?

Q22
Considering the entire transformation chain,
what metamodel elements does the template lines
104-108 in generateControls.mtl depend on?

Q23 What metamodel elements are created using the
property ‘value’ of the PhyDSL!BooleanType element?

Q24
Considering the entire transformation chain,
what metamodel properties does the generation of
line 18 in ControlManager.java depend on?

Q25
What template lines in generateControls.mtl are
used in the generation of line 99 in
ControlManager.java?
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A.2. ChainTracker Evaluation Result Tables

A.2 ChainTracker Evaluation Result Tables

Table A.3: Session A (ScreenFlow) - Results: Metamodel Coverage and Expression Location

Results of Mann-Whitney Test (Two-Tailed) Time and Accuracy Score
N. Question Score (p-value) Time (p-value)
Q9 What files does the generateControllers.mtl template generate? 0.3496 0.0721
Q10 What files does the generateViews.mtl template generate? 0.1423 0.2319
Q1 What ATL script contains the ‘Trigger2Button’ rule? 0.4227 0.1206
Q2 In Mockup2GUI.atl, what transformation rule contains the binding expression isMain...? 1.0000 0.9551
Q17 Are there any unused elements in the Mockup metamodel? 0.0066* 0.0093*
Q18 Are there any unused elements in the GUI metamodel? 1.0000 0.0400*

Treatments Time Mean and SD. Treatments Score Mean and SD. Median Time
Comparison

Median Score
Comparison

N. CT
Mean

CT
SD

EC
Mean

EC
SD Max. CT

Mean
CT
SD

EC
Mean

EC
SD CT EC CT EC

Q9 182.14 157.90 68.00 48.21 2 1.78 0.56 2.00 0.00 107.00 46.00 2.00 2.00
Q10 82.71 100.89 28.62 25.45 5 3.92 2.24 5.00 0.00 28.00 20.50 5.00 5.00
Q1 135.71 81.56 76.25 43.78 1 1.00 0.00 0.75 0.70 105.00 63.50 1.00 1.00
Q2 90.42 86.21 65.25 21.94 1 1.00 0.00 1.00 0.00 90.42 65.00 1.00 1.00
Q17 44.00 24.07 94.62 38.87 2 1.28 1.34 -0.37 1.62 44.00 100.00 2.00 -1.50
Q18 21.85 8.53 47.25 28.96 1 1.00 0.00 1.00 0.00 19.00 46.00 1.00 1.00
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A.2. ChainTracker Evaluation Result Tables

Table A.4: Session B (PhyDSL) - Results: Metamodel Coverage and Expression Location

Results of Mann-Whitney Test (Two-Tailed) Time and Accuracy Score
N. Question Score (p-value) Time (p-value)
Q9 What files does the generateLayout.mtl template generate? 1.0000 0.1508
Q10 What files does the generateGraphics.mtl template generate? 1.0000 0.3095
Q1 What ATL script contains the ‘Effect2Action’ rule? 1.0000 0.4206
Q2 In Game2Layout.atl, what transformation rule contains the binding expression isBall... 1.0000 0.8413
Q17 Are there any unused elements in the PhyDSL metamodel? 0.1563 0.0555
Q18 Are there any unused elements in the Dynamics metamodel? 0.09296 0.1508

Treatments Time Means and SD. Treatments Score Mean and SD. Median Time
Comparison

Median Score
Comparison

N. CT
Mean

CT
SD

EC
Mean

EC
SD Max. CT

Mean
CT
SD

EC
Mean

EC
SD CT EC CT EC

Q9 148.60 59.78 113.20 0.00 1 1.00 0.00 1.00 0.00 126.00 85.00 1.00 1.00
Q10 53.00 12.70 44.00 17.29 1 1.00 0.00 1.00 0.00 53.00 48.00 1.00 1.00
Q1 200.00 116.74 133.60 53.43 1 1.00 0.00 1.00 0.00 171.00 116.00 1.00 1.00
Q2 85.00 60.31 75.60 17.06 1 1.00 0.00 1.00 0.00 58.00 74.00 1.00 1.00
Q17 493.80 379.79 162.80 59.69 1 0.09 1.02 -0.80 0.44 380.00 162.00 0.50 -1.00
Q18 74.00 28.43 223.80 185.28 1 0.60 0.89 -0.60 0.89 92.00 129.00 1.00 -1.00
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A.2. ChainTracker Evaluation Result Tables

Table A.5: Session A (ScreenFlow) - Results: Metamodel Dependencies in M2M (Element Level)

Results of Mann-Whitney Test (Two-Tailed) Time and Accuracy Score
N. Question Score (p-value) Time (p-value)
Q3 What metamodel elements are used in the creation of the GUI!Application element? 0.0675 0.1893
Q11 What metamodel elements are used in the creation of the GUI!Screen element? 0.0310* 0.0021*
Q4 What metamodel elements are created using the Mockup!TriggerSection element? 1.0000 0.0139*
Q12 What metamodel elements are created using the Mockup!ScreenSection element? 0.0006* 0.0012*

Treatments Time: Means and SD. Treatments Score: Mean and SD. Median Time
Comparison

Median Score
Comparison

N. CT
Mean

CT
SD

EC
Mean

EC
SD Max. CT

Mean
CT
SD

EC
Mean

EC
SD CT EC CT EC

Q3 174.85 66.98 256.37 140.37 5 4.14 2.26 3.06 2.70 149.00 204.00 5.00 4.50
Q11 59.71 25.02 167.12 84.90 2 1.71 0.75 0.18 1.36 64.00 132.50 2.00 0.00
Q4 54.85 22.01 280.75 334.90 1 0.71 0.75 0.75 0.70 55.00 167.00 1.00 1.00
Q12 40.28 14.52 111.62 66.18 1 1.00 0.00 -1.00 0.46 40.00 86.50 1.00 -1.00
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A.2. ChainTracker Evaluation Result Tables

Table A.6: Session B (PhyDSL) - Results: Metamodel Dependencies in M2M (Element Level)

Results of Mann-Whitney Test (Two-Tailed) Time and Accuracy Score
N. Question Score (p-value) Time (p-value)
Q3 What metamodel elements are used in the creation of the Scoring!TouchRule element? 0.0065* 0.3095
Q11 What metamodel elements are used in the creation of the Scoring!CollisionRule element? 0.0310* 0.0555
Q4 What metamodel elements are created using the PhyDSL!Coordinate element? 0.0072* 0.5476
Q12 What metamodel elements are created using the PhyDSL!Ends element? 0.0065* 0.2222

Treatments Time: Means and SD. Treatments Score: Mean and SD. Median Time
Comparison

Median Score
Comparison

N. CT
Mean

CT
SD

EC
Mean

EC
SD Max. CT

Mean
CT
SD

EC
Mean

EC
SD CT EC CT EC

Q3 171.80 155.66 214.00 56.57 3 3.00 0.00 0.90 0.82 78.00 211.00 3.00 1.50
Q11 84.20 32.23 245.60 180.86 3 3.00 0.00 0.40 0.89 95.00 176.00 3.00 0.50
Q4 185.20 71.57 166.20 89.44 3 1.80 1.64 -1.20 1.09 179.00 123.00 3.00 -2.00
Q12 94.20 47.30 237.80 244.36 1 1.00 0.00 -0.40 0.82 90.00 183.00 1.00 -1.00
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A.2. ChainTracker Evaluation Result Tables

Table A.7: Session A (ScreenFlow) - Results: Metamodel Dependencies in M2M (Property Level)

Results of Mann-Whitney Test (Two-Tailed) Time and Accuracy Score
N. Question Score (p-value) Time (p-value)

Q23 What metamodel elements are created using the property ‘fromScreen’ of the
Mockup!Transition element? 0.0046* 0.6943

Q13 What metamodel elements are created using the property ‘name’ of the
Mockup!Screen element? 0.0491* 0.9551

Treatments Time: Means and SD. Treatments Score: Mean and SD. Median Time
Comparison

Median Score
Comparison

N. CT
Mean

CT
SD

EC
Mean

EC
SD Max. CT

Mean
CT
SD

EC
Mean

EC
SD CT EC CT EC

Q23 97.57 39.55 99.87 31.05 1 0.92 0.18 -0.75 0.96 79.00 101.5 1.00 -1.00
Q13 148.8 74.76 158.00 105.53 1 0.71 0.75 0.00 1.13 175.0 119.5 1.00 0.50
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A.2. ChainTracker Evaluation Result Tables

Table A.8: Session B (PhyDSL) - Results: Metamodel Dependencies in M2M (Property Level)

Results of Mann-Whitney Test (Two-Tailed) Time and Accuracy Score
N. Question Score (p-value) Time (p-value)

Q23 What metamodel elements are created using the property ‘value’ of the
PhyDSL!BooleanType element? 0.0412* 0.4206

Q13 What metamodel elements are created using the property ‘name’ of the
PhyDSL!Actor element? 0.0393* 0.5476

Treatments Time: Means and SD. Treatments Score: Mean and SD. Median Time
Comparison

Median Score
Comparison

N. CT
Mean

CT
SD

EC
Mean

EC
SD Max. CT

Mean
CT
SD

EC
Mean

EC
SD CT EC CT EC

Q23 99.80 42.92 123.60 27.98 3 2.40 0.82 0.09 1.91 92.00 120.00 3.00 1.50
Q13 188.40 106.01 153.20 53.49 6 3.90 3.11 -1.30 0.75 228.00 162.00 4.50 -1.50
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A.2. ChainTracker Evaluation Result Tables

Table A.9: Session A (ScreenFlow) - Results: Metamodel Dependencies in M2T Transformations

Results of Mann-Whitney Test (Two-Tailed) Time and Accuracy Score
N. Question Score (p-value) Time (p-value)

Q5 Considering the entire transformation chain, what metamodel elements does the
template line 24 in generateControllers.mtl depend on? 0.0119* 0.0003*

Q15 Considering the entire transformation chain, what metamodel elements does the
template line 19 in generateViews.mtl depend on? 0.2143 0.0205*

Q22 Considering the entire transformation chain, what metamodel elements does the
template lines 41-44 in generateControllers.mtl depend on? 0.0025* 0.6126

Treatments Time: Means and SD. Treatments Score: Mean and SD. Median Time
Comparison

Median Score
Comparison

N. CT
Mean

CT
SD

EC
Mean

EC
SD Max. CT

Mean
CT
SD

EC
Mean

EC
SD CT EC CT EC

Q5 112.85 41.42 343.12 91.70 2 1.71 0.75 0.12 1.27 132.00 326.00 2.00 0.00
Q15 79.57 37.23 172.75 82.97 5 5.00 0.00 2.62 3.05 79.00 162.00 5.00 3.50
Q22 80.28 45.18 87.625 35.12 6 6.00 0.00 2.68 1.88 63.00 81.00 6.00 2.75
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A.2. ChainTracker Evaluation Result Tables

Table A.10: Session B (PhyDSL) - Results: Metamodel Dependencies in M2T Transformations

Results of Mann-Whitney Test (Two-Tailed) Time and Accuracy Score
N. Question Score (p-value) Time (p-value)

Q5 Considering the entire transformation chain, what metamodel elements does the
template line 148 in generateDynamics.mtl depend on? 0.0072* 0.6905

Q15 Considering the entire transformation chain, what metamodel elements does the
template line 110 in generateScoring.mtl depend on? 0.0097* 1.0000

Q22 Considering the entire transformation chain, what metamodel elements does the
template lines 104-108 in generateControls.mtl depend on? 0.0117* 0.2222

Treatments Time: Means and SD. Treatments Score: Mean and SD. Median Time
Comparison

Median Score
Comparison

N. CT
Mean

CT
SD

EC
Mean

EC
SD Max. CT

Mean
CT
SD

EC
Mean

EC
SD CT EC CT EC

Q5 365.60 92.65 405.40 254.40 6 5.50 0.00 -1.00 1.96 354.00 308.00 5.50 -1.50
Q15 180.40 64.38 165.60 64.87 5 4.90 0.22 -0.09 1.19 185.00 176.00 5.00 0.00
Q22 203.40 68.08 108.20 90.00 6 5.40 1.34 0.19 1.78 192.00 133.00 6.00 0.00

0
20

0
40

0
60

0
80

0

T
im

e 
(s

ec
)

Treatment Time − ChainTracker vs. Eclipse

Q5 Q15 Q22

−
2

0
2

4
6

S
co

re

Q5 Q15 Q22

Treatment Score − ChainTracker vs. Eclipse

137



A.2. ChainTracker Evaluation Result Tables

Table A.11: Session A (ScreenFlow) - Results: Generation Dependencies in M2T Transformations

Results of Mann-Whitney Test (Two-Tailed) Time and Accuracy
N. Question Score (p-value) Time (p-value)

Q6 What template lines in generateControllers.mtl are used in the generation of line 21
in PlayerActivity.java? 0.5014 0.5358

Q16 What template lines in generateControllers.mtl are used in the generation of line 37
in LoginActivity.java? 0.0874 0.0938

Q25 What template lines in generateViews.mtl are used in the generation of line 27
in AndroidManifest.xml? 0.0377* 0.3969

Treatments Time: Means and SD. Treatments Score: Mean and SD. Median Time
Comparison

Median Score
Comparison

N. CT
Mean

CT
SD

EC
Mean

EC
SD Max. CT

Mean
CT
SD

EC
Mean

EC
SD CT EC CT EC

Q6 264.85 181.08 271.87 98.24 1 0.50 1.32 0.62 0.51 177.00 246.50 1.00 1.00
Q16 140.42 60.10 191.37 43.42 3 1.35 2.83 -0.12 2.19 131.00 187.00 3.00 0.25
Q25 131.42 91.66 184.25 104.5 2 1.21 1.03 -0.62 1.82 120.00 138.50 2.00 -1.25
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A.2. ChainTracker Evaluation Result Tables

Table A.12: Session B (PhyDSL) - Results: Generation Dependencies in M2T Transformations

Results of Mann-Whitney Test (Two-Tailed) Time and Accuracy
N. Question Score (p-value) Time (p-value)

Q6 What template lines in generateScoring.mtl are used in the generation of line 102
in ScoringManager.java? 0.0482* 0.4206

Q16 What template lines in generateLayout.mtl are used in the generation of line 264
in PhysicsView.java? 0.8288 1.0000

Q25 What template lines in generateControls.mtl are used in the generation of line 99
in ControlManager.java? 1.0000 0.0158*

Treatments Time: Means and SD. Treatments Score: Mean and SD. Median Time
Comparison

Median Score
Comparison

N. CT
Mean

CT
SD

EC
Mean

EC
SD Max. CT

Mean
CT
SD

EC
Mean

EC
SD CT EC CT EC

Q6 239.20 181.66 328.00 137.57 2 0.50 1.83 -2.60 1.47 196.00 374.00 0.50 -2.00
Q16 221.40 153.89 209.40 61.47 4 2.20 1.95 1.59 2.85 177.00 230.00 2.50 3.00
Q25 63.20 28.83 124.80 43.18 2 1.60 0.65 1.50 0.70 72.00 110.00 2.00 2.00
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A.2. ChainTracker Evaluation Result Tables

Table A.13: Session A (ScreenFlow) - Results: Generation Dependencies in MTCs (Element Level)

Results of Mann-Whitney Test (Two-Tailed) Time and Accuracy Score
N. Question Score (p-value) Time (p-value)

Q7 Considering the entire transformation chain, what metamodel elements does the
generation of line 4 in login.xml depend on? 0.0032* 0.0093*

Q8 Considering the entire transformation chain, what metamodel elements does the
generation of line 34 in AndroidManifest.xml depend on? 0.0073* 0.0012*

Q19 Considering the entire transformation chain, what metamodel elements does the
generation of line 14 in AndroidManifest.xml depend on? 0.0443* 0.0037*

Q20 Considering the entire transformation chain, what metamodel elements does the
generation of line 38 in LoginActivity.java depend on? 0.0007* 0.0003*

Q21 Considering the entire transformation chain, what metamodel elements does the
generation of line 14 in login_activity.xml depend on? 0.0007* 0.0003*

Treatments Time: Means and SD. Treatments Score: Mean and SD. Median Time
Comparison

Median Score
Comparison

N. CT
Mean

CT
SD

EC
Mean

EC
SD Max. CT

Mean
CT
SD

EC
Mean

EC
SD CT EC CT EC

Q7 130.57 129.99 343.25 85.39 2 1.71 0.75 -0.81 1.71 112.00 353.00 2.00 -0.50
Q8 96.85 50.61 293.12 168.04 6 6.00 0.00 2.81 2.84 96.00 227.50 6.00 3.00
Q19 59.00 3.23 157.12 60.58 5 5.00 0.00 3.87 1.32 53.00 163.50 5.00 4.25
Q20 52.28 25.75 198.75 51.61 4 4.00 0.00 0.62 2.24 57.00 180.50 4.00 1.00
Q21 50.85 22.11 159.12 43.22 6 6.00 0.00 2.12 2.19 49.00 154.50 6.00 2.75
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A.2. ChainTracker Evaluation Result Tables

Table A.14: Session B (PhyDSL) - Results: Generation Dependencies in MTCs (Element Level)

Results of Mann-Whitney Test (Two-Tailed) Time and Correctness
N. Question Score (p-value) Time (p-value)

Q7 Considering the entire transformation chain, what metamodel elements does the
generation of line 100 in ScoringManager.java depend on? 0.0094* 0.3095

Q8 Considering the entire transformation chain, what metamodel elements does the
generation of line 220 in DrawingHelper.java depend on? 0.0072* 0.0079*

Q19 Considering the entire transformation chain, what metamodel elements does the
generation of line 141 in MainActivity.java depend on? 0.0066* 0.8413

Q20 Considering the entire transformation chain, what metamodel elements does the
generation of line 29 in ControlManager.java depend on? 0.0055* 0.2222

Q21 Considering the entire transformation chain, what metamodel elements does the
generation of line 281 in PhysicsView.java depend on? 0.0055* 0.6905

Treatments Time: Means and SD. Treatments Score: Mean and SD. Median Time
Comparison

Median Score
Comparison

N. CT
Mean

CT
SD

EC
Mean

EC
SD Max. CT

Mean
CT
SD

EC
Mean

EC
SD CT EC CT EC

Q7 249.4 185.43 346.40 128.87 7 6.70 0.67 -1.00 2.00 226.00 280.00 7.00 -1.50
Q8 191.6 86.61 540.80 143.90 5 5.00 0.00 1.00 1.27 173.00 577.00 5.00 1.50
Q19 167.0 61.49 180.20 133.31 8 8.00 0.00 0.20 1.95 176.00 107.00 8.00 -1.00
Q20 128.4 42.80 161.00 51.86 7 7.00 0.00 0.10 1.34 116.00 128.00 7.00 -0.50
Q21 122.4 39.29 240.40 198.48 5 5.00 0.00 -0.40 2.01 130.00 114.00 5.00 0.50
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A.2. ChainTracker Evaluation Result Tables

Table A.15: Session A (ScreenFlow) - Results: Generation Dependencies in MTCs (Property Level)

Results of Mann-Whitney Test (Two-Tailed) Time and Correctness
N. Question Score (p-value) Time (p-value)

Q14 Considering the entire transformation chain, what metamodel properties does the
generation of line 17 in login_activity.xml depend on? 0.0090* 0.3969

Q24 Considering the entire transformation chain, what metamodel properties does the
generation of line 8 in login_activity.xml depend on? 0.04871* 0.0059*

Treatments Time: Means and SD. Treatments Score: Mean and SD. Median Time
Comparison

Median Score
Comparison

N. CT
Mean

CT
SD

EC
Mean

EC
SD Max. CT

Mean
CT
SD

EC
Mean

EC
SD CT EC CT EC

Q14 296.42 88.17 257.75 50.20 8 6.07 3.54 0.125 1.92 317.00 263.50 8.00 0.50
Q24 71.14 32.69 162.25 74.83 1 1.00 0.00 0.125 1.21 74.00 142.50 1.00 1.00
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A.2. ChainTracker Evaluation Result Tables

Table A.16: Session B (PhyDSL) - Results: Generation Dependencies in MTCs (Property Level)

Results of Mann-Whitney Test (Two-Tailed) Time and Correctness
N. Question Score (p-value) Time (p-value)

Q14 Considering the entire transformation chain, what metamodel properties does the
generation of line 76 in ScoringManager.java depend on? 0.0066* 0.1508

Q24 Considering the entire transformation chain, what metamodel properties does the
generation of line 18 in ControlManager.java depend on? 0.0248* 0.0079*

Treatments Time: Means and SD. Treatments Score: Mean and SD. Median Time
Comparison

Median Score
Comparison

N. CT
Mean

CT
SD

EC
Mean

EC
SD Max. CT

Mean
CT
SD

EC
Mean

EC
SD CT EC CT EC

Q14 177.60 59.00 339.00 220.20 4 4.00 0.00 0.60 1.85 191.00 281.00 4.00 1.00
Q24 127.40 25.97 242.00 51.29 6 6.00 0.00 2.30 3.75 130.00 253.00 6.00 4.50
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A.3. Library to Anonymous Index Traceability Links

A.3 Library to Anonymous Index Traceability Links

Listing A.1 portrays a snippet with traceability links of the Library to Anonymous Index trans-

formation chain. The complete file can be found at http://hypatia.cs.ualberta.ca/

~guana/ct/b2p-traces.json.

1 {
2 "metamodels": [
3 {
4 "name": "Book",
5 " location ": "./ Book.ecore"
6 "elements ": [
7 {
8 "name": "Library ",
9 " attributes ": [

10 {
11 "name": "books",
12 "type ": "Book",
13 "id ": "1"
14 }
15 ]
16 }
17 },
18 {
19 "name": " Publication ",
20 " location ": "./ Publication . ecore"
21 "elements ": [
22 {
23 "name": "Database",
24 " attributes ": [
25 {
26 "name": " publications ",
27 "type ": " Publication ",
28 "id ": "10"
29 },...
30 ]
31 },...
32 ],
33 " traces ": [
34 {
35 "M2M": [
36 {
37 "id ": "tlm1",
38 " location ":"./ Book2Publication. atl ",
39 "type ": " explicit ",
40 " line ": "12",
41 " targetID ": "10",
42 "sourceID": "1"
43 }, ....
44 ],
45 "M2T": [
46 {
47 "id ": " tlt1 ",
48 " location ":"./ Publication2HTML.mtl",
49 "type ": " explicit ",
50 " line ": "8",
51 "sc ": "1",
52 "wc": "39",
53 "sourceID": "10"
54 },...
55 ]
56 }
57 ]
58 }

Listing A.1: Library to Anonymous Index Traceability Links (JSON)
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