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Abstract

Building intelligent open-domain dialogue systems is a long-standing goal of artifi-

cial intelligence. These systems, also known as chatbots, aim to hold conversations

with humans in an open-ended fashion. However, it is well known that standard

encoder–decoder dialogue systems tend to generate generic responses. A previous

study hypothesizes that this phenomenon is due to the one-to-many mapping in the

open-domain dialogue task, where the target distribution is multi-modal. As a result,

standard cross-entropy training fails as it learns an overly smoothed function that

causes the mode averaging problem.

In this work, we address the mode averaging issue with a multi-decoder model,

where each decoder can cover a subset of the modes. We treat the choice of the

decoder as a latent variable and apply EM-like algorithms. However, we observe that

traditional Hard-EM and Soft-EM may not perform well due to the collapse issue:

the decoders fail to specialize and the multi-decoder model degenerates to a single-

decoder model. To this end, we propose EqHard-EM, which is an EM variant that

assigns an equal number of samples to every decoder to alleviate the collapse issue.

Results show that our EqHard-EM algorithm achieves significant improvements over

single-decoder models in terms of both response quality and diversity. In addition,

extensive analyses show that our EqHard-EM algorithm indeed alleviates the collapse

issue: different decoders are specialized and generate diverse responses.
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Chapter 1

Introduction

1.1 Background

Artificial intelligence (AI) has been gaining increasing interest in both industry and

academia due to its rapid progress in recent years. This can be attributed to many

factors such as more computing power, larger datasets, and deep learning architec-

tures. As a result, AI has reached a tipping point where it can potentially outperform

humans in many areas such as computer vision, natural language processing, and de-

cision making.

Natural language processing is one of the most important sub-fields of AI, and it

has applications in our day-to-day life. In general, natural language processing can be

further divided into two main branches: natural language understanding and natural

language generation. The former focuses on the comprehension of human language;

its applications include syntactic parsing [10, 18], sentiment analysis [3, 56], and

information extraction [58, 55]. The latter focuses on producing text outputs, and

has wide applications such as machine translation [4, 35], paraphrase generation [27,

57], and dialogue generation [45, 20].

In this thesis, we focus on the task of open-domain dialogue generation [45, 47,

77]. Dialogue generation can be categorized into two main paradigms: open-domain

and task-oriented. Task-oriented dialogue systems focus on achieving specific goals

such as booking a hotel [81, 9, 92]. On the other hand, open-domain dialogue systems
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focus on conversing with humans in an open-ended fashion with no clear goals [73,

36].

Open-domain dialogue systems play an important role in our modern society as

they provide a way for lonely people to feel connected. For example, Microsoft’s

chatbot XiaoIce1 has gained 660 million active users across five countries since its

release in May 2014. The chatbot is also deployed to over 40 platforms such as

Facebook, WeChat, and Line. The success and popularity of XiaoIce emphasize

the importance of open-domain dialogue systems and call for the need of further

improvements.

1.2 Main Challenges

It is well known that traditional Seq2Seq models do not work well with the dialogue

task [45, 47, 38]. In particular, Seq2Seq models tend to generate generic responses

such as –I don’t know when trained with the standard maximum likelihood estimation.

Wei et al. [79] study this issue and hypothesize that the generic responses are due to

the one-to-many mapping phenomenon in the dialogue generation task. Here, one-to-

many mapping suggests that, for a given input context, there could be many plausible

responses. For example, consider the dialogue context –How was your weekend?.

A potentially infinite number of responses are valid, depending on what actually

happened over the weekend. Therefore, the goal of a dialogue system is to learn a

multi-modal distribution, where the modes can be intuitively thought of as different

topics of the responses. In the previous example, a mode or a topic could be “visiting

a friend” or “playing video games”. Unfortunately, standard maximum likelihood

estimation fails to capture different modes: they cause the model to learn an overly

smoothed function in an attempt to cover all the modes. Therefore, dialogue systems

tend to have the mode averaging issue: they fail to select a mode and resort to

generating generic responses such as –I don’t know.

1http://www.xiaoice.com
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Previous studies address the generic responses during either training time or in-

ference time. Training-time approaches alleviate generic responses by modifying the

problematic maximum likelihood estimation. Li et al. [46] use reinforcement learn-

ing to maximize a manually crafted scoring function. Khan et al. [38] apply the

generative adversarial network in the latent space to address the same issue. These

methods address the diversity issue at training time. The lack of diversity can also be

addressed at inference time. For example, diverse beam search [76] encourages diverse

beam results by penalizing similar sentences. Also, nucleus sampling [33] increases

the diversity by allowing less frequent words to be chosen.

1.3 Contribution of this Thesis

We propose to address the diversity issue with a multi-decoder model. In particular,

we adopt the standard encoder–decoder framework but enhance it with multiple de-

coders. Our multi-decoder model alleviates the mode averaging problem by allowing

different decoders to cover different modes. We further propose to implement the

decoders as adapter modules [34], i.e., a few additional layers, rather than a fully pa-

rameterized deep neural network. This improves the memory efficiency and enables

knowledge sharing between different decoders.

To train our multi-decoder model, we adopt the expectation–maximization (EM)

framework. In our setting, the choice of decoder is considered as an unobserved

latent variable, and therefore the EM algorithm is a principled way of training our

latent variable model. However, we observe that classic EM algorithms fail to train

our multi-decoder model meaningfully. In particular, the Soft-EM algorithm assigns

samples to decoders in a soft manner, but it tends to assign an equal fraction of each

sample to every decoder. This is because decoders are similar at initialization, leading

to similar posterior distributions during the assignment of Soft-EM. As a result, each

decoder is trained synchronously, and the full multi-decoder model degenerates to a

single-decoder model. We refer to this as the synchronous-training collapse.
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We additionally observe that the Hard-EM algorithm also fails in our multi-decoder

training. Unlike Soft-EM, Hard-EM assigns samples to the best-fit decoder. This

causes the “rich-gets-richer” phenomenon, where samples will favor the more fre-

quently assigned decoders. Empirically, we find that most decoders are untrained

when we apply the Hard-EM algorithm. We refer to this as the non-training collapse.

To this end, we propose an Equal-Size Hard Expectation–Maximization (EqHard-

EM) algorithm. EqHard-EM avoids the synchronous-training collapse by adopting

hard assignment as in Hard-EM. In addition, the assignments are constrained such

that every decoder is assigned with the same number of samples. The equal constraint

ensures that every decoder is adequately trained, avoiding the non-training collapse.

We further formulate the equal-assignment problem as a balanced assignment prob-

lem, which can be solved by the classical Hungarian algorithm [39].

To evaluate our approach, we conducted extensive experiments on the Weibo and

OpenSubtitles datasets. Our results show that EqHard-EM achieves significant im-

provements in terms of both response quality and diversity. Moreover, our case study

and analysis confirm that our model and algorithm indeed alleviate the mode aver-

aging problem.

To sum up, the main contributions of this paper include:

• We propose to use the multi-decoder architecture to address the one-to-many

mapping in dialogue systems.

• We propose the EqHard-EM algorithm to address the deficiency of traditional

EM variants.

• We conducted extensive experiments and analyses on Weibo and OpenSubtitles

datasets to verify our model and algorithm.

4



1.4 Thesis Structure

In this chapter, I introduced the background and motivation of this thesis, and stated

thesis contributions.

Chapter 2 reviews the previous work related to this thesis. In particular, it starts

with an introduction to sequential models for text generation, ranging from a basic

recurrent neural network to the widely used Transformer model. The chapter then

provides the background for dialogue systems with a focus on open-domain dialogue

generation.

Chapter 3 describes the details of our proposed approach, including the neural

architecture, model training, and model inference. I will first explain the motiva-

tion of our multi-decoder model and its implementation. Then, I will introduce the

expectation–maximization (EM) algorithm, which is adopted for our latent variable

training. The deficiencies of traditional EM training will be discussed, which moti-

vates our proposed training approach. The chapter ends with the inference procedure.

Chapter 4 presents our experimental results. It starts with an introduction to the

datasets and the evaluation metrics. Then, the main results are shown, followed by

both quantitative and qualitative analyses.

Finally, Chapter 5 concludes the findings and contributions of this thesis. In ad-

dition, it provides an outlook on potential future work to further improve neural

dialogue generation.

5



Chapter 2

Background and Related Work

2.1 Overview

In this chapter, I will first explain the text generation models in Section 2.2. We

start with vanilla recurrent neural networks and discuss the vanishing and exploding

gradient problem. This naturally leads to the long short-term memory units, which

alleviate the vanishing and exploding gradients through carefully designed internal

gates. I will then explain the information bottleneck problem in Seq2Seq models,

which motivates the attention mechanism. Finally, we will finish with the widely

used Transformer model: they replace the recurrent connections with attention and

achieve state-of-the-art performance in most NLP tasks.

In Section 2.3, we will move on to dialogue systems. I will first explain the two

main paradigms of dialogue research: open-domain and task-oriented. Although they

seem to be polar opposites of each other, we will see how a conversational question

answering system addresses both settings simultaneously. We will then move on to

open-domain dialogue evaluation, which mainly focuses on the quality and diversity

of dialogue systems.

2.2 Text Generation Models

Text generation is most commonly accomplished by encoder–decoder models, some-

times also known as sequence-to-sequence (Seq2Seq) models [72]. Such a framework

6



Figure 2.1: (a) Feed-forward neural network, (b) Compact representation of a recur-
rent neural network, and (c) Unrolled representation of a recurrent neural network.

consists of two main components: an encoder and a decoder. The encoder is respon-

sible for encoding the input sequence to generate hidden representations, whereas the

decoder decodes the hidden representation into an output sequence. This framework

has been later successfully applied to various text generation tasks, such as para-

phrase generation [48, 5], dialogue generation [45, 20], and machine translation [4,

35].

More specifically, the Seq2Seq framework can be realized by different neural ar-

chitectures. For example, recurrent neural networks (RNNs) are common in early

studies [53, 37, 62], and later the attention mechanism is developed to enhance the

alignment the input and output in RNNs [4]. The Transformer model, which is fully

based on attention mechanisms, becomes a prevailing architecture in the past several

years. The following subsections give a brief overview of these models.

2.2.1 Recurrent Neural Network

A recurrent neural network (RNN) is a type of artificial neural network that differs

from a standard feed-forward neural network (FNN) [6]. In FNN, information is

processed in a feed-forward fashion from an input layer, to one or a few hidden

layers, and finally to the output layer (Figure 2.1a). On the contrary, RNN has a

loop in the hidden layer, and thus is recurrent (Figure 2.1b). During computation,
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Figure 2.2: The internal design of an LSTM unit.

the loop is expanded along the time step, as shown in Figure 2.1c. In this way,

RNNs are suitable for modeling time-series data, such as music generation [8, 54, 14],

temperature prediction [23, 51, 86], and text generation [46, 15, 16].

Formally, let xt ∈ Rd be the input vector at time step t. Then the hidden layer

ht ∈ Rh of a vanilla RNN is computed as

ht = ϕ(Winxt + Wrecurrentht−1 + b) (2.1)

where Win ∈ Rh×d is the input weight matrix, Wrecurrent ∈ Rh×h is the recurrent

weight matrix, b ∈ Rh is the bias term, ht−1 is the hidden state from the previous

time step, and ϕ is a non-linear activation function such as tanh and ReLU [2].

A key problem of the vanilla RNN is the vanishing and exploding gradient [60]. Re-

current neural networks are usually trained with Back-Propagation Through Time [83],

which applies the chain rule of derivatives recursively through time steps. Therefore,

the gradients keep getting multiplied by the chain rule, and the norm of the gradients

can either explode to infinity or shrink to zero as the number of time steps increases.

The Long Short-Term Memory (LSTM) [32] network is proposed to address the

vanishing and exploding gradient problem. The LSTM unit contains carefully de-

signed gates that choose which information to keep or forget, allowing the model to

build long-term dependencies that cannot be learned by vanilla RNNs. Figure 2.2

8



shows the internal design of an LSTM unit. In general, the LSTM unit at time step

t takes the input vector xt, the previous hidden state ht−1, and the cell state ct−1

as the input to produce the updated cell state ct and hidden state ht. The detailed

computation is as follows

it = σ(Wiixt + Whiht−1 + bi) (2.2)

ft = σ(Wifxt + Whfht−1 + bf) (2.3)

gt = tanh(Wigxt + Whght−1 + bg) (2.4)

ot = σ(Wioxt + Whoht−1 + bo) (2.5)

ct = ft ⊙ ct−1 + it ⊙ gt (2.6)

ht = ot ⊙ tanh(ct) (2.7)

where the Ws and bs are the model parameters, and ⊙ is the element-wise mul-

tiplication operator. The LSTM model has shown great improvement in a variety

of sequential modeling tasks [54, 23, 86] by alleviating the vanishing and exploding

gradient problem.

However, the LSTM model still struggles with long sequential data due to the

information bottleneck. A Seq2Seq model based on a plain RNN (including LSTM)

encodes the input sequence into a hidden representation and decodes it to the output.

A key issue of this approach is that the hidden representation is a fixed-length vector,

essentially serving as an information bottleneck between the encoder and decoder.

Therefore, the performance of RNN models drops as the sequence gets longer, even

if they do not have the vanishing and exploding gradient problem.

To address the information bottleneck, Bahdanau et al. [4] propose the attention

mechanism, which greatly enhances the plain RNN. The attention model predicts the

certain parts of the input sequence that are important to a specific decoding step.

Since such attention is dynamic across different decoder steps, the model does not

suffer from the information bottleneck.

Figure 2.3 shows the diagram of an attention mechanism. As seen, the attention

9



Figure 2.3: The attention mechanism in a encoder–decoder architecture, adapted
from [4].

weights αt,1, αt,2, · · · , αt,T , are first predicted to indicate the importance of each in-

put xi at the decoding time step t. Typically, it predicts higher attention weights

for tokens that are more relevant to the decoding step. The encoder hidden states

h1,h2, · · · ,hT then form a context vector based on the attention weights, which is

passed to the decoder to generate yt.

Concretely, at each decoding time step i, the attention mechanism computes the

context vector ci as a weighted vector of the encoder hidden states, given by

ci =
T∑︂

j=1

αijhj (2.8)

αij =
exp(eij)∑︁Tx

k=1 exp(eik)
(2.9)

eij = f(si−1,hj) (2.10)

where αij is the attention weight of the jth token in the input sequence, hj is the jth

encoder hidden vector, and f is an alignment function.

The decoder RNN then generates the next hidden state si based on the previous

10



hidden state si−1, the previous prediction yi−1, and the context vector ci

si = RNN(si−1, yi−1, ci) (2.11)

The encoder, decoder, and attention model can all be trained in an end-to-end fashion

because all the operations are differentiable.

2.2.2 The Transformer Architecture

The Transformer architecture replaces recurrent connections in RNNs with the atten-

tion mechanism and achieves state-of-the-art performance in most NLP tasks [75, 65, 66].

The general idea is that each layer performs multiple attentions (known as multi-head

attention) to fuse information; there are also residual connections and layer nor-

malizations, allowing deeper architectures. Details are deferred to Section 3.2. In

addition to high performance, the Transformer models are also faster to train, be-

cause RNNs can only compute different time steps sequentially due to their recurrent

connections, whereas the Transformer model can compute all time steps in parallel

as it is fully based on attention. The faster training and superior performance make

the Transformer one of the most commonly used architectures in NLP research.

The Transformer model can be used in different ways. For example, an encoder-

only Transformer is widely used as a representation model: the famous BERT model

is a bi-directional Transformer encoder [19] pretrained by masked language modeling

(MLM) and next sentence prediction (NSP) in an unsupervised way on massive cor-

pora. Here, the MLM task requires the model to predict tokens that are masked out,

and the task encourages the model to build meaningful sentence representations. The

NSP task, on the other hand, requires the model to predict whether a sentence is next

to another given sentence. This further encourages the model to understand the rela-

tionship between sentences. Together, the two tasks allow the Transformer encoder to

achieve state-of-the-art performance in various natural language understanding tasks.

The Transformer model can also be used in a decoder-only fashion. At every step,

11



the decoder predicts a word and feeds the predicted word back in the next step,

and thus, the model is able to accomplish text generation tasks. An example is the

classic GPT-2 model [65], a uni-directional Transformer for language modeling. It is

pretrained to predict the next token conditioned on the context (all previous tokens).

The Transformer architecture has also shown great success in the encoder–decoder

model, which features a cross-attention mechanism, compared with encoder-only and

decoder-only architectures. One example is the T5 model [66] pretrained on a combi-

nation of supervised tasks such as machine translation, summarization, and natural

language inference.

2.3 Dialogue Systems

Dialogue generation is an important research direction of NLP that aims to converse

with humans through text. In general, the dialogue task can be categorized into two

main paradigms: task-oriented and open-domain. In the following subsections, I will

first introduce these paradigms. Then, I will explain the metrics of open-domain

dialogue systems, which are used in this thesis to evaluate our method.

2.3.1 Task-Oriented Dialogue Systems

Task-oriented dialogue systems aim to converse with humans to achieve specific goals

such as hotel booking and restaurant finding [81, 9, 92]. Traditionally, these systems

are implemented in a pipeline approach with four major components: a natural lan-

guage understanding (NLU) unit, a dialogue state tracker, a dialogue policy, and a

natural language generation (NLU) unit [13, 7, 80].

The NLU unit is responsible for understanding the users’ goals. It involves two

sub-tasks: intent detection and slot filling. Intent detection [78, 85] is a classification

problem that predicts the intent of the user, for example, to “find a restaurant” and

“specify a price range”. On the other hand, slot filling [89, 52] is a sequential labeling

problem, where the goal is to predict the word-level label for every input token to
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match a certain slot, for example, the restaurant name and the price range. They

are used to achieve the goal of the dialogue. Overall, the NLU unit is responsible for

capturing user inputs.

A dialogue state tracker is responsible for representing the current state of the

dialogue. At every dialogue turn, the tracker considers the user’s input and the

history of the dialogue to update its state. Early systems [24, 42] use hand-crafted

rules to choose the most likely state; they may not perform well due to the inherent

ambiguity in natural language. Later benchmark datasets, such as the Dialogue State

Tracking Challenges [84, 29, 30], represent states as a distribution instead. This allows

the state to be tracked in a probabilistic manner, greatly enhancing the robustness

of the systems [87].

The dialogue policy is the next stage of the pipeline: they generate system actions

(e.g., to “request price range”) based on the state from dialogue state trackers, and

are usually trained through reinforcement learning [71, 63, 61], where the reward is

based on the success or failure of achieving the goal. In general, the dialogue policy

decides the type of the output utterance.

Finally, the NLG unit is responsible for generating natural language responses

based on the actions of the dialogue policy. For example, Tran et al. [74] handle the

action through a gating mechanism in the GRU unit, whereas Bordes et al. [7] treat

the action as an additional input to an LSTM unit.

2.3.2 Open-Domain Dialogue Systems

Open-domain dialogue generation is the task of generating coherent and human-like

utterances; it works in an open-ended fashion without a specific goal. These systems in

general follow the encoder–decoder or the decoder-only architecture, and are trained

in an end-to-end fashion with massive corpora. Unfortunately, they tend to generate

generic responses such as –I don’t know in the open-domain dialogue setting [45, 47,

79].

13



Wei et al. [79] hypothesize that the generic responses are due to the one-to-many

mapping in dialogue datasets. Here, one-to-many mapping suggests that given an

input context, there are a large number of plausible responses. Therefore, the target

distribution is multi-modal, where each mode can be thought of as a potential topic for

the responses. Maximum likelihood estimation, however, learns an overly smoothed

function, which fails to capture different modes.

There are two main approaches to addressing the issue of the generic responses:

training-time and inference-time. Usually, training-time approaches avoid the prob-

lematic maximum likelihood estimation. For example, Li et al. [45] apply reinforce-

ment learning and optimize the ease of answering, which discourages generic responses

that end a conversation abruptly. Khan et al. [38] apply adversarial learning to the la-

tent space to address the same issue. In their setup, generic responses are discouraged

because they can be easily detected by the discriminator. Wang et al. [77] modify

the standard cross-entropy training with soft labels to encourage less frequent words.

All these methods modify the training objective to address the generic responses in

dialogue systems.

Inference-time approaches address the issue at the decoding stage. Vijayakumar

et al. [76] propose the diverse beam search, which encourages distinct generations

by adding a penalty to similar beam results. Holtzman et al. [33] propose nucleus

sampling, which increases the diversity of dialogue responses by sampling less frequent

words. Overall, the diversity issue in open-domain dialogue systems remains an active

area of research.

There are also dialogue systems that combine the open-domain and task-oriented

dialogue settings, such as the conversational Question Answering (QA) systems [68,

64, 40]. Traditionally, the QA task is formulated as either answer-span prediction [1,

67] or multiple-choice selection [31, 41]. These systems are not user-friendly due to

the lack of interaction. Conversational QA systems alleviate this issue by allowing

users to directly query the systems through natural language. They work in both
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open-domain and task-oriented styles: they need to converse with humans in an

open-ended fashion while accomplishing the task of question answering.

Overall, both open-domain and task-oriented dialogue systems have great indus-

trial applications and pose unique research challenges. This thesis focuses on open-

domain dialogue systems, and I will explain the evaluation metrics in the next part.

2.3.3 Open-Domain Dialogue Evaluation

Open-domain dialogue evaluation mainly focuses on two aspects: response quality

and diversity. I will explain these metrics in the rest of this subsection.

BLEU [59] is the main metric for measuring the quality of dialogue responses. At

its core, the BLEU score considers the n-gram precision of a response given a list

of reference responses. The precision is clipped by the number of n-gram hits to

the maximum number of its appearances in different references; this discourages the

system to repeat common words.

To evaluate the generated text at the corpus level, the n-gram precision pn is

computed as

pn =

∑︁
C∈Candidates

∑︁
n-gram∈C Countclip(n-gram)∑︁

C′∈Candidates

∑︁
n-gram′∈C′ Count(n-gram′)

(2.12)

where the Countclip operator counts the number of matched n-grams clipped to the

maximum occurrences in the references, and the Count operator counts the total

number of the n-grams in the candidate input.

The precision is further penalized by its brevity. Such a brevity penalty (BP)

ensures that overly short responses cannot achieve high performance. Finally, the

BLEU score is computed as the geometric mean of n-gram precisions for n = 1, · · · , 4.

Formally, we have

BP =

{︄
1, if c > r

e1−r/c, if c ≤ r
(2.13)

BLEU = BP · exp
(︂1

4

4∑︂
n=1

log pn

)︂
(2.14)
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where c is the sum of the lengths of candidate sentences in the corpus, and r is the

sum of the lengths of the references.

The BLEU metric is not ideal for open-domain dialogue evaluation due to the

uncertainty in the reference responses. Consider the golden input–reference pair: –

What is your hobby? –I’m an amateur tennis player. A dialogue system may generate

I love food, so I enjoy cooking a lot. This is a completely natural response but

receives a low BLEU score because it shares few n-gram overlaps with the reference.

Such a phenomenon does not occur in other NLP tasks such as machine translation,

because the reference is semantically grounded. By contrast, dialogue responses are

more diverse and often not semantically grounded. Therefore, open-domain dialogue

evaluation remains an active area of research.

Learnable metrics are one way to address the issue of overlap-based dialogue eval-

uations. Instead of trying to match the words, learnable metrics attempt to learn the

correspondence between context and response. For example, the RUBER metric [73]

considers embedding-based similarity instead of n-gram overlapping. Further, the

metric involves an unreferenced score, where a machine learning model predicts the

fitness of a response without references. By combining both referenced and unrefer-

enced metrics, the RUBER metric obtains a high correlation with human satisfaction.

Another aspect of dialogue evaluation is diversity. Open-domain dialogue systems

tend to generate generic responses [45, 47, 38], such as –I don’t know. Therefore, it

is crucial to evaluate the diversity of dialogue responses in addition to the quality of

a single response (which is often measured by the BLEU score).

The Dist metric [44] is one of the most widely used metrics to measure response

diversity. The Dist-n score is computed as the percentage of unique n-grams across

all the generations. A low Dist score indicates that the dialogue system tends to

generate generic words. It is important to note that a higher Dist score does not

necessarily imply a better dialogue system, as random generation achieves a very

high Dist score. Therefore, it is common to consider multiple metrics such as BLEU
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and Dist to evaluate dialogue systems.

2.4 Summary

In this section, I first introduced different text generation models. I first started with

the basic RNN model, which has the vanishing and exploding gradient problem. Then,

I moved on to the LSTM model which addresses the issue. However, a plain LSTM

encoder–decoder model is still problematic for modeling long sequential data due to

the information bottleneck. Therefore, the attention mechanism was introduced. I

also described state-of-the-art Transformer models: they completely replace RNNs’

recurrent connections with attention mechanisms to achieve superior performance and

faster training.

I then briefly discussed different types of dialogue systems: open-domain and task-

oriented. Open-domain dialogue systems focus on open-ended conversations, whereas

task-oriented dialogue systems focus on achieving specific tasks. However, these seem-

ingly opposite paradigms are not mutually exclusive, as conversational question an-

swering works in both styles. Finally, I discussed the main evaluation metrics that

measure the quality and diversity of dialogue systems.
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Chapter 3

Approach

3.1 Overview

In this chapter, I will provide details about our proposed Equal-Size Hard Expectation–

Maximization (EqHard-EM) algorithm. In Section 3.2, I will first introduce the

model, where we propose to enhance a standard sequence-to-sequence (Seq2Seq)

framework with multiple decoders to address the one-to-many problem in dialogue

systems; we further propose to leverage the adapter module [34] to reduce the num-

ber of parameters and to share knowledge among different decoders. In Section 3.3,

we explain the training method for our multi-decoder model. Specifically, we follow

the standard expectation–maximization approach, but modify the E-step in order to

enforce an equal and hard assignment. We formulate it as an assignment problem,

and solve it by the Hungarian algorithm [39]. Finally, we briefly explain how to apply

our model to the dialogue generation task in Section 3.4.

3.2 Neural Architecture

Our model follows the general encoder–decoder architecture, shown in Figure 3.1a:

the encoder encodes the context of the dialogue into real-valued hidden representa-

tions, whereas the decoder then decodes the hidden representations into a dialogue

response. In particular, we use the Transformer architecture [75] for both the encoder

and decoder.

18



Figure 3.1: Model architecture for (a) single-decoder setup and (b) multi-decoder
setup.

The key component of the Transformer model is the attention mechanism, which

is used to replace recurrent connections in traditional recurrent neural networks [4].

The Transformer attention is computed using three matrices: Q, K, and V, which

represent the queries, keys, and values, respectively. Then, attention is computed

with the following formula:

Attention(Q,K,V) = softmax(
QK⊤
√
dk

V) (3.1)

where dk is the dimension of the keys.

Vaswani et al. [75] further improve the attention mechanism with multiple heads,

allowing different attention heads to focus on different parts of the sequence. Con-

cretely, the multi-headed attention is computed as:

MultiHead(Q,K,V) = Concat(head1, head2, · · · , headh)WO (3.2)

where

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (3.3)

Here, WQ
i , WK

i , WV
i , and WO are all projection parameter matrices.

Figure 3.2 shows the Transformer encoder–decoder architecture that uses the at-

tention mechanism extensively. As shown in Figure 3.2a, the Transformer layer in
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Figure 3.2: The Transformer architecture for the (a) encoder and (b) decoder. This
diagram is adapted from [75]. Note that every block in the diagram contains an
implicit residual connection and a follow-up layer normalization, and they are omitted
for simplicity.

the encoder is composed of two sub-layers: the multi-head attention layer and the

feed-forward layer. The Transformer decoder in Figure 3.2b has a similar architec-

ture except for two major differences: first, the self-attention layer (i.e., attention

within the decoder) is masked to ensure the decoder cannot attend to unseen to-

kens; second, an additional multi-head attention layer is added for the cross attention

between the encoder and decoder. Such a Transformer encoder–decoder framework

has shown great success in various NLP tasks, such as paraphrase generation [21],

machine translation [75], and summarization [50].

While the Transformer encoder–decoder architecture has also largely advanced the

dialogue generation task, it has been shown to generate generic responses [45, 47, 79].

Wei et al. [79] study this phenomenon and hypothesize that generic responses are due

to the one-to-many mapping nature of the dialogue task. While such mapping may

also exist in other text generation tasks, it is especially severe in dialogue generation,

because a dialogue response may be open-ended and can vary both syntactically and
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Figure 3.3: Adapter module. The diagram is adapted from [34].

semantically. Without proper treatment, the simple encoder–decoder architecture

fails to “select” a mode; rather, the widely applied cross-entropy loss does mode

averaging, which often results in generic responses such as –I don’t know.

3.2.1 Multi-Decoder Model

To address the aforementioned one-to-many mapping, we propose to enhance the

standard encoder–decoder architecture with multiple decoders. Figure 3.1b shows

our multi-decoder model, with one encoder and multiple decoders. First, an en-

coder encodes the context into a hidden representation as before. Then, multiple

decoders use the same hidden representation to generate diverse responses. Overall,

the common encoder provides a shared understanding of the context, and the differ-

ent decoders can learn to respond differently, similar to how different people respond

differently. Given the input –What is your hobby?, for example, various utterances

may fit as a response, such as –I’m an amateur tennis player, –I love food, so I enjoy

cooking a lot, and –My work is my hobby. Ideally, each of our multiple decoders may

capture one topic (e.g., sport, food, and work) for dialogue generation.

While it is intuitive and straightforward to instantiate a decoder with the full

Transformer architecture, it has two important drawbacks. First, multiple Trans-

former decoders are not memory efficient: each decoder is usually a full Transformer
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Figure 3.4: Multi-decoder model implemented with adapter modules.

model and takes substantial amounts of GPU memory. Second, complete separation

of the decoder parameters means that there is no knowledge sharing among the de-

coders. However, all decoders solve the same task of response generation, which is

similar even though they aim to cover different modes. Therefore, it is beneficial to

have some degree of parameter sharing among these decoders.

To this end, we propose to use adapter modules [34] for both efficient memory

usage and knowledge sharing among multiple decoders. As shown in Figure 3.3, the

adapter module first projects its input to a bottleneck layer. Then it projects it back

to the original input dimension after a nonlinear layer. Additionally, the module

features a residual connection [28].

Formally, given an input n-dimensional input x, the adapter module performs the

following transformation:

AdapterModule(x) = x + Wup(ϕ(Wdownx)) (3.4)

where Wup and Wdown are the weights for the linear up-projection and down-projection,
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respectively, and ϕ is an arbitrary nonlinear activation function.

In summary, we keep one complete Transformer decoder model, but insert multiple

adapter modules, each representing a separate “decoder”. While our proposed multi-

adapter setup conceptually contains multiple decoders as shown in Figure 3.1b, each

decoder only contains a few additional parameters for the adapter module. Thus, our

model is parameter efficient. Figure 3.4 illustrates our proposed multi-adapter setup.

3.2.2 Model Pretraining

We propose to finetune a standard encoder–decoder model using the entire dataset

to maximize knowledge sharing between different decoders. Specifically, we use a

pretrained T5 model [66], because pretraining has been shown effective for improving

performance [19, 65, 43].

Then, we warm-start the multi-adapter model by finetuning the T5 model with

the standard cross-entropy loss. Concretely, consider a sample x = (c, r), where

c = {c1, c2, · · · , cN} is the context sequence, and r = {r1, r2, · · · , rT} is the response

sequence. Then, the cross-entropy loss is defined as

L(x) =
T∑︂
t=1

− log pθ(rt|r1, · · · , rt−1, c) (3.5)

where the pθ is the predicted probability of generating the next token rt, and θ

represents all the parameters for the encoder–decoder model.

Notice that the fine-tuned Transformer parameters are frozen during the training

of the multi-adapter model. This allows each decoder to specialize by only adjusting

their respective adapter parameters and further maximizes the knowledge sharing

among different decoders.

3.3 Equal-Size Hard EM Algorithm

In this part, I will first formulate the multi-decoder training by treating the choice

of the decoder as an unobserved latent variable. Then, I will introduce the standard
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Expectation–Maximization (EM) algorithm, including both Soft-EM and Hard-EM,

with the highlight of the deficiencies of both algorithms, namely, the multiple decoders

collapsing to a single decoder. To address the collapse issue, I will then introduce

our Equal-Size Hard EM (EqHard-EM) algorithm, which extends Hard-EM by as-

signing an equal number of samples to each decoder. Finally, I will briefly explain

the Hungarian algorithm, which is used to solve equal assignments.

3.3.1 Expectation–Maximization Training

We formulate the multi-decoder training as follows. Suppose there are K decoders

in total. For some input context c, we would choose one decoder z ∈ {1, · · · , K},

which in turn generates a reply r. The kth decoder predicts the probability as p(r|z =

k, c, θ), where θ is the parameters of our entire model.

Our training follows the standard maximum likelihood estimation, except that

z is a latent variable that is not observed in the dataset. Therefore, we need to

marginalize it out. Formally, let a training sample be (c, r). The goal of our multi-

decoder training is to maximize p(r|c, θ), the conditional log-likelihood of r given c.

The marginalization of the choice of the decoder z is given by

log p(r|c, θ) = log
K∑︂
k=1

p(r, z = k|c, θ) (3.6)

The Expectation–Maximization (EM) algorithm [17] is a typical approach to the

training of latent variable models. In particular, the algorithm breaks the optimiza-

tion into two steps:

• E-step: we estimate the posterior distribution of the latent variable

p(z = k|r, c, θ) (3.7)
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• M-step: we maximize the expected log-likelihood

Ez∼p(z|r,c,θ)[log p(r, z|c, θ)] (3.8)

=
K∑︂
k=1

p(z = k|r, c, θ) log p(r, z = k|c, θ) (3.9)

In other words, the EM algorithm resembles supervised maximum likelihood estima-

tion, except that z is estimated by its posterior distribution instead of being given in

the training set.

To compute the E-step, we apply Bayes’ rule as

p(z = k|r, c, θ) (3.10)

=
p(r|z = k, c, θ)p(z = k|c, θ)

p(r|c, θ)
(3.11)

=
p(r|z = k, c, θ)p(z = k|c, θ)∑︁K

k′=1 p(r, z = k′|c, θ)
(3.12)

=
p(r|z = k, c, θ)p(z = k|c, θ)∑︁K

k′=1 p(r|z = k′, c, θ)p(z = k′|c, θ)
(3.13)

We additionally make a uniform prior assumption

p(z = k|c, θ) =
1

K
(3.14)

which asserts that, without seeing the response, the probability of each decoder is

the same. This differs from, say, the Gaussian Mixture Model (GMM) [6], where

the prior is parameterized and learned. While the prior may also be learned in our

multi-decoder model, we assume the uniform prior to fully exploit the capacity of all

the decoders.

This further simplifies Equation (3.13) as

p(z = k|r, c, θ) =
p(r|z = k, c, θ)∑︁K

k′=1 p(r|z = k′, c, θ)
(3.15)

Putting in (3.15) to (3.9) gives us the standard EM algorithm. It is also known as

the Soft-EM because each sample is assigned to each decoder k in a soft manner.
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However, the Soft-EM algorithm suffers from the collapse problem in our multi-

decoder model for dialogue generation. In particular, all decoders have very similar

parameters before training, because they are initialized with the same fine-tuned

model (Section 3.2.2). The posterior (3.15), therefore, will also be similar during the

training process, resulting in similar gradients for different decoders. As a result,

different decoders tend to generate very similar responses, failing to specialize and

capture different modes. We refer to this case as synchronous-training collapse.

Alternatively, (3.9) can be approximated by the single best decoder z, given by

k∗ = argmaxk p(z = k|r, c, θ) (3.16)

Then, the log-likelihood (3.9) becomes

Ez∼p(z|r,c,θ)[log p(r, z|c, θ)] ≈ log p(r, z = k∗|c, θ) (3.17)

This is known as the Hard-EM, as each sample is assigned to one decoder in a

hard manner. Hard-EM does not suffer from synchronous-training collapse, because

different decoders are assigned with strictly different samples.

Unfortunately, Hard-EM suffers from another type of collapse: non-training col-

lapse, where most decoders are untrained except for one or very few. This is because,

while the decoders are similar at the beginning, one will nevertheless be selected by

(3.16) and trained with some samples. Then, that decoder will give a higher prob-

ability to future samples and will be selected by (3.16) again. This is known as the

“rich-gets-richer” phenomenon, making Hard-EM ineffective in our scenario.

3.3.2 Equal-Size Hard Assignment

To this end, we propose the Equal-Size Hard Expectation–Maximization (EqHard-

EM) algorithm. Our approach adopts the idea of hard assignment, following the

Hard-EM algorithm, to avoid the synchronous-training collapse in Soft-EM. However,

we constrain the assignment such that each decoder gets the same number of samples.
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This equal-assignment constraint helps our algorithm to avoid non-training collapse

in Hard-EM, because all decoders are trained with adequate samples. Overall, our

algorithm avoids both types of collapse seen in hard and soft EM.

Formally, we treat the E-step as a constrained optimization problem. Consider

K decoders and N samples. The optimization variable is an assignment matrix

A ∈ {0, 1}K×N such that Akn indicates whether the nth sample is assigned to the

kth decoder. Since each sample must be assigned to some decoder, we must have∑︁K
k=1Akn = 1 for every n. Also, our equal assignment requires

∑︁N
n=1Akn = N/K for

every k. Here, we assume N is a multiple of K, which can be easily achieved in batch

implementation.

The optimization objective is to maximize the “fitness” of the decoder–sample

assignment, which is to minimize
∑︁K

k=1

∑︁N
n=1AnkCnk, where Cnk = − log p(z =

k|r(n), c(n), θ) is the negative log-probability for the nth sample being assigned to

the kth decoder.

In general, our optimization can be formulated as

minimize
A

K∑︂
k=1

N∑︂
n=1

AnkCnk (3.18)

subject to
K∑︂
k=1

Ank = 1, for n = 1, · · · , N (3.19)

N∑︂
n=1

Ank = N/K, for k = 1, · · · , K (3.20)

Ank ∈ {0, 1} (3.21)

Such an optimization problem may be solved by standard integer linear program-

ming (ILP) algorithms [69], if we reformulate the last constraint as Ank ≥ 0 and

Ank ∈ Z. However, this may be inefficient due to the large number of constraints in

our application.

In our thesis, we reformulate the optimization as a balanced assignment problem,

where the numbers of samples and decoders are the same. Then the problem can be
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Figure 3.5: Formulating an equal-assignment problem with two decoders and four
samples as a balanced assignment problem.

solved by the Hungarian algorithm, explained in the next part.

3.3.3 Hungarian Algorithm

The Hungarian algorithm [39] is a classic algorithm for solving balanced assignment

problems between jobs and workers; in our case, they are samples and decoders,

respectively. In a balanced assignment problem, the numbers of workers and jobs are

the same, which can be formulated as

minimize
A

N∑︂
k=1

N∑︂
n=1

AnkCnk (3.22)

subject to
N∑︂
k=1

Akn = 1, for n = 1, · · · , N (3.23)

N∑︂
n=1

Akn = 1, for k = 1, · · · , N (3.24)

Ank ∈ {0, 1} (3.25)
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This is essentially the same as our previous equal-assignment formulation, except that

every worker k should be assigned with exactly one job, as shown by constraint (3.24).

Our equal-assignment problem can be easily reformulated as a balanced assignment

problem by duplicating the decoders to match the number of samples. Recall that

we assume the number of samples N is a multiple of the number of decoders K,

which can be easily achieved by batch implementation. Thus, we make N/K copies

of each decoder to match the number of samples. The cost for the duplicated decoder

remains the same as the original one, i.e., Cnk′ = Cnk for some decoder k′ duplicated

from decoder k.

Figure 3.5 demonstrates how our reformulation works with two decoders and four

samples. The assignment problem is shown as a bipartite graph, where the workers

(i.e., decoders) are on the left-hand side, and the jobs (i.e., samples) are on the

right-hand side. The edges represent the cost for each assignment. As shown, both

decoders have two copies, effectively transforming the equal-assignment problem into

a balanced assignment problem. This reformulation allows us to apply the Hungarian

algorithm to solve the equal-assignment problem in our multi-decoder setup.

The Hungarian algorithm [39] works by manipulating the cost matrix by adding and

subtracting constants in the rows and columns, which does not change the solution of

the assignment problem. By doing so, the Hungarian algorithm reduces the matrix

into an equivalent cost matrix that contains a large number of zero entries. The zeros

in the matrix are then used to find the optimal assignment.

Let C ∈ RN×N
+ be a non-negative cost matrix, where Cij represents the cost of

assigning job i to worker j. The Hungarian algorithm performs the following steps:

Step 1. Reduce the rows by subtracting the minimum entry in each row.

Cij = Cij − min(Ci1, Ci2, · · · , CiN) (3.26)

Step 2. Reduce the columns by subtracting the minimum entry in each column.

Cij = Cij − min(C1j, C2j, · · · , CNj) (3.27)
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Step 3. Draw horizontal or vertical lines on the matrix to cover all the zeros. If

at least N lines are required to cover all zeros, then skip to Step 5. If less than N

lines are required to cover the zeros, proceed to Step 4.

Step 4. Find the minimum Cmin of the entries that are not covered by any lines.

Then subtract it from the uncovered entries and add it to the entries covered by two

lines (intersections). For entries not covered, apply:

Cij = Cij − Cmin (3.28)

whereas for entries covered by two lines, apply:

Cij = Cij + Cmin (3.29)

After these manipulations, go back to Step 3.

Step 5. Form the optimal assignment by choosing the zero cost entries in the

updated cost matrix, where every worker is assigned with one and only one job.

Intuitively, the Hungarian algorithm manipulates the cost matrix while maintaining

the relative costs between workers and jobs. These manipulations additionally keep

the cost strictly non-negative, making zero-cost assignments the optimal local choices.

Then, the algorithm terminates when there are enough zeros in the matrix such that

every job is assigned to a worker at zero relative cost. The Hungarian algorithm

can effectively solve our equal-assignment problem when reformulated as a balanced

assignment problem.

3.4 Inference

Our multi-decoder model may be used in different ways during inference for response

generation. In general, there are two main settings that are common in the existing lit-

erature: diverse multi-response generation [90, 25] and single response generation [11,

77].
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Diverse multi-response generation aims to generate multiple responses for one given

context. Our multi-decoder model can accomplish this naturally by using each de-

coder to generate a response suppose we have enough decoders. If we would like to

generate more responses, then we may apply traditional sampling techniques [33].

Single response generation, on the other hand, requires only one response for ev-

ery input context. In this case, we may obtain a candidate response with each de-

coder and choose the “best” candidate as the output. Specifically, we propose a

length-normalized confidence score for candidate selection, which is the average of

the predicted log-probabilities.

Given context c, the kth decoder predicts the response r(k) = {r(k)1 , · · · , r(k)Tk
} in a

greedy manner. At time step t, the predicted token is given by

r
(k)
t = argmax

r∈V
pk(r|r<t, c, θ) (3.30)

where V is the vocabulary, and pk(r|r<t, c, θ) is the kth decoder’s predicted probability

conditioned on the context and previously predicted tokens.

We further define the confidence score of the kth decoder as

log-confidence(r(k), c) =
1

Tk

Tk∑︂
t=1

log pk(r
(k)
t |r<t, c, θ) (3.31)

Eventually, we would choose the most confident decoder as

k∗ = argmaxk log-confidence(r(k), c, θ) (3.32)

and yield r(k
∗) as the generated output in the single-response setting.

3.5 Summary

In this chapter, we went through three important aspects of our proposed dialogue

system: the neural architecture, the training, and the inference.

We started by understanding the mode averaging issue in single-decoder models,

which often generate generic responses. To address the issue, we proposed a multi-
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decoder model, allowing different decoders to specialize and cover separate subsets of

modes.

We then focused on the training of our multi-decoder model by formulating it as

a latent variable model. In our case, the selection of the decoder is treated as the

unobserved latent variable. Although the EM algorithm is a principled approach to

train latent variables. We found that the classic Hard-EM and Soft-EM algorithm

variants both have collapse issues: Soft-EM suffers from synchronous-training col-

lapse, whereas Hard-EM suffers from non-training collapse. We then proposed our

EqHard-EM algorithm to address both kinds of collapse by applying an equal and

hard assignment. To achieve that, we formulated the equal-assignment problem as a

balanced assignment problem, which can be solved with the Hungarian algorithm.

Our last focus was on multi-decoder inference. Since we have multiple decoders,

the model can naturally generate multiple diverse responses, which is required in

the multi-response generation setting. On the other hand, single response generation

requires the model to select one response among the candidate responses as the model

output. To this end, we proposed to select by model confidence, allowing the most

confident decoder to be used for the given context.
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Chapter 4

Experiments

4.1 Overview

In this chapter1, I will first provide details in Section 4.2 about the two datasets that

we use for evaluation: Weibo and OpenSubtitles. We observe that the OpenSub-

titles dataset has the overlapping problem, so we clean the dataset before using it

to benchmark our models. In Section 4.3, I will explain our evaluation, which fea-

tures both quality and diversity metrics. Sections 4.4 and 4.5 will focus on our main

results for Weibo and OpenSubtitles, respectively. Then, Section 4.6 will compare

individual decoders quantitatively in terms of their individual performance as well as

their generation lengths. Finally, I will provide case studies for decoder outputs in

Section 4.7.

4.2 Datasets

We evaluated our proposed EqHard-EM algorithm in two popular open-domain dia-

logue datasets: Weibo [22] and OpenSubtitles [49]. In our previous work [82], we find

that the original OpenSubtitles dataset contains overlapping samples, so we used the

cleaned dataset instead. The two datasets are explained in detail as follows.

The Weibo dataset is constructed by [22]. It contains around 4 million training

1Figures 4.1 and 4.2 and part of the text related to the OpenSubtitles dataset are reused from
our published paper [82]. ©European Language Resources Association (ELRA), licensed under
CC-BY-NC-4.0.
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samples, crawled from the Chinese social micro-blogging website, Weibo; each sample

consists of a post (context) and a reply (response). The Weibo dataset is unique as

most posts have multiple replies, so the dataset has explicit one-to-many mappings.

We additionally evaluated our model on the OpenSubtitles dataset [49]. The

dataset is a collection of movie subtitles that have been processed initially for machine

translation research. However, the dataset has also gained popularity for dialogue re-

search, where consecutive utterances in the movies are treated as context–response

pairs. Unlike the posts and responses in Weibo, the utterances in movies do not nat-

urally have the explicit one-to-many mapping. Therefore, the OpenSubtitles dataset

helps us to understand how well our model works with implicit one-to-many mapping.

As mentioned, the original OpenSubtitles dataset contains overlapping samples. The

details are explained in the rest of this section.

4.2.1 The Overlapping Issue of Dialogue Datasets

We find that open-domain dialogue datasets are prone to the overlapping problem,

where duplicate samples exist across the training, validation, and test splits. In this

part, I will present the statistics and consequences with the OpenSubtitles dataset as

an example.

The overlapping problem is characterized by similar samples across the training,

validation, and test splits. We propose a metric, called the overlap ratio, to quantify

the amount of word overlapping between a test sample and the training set. Specif-

ically, we represent an utterance as a bag of words, and compute the overlap ratio

between two utterances u = {u1, · · · , um} and v = {v1, · · · , vn} as R(u,v) = 2|u∩v|
|u|+|v| .

A data sample is a tuple x = (c, r), where c is the context and r is the response.

We then compute the overlap ratio of two samples x = (c, r) and x′ = (c′, r′) as

R(x,x′) = min{R(c, c′), R(r, r′)}; the min operator rules out false overlapping caused

by generic utterances (e.g., hello) for either the context or the response. Finally,

the overlap ratio of a test sample x against the training dataset Dtrain is given by
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Figure 4.1: Overlap histogram of test samples against the training set on OpenSub-
titles.

R(x,Dtrain) = maxx′∈Dtrain
R(x,x′).

Figure 4.1 shows the histogram of the overlap ratio in OpenSubtitles. We find that

34.49% of test samples are identical to training samples, highlighting the overlapping

problem. Such overlapping does not naturally arise from human conversations; rather,

they are caused by oversights in data collection and preprocessing. For OpenSubtitles,

Lison et al. [49] collect subtitles based on their IMDb identifiers. However, we find that

the same movie may correspond to different identifiers if it has different versions. For

example, the South Korean movie My Sassy Girl2 and its American remake3 contain

highly overlapping dialogues, but they are treated as different movies based on their

IMDb identifiers.

We further observe that overlapping samples have undesired effects on training

dialogue systems. We compare the learning curves on the original test set and a

deduplicated test set, where we remove samples with an overlap ratio of greater than

0.80. In terms of the neural architecture, we fine-tune a T5-small model [66] here.

Figure 4.2 shows the learning curves in terms of the BLEU-2 metric. The model

achieves ∼15 BLEU-2 with the original test set; however, the same model only

achieves ∼3 BLEU-2 after deduplication. The results suggest that overlapping sam-

2https://www.imdb.com/title/tt0293715/
3https://www.imdb.com/title/tt0404254/
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Figure 4.2: BLEU-2 learning curve for the original dataset and the deduplicated
dataset for OpenSubtitles. Samples with an overlap greater than 0.80 are considered
duplicates and are removed for the deduplicated dataset.

ples heavily inflate BLEU scores, and that the high performances of the alleged “state-

of-the-art” models mainly come from memorizing training samples.

In addition, we observe that it takes more epochs for the test set performance

to converge when the test samples overlap with the training set. For example, the

BLEU-2 score still increases after 1000 epochs. Since most researchers do not train

their models for 1000 epochs, their reported performance may be arbitrary, depending

on where the model ends up along the learning curve. This highlights the inconsis-

tency of reported performances.

In summary, our qualitative and quantitative analyses show that it is fundamentally

flawed to evaluate open-domain dialogue systems on overlapping datasets, which are

unfortunately commonly used (and benchmarked) in current research. The next

subsection provides a data-cleaning strategy to address this issue.

4.2.2 Dataset Cleaning

We make efforts to clean existing open-domain dialogue datasets. In the literature,

both single-turn and multi-turn dialogues are common settings [12, 91, 77, 26]. We

propose to deduplicate data samples in the multi-turn setting, i.e., an entire movie in

OpenSubtitles is treated as a unit for deduplication. Such a unit can be further split

into single turns, so our treatment unifies both settings.
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Further, we propose to re-split the training, validation, and test sets of the original

corpora during deduplication. If we simply remove the duplicate samples, then at least

one of the validation and test sets will be heavily shrunk due to massive overlapping

samples, making evaluation noisy and unreliable.

Let us consider two units u and v (dialogue sessions or movies) for deduplication.

Their overlap ratio is defined as

R(u,v) =
2|u ∩ v|
|u| + |v|

(4.1)

The overlap ratio of a unit u is then computed as the maximum overlap against

all other units in the dataset D:

R(u,D) = max
u′∈D\{u}

R(u′,u) (4.2)

Note that the above overlap ratio is similar to the one in Section 4.2.1. However,

(4.2) considers the ratio of a deduplication unit (an entire dialogue session or movie),

whereas Section 4.2.1 considers the ratio of a single-turn conversation. Thus, we do

not have the min operator here. Further, the ratio of a unit is computed against the

rest of the corpus, whereas Section 4.2.1 computes the ratio of a test sample against

the training set. Thus, we have the set minus operator in (4.2).

Then, we iterate through all deduplication units in the corpus. If a unit’s overlap

ratio exceeds a threshold (set to 0.8), then we remove the unit but keep the one

that it overlaps the most with. Since there may be more than two units overlapping

with each other, we need to repeat the procedure multiple times. Specifically, we

recompute the overlap ratios after each iteration through the dataset, and remove

additional duplicate samples until convergence.

After that, we split the deduplicated units into training, validation, and test sets.

While our deduplication unit is an entire dialogue session or a movie, the resulting

corpus can serve for the settings of single-turn and fixed-turn contexts. We simply

split a unit into multiple tuples of contexts and responses. This may result in (a
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Version # Train # Validation # Test

Wang et al. [77] 1,144,949 20,000 10,000

Cleaned 979,230 11,982 12,152

Table 4.1: Statistics of the original and cleaned OpenSubtitles datasets.

small number of) additional duplicate samples due to the generic conversations, such

as –Thank you. –You’re welcome. Therefore, we further remove exactly overlapping

context–response pairs.

Table 4.1 shows the data statistics for our cleaned datasets in the single-turn set-

ting, which is adopted in our experiments. Our data-cleaning strategy enables us to

control the size of validation and test sets.

4.3 Metrics

We compare our proposed models with baseline approaches in terms of the following

metrics.

BLEU. The BLEU score [59] is a standard metric that measures the similarity

between the reference and the model output, and the score is commonly used in

dialogue research [90, 22, 77] to measure the quality of the generated responses.

Details of the BLEU score are in Section 2.3.3.

Dist. The Dist score [44] is a measure of the diversity of the generated responses,

which is another commonly used metric for diverse dialogue generation. Refer to

Section 2.3.3 for more details.

pairwise-BLEU. We additionally follow [70] and adopt their pairwise-BLEU to

measure the diversity among different responses for the same model input. The

pairwise-BLEU measures the pairwise BLEU score among the model generated out-

puts. Let R = {r1, r2, · · · , rN} be a set of responses and P = {(i, j) | i ∈ [1, N ], j ∈

[1, N ], i ̸= j} be the set of pairwise comparisons. Then the pairwise-BLEU is defined
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as

pairwise-BLEU(R) =
1

|P |
∑︂

(i,j)∈P

BLEU(ri, [rj]) (4.3)

where BLEU(hypothesis, [reference]) is the function that calculates the standard BLEU

score between the hypothesis and a reference. A high pairwise-BLEU is undesired as

it shows that all model outputs are highly similar. The pairwise-BLEU complements

the Dist metric by focusing on the diversity between the model outputs rather than

across the model outputs.

best-BLEU. We additionally evaluate our dialogue systems in terms of the best

BLEU score, which shows the performance upper bound for multi-response generation

models.

best-BLEU(R) = max
r∈R

BLEU(r, [ref1, · · · ]) (4.4)

where R is the set of model responses, and [ref1, · · · ] is a list of references. In our

multi-decoder model, the best-BLEU shows how the model performs if we can make

the best choice of the decoder for each input.

4.4 Results on the Weibo Dataset

We first evaluate our approach on the Weibo dataset, which features the one-to-many

phenomenon explicitly. We consider the following competing models:

• T5-small. We use the T5-small [66] model as the standard Transformer encoder–

decoder baseline. T5 is pretrained on various NLP tasks, including machine

translation, summarization, and question answering. Such pretraining has shown

great success in improving downstream performance, and the model serves as a

strong baseline for our multi-decoder models.

• Multi-Decoder Model. Our multi-decoder model uses the finetuned T5-small

as a starting point. We then insert adapter modules at each layer, allowing
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different adapters to behave as separate decoders. Additionally, the parameters

of the finetuned T5-small is frozen to encourage maximum knowledge sharing

among decoders. The multi-decoder model is then trained with different EM

variants applied at the batch level:

– Hard-EM. Hard-EM assigns samples in a binary fashion. A sample is

only assigned to the decoder that has the highest posterior fitness among

the other decoders. Other decoders do not get partial assignment for the

sample.

– Soft-EM. Unlike Hard-EM, Soft-EM assigns samples in a soft manner,

where each decoder is assigned with a portion of a sample based on the

posterior fitness.

– EqHard-EM. Our proposed EqHard-EM algorithm applies the Hungarian

algorithm to obtain equal and hard assignment.

– EqDynamicRandom. Rather than applying the EM algorithm, this ap-

proach dynamically assigns an equal number of samples to each of the

decoders. As training continues, every decoder will be trained on all

the samples, so this approach should perform similarly to the standard

encoder–decoder model, except that it has extra adapter parameters.

– EqFixedRandom. This approach also assigns samples randomly. How-

ever, unlike EqDynamicRandom, the random assignment is persistent and

does not change across epochs.

Table 4.2 shows the performance of our approach and the competing models. As

seen, Hard-EM has lower BLEU performance than the T5-small model, which is

caused by the non-training collapse. During Hard-EM training, we observe that most

of the samples are assigned to one decoder, so only one decoder is properly trained.

However, the inadequately trained decoders also participate during the inference pro-

cess, leading to the degradation of overall BLEU performance. The non-training

40



Model BLEU best-BLEU pairwise-BLEU Dist-1 Dist-2

T5-small 7.20 - - 10.41 37.37

Hard-EM 6.23 10.75 1.20 13.41 48.93

Soft-EM 7.97 10.74 37.46 11.66 44.13

EqDynamicRandom 8.66 11.15 41.97 11.58 43.64

EqFixedRandom 9.88 13.85 19.63 12.64 49.93

EqHard-EM 10.34 15.20 10.92 14.33 57.32

Table 4.2: Main results on the Weibo dataset. Note that all models except T5-small
is fine-tuned on 10% of the Weibo dataset due to limited computing resources.

collapse is also shown by the low pairwise-BLEU score and the high Dist scores: the

inadequately trained decoders tend to generate random utterances, and therefore the

multi-decoder model appears to generate diverse responses. Our experiment demon-

strates that Hard-EM suffers from non-training collapse, and it is not suitable for

training multi-decoder models.

We also observe that Soft-EM suffers from the synchronous-training collapse. Al-

though every decoder is trained with the Soft-EM algorithm, they are mostly trained

synchronously. This causes all decoders to generate similar responses, which is shown

by the high pairwise-BLEU score. Despite the synchronous-training collapse, we ob-

serve that Soft-EM still outperforms the T5-small baseline in terms of both BLEU and

Dist. The slight performance improvement may be attributed to a partial collapse,

allowing the multi-decoder model to partially address the mode averaging problem.

This result confirms the viability of EM-style training, and it highlights the impor-

tance of addressing the collapse issue. Overall, we find Soft-EM also ineffective for

multi-decoder training due to synchronous-training collapse.

EqDynamicRandom is another baseline that outperforms the T5-small model. Due

to the random assignment during the training, the EqDynamicRandom algorithm

asymptotically degenerates into training every decoder with all the training sam-

ples. Such training eventually causes all decoders to be similar, achieving the highest
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pairwise-BLEU score among all models. However, we still observe a significant per-

formance improvement over the T5-small baseline. This is probably because the

resulting multiple decoders may still differ from each other more or less, and EqDy-

namicRandom is essentially an ensemble model [88].

The EqFixedRandom variant randomly assigns samples to decoders beforehand,

and such assignment is fixed during training. We see that EqFixedRandom outper-

forms all the above methods significantly in terms of both BLEU and Dist while

achieving the lowest pairwise-BLEU so far. This shows that the idea of allowing

different decoders to specialize in different subsets of samples is the key to address-

ing the mode averaging issue. Overall, EqFixedRandom sets up a strong baseline

performance for variants of the EM algorithms.

We then compare our proposed EqHard-EM algorithm against all these baselines.

Overall, our EqHard-EM algorithm achieves the best performance across all models.

In particular, it achieves the highest BLEU performance while maintaining the di-

versity in its generations as demonstrated by the high Dist scores. Our EqHard-EM

algorithm also successfully addresses the collapse issue in both Soft-EM and Hard-

EM, as it achieves significantly lower pairwise-BLEU than all other baselines except

EqHard-EM. However, the low pairwise-BLEU score for EqHard-EM is due to random

generations from inadequately trained decoders, which is not the case for EqHard-

EM. The results show that our EqHard-EM algorithm is successful and improves the

other EM variants by addressing the mode averaging issue.

4.5 Results on the OpenSubstitles Dataset

We also evaluate our models on the cleaned OpenSubtitles dataset, where we compare

them against both state-of-the-art and classical models, detailed as follows.

• LSTM with Attention. We include the long short-term memory network [32]

with an attention mechanism [4] as a baseline. This is a standard model before
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Model BLEU best-BLEU pairwise-BLEU Dist-1 Dist-2

LSTM† 1.41 - - 3.10 14.94

Transformer† 1.29 - - 3.05 13.88

GPT-2† 2.15 - - 2.98 11.37

T5-small† 2.07 - - 2.78 8.87

EqFixedRandom 2.33 3.80 33.32 4.08 14.62

EqHard-EM 2.34 5.11 16.08 4.68 15.83

Table 4.3: Main results on the OpenSubtitles dataset. †Results for these models are
quoted from [82].

the Transformer era.

• Transformer. In current research, the Transformer [75] is the most commonly

used architecture. It replaces LSTM’s recurrent connections with a multi-head

attention mechanism and achieves superior performance in different NLP tasks.

In this baseline, the Transformer is not pretrained.

• GPT-2. The GPT-2 model [65] adopts the Transformer architecture, but is

pretrained on massive unlabeled corpora. Pretraining is shown to benefit various

downstream tasks.

• T5-small. The T5 model [66] also uses the Transformer architecture, but works

in an encoder–decoder fashion. It is pretrained on a number of text generation

tasks, such as translation and summarization. We adopt the T5-small version

in our experiments.

Table 4.3 shows the results on our cleaned OpenSubtitles dataset. Note that since

the quoted models only perform single-response generation, their best-BLEU and

pairwise-BLEU are missing. Due to limited computing resources, we only evaluate

the performance for EqHard-EM and EqFixedRandom, since they are the two most

successful variants from our preliminary experiments on the Weibo dataset.
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Decoder Index
EqFixedRandom EqHard-EM

BLEU Dist-1 Dist-2 % Used BLEU Dist-1 Dist-2 % Used

1 5.21 9.91 37.79 8.53 6.94 11.38 41.83 2.89

2 5.39 9.70 36.24 14.57 8.65 12.26 47.39 14.44

3 5.14 9.98 39.37 12.47 5.86 10.79 39.01 5.12

4 4.58 10.04 38.99 6.82 9.48 14.44 58.63 30.58

5 5.84 10.76 41.04 9.58 5.75 9.03 34.07 1.71

6 5.46 10.02 39.04 9.06 3.21 7.00 23.34 12.20

7 4.98 10.02 39.24 9.71 4.41 7.50 27.21 1.31

8 5.34 10.70 40.73 9.06 9.21 12.87 51.48 19.29

9 4.46 10.08 37.95 9.19 4.39 8.93 30.76 9.45

10 5.39 10.40 40.18 11.02 4.80 7.72 26.46 3.02

Table 4.4: Individual decoder analysis for EqFixedRandom and EqHard-EM on the
Weibo dataset.

As seen, our strong baseline EqFixedRandom outperforms all other standard encoder–

decoder models in terms of both BLEU and Dist, except it has slightly lower Dist-2

than the LSTM model. This confirms that the multi-decoder model and our equal

assignment are successful in improving standard encoder–decoder models.

Further, our EqHard-EM outperforms EqFixedRandom in every aspect and achieves

the highest performance in terms of both BLEU and Dist. EqHard-EM also achieves

significantly lower pairwise-BLEU than EqFixedRandom, which shows that our al-

gorithm is successful in allowing different decoders to specialize and generate differ-

ent responses when given the same context. Overall, our results on OpenSubstitles

demonstrate that EqHard-EM works well even when there is no explicit one-to-many

phenomenon in the dataset.

4.6 Decoder Analysis

We conduct extensive analysis to better understand how our EqHard-EM algorithm

affects individual decoders. Table 4.4 shows the performance and decoder usage of
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each decoder in the EqFixedRandom and EqHard-EM models. The decoder usage

refers to the percentage of times that a decoder is chosen to output the response based

on its log-confidence score in (3.31). Note that the decoders between EqFixedRandom

and EqHard-EM are unrelated even though they share the decoder indices.

We observe that the performance is relatively uniform across different decoders in

the EqFixedRandom model. As shown, all decoders achieve a BLEU score of ∼5

and a Dist-1 score of ∼10. In addition, they also have mostly uniform usage, with

each of the decoders being used roughly 10% of the time. This is unrealistic if the

decoders are truly specialized. We expect specialized decoders to have more different

overall performance, as they would all excel in different ways. Overall, the decoders of

EqFixedRandom appear to behave similarly, which is understandable as the decoders

are simply trained with random subsets of the data.

EqHard-EM, on the other hand, achieves drastically different performance across

different decoders. For instance, Decoder 5 achieves the lowest BLEU score of 3.21,

whereas Decoder 3 achieves the highest score of 9.48. There is also a variety in terms

of diversity performance, with the Dist-1 score ranging from 7.00 to 14.44. This

shows that the decoders are very different. Certain decoders perform well in general;

for example, Decoder 3 achieves a high BLEU score of 8.65. Other decoders are

more specialized; for example, Decoder 5 may only perform well in specific cases,

achieving a relatively low overall BLEU score. The results suggest that our EqHard-

EM algorithm is successful in addressing the mode averaging issue, allowing decoders

to specialize in different ways.

We further notice that the specialized decoders from EqHard-EM are well utilized

to achieve strong performance. In particular, the full model outperforms all individ-

ual decoders in terms of BLEU and Dist, except for Decoder 3 whose Dist scores are

slightly higher. This shows that our strong performance is in fact achieved by com-

bining multiple specialized decoders rather than having a particularly well-trained

decoder. Notably, Decoder 3 is used 12.20% of the time, even though it has the worst
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Figure 4.3: Average response lengths for (a) EqFixedRandom and (b) EqHard-EM
for individual decoders. The error bars represent the standard deviation.

overall BLEU performance of 3.21. This shows that EqHard-EM enables decoders to

specialize and work in a complementary fashion, confirming its ability to address the

mode averaging issue.

We further analyze the decoders by examining the lengths of their responses. Fig-

ure 4.3 plots the average response lengths of individual decoders, where the error

bars represent the standard deviation. For EqFixedRandom, we see that the gener-

ated lengths are again similar across different decoders: they all generate around ∼12

words on average. By contrast, we see more variations for EqHard-EM. For instance,

Decoder 5 generates the shortest responses with ∼11 words on average, whereas De-

coder 6 generates ∼14 words on average. This explains the low overall performance of

Decoder 5: short responses are brevity-penalized more by the BLEU metric in general.

Overall, our length analysis shows that EqHard-EM allows decoders to specialize in

generating responses at different lengths.

4.7 Case Study

We show decoder outputs in Table 4.5 for Soft-EM, Hard-EM, and EqHard-EM. As

shown, Soft-EM suffers from the synchronous-training collapse, as all decoders essen-

tially generate the same response, except for Decoder 9 whose response is different.
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Input 世界名犬幼年期，萌死你不偿命！ World renowned little puppy, kill you with cuteness!

Soft-EM

1: 我家的狗狗也是这样的 My doggo is also like this

2: 我家的狗狗也是这样的 My doggo is also like this

3: 我家的狗狗也是这样 My doggo is also like this

4: 我家的狗狗也是这样的 My doggo is also like this

5: 我家的狗狗也是这样的 My doggo is also like this

6: 我家的狗狗也是这样的 My doggo is also like this

7: 我家的狗也是这样的 My dog is also like this

8: 我家的狗也是这样的 My dog is also like this

9: 我想养一只，可惜没有狗 I want one, too bad no dogs for me

10: 我家的狗狗也是这样 My doggo is also like this

Hard-EM

1: 我家的狗狗也是这样的 My doggo is also like this

2: 。！。。 My doggo is also like this

3: 世界名犬幼年期 World renowned little puppy

4: ！！！！！ [repeat] !!!!! [repeat]

5: 其实。！ In fact.!

6: 太可爱了，太太太太太 [repeat] Very cute, very very very very very [repeat]

7: 。！。！ .!.!

8: 世界名犬 World renowned dog

9: 每次都要让我们生活充满着无限的欢乐 Let our lives be filled with unbounded joy every time

10: 最后一张是什么？求解？ What is the last one? I wonder?

EqHard-EM

1: 好可爱啊，我也想养一只 Very cute, I want one too

2: 我的妈呀，太可耐了 My dear, too cute

3: 这是什么品种的狗？ What breed is this?

4: 我家的狗狗也是小时候 My doggo was too when it was little

5: 我想说，这是什么品种啊？ I want to say, what breed is this?

6: 这个。我喜欢！太可爱了 This. I l love it! Very cute

7: 好可爱啊，我也想养一只 Very cute, I want one too

8: 我要养只萨摩耶！ I want a Samoyed!

9: 我的妈呀，这是什么品种啊？ My dear, what breed is this?

10: 我喜欢第一个，好可爱啊！ I like the first one, so cute!

Table 4.5: The outputs given by Soft-EM, Hard-EM, and EqHard-EM. In the table,
[repeat] indicates that additional repetitive words are omitted.

This confirms that Soft-EM causes the multi-decoder model to essentially degenerate

into a single-decoder model.

The responses for Hard-EM, on the other hand, demonstrate the non-training

collapse. As seen, most decoders fail to generate a coherent response: Decoders 2, 4,
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and 7 only generate punctuation; Decoders 3 and 8 copy part of the input sentence;

Decoder 6 gets stuck in a loop; and Decoder 9 generates a completely irrelevant

response. Only Decoder 1 and Decoder 10 generate plausible responses. The failure

of these decoders is expected because they are mostly untrained due to the non-

training collapse of Hard-EM.

On the contrary, EqHard-EM is able to generate diverse responses when given the

same input, essentially overcoming both synchronous and non-training collapse. As

shown, all decoders generate unique responses, except for Decoder 1 and Decoder 7

whose responses are the same. In particular, even though Decoders 3, 5, and 9 all

talk about the breed of the dog, they use different expressions. Notably, Decoder 8

mentions wanting a Samoyed as a pet, showing its ability to generate responses beyond

the surface level understanding. Overall, our case study shows that the EqHard-EM

algorithm allows decoders to specialize and generate diverse responses, avoiding both

kinds of collapse shown by Soft-EM and Hard-EM.

4.8 Summary

In this chapter, we started by providing details for our evaluation datasets: Weibo

and OpenSubtitles. Weibo features explicit one-to-many mapping, where the same

input context corresponds to multiple responses in most cases. On the other hand,

OpenSubtitles has implicit one-to-many mapping, where most input contexts only

have one response. Together, the two datasets help us to comprehensively evaluate

our model in both scenarios.

We then moved on to the evaluation metrics, featuring both quality and diversity

measures. For response quality, we adopt the commonly used BLEU metric, which

measures the lexical similarity between model responses and reference responses.

In addition, we measure the performance upper bound of our multi-decoder model

through the best-BLEU metric. For response diversity, we adopt the popular Dist

metric, which measures the diversity of model responses across different input con-
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texts. We further measure the similarity among decoders through the pairwise-wise

BLEU metric. Overall, these metrics help us to carefully examine the quality and

diversity of our model outputs.

Finally, we performed experiments on the two datasets and show that our multi-

decoder model significantly outperforms baseline models and other EM variants. In

addition, we conducted both quantitative and qualitative analyses on individual de-

coder outputs. Our analyses suggest that decoders trained by our EqHard-EM al-

gorithm are able to specialize and generate diverse responses. Overall, our results

show that our multi-decoder model and EqHard-EM algorithm alleviate the mode

averaging problem and generate high-quality responses that are also diverse.
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Chapter 5

Conclusion and Future Work

In this work, we address the generic response problem in open-domain dialogue sys-

tems: traditional encoder–decoder architectures tend to generate generic responses

such as –I don’t know. It is hypothesized that this phenomenon is caused by the one-

to-many mapping in the dialogue task. That is, given a context, there are oftentimes

many valid responses. Therefore, the goal can be thought of as learning a multi-modal

target distribution, where different modes represent different kinds of responses. The

standard encode–decoder model fails to capture different modes in the distribution,

as cross-entropy training encourages the model to learn an overly smoothed function.

As a result, the model has the mode averaging problem and resorts to generating

generic responses.

To address this issue, we propose a multi-decoder architecture, which allows the

model to capture different modes with different decoders, alleviating the mode aver-

aging problem. We additionally propose to implement different decoders as different

adapter modules that are inserted into a shared Transformer, based on the following

considerations. First, our multi-adapter implementation is more parameter efficient

than allocating full Transformer models, allowing us to scale up the number of de-

coders with limited GPU memory. Second, parameter sharing with adapter modules

enables better knowledge transfer among different decoders.

To train our multi-decoder model, we propose to adopt EM-like algorithms by
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treating the choice of the decoder as an unobserved latent variable. However, we

observe that both traditional Hard-EM and Soft-EM perform poorly in our multi-

decoder training. In particular, Hard-EM assigns samples to their best-fit decoders,

which causes the rich-gets-richer phenomenon: the best-performing decoder will be

selected and therefore trained more, making other decoders even less likely to be

selected. Empirically, we find that Hard-EM typically only trains one decoder, which

degenerates the multi-decoder model to a single-decoder model. Alternatively, Soft-

EM assigns samples in a soft manner, allowing all decoders to be trained. However,

Soft-EM tends to train all decoders in a similar fashion due to its soft assignment,

which causes the decoders to generate similar responses. As a result, the multi-

decoder model also behaves like a single-decoder model in the Soft-EM case.

To this end, we propose Equal-Size Hard Expectation–Maximization (EqHard-

EM), which addresses both issues in Soft-EM and Hard-EM. EqHard-EM adopts hard

assignment, so it alleviates the problem in the Soft-EM case: decoders are trained

with distinct samples, and the decoders are more likely to diverge from each other.

In addition, we enforce an equal-assignment constraint, forcing every decoder to be

trained with an equal number of samples. This further ensures that all decoders are

well trained, unlike Hard-EM training. We solve the equal-assignment problem by

reformulating it as a balanced assignment problem, which can be solved by the classic

Hungarian algorithm.

Experimental results show that the multi-decoder model trained by our EqHard-

EM algorithm significantly outperforms single-decoder models in both quality and di-

versity metrics. In addition, quantitative and qualitative analyses verify that EqHard-

EM enables the decoders to specialize in different ways and generate diverse responses.

Overall, our experiments show that the mode averaging problem in dialogue systems

is indeed problematic and can be alleviated with well-trained multi-decoder models.

The thesis points to several future directions: multi-decoder initialization and de-

coder selection.
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Decoder initialization is a key design choice that affects the overall performance.

Currently, we initialize our model by fine-tuning a standard encoder–decoder model,

and then adapter modules are inserted to form different decoders. However, it is likely

that the model already suffers from the mode averaging problem before multi-decoder

training. Future work may address this issue by diverse decoder initialization.

Another future direction is to explore decoder-selection methods. In our EqHard-

EM algorithm, the decoder is selected based on the loss in training; however, the

loss is not available during inference time. Therefore, we have to select a decoder

based on the model confidence (predicted probability) during inference. This results

in a discrepancy between training and inference, which is known as exposure bias.

To address the issue, we may further explore the following ideas. First, we may

learn a gating function to predict the loss, and use it for both training and inference.

Alternatively, we may use model confidence for decoder selection during training.

Both approaches address the exposure bias, and we hope they could lead to further

improvement.
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Stefan Ultes, Osman Ramadan, and Milica Gašić. “MultiWOZ - A large-scale
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