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Abstract

Software libraries provide a set of reusable functionality, which helps develop-

ers write code in a systematic and timely manner. However, with the plethora

of similar software libraries available in the market, selecting the appropriate

one to use is often not a trivial task. Choosing libraries that are not well-

suited for a project may lead to development delays or high maintenance. In

this work, we investigate the idea of helping developers select libraries by pro-

viding them with a metric-based comparison of libraries in a given domain.

Different developers care about different aspects of a library and two devel-

opers looking for a library in a given domain may not necessarily choose the

same library. Thus, instead of directly recommending them a library to use,

we empower developers with the information they need to make an informed

decision. To evaluate this idea in practice, we presented software developers

with a survey containing an initial implementation of a comparison of libraries,

while obtaining feedback about our proposed approach and understanding the

metrics developers care about. Our results show that developers find that

the proposed technique provides useful information when selecting libraries.

Based on the collected feedback from developers, we made enhancements to

our metrics and comparisons and implemented a website whose objective is

to serve as a source of library information, as well as a continuous surveying

and crowd-sourcing mechanism to uncover metrics that influence developers’

decisions when choosing software libraries.
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Chapter 1

Introduction

Software libraries facilitate development tasks by allowing client developers to

reuse existing code that provides ready-to-use functionality, such as encrypting

files or connecting to a database. Libraries expose their functionality through

Application Programming Interfaces (APIs), which developers can make use

of to access the promised operations of a library.

Nowadays, it is possible to find several libraries that were created to ac-

complish similar duties. For example, junit and testng are two libraries that

enable users to create code tests. With the rising popularity of social coding

websites such as Github, the availability of software libraries has expanded in

recent years. However, with this proliferation of software, it is increasingly

becoming a daunting task for developers to search and select a library that

fits their needs. Furthermore, choosing an unsuitable library for a software

project could result in the need to replace the library with a better suited

one, for reasons such as performance gains or additional features [18]. These

replacements translate into maintenance tasks which can consume up to 80%

of software costs [9], making the selection of a suitable library for the job a

duty that should not be neglected.

Developers often use Question and Answer (Q&A) websites to ask for li-

brary suggestions or compare similar libraries. For instance, question #11707976

1 on Stack Overflow shows a developer looking for a cryptography library in

Java. This developer has been considering using the cryptix library, but men-

1https://stackoverflow.com/questions/11707976/cryptography-in-java
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tions that it was last updated in 2005, so she is looking for recommendations.

One of the answers to this question recommends against using an old library:

“I would seriously think twice before going this route. The development of the

software was halted because standard alternatives exist, and have a look at the

mailing list, there’s been no significant activity since 2009. In my book that

means that the software is abandoned, and abandoned software means you’re

more or less on your own.” Additionally, this user suggests the jasypt library

as an option, to which the original poster responds: “Yeah I tried jasypt but

it has some bug in the binary decryption, I really don’t want to deal with them

right now.”

The previous discussion shows that libraries that suffer from antiquity and

fault-proneness can deter users from using the software. Furthermore, past

research has shown that developers care about other aspects such as perfor-

mance and community [49]. While it is possible to find information about

these aspects in discussion forums, the data is unstructured, scattered across

different threads or posts, in textual form, and is based on users’ opinions or

personal experiences, which hinders the process of comparing similar libraries.

Analogous to how customers can compare specifications of hardware products

such as computer monitors when shopping online, we propose that presenting

quantifiable and comparable data of similar libraries, as shown in Figure 1.1,

could allow developers to make better informed decisions with their library

selections.

Previous research has focused on measuring different attributes of software

systems [23], [32], [34], [47], [52]. These include, for example, number of

changes/deletions, release frequency, fault-proneness, and time to close issues.

We argue that many of these attributes can be used as quantifiable metrics

for comparing software libraries. We propose collecting relevant metrics from

diverse data sources, such as version-control and issue-tracking systems, and

consolidating them in a single website that developers can use to compare

libraries from the same domain (e.g., cryptography or testing).

In this thesis, we present a methodology to compare libraries using met-

rics, that is, quantifiable data that describes characteristics of the software.
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Figure 1.1: A metric-based comparison of mocking libraries

By using data obtained from different sources, namely open source software

repositories, issue tracking systems, version control systems, and Q&A web-

sites, we are able to automate the extraction process of these metrics and

present recent information to users who are looking for libraries in a specific

domain. Additionally, we conduct a developer survey with a preliminary ver-

sion of our metric-based comparison of libraries to evaluate the usefulness of

our approach, to find the metrics that matter the most to developers, and

obtain valuable feedback, which we considered to make further enhancements

to our technique. Finally, we show a complete implementation of our proposed

methodology in a website where the metric data is automatically updated and

users can compare libraries from different domains, as well as submit feedback

for the usefulness of metrics.

1.1 Contributions

The main contributions of this thesis are:

• A methodology to compare software libraries using extractable metrics

obtained from different sources such as open source repositories, issue

tracking systems, version control systems and Q&A websites.

• An empirical study consisting of a survey of 61 software developers as a
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means of determining the general usefulness of our proposed approach,

the most important metrics for developers when choosing libraries, and

the importance of metrics in different domains.

• A concrete implementation of our proposed technique consisting of a

website where users can compare libraries from a variety of different

domains, which also serves as a continuous surveying and crowd-sourced

mechanism to find out the metrics that influence developers’ decisions

when choosing libraries.

• A discussion of possible improvements that can be made to the proposed

comparison methodology.

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 discusses related

research. Chapter 3 presents the metrics that we use in our comparison of

libraries, along with the extraction methodologies that we use. In Chapter 4,

we show the developer survey that was conducted as a way to obtain feedback

to our approach. Chapter 5 details the results that we gathered from the

survey, as well as a discussion based on the feedback provided by participants.

In Chapter 6, we present our final website that contains a variety of libraries

taken from different domains and their respective metric-based comparisons.

We explain the threats of validity to our work in Chapter 7. Finally, Chapter

8 contains the conclusions and future directions for this research.

4



Chapter 2

Related Work

Researchers have extracted software data from sources such as open source

software repositories, version control systems, Q&A websites, and issue track-

ing systems for a variety of purposes, such as recommending APIs or finding

correlations between successful mobile applications and changes in APIs. In

this chapter, we group related literature in two categories. Section 2.1 men-

tions work in which software data has been extracted with the objective of

assisting developers in selecting APIs or libraries. On the other hand, Section

2.2 cites work that has used software metrics or data for reasons not necessar-

ily related to the recommendation of libraries. Finally, we include information

about relevant mining tools in Section 2.1, while Section 2.4 mentions available

websites that show information about APIs or libraries.

2.1 Library or API Selection Assistance

Mining data from software repositories and Q&A websites has been used as

a method to obtain information to rank or recommend APIs. For instance,

Uddin et al. [49] measured and rated aspects of APIs such as documentation

and performance by mining opinions (e.g. sentences that have a positive or

negative sentiment) from Stack Overflow posts and counting the number of

positive sentences using sentiment analysis. To accomplish this, the authors

grouped opinions based on the aspects being discussed in sentences and rated

aspects based on the overall sentiment of the relevant opinions.

Rahman et al. [40] mined questions and answers from Stack Overflow
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to associate keywords to relevant APIs with the objective of recommending

APIs for a given task described in natural language. Thung et al. [48] used

association rule mining and collaborative filtering techniques to, given a set of

libraries that a project is currently using, recommend libraries based on what

other projects have used. Teyton et al. [46] proposed a mining technique to

identify appropriate alternatives to replace existing libraries in a project. The

technique is based on leveraging library dependency information in project

management tools such as Maven to find library migrations in the revision

history of projects.

Hora et al. [14] ranked API elements based on popularity and migration

data mined from open-source repositories. The authors obtained popularity

metrics by counting the additions and removals of Java import statements

found in the diff of source code files. Similarly, they used the diff of source

code files to obtain migration metrics by analyzing import statements that

were replaced with other import statements, and thus, determining that a

project migrated from an API to another one.

Mileva et al. [27] mined popularity information about API elements (classes

and interfaces) from Java open source software repositories. The authors mea-

sured popularity trends by mining the history of repositories and performing

a monthly count of the number of projects using Java import statements on a

given class or interface in the source code over a period of time. In earlier work,

Mileva et al. [26] created a tool that assists developers in selecting the most

stable version of a library based on usage trends of library versions, including

the number of projects using a given library version.

Similar to the related work in this section, we take advantage of open source

software repositories and Q&A websites to extract relevant data for library

selection assistance. However, unlike the research cited above, we do not rely

on opinions from Q&A websites, and instead of using one source of information

we combine and quantify data from several sources to help developers make

an informed decision when selecting a library.
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2.2 Software Metrics

There has been related work that has extracted metrics in isolation with pur-

poses not necessarily related to recommending libraries or APIs. We group

these metrics in the following categories: Popularity, Migrations, Change

and Fault-Proneness, Bug Reports, Reliability, Opinions, Sentiment Analy-

sis, Release Cycles, Bug-fixing Times, and Backwards Compatibility, Most

Used Functionalities of APIs, and Development Activities.

2.2.1 Popularity

Popularity of APIs, specific library versions, and complete libraries, has been

largely researched using different methodologies. Most recently, Borges et al.

[3] performed a study on the popularity of Github projects using the number

of stars on Github repositories as a proxy for popularity. Among their results,

they observed an increase in the number of stars gained in a repository after

new releases and found that the number of stars in repositories are correlated

with their number of forks, contributors and commits.

Mileva et al. [27] collected popularity information about API elements

(classes and interfaces) from Java open source software projects. Their notion

of popularity of an API element is the number of projects using it. The authors

measured the popularity trends of these API elements by mining the history

of repositories and performing a monthly count of the number of projects that

were using Java import statements on a given class or interface in the source

code over a period of time.

Previously, Mileva et al. [26] investigated usage trends of library versions,

including popularity, that is, the number of projects using a given library

version. They accomplished this by mining the history of 250 open source

projects managed by Maven and performing a monthly analysis of their meta

information files in order to extract library version usage information over a

period of two years.

Sawant et al. [43] found popular APIs by parsing the library dependencies

in POM files from Java Github projects that use Maven.
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2.2.2 Migrations

Library migrations have been studied in software projects to identify the li-

braries being replaced and their respective replacements, as well as the drivers

behind these migrations. Teyton et al. [47] studied library migrations in Java

open source software by performing experiments on the source code of over

8,000 software projects. Their approach consists of analyzing the changes

(additions and removals) in the library dependencies of different versions of a

project using static analysis of the source code, eliminating the need for Maven

information.

Kabinna et al. [18] studied logging library migrations and their motivations

within Apache Software Foundation Java projects. They manually analyzed

JIRA issue reports containing keywords related to migrations and the respec-

tive Git commit history of such reports. Among their findings, the authors

noticed that flexibility and performance improvement are the main drivers for

migrating to another library.

2.2.3 Change and Fault-proneness

Linares-Vazquez et al. [23] studied the relation of the success of mobile appli-

cations, determined by its user ratings, with the change and fault-proneness

of the Android APIs used by such apps. To do this, they computed the num-

ber of bug fixes and changes to the interfaces, implementation, and exception

handling of the analyzed APIs used by 7,097 apps. Their findings show that

successful apps use APIs that are significantly less fault-prone, and less change-

prone in terms of method signatures and public methods, than the APIs used

by unsuccessful apps.

2.2.4 Classification and Severity of Bug Reports

Ohira et al. [33] built a dataset of four thousand manually-classified issue

reports taken from four open source projects and assigned labels to bug reports

such as performance and security. This dataset could be used to analyze

concerns of performance and security in open source projects. Along the same
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lines, Lamkanfi et al. [21] created machine learning classifiers to categorize

bug reports into severe or non-severe classes.

2.2.5 Reliability

The reliability of specific library versions or releases has also been a topic of

interest in the literature. Mileva et al. [26] investigated the reliability of library

versions by mining the history of 250 Maven-managed software projects and

counting the number of times they switched back to a previous library version.

The notion of reliability by the authors is that the more a library version is

switched back to a previous version by developers, the less reliable the library

version is.

Raemaekers et al. [51] introduced four metrics that calculate the stability

of the public interface and implementation of a library by analyzing its ver-

sion history and considering the number of removed methods, the amount of

change in existing methods, the ratio of change in new to old methods, and

the percentage of new methods. They provide scenarios where these metrics

could be used to determine the stability of a library. However, they do not

provide an evaluation of the usefulness of these proposed metrics.

2.2.6 Opinions

Uddin et al. [28] presented techniques to automatically detect opinionated sen-

tences of API aspects that developers care about when reading forum posts.

In order to do this, they created a benchmark of sentences taken from Stack

Overflow posts and labeled each sentence manually with a specific aspect. To

detect the polarity (negative, positive or neutral sentiment) of sentences, they

used an implementation of the Sentiment Orientation algorithm. To automat-

ically detect opinionated sentences they used machine learning classifiers that

provided a precision of up to 80% percent.
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2.2.7 Sentiment Analysis

Sentiment Analysis has been applied on text found in commit messages and

discussion forums for various different goals. Sinha et al. [44] applied sentiment

analysis on developer commit logs from Github projects. To accomplish this,

they used the Boa framework to extract over 2 million commit messages from

28K projects and the SentiStrength tool to determine sentiment polarity of

such messages. They noticed an overwhelming neutral sentiment across the

commit messages. Additionally, they found strong correlations between the

negative, neutral, and positive sentiments and the average number of modified

files per commit.

Guzman et al. [13] applied sentiment analysis using SentiStrength on 60K

commit comments from different Github projects. Among their results, they

found that commits made in Mondays tend to have more negative emotions,

Java projects tend to have more negative comments, as well as projects with

distributed teams tend to have positive content in their commits.

Ortu et al. [35] created a dataset of JIRA issue comments extracted from

four popular open source communities and manually labeled such comments

with different emotions such as love, joy, surprise, anger, sadness, and fear.

They claim that such dataset can be used to investigate the role of emotions

in software engineering.

Pletea et al. [39] mined expressions of emotions within security-related dis-

cussions on Github using sentiment analysis with the Natural Language Text

Processing toolkit (NLTK). To accomplish this, they searched for keywords

related to security in the discussions of commits and pull requests from soft-

ware projects presented in the MSR 2014 Mining Challenge Dataset and used

NLTK to classify each discussion with a negative, positive or neutral senti-

ment. They evaluated the sentiment scores by manually reviewing a subset of

the results, however, they disagreed on some of the sentiments produced by

the tool.
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2.2.8 Release Cycles

Release cycles have been studied for purposes such as comparing shorter release

cycles with longer ones. Khomh et al. [19] investigated the relation between

shorter release cycles of software and its respective quality defined by metrics

such as crash rates and post-release bugs. Their subject system was Mozilla

Firefox and found that while bugs take less time to fix with a shorter life

cycle, the difference of post-release bugs is negligible when compared to the

traditional life cycle.

Costa et al. [5] analyzed bug reports of Firefox releases with traditional

cycles as well as rapid releases of the same software, with the intent of studying

if rapid release cycles deliver addressed issues at a faster pace. Among their

results, they found that there are not major differences in these two types of

releases in terms of the time between the issue report date and the integration

of the fixed issues into a release.

2.2.9 Bug-Fixing Times

Previous research has tried to predict bug-fixing times, as well as finding fac-

tors that affect the fixing time of bug reports. For instance, Giger et al. [7]

used attributes such as severity, priority, and assignee from bug reports of

open-source projects to create prediction models for bug fixing times. Panjer

et al. [37] also experimented predicting bug fix-times with data mining tech-

niques and found that factors such as commenting activity, severity, product,

component, and version affect the length of bug lifetimes.

Ortu et al. [34] analyzed the relation between sentiment, emotions and

politeness of developers in JIRA comments taken from Apache projects with

the time that it takes to fix an issue. They used available tools to measure

sentiment and politeness and created their own classifier for emotion measure-

ment. They found that emotions such as joy and love are linked with shorter

fixing times, whereas negative emotions are more related with longer times.

Lamkanfi [20] found that removing outliers in bug fix-time datasets can

improve the prediction results for the amount of time that it takes to fix bugs.
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2.2.10 Backwards Compatibility

Code compatibility between releases of libraries have been studied in the liter-

ature. Mostafa et al. [32] detected backwards compatibility problems in Java

libraries by performing regression tests on version pairs, and by inspecting bug

reports related to version upgrades.

Xavier et al. [52] measured breaking changes in APIs, that is, changes

found in new versions of an API that result in compilation errors or behavioral

differences in code that was using a previous version of the same API. To

accomplish this, they analyzed 317 Java libraries and 260K projects using

them, and implemented a diff tool that extracted breaking changes between

two versions of a Java library.

2.2.11 Development Activities

Mauczka et al. [25] produced a dataset of commits classified by whether they

address functional and non-functional requirements. To do so, the authors

surveyed developers of open source projects and asked them to label their own

commits based on classification schemes provided by the authors. Such dataset

could be applied to provide an insight on the kinds of activities occurring in

an open source project.

2.3 Mining Tools

In this thesis, we refer to mining as the process of extracting data from sources

such as software repositories, issue tracking systems, or Q&A websites. Mining

software repositories is a necessary task in our work, as repositories are one of

the sources that provide us with metric data for our library comparisons. In

this section, we briefly introduce tools that have been designed specifically for

mining software repositories and that we cite in this thesis, namely Boa and

GHTorrent.
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2.3.1 Boa

Boa is an infrastructure created specifically for mining software repositories [6].

It consists of a web interface, a domain-specific language, and large datasets of

software repositories taken from Github and Sourceforge, which ease extraction

tasks by writing small programs that can be executed on datasets of different

sizes in a timely manner. While Boa facilitates mining tasks, its datasets have

not been updated since 2015. We use Boa in the initial implementation of our

metric-based comparisons.

2.3.2 GHTorrent

GHTorrent [11] is a dataset that provides an offline mirror of Github repository

data. GHTorrent datasets are more frequently updated than those of Boa,

with new versions available often on a monthly basis. Although we currently

extract our data through the Github API, GHTorrent is one option that we

consider in our future work to avoid Github query limits.

2.4 API or Library Comparison Websites

Websites that compare APIs based on metrics are currently available. For ex-

ample, npms.io is a website that allows to search for Javascript node packages

and compare them on three metrics: quality, popularity, and maintenance.

Unlike our proposed website, npms only provides numeric scores for their met-

rics without showing users the actual extracted data. Apiwave.com presents

Java API rankings based on popularity and migration data extracted from

Github [14]. Our work differs in terms of the set of metrics we employ and

how we compare libraries.

2.5 Chapter Summary

In this chapter, we presented literature related to this thesis. This previous re-

search was viewed from two perspectives: Library or API Selection Assistance

and Software Metrics. The first category consists of work that has extracted

13
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data from software repositories and Q&A websites with the objective of provid-

ing recommendations or selection assistance to developers. While this thesis

shares the same goal, our work is different in that we combine several sources

of information from which we extract metric data. Additionally, we provide

visualization of the data. The second category focuses focuses on extracting

metrics for a variety of intentions. We discuss this category as part of related

work as we leverage some of these metrics for library selection assistance pur-

poses. Finally, we mention tools used to mine software repositories and related

websites used for API comparison purposes.
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Chapter 3

Metrics

As a first step for helping developers make informed decisions about library

selections, we identified an initial set of metrics that we use for a first imple-

mentation of our methodology. For our comparison of libraries, we require

metrics which, as per our definition of this term, have to provide comparable

and quantifiable data that describes a characteristic of a library. For example,

a metric that counts the number of client projects of a library meets this crite-

ria as this data can be used to compare the popularity levels of similar libraries,

that is, how many projects depend on this software. As another requirement,

intrinsic to our idea of creating a website that constantly updates informa-

tion for comparison of libraries, we need metrics whose extraction method-

ology could be automated. Furthermore, many of our metrics are related to

Non-Functional Requirements (NFR). In contrast to Functional Requirements

which specify the functionality of libraries, Non-Functional Requirements can

describe quality aspects of a library. Examples of NFR include reliability, per-

formance, and security of libraries. Since our idea is to compare libraries with

alike functionality, that is, similar Functional Requirements, showing metrics

related to NFR allows developers to see differences in libraries despite their

domain similarities.

Based on the above criteria, we choose the following library metrics: Pop-

ularity, Release Frequency, Issue Response Time, Issue Closing Time, Back-

wards Compatibility, Performance, Security, and Last Discussed on Stack

Overflow. In the rest of this chapter, we present the definition, intuition,
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and extraction methodology of these metrics. An example of each metric is

provided with data taken from the Java library mockito.

3.1 Popularity

Definition and Intuition.

Developers may simply want to use what the majority of developers are using.

We define Popularity as the number of client projects using a given library.

Instead of using popularity of API elements such as classes of a library, we

focus on the number of projects using any API element of a given library.

Extraction Methodology.

To obtain Popularity data, we use BOA [15], a large-scale mining infrastruc-

ture. To count the number of client projects of a given library, we wrote a

BOA script that searches the latest snapshot of Java files in a project and

looks for Java import statements that include the general package of a library

in these files. If this requirement is met, we assume that the project uses the

target library. As detailed in Chapter 2, this is a common methodology used

to extract popularity information. We ran our script on the latest available full

September 2015 dataset on BOA, which consists of a snapshot of more than 7

million Github projects. As an example for this metric, mockito’s popularity

is 5,380, which represents its number of client projects in this dataset.

3.2 Release Frequency

Definition and Intuition.

Developers may be interested in knowing how often a library is updated, as

new releases usually contain bug fixes and added functionality. We define the

Release Frequency of a library as the average time between two consecutive

releases of a library, more formally:

ReleaseFrequency =

∑N−1
i=1 ReleaseDatei, ReleaseDatei+1

NumberOfReleases− 1
(3.1)
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Extraction Methodology.

We use the Github API to extract the git tag information found in the repos-

itory of the library, since each tag usually represents a release version of the

software [8]. For each tag, we extract the commit associated with it and use

the commit date as the release date of the library version. To find the Release

Frequency, we calculate the average of the time difference between each two

consecutive releases of the library. As an example, the Release Frequency of

mockito is 9.87 days, which represents the average time between consecutive

releases.

3.3 Issue Response Time and Closing Time

Definition and Intuition.

Potential clients may want to know if a given library’s developers are helpful

and if there is an active community around it. One quantifiable way to measure

this idea is to see how quickly reported issues are replied to and resolved. We

refer to Issue Response Time as the average time that it takes to receive

a comment once a bug report has been opened. Similarly, we define Issue

Closing Time as the average time that it takes to close a bug report since it

was originally opened. More formally:

IssueResponseT ime =∑N
i=1 IssueF irstCommentDatei, IssueCreationDatei

N
(3.2)

IssueClosingT ime =

∑M
i=1 IssueClosingDatei, IssueCreationDatei)

M
(3.3)

where N is the total number of issues with comments and M is the total

number of closed issues.

Extraction Methodology for Issue Response Time.

We used the Github API to obtain all issues found in a given library whose

issue tracking system is hosted on Github. If a library used JIRA to track
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issues, we downloaded all issues as an XML file by querying the URL provided

by the Export XML option in the JIRA tracking system of each library and

parsed the contents. For each issue, we extracted its creation date, as well as

the date of the first comment on the issue. The issue response time is then

calculated as the difference between the creation date and the date of the first

comment. We then calculated the issue response time of the library as the

average of response times for all considered issues. Note that we discarded

issues that had no comments as we care about the average time the library

community took to reply to issues. We used the first comment made by any

user other than the original poster to calculate response time, as knowledgeable

users who may not be major contributors to the project often provide useful

suggestions or feedback on the issue. Our extracted Issue Response Time for

mockito is 18.56 days.

Extraction Methodology for Issue Closing Time.

We again used the Github API to collect all issues posted in the library’s

repository for Github-hosted tracking systems. Similar to the previous extrac-

tion methodology, we exported all issues as an XML file for libraries whose

issue tracking systems are on JIRA by querying the URL provided by the Ex-

port XML option. As this metric focuses on closing times, we discarded issues

which were not in a closed state. For each issue, we extracted its creation and

closing dates. For bug reports hosted in JIRA, we used the resolved date as

the closing date for issues that had a closed status, as we found that JIRA

does not provide an explicit closing date in its issue reports. The closing time

of each issue is the difference between the creation and closing dates. Finally,

to calculate the issue closing time metric for the library, we used the average

of the closing time of all closed issues. We extracted an Issue Closing Time of

70.84 days for mockito.
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3.4 Backwards Compatibility

Definition and Intuition.

A library is said to be backwards compatible if client projects can upgrade

to a more recent version of the library without having to modify code that

used the library’s APIs. Libraries that often break existing code may result in

more maintenance work from client developers, so we believe that developers

may want to see information about backwards compatibility when choosing a

library. We define Backwards Compatibility as the average number of breaking

changes found in consecutive releases of a library, more formally:

BackwardsCompatibility =

∑N−1
i=1 BreakingChanges(Releasei, Releasei+1)

N − 1
(3.4)

where N is the total number of releases of a library and BreakingChanges

is a function that counts the total number of breaking changes between two

releases.

Extraction Methodology.

We used Xavier et al. [52]’s diff tool that analyzes two source code versions of

a given library to detect changes for three types of API elements: type, field,

and method. For types, breaking changes consist of type removal, visibility

loss of the type (e.g. from public to private), and changes in its base type.

For fields, field removals, modifications in the field’s type, visibility loss, or

different default values are considered breaking changes. Breaking changes

for methods can be due to method removals, visibility loss, changes in its

return type, parameter list changes, and exception list changes. We used this

diff tool to count the number of breaking changes between two consecutive

versions Ri and Ri+1 of a library for all releases R1 to Rn−1, where n is the

number of releases of a library. Similar to our Release Frequency methodology,

we obtained releases of a library by collecting git tags. Finally, we calculated

the average of the resulting number of breaking changes across all analyzed
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releases. We obtained an average of 165.16 breaking changes per release for

mockito.

3.5 Performance and Security

Definition and Intuition.

Performance of a library refers to how efficient and optimized its code is.

Security of a library shows its ability to handle sensitive information without

compromising data and its robustness against attacks. Developers may want

to avoid libraries with many performance and/or security problems. As proxies

to measure performance and security of libraries, we use the proportion of bug

reports classified as performance-related and security related. More formally,

these metrics are defined as follows:

Performance =
#PerformanceBugs

#TotalBugs
(3.5)

Security =
#SecurityBugs

#TotalBugs
(3.6)

Extraction Methodology.

Past work by Uddin et al. [49] extracted information about performance and

security aspects of APIs by mining opinions from discussion forums. However,

our goal is to extract quantifiable information about these problems. As a

medium to obtain quantifiable data about non-functional attributes of a li-

brary such as performance or security, we use bug reports related to these

problems as our source of information. Bug reports and their associated fix

commit messages have been previously used to extract general metrics or in-

fer information about software [23], [32], [34]. Textual features of bug reports

have also been used to provide classifications using machine learning techniques

[21], [36]. Similar to how background checks, school transcripts, or a history of

car accidents are used to determine current reliability aspects of individuals,

bug reports can tell valuable information about the current performance and

security of a library.
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Since issue tracking systems such as Github do not provide uniform issue

labels (e.g. performance) for bug reports across different repositories, we re-

sort to a different method to extract this information. Specifically, we use

a combination of a keyword-based approach and a classifier to label bug re-

ports as performance or security related. For simplicity, we will only refer to

Performance as the metric being discussed; however, we use the same exact

methodology to extract Security data.

To extract Performance data for our list of libraries, we first collected the

titles of all bug reports from Github or JIRA, based on where the issues are

tracked for each library. Our performance extraction methodology is then

divided into two steps. The first step consists of filtering bug reports based on

keywords. The second step relies on automatically classifying the resulting bug

reports using a machine learning classifier. We use a two-step methodology, as

using only machine learning classifications resulted in a large number of false

positives. We detail these steps in the following paragraphs.

Bug Report Filtering. We filter bug reports of a given library by search-

ing the titles of these reports for keywords related to general performance prob-

lems. We manually obtained these keywords from the titles and descriptions

of bug reports in the training dataset described in the following paragraphs.

The keyword selection process consisted of looking for terms which, in isola-

tion, can describe general performance problems independently of the library

domain or component. If a term met this criteria, we added it to our set of

keywords. The final list of keywords can be seen in Table 3.1.

Performance
deadlock, efficient, fast, freeze, hang, inefficient,
memory, leak, minimize, optimize, outofmemory,
overflow, perform, , scalable, slow, unresponsive

Security
attack, authenticate, authorize, availability,
confidential, cipher, crack, decrypt, encrypt,
secure, vulnerable

Table 3.1: Performance and Security keywords used to filter bug reports.

Training Dataset. In order to use machine learning classifiers, we use a

training dataset of 1,000 titles of bug reports, 500 labeled as performance bug
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Precision Recall F1-Measure
Multinomial Naive Bayes 0.79 0.87 0.83
Support Vector Machine 0.67 0.92 0.77
Random Forest 0.62 0.87 0.73

Table 3.2: Recall, Precision, and F1-Measure numbers for the Performance
classifier

reports and the other 500 as non-performance. To create this dataset, we first

use existing manually classified bug reports from the dataset by Ohira et al.

[33] which contains 320 performance reports and 161 security reports. Addi-

tionally, in order to have 500 positive examples, we complement the dataset by

adding bug reports that two researchers, including the author of this thesis,

manually classified. Our manual classification was done as follows: we first

search in the Bugzilla issue tracking system for bug reports containing the

keyword performance. As projects, we used Tomcat, Eclipse, Ant, Thunder-

bird, and Firefox to perform our search as their issue tracking systems have

a large number of bug reports and do not overlap with any of our target li-

braries. We manually classified the titles of bug reports as performance or

non-performance and agreed on the labels. We then collected the titles of the

bug reports which were classified as performance.

Bug Report Classification. Using the training data set mentioned in the

last paragraph, we train a machine learning classifier to provide performance

or non-performance classifications for bug reports, using only the title of the

bug report as the input data. We omit bug descriptions from our input since

we found that they often consist of steps on how to reproduce an issue, which

do not provide valuable information to the classifier, and often add noise.

For each bug report title, we eliminate stop words, and stem the remaining

words from the resulting text. We then calculate the inverse term frequency of

the resulting text and used it as input to a Multinomial Naive Bayes classifier.

We use Multinomial Naive Bayes as it produced better F1-score numbers when

compared to other classifiers that we tried, as seen in Tables 3.2 and 3.3.

We validate our classifier using a stratified 10-fold cross-validation and

achieve a recall of 79% and a precision of 87% (recall of 89% and precision of
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Precision Recall F1-Measure
Multinomial Naive Bayes 0.88 0.89 0.88
Support Vector Machine 0.99 0.57 0.72
Random Forest 0.71 0.80 0.75

Table 3.3: Recall, Precision, and F1-Measure numbers for the Security classi-
fier

88% for our security classifier). For our final performance metric for a given

library, we report the percentage of bug reports classified as performance-

related out of all issues found in the issue tracking system of the library. For

this metric, we consider all issues regardless of state, as closed issues can reveal

past problems of a library, while open reports may reveal current problems.

Using this methodology, we calculated that mockito has 2.14% performance-

related issues and 0% security-related issues in its issue tracking system.

3.6 Last Modification Date

Definition and Intuition

We refer to the Last Modification Date of a library as the last time changes

were done to its code repository. While the Release Frequency of a library pro-

vides an estimation on how often the software is updated, it does not provide

information about the recency of the library. Last Modification Date provides

an indication of whether the development of a library is still active.

Extraction Methodology

We extract the date of the last commit made in the Github repository of the

library. When extracting data for our survey, the Last Modification Date for

mockito was January 15, 2018.

3.7 Last Discussed on Stack Overflow

Definition and Intuition

This metric refers to the last time a question was posted about a given library

in the popular Q&A website Stack Overflow. Similar to the Last Modifica-
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tion Date, we believe that libraries with active communities are constantly

discussed in Q&A websites such as Stack Overflow.

Extraction Methodology

For this metric, we collected the Stack Overflow tags corresponding to the

libraries in our list. We identified the tags for each library by using the search

by tag functionality on the Stack Overflow website. Using this feature, we

searched for the name of the library and selected the tag with the largest

number of questions. Using the Stack Overflow API, we then looked for the

most recent questions containing the identified tag of a given library and ex-

tracted the date of latest posted question. As an example for this metric,

mockito was last discussed on January 15, 2018 at the time we prepared the

data for our survey.

3.8 Chapter Summary

In this Chapter, we presented the metrics that we employed for a first im-

plementation of a metric-based comparison of software libraries. The se-

lected metrics were: Popularity, Release Frequency, Issue Response Time, Is-

sue Closing Time, Backwards Compatibility, Performance, Security, and Last

Discussed on Stack Overflow. These metrics have the objective of providing

quantifiable information describing different characteristics of libraries. These

metrics were extracted from open source repositories, issue tracking systems,

version control systems, and Q&A websites.
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Chapter 4

Developer Survey

To evaluate our proposed methodology of comparing libraries using metrics,

we implemented a preliminary version of our technique. Using the 9 metrics

described in Chapter 3, we extracted their metric data for a set of libraries and

used this information to survey software developers about the usefulness of our

employed metrics and our approach for comparing libraries. More specifically,

we designed the survey with the following 3 research questions in mind:

RQ1 Is a metric-based comparison of libraries useful for developers when se-

lecting a software library to use?

RQ2 Which metrics influence developers’ library selections when comparing

software libraries?

RQ3 Does the library domain affect metric usefulness?

The rest of this chapter is organized as follows: Section 4.1 mentions the sub-

ject library domains and the criteria used to select libraries for our survey.

Section 4.2 describes how the survey was presented to participants and Sec-

tion 4.3 contains the questions and possible answers of the survey. Finally,

4.4 explains the recruitment strategies employed to contact potential survey

participants.

4.1 Surveyed Libraries

To compare similar libraries, we chose 10 of the most popular Java library do-

mains in MVNRepository [16], a website that categorizes Java libraries based
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on domains. These domains were testing, database, utilities, xml process-

ing, logging, object relational mapping, json processing, mocking, security,

and cryptography. For each domain, we investigated the available Java li-

braries by consulting the same website. For this implementation, we focused

on libraries that have available open software repositories on Github and is-

sue tracking systems, either hosted on Github or Jira. We discarded libraries

whose projects did not meet these requirements. Additionally, since some of

our metrics depend on text analysis, we ignored libraries whose bug reports

were written in languages other than English. For instance, we found that

this was the case with the alibaba/fastjson repository, whose main language

for issues was Chinese. Our final subject list consisted of 34 Java libraries.

4.2 Survey Overview

After gathering the metric data for our chosen libraries, we implemented a

website to conduct our developer survey. Our website first presented partic-

ipants with a set of background questions about their professions and Java

proficiency levels. Then, the website proceeded to display a list of library do-

mains available for surveying. To obtain a balanced set of responses for each

domain, our website dynamically hid domains whose number of responses were

too high compared to the least responded domain, and thus, encouraging users

to evaluate the least popular domains. After selecting a domain, participants

were able to see a table containing a metric-based comparison of libraries from

the selected domain, similar to the table in Figure 1.1. Each metric presented

in the table contained an information icon that users were able to hover over for

a simple description of the metric. Below the table, a set of domain-specific

questions were shown to participants. Finally, a set of exit questions were

displayed to participants.

4.3 Survey Questions

We now detail the complete set of questions in our survey along with their

respective possible answers.
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Background Questions

QB1 What is your current occupation? Undergraduate student, graduate stu-

dent, academic researcher, industrial researcher, industrial developer,

freelance developer, or other.

QB2 How many years of Java development experience do you have? <1 year,

1-2, 2-5, 6-10, 11+ years.

Domain-specific Questions

QD1 Based on the presented information, which of the above libraries would

you select if you were looking for a [domain] library to use? A dropdown

list containing the names of the libraries shown in the table. Only one

library could be selected. Note that the choice of library per se is not

important for our survey objectives. The purpose of this question, as well

as the next two, is to ensure that participants think about the presented

metric information.

QD2 Which of the above libraries have you used before? A checklist containing

the names of the libraries shown in the table. Multiple libraries could

be selected.

QD3 Name any other libraries from this domain that you have used before.

Free-text.

QD4 Explain your reasons for your choice in QD1. Which metrics, if any,

influenced your decision? Free-text.

Exit Survey Questions

QE1 On a scale of 1 to 5, with 1 being not useful at all to 5 being very useful,

how would you rate the usefulness of the following metrics? A list of the

9 metrics is presented, with a Likert scale from 1 to 5 for each metric.

QE2 On a scale of 1 to 5, with 1 being not useful at all to 5 being very useful,

how useful do you find the above metric-based comparison for selecting a

library to use from a given domain? Likert scale from 1 to 5.
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QE3 Are there additional metrics that you think might be helpful for comparing

libraries in a given domain? Free-text.

QE4 Please let us know if you have any further comments about the above

metric-based comparison of libraries. Free-text.

4.4 Participant Recruitment

To obtain valuable feedback for our approach, we needed to survey Java de-

velopers who use libraries. We employed three recruitment strategies to target

this audience. The e-mail templates used to recruit participants can be found

in the Appendix A.1, A.2, and A.3 of this thesis.

Github Recruitment. To recruit developers who have used one of our sub-

ject libraries before, we searched for Github users who contributed code to

client projects of our subject libraries. As it is not possible to contact Github

users directly, we gathered e-mail addresses as follows. We used the Github

API to search for Java repositories that included code that references API ele-

ments of our subject libraries as the only filtering criteria. From these results,

we looked at the files containing our searched API elements and collected the

git commits associated with them. Finally, we discarded git commits that

were older than 6 months and obtained the e-mail addresses of the authors of

the remaining commits. We collected a total of 298 e-mail addresses.

Stack Overflow Recruitment. Our second recruitment strategy consisted

of recruiting Stack Overflow users who have been involved in discussions of two

subject libraries of the same domain. Such a discussion indicates that they

were previously comparing libraries and thus getting the input of such users is

important. Since Stack Overflow does not offer functionality to contact users

directly, we searched for questions containing at least two tags of our subject

libraries and collected e-mail addresses by visiting the personal websites listed

in the profiles of the users involved in those questions. Given the manual
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nature of this methodology and the fact that not all users have websites on

their profiles, we collected only a total of 20 e-mail addresses in this step.

Snowball Sampling Our third strategy consisted of snowball sampling [10]

where we simply asked any Java developer to complete the survey. We sent

email invitations to the undergraduate and graduate mailing lists of the Com-

puter Science department at our university, who may had forwarded the email

to others. We also advertised the survey on social media accounts and invited

others to promote the survey.

4.5 Chapter Summary

In this chapter, we explained the details of the survey that was presented to

developers with the objective of evaluating the usefulness of a metric-based

comparison of software libraries. Our survey consisted of an initial implemen-

tation of our comparison methodology, which was used to compare libraries

from 10 popular domains, and a set of questions whose objective was to make

developers think about the metrics and the usefulness of the presented infor-

mation. To recruit developers for surveying purposes, we used three strategies

which targeted users of Java libraries.
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Chapter 5

Results

The previous chapter introduced the developer survey designed to obtain feed-

back about our first implementation of a metric-based comparison of software

libraries using the metrics specified in Chapter 3. In this chapter, we present

the results of this survey, information about the response rate and partici-

pants’ background, statistics about evaluated domains and participants’ an-

swers, conclusions to the research questions posed in the previous chapter, as

well as a discussion involving the free-form answers from the survey.

All of the reported statistics in this chapter use a pairwise Wilcoxon sum

rank test to observe any statistically significant differences between metric

ratings, using α = 0.05. Since we perform multiple tests, we use the Holm’s

adjustment method for our p values. To estimate effect sizes of any significant

differences, we use Cliff’s delta with the following ranges [12], [23]: small for

d < 0.33, medium for 0.33 <= d < 0.474 and large for d >= 0.474.

The organization of the rest of this chapter is as follows: Section 5.1 con-

tains basic statistics related to the survey participation, while Section 5.2

has information about the background of participants. In Section 5.3, details

about the evaluated domains and selected libraries by participants are men-

tioned. Sections 5.4, 5.5, and 5.6 provide answers to the first, second and third

research question, respectively. Finally, Section 5.7 discusses the free-form an-

swers and comments provided by developers.
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Figure 5.1: Occupation

Figure 5.2: Years of experience using Java

5.1 Participation Breakdown

We received a total of 61 responses for our survey. From the 318 e-mails that

we sent to Github and Stack Overflow users, we collected 24 responses (7.5%

response rate), with 21 participants recruited from Github and 3 from Stack

Overflow. The remaining 37 responses were obtained with the snowball sam-

pling recruitment. Out of the 61 total responses, 53 participants completed all

sections of the survey, while 8 participants answered only the background and

domain-specific questions but did not answer the exit questions. A total of 22

participants evaluated at least two domains, while the remaining participants

assessed only one domain.

5.2 Background of Participants

Figure 5.1 shows the distribution of participants’ backgrounds. For simplicity

and better visualization, we group undergraduate and graduate students un-

der the category Student. Similarly, we use the category Researcher for both

industrial researcher and academic researcher, and Professional Developer for

both industrial developer and freelance developer. Students present the high-

est percentage of participants (49.18%), followed by Professional Developers

(39.34%). Note that there was one participant who picked the other cate-

gory in occupation and indicated that they are a business analyst. Figure 5.2

shows the distribution of years of Java experience among participants. Three
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Figure 5.3: Number of evaluations for each domain

Table 5.1: Most selected libraries per domain.

Domain Most Selected Library
% of Participants with
experience using the
library

Logging qos-ch/slf4j 53.85%
Utilities google/guava 71.43%
Mocking mockito/mockito 100%
Cryptography bcgit/bc-java 66.67%
JSON google/gson 61.54%
Database h2database/h2database 50%
ORM hibernate/hibernate-orm 76.92%
Security spring-projects/spring-security 33.33%
XML apache/xerces2-j 42.86%
Testing junit-team/junit4 92.86%

quarters of the participants (75.41%) had at least 2 years of Java experience.

5.3 Domain and Library Breakdown

The number of evaluations per library domain are shown in Figure 5.3. Note

that the same participant may have evaluated more than one domain. Testing,

Database, XML, and Utilities are the most evaluated domains, each consisting

of 14 domain-specific survey responses, while Security is the least evaluated

with 3 responses. Table 5.1 shows a detailed breakdown of the selected li-

braries. In 29.46% of responses to QD1 and QD2 of the survey, participants

chose a library they had not previously used, which supports the idea that

familiarity with the library was not the deciding selection factor for all partic-

ipants.
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Figure 5.4: Answers to QE2 by participant occupation

Figure 5.5: Answers to QE2 by participant experience

5.4 RQ1: Is a metric-based comparison of li-

braries useful for developers when select-

ing a software library to use?

We start by first answering RQ1, which evaluates the overall usefulness of

metric-based library comparisons. We do so by analyzing the 53 received

answers for QE2 from participants. Figures 5.4 and 5.5 show the distribution

of ratings for QE2 per occupation and experience groups respectively. The

first four violin plots of Figure 5.4 present the distributions of ratings per

occupation group, while the fifth plot shows the distribution of ratings by all

participants. When considering all participants, the right-most plot in Figure
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5.4 shows that the highest frequency of answers is concentrated near rating 4

(i.e., Useful) based on the Likert scale. The mean rating of all participants for

QE2 is 3.85, the median is 4, and the interquartile range is 0 (lower quartile

= 4, upper quartile = 4). By observing the first three plots in the figure

(we ignore the Other category as it only contains one participant), we can

see that Professional Developers have rated the usefulness of a metric-based

comparison the highest with a mean rating of 4.05 (median = 4, interquartile

range = 0.75, lower quartile = 4, upper quartile = 4.75). Researchers have an

average rating of 3.83 (median = 4, interquartile range = 1.25, lower quartile =

3, upper quartile = 4.25), and Students have an average rating of 3.65 (median

= 4, interquartile range = 1, lower quartile = 3, upper quartile = 4). We

observe medium effect sizes between the rating distributions of Students and

Professionals (d = 0.46), between Researchers and Professionals (d = 0.37),

and a large effect size between Students and Researchers (d = 0.78). Despite

of this, we find no statistically significant differences between the ratings of

the occupations. On the other hand, Figure 5.5 shows a small ascending trend

of the ratings as experience increases starting from the 1-2 years group, but we

also find no significant differences between the ratings of the Java experience

groups. We can therefore conclude that based on our sample, background does

not affect the rating provided by participants.

Finding.1 : When comparing software libraries, our participants, regardless of
background, find a metric-based comparison of libraries useful (mean rating
= 3.85, median = 4)

5.5 RQ2: Which metrics influence developers’

library selections when comparing software

libraries?

Next, we aim to investigate which metrics influence developers’ library se-

lections when comparing software libraries. To answer this question, we use

three sources of data from our survey. The first is the individual ratings of

each metric in question QE1. The second is the free-form answers to QD4

where participants explicitly mentioned which metrics affected their decision
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Figure 5.6: Rating distributions of QE1 for all metrics.

when selecting a library and why. The third is the free-form question QE3,

where participants mention additional metrics they would like to see.

Figure 5.6 shows the distribution of the ratings for each metric and also

indicates the mean score. All metrics have a mean above 3.0 with the ex-

ception of the Last Discussed On Stack Overflow metric, whose mean is 2.96.

Performance, Popularity, and Security were the 3 highest rated metrics by par-

ticipants, with mean ratings 4.08 (median = 4, interquartile range = 1, lower

quartile = 4, upper quartile = 5), 4.06 (median = 4, interquartile range = 2,

lower quartile = 3, upper quartile = 5), and 4.00 (median = 4, interquartile

range = 1.5, lower quartile = 3.5, upper quartile = 5) respectively. Addition-

ally, we find that each of these 3 metrics has statistically significant differences

with the metrics Issue Closing Time and Last Discussed on Stack Overflow.

Analyzing the magnitude of these differences, we observe medium effect sizes

(d = 0.38) between Popularity and Issue Closing Time, and between Popu-

larity and Last Discussed on Stack Overflow (d = 0.45). For Security, the

results show a medium effect size with Issue Closing Time and Last Discussed

on Stack Overflow (d = 0.38 and 0.42 respectively). Finally, for Performance,

the tests also reveal medium effect sizes with Issue Closing Time (d = 0.41)

and with Last Discussed on Stack Overflow (d = 0.45). Thus, we can conclude

that compared to the other metrics, Performance, Popularity and Security are

indeed metrics that have more influence on developers’ decisions.
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To gain insights about the top-rated metrics, we analyze the free-form

answers from QD4. We use P1 to PN when quoting different participants. We

observe that participants are concerned about possible unnecessary overhead

to their applications that libraries may add, which might serve as explanation

for the high mean for Performance. For example, P1 said that “[...] logging

already added some overhead, I don’t really want any performance issues with

the library that I’m using”.

For Popularity, we observe that participants associate this metric with

library quality and support, as the comments of P2, P3, and P4 suggest:

“Popularity is a good proxy for quality”, “... These 2 metrics [Popularity and

Last Modification Date] are a good indicator of the quality of a library”, and

”It’s popular so I guess it should have something good”. Moreover, Popularity

is also associated with library support, as we can infer from these comments by

P4, P5, and P6: “Popular libraries tend to have the most support”, “...usually

more popular libraries are better developed and supported”, and “Popularity

reflects the sustainability of the library”.

Although Security is positioned as the third highest rated metric, we did

not find explanations for this fact in our collected answers. However, since

several of our subject domains deal with handling of data, we speculate that

developers most probably consider integrity and confidentiality of data as an

important factor when choosing libraries.

Finding.2 : Performance, Popularity and Security are rated highest, and each
had two statistically significant differences in their ratings w.r.t other metrics.

To find additional metrics that developers care about that we did not con-

sider in our comparison, we analyze the free-form answers for QE3 of the Exit

Survey. This question explicitly asked participants about additional metrics

they would like to see. In total, 39 of our participants left comments for this

question. To analyze their responses, we use an open coding approach from

grounded theory [4], specifically card sorting. Two researchers, including the

author of this thesis, wrote each metric that a participant mentioned on a piece

of paper. Then, we iteratively grouped related metrics, until categories of sim-
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Table 5.2: Categories of additional metrics from QE3 and the number of par-
ticipants mentioning these metrics.

Category
# of
participants

Definition

Documentation Quality 14
Recency and availability of library documentation
and learning materials

Library Usability 8
Metrics related to the ease of use and learning curve
of a library.

General Library Information 8 Statistics about a library and its public repository.
Library Functionality 5 Information about the functionality offered by a library.
Community Support 5 Statistics about community aspects from a library.
Legal 3 Information about licensing and ownership of a library

Compatibility 3
Information about the library’s compatibility with other software
such as libraries, platforms, and programming language versions.

Dependencies 2 Other software that needs to be installed to use a library.

Library Alternatives 2
Information about similar libraries including from other
programming languages.

Crowd-sourced Opinions 2 Opinions and reviews found in Q&A websites
Robustness 2 Reliability of a library.

Quality Assurance 3
Information about testing suites and continuous integration
statistics of a library.

Memory 1 Information about the memory usage of a library.

ilar metrics were formed. Table 5.2 shows the categories that emerged, along

with the number of associated answers and the definition of the category. Note

that two participants mentioned popularity metrics, which we do not report

in the table since Popularity is a metric already covered in our comparison.

Additionally, we did not understand the comments by 2 participants so we did

not include them in our categorization.

Finding.3 : Additional metrics related to documentation and usability of a
library are highly desired by developers.

5.6 RQ3: Does the library domain affect met-

ric usefulness?

Since our metric comparison is organized by domain, we are interested to see if

the perceived usefulness of the metrics depends on the domain. To investigate

this, we use two sources of data. The first is the individual metric ratings

from QE1 from the exit survey, and the second is the free-form answers to QD4

from the domain-specific questions where participants explicitly mention the

metrics that affected their decision.

For QE1, we analyze the metric ratings per domain by using survey re-

sponses that evaluated a single domain. This means that we do not consider
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Figure 5.7: Usefulness ratings for the Security, Release Frequency and Perfor-
mance metrics by domain
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participants who evaluated more than one domain, such that we can get a one-

to-one mapping between domain and metric rating. We have 35 such ratings

to analyze.

We find that while there are no large differences in the violin plots among

most domains for metrics such as Popularity and Last Modification Date,

the plots for the Security metric ratings show high variability among domains.

We visualize three metrics, including Security, that show lack of consistency in

their violin plots among domains in Figure 5.7. Plots for the remaining metrics

can be found in Appendix A.4 of this thesis. Note that we do not include a

column for the Security domain in our plots since there are no responses that

evaluated only this domain.

Given that the number of one-to-one domain-metric ratings, that is, the

metric ratings belonging to a survey response where only a single domain was

evaluated, was not that high (e.g., 1 rating in the Cryptography domain vs. 5

ratings in the JSON domain), we do not perform statistical tests to compare

these populations since the results of the tests would be meaningless. Instead,

we triangulate the descriptive statistics in Figure 5.7 with the answers to QD4.

We have 108 comments in QD4, since many participants evaluated more than

one domain. We analyze the comments and count the number of times each

metric is mentioned. We present a heat map in Figure 5.8 based on these

counts. Darker colors indicate more mentions by participants. The heat map

confirms our results from the metric ratings in the previous paragraph. We

can see that Popularity is frequently explicitly mentioned as a reason to choose

a library for most domains. In contrast, the Last Discussed on Stack Overflow

metric was barely mentioned by participants. As previously discussed, Security

seems to be a metric that is only relevant in some domains, such as databases

and cryptography, but completely irrelevant in other domains such as utilities

or testing.

To understand why metric usefulness may vary among domains, we look

at explanations provided by participants in QD4 as well as any relevant com-

ments from question QE4. We find that Security is intrinsic to certain domains:

“Since this is a crypto API, I’d like to use a library that has the least security
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issues” - P1. On the other hand, Security provides little use for specific do-

mains to some participants, as P7 suggests: “Importan[ce] of metrics depends

on the library. I don’t care about the security of JUnit.” We can observe

this opinion reflected in the Security metric ratings of Figure 5.7, where the

testing and mocking domains have low ratings. Similarly, Performance is seen

as crucial for some domains, as P8 describes “In ORM, the first thing I care

about is performance in enterprise projects”. For Release Frequency, certain

domains may provide more stable library releases and therefore, the metric

is less important, as P7 points out: “Testing frameworks do not need to be

released all the time. They are stable.”

Finding.4 : Some metrics are more intrinsic to certain domains than others.
Examples include Security, Performance, and Release Frequency.

5.7 Discussion of free-form comments

A metric-based comparison of software libraries has two main challenges: (1)

knowing which metrics to include and (2) designing a method to fairly and

accurately extract these metrics and present them in a useful and intuitive way.

Our survey focused on the first challenge: it evaluates whether a metric-based

comparison of software libraries is useful to developers, and helps uncover

which metrics developers care about when making a choice. However, the

comments provided by our participants provide us valuable suggestions and

insights on how to address the second challenge. In the rest of this section,

we discuss the most requested metrics that we did not include in our work

as mentioned by our survey participants and we provide our insights on how

these suggested metrics could be extracted. We also discuss improvements

that participants wanted to see in the set of metrics employed for the survey.

Table 5.2 shows that documentation quality is by far the most demanded

metric, even though it is hard to quantify, as mentioned by one participant.

There is a vast amount of work on how to improve documentation, such as

the research by Robillard et al. [42]. While concretely quantifying documen-

tation is hard, simple techniques such as mining various information sources

and presenting related links on our metric-based website, e.g., through tech-
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Figure 5.8: Heatmap of frequency of metrics mentioned by participants in
QD4. Darker colors indicate higher frequency.

niques that link the API used in the documentation to the library [45], are

feasible and could be useful to developers. Other options include automat-

ing documentation search techniques, such as those presented by Parnin and

Treude [38], or using patterns of knowledge in API documentation as a means

to assess their quality [24]. Future work could investigate how existing docu-

mentation techniques can be summarized and quantified in a way that quickly

gives developers an indication of availability and quality.

The next most demanded metric relates to library usability; specifically,

how easy it would be to use the API of a library. Since this is also hard to
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quantify, one option could be to leverage the vast amount of research that is

able to mine API usage examples [41] and present some of these instances to

developers. Developers could then assess whether these examples seem easy

to use or not.

While our selected metrics do have some general information about the li-

brary (e.g., Last Modification Date), our participants provide many other con-

crete suggestions that pertain to the general information of the library. For

example, surprisingly, two participants mention code size while we thought

client developers would not necessarily care about low-level details of the li-

brary. Others mention more high-level general information metrics such as

absolute number of releases and how old the library was.

Five participants mention that understanding the functionality offered by

the library is important, while one participant wishes to see the overlap in

functionality with other libraries. Another comment suggests having code ex-

amples for each of the library functionalities. The community support around

a library seems to also be very relevant for users. While we try to capture that

with the Issue Response Time and Last Discussed on Stack Overflow metrics,

it seems that developers are looking for additional metrics such as the size

of the community and how often the library is discussed in various blogs and

resources. Such metrics could be automated, by mining the web, or through

more advanced techniques such as looking at related developer networks.

Interestingly, one metric that we did not think of but that is very important

in practice is the licensing of the library. To add this information, GitHub

could be used as it already specifies the licenses used in each project, or license

mining techniques could also be employed [50]. Similarly, it makes sense that

developers are interested if a given library is compatible with libraries that they

are using, as well as the list of dependencies they would need to include for this

library to work correctly. Techniques for mining library dependencies can also

be used to extract such information. The remaining categories are mentioned

by two or less participants, but it is worth noting that crowd-sourced opinions

are mentioned by two of the participants. Information from the summaries

of API reviews created by Uddin and Komh [49] could be integrated in our

42



comparison to address this.

As suggestions for the set of metrics used for the survey, participants men-

tioned improving the presentation of the metric information, such as adding

graphical representations of the data (e.g. using trend graphs to visualize

metrics such as Issue Closing Time and Issue Response Time) or aggregated

scores for each library (e.g. 5-star rating for each library summarizing all of

its metrics data, as a quick way to observe which library is the highest rated.).

Finally, based on Finding 4, we believe that displaying customizable metric-

based comparisons based on the domain (e.g. displaying the most important

metrics of the domain first) may be useful to users. The fact that distinct

participants in our survey often rated the same metric differently supports our

reasoning that developers may care about different characteristics of a library

depending on their needs. This further sustains our belief that it is important

to provide developers with all relevant data, in an easily comparable form, and

leave them to decide which parts of this data they will use for their choices.

5.7.1 Chapter Summary

In this chapter, we presented the results of the survey conducted to software

developers where our objective was to investigate the following points: the

usefulness of a metric-based comparison of libraries when selecting software

libraries, the metrics that influence developers’ library selections when com-

paring software libraries, and whether the library domain affects the useful-

ness of metrics. The survey results show that most developers, regardless of

background, found the metric-based comparison useful. Among the metrics

included in our implementation, Performance, Popularity, and Security were

rated the highest, while additional metrics related to documentation and us-

ability were the most requested by developers. Finally, we found that some

metrics such as Security, Performance, and Release Frequency are more intrin-

sic to specific domains.
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Chapter 6

Enhancements and Website

One of the goals of this work is to create a website where comparisons of

software libraries are shown in an intuitive manner, metric information is con-

stantly being extracted in an automated fashion, and metric feedback is re-

ceived as users interact with the website with the objective of knowing which

information is most useful to software developers when choosing libraries. To

reach this point, we presented an initial set of metrics and their respective

methodologies to be used in our first implementation of a metric-based com-

parison of libraries in Chapter 3. We introduced this initial implementation of

our approach to developers along with the survey detailed in Chapter 4 with

the purpose of obtaining feedback. We analyzed the results of the survey in

Chapter 5 and mentioned the suggestions made by participants. Using the

collected feedback from our survey, our next step was to make improvements

and enhancements to the metrics and build the final website that can be used

by the community.

This chapter details the changes that we made to our metrics and gives

an overview of the created website. The rest of this Chapter is organized as

follows: Section 6.1 specifies the modifications made to the previous set of

metrics as suggested by participants in our survey. In Section 6.2 we give an

overview of the website application created to show comparisons of libraries.

Finally, Section 6.3 explains the main features of the website. The website

application can be visited at [29] and the source code for the extraction of

metrics is available in a public Github repository [30].
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6.1 Metric and Library Modifications

Based on the feedback collected from the free-form questions in our developer

survey, we made changes to our set of metrics. Additionally, we added 3 more

library domains, namely Machine Learning, Collections, and Mail Clients,

which consist of a total of 50 libraries as our list of subject systems. We

now discuss the details of the modifications we made.

6.1.1 Popularity

In order to present up-to-date information about the subject libraries in our

website, we implemented the extraction methodology for the Popularity metric

from scratch, as the latest available Boa dataset dated back to September

2015. Using the same idea as the methodology in Chapter 3, we query the

Github API to obtain a list of Java repositories that have at least 1 fork and

were updated within the last 2 years. We clone such repositories and search

for Java import statements corresponding to target libraries in the Java files

of the resulting repositories. Filtering repositories with at least 1 fork is a

criteria that has been used previously by researchers with the aim to discard

low quality projects [1].

6.1.2 License Information

License information about libraries was one of the requests made by partic-

ipants. Although license information does not fit our definition of a metric

(e.g. it is not quantifiable data), we decided to include it in our comparison

of libraries as licensing may be a decisive factor when integrating a library in

certain projects. For example, a software license that requires the disclosure

of modified source code of a library may not appeal to developers not keen to

share their code. We retrieve the license information using the Github API as

hosted repositories on this platform already contain the license that is being

used with each project.
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6.1.3 Overall Score

A requested addition by participants was to include an overall score for each

library as a way to quickly visualize the comparison of libraries. Although

our objective with this work was not to provide a ranking of libraries since

we leave developers to decide which libraries are best suited for them, we

decided to implement a 5-point scale scoring system based on the metric data

of each library in order to help developers with their comparison. The intuition

behind this overall score is that libraries with well-rounded metric data yield

high scores. The scoring system is defined as follows:

OverallScore =

∑N
i=1MetricScorei

N
× 5 (6.1)

where

N = ‖Metrics‖

and MetricScore is the following set of scores:

PopScore =
LibraryPopularity

max(LibraryPopularityi)∀i ∈ DomainLibraries
(6.2)

RFScore = max(0, 1− ReleaseFrequencyAverage

365
) (6.3)

PerfScore =
#NonPerformanceBugIssues

#Issues
(6.4)

SecScore =
#NonSecurityIssues

#Issues
(6.5)

ICTScore = max(0, 1− AverageDaysToCloseIssues

365
) (6.6)

IRTScore = max(0, 1− AverageDaysToRespondIssues

365
) (6.7)

LMDScore = max(0, 1− #DaysSinceLastModification

365
) (6.8)
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BCSCore =
#NonBreakingChanges

#BreakingChanges + #NonBreakingChanges
(6.9)

The score for each metric is normalized to obtain a maximum best possible

value of 1. The overall score is the sum of each metric score divided by the

number of metrics and scaled to 5. PopScore assigns high scores to libraries

whose popularity numbers are closer to the most popular library of the domain.

RFScore, ICTScore, IRTSCore, and LMDScore penalize libraries with a large

average of number of days in each of the respective metrics. On the other

hand, PerfScore, SecScore, and BCScore assign high scores to libraries with

low numbers of performance issues, security issues, and breaking changes,

respectively.

6.2 Structure of Website Application

Figure 6.1: Overview of the website architecture. Line arrows indicate the
direction of the flow of information.

The website application consists of three basic components: a metric miner,

a database, and a presentation layer. Figure 6.1 shows the information flow

within this application. The metric miner queries Github, JIRA, and Stack
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Overflow to extract metric information for each of the subject libraries. The

metric information is stored in temporary files and is copied to the main

database once all the required data for all libraries has been extracted. There-

fore, the metric data for all libraries can be updated by just executing the

metric miner and additional metrics can be added by modifying this compo-

nent. When a user wishes to see a comparison of libraries from a specific

domain, the web application queries the database to retrieve the information

necessary to show the metric-based comparisons. Finally, feedback is stored in

the database when users upvote or downvote metrics when comparing libraries.

6.3 Website Features

Figure 6.2: Landing page showing the available domains

We now explain the features that users would encounter when visiting this

website. The main page of the website (Figure 6.2 shows a list of available soft-

ware domains that contain comparisons of libraries. After selecting a domain,

users are shown a table consisting of a metric-based comparison of libraries

from the chosen domain, as pictured in Figure 6.3. In this table, each metric

row contains a set of options which allow to obtain more information about

the metric, view a graphical representation of related metric data, as well as

to upvote or downvote a metric.
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Figure 6.3: In addition to seeing the metric information, users have the option
to read additional information about metrics, see graphs related to metric
data, and approve or disapprove the usefulness of metrics.

A common idea suggested in the survey feedback was related to the pre-

sentation of the metric data. Some participants suggested that graphical rep-

resentations to visualize data would help to know more information about a

specific metric in cases where, for example, the distribution of data is skewed,

and therefore, a numerical average would give a false impression of the metric

data. To obtain additional opinions about graphical visualizations that were

most suitable for our metrics, we resorted to CMPUT 302 (Human-Computer

Interaction) students, which implemented their own graphical visualization of

our metric data as part of a project class where we observed similarities to

what our survey participants suggested. To address these recommendations,

we now complement metric information with graphs, which users can see op-

tionally. We now present the available visualizations for each metric:

6.3.1 Bar Charts

We use non-stacked bar charts only for the Popularity metric. Figure 6.4 shows

the popularity visualization option, where each bar represents the number of

client projects for each library.
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Figure 6.4: Visualization for the Popularity metric.

6.3.2 Timeline Charts

We use timeline charts for the Release Frequency, Last Modification Date, and

Last Discussed on Stack Overflow metrics. For Release Frequency, a timeline

of all the library releases can be seen as pictured in Figure 6.5. In this graph,

a point represents a release of the corresponding library on the y-axis. Users

can hover over points to see exact release dates. Similarly, the timelines for

the Last Modification Date and Last Discussed on Stack Overflow metrics

show points corresponding to the dates of the last 10 modifications made in

the library, and the dates of the last 10 created questions in Stack Overflow

related to the library, respectively.

Figure 6.5: Visualization for the Release Frequency metric.

6.3.3 Stacked Bar Charts

Stacked bar charts are available for the Performance and Security metrics. In

these graphs, users can observe the total number of issues classified as either

related to performance, security, both performance and security, or none of

these classifications in the stacked bars of this graphical representation as seen

in Figure 6.6

50



Figure 6.6: Visualization for Performance and Security metrics.

6.3.4 Line Graphs

Line graph visualizations are available for the Issue Closing Time, Issue Re-

sponse Time, and Backwards Compatibility metrics, as Figure 6.7 exemplifies.

The Issue Closing Time visualization shows a line graph where each point

represents an issue, and the position of the point in the y-axis represents the

number of days that it took to close such issue since it was first created. The

Issue Response Time visualization is similar with the exception that the posi-

tion of the point in the y-axis shows the number of days that occurred from the

creation date of the issue to the date of its first comment. Finally, the Back-

wards Compatibility graph shows a line chart where each point represents a

release, and the position on the y-axis reflects the number of breaking changes

found in such release. Points in all graphs can be hovered over to see exact X

and Y values.

Figure 6.7: Sample line graph visualization of the Issue Closing Time metric.
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6.3.5 User Feedback

In order to obtain information about the metrics that users find more useful as

they observe library comparisons in each domain, we implemented a feedback

system accessible from the comparison tables, as seen in Figure 6.3, where users

can upvote or downvote the usefulness of the presented metric information.

The feedback data is used to arrange the order in which the metric rows of

comparison tables are shown, that is, metrics with the highest number of

upvotes are shown at the top of tables, while the least upvoted metrics are

shown at the bottom rows of tables, and ties are broken arbitrarily. Each

domain has its own separate feedback data. The intuition behind this idea is

that users would be able to see the most relevant metrics first, based on what

previous users thought was more useful in a specific domain. Additionally,

it is possible to receive open feedback in the form of comments in the About

section of the website.

6.4 Chapter Summary

In this chapter, we introduced the website which contains the metric enhance-

ments made to our technique based on the feedback provided by surveyed par-

ticipants. We also explained basic architecture of the application, the main

features of the website, namely the mechanism created to receive user feed-

back, as well as the available graphical visualizations available for the metric

data.

52



Chapter 7

Threats to Validity and
Limitations

In this chapter we discuss threats to validity and limitations related to the work

presented in this thesis. We mention threats related to the Construct, Internal,

and External validity of this work. Construct Validity refers to how well

concepts and tools defined in this work measure what they claim to measure.

Internal Validity refers to the degree in which the results of the experiments

are attributable to the factors presented and measured in the study and not

affected by third factors unknown to the researcher. Finally, External Validity

refers to the generalization of our findings [17].

7.1 Construct Validity

Metric Names One possible threat to this study refers to the names we

assigned to each one of our metrics, which may create confusion among users.

For example, we used the name Popularity as the number of client projects

that each library has, however, some users may think that this metric refers

to the number of stars in the Github repository of a library. To mitigate this

threat, we included explanations for each of the metrics in our survey in the

form of information icons. Furthermore, for our website, we are including a

Frequently Asked Questions section that provides more in-depth definitions of

each our metrics to avoid any confusion.
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Popularity Relying on import statements to collect popularity information

may not reflect actual usage of the imported API elements. However, it pro-

vides an upper bound estimation of the popularity of a library. Another threat

concerns the age of the dataset of projects used to obtain our data, as it dates

to September 2015. While this dataset may not reflect current library usage

trends, and would be older than the data used for the other metrics, it still

shows the relative popularity since the same data set is used for all libraries

and this is sufficient for the purposes of our survey. For our website imple-

mentation, we do not depend on Boa for this task in order to provide updated

data.

Release Frequency When calculating this metric, we did not discard re-

leases that may have been release candidates or beta versions of a particular

library. This may have impacted the release frequency numbers for some li-

braries. However, we believe that this threat does not affect the findings of this

work, as the metric data shown to participants had the objective of making

them reason about the metrics that are important when choosing libraries.

Issue Response Time and Closing Time Past work has shown that bug

reports are used as operational data by organizations and development teams,

and not meant for research purposes [2]. This means that details of bug

reports may not accurately reflect the true story behind each issue. However,

our objective with these two metrics was to convey to developers an estimation

of time for response and closing times for bug reports which we believe is not

affected by this threat.

Performance and Security As we mentioned in the previous paragraph,

bug reports are not intended to be used for research. Therefore, using issues to

detect performance or security problems of libraries may inaccurately reflect

the information related to these non-functional requirements. Additionally,

we do not run performance or security tests on these libraries, nor do we ex-

amine other sources of information which may have information about these
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problems, which means that we do not provide an exhaustive list of issues or

vulnerabilities. Nonetheless, we believe that bug reports related to these prob-

lems may still have valuable information in their title descriptions that may

indicate the presence of performance or security problems. Finding objective

measurements for performance and security was one of the most difficult parts

of this research, future work should investigate alternative measurements that

may further mitigate this threat.

Backwards Compatibility For this metric, we did not consider changes

that do not generate compiler errors, but modify the functionality of existing

methods, resulting in undesired behavior. Future work could analyze regres-

sion tests in continuous integration builds to include this type of changes.

Last Modification Date When obtaining the last modification date of

repositories, we do not analyze the types of changes made in the latest com-

mit. Therefore, minor changes made within the repository such as correcting

typographical errors, may inaccurately reflect that functionality changes have

been made to a library. However, our intention with this metric was to inform

about any recent activity from the development team of each library, which

we believe is still reflected by any kind of change made within the repository.

Last Discussed on Stack Overflow Similar to our previous threat, we

do not analyze the contents of the latest questions asked in Stack Overflow

containing a library tag, which may result in questions whose information is

not relevant to the library. A possible future improvement to this metric could

be to analyze whether tagged libraries are one of the topics of discussion in

the questions.

7.2 Internal Validity

Metrics The list of metrics used in the survey is not comprehensive for the

purposes of library comparisons, as Section 5.7 suggests, and there is room for

improvement in terms of our extraction and presentation methods. However,
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the goal of our survey was to assess the general usefulness of metric-based

comparisons and to gather information and feedback about the metrics that

are most important to developers, with the objective of creating a publicly

available implementation in the future. Therefore, our survey findings are not

affected by potential small inaccuracies of the metrics we employed, especially

in a comparison context.

Implementation of scripts To mitigate any potential bugs in the scripts

we use to extract data for our metrics, we manually verified various samples

of the results. Additionally, we make our scripts publicly available for others

to verify or replicate our work.

Training Dataset for Classification To create a dataset of bug reports

related to performance and security problems, we manually classify bug reports

based on their title. This could have an impact on the predictions of the

classifier. To mitigate this threat, we agreed on the manual classifications of

bug reports. Additionally, we use the titles of bug reports provided by other

researchers [33]. Performance and Security are difficult metrics to accurately

quantify and we plan to investigate alternative methods.

Security and Performance Keywords We rely on a set of manually-

obtained keywords to filter bug reports related to performance or security

problems. However, since we manually obtained our set of keywords, it is

by no means complete, which implies that our methodology might miss bug

reports related to these non-functional requirements. To mitigate this issue,

we used the same set of keywords for all libraries, which at least guarantees

an equal treatment to all subject systems.

Participants and Library Domains As part of our survey, we presented

participants with a list of library domains to evaluate not necessarily related

to their domains of interest. Similarly, participants who evaluated multiple

domains, may have provided higher ratings to metrics due to the familiarity
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with metrics obtained in previous evaluations. This could have impacted the

findings in the survey responses. To mitigate this threat and generate interest

among participants, we only included popular domains in our subject systems,

and we made the evaluation of multiple domains optional.

7.3 External Validity

Survey Results The findings presented in this work are based only on our

sample set of participants and may not generalize beyond this context. How-

ever, to reduce possible opinion biases, we recruited participants with varying

backgrounds and through different sources.

Sample of Survey Participants While our objective was to obtain a bal-

anced set of survey participants from each of the different recruitment strate-

gies, not all participants whom we invited took part in our survey, which means

that the results are biased toward the largest group of developers, which were

recruited from the snowball sampling strategy. To mitigate this issue, we

present part of our results by also specifying the background of participants.

List of Libraries Our survey website did not provide an exhaustive list of

libraries per domain as not all libraries had publicly available repositories and

issue tracking systems. This may affect our findings and conclusions, but we

believe this effect would be confined to the library choice in QD1, which was

not explicitly used in our data analysis.

7.4 Limitations

The presented work focuses only on Java libraries and, therefore, some of our

code to extract metrics is language-specific. However, the proposed method-

ologies could be applied to libraries in any programming language. Similarly,

our target systems were only open source libraries as their repositories and

issue tracking systems are freely available.
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For our implementation of our extraction methodologies, we query the

Github API to gather metric data. Nonetheless, the Github API is susceptible

to query limits which can hinder the time that it takes to collect this informa-

tion. To avoid query limits, offline Github dataset mirrors such as GHTorrent

[11] could be used as a replacement for directly querying the Github API.
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Chapter 8

Conclusions and Future Work

This thesis introduced metric-based comparisons of libraries, a technique that

aims to assist software developers in making informed decisions when selecting

appropriate libraries for their projects. Motivated by examples of developers

who need to choose a library from a specific domain and who also care about

certain aspects of libraries, we presented our approach, whose purpose is to

work similarly to how products can be compared when shopping online. In

our proposed methodology, metric data is extracted from a variety of sources,

namely software repositories, issue tracking systems, and Q&A websites, with

the intention of being used as comparison points for users needing libraries

from a given domain.

By implementing an initial version of a metric-based comparison of Java

libraries and conducting a survey to software developers from distinct back-

grounds, we evaluated the usefulness of this technique for selecting library

purposes. Additionally, we gained insight from participants on the metrics

that matter the most when selecting libraries, and the desired metrics that

they would like to see in future implementations. With this information, we

created a website whose objective is to serve as a continuous comparison and

surveying tool which will allow to further know the information that influence

developers the most when choosing software libraries.
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8.1 Future Work

There are several enhancements that could be made to the present work. As

mentioned in the discussion of Chapter 5, additions could be made to the cur-

rent set of metrics. Automatable metrics related to the quality and availability

of documentation of libraries need to be investigated. Similarly, usability met-

rics which can be automatically extracted represents another challenge that

needs to be researched. Another highly requested addition was the function-

ality information of libraries. This information could be added in the form

of tasks described in natural language extracted from Q&A websites such as

Stack Overflow, similar to what has been done in past research [40]. While

other work has measured documentation and usability with the combination

of machine learning classifiers and sentiment analysis [49], the application of

current sentiment analysis tools on Software Engineering artifacts is yet to

produce reliable results even with customized datasets [22].

Additionally, there is room to improve the current set of employed metrics.

The classifiers used to detect performance and security bug reports could be

further improved with customized datasets based on library domains. Bug

report information such as their severity could be added to obtain a closer

look at how severe issues are treated by the respective developer communities.

Furthermore, long-term studies could be conducted to observe the useful-

ness of metric-based comparisons in the selection of libraries and the successful

integration of chosen libraries in software projects.
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Appendix A

Plots and Survey Recruitment
Materials

This Appendix contains the recruitment materials that were sent to potential

participants of the developer survey conducted in this work, as explained in

Chapter 4, and the plots for metrics as specified in Chapter 5 of this thesis.

Appendix A.1 has the e-mail template used to contact Github users, Ap-

pendix A.2 contains the template for Stack Overflow users for the same pur-

pose, and the general e-mail sent to university students can be found in Ap-

pendix A.3. Appendix A.4 contains plots of the usefulness ratings for the

Backwards Compatibility, Issue Closing Time, and Issue Response Time, Pop-

ularity, Last Discussed on Stack Overflow, and Last Modification Date metrics

by domain.
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A.1 Recruitment Template E-mail for Github

Users

Dear [Github username],

We are a group of researchers from the Department of Computing Science at

the University of Alberta, Canada, who work on developing tools and method-

ologies to help software developers use Java libraries more easily and correctly.

We have developed a new technique for comparing Java libraries from the same

domain. We noticed that you have committed to a source file that uses the

[library name] library from the [domain name] domain in the Github project

[repository], which is one of the libraries included in our work. Accordingly, we

would like to invite you to participate in a short survey about our comparison

technique. The survey can be found in this [URL]. We would appreciate it if

you can fill out the survey as soon as possible, but note that it will remain

open until January 26. The survey should take no more than 5-7 minutes of

your time. Note that the survey is completely anonymous. We only record

the fact that you have used one of the libraries in our data, but do not record

anything about your identity or activities. More information about how the

data we collect is used can be found on the information page of the survey.

Thank you for your time.

Fernando Lopez de La Mora (email: lopezdel@ualberta.ca)

Sarah Nadi (email: nadi@ualberta.ca, website: http://www.sarahnadi.org)

The plan for this study has been reviewed for its adherence to ethical guide-

lines by a Research Ethics Board at the University of Alberta. For questions

regarding participant rights and ethical conduct of research, contact the Re-

search Ethics Office at (+1)-(780)-492-2615.
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A.2 Recruitment Template E-mail for Stack

Overflow Users

Dear [Stack Overflow username],

We are a group of researchers from the Department of Computing Science at

the University of Alberta, Canada, who work on developing tools and method-

ologies to help software developers use Java libraries more easily and correctly.

We have developed a new technique for comparing Java libraries from the same

domain. We noticed that you have been involved in a Stack Overflow post re-

garding Java testing libraries (question #[number of question]), which is one

of the domains we consider in our work. Accordingly, we would like to invite

you to participate in a short survey about our comparison technique. The

survey can be found in this link: [URL] and will be open until January 26th.

The survey should not take more than 5-7 minutes of your time. Note that the

survey is completely anonymous. We only record the fact that you have used

been involved in a StackOverflow discussion of the libraries in our data, but

do not record anything about your identity or activities. More information

about how the data we collect is used can be found on the information page

of the survey.

Thank you for your time.

Fernando Lopez de La Mora (email: lopezdel@ualberta.ca)

Sarah Nadi (email: nadi@ualberta.ca, website: http://www.sarahnadi.org)

The plan for this study has been reviewed for its adherence to ethical guide-

lines by a Research Ethics Board at the University of Alberta. For questions

regarding participant rights and ethical conduct of research, contact the Re-

search Ethics Office at (+1)-(780)-492-2615.
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A.3 Recruitment Template E-mail for Univer-

sity Students

Hello,

Do you have experience using Java? If so, we would like to invite you to

support our research by participating in one short survey involving techniques

to help developers use Java libraries more easily.

The survey can be found at [URL] and it is open until January 26th and should

not take more than 5-7 minutes of your time.

Thank you for your time.

Fernando Lopez de La Mora (e-mail: lopezdel@ualberta.ca)

Sarah Nadi (email: nadi@ualberta.ca, website: http://www.sarahnadi.org)

The plan for this study has been reviewed for its adherence to ethical guide-

lines by a Research Ethics Board at the University of Alberta. For questions

regarding participant rights and ethical conduct of research, contact the Re-

search Ethics Office at (+1)-(780)-492-2615.
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A.4 Plots
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Figure A.1: Usefulness ratings for the Backwards Compatibility, Issue Closing
Time, and Issue Response Time, Popularity, Last Discussed on Stack Overflow,
and Last Modification Date metrics by domain
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