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, ABSTRACT %y

\ . S

- This thesw analyzes the problem partifioning a set of entities into disjoint sub-
ject databases of limited size so a§ to lminimize various measures of costs for develop-

‘ment and m‘untenance Formally, the set of entities apd the &et of transactions define

a byp{rgraph ‘whose nodes are entities and whose edges are transactions, and the whole
problemh is reduced to partmonmg‘ the set of' nodé‘?gof the. hypergraph into subsets of
limited s:zes so as to minimize the sum of \the costs“of all cut edges, This thesis
analyzes the complexity of different classes of partitioning problems and the properties
of some heuristic algorithms, and will present an algonthm for exact solution of a spe-

cial case of the partitioning problem.
a " / . . ‘g‘,
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- ' Chapter 1 . i T

- BRI : o lntroductio‘h

The latest achlevements in haréware performance and software design have led to

the development of new™ ourth/(leneratnon tools Wthh are helng successfully used in

all stages of design an‘ evelopment of“large commerclal and engmeenng computer

. o systlemﬂs.ﬂ Thesel new tools,’,Aainly ‘relational database manageme‘nt systems, active "
data dictionaries and high-level programming languages, make it possi'ble to estahlish

a whole new approach/to system design and development New system development

‘ methodologles kno7h as Fourth Generation Methodologles "have appeared on the
market One of the most successful and most used l’ourth generatton methodologles is

the so-called da}/a drlven prototypmg methodology

| ‘ - Thls prototyplng methodology takes advantage of these new tools that allow sim-
/

ple and fast data deﬁmt:on and loadlng It also provndes powerful l'ourth generatlon

languagl:s for fast program development Prototypmg s an lteratn'e process of system

/
f s

development Each iteration is used to develop a worklng prototype of the new sys-

tem//The complexity of the prototype and the number of |mp|emented system func-
tlons grow from stage to stage so that the ﬁrst stage usually presents screen design

And primitive data ﬂow whlle—the last prototype presents the productlon version -of .

/ ‘the nev(system

/&

Thls approach requlres the partlcnpatlon of users durlng the early stages of the
) 'system demgn so that they wxll see from the very begmnlng what the system vnll ln_ok
hke and how |t wnll operate Such partxcnpatlon wrll minimize the number of changes '
that must be made durmg the ﬁnal stages of system lmplementatlon. However,

stable data modcl must he in place from the very heglnmng of the project ut:lmngo :

\

'thls new approach Thls l'act puts new emphasls on the whole data modelllng process,

R K .because the success of the project becomes-dependent on the quallty and adequacy of

-



the data model produced during design.
Data modelling[18,21] is the process of identifying entitics and entity relation-

ahipa which are relevant to the in‘formation system being designed The‘conceptl of

" entity is ver eneral and can- mclude any object, henomenon roperty or statement
y Y 8 y ob) ,P prop 7

rfleiant to the modelling 'environment. Entltles partmpate in relatlonshlps For
example -one statement. about the parent can be assocnated wlth several statements

about chlldren The uheory ol' normallzatlon developed by E.F. Codd[2 3} places some

.

restnctnons on the type of statemonts that can ’be used in the data model, Namely, it

requires the norm(hzatlon of the rclatlons used to represent the statements.
. - ; ' . .
‘ . S .

The data model for a contemporary large information system &3n consiﬁt of hun-

dreds of dlﬂerent entltles “The lnformatlon system must be able to process hundreds

of dill'erent transactlons each accessmg a dnﬂ'erent subset’ of entities. Pract:cal experi-

” |

ence shows that, in thes'e‘circumst‘ances any attempt to develop the whole system at
once usually ends in l'allure' the communlcatlon overhead goes up,’ the clean structure

' r
of the system dnsappears the pro;ect becomes unmanageable and so on. Sometlmes it

N

" is also impossible to put in place all the resources which are necessary for the develop-

ment ol"the whole system at oice.’

The above-mentloned problems show the necesslty for partmonmg a. large system

into a set of several managcable suhsystems wnth defined mterfaces The problem of

- partmomng a large appllcatlon systenr into several suhsystems is of great’ |mportan<;e -
‘to any orgamzatlon whnch conducts Stratcgac Data Planmny study [18] In pralctlce,j

‘the partltiomng ol' the system can be carrned out in three steps

e,

“Step l. ‘-_‘Partltlon the set of entltxes from the data model lnto several d|510|nt subsets l

‘ |
, ol' closely related entltles Such subsets are called mb;ect databaaec

St}{{ For each subject database, 1dentlfy the set of transaetlons that access enti-

_ "tles only from thls qubject datahase‘ Such sets of transactlons are called'

. L K - - Vo -
T Lo e "o } o
oL ,‘.‘ . o T



internal transactions, . . ‘ kY

—— .o . ' "

.

. \
Step 3. For each subject datnbase, identify the set of transactions that access enti-_.._

ties from this subject database and entities from any other subject database.
‘ | | « , R Ca
“These transactions are called interfacing transactions or snterfaces, , .

] )

. ) C o \ . L
We shall identify a:subsystem as a subject.database plus its associated internal trap-
o . : : 4 " ‘
, ' Son o Cm , . L : ' !
snctions and associated interfaclng transactions. The problem,of partitioning is to

a .
|dent|fy sub;eot. databases |n such a way that the complexn.y of the lnterfaces is

¥

reduced to mmlmum This approach is in line with’ st.ructured system development.

ethodology[??] which requlres~ partmomng the system into hlghly cohesive and

loosely coupled parts. Thjs kind of partition will result in reduction of the total over- @

v
\

head for system development and ,main'tenance and will allow for optimal structuring
of the development and maintenance teams. Each team wnlL,be responsnble qor a
’separate subject. dat.abase the associated subsystem pnd its lnterfaces lnterfacing ;

transactions will, Lherefore be the jonnt Tesponsnbnlnty of two or more different, teams

Thus, if we reduce the complexity of the inpe&ace,' the total ‘overh‘ead in sy:t/mlenrn-

)

/

ing and team conZlmunicat,ion is reduced at the same time. The next sectién will dls-

cuss these topics in more detail, N ‘ . ‘ '

‘a é Malnte ance Model ' o A

ln t,h'isl Seetion -we shall present. a‘simple' 'lnathem‘atical inbdel‘ 6l’ the mnintenance
L e
: process for a large appllcatlon computex; system. Usnng thls model we slmll sbow that ‘
‘parutlo.mng t,he system lnto smnller sn;systeme and mlnlmmng subsystem lnterfaces
- will lead to, a reduethn-m overall system manntenance co_st,.‘r,Th.e same eonclnmon can
| alsb l)e derived for the e'ystein‘ developmeni cosl,. - ,‘ | e |

" ’:r . e

“ : »

As we know from experlence, large apphcatnon software packagcs are never st.auc

but contmuously undergo changes and enhancements A request for system malnte- N

-

- Dance’ can be the result for ;xample, of wcovered syatem bug, 3 chan;e |n user ,
- .Aw‘ A . B ‘) ‘Al ) ,'.,\')..1}‘ "

¢ - . e ’ s . L “ R Ve

- v



‘o, . . . ' »)
requircments, or a change in legislation. At present, mote than 809 of all computer
analysts’ time is spent on maintcnance,

The performance of each maintenance analyst, that is, the number of unit-sized

" maintenance requests the analyst can process in a unit of time, depends on the level of

knowledge‘ that he/she has abeut the system. Let S be the size of the subsystem
assigne(li to some maintenance anz‘\'lyst. S can be [;)eaaurcd in different units ( e.g. lines
of.code, number.of entities, number of attributes, etc.) depgnding oﬁ the system under
consideration, The maintenance analyst has a working knowledge of several parts of
the subsystem. Let W be the total size of these parts. The time required to process a

request for maintenance depends on whether this request is related to the part of the

—

subsystem known to the analyst or not. Let ¢t be the time required to make requested
changes co a unit-sized part of the subsystem known to the analyst, and let T be the

time per unit-sized part required to change parts unknown to him/her. It is clear that

T>>¢t,
N

‘We assyme that each analyst receives a steady flow of maintenance requests and-

<

that each request refers to a specific part of the subsystem with probability propor-

tional to the size of this part. Also, we assume that each.analyst receives enough

maintenance requests to keep him/ﬁer busy all the time. This means that the average

" time that the analyst spends to process a single unit-sized request is

,\’\ \

uﬂ,ut‘ .\——‘Z-“+;S-S‘WT . ”

where L:-Js the expected portion of thé requested task in the parts \known to the

“Eaﬂ'zil’yst, and S-W is the expected portion of the requested task in the parts unknown

. s )
to the analyst. ) .

=" The performance, P, of the analyst in unit-sized tasks per unit time will be equal

£



5 .

1 s .
b W 15wy

The analyst will be forgetting details of the subsystem at a rate proportional to
W. At the same time, the analyst will be acquiring knowledge of the subsystem while
working with the requests dealing with the unknown parts of the system, The number

of unit-sized tasks of the latter type that the analyst processes in a unit of time is

»

W )
~quil\ to 3—-—”—I’. This means (1] that the amount of knowledge acquired by the

; 5
:
N\

S—

’ . . . . . W .
analyst in a unit of time is proportional to ~—9——-P . These observations allow us to

derive a differential equation for W;

. — !

W=~ kw4 g3 p
where k and [ are positive coefficients. A time independent solution of this differential
equation for the large values of S is derived in Appendix 1, Here, we give only the:

final expression for the performance of the maintenance analyst:

— ,p‘.-__l_(HLLI:Q_fL,‘ . :
; T kST?

i
This expression means that if the analyst is assigned to maintain an unreasonably

large system (or subsystem), then the analyst’s performance will be close to the woest
- .

-~

possible performance, L Therefore, in order to maintain the performance of the

T

’

members of the maintenance team above a certain level, we must limit the size of the
subsystem to which each analyst is assigned. This, in turn, means that, in order to

successfully maintain a large system, we must partition it into several subsystems of

" limited size.
In order to measure sizes of subsystems and subject databases, we shall assign a

size to each entity and each transaction. The size of a subject database will be equal ¢

3
~ . A

the total size of all entities in this subject database. The size of a subsystem will be
! ®*

equal o the size.of an associated subject database plus the total size of all associated



internal transactions and the fot..al size of all interfaciné transactions, However, for
the sake of simplicity, we shall assume that the size of a subsystem is proportional to
the size of an associated subject database. This is a reasonable assumption when all
transactions are evenly distributed throughout the sy‘stedl. This assuniption will allow
us to reduce the problem of partitioning a system into subsystems of limited size“to the
problem of partitioning a data model into several subject databases of limited size.

t

‘Also, we.assume that the amount of system maintenance work is proportional to

e .

the system size, However, maintenance of an interfacing transaction will require parti-
cipation of all teams responsible for subsystems which are accessed by the interfacing

transaction, because all such teams must analyze the impact of the requested changes

on their subsystems and make the necessary changes. This, however, creates an inter-

¥

face overhead in system main‘tenance which depends on thé sizes of all interfacing
transactions and the w;ay these transactions interface with the subsystems. Usually, .
we shall assume that this interface overhead is proportional to the total size of the
interfacing tramsactions. Clearly, to minimize the maintenance cost, we must find a

partition which minimizes the total size of the interfacing transactions,

N P

_Suppose that the data model of the system is partitioned, into several subject

databases of approximately the same size Sy,44,.- This, in turn, will lead to the parti-

Iy

tion of the system into several subsystems of approximately the same size S ubaystem-

s

The productivity P of maintenance analysts is a function of S,“,y,,,,,; which’is, accord-

ing to our assumptions, proportional to Ssae.:- This allows us to consider P to be a -

‘function of Sdatabore- L€t Syyprem be the total system size without interface overhead, let

Soverhcad be the interface overhead, and let L be the total size of interfacing transac-
”~ .
tions. According to our assumptions B
AN
- Sourbeld - GL,‘

where a is a positive constant. The number of systems analysts required to maintain



the system is equal to:
o)

-
N . Srustem + al ‘ |
analyets P(Sda,,o.m) ) |

\

where b is a positive constant, The last expression shows that in order to decrcase
L)

Nanatyers W€ must decrease the interface size L and increase ‘the.productivity P, We

can increase the productivity P by decreasing the size Sy,.p0,. of the subject data-
)

-

bases. However, we can not decrease size Sy,,,,,,. indefinitely. Smallﬁubject databases

n 3 . a » ¢ .p ' .
-lead to high system fragmentation and high interface size. An approptiate selection of
the subject database size S,1,p5,. 13 3 problem of its own, and we do not address it
here. It is clear, . however, that once the value of Sy, 4., i3 established, the data model

must be partitioned into several subject databases with minimal interface size. -

The results of this section”should be considered to be qualitative rather than

quantitative, and the purpése of this section was to reach only two important conclu-
sions:
First: The necessity for partitioning a data model into subject databases of limited

size, and
- .
»

Second: The necessity for minimizing the total size of interfacing transactions.

The formal'definition of the partitioning problem is given in the next section.
]

\ .

1.2. The Partitioning Problem and'its Applications ' v .

The problem of partitioning a set of entities into subject databases can be formu-

lated in the following general way. -Assume that we have a finite set N of entities and

a finite set T of transactions. Each entity n€N is assigned a positive int_éger

w(n)20 called an entity weight, and each transaction €T is assigned a positive

integer [(t) 2 0-called a transaction weight or a transaction cost. Each transaction ¢
. .

has associated with it a set of entities that this transaction accesses. We shall assume

that each transaction accesses a different set of entities. However, if this is not the
' )



o

L

P
A}

case, and two transactions, f, and ¢, access the same set of entities, then we shall

“replace these two transactions by a new transaction ¢, such that

() = 1(8,) + I(ty). - |

This kind of transformation will have no impacCon the generality of our analysis, but
it will allow us to-identify each transaction ¢ with the set of entities that this transac-

tion accesses. We shall refer to the set of entities associated with the transaction ¢

also as ¢, ‘ ' ‘ -

A partition of N is defined as a collection of subsets of N, called subject data-

bases, Ni, Ny, ..., Ny such that

MUNU,...,UNy=N
NON =@ for i#j, 1sijsM.
Each subject database’ N, will have an associated weight (or size ) W(N,) such that

W(N,)= X w(n), =12, M. | ' ;
. . neEN,

‘A weight constraint will be imposed on each subject database such that

- W(N,))s W, =12, M

where W is a positive integer. The weight constraint is necessary to limit the size of
subject databases and associated subsystems to maintain productivity of analysts on a

certain level, as discussed in the previous section. o
N

~ A partition satisfying these weight constraints is called a fcaaiblc‘ partition. A
tr,zﬁ:saction t&T is said to be cut By the partition if it accesses entities from different
subject databases. We shall define the cost L of the partition as the total cost ot all -

transactions cut by the partition. That is, if T° G T is the set of all transactions cut

*

by the partition, then
L= Sie). R
e : o ,

‘The value of L represents the interface overhead defined in the previous section.

o
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electrical components.

[

-

Now we can formulate the problem of partmcmng a set, of entities into subject

databases. as t,he problem of finding a feambl@parutlon wrth mrnlmal cost. A fenalble

partmon with mmlmal cost is c\alled an optimal partmon :j}

L]
;

The problem can be easily formulated in !,herms of hypergraphs where noles of

b
.the hypergraph correspond to entnSes and edges of tﬁe hypergraph correspond to tran-

LI ‘
sactions. }

The partitioning problem has many diﬂ'erent applica(ions. Oné appllcatlon |s

placing the components of an electrical curcult onto prmted circuit cards. lwnh a

correspond to the nodes ( our entities ) of the hypergrapb cnlcult connections
A be
correspond to the hypergraph edges ( our transactions ) and cards correspond to the

[

subsets (. our subject databases ) of the. hypergraph nodes. There will be some con-

straints on the number of electrical components that can be placed on one card, which

corresponds to the limited size of the subject databases. Also, it is clear that the cost

 minimum number of connections between the cardb.: Hcre electrical components §

[l

of connections between the cards is Eeyally much greater than the cost of connec- °

N
!

+ . - i ‘. - ;' . .l‘ ) '
tions within the card; therefore, the latfer can be ignored. This means that the cost of

' ‘
»

the par ition introduced-above can represent the cost of interconnecting the cards with

"

‘The samge opproach can be used to improve the perl‘orlna,nce of the programs

operatmg in an environment wn,h paged memory orgamzauon Here, subroutlnes

correspond to nodes, ed&es correspond to t,he transfer of control from one subrouune
to ano’ther, and pages correspond to sets of nodes of llmned size. The optlmal assngn-.‘

ment ol‘ subroutlnes to pages is such that it mlmmlzes the number ol‘ references

betw_een subroutmes located in dlﬂ'erent pages.

~

We have shown some representatlve examples of mport.ant appllcatlons where :

¢

partmomng problems naturally arise. Many other such appllch‘tlons can be found in

1
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operotions research, database design, pattern recognition,\etc.

1.3. Review ofPartitiqnibg Methods : o . .

As mentioned, the partitioning problem is a” part of many important applications.

As a result, reeearchers have proposed many different methods to solve this problem.

In this section, we shall present a brief review of different partitioning methods.

1.3.1. Exacf Methods

Presently, several establ‘ished methods can find an‘ exact optimal solution to gtbe
partmomng problem In 1969, L. Gorinshtein [8] suggested an algonthm for graph. par~ l
tmomng based on a branch and- bound technique. In 1975, J. Lukes (17] developed a
partmomng algomhm based on.a dynamlc prégramming techmque Both these algo-
nthms find exact optlmal partmomng of graphs but they have an exponentlal tbme
| comple‘ﬂty l'uncuon which makes these algont,hms rather useless for practical pur-

. poses. Tberel'ore, the generallzauons ol' these algonthms are not used to solve parti-

tioning ptoblemns for hypergraphs. o
- ‘ i . ] \
Several successful attempts have found some restricted versions of the partitien-

ing problem which éan be solved exaetly in pyolynomial tim‘e. In 1971, B' Kernighan

’ [13] found a polynomlal time algomhm for ﬁndmg sequentnal partmons of graphs

—
¥

.. Kernighan asslgned a sequence number to each node of the graph and assumed that
‘each cluster of tlie partmon consnsted of several, nodes wnb consecut.lve numbers. For

'example a grapb with t,en nodes numbered from 1to ten can be partmoned mta“clus-
ters like { (1, 2,34 5) {6, 7) (89 10) } or { (1, 2 3) (4,5 e), (7 8,9 10)} In 1974, J Lukes

| LIG] l'ound an, eﬂicnexit algorlthm l‘or partmomng trees. o

. We shall show later that any algonthm whlcb ﬁnds the exact optnmal solutlon of

tbe general partmomng problem wnll not. have polynomlal tlme complexnty. unless
‘ , W

P- NP ‘This means that the only pracucal approach is to .use some heurlsuc algo-

.
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rithm which can find an approximation to the optimal solution of the partitioning"
. - ‘ . ) . )

- - r

problem. ‘ ‘

e ‘ 132 Random Solutions ‘ !

) - The approximation method based on random solutions.is very simple. We . just
h. B : - S .

" senerate several random solutions and retain the best of them. This approach, how-

\‘rer was found unsatisfactory for problems of even moderate size. The experiments
" conducted by B. I\ermghan and S. Lin [12] showed that there are generally few
optimal or near%pumal soluuons whlch therefore, appear randomly with vcry Iow

probabilities.

1.3.3: Clustérin’g Methods 1

Clustenng methods are among !,he most widely used methods for nolvmg parti-
tioning problems. The fundamental work of S Johnson [10] describes the hnerarchtcal
olns('eringf techniqul‘e, 'whicn enables us to group objectsrinto a hierarchiﬁal system of
‘clusters on the basis of ‘similarity among ihese objects. In 1972, " Mc‘Cormick..P.
Sweitzer and T \«Vh,ite [19] developed the so-cal]ed-bond energy algorithm which allows
G as to cluster data accordmg to thelr snmnlamy into, several overlappmg clusters The
| . algonthm tends to minimize the size of clusteé"overlapplng ‘An extey\sg\'ve review of ‘

' _clustenng methods can be found in [5 23] . o R X |
.‘ The main._disndvantnge of ‘cl‘us_t, ring metliods is- that, “in -genonal; theydo not
/ ' _ " inoludo orovisions forv'satisfying constrni.nts“on Lhe‘sizos of fesulti’ng“clust‘el"is.‘ This fa'ct.

—

cHq sngmﬁcantly reduces the lmportance of clusternng methods for data model partmonlng

- ) g ) -
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1. 3 4 Partltlomng Methods Bued on Mmlmul Group- - ,

'

An mterestlng mcthod for.data partmomng was suggested by F. Luccno and M.

‘Sami in. 1909 (18] and further extended by J. Kaoprzyk and W Stanozak in 1976 [11].

The method is based on so—called m:mmal groups, Let f(A B) be a non- negatlve meas-

ure of snmllarlty between groups ol' objects A and B. We deﬁne a mlnlmal group as

-

follows:

Definition: Let V be the set of objects and let SCV be a non-empty grou;i of objects.

If the following inequality o .

[(RS=R)>[(RV=5) -
holds for every non-empty subgroupR of a group S, then S is called a minimal group.

* The mterpretatnon of this inequality is very natural. lt assumes that inner simi-

larity, i.e. strength of snmllant.y between sets R and S— R is stronger than slmllarny

- i.e. strength of similarity between sets R and V-5 ( see also Figure 1.1 ).

4

betw,een a part of a group and the rest of the objects from outsnde a considered group,

| 'Figure 1.1.Sets V, R, and ininixnal' gr_oun s

The algomhm based on t,he concept. of mlmmal groups has not recelved much

recognmon from computer practltloners, prlmarlly because the algonthm has exponen-

&

ual tlme complexny and there is no way to control the snzes of mlmmal groups
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'1.3.6. A-Opting Methods

s, Lin, working on the Traveling Salesman Probtem [14],‘sugéested a set of
methods for improving a given solution by rearranging single links, douhle links and in |

general A\ links. The conﬁguratlon of the system is called )\ -opt (| e. opumal) |f no .

i
-

‘exchange ol' A llnks results in a conﬁgurauon wnh lower cost, - ‘

The same idea can be used i in partmonlng a set of objects. into smaller subsets,
We can rearrange a given partmon by movmg 1, 2 or up to A objects from one subset

‘to another and we can also deﬁne A-opt partmons as those whlch are opt,lmal with

N

respect to rearrangéthents involving movement of up to A objects.

\

‘Unfortunately, eXperiments conducted by S. Lin and B. Kernilghan (12] showed

the poor performance of A-opt algorithms for solving partitioning prohlems.“

’ ¢

. This section concludes the revie‘w. of partitioning methods. W‘e\shall devote the
rest of the chapter to introduclng some concepts and definitions .viv‘hich vrill be used for
analysis and design .of partitloning aléorithms. ‘These deﬁnitiso(nS'are taken primarily
from [6,9]: "

1.4, Time Cdmplexity of lklgorithms
The lzme complezuty of an algomhm expresses its executlon requlrements by giv-
ing, l'or each posmble |nput length ‘the . largest amount ol' time needed to solVe any
problem mstance ol' t.hat, size. lt is clear th\at tlme requlrements w:ll depend on th:“_ 3
encodlng scheme used to determme lnput length and’ the computer mo‘d’el used to solve‘ ’
the problem However ‘as Iong as resultmg time complexny functlons vary by no more |

o

than a polynomlal funcuon thls fact. will have no’ mpact on our analysls

ln the rest of the thesrs, we shall use the follownng concepts in analyzlng the time.

._—_~

complexltyofalgorxthms L e T .'-‘ | o/

. Deﬁnmon }'(n) = O(g(n)) lﬂ' there exist two posmve constants ¢ and no such that’_"‘



!

If(n |Sc|g( )lforalanno U . RN
Dcﬁmhon An algonthm Q. wnth the time complexnt.y function [( ) is called a polyno-
" mial hmc algonlhm if the time: complexnty /( n) = ij(n)) where n is the mput length

‘of the. problem and p(n) is a polynomlal functnon Polynomlal time algonthms are

" someumes called Jast or cﬁ'c:cnt.
: Dcﬁmtwn An algonthm ﬂ wnh the time complexlty functlon f(n ) is called an"

czponcrmal time algonlhm iff’ there exist posmve constant ¢ >1 such that f(n)=c"

‘ for an infinite number of values of n.

~1.5. Decision and Optimization Problems
Our analysns will be applled to two dlﬂ'erent versions of the part;tlomng problem

‘ namely the decision problem and the optimization problcm\

Dcﬁm’h’on: The following problem is called the hypergraph partitioning optimization’

problem. ' . o .

Instance: Hypergraph H(V,F), welghts w(v) 2 0 for all v€V, I(e)2 0 ‘rof all e€F,

and positive mveger W

,Problcm F‘md a panmon vy, V's, o VM of the set V wn,h a xnlmmal cost L=Y I(e),
. c(E '

H

‘where E is the set of edges ot contamed in some" V,, ‘and-such that

w(u)s W for 1 sy SM , “".
vev, T

‘ Definition: Thé'_folloWing problem is ;olled the hypergraph partitioning decision prob-

.lem.';;m . ,'_ i

. Inatance Hypergraph H(V E), wexghts w(v) =20 for all veV, - l(c) 2 0 for all cEE

“and posmve mtegers ‘w and L. “ S ;{ |

,,',___)—-%‘—- o l‘ ‘

‘ Queahon ls there a feasnble partmon of V wnth t,he cost less than or equal to L and] R

‘suc 8 , . . L _ o . - .
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Ew(v)S‘,W for 1 s¢§ sM? D | ’

The optlmlzatlon problems are at least as hard as the correspondmg decmon

Ly

problems because once-the optnmlzatlon problem tis polved tbe answer,x.n_t.hc decision
0

problem can be foundlimmediately by ‘comparing the ‘optlmal cost.,witb the given

bound L. The reverse statement is not always true, although some optimization prob-
lems have the same time complexity as the corresponding decision problems.

i

1;8. NP-completeness, NP-hardneos and‘ ‘Po\lynom'ial Reducibility

This section will contain basic definitions used in the classification off"lthe;}go-
rithms,

We will deﬁne P as the class of problems solvable by determmlstlc algont.bmb in
polvml time. NP is the class of all problems solvable by nondetermlmsuc ‘algo-
rithms in polynomial time'[ﬁ]. Determlmstnc algorithms are a‘spe.ctlal case of ,nondeter-‘ ‘
ministic algoritbms therefore, P = NP One of the most l'omousl,un'resolv'ed problems

of computmg science is wbetber P = NP or P'# NP.

————

Each decr5|on problem has associated wnh it a set, of problem instances wblch

result in a "Yes" decision. This is tbe \so-called set of.yca-'inatan‘cea of the Jecusuon v

e

problem Now we can mtroduce the concept. of polynomnal reduclblht.y

Deﬁmtwn A decnsxon problem L,is rcductblc to a decrslon problem L2 if there exlsts a
coostructlve transformation which oonverta any lnstance I of LL mto a correspondmg
mstance Iy of Lo such tlxat Il is a yes-nnstarxce of Ll if and only it I,is a ycs-m%tance

Gt ,‘iof L2 Il’ the transformatlon can be constructed in time bounded by 3 polyuomlal func-

', tion o£ the input size, then Ll is' polynommlly rcducublc to L2
—_—— - . -In'this thesxs we shall be mterested only ina polynomlal reduc1b1l’ity, s0 there mll

'

be no confusnon |f we, shall use the term reducnble mstead of polynomnally reducl-

vble"‘. Thns deﬁnmon of reduclblllty 1mpl|es t.hat rf we have a polynomnal time algo- g

N



- ;“problem does not. have a polynomlal tlme algonthm In practlce, such problems wnll‘

2

‘ sectlon, weshall deﬁne t.he term abso!utc approz:matwn algontlxm . ,' : K R

. .‘usually be solved only approxlmately by applynng some heunstlc algonthms. ln thls

St I

| | 16

.

o

ritbm for the problem L,, then we can also solve the problem L,in polynomial ‘time,
In-1971, Cook (4] proved that every decmon problem in NP can be polynomlally

»

reduced to one specml problem in NP called aamﬁqbzlnty Subsequent,ly,ﬂ. was fogund‘

that many other decision problems share tlns propert} with the satisfability problem.

P
'

The class of such problems was given a special name, NP~ complete. The following

definition formalizes this concept: . ’ ' v . o l

Dcﬁmtmn A problem is NP*complctc if n is.in NP apd every Problem in NP can be -

‘ polynomnally reduced to it. S ; !

Due to the ;r-ansitivity of polynomial,reduct,lon‘, to sbow’that some new pr‘oble.m
I is NP="complete it is sufficient to prove that
1‘) Misin NP and
2) - There is an NP;complete problem that is pol}nomlally reducible to‘ﬂ.

z

a

Tbe concept of NP- completeness wnll be used malnly to analyze decnslon prob-
lems. To analyze opumlzauon problems we shall use the concept of NP hardncas
De m'lion: A problem I is‘.NP—hard if every problem in NP can be polynomlyally

reduced to it. . . )

We do not requlre NP hard problems to belong to’ NP lt is-easy to see that all =

. 'NP-complete problems are NP-hard but t,here are NP bard problems tbat are not

NP complete Tbe haltmg problem l’or example is NP hard but not NP-complete

1. 1. Absolute Approxxma.tnon Algonthms

lf some optlmlzatlon problem is found to be NP hard; then, unless P- NP, thxs- .

v, K J

‘ iDcﬁmhon Let. 0 be an algorlt.bm wlncb generates a feasnble solutlon to every mstance

'

N
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I of problem I1. Let F*(/) be the value of an optimal solution to [ and let F{I) be the

-

a ﬁiue of a feasible solution to [ ‘generated by .- The algoﬁthm Q is called an absolute
‘ appron'matio‘n algorithm for the problem II iff for every 'instance I I of "I, |

|E*(I) ~ F(I)| S k for some constant k..

.
1

An absolute épproximatiqn algorithm is ome of the most desired types of heuris-

tics, However, not-all 6ptimiz“ation~problems have polynomial ti>me‘absolu‘t% approxi-

.

mation algorithms.

1.8. e-Approximation Algorithms o

An e-approximation algorithm is another type of heuristic which is someum[:
"easier to find than an absolute approximation algorithm, This type of heuristic is for-
o e ] . . S

[
-

mally defined as follows; .

ol i A i

Definition. Let © be an algorithm which generates a feasible solution to every instance

1 of problem II. Let F*(/) be the \"‘a‘lue of th}e‘op't‘imal solution to f and let F(7) be the

value of the feasible solution to I generated by 0. The algorithm 0 is called an €-

/ v

approzimation algorithm for problem IT iff for every instance I of I, ‘ oo

N 1.7 B0 IO
TR

\

€.
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%ﬁ‘ e L - - Chapter 2
nLah ! : ' ‘ . ' A 1
CQ\;M - C The General Partitioning Problem
L . ' ‘

This chapter is devoted to the analysis of the time complexity of the decision par-
titioning problem and to the discussion of the properties of absolute and e-

approximation heuristics to the optimization partitioning problem,

v

, ’
S
'

2.1. Co‘mple‘ﬂfy of the General »Partitioning Problem’

t
' 1 .

»

In thm xcction We shall dnscuss dlﬂ'erem version?s of the entity set partitioning

a \'

Ipre)bl(‘mgand shall prove that their-decision pro,blems are NP—complete.

Theores I, The follawing decision problem is NPicomplete.
. ' i . N
boa ) ' o . AU
- Instance: Set of entities NV, sct of transactions T, weights w(n)=0 for cach n€ N, costs

{(t)=0 for“each t€ T, and positive integers Wr,'l. ,
Question: s Lherel a partil.ic‘m of IV into disjoint sets Ny, N, ..., Ny such that
Y w(n)s W for 1S ¢S M aod such that if T’ QT isthe set}of all transactions in T

W - \

that access entities from at least two different sets V,,

Proof. It is casy to see that the problem is in NP 7cause' it is gossible to verify in
polynomial time whether any partition satisfies the theorem’s conditions or not. In

order to show that the problem is NP-complete, we shall reduce the graph partitioning

¢

problem to it.

The graph 'p{;_,rfitioning problem is formulated as follows (6]):

Instance: An ‘undi'rect'éd graph G(V,E) and positive integers K and J.

Question:-Is there a partition of V into disjoint sets V, V ..., Vp such that

]VIS K for lS|SM and such that if £'CE is the set of edges that have thelr two

~

enépomts in different sets of the partition, then IE |=J? ‘ \

(‘1 o

" ' ; ,Let: us take any instance of the graph partnMomng problem. For each vertex in V

R
& we shall create one entity in N, thuskest,abhshmg a one-to-one correspondence between
0

s . . . 18 ‘ R
2 ’ N .
" 0 o~ -



~will satisfy the conditions of Theorem 1, \

19

vertices in V and entities in N, For each edge in £ connecting two vertices, we shall

create a transaction in T dccessing the corresponding entities, and thus establish ?
Al

one-to-one correspondence between edges in £ and transactions in T.

We also assume that

win)=1 for n€N, [
(t)=1 for t€T,
W= K, and ’ .
L=J . ' .

‘

: o
Now it is obvious that if there is a partition of V satisfying the conditionaof the

graph partitioning problem, then the corresponding partition of the sct of entitics N

.

N

Y \

~The opposite statement is also valid. I there is a partition of the set of entitics

’

N satisfying the theorem’s conditions, then the corresponding partition of V' will

satisfy the conditions of the graph partitioning problem.

\

The time complexity of the transformation employed is polynomial, which means
that the graph partitioning problem is polynomially reducibde to the entity set parti-

tioning problem. This concfudes the pvroof of Theorem 1.

From the way the theorem has been proven, it is clear that the entity set parti-

tioning problem will remain NP-complete even. if each transaction accesses no more
than two entities and the weight of each entity and the cost of each transaction are

equal to one.

e

S‘lightly different formulations of the entity set partitioning problem must often

be considered. For example, we can limit the number of subject databases. The new

partitiening problem will be formulated as follows: o .

In_atancc:. Set of entities N, set of transactions T, weights w(n)20 for each n€ N, and’
q . .

costs [(¢)=0 for each ¢€ T, positive integers W, ‘L, M.

Question: Is théfe_ a partition of N into no more than M disjoint sets Ny, N,, . .., Ny,

A
.
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such that ¥ tb(n)ﬁ Wfor 1s+is M and such that if T'C T is the set of all transac-
neEN,

) . } *
tions that access entities from the different sets of the partition, then 2 I(t) = L?
B ' €T

This new problem has son_l.e‘additional re:;trictions on the solution but, not on the
input data.-ln general, additional restrictions on the output data make the problem
"harder” in a s;ﬁn.se that if V\"e h.ave an algorithm fo.r solving this problem, then the
same algorithm can be used to solve the original problem without any additional
Lmnaformations.h This applies to our problem as well. Suppose that we have an algo-
rAithm to solve the entity set partitioning decision problem where M is the maximal
number of subject databases allowed in the partition. If we set M = |V| which
effectively removes any limitations on the number of sﬁbject databases, then we shall

redluce our original problem to the new one. This means that the decision problem for

entity sct partitioning with a limited number of subject databases is also NP-complete.

We can consider another interesting formulation of the entity set partitioning
problem with a differently calculated cost of partitioning. The new cost L of the parti-

*

tioning will be calculated as : ’

L= [()x1),

€T

s

v.hero )’(t),is the number of the subject )databa‘ges ﬁhat transaction ¢ z;ccesses.
| For‘mally, this‘ version of the entity set partitioning pr;)blem can be formulated in

the followi“ng way:

Instance: Set pf éntitigs N, set of transactions T, weigh't;s w(n)=0 Tor each n€ N, and

costs [(¢)20 for each f€ .AT",,positive integers W, L.

Question: Is there a partition of N into disjoint sets Nu N,, ..., Ny such that

Y win)s W for iS‘iS M and such that zf(t)xl(t) < L, where f‘(‘t)>is the number
nEN, ' : a€T _ »

.of the spbjeﬁt databases that transaction ¢ accesses?:

- : . ‘ ) < .
.



no more than two entities.
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Y

It is easy to see that the problem is NP-complete because graph partitioning can
. NS
be reduced to it in a very straightforward manner> As in Theorem 1, for each node v,
1
in 1" we shall create entity 5, in [V, and for cach edge ¢, = (v,.,v)) in E we shall create
transaction ¢ € T accessing corresponding entities n, and n,. We also set
w(p) =1 for n€N,
{(t) =1 for (€T,
W =K,
L=J+|T|
The value of |T| is equal to the number of edges in the graph which is constant
for the given instance of the graph partitioning problem. The suggested trnnsformva-
tion can be done in polynomial time, and it is easy to see that if the answer to the
graph partitioning problem is "Yes", then the'answer to the entity set partitioning

problem is "Yes”. The opposite statement is also true, If the answer to the entity set

'

partitioning problem is-"Yes” then the answer to the graph partitioning problem is -

.

also "Yes". Therefore, this version of the entity sct partitioning problem is also NI’-

complete. Such a partitioning problem can arise in management information system

development if we calculate the total cost of transaction development as some basic

'

transaction cost (weight) multiplied by the number of subject databases that this tran-

saction accesses.

a

2.2. Absolute Approximation to the General Partitioning Problem

- In this section we shall discuss the properties of an.absolute approximation algo-

rithm for the solution of the optimization partitioning problem. We shall prove that

e he problem of finding an absolute approximation is NP-hard, even if the weights of all
e ‘ ® A

N

entities and the costs of all transactions are equal to one and each transaction accesses

i Foruially. the problem can be stated in the terms of graphs in the following way:
Theorem 2. A polynomial time absolute approximation. algorithm to the following

o

)



optimization prbblé_m can exist only if P= NP, |
, ‘ '
Inatancc. Graph G(V,E) and positive intéger W.

Optimization. Find a partition V v Vo, oo, Vo of V which minimizes the cardinality

of the set Q consisting of all edges having their endpoints in two different sets o'[ the

\

partition and such that |V,] < W for 1Sism.

Befqre proceeding with the proof of: }he.thé’orem, we shall pl;éye the follo;ving
lemma: |
Lemma 1. Let us ha‘\"e a complete graph G( V‘E) such that [V]| = J+1. For any non-

tfivial partition V,, V., ..., V_of V, the .ca_rdinality of the set QCE of edges having -

.

their endpoints in two different sets of the partition is not less than J.

Proof. Let us take any non-trivial partition Vi, Vs, ..., V, of V. For the non-trivial
R : ' - B ’ ' \
partition we assume without a loss of generality that

—

1s |V, <WV|=J+1.
Let us concatenate subsets V, through V = into subset V%, It is easy to see that

- the cardinality of the set Q*CE of edges having their'endpoints in two differeat sub-

sets V', and V'*, is no greater then the cardinality of the set Q, that is

el =lel
Not‘l\et.
v = x
then '
[V%[=J+1-X, and
|Q*] = Xx(J+ 1~ X). . |
The expre;;ibn for ,IQf‘l is a Quadratié polynomial.’faking"inio accouht that \ is
| lan m‘reger and 15X <J+1 _we can easll‘y :;ee that |Q* l achleves mnnlmum when A

‘ .\ = lor \' = J Thls means that

IQIZJ



and also

|Q| = J' ' ’ A
This completes tho’proof of the Iemmn. Now we are ready 'to prove Theorem '2.

"We shall prove that the absolute approximation algonthm for the optimization partl-

tioning problem can be used to solve the optlmnzatlon partltlonlng problem exactfy

Suppose that we have a polynomial time absolute app.roximntion algorithm Q for
the partitioning problem. This means that for any graph this algorithm will find the .

* partition such that

S = Sy S K, ‘ |
where S is the number of edges having their endpoints in two different sets of the ‘
found partition, Sope i3 the number of edges having their endpoints in two differcnt sets '

of the optimal partition and K is a positive integer. o ' -

Now let ns take ahy instanceof the graph partitioning ‘problem that is ér’xph
G l" E*) andla positive integer boun.(‘i‘ W+, We shall construct a new instance of tho
graph partitioning problem that is graph G(V,E) and a posmve mteger bound W bv
the followlng rule. Each node v? E V‘ will be transformed mto a complcte -mbgraph
G V:ES ) in G. Each subgraph GA VEE?) will contain IE IX(I\+ l)+ K+ 2 vertices.
Each, edge e’y = (v\,,v ,)G E‘ wnll be transformed into K+1 edges connectlng K+1
dlﬂ'erent vertices in G, wttb K+l different vertlces in G’ For example the grnph

]

ﬂhown in Flgure 2.1 .

. 4 *
. v r v 2
b ; " '
N .
. /' . 0 ,

5
-8

Figure 2.1 lnslstance“o{_the graph.'G‘ :

i
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will be transformed into the'graph sh(o'wxi in Figure 2.2 for the case when K=1.

%)

‘ < —

Figure 2.2 Instance of the graph G constructed from the graph G*

We shall also set :

W= W*X(|E*|X(K+ 1)+ K+2). \ | . .
Let V,, V,, .. ., V,_ be the partition of V. returned by the algorithm Q, and let QCFE
" be the set of-edges having their endpdints‘in two different sets of the partition. First,.
let us observe tbat‘if’we take the partition such that -

- V=V for 1S i s| VY

then |

IVIsSW for 1Sism, .
‘and also’ ' ’ '

IQI - IE IX(K + 1), |
because all edges in the graph G( V,E) that, go from ond*complete subgraph to anotherv‘ :
| mll be cut by tbe partmon, whlle all edges lnternal to the complete subgraphs wnll not . -

be.cut. ;.
0, r ) . . . : , .
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Thls means that the V@lue of S whlch is returned by the algonthm ﬂ can not be
. .greater than |E* IX(K +1)+ K o}.hermse it will dlﬂ'er from the optlmal solutlon by

‘ more than K. This, in tura, means ﬂiat the algonthm Q cannot split. any~of the sets

\

V§ and each set V{ must be contamed entlrely in one of the sets V., otberwnse accord-

ing to the Lemma 1 we will have , - -

S22 |E*|IX(K+ 1)+ K+ I ,
Obnously, the same conclusion is true I'or an optimal partmon -of tbe set V an .

“w

. optlmal partmon cannot split any of the’ sets VE.

A\

The fact that the algorlthm Q cannot split any of the sets V‘ means that all edgcs
in G( 1% E‘) which correspond to the edge e’ é' (v%,v*) € E"Wlll belong to the same
. set V, or will have ong endponnt locat.ed in the set V4, such that V‘C V,, and anothcr

endpoint Iocated in the set V;, such that ViCQV,. . . .

™ From the a‘b'bve,‘ it follows that if algorithm Q1 is applied to the graph G(V,E),

then the value of $=|Q] can be repres'ented in the form

= (K + 1)x 2,

.

where Z is a positive integer.
Now we shall prove that ‘ T

‘_Slo};l=sjopt_?((K+ l) - B - .‘ ‘ ___

. % I ‘
Suppose that we bave an optimal partition V‘,_,}"‘Q, ..., V* of the set V* with-the =
cost. S ,andsuchthat o :
c o e ‘
|V.‘,-| sW* for 1sSsism. - o
Let us create partition V|, V,, .-, Va of the set‘V ‘such that iff

v'k EV" .

" then R FE
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It is clear that the cost § of this partition is

' . '
-

S‘oplx(K+l) ‘ &
the cardlnalmes of the sets V satlsfy the followmg inequalities:

'

| |V,|s W for l‘S'iSm,‘
and also ‘
Sop(SS‘=, oplx(K+ l)
On the other hand, let us ha\{e an optiinal pariition Vl, Vo, ..., V, of the set V with

the cost S, and such that e X

|V|SW for IStSm

Usmg the fact that eaoh of Lhe subsets Vf is contaiged ent.lrely in one of the sub-

sets V,, we can construct partition, V*,, V¥, .., V* of the set V* such that
. vp"e V"
iff
wev.,

It is clear that for this partition

|v*|sw* l‘SiSn'z,‘,and' SRR

* = ot S . ,
‘ . S OP‘ s S = IQ I (K + l) : o . 1 ’
‘The last mequallty shows that - i\
- | ‘ ‘ , N,
vsopl = S‘optx(K +1). -
v e ) s » - . f‘

We ‘have_,valready proven that

s,,,, s g*”;,x(K + 1).‘ |

".The Iast'two |nequallgles‘mean that : : L o

Sepi ™ s*‘_,,,'-,x‘(K.-r: . S
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[

We have already pro;'en that the algorithm € returns value of § such that

= ZX(K +1) : -
and by definition ‘ < i"*"' ‘
WS- Sus K. - o

Phe last three statements lead to the followmg statement:

IX(K + 1) = STpx(K + 1= (z - S OX (K + 1)s K.
Thls mequahty can hold only if

S“‘ (= 2. - .
Tbls me‘ms that the 'llgonthm Q returns p'xrtmon of the set V such that

's'= Stp X (K + 1) |
and that this partluon can be used to- comstruct ap opumal partmon of the original
grapﬁ G‘( V*E* ) It is evndent that all suggested transformations can be done in
polynomial time. If algorithm ﬂ works in polynomlal time, then we also can find the’
optlmal partmon of the grap‘h in polynomlal time, However, thls x‘neans‘ Lhat l:’-NP‘~
or that the probleu; of 'finding an absolute approxlmatioo tol‘.the general part'ition‘ing
' ‘pro‘blem‘ is NP-hard.- This. couciudes t[lxe proof of"‘I‘heorer‘n 2
'2..3-. e-AﬁproXimqtioo to'the‘Gen‘eral Pa.i-‘t';tAioning"Problem

Thls sectlon will dnscuse propertnesvof e—‘a‘ppromm;lon algoelthms to solve the"_‘

' opnmlzauon partmomng problem "We shall prove that ﬁndlng an t-approxnmote solu-= -
tlon to t,he general part,ltlonmg problem wnth 0<€ <l and wnth a llmltauon on theL
uumber of subject databases is NP- hard even if t,he costs of all transacnons are .equal R

tO one and each transactlon aCCQSSCS no more then tWO entmes

Formally, the problem can be sta\.ed innthe'lterm‘s'of graphs in thevft')ll'o‘wing‘way- :

- Thcorem 3 A polynomtal tlme e-approxlmatlon algonthm for 0<¢ <l to the followmg -

' opumnzatlon problem

y l 1 ' ' o B .
Inatance A connected undlrecte“‘ aph. G( V,E), _wei‘:ghts‘ -w(v)>0 for each v€V and -

’



. s

o posmve mteger less than 1.

D

(e

'

-ol"imeg‘ers. We shall-assume that

- the required pzrt'iﬁb"ﬁoes‘not, exist. .. R ;

‘ﬂcorrespondmg mstance c;f the graph partltlonlngzproblem

positive integers W, M,
()ph'mn'zau'oh. Find a partition of V into"no more, than M subsets Vl, ‘Vz,-. cvr Vi

\

‘which mmlmnzes the cardinality’ of the set Q consnstmg of all edges having thelr end-

N

pomts m two different subsets V, of the parutlon and such Lhat 2 w(v) s'W for
Cov€V

1
' . -

l‘.sis M.

We sh.lll prme llmt if a0 e- appro'ﬂmauon algonthm Q for Lhe graph partmonmv
problem exists, thcn lt can be used to solve an mteger set partitioning problem. The

integer set partitioning problem caq be formulated as follows [6]:

Instance: A finite set A of positive integers a,, a3, . .., Gn.

"

Question: Is there a partition P such that ¥

| Ea, = '}:‘a,.?

6P . P .

Let us take any instance of the integer set partitioning problem, that is, a set A

L

—

v ' h ' .‘,‘. ' ““'
Ela=2><l’ ‘ ‘ ' R A N

where Y is an mteger If z @, can not be represented in this way, then we know that

=]
‘ ‘ , ) . e

’

let us suppose that. an e-approxlmatlon algornhm for the graph partmomng

optlmlzauon problem exists and that it always returns partmons such that

' ‘Soptr‘- ' E S IR

;

‘where 5= IQI is’ the cardlnahty of the set of the edges cut, by t,he part:non and €isa

e

For a glven mstance of the lnteger set partmonmg problem we shall construct the

Ca

\

P
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The graph G(V,E) will be constructed in the ‘followixllg way, For each integer :

a,€ A we shall create a node v; such that ~ ‘

‘ +

w(v‘)= a, for leS‘N. ‘ “ e

. ' oo , D .
Also, we shall create two nodes u; and u, such that , .
, ‘ -t L

~ Let us take nodes u; and u, andcohnect (hem»to each node v, for lSt'S N. As a result
of this conslructlon we shall obtain complete blp:\rtlte graph G(V,E). Figure 2.3

shows such a graph comtrucled for the set of i mlegers

1

a,=2a,=3 a;,=4,a, =3, . . ' S

. - )

L] :.“vﬁ‘»\
- i A

“Figure 23 Graph G( vv.,E) |
To complete che construcnon of the mst.ance of the graph pamtwl\ng problem, -

e shall also set, a bound M on the number of subsets in ‘the. partltlon an, bound W on’
| B




.. the total weight of ;hc subsets such t_hat

‘whlch means that

| Ss m"(l + ‘) = Nx(1 + e) <2xN
*f’because 0<¢<1 . ‘

M=2  amd
W= 2xYVY, , ,
Suppose that the set of mtegers A has po partmon Then the only partmon of the -

r

' graph. G( V E) which satlsﬁes the above mentloned constramts is Co

SRR AR ST S BN Y

VV0=“ “o
2 A} 2

" with the cost 5 = 2/V, This means‘th\at the algorithm Q Whe‘n applied to the con-

.structed instance of the graph partmomng problem WI" create a partition wnh the

cost S ""2N - L “ —

Now suppose that the set of integers A has a partition, and let A, and A, be such
. i .\‘ . " .:. " N ' . ’ '
sets that", - ‘ ‘ :

Lo, '
O

AANA,=0 o | o

’2a.= a'.—_ Y_“‘ ;“

' Now we can create partmou vV, Va of the set V such that set ¥, wﬂl contain node "l

“aud all nodes v, whlcb have- correspondlng mtegers in the set Ay, whnle set%'o will con-

tam node U, and all nodes v, whlch have correspondlng mtegers in the set. A lt is

clear that. the cost of this' partition wnll be equal to N So for thls case we have

SoptSN o ) o ’ ' o
If we apply the: algorlthm Q to the constructed instance of the graph parnu?:x__l‘ng -

problem then thls algomhm W|II return-the value of S such that

‘Sopl' . | ‘ ‘
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" Now. we' can see that if the algonthm ﬂ crcates a parut@on wtth the cost‘
4

S < 2>< N theu thf- set of mtegers A has a partmon Otherwise, thc set A has no par- ‘

V

tition, The suggested transformatlon can be done in polynomlal time, whbcb means

. that if the algonthm ﬂ ha’s a polynomial time complexity, then we can solve Lhe )

)

‘ioteger set partition problem in a polynomlal time. This means, hOWC\ er, that P- NP.

'

o

This coucludes the proof of Theorem ‘3 o e
Q / 1 R

Ihe Theorem 3 is a little bit dlﬂercnt from the theorem proved by S..Sahni and

v

T, (xonzaloz in 19 6 [7]. S. ?ahm and T. C‘onzalez asmgned dlﬂerent wmghts to e’sch

ot
-

- node and each edge to prove NP~hardn‘ess of g-approxima&ion. We have proved tha\',‘
the proble‘m will remain NP-hard even if weights of all edges are”eqtial to one, . -
| _ o

a n

»
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“, y “ Chapter 3

The Bipartite Partitioning Problem

This chapter is devoted to the analysis of the bipartite partitioning problem, We

shall prove that the gen®ral’ partitioning problem remains NP-complete even if the set

) ~

of cntities consiats of two disjoint subsets and each transaction accesses only two enti-
. " o) . {
ties, cach from a different subset, This situation can arise when one of the subsets
. ‘ ~ R N . I‘
consista of parent;type records, another subset consists of member type records, and
.

cach transaction accesses one parent type record and one member type record, Some
. 4

4

of the database management systems, for example TOTAL, have this kind of restric-

) .

tion,

[ XN . 4

We shall also show that a polynomial time absolute approximation algorithm and
Yyt

.
A

an €-ipproximation algprithm to the bipartite partitioning problem can’exist only if

b=NP, -

3.1. NP-completeness of the Bipartite Partitioning Problem - 4?? &D&

In this section we shall prove, that the bipartite partitioning problem is NP-

complete, ¢ven if the weights of all entities and the costs of all transactions are equal
. e ‘ : .

to one. This problem can be formulated in terms of graphs as follows:

Theorem }. The following decision problem is NP-comp]e\te.
LES

In,v'wr_'c: Bipartite graph GZ( V8 EP), positive integers W8 JE.

¥

uwestion: Is there a partition of VF into disjoint sets VB VB . ... VE such that
par J 7 Ag suc}

. Il'."IS W& for 1sis .\} and such that if QBCEF is the set of alt “iges that have their

two endpoints in two different sets of the partition, then |Q8|< JB ?

,"Ejrst;let us brove the following lemma:"
Lcm;:ga 2. Let us take a complete bipa:tite graph G(V,E) such that

-

VAUV = v, ~
YAV, = g,

" {

32
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2RV = 2x V5] = |V] = 2xJ, ‘ .
and each cdge ¢ € £ has one endpoint in V* and another endpoint in V*,, and all ver-
 tices in V*) are conncected to all vertices in V*,. Then for any non-trivial partition of
the set Viinto disjoint sets V,, V, .V, the cardinality of the set of edges Q hav-

»

ing their two endpoints in two different scts of the partition is not less than J,

Ptroof. Let us take any non-trivial partiti7n Vi, V., U, Ve of the set V such that

[Q] = 5. We assume that Af22 and, also without loss of generality, that

1 s |V, <2xJ,
Il we merge any number of subsets V,, then in the new pdrtition the number of

cdges having their endpoints in two different subsets of the partition will not be

- , -

greater than S, Let us merge all subsets V, through V, into a new subset V', and let

the number of edges having theig cndpoints in two different subsets V, and V', be
) 2

“equal to 57, As mentioned above, §'s S,
r

Now let us introduce some nN variables:

ll - |"ln ".1|-
L= A,
[V, V4], and
EeTa RN}

\

",

n.,

Using these variables, we can calculate the cost S* of the partition as follows:

§'= I Xn, + I,Xn,.

From the conditions of the lemma we can conclude that

>
1

L+1,=J, S .
nl+r::=J, and ~.

Isl +n, <2XxJ.

e \

~

The last inequality means that at l¢ast one of the numbers {, or n, is greater than 0.

We assume that /, > 1. In order to prove the lemma, we should prove that
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< -

S' =X, + Lxn 2 J
If {, = 0, then from the lemma's conditions it follows that ly=J, n <Jand n, 2 1,
In this case

St =diny + Ln= I, xJ 2 J
If £, 1 then

S = le‘agﬂ’- lhxn, 2 n,+on,=J

So, finally,
S5 =2J

This concludes the proof of the lemma.’
To prove Theorem 47,"% shall show that the graph partitioning problem can be

reduced to the bipartite partitioning problem,

, L

Let us take any instance of the graph bartitioning problem, W;‘h:;ve graph
G(V,E) and positi;'e integers W and J. We should answer the q'uestiou if there is a
partition of the set. V' into disjoint sets V, 'V, ..., V, such that [V,] = W for
I1sis N :l.nd such that, if QCE is the set of edgt;s that havé their two endpoints in
two d_iHere‘nt‘ sets of the partition, then |Q|s J. I

Having this instance of the graph. partitioning problem, we shall construct t.ﬁe
instance of the bipartite partitioning problem.” The bipartite graph G#( V5, E?) will be
constructed'in the followiné way: | |

For cvery vertex v, in V we shz;ll comstruct a complete bipartite subgr#ph S,'v;'ith
2% (J + 1) vertices. Such a subgraph fo; J=2 is shown in Figure 3.1. This Figure also '
explains tbe meaningvof the indices use‘d to name vgrt;ces of the subgraph.

For each _édge e = (v,v;)€EE, we shall create an edge ¢f = (vP, 1,085, )€ EB. For

example, the graph shown in Figure 3.2 will be transformed into the graph shown in

Figure 3.3."



v
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\
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!

\

* Figure SE Instance of the graph partitioning probiem

To complete the transform\n‘t-ién of the instance of the graph partitioning problem into

4

the instance of the bipartite\{.)artitioning problem we shall also set
\

2

WE = 2x(J + 1)x W,
JB=y

It is obvious that this transformation can be done in polynomial time. Now we

shall prove that if the answer to the graph partitioning decision problem is "Yes", then

>

. L o Lt . e » ” : L]
' the answer to the bipartite partitioping decision problem is also "Yes".

“\
-~

Let subsets V|, V,, ..., V), satisly the conditions of the graph’ partitioning'

problem. Each subset V, consists of S\everal vertices in G. Each vertex in G gives rise

P" . \
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\ A . ‘ \
to a complete bipartite subgraph in G5, Let us consider the set VE which consists of
all vertices of all complete bipartite subgraphs corresponding to the vertices in V.

It is clear that if |V,| = W, then IVB‘I s 2x(J+1)x W= W8 |tis also\ clear.
that the nnternal :dges of the complete. blpartlte subgraphs do not contnbute to ‘the
cardlnallty of the set QB, and |l' any edge ¢ belongs to the subgraph G(V,) induced by
the sct ol‘ vertices V,, then the corresponding edge ¢? in the! graph G?& will belong to '
the subgraph G8( VB) lnduced by the set ol' ver,nces VB This means that. |Qf|= ]QI
nn(l conscquently [QF]=s JB ‘ -

S.uppo«e that we have partition. V8 V&, VB of the set VB that sausﬁes the
condmons of the blparme partitioning problem First, let us note that, because
IQ”ls JB,=J, the vertices in the.graph G5( V8 EB) that belong to the same complete
bipareile graph \c‘orres.ponding to.a single verte)r in >G( V,E) must belong LB the same
set VA If this is not the case, then according to Lemma 2‘.the' number of edges that
connect these veruccs and hmle thenr endpomts in two dlﬁerent eets of the parutlon
wnll not . be less than J+1. This means that lQBl‘_Wlll be greater than JB=>J, which‘

N

contradicts our assumpuon that Q8] =< J.

Thus we have proven that all vertlces that belong to the same complete blpartlte
subgraph representlng some vertex in the graph G(V,E), wnll belong to @he same set
VB, This mecans that each set V& will consnstof vert,lces of sever'al complete blpartne
subgraphs each represenung some vertex in G( V ,E); or we can say that each set, VB is
| ";ssocmted with some set V; of vert,nces of the graph G(V E) All. such sets
Vi l/q, .. VM are palrwnse dlSJomt and thelr union is equal to the set V. Therefore,

the sets Vi,Va, .. VM represent a partmon of the graph G(V,E).

Now it is evident that‘.»ifv‘ -
-, : .

lV.Bls _ufB‘:‘,‘éx(J + 1}x W for lsss M

| then



R

Figure 3.3 Instance of the bipartite »partitki:on‘ing, problem



V| W for 15is M
‘ , .

/\Iso it é:my to see that if any edge ¢? belongs to the subgraph G(¥F) induced by the

4

-

“set of vertices VB, then either this is the' internal edge of one of the complete hipartite
subgr'tphs .5 and thus has no correspondmg edge m khe graph G( v E) or the
. J{ ’

correspondlng edge ¢ in the graph G(V,E) WIll belong to the subgraph G V) mduced

by the set of vertices V Thls means that |Q|<|Q%]| and consequently

lel=s | o

~ This concludes the proof of Theorem 4.

’

3.2. Absolute and e-Approximations:to' Bipartite Partitio‘ning

ln this sectlon we shall present two theorems which are slmllar to the theorems

¢ -

proven for Lhe general partitioning problgm. These theorems qt,ate that the problems

of finding an absolute approximation and an e-approximation to the bipartite parti-
(lonlng problcm are NP- hard | |
Thcorem 5 An absolu’te approxlmatlon algorlthm to the follownng problem can exist
only lf P=NP. | |
lnalance Blpartlte graph GB( ve EB), posmve mteger w8,

Problem Find a partmon of VB mto dls;omt sets VP, V,.,.. Vf, such that, ’

H’BIS Wb for lS :SM and such that the cardmallty of t.he set QBC EE of edges cut

b) the partmon is mlmmal

Thcorcm 6 An e-approxlmatnon a.'lgonthm wnth 0<e<l to the followung problem can ‘

o e‘(lstonlylfPaNp A R | ‘

Inalancc Blpartlte graph GB( Ve E‘B) wenghts w(v)>0 for each vé VB, posmve '

-

mtegers 1%} and M
Problcm Fmd a partition of. VB into no more than M dlSJOlnt sets V_B, VZB, L, VB

such that Z w(v)S WB for lScSM and such that the cardmahty of the set,.}
vt VB : . .



b
QPCEB of edges cut by the partition is' minimal. .
Theorems 5 and 6 can be proven in the same way as the ‘correspor‘xding Theorems'
2 and 3 for the general pértitioning'problem. ‘The“ minor c‘hange“in the pr(;of of

Th(‘orem‘ § is that, ips@lead of expanding vertices into complete s'lib'grabhs and using -’

lLemma 1, the vertices should be expanded into complete bipartite subgraphs and

~Lemma 2 should be employcd.y ‘



Chapter 4
The ‘Tree' Partifioning -Probvlem .
Flnls part of the thes:s is devoted to the desngn and the analysns of an algonthm

for pnrmlomng an acy clnc data model into a set of acycllc subject databases

" We shall (lerlve a polynomnal time algorlthm for partitioning acychc dala models.

The algonthm will find an optlmal partmon of a data model without any restriction
“on (.he number of subject databases. ‘We shall also brleﬂy discuss the modifications

that can be made to 'thi‘slalgoriihm in order to find an optimal partition of a data
. . ! B ] . . .
model when there is a bound on the number of subject databases:

| 4.1 Basic Dellnitions an'd—Statement‘ of the Problem

- In order to, make a formal analysis of a partitioning algorit.hm for acyclic struc-

'
i A
'

tures, we shall |nt,roduce some basic deﬁnmons concerning trees. , © " 'y .

Deﬁmtwn A tree is a finite set of one or more nodes such that there is a ﬂp(‘(‘lall)‘

. iy

'designated node called the root and the remaining nodes are partitioned into e 0'dis- ‘

BB}

_]Oll]l sets T,, Ts. .. . T,. where each of these sets is a -tree. T,, T,.....T, are
. called the .gublree'a of 'th'e root. .

The number of subt,rees of a node is called its degree Nodes that have degree zero.
. Y \ .
are called leaf or tcrmmal nodes The other nodes are referred to as nontermmala The

bd

: root.s of the subtrees of a node are called the cluldren of the node, whlle the node is . .

: called the parent ol' lts clnldren Clnldren of Lhe same parent, are é’alled ubllnga The

"degrec of a tree is’ the maxnmum degree ol' the nodes in the tree The anceatora of a o :

'node are all the nodes along the path l'rom tbe root to that. node

. ; . : ) \‘_',

The Ievcl of a node is. deﬁned‘,by lnmally lettmg the root. be at level one. If a3

- node is at level }5, then lts chnldren are at, level p+l

The Imghl of the t,ree is deﬁned t,o be the maxnmum level of any node in the tree



'val_ue of a partition is ‘Lhe sum of the costs of all transactions that are not cut by the

partition. It is easy to see that the partition value plus the partition cost is equal to
° : - ' .

,_‘value, R B L . R . X

o 11

In this chapter we shall cons:der the partmomng problem where the data model

‘ KB s
\

and the transactnons have tree lnke structures ‘Namely, we shall assume that all enu-

' ties are nodes of some data mddel tree and all transactions can be represent‘ed as 'é-on- '

nected subgraphs of this tree. Subject database are also assumed to be connected sub-

grnphs of the data model tree, Getting a little bit ahead of our discussion We cnn say |

that this. assumptlon lmplles th'xt our data model can be represented by an. Enhly-

Rclalwnslup [)mgram mthont ryrlca A detalled (llscusmon of data mo(lelmg using the
‘ -
hnmy-Relat,lonshlp Dlagrnm is prese,nted in the next chapter. 7 ‘ -

R

1

Here, in the same way as for,ﬁe general p'artitioning problem, we shall associate

nonnegntlve |ntever welghts w:th all entities dnd nonnegauve |nteger costs wlth all

tmnﬂac,tlons The optlmal partition of the data model tree is the partition, havnng the

‘

mintmal cost,

—

In this chapter, we shall introduce a new concept‘, the value of a partition.. The

-

use the concept “of the partmon value lnstead of the partmon cost, Using this no‘w

concept we can define an optlmal p';rtmon as a pnrtmon that. maxlmnm lhc p.srtntlon ‘

. N

o

R . » ' . " ; . ' : [N
i ey

Many NP hard‘problems on graphs can be solved in polynomlal ume when gr:{p/hs

A
P

are. restncted to trees The partmomng problem happens to be no excepuon

Lt

The problem of the partmonlng trees was ﬁrst consndered by J A. Lukes[lﬁ] who

B : +

l'ound a polynomlal tlme algornhm f'or the partluonlng ol' treea wnt,hout a restrlcuon e

N 's,

B on the number of clusters Thns algomhm returns the opumal parllmon wlncb mlmm-

lzes the total cost of all edges cut by the partmon

~ the sum of the costs ol' all,trn'nsnctfions. lt'w'ill be more convenient in this chapter, to

-

bEY

" We_ shall,consider a mu'c‘h ,_m'ore general problem,‘by assigning'eosts.’ not only to o

'.’"), . ,

: foe " te . ' . e
N . U S T I

P
\
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.

edges of a tree, but also to connected subgraphs of the tree. Also, we shall consider the

~tree partiﬁlonin‘g'problém with a bound on the nutnber of clusters.
4.2. Treé Partitioning wmi an Unlimitpd l\{ﬁi}mber of Clusters .

In thls sectlon we shall consnder the problem of partmomng a data model tree

|

N

mto qeveral connected subgrnphs First, however, we shall mtroduce several new
' 0

(lcﬁnmons ln thé (Lcﬁnmons that follow we shall use the notation T( V E) to refer to

-

é@t v ol' nodes and the set E of edges

dﬁ(he tree T-~w '," |
c{.fm of the trees T v,,E ) Tl VarE)vey Tad Vg Eng) s called a-

1-\'--,-:
" R0

l<
Dc/lmnovi‘

\ part.it.ion of t,hc tree T( ’V‘,E) if

- o \ o
YNV, =3 for i#j, ‘lSi,JTS‘Mm

‘and

U vo=Vv.

IRETE VY

"Very often we shall refer to the trees T(V.,E) as clusters of the partmon

‘Deﬁmlwn A cluster contalnlng the root of the tree T(V E) is called the root cluater of

Ny

the p:nrtmon. : T DR -

Each node v of the tree T( V,E) will be assigned a nonnegative integer weight

. v). We"aséu‘me‘that eaéh‘transaction can be“renr‘esented_by a connected ‘subgraph s

) of llm (l'\ta model tree anh transaction. s'ubgrapll s wlll be assigned a nonnegative :

A lnteoer cost l(a) A subgraph 8 sald to be cut by t,he partmon if it has nodes in two or,
{
' more clusters ol' the partmon The value of the partmon is the total sum of the costs

-

‘of all transacuons that are not cut by the partmon ' B L e e

Formally, ln t.erms ol' trees the problem ol' partmomng of an acychc data model

' ,;\ an be formulated as follows

Instance: Tree T( V E') where V is the set of vertlces and E is the set of edges set S

ol' connected subgraphs of the tree T nonnegatlve mteger welghts w(v) for each veV,

S -’f R ‘)'

\ !



’ ‘Procedur,e:- PAR;_'I‘lTl‘ON, troe T . ’ . R , o
>St‘e'p 1. lf the tree >\|s empty, tben ret,urn
Step 2. 'PARTITION all subtrees of tl]e tree T.

: Step 3.: PARTlTION t.he root of t.he tree T D L

and nonnegatlive integer costs {(s) for each s ES; positive i‘nteger W,

‘Optimi’aliorr Fmd a partmon T(V‘,E ), To( Vo, Es),. s, TM( VM,EM) of the ‘tree

T(V, E) .whnch mammlzes “the partition value and such that z w(v )SW for all
u * ‘ t(V

' 15 II-S M.

'
"

We sball desngn,the tree’ partmomng algonthm usmg the dynamlc programmmg
{
techmque In order to formulate the prmmple of opumallty for our problem, we shall

Vo e
enumerate. the nodes of the data model tree qud mtroduce some additional concepts

R \
and definitions. '
- > !

For a.given tree T with the enumerated nodes we shall dcﬁne the connected sub-

\

.graph R(v.n) wblch is also a tree, wh%re v is a node of the tree T and n is nonnegatwe

' mteger The tree R(v n) has its root at the node v, and it conlams n ﬁubtrces whose

roots are tﬁe ﬁrst n chlldrep of the node v, If n=0 tben tree R(v 0) contams only one

node v. The notatlon R(v) will stand for the subtree wnth the root at the node v, so i

the node v has onl) n chlldren then R(v, n)= R(v)

1]

If we look ‘now at. the tree shown in Flgure 4. l t\hen R(06,0) contanm only onc

no@- (6). R(5, 2) contains nodes (5 ,3), and R(Q,l) contams_ nodes (6,1).

Now wé are ready Lo descnbe mformnlly the steps “of the recurswe partmomng

algorlthm usnvng,hlgb level routines PA_RTITION ;md COMBll\lE: o

-

~

\
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anure 4.1 Tree wnth enumer:ited nodes . -

\ .

v / Tbls isa tnwal pattmdu of a tree consnstmg\only of oue node Thls

B

Yealv
AN

partmon wnll consnst of a smgle cluste? co\tammg a smgle node //o :

Si(;p 4. - OMBI'\YE partm*on’sof &he ﬁrst subtr’ee and partmon of the root

K] N

// Thls step wnll return pamtlons of theltree consnstmg of\»hf{ r,obc‘;t, node. .

T

fthe tree T and n.s ﬁrst. subtree // " S




AR . R ‘L , o .
. . C o |“' ‘,"‘

of the tree T and its ﬁrst 1 subtrees // ‘ .“,“‘; . ‘.\ . R
’* o . o : Ve L v ‘ e
' | Step 7.  If there are no mo’rgﬁubtrecs, th("l‘] r,et\'xrn’,- other‘wiselg“o" ta Step @+ 0!

- . - . , R . o q'\'»l

. N . . K L ‘,\“ “". “. 1 R i o

S ‘ T C e e o
‘ ' \ ' T / o ': [ ! v
‘. \ 3;“ v - H" "-‘.‘ " ! .
' ' ’ R A \ ! "" !

. . The routine PART[TION is a recursnvg procedure whlch returns partmons of a.

' 4' <,\
o [N

RV tree Thcse partluons wnll be used to ﬁnd paruuons of t.be latger trecs For the tree

RN _ , o ’ ‘ g [ ‘
o o ='.,-‘§@wn in Plgure‘»-i 1, we shall ﬁnd partmons of tbe trees R(v n) in the followmg order\ ‘
‘ \l‘. .' '\ i : "‘l""\.‘}y.‘ ."'I“ , B ’ ‘. ‘ ‘ . ‘ll"-.,‘ L ."ﬂ"l""_ '

e T A . L . R e

Yoo R(2,0) R(3,0) R(4,0)° T Ty

LR R(5,0) R(5,1) R(5,2) R(s 3) T A
| . R(8,0) R(8,)) R(S, z) ‘ . U
o ‘ [ R(’/’O) ‘ \ S | e IR
LT T R(3.0) R(81) R(8. 2) e
A . ‘ The routine COMBINL 13 used to' combme the\ paruuous of a Lree cons:stmg ol' X
‘ Ly S ' A ‘ ' SRR
R, " ty,e root node and its ﬁrst* n-l subtrees wnth the parﬁtlons of the a-— th subtree to form
' . Y L ) I 4 . "
‘ Cot ! L L
R the par(mous of,' the root’ node\ of the tree and its ﬁrsb p subtrees For the tree shown :u‘ .
i l .:t_ [T TR B B “/!‘
5 ‘0.-\./‘ Flgure 1.2, Lhe l‘outme @OMBH\E wnill eombme partltlons of the tree R(v,:— l) wnh IR
NN ) e . o
< R vy

L T partj}tlons of'ﬂfe tree R( ) to fotym partlclons of the tree R(v a) o R

lf we have a- tree wn,h N node§, vben such a tree Wl“ have ZN“ dlﬂ'éreut pa%

'4‘ . ' . ‘
K ; PR e .

s W nous Thls means Lhat; 1f we corﬁlder‘ all possnble partmons of the tree then our algo-

“:"; ! Y
v L ' I " . ' A L
: .

nthm will hag)e/an exponentml t:me complemtyA Therefore m order to have a polyno-(i o

Vo

i mlal t;me part;t;o;xlng algontﬁ{m we should deVelop some opt.unallty pnncxple whlch ‘,':: ,'

. [ | wnll allow u; tosgnséérd partmons fof the trees R(v n) whlch can not be part. of the o
o ,‘ N optlmal parmlon of the tree T The routnne COMBINE w:ll apply thls prmcnple when
E \ ,‘ - formnng parm,mns ’of ehe tree R(v n) from partmons of the trees R(v - 1) and R(tlr,) o
o , . ‘ . : | ;
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Pod

Figure 4.2 Example of the tree R(v)

-+ .To give the formal desccigtion of the partitioning algorithm, we shall introduce
* o .()’
i several additional definitions. We shall define S(v,n) to be the set of all transaction

trees such that s € S(v,n)iff

s ) Rlvyn)# D
and . ! '
s N (T = R(v,n))#@Q '

. where T is a data model tree. Here and later, all set-theoretical operations on frees or
subgraphs are applied only to the their sets of nodes. This will reduce the number of

different variables that have to be introduced. : ’ . .

The definition of S(v,n) implies that this set consists of all transaction trees that

have both nodes ﬂiat belong to the tree R(v,n) and nodes that do not belong to this

. ey

.tree. For the data model tree shown in Figure 4.1 and transaction trees shown in Fig-

(o4

ure 1.3, the set 5(6,2), for example, consists of transactions 1, 2 _ahd 3.

1)
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We shall also define the influence set of nodes [{v,n) such that

lfe,n)= U s)R(v,n)

8¢ 5(v n)

r
) ) [ ‘ ) . . :
According to this definition, the set of nodes I(v,n) consists of all nodes in R(v,n) that

are accessed by the transactions from $(v,n). It is clear that /{(v,n)is empty or it is a’

connected tree with the root v, because all transactions are connected subgraphs of the.

tree 7. Set [(v,n) is empty il R(v,n) represents the whole tree T. If set [(v,n) is
empty and R(v,n) is a proper subset of the tree T then the tree R(v,n) can be parti-

tioned separately from the rest of the tree T,

L 4

We shall define set Z(g,v,n) as the sct of all connected sul»graphs‘ of the tree

R(v.n) such that 2 € Z(q,v,n}iff

- -

v€: and X w(u)=gq.

uf 2 '

That is, Z(gq,v,n) is the set of all connected subgraphs of the tree R(v,n) that contain

the node v and have weight equal to q.

We shall also define set'A{q,v,n) of connected subgraphs such that a€ A(q,v,n)iff

there exists € Z(q,v,n) such that

Q

= I(v.n). | " . s

"y @

The i— th member of this set wil be referred to as a,(q,v,n). It is clear that a,(q,v,n)is

a tree v‘ith a root v.

Now we can define set B(a,(gq,v,n)) of all partitions of the ti'eé ‘R(v,n) such that if

Cis z’a‘root cluster of any plartvitionlfrom B(a,(q,v,n)), then

3 w(u) = ¢ o ' o

u€C
and ' ) o .

4

C N Iv.n) = a(4v.n).. :
For each set B( a,(q,v,}))\we shall define P( a,(q.v,n)) ) a-partition from the set
' \ . ,

AN

RS
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Transaction #1
weight=2

Transaction #3
weight=2

Transaction #5
weight=3

&

Transaction #6
weight=2 .

Transaction #2
weight=1

Transaction #4
weight=1

1

Trénsaction #7
weight=1

A

[

Figure 4.3 Transaction trees
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B(a,(q,v,n)) with the maximal value. . If there are two or miore partitions with the
maximal vilue, then we shall take any one of them. Thc notation P(v,n) will stand

for the optimal partition of the tree; R(v,n), and the notation P(v) will stand for the

optimal partition of the subtree with the root at the node v.

1

Finally, we shall define’ set Q(v,n): whlch consists of all partitions P( .(q,t',n)) for
given \alum v :md n aud all possible values ¢ and ».

W -

If a node v has n children and we want to. refer to a tree consisting of the root v

and all its n subtrees, then, nsually, we drop parameter n. That is,

 Z{qu.n) = Z(q.v)
A(q.v,n) = A(q,v)
a(q,v,n) = a(q,v)

{v,n) = I(v)

R(v,n)= R(u)
B(a(q.v,n)) = Bla(q.v))
P(a(gq,v,n)) = P(a(q,v))

P(v,n) = P(v)

Q(e.n) = Q(v) ,

and so on,
We shall prove that, in order to find an optimal partition of the tree T, we do not
have to consider all possible partitions of the trees R(v,n) but ouly the partitions from

the sets Q(v,ri).
: . . P \ . .
This fact is at the heart of the desngned algorlthm Due to this ch the majority

of-partitions of the trees R(v,n) will not be considered a{ all, because tbey can not be
. - C . e

.

a part of an optimal partition of the tree T The routine COMBINE will use this fact.
For the ‘tree R(v,n),. this routine will return ;)nly partitions belonging to the set
Q(v,n).

Y

Another important aspect of the routine COMBINE is tlfe way it combmes a par-

tition of the tree R(v,i— l) wnh a partluon of tbe tree R(v,) Thls can be achlcved by



two basic methods preserving connectjvity of Lhe resulting clusters:

1) Concatenate the clusters of two partitions. /
\ : ‘ ‘

2)  Merge the root cluster of one partition with the root cluster of another partition

and concatenate the resulting cluster with the rest of the clusters from two parti-

‘tions.

Two rouﬁnes. CONCATENATE and MERCE, are associaited with \these two methods,

Now .we are ready to present a partitioning algorithm in a formal way.

4,2;1. Sfa‘tement of the Algorithm.

In this §ect,ioq we shall give a formal s;atement of the algorithm for Apartitigniné
of a treeewith an unliniited numbevr of clusters, and vi'é ‘'shall discuss in detail some
parts of the ‘algorit.hmx We shall use the notation defined prevliously. The main r'ou.tim;,
of the partil.i;niﬁg‘ algorithm is the routine ‘PARTITION. The input to this routine is
a dat.ak model tree and transacgion 'treés, and the.outpu‘t of this routine islthe set
@(v.n). The nodes of the tree are referred to as shown in Figure 4.2,

I'e

N

Procedure: PARTliTlON tree (R(v))
Step l 1 t.he :tree R(v) is e:mpti', then return.
Step 2. For "' = ]to the nhmf)e;‘ of children of the node v, PAR'-I'ITIO-N‘ tree R(v;).
| !/ .Part‘i‘,tion all subpfées of tiue trée R(v). /] |
Step3. ' PARTITION tree R(v0).
| | ‘;’// This:i$ a tr’ivial partition of the tree R(v,0) which 'cohsiéts of a sin- -

N E . ‘l l“‘
gle cluster containing single node v. This step also creates an influence

set‘ l(v.O).‘ The set I(u,d)]may be empty or’it may coptain'a‘ single node

i
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Stepd. * § =0, o ‘ ‘ ) . €

+

Step 5. P = 1 + 1.

* Step 6. If the tree R(v) has less than ¢ c‘hil‘dren, then return. }
Stev;‘) 7. ~Create ;nﬂue:nce set l( v,:) | ' " Q | ‘ ’
Step 8. CE)MBIVNE (Q(vii=1). Q(v,)). Lo
" Step 12, C;o'to .Ste‘—_p-S.:‘
) 4

4

The procedures COMBINE is used to combine partitions from the sets Q(v,s~1) and

Q@(v,) to obtain the set of p:\rtililons Q(v,¢). This progylure will use rout.in:ps CON- *

»

CATENATE, MERGE -and OPTJMALITY-("HEC‘K.

o

\‘ _ _
Procedure COMBINE (Q(v.i=1), Q(v,))
Step 1. lnigializ_e'sct Q(.tir',i) to an.empty Set‘. |
‘Stcp“Z. Forl = 1to M Db
— . // Create par"titidns‘ with the weight of t;hé root cluster from 1 to W, /]
Step 3 . lni&ialliig set A(l,v,5)to anAeinpt'.y*set..,‘_' _ |
Step 4. For al‘l‘memberq-q;!(‘rl,v,‘i- 1) of the set A(l,v';l'; l)kl“)Ob .
‘.S.l.ei) 5. CONCATENATE (lP(a,,(‘l,.v,v:"—l 0, P(v,)) g:\:ingp';rzizig,np.. '
: , .o // ‘At; this 's‘tepi we cémcaténaié' all_’cl‘ust~ers of the partition
| P(a,(l,v,i-1)) of _the‘. t‘ri'a‘e‘ ‘R(v,i—-l-j with all clusters of the partition

~ P(v;), which is an opt,ix'n'al partition of the tree R(v,). The weight of the



el

‘Step8&  Forj=1ltol—1DO

Slép 13. ( Iose IOOps mmated at \teps 10, 9 8 and 2

52
root cluster of the resulting partition is'equal to . // -

Step 6.  OPTIMALITY-CHECK of the partition (P). |

!/ This step checks whether the partition P obtained on the | prevnous '

step should be added to the set Q(v i), that is, whether it can be part of

an optimal ‘partition of the original tree. //

“Step 7. Close the loop initiated at Step 4.

" Step 9.- For all members a,(5,v,i—1) of the set A(j,v,i—1) DO

St.ep 10. For all members amv(l—.j,v,) of the set ‘A(l—j,v,) II)OV - R

Step 11. MERGE (P(ag(j.0,i—1)). P(an(l~j. v,))) giving partition P.
[/ At this s'tcp.we l‘n.'("‘rge the root cluster of the-palrtitioq P‘(an(j,v,i— l)) of
the t.rt;e R{r.i—1) with-tlié root cluster of L.he part'ition;P(am(l—j,v,)) of the |
tree R(v,). Thc.re‘svultiu"g c.l'us‘té_r is confatenated with iht; rest of the clusters
of two‘par(itions. The weight of the rép( cl,;lster of the r;esqli.idg paftitidn is

cﬁual to l// )

Step 12, OPTl\iALlT\ -C HECI\ of the partmon (P)

¢

AN

The’procédures CONCATENATE‘ ;m'd‘ ‘MERGE are trivi‘al r‘ouﬁnes'explained in the‘

comments to t,he procedure COMBINE We should comment, however, on the proper- _

. ties of partmons that are produced by CONCATENATE and MERGE routmes

- .

lf partmon P is obt,alned by the CONCATENATE routlne apphed to the parti- |

" tions P(a(l v, = l)) and P( a(; v,)) then the welght of t,he root cluster of the partmon

e
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—

. D Y
'-'P is equal to.l and the value of the paruuon P is equal to the sum of the values of the

‘partmons P(a(l,v, 1)) and P(a(] v, ). .

lf on the other hand, parhuon P is obtamed by the MERGE routine apphcd to
4 tpe partluons P(a(l,v,u—yl)) and P(a(] v )), then the wenght of the root cluster of the
partmlon P is equal to {4+, and the vatue of the partition P is equal to the sum of
values of pal;titions Pla(l,v,i=1)) arixd P(a(f,v.)) plus t‘he'ft(;lz‘l‘ll cost of all tfansaciions
that " access nodes ﬁ‘om both the root.“clustcrs of par‘tviytior‘ié P(a(l.b,f— l\)) and '
P(a(j,v,)) and that do'not access ‘node‘s from any other cluster. Such t,r:\nsactit;us are
“cut before me(;ging, b'ul(i'_’th('*y will be connected by the MERGE operétior;, thus increas-

ing the total value of the resulting partition.

- Now we shall presént the description of the routine OPTIMALITY-CHECK.

‘IPr't‘)cclduvr(;: OPTIMALITY-CHECK of plart\iﬁou‘(P) r

 Step l:  Calculate the valuJe of"the partition P.

‘S‘tep 2. Set ‘a.equql to.the int.‘er:je("t,iqn of the root clust“er 6!' the ;'mrtitio‘x‘)‘ P with the .

| 5et~ I( v,i.), | *

IS‘tep 3. "lf a is the t—th mcmber of (he ;ct l(l v, :) and vg]ue of lho p'nrtmon Ris _'
greater than the value of the pamtlon P(a, (l.v.5)) from the set Q(v i) then
' replace tbe partmon P(a (l v, z)) by the partnblon P

'StepA4;>] 'l.f alf/‘.‘l:(l,v,t')‘,l t.bcn ' , : o o ;‘ ‘

m= IA(lv a)l+l ‘ » Lo o - %
o _Set..a,,,(l,p,:) .' a and add ‘a (l v.f).to the set A(l v; l) o

. Seﬁ P( ¢‘1,‘;,(.l,v',.z")).= P and ixdd:"P(dm‘”,v,‘l‘)) to the se§ Q(U_.“"v)-"
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The routine OPTIMALITY CHECK is ultlmately responsnble for dlscardmg partmons
s

' whlch can not be part of the optlmal partmon of tbe ongmal tree,

- 4.2.2. Proof ovap'fimality of the Partition

. . .
Wc shall prove that the algonthm ﬁnds an opt,lmal partmon of the data model

tree. In this secuon we shall use prevnously lntroduced notations and refer to the data '
model tree ﬂhown in. Flgure 4'2 ‘ " DR

The proof of optlmahty will be preceded bSOthe proof of the vahdlt,y of the follow-'
|r1g two statements ‘ . ‘

Statement 1. The set of partitions @(v,i) contains' an optimal partition of the tree:
R(v,1) for all possible values of vand i '

"Statement 2. The algorlthm finds the set of - paruuons Q(v,s) correctly by comblmng

: parm..lons‘ from the sets Q(v,x,-l)and Qv). | ’ “Q)

 Let us prove the first étvatem‘ent. Let P be an optinjél partition of the tree R(v,i)

4

~with the ,par't.it.ibn value ¥, and-let C be'a root cluster of this partition such that

.Z w(ﬂ) =9q
u€C - : '
L M) = el

| . . [y
D B

“here u'(u) IS the wetght of the node u. lt is clear that the partmon P belongs to tbe o

>

. B set B(a(q,v l)) Partmon P(a(q v :)) is a member of t.he set- B(a(q v l)) and thls par- |
| tmon has the largest, value in thxs set The value of the partmon P(a(q,v a)) is not.“
‘less t,han the value of the partmon P accordmg to the deﬁnmon of the partmor; |

| ) P(a(q v c)) If the value of the partmon P(a(q v, u)) is greater than the value of the =

E p'mtltlon P then partmon P can not be the optunal partmon of the tree R(v :) Tlns I
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means that the value of the partmon P( (q, ,:)) is equal to the valie of the opumal

partluon of the tree R(v i). It is possnble but not necessary, that paruuons P and
P(a(q,v, )) are the same. What we bave shown here is that if partmon P ls‘an
optlmal partmon of the tree R(v ) then the partmon P(a(q, a)) is also an optm;':l .
partlhon of the tree "R(v,5). However partition P(a(q v,1)) belongs to the set Q(v.1), ..

wblch means that Lhe set Q(v l) contams the optlmal partmon of the mree R(v, n)

Now we shall prove the second. statement;"'l‘,et us t,ake 'an arbitrary treeR(v,i)

and the set Q(v,i) associated with this tree. Let us consider at.Jy partitioﬁ'IP(a‘(qv,v,i')),

from the set Q(v,i). We shall prove that our algorithm will construct partition P with

root cluster C such that

Y w(u) = q"
uEC

O H(w,0), = a(g,0.0)

'md such th'u (he \alue of the parutlon P will be equal to the value of the p'\rtmon

P( a{q.v z)). In ‘olher wor(ls t,hls‘ means that our 1|gor|thm wnll find either the part"ion
“Plalq,v, n)) or some othcr partmon P from the set B(a(q,v,n)) haymg lhe samc pdl‘tl- ‘
'llou \alue Agmu, ‘we should note that lt is not necessary for Lbe partmom P and ‘

. P(a(q v,1)) to be equal We demand only equahty of thelr partmon vafues .

' . X .
,To proceed‘with the proof we sh‘all introduce s‘ome.new“notations:‘ ‘

‘a#canwuj"i,:‘eeu_'i_vﬁ
5= CARE - Ty

= Zowly) o

u(.‘.v‘l :

l: q: = E w(',‘)‘

v LueSy
;u@wﬂwlnumﬂ) T T
o dyfgn) = Sz 0 It .‘Kﬁwfﬁm‘es~ﬂﬂ,*5f
Now we shall make several observatlons .First, it ls easy to. see that . e :
q. +. g = e '_
lt follows from the fact. that,

[
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S n 52 and 5, U S, = C,

Aho ‘we shall note t.hat
\ J(.,,.-) C 1(v,i-1) U (v,).

To prove the last statement, let’ us consider.the arbitrary node u, € [(vJ), The fact

- that u, belongs to the sct /(v,s) means that there exists node u, and tramsaction ¢
such thit
u, € R(v,5), u, yR(v,i),‘ u, €t, u, €t

Taking into account that = *, R

R(v,i) = R(v,i=1) U R(w,),
l ‘v‘ve can easily obtain that

3

u, f R(v.i—1)
U yR(".‘)\
“l, ER(v;s"— 1)U R(,v,-).

The Iznt smtement means that clther u, GR(v &—l) or u, ER(v lf u, belongs to

‘R(v i l) then 'Kcordmg to the dcﬁnmon of the set I(v,~ l) we have that

a € Mui=1). - by |
‘:‘ lf'u,.:belopgs‘t:o"R(‘v,'), then according to the deﬁ‘x.ijtion‘dfjt.he set /(v,), we \h‘av'e.'tha‘t‘
N ).

lt‘fo.llows fror‘n*t,hc I“'ast two st.atc’ments that” e .,

ul € l(v c—l)U I(v“A

o whlch leads to the. conclusnon that,

‘ I(v:)Cl(vt—l)U I(v o
*‘71_““"'2‘ Also it IS clear that d € A(q,,v t— 1) and d, € A(qo,v)

‘No.w let, us constder two Cases; '

'




LN

l""’dr@‘

. )

-

Casel.»SQ"éQ.“ N ' e
Case 2. S, # D
. ' A /“\
The first case means that - o ‘.“ _ » i ,'
g =qand ¢=0
and that the partition P(a(q,lr,c')) is the result of the concatenation of clu'stera of some '
parlmon P, of the tree f(v,i—1) and of clusters of some partmon P, of the tree R(v )
Let C be the root cluster of the partmon P,. Then we can easnly see tlnt )= C bl. '
and as a result, we have 4
2 w(u) = Tu(up=g ’
ue ¢, u(C T '
Cnl(v.-—l)—snl(v.— d(q,v, .,

n

We insist now that tbe partltlon P, have the same value as a partition
P(d(q.,v,i— 1)) froh. the the set Q(v,s—1) and that the partition Pz be the optimal

partit‘ion of the tree R(v).
Really", b'oth partitions P, and P(d,(q.,v,i=1)) belong to the set l?(‘dli(q,u',i— 1)). |

By deﬁnmon the value of t,be partltlon P(d, (q, x—'l)) can not be less than the value

ol' the partltlon P,. On the other hand lf the value of the partmon P(d (q,v,n l)) ls'

’ .
‘greater than the value of the partmon P,, then by concatenatlng clusters of the paru-

b

"u'tﬁxg,ns P(d, (q v,i— 1)) and Pf,, we shall obtaln partmon P‘EB(a(q,v,t)) whose valuc

Wlll be greater than the value ol' the partmon P(a(q, s)). Tlns however 'contradlcts -

t.he deﬁmtlon of the partmon P(a(q, :)) Thus, we have proven that the partnnons ,

Pl and P(d (q,v,l l)) have the same value

‘\low we shall prove that Lhe partmon P2 is tlle opmnal partmon ol‘ the tree L

‘ R(v ) lf partmon Po lS not opumal then we can replace it by t,he optlmal partmon of_ L

Lhe free R(t ) and concatenate clusters of thls optlmal partmon wnth the clusters ofl‘ .

the parutlon P, Tlxe resulung parm,lon of the ‘tree will belong Lo the sét B(a(q v ),

’4“ f . N e s B . -
. ' . : L S . P . ’ ‘
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N an’d the vAIue of thls partmon will be greater than the value of the pai‘tatlon 1' L

-~ P(a(»q,v,s)) This, however, contradlcts the deﬁnltlon of the ‘partition P(a(q, ,n)) . :

Phus we have proven that in the case of 5, = Q the partltlon PE B(a (q,v,:))

_ havmg the same value as the partmon P(a(q,v,s))e Q(v ) ¢an be constructed by con-

. catenatlng clusters of the optlmal part1tlon of the tree R(v) with the clusters of the' PO

pnrtmon P(d (q,v = I )) Set Q(v,) contains the \optlmal partltlon of the tree R( W
L ‘.md p.rrtmon P(d (q v,i— l)) beiongs to the. set Qv,i— 1)

Now we shall consider, the-secon‘d case, when S, # Q, In this case, the partition’

,

P( a(q,v,i)f consists of three'types‘ of clusters: ,

‘Type 1. Clusters thnt are contn‘ined entirely in the tree R(v,i—“l‘); D R
Type 2. Clusters thnt are contained entirely in the tree R(v,).“ ‘ _‘ o o AR .
Y ) ) ) . ) w'\ '\ ’ N v
’[‘jpe 3. Root cluster as the only cluster havmg nodes from ,both trees R( :-— l) and o
\ ‘ R( v) L .o ) - v g * . '\‘ :.‘.‘“ “'\.w»”\ . \\
i ' o ‘ o g " i v
Let us consnder partltlon P, of the tree R(v 1= l) whlch con:nsts of all ﬁrst type»clus- \ L
AR Y
. ters of the partltlon P(a(q t)) concatenated wnth the cluster S,, whlch wdl be the .

, o
3 R

root cluster of this partltlon We shall also. consnder partltlon P, of the tree R(v )\. g

.
7

 wl hich consnsts of all second type clusters ol' the partltlon P(a(q,v t)) concétenated

“ mth the clustei' SQ, Whlch wnll be the root cluster of thls partmon lt is obwous ,that R

. ‘ w‘ } L \

fP 3 B(d(q,.vs 1) and. Pze B(dz(flm ,)) L e e

The partltlon P(a(q,v s)) can be constructed from the partmons Pl and PG wnth
the help of the MERGE routme by mergang root clusters Sl and 52 of part(tlons l;

» mand P, and concatenatmg the resultmg cluster wnth the rest. of the clusters I%m)e S
. S ‘ . : ' ,,‘_- o E . :v VL by
two partltlons. IR A . et ‘ e '

o ) Let P‘ be the partmon whlch is constructed b‘y applylng the MERGE operatlon'.‘ Rt

s . to the p'xrtmons P(d (q,,v i- l)) and P( d2(Q2,".)) We shall prove that the partmon , .

Ve

Coe
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'

Pt belongs to the set B(a(q,v,s)) and.xhat the value of the partmon P*is equal to the
\alue of the partmon P(o(q v ). To prooeed wlth the proof we shall mtroduce the

. following notationa: S : - ‘ X v
» ' ' . o ' . .

C’“l is root cluster of the pértiiioh P‘(dl(ql,v;i— l)), B ‘ ‘1 l ,

('*, is root cluster of the partition P(d,( QQ;”.)),
C'* is root cluster of the partition P*

[, . .
. r

Using these new notations, we have

:S‘ w( ) = q ' ‘ L ‘ :‘  . N
i ' t . e
X wlu)=g, S ﬁ,
. > uw€ (%, ' ‘ . ;o : /m_%t- 1 | o i ﬁ
e C* = Cw‘:U ct - w l ’ |
"‘100‘56, . | o ‘ . o o
dlauvi=1)= C* Y o=ty .
d'z( got,) = C*2 ) I(v,), ) -
‘ : -
“In order to prove that P*e [f(a(q""-")). we must prove that ‘ . |

T u(u)-
o w€C*
and -

C‘n I(v') a(q,vy') \ , ‘
' "The proof of the first. equahty fO”OWS from the fact that C‘ is a union of two dlsjoln!,

.sets C*) and C‘f_, S0 t,hat,‘ we hav_'e | |

L Zow(u)= T ow(u)+ X w(ﬂ) = ‘lr+ G = ¢

: WEGM o w€C uw€C*y T . T
"‘\Iow we shall prove the second equzhty From t,he fact t.hat,

Jz(v,)gi(v.—x)u [(v) o e

" which was proven earlier, lt follows that co O o

’ 1(o;;) n‘(l(i:,i—‘l);u,((‘t},-)) =,=-f(‘v,"v').' S

L]
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We also know that .

¢ N /(v,) = and (%, n l(v,i~1)= D

Now we can e'nily derive that

OO i) = (€4 U C A I
=(€% U %) 0 () O (i~ 1) U 1))
=1C U C*) N ((v,i=1) U H{w) N [(eh)
=(CHN He,i= 1) U LN He)) N K(e,i)
) U 400)) N 1(0,0).

2

-

According to the definition of the sets d\(¢,,v,s—1) and d,(qg,,v,), we have

dilg . vdi= 1)U difg,e) =S N (vi=1) U 5?0 I(v,)
= CAR(vi~)N (vi=1) U COR(v,)N [(v,)
= C N (Hvi= 1)U ().

In deriving the last equality, we have used the fact that

R

‘_I(v,i-— 1)) R{v,i~1) = [(v,i—1) and .I(v.) N I‘?(v,) = 1(v,).
" Finally, we have

COO (o) =(dgnvi=1) U dafqn)) O o)
=N Ui~ DY ) N Ke,)
=('n I(v,ys) v '
o) ‘
= a(q.v.i).
’ Thm concludes the proof “hat P* (B(a(q v,i)). The fact thav P‘E B(a(q,v,:)) means

llnt the value of ‘the partmon P* cannot be greater than thc value of the partition

P(a(q,v,a)). according to the definition of the pam&on Pla(q,v,1)).

A ’ N ’ .. - ' 4
Now we shall prove that the value of the partition P* is not less than the value of

the partition P(a(q,v,s)).- First, let us consider the set of transactions F such that

terig M

tNS,#29, tS,#F, and tC S, US, = c
and the set of transaction F* such that t€F* iff
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NG, 2D, COCL 2D, and (C L UCY, = %)

Let us prove that FCF* Let us take arbitrary transaction ¢ such that ¢t €/ According

to the definition of the seta [(v,i—1) and /(v,) and due tgythe fact that €4, we have

t ) Heyi—1) # D,
t (Y v, #* D, and ‘ A ,
tC I (edi~1) U I(u,). |

W(‘. also know that |

tC S, U s, =

From the last (%o statements, we can casily derive that

tC (e~ DU e N (5, US,) = [(v,i-*l)ﬂb‘l U (v)N 5,
) . =d(q.vi- 1)U d,_,(q.;.v,).

We can also see that

tO) (S, U 50 N Iea=1)
tYy S, N I(ea—1)
t () dfq,,v.i—~1)

t ) H{vi—1)

) -
which means that

t ) dilqv.i=1)# D,

In the same way we can show that

-

t ﬂ dy(qs,v,) # D. N
However, it is obvious that

~

d(q,,v,i—=1)QC C*, and d.(g,v)C C*,,
> " .
which meauns that

tACcH#3, tNCH# @, and 1 C C*,UC%H=C"
According to the definition of the set F'*, this means that t€F*. Thus, we have proven:
. ’

that if t€F, then {€F*; in otmgr words, that FCF*:
The value V of the partition P(a(gq.v,s})is equal to

L V=V V4V, .

where
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V| is the value of the partition P,

[

V., is the value of the partition P, and

V', is the total cost of all transactions from the set F.
o

On the other hand, the value V'* of the partition P* is equal to

Vo= Ve V4 VY

where:
17*, is the value of the partition P(d,(q,,v,i— 1)),
V'“. is the value of the partition P(d,(q.,v,)). and

1"*5 is the total cost of all transactions from the set F'*,

.2
e

Both partitions P, and P(d (q,.v,i— 1)) belodg to the same set B(d\(q,,v.i=1)). This

o ! . .
@‘» means that-the value of the partition P, cannot be greater than the value of the parti-

’
| ~

tion P’(d,(q,,v.s=1)); in other words

Ve oz V.

1
In the same way we have
' 1
» Ve, z vV,
Due to the fact that FCF*, we have that
ez Voo,
All of this finally means that the value of the partition P* is not less then the value of’

the partition P(a(q,v,i)). We have proven'earlier that the value of the partitiox; P?is
‘not greiter that the value of the partition P(a(q.v,:')); This means that the value of

the partition P* is equal to the value of the partition P(a(gq,v,i)). .

3 .

. Summarizing what we have proven so far, we can state the following.-Let parti- -

tion P(a(q,v,i)) belong to the set Q(v,s) and have value V. Then we can construct par-

tition P*€ B('a(q,‘v,i).). ‘having t.he-same value as the_phrtitio'nv‘l’-"(a(tj,t‘),i)). The parti-

tién-P‘fan be‘i\c\dlfistru'cted by applying the operation CONCATENATE to some parti-
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tion P{d(q,,v.i—1))€ Q(""'—Al‘) and an op.timnl partition P(v..)ﬁ Q(v,) of the tree

R{v,). or by applying the operation MERGE to some partitions

P(d,(g,.v,i=1))€Q(v.s—1)}) and P(d.(q,v}))€Q(v,). It is clear that the partition P*

-can be a member of the set Q(v.) instead of the partition P(a(q.v,1)).

Now let us look at the procedure COMBINE, Step 5, which is inside the loops

ini(i:ﬁcd in Steps 2 and 4, concatenates all partitions from the s;-t Q(v;i; 1) with the
optimal partition of the tree.R(v,). Step 11, which is inside the loops iniii:\l(‘d in Steps
2, 8,9, and 10, merges cach partition from the sct Qv.i—1) ‘wi(h such b:wtilioun from
the set @(v,) that the weight of\ti;root cluster of th(; resulting partition is not greater

than W, It is clear now that the procedure COMBINE will@ick up partitions P, and

P, and will either concatenate or merge them to produce the corresponding partition

/

P’ B(a(q_v,i))-with the partition value equal to V. This will insure that the set’ Q{v.i)
will contain partition P€ (a(gq.v,1)), such that the p:ﬂrlilion I’ has the largest parti-
tion value id Che set B(a(g.v,i)). This concludes the proofl af the fact that the set of

the partitions Q(v,i) will be created correctly from the sets Q(v,{—1)and Q(v,).

’

always ktarts from the sets @ containing only trivial partitions of single nodes and

procceds until the whole tree is partitioned. This means that we start with the valid

sets @ of partitions, which in turn, means that we shall have the valid set @ for each -

tree R. The set @(v) for the whole tree R(v) will contain the optimal partition.

T(X finish the proof of the optimality, we should observe that our algorithm -



4.2.3. Cvdmplexity of the Partitioning Algorithm

This section is devoted to the analysm of the complexnty of the tree parutlonlng
algorithm.  In th:s section, we shall use the previously defined notatnons and shall

also introduce some new vanables. First, let. us consnder the mput to our algonthm:

Tree R with set V of nodes and set E of edges.;
\’V(‘ight.syw( v) for each node v€ V, |
Set T of t'ransac‘t.io‘n trees.

‘(“o'st {e) for cach tranéactioh teT. -

Bound W on the weights of partition clusters.

Some new variables, which will be very important for the analysis of the algorithm

“time complexity, will be introduced:

- . \

N - number of nodes in the tree.
D - degrce of the tree.
+ h(t) - number of edges in the (ransaét‘ic;‘q tree (€ T. .
I‘I = max{h(!)) fm.' teT - ma‘ximal nur;lber of edges in transaction tree.

B = |T|- number of transactions.

”

The,limo compléxity of our algorithm is a very complex function of the. .variables.
\ B D, H So, in order to mal\e the analysns fea:nble we shall mal\e some assump-
tions about the values of these vnrmbles We_shall assume that the values of these

.\'nrlables satlsfy the followmg ‘lnequalities:

B>N N>>W W s> D, W>>H ' -

Ve shall also assume thz{ D and H are' ‘vonstant. These assumptlons are very reason-

able for the data modcllmg envnronment 4

In carrying out our analysis,.we shall' assume that the weights of all nodeés are

equal to one. In this case, we must consider only transactions such that
\o . N . H . ) i ' . . .
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h(t) < W,

because if A(t)= W then such transaction t can not fit any cluster and will be always

cut by any partition.

\

We shall also assume that all transactions are evenly distributed throughout the

dam model tree. Under this condition, we can say that each node is accessed by

BH
ol

) transacnom

* Before we proceed with the analysis of specific routines, we should estimate the

; . o ' N L
cardinality of the sets 4(q,v,) and A(q.v,i—1), which are used by the majority of the

routines of the :\Igorilhm.

~

1
/\ccordlng to the definition of the set 4(q,v,) a tree a€A(q,v,) |ﬂ' there cxlsh a

tree T( 4 E) such that

1. v¢€ v,

2. T(V.E)is aconnected ﬁubgl"‘lph of the tree R(:v ),

A

o)

|1'| = ¢, and

e

te,) () T(V.E) = a. : | . ‘ Yo
From this definition it is clear that the cardinality of the set A(q,b,) can not.be greater

- than the number of connected subgraphs of the tree /(v,). For the giveﬁ values of

D and H, the number. of different st}uctures of the tree 1(v,) is finite. This means that .

\
\
i

the maximal’ nuti]liel“} of connected 'subgraphs that the tree I(v,) can contain depends
: } i L '\ o

only'on the values of D and H, which'a‘re- constant. The same is true about the set

Alg,v,i—1). Thls means that there ‘exists' a constant f, such that for aII possuble .

valuesof g, v and $ we have

M(Q»v - 1)| < f




- L A = e A = S A A = m = A A A R . -

od [ 11 1 5 §
6 8
10 9 14 12 13

" Figure 4.1 Dut-a structure to sto're partition
~ corresponds to '; sing‘le node of a tree.” The ﬁrst two llsts of boxes correspond to the .
l root clu«ter of the partluon I‘he ﬁrﬂt of Lhese two lists represents the intersection of
the root cluqter with the ‘corresponding mﬂuence set of nodes So. if we have‘.som‘e
partition P(a(q v,f)). ;hen the first: hst represents (he set a(q v :) The reason for-
«plmmg the root cluster into two parts wnll be explamed below Each of t,he rest of
| the Ims corresponds to a snngle cluster The ﬁgure shows an example of a partmon of:
a tree: wnh 14 nodes The root cluster of -this partmon is (2 3,7, 4 ll I 5) and the rest

.oftheclusters are(68) (109141213) ,‘ :‘-l.’ | '<‘
o The two procedures that wnll cre'ne these data structures are CONC ‘\,TENATE :
: and MERGE Procedure CONCATENATE (P(a(l v. l)) P(a() v; ))) wnll merge thei

.‘ﬁrst two hsts ol' the data structure representlng the partmon P(a(; v; )) into a smgle'

‘ hst representlng the root cluster of thls partmon and then it wnll Ilnk the ﬁrst node of

g thls hst to the nrst node of t,he last llst, of the data struct.ure represenung the parutlon

.o .
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Pla(lvi=1).

Pl

Thus, the time c‘omplexity of the CONCATENATE routine is.

Xcone = Olll

The proccdure MERGE (P(n(l l)) P(a (] v,))) wnll merge the ﬁrat list of the

' nodes of the parutlon P(a(l,v n—l)) wnh the ﬁrst list -of the nodes of Lhe p'\rtmon
-P(“l"'"-))' that is the sets a(l,‘u.l—- 1) and a(4,v,). The intersection of the resulting sct

" with the influence set I(v,#) will be the first list in the data structure represeating the

resilting partition. The nodes that belong to the set - o | . | . | ;
a(loi=1) U a(f,v,) = Hv,9) ,

will be merged with theé second list of the partition-P(a{l,v,s— 1)) and with the sccond

list of ‘the partition P(a(z,v,)). The resulting set will become the-second list in the new; .

partition. The rest of ihe lists of two partitions will be linked together. Thus, the _

~ time complexity of the MERGE toutine is -

X MER(‘E = 0(l1 l

A

~ Now let us consider .t,i'meeomplexn'y Xopr ol'fthe ‘proced‘ure OPTIMALITY - |

‘ 'C‘HECK.

In btep 1 we calculate the value of a partmon P‘ol' t,he tree R(v,s). The parutlon ’
P is the result of combmmg the partmou P(a(l v,i—1)) ol' the t.ree R(v,i- l‘) with the
partmon P(a(l 1 Y, )) of the tree R(v) The value ol' the partltlen P.is equal to. Lhe
\alue ol' the partmon P(a(l v, 8= l)) plus the value ol' the partmon P(a(l-] v, )) and.
the total cost ol' all transacuons that are not. totally contamed elther in the root clus- ‘., —
ter of the partxtlon P(a(l v, = l)) orin t.he root cluster of the partmou P(a(l ] v ))
but are totally contamed ln t,he root cluster of the partmon P ll’ C'l i3 Lhe root- clusu-r

of Lhe partmon P(a(l v, c— 1)) and C2 is the root clust,er ol' t»he partmon P(a(l-; Y )) \

then such transactlons that, addmonally contrlbute to the value of the partmon P

P 4
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: l.‘-sati.sfy ‘the following ‘co‘nditions:

tn c, %b; tn‘,CQ%Q; t;C;U Cp
.Te check these conditions will require- | SR B '

llllnIC | + |¢|ln|Co| + |¢|In|C UC2| = 0(Han)=- O(InW)

units of tl'me It is easy to see, however, that these condmons are equlvalent, to the ,
following conditions:

t n a(l,v,a‘—i) + 3, ‘t n d(l‘—j, v,) %Q' t g a(l,v,t l) U'a(l - 7,9;)-

The time requ:red to check these condmons depends only on t,he sizes of the sets

. l

» a(l,v,:f 1), a(l—;,q.-)_ and ¢. However, if D and H are constant, tshe_n the snzes of these

. sets rvill be Iimited by °co.nst'va‘.‘nts. So it is po§sible to check these conditions‘ in‘0(L).
'umtﬂ of time. Thn was the reason why we had to split the root cluster of the parti- “
tions into ewo parts. Iti s clear that all transactions satisfying these condmons should
uccess node v, whlch is the root of the tree R(u 1). The number of such transactlons is

O(Qﬂ-) This means that th&tlme complexny of Step lis O(B-—)

'Fhe ume romplevmy of S(ep 2-is 0(1) lf partitio‘n P with’ Lhe root cluster c iS

the result of combmlng tbe partmons P(a(l v.s—1)) and P(a(l 7, ,)) then

N 5‘1(v'>n(a(lz::—n)u o(i=jw). -

s l‘hn means that it will tal\e O(l) units of time to find the mtersectlon of the set J(v, s)’

.
“

'

wnth (he root cluster C.

The tlme complcxlty of Step 3 and Step 4is O(l) Fmally, the mme complexlt) _

—TOPT of the routine OPTIMALITY-CHECI\ is

\opr" 0(—H) 0(—P

Now we. shall cousrder the tlme comple‘(nty YCOMB of the procedure COMBINE‘ ‘

" » 1pplled tq the sets Q(v U l) and Q(v) Let /CONC be the number of CONCATENA’I‘E}._:j

o operatxons, and fMERGB be the number of - MERGE operatlgns performed by the’ -



| ‘pro'c‘edure' ‘COM‘BlN‘E. -_Thé time comp!exit'y .\’COM‘; can be calculated as follows: :

. VconfB = O(/CONC(\(‘ONC + /\oprl + Imerce ( \MERGE + Yopr)l
Now takmg mto account tgm, f(.ONC= O([MERGE) we cai snmpllfy the expresslon for .
- ,\COMB as follows. S ‘ L : | o ,
' Xecoms = O nzrae (Xaerce * Xopr)):
lloquer. ‘ ‘ ‘
\OF‘T+ \MER(‘E O(_l + O(U Fl' o

And finally we have

— . ‘ B, -
Xcons = / MERGE O(Wl: N
fl T‘hg MERGE routine is located in the procedure COMBINE inside-lhe“ loops ini-
tiated lr Steps 2. 8. 9. and 10.,This means that the value fyerce can be calculated as
follows:
3 .
/\{ER(‘E E E [A(],v, "‘Ul lA(l J
. [m] =} ) .
Now fwe can get. the follow.mg esumate for the number of MERGE oberutions:
AT stRcsszlzlf"‘fE El ‘. e T
-1- . j=1- ) ' . , , o
| Tbe last expressnon shoWs th«at
. e l..fMERGt,‘:‘f O(W’& B ‘Q , , | |
- X ' L \‘ . ' .
! o . \ow we can hg,ve Lhe followmg expressnon for tbe complexlty of t,he COMBII\F pro- . K
A ‘ . cedure \¥ : ‘ | &7 f ‘
U a
ﬁ' ‘co.us 0( 'Wol S é\ ‘
L ~_ 3 T, Now let us - consnder the complexnty of the procedure PARTlTlON\ The pro-

§edure P»\RTITION wnll apply N—l mes- the procedure COMBINE 10 the tree mg
partmoned Thls means that. the tlme complexny \’P of the procedure PART]-}v L

v . C ; N _: ‘ .;- - . .
TlOle’,"i“*’ 3 3 R -« / -
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)‘PART = O(N Xcoms)
or, taklng into-account the expressmn lor ’(COMB, we can have that. ‘

i I
.

Xparr = /0(°Bw2l L B | ‘
'The expression for, YPART shows that if the degree D of the tree, the maxlmal number

H of nodes accessed by the transactlon and the maxamal size W of clusters are llm-
“ited, then the time complexlty of the partltlomng algorlthm wnll be llnear with respect o

to the number of transactlons. Thns ls'the same in data modelllng. where the values

W, D and H afe limited, but the ‘numbers N and B can be relatively large.
5/
We should note howevcr that the constant [ can be very large if the values of

' [

the vanables D and H are large Consider, for example a; tree [( ;) such that each
)

node of this tree has degree D, and each leaf node of this tree has the same depth
I!—l The number of leaf nodes of this tree is DH ' ' This means that the number of
/ ' ' o

. ok Coy . . : H=1. = . in 1) )
~different connected 'subgraphs of,thls tree is ‘greater than 227" So, if W>>DH-1
"' then the cardinality of the sets. will grow at least as fast as 22!, This means that the

\ ity g ‘
- algorithm will-have practical use only for

‘D=3 andHS4 .. S | -

Apoendix 2'¢‘ontains an e)';f'\amplelof applying th‘ls algorithm to partition the tree.
4..3r Tree Partitioning'With ,a. ‘Linlx‘ited Number of‘Clust_ers
e ln thls sect|on, we shall brleﬂy dlscauss modlﬁcatlons that should be done to the
B desxgned partltlomng algorlthm in order to ﬁnd the optlmal partmon of the tree wnth a

*-‘ »

l "‘f.llmlted number of clusters We shall redeﬁne some of the sets deﬁned in section 4. 2

We shall deﬁne set Z(I: q,v n) as the set ol' all connected subgraphs ol' the tree .

LI

R(v n ) such that € Z(k q,v n) iff

‘ . -
There e\nsts p'trtmon P of the tree R(v r) that contams exactly Ic clusters each

“ [ S
.«

h’nlng a wenght less than W




2. :is+the root cluster of the part‘iti‘on P.

3. -The weight of bhe‘ root cluster z'is equal to gq,

' .
'

We shall define the set 4(/: q,v, n) as the set of all cpnnected subgraphs such that

aE 4(,( q.v n) iff there exists ~€Z(k q,u,n) ﬁuch that S
n I(v n) - o : ‘ , . ' .
. w here [( v n) is the influence set oftfxe tree R(v, n) The n-— th member of this set ‘Wl“

.

be referred to as a {kiq,v.n). o ' ‘
\\e shall deﬁne the set B( Ak.q.v n)) of all parutlons of the treé R(v n) such th'\t

(he partmon P with the root cluster ¢ belongs o the set B( (k.q,v, n)) lﬂ'
a

1. Partiiion"P‘ has exactly & clusters, each ‘s;xtisfying (‘hebwei‘g"htlconstrnint;
2. The weight 8f the root cluster of the pariition Pis eq‘ual to q.

3. on 1(.,',,,) = q.(k',é.v.n).

cy

- For edch set B(a (k q.v n)) we shall deﬁne pZ}rtmon 'P(a (k)q, v, n)) as a partmon from

b
v

lhe -xet B(a (k.g,v,n)) havmg the m.nlmal value.

F‘inallv. w e all deﬁue seL ()(v n) whlch consists of all partmons P( (k q,v n)) ,

for a glven v and n and for all possuble combmauons of k and q. :
o . o :

‘The set Q(v n) plays the same role here as’in partmomng a data model tree wnh
an. iunhmlted number of clusters That i is, for each tree R(v n)'wfe ;ho“uld cousuder only.
- those partmons that belong to the set Q(v n).. S “d‘
T}l_'e qnly change vto‘t'he e.lgqri;hm will be in the rout‘ine‘ COMB'[&IE%We?%h‘alL I.i:avc“ "

to add anotherivloop"to‘-this routine. lnsi‘de Lﬁls loop, the algon‘hm wnll generate partl- B
‘ 2 .
o tlons wn,h a dlﬂerent number of clusters The number of clusters k- will be treated in.

' the same wa_y as ‘the welght of the root 'cluster g




Chapter 5.

Revlew of Database Deslgn Methods

'

" ln th¢ present chapter we shall infdrmally discuss the different stages of the data-"

base design proccsé, and the place where our parg'itioni‘ng algorithm fits in,

' f . . .
i
. i

5.1. Database Design Objectives
SR One can define many different détabase design objectives; howeyef, ﬁnally‘,‘all of

~F

hem can be reduced to the following: minimize thé total cost of maintenance and

alions.
‘ .
.

In the modern euvnronment mamtenauce cost’is pnmanly determmed by the

-
P

. ’5’\'1\1“1(‘8 and w1ges pald to’ the system ana'lysts whlle opera’tnons cost is determined byu ‘

’ ‘Lhe cost of CPU cycles and by Lﬁe number of. l/O operatlons Durlng the last 15-20., o

ycars, we ha\e been wltnessmg tbe drasuc mcrease m the cost of an‘alysts time and -
1 ‘ ’

" “the drastic decrease in tlm cost: Qf CPU time’, and penpherals uéagc There IS Imle .

‘,doubt lhat this (rend wnll contmue A v

Aq we have already dlscuqsed m the. lntroducuon mamtenance cost depends on “‘,:7"'
v Cor ey T
.. the way we partmon the apphcatlou system nnto subject databases and subsystems“'”

o ‘Thls means: that mamtenance cost wnll be deternilnred mannly by hngh level Ioglcal

\

- deslgn Operauons cost on the other haud depends strdngiy on the physlcal desngn of

'

‘-a database\




C ‘ ‘ approach is absolutely impossible to xmplemem because during the early: stages of
. “ ' w N

»
deﬂgn we just do not know all the p'\rameters which are essentml to the phyucdl dat.\-

™~

. ' L. Vo

base deqlg[\ Takmg into account thnt the maintenance- related coah are const.m(lv g

! 3 o . s

growm«r whnlo operatlom-relmed costs are com(anlly deoreasmg, one: can, suggest the
: oL

followmg pmc(mal approach to d.xtab'ne design:

o
h .

. ol A ' B ¥
. e ' a o a N . . ' .
1, Esmbllsh a blgh~l<‘vel |ogl(‘al design whagh insures low mamtennnco cos,(, and
i ) i . TN ) ca )

2. withio the ebtabh«hed loglc.xl framework cdéry out the ph,yﬂlc'\l datab.\se design

) . . n ¢
' - by . ‘ ‘ o ’
wl(h the aim of mlmmmng the opir Sm':l cost, . . : .
| \ ‘ R . N ' ) B P
e : . "This means that, ‘at ﬁrs(. we shall partition Lhe (lata model into subject databases, ¢
. ‘ . : o
oo e .xl\mg into account only mamtenance issues, and then we shall carry out’ physlc.\l ,
BEE , . : f; e - R
e . . ’w=database dcsngn for each subject database, T . : . Ca :
) . N y - :‘ - ~‘B ) Ll . . N 2 ) i . - “

‘ i '

. ‘ Somé(-imes; howclvcr, the physicil design issues@ould be addrcssed dunng hlgb-

“ I ‘o

\ > o ~

Ie\el design.. lt is possnble for e\nmple, that two enuueS' p’lrtlclpate only ln slmpll“

S (Iow complexity c&%2) transacllons but some of lhese transactlons requlre very small’

N .

. © respoase time, Thn mcans “that th records fprmenung Lbese two entmes should be

. ' "
i R LI ' »

P plal‘cd phy\lcally lose to each o/t’her in thé external memo.ry I, however, these enti-

v T tles are. placed in dlﬂ'erent subject databases durmg high- level'adesxgn Lhen this wnll bc s

! e
r""’v.‘ ‘I " K ¥ r" . /" N 1

e lmposs:ble to’ farrect durmg the physncal database desngn So in order to insure that

3 (I -
- N .

* o
N
,

O these Lwo entmes aré placcd in the same subJect database we cbn mtroduce a dummy

hwh-cost transact,|8n accessmg these two entmes S e




”

5.2. Inputs to Database Deeign

| .
n ) |

The inputs to the databast design consist of a set of entities with their associated .
- ' . i \

weights, a set of rolatio'nsbi;/)s between the entities, and a set of {ransactions with their

~

associated costs (or weights): Basically, there are two types of relationships between
[

b e , S I
catities: | - { O
. \ . .

I. a onec-to-cne relationship between entities A .and B, which means that o IS .
v . - . » /

instance of entity A iy associated with no mose than one instance of entity H\

and , / . B : .

I

2, a on(-jto-'many relationship between entities A and B, which means that one

~

insthnce of entity A can beassociated with zcro, one, or many instances of entity

. \ | ‘ .
a : L / ‘ , :

\

B.

We '«hnll not consider man) to many relntnonshlp because théy can be rcduced to two

f w
-

one-to- mhny relationships: Also we assume that relauonshlps m\ol‘kmg several enti-

ties nr‘e‘rc;]uced to several one-to—man_y relationships, each involving two entities. The
entitics and their relationships’ dre .usually represented by a so-called Entity-

-

-

‘Rclmionship diagram, ‘ _.' ' _ | L ' \
5 2 1 The Entltw-Relatlonshxp Dlagram e . R -

’

An Enm)-Rel.atnonshlp (ER) d\agrnm is’a grgbh G(V E) |n w'bnch’ each node
correﬁponds to an. enuty and each edge corresponds to a relauonshlp between con-

nected c.n»u,nes The graph G(VE) can have dlrected and undlrect,ed\edges An

undlrected edge represents a one-to-one relauonshnp between the connected entmes A

dlrected edge (A B) represents a one-to-many relationship between entmes A and ‘B.
Due to the l'act, th t,here can be several relatlonshlps between two entmes multiple e
- ‘QA . ‘ ) . ’ \ . P
edges can connect, the corre‘&pondmg nodes of ‘the gsaph no

A . .
" . D |

Each edge of the ER dlagram dlrected or undlrected also represents lmk or path

i, , . . . .
. . i . N
‘ oy . - ) A i . R . N

«



.

that is used by transactions to navigate through the database.

’

N .
5.2.2. Structure of a Transaction

Each transaction accesses gpspecific subset of entities by navigating through the

links of the Entity-Relationship diagram, This means that each transaction will haye

‘associated with it a graph (V7 £,) such that

Vi,C Vo oand £ QFE

where (/(1',E) is the graph represcating the ER diagram. We should note, however,

that the transaction graph G Vi, E) can differ from the subg‘r:\ph of the'graph (V. £)

i
-

induced by the set of nodes V7,

Each transaction can be associated with two weights: the first weight reflects

complexity of the transaction, and the second weight reflects frequency of the transac- -

tion. The complexity of the transaction is important during the high-level logical

LN

~

. design when the data model is partitioned into subject data bases. "Fhe frequences of
. - , o L

the transactions are more important during physi€al database design.
. ) X

. -

: A Y - - . - o - . to N * . - ’
The complexity weight is assigned™to aNransaction ds a whole, and if any tran-
) \ ,

saction edge is cut {y the partition, then it is ‘consndgrgd to be an additional overhead

" .
»

because this.trausaction will be spread through different subsystems’ and will have to

t o

.

 be mmntmned jointly by two or more maintenance teams. Howevcr not all entmés

\J - -
v - » . . B

acces%ed by the’ Lransactlon play the same role dunng Lransacnon processing. Only a
~ oA ’

9mall subset of all entities accessed by, the transacuon wnll partmpate in complcx

mterrelated data mampulatlons The rest of the enmles wall play only an auullary

L e «

" role durmg transactlom processmg and they wnll serve mainly for code expanslon If weé

)’

consnder for example, a one-to-many relauonshnp between an employee and a depart-
L] - L]

\ ment, then the employee,.,i'ecord will usually contam a department co& Some trap:

-

o sacuons will. accesw%epartment re&o?d on‘fy to get the namc of the departmen!

STATN

.(‘\

"{‘ Tl ‘r-ﬂ ___.—--——
W™ .%xven code: lf one s\i’ch Wansacuon is cut sucb that the departmen’t qnmy is

-

\

1



'

, . o

in one subject data base and the rest of the entities accessed by this transaction are in
. t ) . A

another subject d'a(n base, then it will hardly increase the cost of system maintenance,
because as far as this transaction is concerned, the department entity is very loosely
related to the rest of entitics accessed by this tramsaction. Certainly, there can be
other transactions for which this link is vev imp(;rtant, and they wi_ll pcrfo}m a lot of
data mzmipulaliohsi involving attributes of both the department entity‘ aqd the
cmplo.\:(-lc catity, If such a transaction is cut tb.rough this link, then it will definitely

increase maintenance overhead. : . .

-

Practical observation is such that usually one half of all entities accessed by a

transac{ion actively participate in the interrelated calculations, while the other half is

“only loosely related to the rest of entities accessed, by the transaction. If we look at
b , o 2 7

4 ‘
. the transaction graph, then these loosely related entities will have no more than one

[ -
.

cdge adjacent to it.  Another pr:nc(icz}l'observ:\tion is.that a transaction graph is usu-
a N ’ . . . -,

- I

ally acyclic, that is a tree, and the loosely connected entities are usually leaves of the -

. i Ve . .
transaction tree. These¥Wacts make it much easier’to apply the developed tree parti-

tioning algorithm to real life problems. Eaich traqsqétion _Wi‘l)\ access at. most 5-0 enti-

ties. of which 2-3 will be loosely related to'the rést of the entities acé¢essed by the
B . . ‘_‘ =, . . N ‘ -

- transaction. It is not’important to which subject database they beloug, This means

.

“that, in’ practicé. the value of H will be at"inbst, 2'or 3. The ;'arilab.le'H was defined in .

the previous.chapter as the number of edges in the transaction tree. Here H is the
v o , , ,

. B . . \ ¢ . -
-number of edges that connect closely related entities of a transaction.

76

-



5.3. High-Lével Logical Design | )

Duriﬁg high-level logical design, we shall partition a given data model into sub-

2

ject databases. The inputs to this step consist of: , Lo
1. an Entity-Relationship diagram,
. d

2.  enlity weights, , ™
3,  aset of transactions with their assoctated complexity costs, and
{.  limit on the size of subject databases,

Previously, we noted that the problem of optimal partitioning of a data model into
\, ’
subject d'\tab:nes is NP-hard. \\c also aualvzed the properues of absolute approxima-

tion and e- appronmw&{munsltc* for solving partmonmg probloms and thc proper-

ties of several partitioning and clustering techniques. The conclumon of this :mnl_v;ﬂs

-

. - ' N . . N » .
{is not very cncouraging. So far, there is no good proven technique to solve the parti-

> * v

)

tioning problem. This means that, for years to come, database designers-will have to
‘: - ) v . ':
rely mainly on their int uitionm order to make certain decisions. Sull, it does not

1] . X N . -
mean that"science can offer nothing to help database designers.”Ode way to go'is to
split the problém into s.ev'eral steps, somg of which can® be solved automatically by

using polynomlai algonthms.‘ To nﬁplement thls approach we can me the (l(‘\(‘k)p(‘('

algornhm fox: p'xrtmonmg trees. Thm algornthm ‘will work lf an an) Rcl.momlnp

dm}grum is represen_ted. by a‘_graph without cycles and each transaction _ns also
. v N LN . -
reprcsented by a graph witho'ut cycles. In practice, graphs réprcsentmg ER digrams

-

usually contain relatlvely few cycles and trnnsacuon graphs usually have no cycles nt‘

K3

Thl'eans that the problem. of parutlonlng the ER dlagram is reasonably closc, " .

.

in some lnt,ultlve sense, to the prnblem of tree partmomng lntumvely, we can expect K '. o

z

that if + we break a_few cyclqs in the ER. dlagram and t.hen apply the tree partmonlng

-

algorlthm the resultmg part,mon mll be reasonably good y
[ » l’ o " 7 »



. SN S | 78

‘ \ , ]
The partitioning aIgOrithm will perform reasonably if the values of parameters' D

and H are very qmall In practlcal cases, we can certamly expect this. We have already'

noted that the value of His unlll\ely to be greater than 3. On average the value of D
) ]

" is also unlikely to exceed 3. This means that we have very good reasons to believe that .
the application of the tree. partitioning algorithm will be successful for the data model

partitioning problem.” \ ' .

The removal of éycles will hc‘b&l mainly on the common sense of a database

,,(lt-signop. First, (.he database designer should analyze ehch tran;action ahd destroy all
‘:(lé(oclod c.yﬁlo;x by remh:i»ng the least impor;amhedges. At the s,amh time, the dat.a-
. :‘: s K . . R a
base designer should strip transaction trees ‘fro.'m ‘loosely related entities. T‘his new set
of lransacti‘oin' trees wi}l be used as an input to the partitioning algdl;ithm. |
~ Vo ' ’ ‘ :

The removal of cycles from an ER' diagram can be done in the spme way, -

although we can suggest some procedure for doing it. First, we should note that for
S R . . . . - .“" ‘ . . . Lo ) .
the purpose of partitioning tht ER diagram, the direction of edges or presence of mul-

- tiple edges in the graph representing the ER dmgrhm are not important. So, for the,
L. . : ‘ : - R v ' ‘.
purpose of rpartitioning the .ER diagram, we shall consider the: undirected graph
' G (lu.C ) wlthout mulu_ple edges mstead of the graph (‘( |4 E) repreﬂentmf\the ER "."‘F

(llagram The undlrected graph G o V.. E, ) can be constructed from the graph G( l L)

) bv replacmg dnrected edges wnh undnrected ones and rhplacmg mul‘nple edgce wnh a
5 ‘l single one. We‘ shall. also assign 'welghts for all edges of the undlrected grhph
.G ( 1,,,5 ) such that the welght of each edge will be equal to the total cost of all tran- e
mctlons navxgatmg through this edge Arfter thls. we shall find the maxnmal vhelght -

spanmng tree of the graph G“( E' ) The spannmﬁ tree ohtalned wnll not contaml’_‘

ges whnch are contameﬂ in t,he graph G W Ve E' ) The edges remoVed how- E

a

ever, can be part. ol‘ some’ transactlon trees These transactnon trees wnll be deleted '

L




YN

0

weight spanning tree of the ER diagram and hope that it ‘will‘softeh the impact of

v

B ‘ . o .
“deleting soime transactions from the consideration. This spanning tree and the rest of

1. Re‘place all multlple edges between two entmes by an edge havnng the hlghcqt

“the transaction trees will constitute an input to the tree partitioning algorithm.
t ' ' B

5.4. Phx_sical Datahase D‘es_ﬂign o 1o

The hlgh level Ioglcal des:gn descrlbed m the previous sectlon W||I prowde us with

-

‘ subject databases. The physmal database deslgn process will be applle\i*ihdepondemlv

to each of the resultmg suwbject’ dntabases The‘ -main purpose of physncal dd:\b:ne

'

‘ \),

design is to identify phy egml cluslermv of the records’ represeuung the entmes in ord‘r'-

. . D
' L]

"to minimize the number of input/output operations. In order ta e'xrry “out phwlcal

\

“ ot -

(lnmbase design, we should ﬁrst reestabllsh all edges in 'the graphs representing subjcet

- ,p‘-.

databaqes in the same way as they appmr in the ER dnagram In other w‘ords we shnll

consider ER dlagrams for all subject databases Wwe shall also consider Lhe onglnal set

. .
. ‘ - . |

. of transactions. where each transactlbn is assigned a welght which is equal to the fre-

“

quenu of this transaction. After that, we sh'lll asw'n a wenght to each edge of the ER

~diagrams which is equ1l to the total welght. of. 1ll transactions navngnuhg through this

’ e(lge “AlL t&s wnll consthute the input’to the physucal datab'\se deslgn ln pr'xctlce. e

thg phy sical database desngn can lfe conducted in the followmg way - ’ R .

- »
3y -

. PO “ ) . . ) ,“' 4A - ) +
. welght.. ‘ ‘
“ F RERE

f ' ' : - A - . . ' M,,,"“

2. E'(amme all one-to-one relauonshlps between entnLnes th'st gs, all undlrected

f edges of the ER dlagrams lf the welght of an uud:rected edge between two cun-‘

- ., 1

L tges lS high then merge Lhesp t.wo enmles |hto one, ot,he'rmse delete the edge. Aq”"' L

— ’

PN N
ar sult of thls we shall obtaln pure dlreeted graph where each edge representq -
- , > . Lo C oy cEn 4.”"‘ A 4._‘ . 1,‘~ ._4 . L .

a0 e-to-many relatlonsh|p R _‘ _’_ AT
B . ! - L ‘

: a
-

ldentlfy all ent.mes whlch have two or more lncommg edges. Remove all thcscf"‘A‘ :

edges exeept th:e one havmg the hnghest wenght

. el
‘," 7“' . W L .
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4. Destroy all cycles by deletlng the edges havnng the lowest welght As a result, we

obtain a, set‘of dlrected trees, Where a parent node is connected to its chlld by an .-

. "1‘1
cdge dnrectcd from a parent node to a chnld node. |

"l\

Each of the trees obtained in Step 4 cangbe partitioned further into smaller trees,
. ‘ ) ,

o

" cach repreSenting a sep‘arap‘ file. The purpose of this 'partitioning is to ,ininimize

the number of I/O accesses in the resulting database The algonthm for this type‘

\ “

cof p'xrtmomng was developed by M. Schkolmck [20] in 1977.

an

" The records in the ﬁles determlned in Step 5 should be placed ln a. h:erarchlcal order

'
[

according to t\henr associated trees,

- e . R .
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~with a minimal interface.

L . - .. Chapter 6

Conclusions,

Partitioning a set of objects into several subsets of rlosely related objects is at the

. , ‘ . . . .
heart of many applications. We have shown that in order 'to reduce system mainte-

nance cost it is necessary to partition-a set of entities into sevliral 'subjeet ditabases

\We have considered t‘vhe‘general partitioning problem with Do restriction bn the

structure of transactions and with no restri'etion'on the properties of an entity set. We

ha\e found that the general partmoumg decnsnon problem is NP complete the problem

\

of ﬁudmg an absolute approxlm'mon to Lhe gener’xl partmomng o‘immlzauon problcm

is NP hard and the problem ol' finding an €- approvumatlon to the geueral partmomng

oy

optlmlzatlon problem wnth a limited number of subject dntabases with € <1 and with

POEEEEANY 4
“elvhted entmes is also NR- hard The problem of ﬁndmg an e- approxlmaflon to the

veneral partluomng optlmlzatlon problem wnth an unllmlted number ol' sub)ect data- ,

Ta
N -

bases. or wnth e>l or wuth welghts of .all entitices equal to one remams open lt is still

ot clear whether ths problem is NP hard ormot. . ..

N
4

R : . Y ' . ‘

.

conslsts of two dls_|omt stf»bsets and each transacuon accesses only two enmles caeh

l'rom a dlﬂ‘erent subset We have found that these restncuous do not, make the prob-

Iem anv easner IR T PR

R ‘\
2 :

iy

Also we have dlscussed t,he blpartne pamuonmg problem wherc a set! 9 cntmeg

)

Iy

.""““*F-mallyv_ue have zrfl/ed the problem of parmmmng a set ol' entmesfmto vsub-"v;._.":“




‘ 7 .
algorithm can be integrated into the design process. ‘

t
[ .
* 0

The present work left open several other interesting issues. Oné of them is ixdw to

‘select a proper bound on the size of subject databases: Another interesting problem is

o ¢ N

related to the tree partitioning algorithm. Suppose, we have a set of entities and a set

_ of transactions each represented by a subset of é‘nt.'ities.‘T‘he problem is to determine

-t

whether it is possible or not to représent the set of entities as nodes of some tree, such
: i . e

that all Lr_an‘sae&iohr‘subsets could be represented as connected sub‘grap‘hs‘o‘f this tree .
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T : : : AppendleI T N
. . . S Solutmn of the Pnﬂ'erentml Equatlon . P
. Ny . v ‘ . ‘ | ;
et i ' : F

"’ thls section, we shall find a time mdependent solutmn of lhe followmg

. 2
LY
’. l»‘. ' ' o -, .
L "(hﬂerentlal eqﬁamon . ‘ o BT Lo : ,
I R N
RO W=——kw+f 2= Wp ‘

\ S i
“herc l. an(l [ are posntne coefficients and. perform'xnce P ia
. i o \ .

‘:"‘\");. ' " a ) .9
b L .,P . . C C o
v Pt wEeew b

) First, let us set R‘=‘-S—‘agd rewrite the differentia¥’equation and expression for. P " "
M' . K o . C ! . 2 . B R ‘ ' I .

3s follows:‘ . S = . E

.‘SR.H kRS + fm+m 7 L TR
N“.;l" i \ .‘ l v‘ . . - " } , -.
- P Re+ (1I=R)T" | . e

ol ' . ‘o N

‘.

“The pqinm oyffequilibr‘ium‘ of this diﬂ'erexut‘ial equation can be;?ouqd from the eddatib‘ﬁ"f’ ‘

ey cUTNSR L
SRR - + ='0. < ’ . ' et - R
R "RSI ftR+ T(l—fz) ,10”;» o oo e
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Ny 9 . . \ . A 1‘ , :‘k i Y
: ! "' \ , . ! " . ‘\ ‘, ' P f '\4 \‘ \ 8‘6\
r K V‘ \ ‘ . “ ‘~ o ‘l I ‘ | ‘ |
" N ) : ’ LY K ‘\‘ o “. ) s \ .
" | i y‘ | L ~I4 [ e .
» R CL VN o
0 The root R should be dlscarded because R >1 Nowx usmg Rr) as ap QQunhbnum POmL RTINS
,~:? ’\ | g
- ' /';
. N
. i a ‘\' O
LI .
. . . \
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ot ' : .‘ f LI | -, N -7 " R v , N
" ’ LA ' v W 4 . !
e S ) . Appendlx A2 fo. f
B N r ! . ) .
o SR ' Example of Partltlonmg of the Tree. r L R
o’ - Th“is appendn cog&ains an‘,. xample of partmomng a data modcl free wnhout a ‘
¢ \ f . ' n
- T

ﬁl ' "'f., ) , . h -\ E . A
LN huut oh tlxe number of subJect databases Tbe example of the data model tree 13 glven, U

Vo L “m Flgure 4 l,,and Lhe tranmcuon tf’es are glveﬂ in F‘lgure 1 3 We Sha“ use’ the S“me‘Q“.‘ | .

not“mons 'n dcﬁned in Chapter 4-, Also we ahall uscl: set a ‘s the lntersecupn of a root o 'w
L . . i o ‘ o
' ' cluster of the parutlon W;tb lhe correspondmg mﬂuente set, and l.as tﬂo value ofﬁ R
P i . A K " ) ‘ . . \
.n partltlon We msumm tlnt',alL no(fes have ' wenghts equ’xl to one and the m nmal RN
B ‘ 1 v ' \all " & Al ) Ca . '\ "’ ’I . "‘ ..‘,r‘ e
R \scnght of the partmop cluﬁtel%t 3 g ‘ e e SR S o
: ‘ . “"“ u*‘, K . : N *.," B ,5 'f‘*h‘,, o S e
T \\,e start wnth tnvlal partmons of the Lrees R(l O) R(‘Z 0), R(3 0) 'md R(1 0) S
o ‘u‘ . S ! ‘.".v,‘: ; . T L v . “;0' ¢ o . \ "‘ “
T PARTITION‘RU 0) ol s T
" 1(1 0 = (1) E .
l(llo) m S
».‘-P(aiu.l.oné‘(n;,;t—
‘ P(l 0) =9(x)
e o / 1 o
L ‘ -“ v —Nf
. ,./P/"PmON R{2 0)

1(20) (z)

P(c,(l 30)) = (3) V-o

P(3 0) -,(3) v-o




PARTITION R(4,0)
1(1,0) = (4)
a,(1,4,0) = (4),
CP(ay1,4.0)) = (1), V=0 ‘

P(1.0) = (4); V=0

PARTITION R(5,0)
115,00 = (5)
a)(1.5,0) = (5)

P(ay(1.5,0)) = (5): V=0 ]

PARTITION R(5,1)

I(5.1) = (5.2)

1. Weight of the root clusteris 1,

\
I.1. CONCATENATE(P(a,(15.0)). P(2.0)) = (5)(2); V=0

a = (5)
a(L5.1)=(5)

P(a,(1,5.1)) = (5)(2);. V=0

2. Weight of the root cluster ix 2.

o

2.1. MERGE (P(a,(1,5.0)). P(a,(12,0)) = (5.2); V=0
a = (5.2) | '
a,(2,5,1) 'i_(s,z)
P(,(2,5,1)) =(52); 1'=0
PARTITION R(52) ' .

1(5.2) = (5,2)

&8



1.  Weight of the root cluster is I.

1.1 CONCA:I‘ENATE(P(a,(l,.‘»,l)), P(3,0)) = (s)(:z‘)h(s);' V=0
a = (5) |
a,(1,5,2) = (5)
Pla(15,2)) = (5)2)(3);" V=0
2. Weight of the root cluster is 2, 5
2.1. CONCATENATE(P(a,(2,5,1)), P(S,O); = (52)(3); V=0 )
a=(52)
a,(2.5.2) = (5,2)
P(a,(2,5,2)) = (5.2)(3); V=0
2.2. MERGE(P(a,(1,5,1)), P(a,(1.3.0))) = (5,3)(2); V=1
@ = ;'5) | |
. 84(2,5,2) ;(5) ,

P(as(25.2)) = (5.3)(2); V=1

(o

3. Weight of the root cluster is 3. -

.3.1. MERGE(P(a,(2.5.1)), P(a,(1.3,0))) = (5,3,2); V=1
a=152) o : - i
0,(3:5,2).= (5,2) | -

P(a,(3.5.2)_) =(5§3.2)) V=1 , | ; L

PARTITION R(5.3)
\
1(5,3) = (5,4) -

1. Weight of the root ¢luster is 1.

a

a = (5)

0,(15.3) = (5)

1.1. CONCATENATE(P(a,(1,5,2)). P(4,0)) = (5)(2)(3)(4); V=0

89



2.

[
RN

ep N

Weight of the root cluster is 2. /

2.1,

2.2,

L 2.3,

Weight of the root cluster is 3.

3.1.

=
2

3.2.

1 .
rz}(‘w\ o ‘
n oo . .

i

' ]
P(a)(1,5,3)) = (5)2)(3)(4); V=0
. : . !

I K :
c.:dNCATENATE(P('a,(z_s,;z)),'§(4,0))=(5,2)(3)(4); V0o ©

a=(5)
,(2.5,3) = (5)

P(a)(2,53)) = (5.2)(3)(4); V=0 . L

CONCATENATE(P(a,(2,5,2)), P(4,0)) #(5,3)('2)’(4)'; Ve

\

a = (5)
OPTIMALITY-CHECK shows that this partition should replace in the sc(“

| ~ .
@(5.3) partition P(a,(?,S:’JS)) obtained in Step 2.1. For this new partition we
P - R ' A

have:
? - °

C4(25.3) = (5) !

P(a,(2,5,3)) = (5.3)(2;(4)? V=1

MERGE (P(a,(1,5.2)), P(a,(1,4,0))) = (5,4)(2)(3}; Ve
a = (54) .

a,(2,5,3) = (5,4)

P(ax(2,5.3)) = (5:4)2)3); V=0 | . a

4

CONCATENATE (P(a,(3,5.2)), P(4,0)) = (5,3.2)(4), V=1
o (O '

a=(5) |

a,(3,5,3) = (5) |

Play(35.3) = (532)4) V=1 _ | :

MERGE (P(4,(2,5,2)), P(a,(1.4,0))) = (5,24)(3); V=2

a = (5,4} | ' "

a,(3.5,3) = (5.4)



P(l;z(a,sv,s)) = (5,2,4)(3); V=2 L |
3.3. MERGE (P(ay(2,5,2)), P(a,(1,4,0))) = (5,3,4)(2); V=1
o= (5,4) | N - ‘
a(3,5,3) = (5,4)
QPT[MALITY-CHECK‘will'rejlect this part-ition because itsmv}i\lue is.lawer
Y

pam——ns

than the value of the partition P(ay(3,5,3)) obtained in Step 3.2. N\

‘Optimal partition P(5,3) is (5,2,4)(3); V = 2
' ¢

~For the rest of the trées R(v,i) we shall list only partitions belonging to the sets

Q'(v.:") without intermediary results, .

' - \

PARTITION R(8.D)

ney=() . | o

P = (8);a = (6) V=O

PARTITION R(6,1) .

19 \

1(6,1) = (6,1)
1. . Weight of the root cluster is 1.

' 1.1. P = (B8)(1);a= (6), ‘V.‘-= 0

2. - Weight of the root cluster is.2.

2.1. P=(81); a= (\'e,xf);'v"= 0

.
Ly

 PARTITION R(6,2) * _
de=rs)
- L Weighf of the root cluster is 1.

- ——



\
L1 P = (0)(1)(5.24)3); a = (8 V=0 o ‘T's
.2, Weight of the root clust.er' is 2. ' -,
2.1 P = (6,5)(1)2)(4)(3); @' = (6,5); V = 0 ‘
- , A \' " . o . ,A" N \ N
222, P=(61)254)3)sa=(81) V=2 . , 7 U
3. Weight of the root cluster is 3. o ' ‘ "\\\
v . ' , 1 \.‘ . | *
, ‘ ! o
BLP={05ANYNE) e (05 V=3 S
T 3.2, P = (6,51)2)3)04) a = (6,5.1): V - 1,,' ;T. , "l’i B
$ N N N . s \‘ “\‘ . sl
Opnmal partition of the tree R(6,2) is (6,‘5,4)(1)(‘2)(3') w‘i\th the vdll;e'S. .
. = 3 : - .
PARTITION R(7,0) K
1(7.0) = (7) o -
=(7); a=(7); V=0 ‘ -
'd
PARTITION R(8,0) ’
-ﬁ‘1(8 0) = (8) |
. (8),a—(8)V—0-
PARTITION R(8 1)
1(8 1) = (8, 6)
.1 Welght of the root cluster is l
. AN
CLL (8)(6 5 4)(1)(2)(3), 6= (8). V=3
2. Welght, of the root. cluster is 2.
2.1. P.= (8, 6)(5 2, 4)(1)(3) g = (8 6) V= 2
T3 ,Welght of the root cluster is 3.

2



’ ‘ ¥
S o

3.0. P = (8,6,1)(5,2,4)(3); a ="(8,6); V = 4
‘ v ‘

PARTITION R(8,2) = o
. Final'lg'l, the optimal partition of the tree is

. ) v \
(8,7,6)(5,2.4)(1)(3) ‘with the value V.= 4.
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