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Abstract

This thesis deals with �nding design points for nonlinear regression models with

the possibility that the �tted model is incorrect. The information matrix depends

on the parameter in nonlinear situations. We have assumed a range of values of

the parameter and have speci�ed a prior on the parameter space. A loss function

has been developed and then a minimax approach has been adopted to achieve our

goal. We have found an explicit expression for the maximized loss and a numerical

minimization of it has been done by a genetic algorithm (GA). The whole approach

has been implemented by considering some well-known nonlinear functions. We see

that changing the values of the parameter of the prior density have e¤ect on design

points. However, changing the tuning constants of GA does not alter the design

points noticeably. This indicates that we have obtained the minimizing design.
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Chapter 1: Introduction

1.1 Nonlinear Regression

In regression analysis, the initial purpose is to �nd the relationship between the

response and the covariates. This relationship is expressed through some models.

The general framework of regression model is given below.

Observed response = function of covariates + random error.

So, the random response is presumably dependent on the values of covariates x =

(x1; x2: � ��; xp)T . Usually the mean function E [Y jx] = f (x;�) has a known form,

but may depend on unknown parameters �. If we assume that f (x;�) is a linear

function of � then we have the linear regression model. On the other hand, if we

assume that f (x;�) is a nonlinear function of � then it is the nonlinear regression

model. There are di¤erent types of regression but here we will consider nonlinear

regression. Nonlinear regression models are often encountered in chemical reactions,

in biology, clinical trials (Begg and Kalish 1984), reliability and life testing (Maxim,

Hendrickson, and Cullen 1977; Meeker and Hahn 1978; Meeker 1984). Also, the
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nonlinear models are engendered from dynamic systems where the design problem is

to choose an input process in such a way that it can provide optimal identi�cation of

the system.

1.2 Examples and Model setup

Count Rumford performed an experiment in 1798 and obtained data on the amount

of heat generated by friction. In this experiment an object was allowed to cool from

an initial temperature of 130�F to an ambient temperature of 60�F. Data from this

experiment are available in Bates and Watts (1988). It is evident, from Figure 1.1,

that the linear relationship assumption is not reasonable here and the plot seems to

exhibit exponential decay. A model based on Newton�s law of cooling was proposed

as

f(x; �) = 60 + 70 e��x;

where f is predicted temperature and x is time. Di¤erentiating this function with

respect to � we get �70xe��x, which clearly depends on � . Therefore, this model is

indeed nonlinear.

The Michaelis-Menten model is believed to be appropriate in pharmacology and

other �elds where the output Y of a chemical reaction (e.g., initial �velocity�of an

enzymatic reaction) may depend on the input x (e.g., substrate concentration). The

following is a Michaelis-Menten model:

Y =
�1x

�2 + x
+ ";

2



Figure 1.1: Rumford data.
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where �1; �2 are parameters and " is the random error term. We can observe pairs

(xi; yi) ; i = 1; 2; � � �; n and from these parameters can be estimated. Symbolically,

Yi = f(�;xi) + "i; i = 1; 2; � � �; n:

The function f(�;x) = �1x
�2+x

where � = (�1; �2), is a nonlinear function of �. If we

di¤erentiate the function with respect to �1 and �2 we get x
�2+x

and ��1x
(�2+x)2

respectively.

Therefore, it is a nonlinear regression model since the derivative involves at least one

of the parameters. With

Y =

0BBBBBBBBBB@

Y1

Y2

...

Yn

1CCCCCCCCCCA
; �(�) =

0BBBBBBBBBB@

f(�;x1)

f(�;x2)

...

f(�;xn)

1CCCCCCCCCCA
; " =

0BBBBBBBBBB@

"1

"2

...

"n

1CCCCCCCCCCA
we have the model Y = �(�) + ". There are some important assumptions regarding

the error terms. The mean error is zero, i.e. E("i) = 0. Thus

E(") =

0BBBBBBBBBB@

E("1)

E("2)

...

E("n)

1CCCCCCCCCCA
= 0:

4



Moreover, errors are uncorrelated on di¤erent trials but have constant variance i.e.,

Cov("i; "j) =

8>><>>:
0; if i 6= j;

�2"; if i = j:

Thus the dispersion matrix is obtained:

Cov(") = E
�
("� E("))("� E("))T

�
(1.1)

= �2"In:

For nonlinear regression models, likelihood based inferences are usually recommended.

The likelihood equations are solved using iterative methods, such as the Gauss-

Newton method or Fisher�s scoring method. Details of the model �tting and inference

procedures can be found in Bates andWatts (1988) and also in Seber andWild (1989).

1.3 Classical Linear Regression Design

In regression analysis, we obtain information on a response variable Y that depends

on a (possibly vector valued) variable X. An experimenter might be able to choose

the values of X where it is best to observe the values of Y: In an optimal design

problem, the objective is to �nd the levels of X and to allocate observations at those

X�s so that the unknown parameters are estimated in an optimal fashion. For linear

5



regression, the experimenter can assume a form given below:

Yi = z
T (xi)� + "i ; i = 1; 2; � � � ; n

where xi are the values of covariates, z(xi) are regressors, � is the vector of unknown

parameters and "i are random errors. If the model is assumed to be correct, then

the least squares estimates are unbiased and we seek to minimize variance. We have

Cov(b�) = �2"(Z
TZ)�1 where Z = (z(x1); z(x2); � � � ; z(xn))T . The information ma-

trix M = ZTZ depends on the design vector x through the matrix Z. The matrix Z

is known as the design matrix. We are to choose xi; i = 1; 2; � � � ; n from a design

space S so that some scalar valued function of
�
ZTZ

��1
is minimized. Then the

exact design will be a discrete probability measure � on S with weights which are

multiples of 1
n
. Also, these exact designs can be embedded in a suitable class � of

distributions. Thus we can express the information matrixM(�) as

M(�) =

Z
S

z(x)zT (x)d�:

Here we assume that M(�) is a positive de�nite matrix. In order to get an optimal

design, we optimize the scalar valued function of
�
ZTZ

��1
i.e., function ofM(�). The

most popular design criterion is the D-optimality criterion. This criterion consists of

minimizing the determinant of
�
ZTZ

��1
or equivalently, maximizing the determinant

of
�
ZTZ

�
. That is,

� = argmax
�2�

det [M (�)] :

6



Another design criterion is the A-optimality criterion where the trace of
�
ZTZ

��1
is minimized, i.e.,

� = argmin
�2�

tr
�
M�1 (�)

�
:

In the E-optimality design criterion, the maximum eigenvalue of
�
ZTZ

��1
is mini-

mized, i.e.,

� = argmin
�2�

Chmax
�
M�1(�)

�
:

Another important design criterion is the I-optimality criterion where the integrated

(or average) variance of the estimated response over the design space is minimized,

i.e.,

� = arg min
�2�

Z
S

zT (x)M�1(�)z(x)dx:

In the literature, other criteria such as G-optimality and c-optimality have been stud-

ied. The G-optimality criterion seeks the design that minimizes the maximum (over

the design space) variance of the predicted response (Kiefer and Wolfowitz, 1960).

That is,

� = argmin
�2�

max
x�S

�
zT (x)M�1(�)z(x)

	
:

On the other hand, in the c-optimality criterion the variance of a given linear combi-

nation of parameters is minimized. That is,

� = argmin
�2�

�
cTM�1(�)c

	
;

where c is a �xed vector.

7



1.4 Robustness of Design

The assumed model, in most applications, is a reasonable approximation to the true

model. The classical regression designs perform well if the assumed model is exactly

correct. Let us consider an example to illustrate the perils of acting as if the �tted

model is necessarily correct. Suppose an experimenter measures the water purity

(y) as a function of an input variable chlorine (x). Also, he sets the design space

S= [�1; 1]. Now for the straight line regression

yi = �0 + �1xi + "i; �1 6 xi 6 1;

we �nd that

nV ar(b�1) = �2"
S2X

; (1.2)

nV ar(b�0) = �2"

�
1 +

x2

S2X

�
; (1.3)

where S2X =
nX
i=1

(xi � x)2 =n, x =
nX
i=1

xi=n and �2" is the error variance. It is easily

seen that both the expressions (1.2) and (1.3) are minimized by putting half of the

x�s at each of �1 and +1 since then x2 = 0 and S2X is the maximum. The classically

optimal design measure, in this case, �(x) = fraction of design points placed at x has

the form

� (�1) = � (1) =
1

2
:

Usually, the experimenter wants to have Cov
�b�� = �2"

�
ZTZ

��1
small, i.e. he chooses

the design so that the determinant, or trace, or maximum eigenvalue of
�
ZTZ

��1
is

8



minimized. If we consider the quadratic regression

yi = �0 + �1xi + �2x
2
i + "i; �1 6 xi 6 1;

the D-optimal design measure has the form

� (�1) = � (0) = � (1) =
1

3
;

i.e. 1
3
of the observations on Y are placed at each of �1; 0 and 1. Note that in both of

the cases (linear and quadratic regression) the estimates are unbiased, i.e. E(b�) = �
if the �tted model is correct. So the usual interest is on minimizing the variance.

Box and Draper (1959) carried out research on designs for polynomial �ts when the

true response is di¤erent from the one �tted. In their seminal paper, they compared

some designs and concluded �� � � the optimal design in typical situations in which both

variance and bias occur is very nearly the same as would be obtained if variance were

ignored completely and the experiment designed so as to minimize bias alone.�But we

have to be cautious that by �tting an incorrect model we may induce much larger bias

than the gains attained by using an optimal design. Let us consider another example.

Suppose that an experimenter �ts a straight line using the classically optimal design

on the design space [�1; 1] when in fact E(Y ) = �0 + �1x + �2x
2. He �ts E(Y ) =

9



zT (x)� with � = (�0; �1)
T . Then the least squares estimates are

b� =

�b�0b�1
�

=
�
ZTZ

��1
ZTy; where Z =

�
1n
...x
�
:

The k � th sample moment about zero is � k =
nX
i=1

xki =n. Let us assume that the

design is symmetric and then � k = 0 for odd k. Now

Cov(b�) = �2"
�
ZTZ

��1
=

�2"
n

0BB@ 1 0

0 ��12

1CCA ;

E(b�) =
�
ZTZ

��1
ZTE(y)

=
�
ZTZ

��1
ZT

8>>>>>>>>>><>>>>>>>>>>:
Z

�
�0
�1

�
+ �2

0BBBBBBBBBB@

x21

x22

...

x2n

1CCCCCCCCCCA

9>>>>>>>>>>=>>>>>>>>>>;
=

�
�0 + �2� 2

�1

�
:

10



Therefore, the predictions bY (x) have
E
hbY (x)i = (1; x)E

�b��
= (1; x)

�
�0 + �2� 2

�1

�
= �0 + �2� 2 + �1x

= �0 + �1x+ �2x
2 + �2� 2 � �2x

2

= E [Y (x)] + �2(� 2 � x2):

Here, the estimate bY (x) of E [Y (x)] has the bias b(x) = �2(� 2�x2), which dominates

the mean squared error for all su¢ ciently large n:

MSE
hbY (x)i = E

�nbY (x)� E[Y (x)]
o2�

= (1; x) Cov(b�)�1
x

�
+ b2(x)

= (1; x)
�2"
n

0BB@ 1 0

0 ��12

1CCA�1x
�
+ b2(x)

=
�2"
n

�
1 +

x2

� 2

�
+
�
�2(� 2 � x2)

�2
:

The Integrated Mean Squared Error (IMSE) of the �tted response is often used as a

11



design criterion. So we can use it here as a measure of performance. We have

IMSE =

Z
S

MSE
hbY (x)i dx

=
�2"
n

1Z
�1

�
1 +

x2

� 2

�
dx+ �22

1Z
�1

�
� 2 � x2

�2
dx

= 2
�2"
n

�
1 +

1

3� 2

�
+ 2�22

"�
� 2 �

1

3

�2
+
4

45

#
:

The integrated variance, i.e. the �rst term in the IMSE, is minimized by the classically

optimal design. But, on the other hand, the integrated squared bias, i.e. the second

term, dominates the �rst term for su¢ ciently large n. It is, however, minimized

when � 2 = 1
3
, which is the second moment of the continuous uniform distribution on

[�1; 1]. This can be approximated by an equally spaced design

xi = �1 + 2
�
i� 1
n� 1

�
; i = 1; 2; � � � ; n

with � 2 = 1
3
+ 2

3(n�1) =
1
3
+O( 1

n
). Thus minimizing the bias alone may result in very

close to minimizing the IMSE. It is also notable that we cannot test the lack of �t

with the classical design.

There is another situation where the experimenter �ts E(Y ) = zT (x)� when in

fact, for some unknown function f ,

E(Y ) = zT (x)�+ f(x): (1.4)
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The presence of f in (1.4) indicates that � may di¤er from the �true� regression

parameter when f is absent. Some authors such as Marcus and Sacks (1976), Sacks

and Ylvisaker (1978), Pesotchinsky (1982), Li and Notz (1982) and Li (1984) have

considered f to be a member of

ff j jf(x)j 6  (x)g ;

where  (x) may be constant or some other function of x. Minimizing some function

of the MSE of bY (x) we can get designs that are robust. However, the designs are
sensitive to the choice of  . Moreover, they tend to concentrate all mass at extreme

points of the design space. So, there is no scope of exploring its interior.

Huber (1975) considered approximate straight line regression. The true model

was de�ned as

E [Y (x)] = zT (x)� + f(x);

where the vector of regressor z(x) = (1; x)T , x 2 S =
�
�1
2
; 1
2

�
and the contamination

function f 2 F , which is an in�nite dimensional space of functions, such that

F =

8<:f :
Z
S

f 2(x)dx 6 �2;

Z
S

z(x)f(x)dx = 0

9=; : (1.5)

Huber used the integrated mean squared error

IMSE =

Z
S

E

��
zT (x)b� � E[Y (x)]

�2�
dx;

13



as the design criterion and found the design by solving min
�2�

max
f2F

IMSE(�; f). He

termed the obtained design as a minimax design, which is optimal for the worst

possible contamination function f 2 F . This implies that it is a robust design.

Later, Wiens (1990) extended Huber�s work from simple linear regression to multiple

linear regression where z(x) = (1; x1; x2; � � � ; xp)T , p is the number of regressors in

the model. The robust regression design under a �nite design space was considered

by Fang and Wiens (2000). They used the average (over the design space) mean

squared error of bY (x) = zT (x)b� as the loss function. For example, suppose S is a
�nite design space with design points xi; i = 1; 2; � � � ; N . Now we have to allocate

ni > 0 observations to xi, with
PN

i=1 ni = n, the total number of observations. But

the design problem is to choose the ni�s optimally. The loss function, according to

them, is

I =
1

N

NX
i=1

E

��bY (xi)� E[Y (xi)]
�2�

:

After some calculation it takes the following form:

I =
1

N
dTZTZd+

1

N
tr
�
ZCZT

�
+
1

N
fT f ; (1.6)

where Z = (z(x1); z(x2); � � � ; z(xN))T , d is the bias vector E(b� � �), C is the

covariance matrix Cov(b�) and f = (f(x1); f(x2); � � � ; f(xN))T . Now assume Z is

of full rank p and the singular value decomposition of Z is Z = UN�p�p�pV
T
p�p with

UTU = VTV = Ip and � is diagonal and invertible. The matrix U is augmented by

eUN�(N�p) so that
�
U
...eU�

N�N
is orthogonal. Now using the conditions of the class

14



of contamination function F as in (1.5) with summation instead of integration, an

(N � p) � 1 vector c, with kck 6 1, satisfying f = �
p
N eUc is found. By using

matrix algebra, (1.6) can then be maximized over f by maximizing over c. Then the

allocation of ni observations to xi is obtained by minimizing that maximized loss

function subject to some restrictions. A simulated annealing algorithm was adopted

by Fang and Wiens for numerical minimization of the maximized loss function. In

this thesis, we will use minimax design criteria, but the minimization will be carried

out through a Genetic Algorithm.

1.5 Designs for Nonlinear Regression

Suppose we have a response variable Y and a model of the form Y = �(�)+", where

�(�) has elements f(�;xi) and derivative Z(�) =
@�(�)
@�
. The information matrix for

parameters is given by

M(�) =
nX
i=1

ni
n
z(xi;�)z

T (xi;�)

= ZT (�)D�Z(�);

where z(xi;�) =
@f(�;xi)
@�

, Z(�) = (z(x1;�); z(x2;�); � � � ; z(xn;�))T , D� is the di-

agonal matrix with diagonal elements fni=ng and ni is the number of observations

made at xi. The information matrix can also be written as

M(�; �) =

Z
S

z(x)zT (x)d�;

15



where � belongs to a suitable class � of distributions. Now we may want to minimize

some function of the information matrix, say, �(M(�; �)). This function, in the

nonlinear problem, depends on � in such a way as to a¤ect the choice of design. Thus

we encounter a peculiar situation: �The theory of optimal designs for linear models has

been extensively developed but the adaptation to nonlinear models is more di¢ cult, as

the criteria involve the unknown parameters � as well as the design points xi�(Seber

and Wild 1989). Designing an e¢ cient experiment for the estimation of parameters

will require knowledge of the parameters. So the optimal design depends on the

proper values of the parameters. This dependency has been dealt with using di¤erent

approaches such as locally optimal, sequential, minimax or Bayesian.

Cherno¤ (1953) implemented the earliest locally optimal approach where an ex-

perimenter makes an initial guess of values for the vector of unknown parameters.

The performance of this approach depends on how close these initial values are to the

true parameter values. So, based on it, the e¢ ciency of such designs can be high or

low. That is, the locally optimal design may be very sensitive to small perturbations

in the parameter value. This problem can be alleviated by adopting a sequential de-

sign. In the sequential design approach, parameters are estimated at every stage. But

in each stage, the estimates obtained from the previous stage are used as best guesses

of the parameters in order to obtain design points in the current stage. Abdelbasit

and Plackett (1983), Chaudhuri and Mykland (1993), Sinha and Wiens (2002) have

used the sequential design approach to nonlinear design problems.

The minimax is another important approach where a range of possible parameter

values are considered, i.e., � 2 �, where � denotes the plausible parameter values.
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The minimax optimal design minimizes the maximum of a criterion and the following

form is taken into account:

min
�
max
�2�

� fM (�; �)g :

It is notable that the minimax design approach is robust because it gives the design

corresponding to the worst possible values of �. King and Wong (2000), Biedermann,

Dette and Pepelyshev (2006), Braess and Dette (2007) and some other authors have

considered the minimax (or maximin) design approach for nonlinear regression mod-

els.

If we have prior knowledge of the parameters we can take advantage of it. In

the Bayesian approach, a prior distribution �(�) is assumed on the unknown para-

meters. Then by maximizing the expectation of the criterion over the assumed prior

distribution we can �nd the optimal Bayesian design. That is,

E��(M(�; �)) =

Z
�

�(M(�; �))�(�)d�:

Chaloner and Larntz (1989), Chaloner and Verdinelli (1995), Dette and Wong (1996),

and Matthews and Allcock (2004) have worked on Bayesian designs.

1.6 Literature Review

There are some authors who have used the design of nonlinear problems in their re-

search. Among them, as a primer, Box and Lucas (1959), Fedorov (1972), Cochran
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(1973), St. John and Draper (1975), Silvey (1980), and Steinberg and Hunter (1984)

are noteworthy. Box and Lucas (1959) carried out a study on the design of experi-

ments in nonlinear situations. Their objective was to obtain a programme of trials

that can be used for estimating the parameters with high accuracy. To do this, a

set of preliminary values of parameters was assumed known. Then the design points

were chosen by maximizing the determinant of Fisher information or, equivalently, by

minimizing the asymptotic formula for Wilks�generalized variance of the maximum

likelihood estimates of the parameters. They used a model from chemical reaction

and some standard nonlinear regression models as examples in order to illustrate their

research.

Draper and Hunter (1967) discussed the use of prior distributions in the design of

experiments for parameter estimation in nonlinear situations. They took an example

with the solution obtained from Box and Lucas (1959), and showed how the position-

ing of the design points change based on the availability of prior information on the

parameters.

In his expository article, Cochran (1973) made some candid comments on non-

linear design problems. We need to know the values of parameters before we start

�nding the design points in order to estimate the parameters. �This is a standard

feature that distinguishes nonlinear from linear problems�, Cochran said while com-

menting on the dilution series experiment. He also claimed: �You tell me the value

of � and I promise to design the best experiment for estimating ��. In that article,

Cochran reviewed some works previously done on experiments for nonlinear functions.

He mentioned the sequential and nonsequential approaches for estimating the para-
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meters and also commented on model adequacy and discrimination between models

and model building.

White (1973) extended the general equivalence theorem, due to Kiefer and Wol-

fowitz (1960), to nonlinear models. He developed the information matrix and a vari-

ance function and then used these to prove the equivalence theorem for the nonlinear

model.

St. John and Draper (1975) reviewed some major results on the theory of design

and the way the design criterion has been extended to nonlinear models. They dis-

cussed the algorithm for obtaining the D-optimal design. The general algorithm was

developed by Fedorov and his coworkers (Fedorov 1972), Fedorov and Dubova (1968).

Later it was studied and modi�ed by Atwood (1973) and St. John (1973). However,

Silvey and Titterington (1973) outlined a slightly di¤erent algorithm than Fedorov

for obtaining a D-optimal design.

Abdelbasit and Plackett (1981) worked on designs for categorized data. They

mentioned that the asymptotic dispersion matrix of the estimators for models of

categorized data usually contains some unknown parameters. So they considered

design criteria that suit the nonlinear models. Moreover, Abdelbasit and Plackett

(1983) worked on experimental designs for binary data. Since the information matrix

in this situation depends on the unknown parameters they have used the initial point

estimates and applied the sequential methods. Also they discussed the criterion of

constant information for models with one or two parameters.

Atkinson (1982) wrote an article highlighting the developments in the design of

experiment based on literature mostly from 1976 to 1980. He cited the comments of
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Box (1979): �by invention of the concept of experimental design, Fisher promoted the

statistician from a curator of dusty relics to a valued member of a scienti�c team�. In

that article, he summarized the development of designs for nonlinear models.

Steinberg and Hunter (1984) presented an article reviewing and commenting on

the major developments in the design of experiments. They put important guidelines

and recommendations for experimenters, statisticians, practitioners and researchers

who are jointly exploring new frontiers. One of the important topics in that paper

was nonlinear models. Under this topic they described some work done before 1983

on designs for nonlinear models. Mentioning the relatively few studies of experimen-

tal design for nonlinear models as compared to linear models, they have suggested

to enhance research on designing experiments for nonlinear models. Also they sug-

gested some studies regarding the design of experiments for nonlinear models. One

is the design of experiments for nonlinear models that are proposed as tentative em-

pirical approximations and the other is �nding a link between empirical models and

underlying nonlinear mechanisms.

In an article Ford, Titterington and Kitsos (1989) have summarized some work in

optimal experimental design in nonlinear problems. They have also described some

design approaches such as static and sequential design schemes with application to

nonlinear models. Moreover, they have expressed concern about the misspeci�cation

of the model itself. They state, �Indeed, if the model is seriously in doubt, the forms

of design that we have considered may be completely inappropriate.�They, however,

concluded that for a reliable nonlinear model an acceptable design can be obtained if

we have reasonably good prior information about the parameters and also by using

20



sequential design approach we can get acceptable designs.

Chaudhuri & Mykland (1993) carried out research on nonlinear experiments with

the objective in mind of getting design points so that the parameters can be estimated

e¢ ciently. They have used an initial static design at �rst and then a fully adaptive

sequential design. Under some assumptions on the regression model, they showed that

the asymptotic distribution of the maximum likelihood estimates of the parameters

is normal. Moreover, they obtained asymptotically D-optimal design by using their

scheme for choosing design points sequentially.

Sinha & Wiens (2002) have introduced the notion of approximately speci�ed non-

linear regression model. Allowing for the possibility of an incorrect model, the sequen-

tial design approaches have been used. It is notable that the authors have developed

the loss functions in their research and estimated the components of the loss func-

tions. Moreover, small-sample simulation studies have shown that their obtained

new designs can be very successful with respect to mean squared error. The authors

wanted to have a robust design so that the loss is the least even when the model is

approximately true.

This thesis will focus on �nding designs for the nonlinear regression problem when

the model is a misspeci�ed one with response contamination function. In order to

achieve our goal, we will be using the minimax criterion where a range of values of

the parameter is assumed. Therefore, we can specify a prior on the region of the

parameter space where the design will be robust.
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Chapter 2: The Loss Function for

Nonlinear Models

2.7 The Approximate Model

In regression analysis, it is usually assumed that the form of the model under consid-

eration is exactly correct. But we will allow the possibility that the �tted model is

incorrect. Suppose an underlying regression model is Y = E (Y jx) + "; x 2 S, where

S= fxigNi=1 is the design space and " is the random error term. Now an experimenter

acts according to the belief that

E (Y jx) � f (x;�0) ; (2.1)

where �0 is a p�1 vector of parameters. Suppose ni observations at xi are taken andPN
i=1 ni = n. HereN is a �nite number and ni > 0; there is no requirement that obser-

vations be made at every xi: If we are given the data (x1; y1); (x2; y2); � � � ; (xn; yn),
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parameters can be estimated by least squares estimate:

b�n = arg min nX
i=1

[yi � f(xi;�)]
2 :

The estimates that are obtained from the above result in

nX
i=1

z(xi; b�n)ri(b�n) = 0;
where z(x;�) = @f(x;�)=@� is the p� 1 gradient vector and ri(b�n) = yi � f(xi; b�n)
is the residual.

We can de�ne d(x;�0) = E (Y jx) � f (x;�0), which gives the exact but only

approximately speci�ed model

Y = f (x;�0) + d(x;�0) + ";

where the true �0 is de�ned in such a way that (2.1) becomes most accurate; in other

words, the sum of squared discrepancy is minimized:

�0 = arg min
NX
i=1

d2(xi;�): (2.2)

Thus f (x;�0) is, on an average, the best predictor of E (Y jx). We may think of

d(x;�0) due to the model misspeci�cation or unestimated curvature in the model.

Thus its presence in a model increases the bias of �0 and of E (Y jx). Moreover, by
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dint of (2.2) as in Sinha & Wiens (2002), we have that

NX
i=1

z(xi;�0)d(xi;�0) = 0: (2.3)

2.8 Developing the Loss Function

Let us assume a �nite design space S = fx1; x2; � � � ; xNg. Suppose we have an n

point design. De�ne Z(�) to be the N�p matrix whose rows are the zT (xi;�), D� the

diagonal matrix with diagonal elements f�ig = fni=ng, where the design allocates

ni > 0 observations to the locations xi and
PN

i=1 ni = n. Put

A(�) =
1

N

NX
i=1

z(xi;�)z
T (xi;�)

=
1

N
ZT (�)Z(�):

De�ne d(�) = (d(x1;�); d(x2;�); � � � ; d(xN ;�))T and let � be the N �N diagonal

matrix with diagonal elements f�2(xi)g. Then the asymptotic mean squared error

matrix, following Sinha and Wiens (2002), is

MSE(�) =M�1(�)
�
Q(�) + b(�)bT (�)

	
M�1(�);
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where

M(�)p�p = n

NX
i=1

z(xi;�)z
T (xi;�)�i

= nZT (�)D�Z(�);

Q(�)p�p = n
NX
i=1

z(xi;�)�
2(xi)z

T (xi;�)�i

= nZT (�)�D�Z(�);

b(�)p�1 = n
NX
i=1

z(xi;�)d(xi;�)�i

= nZT (�)D�d(�):

The initial purpose of nonlinear regression is typically response estimation or predic-

tion. Therefore, we should choose a design so that the average error is minimized

when E(Y jx) is predicted by f(x; b�n). Here we can mention an asymptotic property
of the estimate b�n. From the asymptotic theory of Gallant (1987), and by using (1.1),
the asymptotic normal approximation is

(b�n � �0) � N
�
M�1(�0)b(�0); M

�1(�0)Q(�0)M
�1(�0)

�
= N

�
M�1(�0)b(�0); �

2M�1(�0)
�
;
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where the information matrix M(�0) arises from the concept of the Fisher informa-

tion. Though the Fisher information is built under a normal likelihood, it is used in

asymptotic even when the original likelihood is not necessarily normal. In nonlinear

situations, estimates can be obtained as if they are from normal likelihood.

If � is the �true�value, the �rst order approximation of the error is

f(x; b�n)� E(Y jx) � f(x;�) +
�b�n � ��T [@f(x;�)=@�]� E(Y jx)

=
�b�n � ��T z(x;�)� d(x;�):

Then the loss is

1

N

NX
i=1

E

�n
f(xi; b�n)� E(Y jxi)

o2�

� 1

N

NX
i=1

E

"��b�n � ��T z(xi;�)� d(xi;�)

�2#
= tr [MSE(�) �A(�)] + 1

N
kd(�)k2

= trM�1(�)Q(�)M�1(�)A(�) + bT (�)M�1(�)A(�)M�1(�)b(�)

+
1

N
kd(�)k2:

As in (2.3), �0 is the �true�value that leads to the orthogonality condition

1

N

NX
i=1

d(xi;�0)z(xi;�0) =
1

N
ZT (�0)d(�0) = 0;
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and a bound
NX
i=1

d2(xi;�0) 6
�2

n
;

where � is a �xed quantity chosen by the designer.

We are considering the nonlinear regression for which an optimal design depends

on the proper values of parameters that are unknown. As we mentioned earlier

there are some approaches to handle this problem. For example, the locally optimal

design approach can be adopted. But the initial guess of the unknown parameter

vector �0 should have to be as close as possible to the true parameter vector since

the e¢ ciency of such designs depends on the quality of initial approximation. To

alleviate this problem of locally optimal design, a sequential design approach can be

considered, where estimates of parameters are updated at each stage. On the other

hand, a minimax design approach can be implemented, where minimization is done

after maximizing the loss over a neighbourhood of �0.

In this thesis we aim to minimize the maximum, over d(�), of

LI = LI(�; d)

= N

Z
�

�
tr [MSE(�) �A(�)] + 1

N
kd(�)k2

�
p (�) d�;

where p(�) is some density on the parameter space �. The maximization is to be

done subject to the conditions that, for each �,

ZT (�)d(�) = 0; (2.4)
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kd(�)k2 6 �2=n: (2.5)

We are considering n point design and the discrepancy d(xi;�0) would not exceed the

order of error, which is 1=
p
n.

Since the loss no longer depends on the parameters, it is not necessary to design

sequentially. We could instead look for minimax designs, with the maximization being

done over d(�); subject to (2.4) and (2.5).

2.9 Minimax Designs

In a minimax design problem we try to �nd a design measure

�(x) = fraction of observations made at x;

which results in small values of the maximum, over departures from the �tted model,

of the integrated mean squared error. The minimax design can be obtained by min-

imizing (over a class of designs) the maximum ( over d ) value of the expected loss

function. In minimax approach, we minimize the loss function in the worst case, i.e.

min
�
max
d
LI(�; d):

Now we shall �rst maximize the loss function over d. The maximization part of the

minimax problem can be solved completely, i.e. the maximum loss can be written

down as an explicit function of the design.
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2.10 Maximizing the Loss Function

Let U(�) be an N�p matrix whose columns form an orthogonal basis for the column

space of Z(�). Augment U(�) by eU(�), an N�N�p matrix whose columns form an
orthonormal basis of the orthogonal complement to the column space of Z(�). Then�
U(�)

...eU(�)� is an N � N orthogonal matrix. Assuming that Z(�) has full column

rank, we can write

Z(�) = U(�)R(�);

for some p�p non-singular matrixR(�). Using this QR-decomposition, ZT (�)d(�) =

0 can be written as RT (�)UT (�)d(�) = 0. Since R(�) is non-singular, we have

UT (�)d(�) = 0, i.e. d(�) is orthogonal to the columns of U(�). This says that d(�)

lies in the orthogonal complement to the column space of U(�), hence is a linear

combination of the vectors in a basis for this space. The columns of eU(�) form such

a basis. Therefore, the condition (2.4) is equivalent to

d(�) = eU(�)c(�);
for some c(�) : N�p�1. Then since the columns of eU(�) are orthonormal, kd(�)k =
kc(�)k and so the condition (2.5) is

kc(�)k2 6 �2=n: (2.6)
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The maximization problem is now to maximize

LI = N

Z
�

�
tr [MSE(�) �A(�)] + 1

N
kd(�)k2

�
p (�) d�

= N

Z
�

�
trM�1(�)Q(�)M�1(�)A(�)

	
p(�)d�

+N

Z
�

�
bT (�)M�1(�)A(�)M�1(�)b(�)

	
p(�)d�

+

Z
�

kd(�)k2p(�)d�

=
1

n

Z
�

tr

8>><>>:
�
ZT (�)D�Z(�)

��1 �
ZT (�)�D�Z(�)

�
��

ZT (�)D�Z(�)
��1 �

ZT (�)Z(�)
�

9>>=>>; p(�)d�

+

Z
�

8>><>>:
cT (�)eUT (�)D�Z(�)

�
ZT (�)D�Z(�)

��1
ZT (�)�

Z(�)
�
ZT (�)D�Z(�)

��1
ZT (�)D�

eU(�)c(�)
9>>=>>; � p(�)d�

+

Z
�

kc(�)k2p(�)d�;

subject to (2.6). The maximum value of kc(�)k2 is �2=n by (2.6),
Z
�

p(�)d� is unity

and from matrix algebra we know that if W is a symmetric matrix of order n � n

and v is a column vector, then we have max
v 6=0

h
vTWv
vTv

i
= chmax fWg, where chmax fWg

denotes the largest eigenvalue of W. Using these results in the above expression of
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LI, the maximum loss is

maxLI =
1

n

Z
�

tr

8>><>>:
�
ZT (�)D�Z(�)

��1 �
ZT (�)�D�Z(�)

�
��

ZT (�)D�Z(�)
��1 �

ZT (�)Z(�)
�

9>>=>>; p(�)d� (2.7)

+
�2

n

26666664
Z
�

chmax

8>><>>:
eUT (�)D�Z(�)

�
ZT (�)D�Z(�)

��1
ZT (�)�

Z(�)
�
ZT (�)D�Z(�)

��1
ZT (�)D�

eU(�)
9>>=>>; p(�)d�

+ 1

37777775 :

We repeatedly use the fact that the non-zero eigenvalues of a product AB are the

same as those of BA. Moreover, eUeUT = I � UUT . Applying these to the second

term of (2.7) we have

chmax

8>><>>:
U(�)

�
UT (�)D�U(�)

��1
UT (�)D2

�U(�)

[UT (�)D�U(�)]
�1 UT (�)� I

9>>=>>;
= chmax

8>><>>:
�
UT (�)D�U(�)

��1
UT (�)D2

�U(�)

[UT (�)D�U(�)]
�1

9>>=>>;� 1:

Now for the purpose of doing the computations, it is simpler to express all in terms

of Z(�). Thus �nal term above becomes

chmax

8>><>>:
�
ZT (�)D�Z(�)

��1 �
ZT (�)D2

�Z(�)
�

[ZT (�)D�Z(�)]
�1ZT (�)Z(�)

9>>=>>;� 1:
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Substituting into (2.7) and considering the covariance matrix � of (1.1) we obtain

maxLI =
�
�2"
n
+
�2

n

�
<�(�);

where

� =
�2

(�2 + �2)
2 [0; 1]

and

<�(�) =
Z
�

26666664
(1� �) tr

n�
ZT (�)D�Z(�)

��1 �
ZT (�)Z(�)

�o
+�chmax

8>><>>:
�
ZT (�)D�Z(�)

��1
[ZT (�)D2

�Z(�)]�
ZT (�)D�Z(�)

��1 �
ZT (�)Z(�)

�
9>>=>>;

37777775 p(�)d�: (2.8)

Now we can look at minimizing <�(�) over the design, for �xed values of � and �.

To do this, a numerical minimization will be done by the Genetic Algorithm (Coley

1999) in the next chapter.

32



Chapter 3: The Genetic Algorithm

and Loss Minimization

3.11 Introduction

Genetic Algorithms (GAs), (Coley 1999) which are a family of computational models,

have been developed by using the notion of evolution theory. The implementation of

a GA starts with some inputs as a set of solutions, called a population, to a particular

problem. A metric called a �tness function is de�ned to evaluate each candidate quan-

titatively. These candidates are usually generated at random. Only the promising

candidates are kept and allowed to reproduce. It is interesting to note that random

changes occur during reproduction. A new pool of candidate solutions is obtained

after reproduction. Again their �tnesses are evaluated and promising candidates are

selected. These winning candidates are copied over into the next generation possibly

with random changes and the process repeats. It is expected that the average �tness

of the population will increase each round. So we can hope to �nd very good solu-

tions to a problem by repeating this process for hundreds of rounds. There are other
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computerized problem-solving techniques such as Hill-climbing, Simulated annealing

etc., which are in some ways similar to genetic algorithms. But by using GAs we can

solve many large complex problems while other methods have experienced di¢ culties.

Before we begin to work with a GA, it requires to encode the potential solutions

to a speci�c problem. We can use binary strings: sequences of 1�s and 0�s, where

they represent the value of some aspect of the solution. Besides this, real valued

numbers and strings of letters are also used for encoding. However, we will follow the

�rst approach for our problem. Another important issue of GA is the way we select

individuals to be copied over into the next generation. There are di¤erent methods

such as Elitist selection, Roulette-wheel selection, Fitness-proportionate selection,

Tournament selection etc.

3.12 Parameters of the GA

Crossover and mutation are the most important parts of the genetic algorithm. Ac-

tually, the performance of a GA is greatly in�uenced by these two operators. While

crossover selects characteristics from parents to create a new o¤spring, mutation

changes the characteristics of the new o¤spring randomly.

The two basic parameters of GA are crossover probability and mutation proba-

bility. The crossover probability indicates how often crossover will be performed. If

there is no crossover, the o¤spring is an exact copy of the parents. However, if there

is a crossover, o¤spring are made up of characteristics taken from both of parents.

Crossover is made in hopes of getting new o¤springs that will be better inputs on the
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way to obtaining a good solution to a speci�c problem. Typical values of crossover

probability are 0:4 to 0:9 (Coley 1999). On the other hand, mutation probability

indicates how often the characteristics of o¤spring will be changed. If there is no mu-

tation, an o¤spring is the same as is obtained after crossover. Mutation prevents GA

from falling into a local extreme, but it should not occur very often. The mutation

probability is typically of the order 0:001 (Coley 1999). However, the correct setting

for it will be problem dependent. Another important parameter of GA is population

size that indicates the number of members that will be considered in one generation

in a population. GA will not work e¢ ciently if the population size is too large or too

small. In our case, a population consists of the set of designs.

3.13 The GA for Our Problem

For a nonlinear regression model we want to �nd design points so that (2.8) is min-

imized. To do this, the following genetic algorithm, as in Welsh and Wiens (2011),

will be implemented. Note that we will often choose equally spaced design points

x1; x2; � � � ; xN .

1. Start by randomly generating a �rst �generation�of ng designs.

2. For the current generation of designs, compute the loss: lossk = LI(�k) for

each design �k; k = 1; 2; � � � ; ng, and the corresponding ��tness levels�

fitnessk =
1

(lossk � 0:99 lossmin)2
; k = 1; 2; � � � ; ng;
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where lossmin is the minimum value of the loss in the current population. Scale the

�tness levels ffitnesskgngk=1 to form a probability distribution

 k =
fitnesskPng
j=1 fitnessj

; k = 1; 2; � � � ; ng:

3. Form a new generation of ng designs to replace the current generation in the

following way.

(a) Include the �ttest Nelite = ngPelite of the current generation; they are an �elite�

group which survives through to the next generation. The remaining ng � Nelite

members are formed by crossover and mutation.

(b) Crossover proceeds as follows:

� Choose two members of the current population to be parents with probability

proportional to their �tness level: If �1; �2 � independent Uniform (0; 1), then

choose to be parents the current generation members i�1 and i
�
2, where

i�1 = min

(
i :

iX
j=1

 j > �1

)
and i�2 = min

(
i :

iX
j=1

 j > �2

)
:

(The same parent can be chosen twice without posing di¢ culties for the algo-

rithm.)

� With probability 1� Pcrossover, the child is identical to the �ttest parent.

� With probability Pcrossover, the parents both contribute towards the child, in the

following manner. Each member of the current generation can be represented

36



by its vector n� of allocations. The two vectors of allocations arising from the

parents are averaged, and any fractional allocations are rounded down. This

results in a vector with integer elements, with sum s possibly less than n. If

s < n then n� s design points are randomly chosen from S (with replacement)

and added to the design. The child formed in this way is added to the new

generation.

(c) Mutation is applied independently to each child - regardless of how the child

is formed - as follows. With probability Pmutation, k elements of the vector �

de�ning the child are randomly chosen, and permuted. The value of k is chosen

by the user; we typically use 2 6 k 6 6. With probability 1 � Pmutation we do

nothing.

4. Step 3 is carried out until the next generation has been formed. Then its

�tness levels are computed and the process is repeated from Step 2. The loss is

guaranteed to decrease (weakly) in each generation, because of the inclusion of the

elite members. We run the algorithm until the best design has not changed in G

consecutive generations.

3.14 Minimization of the Loss

We will do a numerical minimization of (2.8). Let us consider a nonlinear function of

the form

f(x; �) = exp(��x); 0 < � < 1; x > 0:
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Now we have to assume a prior distribution on �. There are some ways of choosing

it. If there are information about the desired prior in the literature, it can be helpful

for �nding a suitable prior distribution. However, often we adopt subjective method

for choosing it. We can look at the values that � can take on and choose the prior

accordingly from our own belief. Suppose, for the above exponential model, the prior

distribution of � is uniform:

p(�) = 1; 0 < � < 1:

Then assuming � = 1
2
and using (2.8), we have

<�(�) =
1

2

Z 1

0

�
f(�; �i)

g(�; �i)
+
h(�; �i)f(�; �i)

(g(�; �i))
2

�
d�; (3.1)

where f(�; �i) =
PN

i=1 x
2
i exp(�2�xi), g(�; �i) =

PN
i=1

ni
n
x2i exp(�2�xi), h(�; �i) =PN

i=1
n2i
n2
x2i exp(�2�xi).

Now suppose we have generated 40 equally spaced points ranging from 0 to 10 of

the covariate x. We would like to get a 30 point design minimizing the expression

(3.1). We use generations of size ng = 40, and vary Pmutation linearly from 0 to 0:5. We

also consider Pcrossover = 0:95, Pelite = 0:1, G = 200. The integration was carried out

by Simpson�s rule, using a 101-point quadrature for the one-dimensional integration.

Based on the genetic algorithm mentioned in the previous section, an execution of R

codes gives the output as in the Figure 3.2, where we can see that the loss sharply

drops at the beginning and then it decreases slowly and remains �xed after certain
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Figure 3.2: Minimax design with n = 30, N = 40 and ng = 40; loss =15.67.

number of generations. Moreover, the design points have been shown in the plot. It

is observed that larger masses are made at around the site of x = 2 and x = 3.

It is interesting to say that our methods are also valid for linear models. In order

to check how our methods are performing, let us consider a linear model, say cubic

regression on [�1; 1]. Both the designs obtained by our methods and by Fang and

Wiens (2000) are shown in the Figure 3.3. They can be compared based on the

loss. It is clear that the loss obtained in the present study is much less than the loss

obtained by Fang and Wiens (2000). So, an improvement over loss minimization has

been achieved.
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Figure 3.3: Minimax design for cubic regression on [�1; 1] with n = 20, N = 40. (a)
obtained in current study by using GA with loss = 113:09; (b) obtained in Fang and
Wiens (2000) by simulated annealing with loss = 116:52.
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Chapter 4: Implementation

4.15 Designs for a model with Rumford�s data

We mentioned in section 1:2 that Count Rumford, in 1798, conducted an experiment

where an object was allowed to cool from an initial temperature of 1300F to an

ambient temperature of 600F . A model based on Newton�s law of cooling was �tted,

using f(xj�) = 60 + 70e��x. Here the covariate x represents time and f is predicted

temperature. From Bates and Watts (1988), we have the following values of x:

4; 5; 7; 12; 14; 16; 20; 24; 28; 31; 34; 37:5; 41:

We redesign this experiment using the same values of x. In order to get the minimax

design, we use n = 20, ng = 40, Pcrossover = 0:95, Pelite = 0:1, G = 200. We also

assume that p(�) is the uniform density on [0; 1], � = 0:5 and Pmutation will vary

linearly from 0 to 0:5. The minimax designs for Rumford�s experiment are shown in

Figure 4.4.
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Figure 4.4: Minimax design for the Rumford experiment; loss = 3:423.
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4.16 Designs for Exponential response model

Let us consider the following approximate exponential response model

f (xj�) = e��x; x > 0; 0 < � < 1:

We assume that the prior density of � is Beta(p; q) i.e. beta density with parameters

p and q. Considering di¤erent combinations of values of p and q, we shall construct

minimax designs for the above model. The design space, in this example, will consist

of 40 equally spaced points ranging from 0 to 10. We take n = 30, � = 0:5, ng = 40.

The other tuning parameters of the GA are same as in the example of Rumford design

of the previous section. The minimax designs for this example are shown in Figure

4.5 and Figure 4.6.

Now we will look at minimax designs for exponential model with di¤erent combi-

nations of the tuning constants of GA. To do this, we will consider 20 equally spaced

points of x ranging from 0 to 10, � = :5, n = 20 and the �xed values of parameters

of the prior density (p; q) = (3; 3). See Figure 4.7, where it is evident that even if

the GA parameters are changed, the designs are not changing; they remain identical

with the same loss.
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Figure 4.5: Minimax designs for exponential response model and various beta priors.
(a1) beta density with (p; q) = (2; 1) and (a2) best design with loss = 10:39; (b1)
beta density with (p; q) = (1; 2) and (b2) best design with loss = 17:97; (c1) beta
density with (p; q) = (2; 2) and (c2) best design with loss = 13:35.
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Figure 4.6: Minimax designs for exponential response model and various beta priors.
(e1) beta density with (p; q) = (3; 2) and (e2) best design with loss = 10:02; (f1)
beta density with (p; q) = (2; 3) and (f2) best design with loss = 15:20; (g1) beta
density with (p; q) = (3; 3) and (g2) best design with loss = 11:81.
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Figure 4.7: Minimax designs for di¤erent combinations of tuning constants of
GA, namely (G; ng; Pc; Pint:m; Pfinal:m; Pelite). (a) (200; 20; :9; 0; :4; :1);
(b) (210; 30; :91; 0; :45; 1=15); (c) (220; 25; :92; :05; :49; 2=25); (d)
(230; 45; :94; :09; :5; 2=45); (e) (240; 50; :89; :07; :52; 2=50); (f)
(250; 40; :95; 0; :5; 2=45); loss = 6:275.
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4.17 Designs for Michaelis-Menten model

Let us consider an approximate, two-parameter Michaelis-Menten model, with

f (xj�) = �1x

�2 + x
:

Also assume that the covariate x takes on N = 11 equally spaced values spanning

[0; 1]. We develop this example based on the Puromycin experiment from Bates and

Watts (1988), where estimates

b� = (195:8; 0:0484)

� (200; 0:05)

were obtained by linearizing 1=f and carrying out a preliminary linear regression.

Thus we may introduce two random variables  1;  2 2 [0; 1], de�ned by

�1 = 200( 1 + 0:5) 2 [100; 300] ;

�2 =
1

20
( 2 + 0:5) 2 [0:025; 0:075] :

By (2.8), we have

<�(�) =
Z 1

0

Z 1

0

�

�
200( 1 + 0:5);

( 2 + 0:5)

20
; �

�
p( 1)p( 2)d 1d 2;
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Figure 4.8: Designs for approximate Michaelis-Menten model with loss = 8:51.

where �(�) represents MSE, p( 1) and p( 2) are identical Beta(p; q) densities. We

take � = :5, n = 20, ng = 20 and obtain the design shown in Figure 4.8 for the

combination (p; q) = (20; 20). The integration was carried out by Simpson�s rule,

using a 51-point quadrature on each axis for two-dimensional integration.
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4.18 Discussion

In obtaining an optimal design, it is helpful to run the GA several times with seeding

the best design found to date into the initial generation. It is realized from the

Figure 4.4 that in order to get a minimax design for Rumford�s experiment, most of

the observations were made at the time points 4 and 5. The minimax design for this

experiment shows that there are some time points where no observations were made

at all.

For the plots of Figure 4.5 and Figure 4.6 of minimax designs for exponential

response model with simulated values of the covariate, it is seen that larger masses are

placed at around the point x = 2 of the design space. We can realize from these plots

that the designs change to some extent with change in the values of the parameters of

the prior density. However, the minimax designs do not spread throughout the whole

design space. On the other hand, minimax designs for exponential response model

based on �xed values of parameters of the prior density with six di¤erent combinations

of tuning constants of GA have been shown in Figure 4.7. We see that the designs

do not change.

The minimax design of the approximate Michaelis-Menten model in Figure 4.8

shows that most of the mass is placed at 0:1, and then the weight of masses increases

after the site 0:6.
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Appendix

A sample R codes are given below.

DESIGN <- function(n, unchangedLimit, popSize, crossoverProb,

initMutationProb, �nalMutationProb, eliteProp,

a, b, c, d, p, q, nu) {

tic <- proc.time()

x=seq(0, 1, by=.1)

N = length(x)

#initial generation

lossvec=vector(length=popSize)

genmat=NULL

generation=1

unchanged=0

#simulate initial population of designs, an N by popSize matrix

#whose columns are the allocation vectors for the �rst generation

population = rmultinom(popSize, n, prob = rep(1,N))

#Compute loss

56



for (count in 1:popSize) { lossvec[count]=LOSS(population[ ,count], n, N, x, a,

b,c,d, p, q, nu) }

# The vector of psi_k values, summing to 1

psivec=FITNESS(lossvec)

#Create subsequent generations

while (unchanged<unchangedLimit)

{

newPopulation=matrix(ncol=popSize,nrow=N)

#Force elites (the best of the current population) to survive

numberElites=�oor(popSize*eliteProp)

I=order(psivec,decreasing=TRUE)

newPopulation[,1:numberElites]=population[,I[1:numberElites]]

lossvec[1:numberElites]=lossvec[I[1:numberElites]]

newPopSize=numberElites

while(newPopSize < popSize) {

# Choose �t parents:

cum�t <- cumsum(psivec)

popIndices <- 1:ncol(population)

choices = vector(length = 2)

rr <- runif(2)

for (i in 1:2) choices[i] <- min(popIndices[cum�t >= rr[i]])

# Create a child from 2 randomly chosen members of

#the current population
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mutationProb = initMutationProb +

(�nalMutationProb-initMutationProb)*unchanged/unchangedLimit

newchild = child(allocation1 = population[ ,choices[1]], allocation2 = population[

,choices[2]],

psi1 = psivec[choices[1]], psi2 = psivec[choices[2]], n, N, crossoverProb, mutation-

Prob)

newPopSize = newPopSize + 1

newPopulation[ , newPopSize] = newchild

}

population = newPopulation

for (count in 1:popSize) {

lossvec[count]=LOSS(population[ ,count], n, N, x, a, b, c,d,p, q, nu) }

psivec=FITNESS(lossvec)

# Summarize this generation:

bestdesign <- population[, lossvec == min(lossvec)]

if (is.matrix(bestdesign) && ncol(bestdesign) > 1) bestdesign <- bestdesign[, 1]

genmat <- cbind(genmat, c(bestdesign, min(lossvec)))

if (generation > 1 && identical(genmat[1:N,generation], genmat[1:N, generation

- 1])) {

unchanged <- unchanged + 1

} else {

unchanged <- 0

}
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psivec <- FITNESS(lossvec) # �tness of all designs in generation

cat("generation =", generation, "unchanged =", unchanged,

"mutation prob =", round(mutationProb,3), "min loss =", round(min(lossvec),5),

"nn")

generation <- generation + 1

} # End of outer "while"

# Summarize and plot the output

bestDesignInGenerations <- genmat[1:N, ] # best designs; one for #each genera-

tion

bestLossInGenerations <- genmat[N+1,] # best loss per generation

# best overall is in the last column of bestDesignInGenerations:

bestdesign <- bestDesignInGenerations[1:N, ncol(genmat)]/n

PLOTS(x, bestLossInGenerations, bestdesign)

cat("Number of generations =", ncol(genmat), "nn")

toc <- proc.time()

cat("Time used =",round((toc[3]-tic[3])/60,1),"minutes","nn")

list(DES = cbind(x, bestdesign), MINLOSS = genmat[N+1, ncol(genmat)])

}

#Simpson�s rule for double integral

simp2=function(mattheta12,a,b,c,d)

{

mtheta1=nrow(mattheta12)-1

htheta1=(b-a)/mtheta1
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dtheta1=c(1,rep(c(4,2),mtheta1/2-1),4,1)

mtheta2=ncol(mattheta12)-1

htheta2=(d-c)/mtheta2

dtheta2=c(1,rep(c(4,2),mtheta2/2-1),4,1)

(htheta1*htheta2*sum(outer(dtheta1,dtheta2)*mattheta12))/9

}

#Loss function

LOSS=function(allocations, n, N, x, a, b,c,d, p, q, nu) {

Dshi = diag(allocations)/n

theta1=seq(a,b,length=51)

theta2=seq(c,d,length=51)

mattheta12=matrix(0,nrow=length(theta1), ncol=length(theta2))

betadist1=c()

betadist2=c()

for (i in 1:length(theta1))

{

for (j in 1:length(theta2))

{

Z= cbind(x/(x+theta2[j]), -theta1[i]*x/(x+theta2[j])^2)

betadist1[i]=(1/beta(p,q))*((theta1[i]/200-0.5)^(p-1))*

((1-theta1[i]/200+.5)^(q-1))

betadist2[j]=(1/beta(p,q))*((20*theta2[j]-.5)^(p-1))*

((1-20*theta2[j]+.5)^(q-1))
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#Trace function for the 1st term in Loss

tr = function(mat) {

sum(diag(mat))

}

mat1=(solve(t(Z)%*%Dshi%*%Z))%*%(t(Z)%*%Z)

tr(mat1)

# Maximum eigenvalue of the 2nd term

mat2=(solve(t(Z)%*%Dshi%*%Z))%*%(t(Z)%*%(Dshi^2)%*%Z)%*%

(solve(t(Z)%*%Dshi%*%Z))%*%(t(Z)%*%Z)

chmax=eigen(mat2, only.values = T)$values[1]

mattheta12[i,j]=((1-nu)*tr(mat1)+(nu)*chmax)*(1/10)*betadist1[i]*betadist2[j]

}

}

simp2(mattheta12,a,b,c,d)

}

#Fitness function

FITNESS=function(lossvec){

�t=1/(lossvec-.99*min(lossvec))^2

�t/sum(�t)

}

#Child function

child = function(allocation1, allocation2, psi1, psi2, n,

N, crossoverProb, mutationProb) {
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U = runif(2)

# As in the second bullet of Step 3(b):

if (U[1] > crossoverProb) {if (psi1 > psi2) child = allocation1 else child = alloca-

tion2}

# As in the third bullet:

if (U[1] <= crossoverProb) {

child = �oor((allocation1 + allocation2)/2) # The average of the #two alloca-

tions, rounded down

de�ciency = n - sum(child)

if (de�ciency > 0) {

# Choose the indices of the additional design points:

newpoints = sample(N, size = de�ciency, replace = TRUE)

# Assign these to the child:

for (i in 1:de�ciency) { child[newpoints[i]] = child[newpoints[i]] + 1 }

}

}

Q1=length(child)

Q2=sample(Q1,3)

# Mutate, with prob. Pmutation

if (U[2] <= mutationProb) child[Q2] = sample(child[Q2])

child # This is the �child�allocation vector

}

#Plot function
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PLOTS <- function(x, minloss, bestdesign) {

des <- bestdesign

par(mfrow = c(1,2))

plot(minloss, xlab = "Minloss vs. generation", ylab = "")

plot(x, bestdesign, type = �h�, xlab = "Best design", main = NULL)

}

output = DESIGN( n = 20, unchangedLimit = 200, popSize = 20,

crossoverProb = .95, initMutationProb = 0,

�nalMutationProb = .5, eliteProp = .1, a =100, b = 300,

c=.025, d=.075, p = 20, q =20, nu = .5)

output
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