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Abstract

In cooperative wireless networks with multiple relays, relay selection is an im-

portant step that has attracted a lot of research interest over the years. Many

variations of the relay selection problem with different assumptions, goals, and

selection approaches have been studied. In most of these approaches, it is as-

sumed that the channel-state-information (CSI) is known. However, finding

the CSI requires testing all the relays, which can be costly. This thesis proposes

modeling the relay selection problem as an optimal stopping rule problem in

two scenarios, one when testing to find the CSI is not costly and one where

there is cost.

When finding CSI has no cost, we investigate modeling the relay(s) selec-

tion problem as an optimal stopping rule problem such as a secretary problem

or one of its variants. For both single relay selection (SRS) and multiple relay

selection (MRS), and both known and unknown channel distributions (statis-

tics), we show that the relay selection problem in each case can be mapped

to a specific version of the secretary problem. The solution for each version

differs from one another. All versions try to make the selection without testing

all the channels.

When testing each relay has a cost, we solve the problem using a hybrid

approach. The method is based on a combination of the secretary problem

and the random selection, and maximizes the overall achievable rate of the

network. Simulation results verify that our method can achieve up to 7.5 dB

performance gain compared to the random approach that randomly selects the
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relays and achieves 20 dB performance gain compared to a solution that tests

all the relays and picks the best one(s).

iii



Acknowledgements

I want to use this opportunity to express my deepest gratitude and respect

to my supervisors, Prof. Masoud Ardakani and Prof. Hai Jiang, for their

invaluable support, great ideas, and technical guidance throughout my MSc

program. Their enthusiasm and attitude towards research problems inspired

me to use their way of thinking in my graduate studies and my life. I extend

my sincere gratitude to the committee members Prof. Chintha Tellambura

and Prof. Li Cheng, for dedicating their time and energy to read my thesis

and providing valuable feedback for improving the quality of the thesis. I am

thankful to Prof. Qing Zhao for chairing my MSc defense. Finally, I would like

to express my deepest gratitude to my family and friends for their supports

and all the professors who delivered lectures and helped me learn something

new during the years of my MSc studies.

iv



Contents

1 Motivation and Background 1

1.1 Thesis Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis background . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Relaying protocols . . . . . . . . . . . . . . . . . . . . 5

1.4 Relay selection . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Secretary problem . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.1 Applications of the secretary problem . . . . . . . . . . 10

1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Relay Selection Over Wireless Networks: An Approach Based

on Secretary Problem and Its Variants 12

2.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Problem solution . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Various SRS problems as different scenarios of secretary

problem . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Various MRS problems as different scenarios of secretary

problem . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 SRS with Recall . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 SRS methods results . . . . . . . . . . . . . . . . . . . 24

2.3.2 MRS methods results . . . . . . . . . . . . . . . . . . . 31

2.3.3 Asymmetric links results . . . . . . . . . . . . . . . . . 35

v



3 Relay Selection Over Wireless Networks: Inspired by the Sec-

retary Problem when testing is costly 37

3.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Similarities . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.2 Differences . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Problem solution . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Single relay selection . . . . . . . . . . . . . . . . . . . 39

3.2.2 kRSn(k relay selection among n relays) . . . . . . . . . 47

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Single relay selection results . . . . . . . . . . . . . . . 52

3.3.2 Multiple relay selection results . . . . . . . . . . . . . . 53

4 Conclusion and Future Research Directions 59

4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Relay selection for the recall and the known channel dis-

tributions scenario . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Relay selection for a direct link from source to the des-

tination scenario . . . . . . . . . . . . . . . . . . . . . 60

4.2.3 Relay selection for other relaying protocols rather than

AF and DF . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.4 Multiple relay selection when the number of relays to be

selected is unknown . . . . . . . . . . . . . . . . . . . . 61

References 62

vi



List of Tables

2.1 Recall table for different size of memory m, r∗ and n. . . . . . 23

vii



List of Figures

1.1 Relaying scenario model. Here n is the number of relays. . . . 3

2.1 Indexing the known distribution scenario . . . . . . . . . . . . 17

2.2 Decision tree for the case that k = 2 and n = 3. . . . . . . . . 21

2.3 SRS scenario for the case of n = 15 relays when the channel

distribution is unknown. a) AF relaying b) DF relaying. n1 is

the average number of tests needed to select a relay. . . . . . . 25

2.4 SRS scenario for the case of n = 50 relays when the channel

distribution is unknown. a) AF relaying b) DF relaying. n1 is

is the average number of tests needed to select a relay. . . . . 26

2.5 SRS scenario for the case of n = 15 relays that the distribution

of the relays are known. a) AF relaying b) DF relaying. n1 is

is the average number of tests needed to select a relay. . . . . 27

2.6 SRS scenario for the case of n = 50 relays that the channel

distribution is known. a) AF relaying b) DF relaying. n1 is is

the average number of tests needed to select a relay. . . . . . . 28

2.7 Robustness of secretary based SRS scenario for the case of n =

50 relays that the channel distribution is known. . . . . . . . . 29

2.8 SRS scenario for the case of n = 50 relays where recall with

memory m is allowed. n1 is is the average number of tests

needed to select a relay. . . . . . . . . . . . . . . . . . . . . . 30

2.9 MRS scenario for the case of n = 15 relays with unknown chan-

nel distribution. a) AF relaying b) DF relaying. n1 and n2 are

the average number of tests to select the best and the second

best relays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

viii



2.10 MRS scenario for the case of n = 50 relays with unknown chan-

nel distribution.. a) AF relaying b) DF relaying. n1 and n2 are

the average number of tests to select the best and the second

best relays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.11 MRS scenario for the case of n = 15 relays with known channel

distribution. a) AF relaying b) DF relaying. n1 and n2 are the

average number of tests to select the best and the second best

relays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.12 MRS scenario for the case of n = 50 relays when channel distri-

bution is known. a) AF relaying b) DF relaying. n1 and n2 are

the average number of tests to select the best and the second

best relays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.13 SRS scenario for n = 50 relays when channel distribution is

unknown and the links are asymmetrical. η is the asymmetrical

parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.14 SRS scenario for n = 50 relays when channel distribution is

known and the links are asymmetrical. η is the asymmetrical

parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Decision tree for SRS based on secretary approach . . . . . . . 42

3.2 Diagram of the ith relay and its corresponding achievable rate

and threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Decision tree for 2RS3 . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Decision tree for kRSn . . . . . . . . . . . . . . . . . . . . . . 50

3.5 SRS for the two relaying protocols a) AF and b) DF with α = 0.01. 53

3.6 SRS for the two relaying protocols a) AF and b) DF with with

α = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 2RS50 for the two relaying protocols a) AF and b) DF with the

α = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 2RS50 for the two relaying protocols a) AF and b) DF with the

α = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

ix



3.9 3RS50 the two relaying protocols a) AF and b) DF with the

α = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.10 3RS50 for the two relaying protocols a) AF and b) DF with the

α = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

x



List of Acronyms

Abbreviation Definition
SRS single relay selection
MRS multiple relay selection
AF amplify-and-forward
DF decode-and-forward
kRSn selection of k relays among n relays
AWGN additive-white-gaussian-noise
b/s/Hz bits-per-second-per-hertz

xi



Chapter 1

Motivation and Background

1.1 Thesis Motivation

In cooperative communication systems, relays facilitate the communication

between the source and destination to improve the reliability of wireless com-

munication. Relay-assisted communication is especially promising when the

source-destination link is long, or when the line of sight can be obstructed [1].

There are many relaying strategies in the literature that have been utilized

in wireless standards such as using fixed relays in the European Telecom-

munications Standards Institute/Digital Enhanced Cordless Telephony (ET-

SI/DECT) standard and using non-transparent (NT) relays in the IEEE 802.16

working group and 3GPP standards [2].

A variety of relaying protocols have been suggested in the literature. Two

of the most common relaying protocols are amplify-and-forward (AF) and

decode-and-forward (DF) [3]. The main difference between DF and AF relay-

ing is that in DF, a relay decodes the source message and then forwards a re-

encoded version to the destination, whereas in AF, the relay only amplifies the

source signal. There are other relaying protocols that try to achieve diversity

gains and/or spectral efficiency [4]–[9]. In [7], hybrid decode-amplify-forward

(HDAF) relaying protocol is discussed. Also, in [9] an incremental relaying

protocol is proposed to increase the spectral efficiency for the cooperative

transmission. This protocol exploits a limited feedback from the destination

to indicate when the relay is allowed to forward the message to the destination.

When more than one relay is available, deciding which relay(s) should
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forward the transmitted message highly impacts the performance, in terms of

both energy efficiency and the network reliability. There are many different

single relay selection (SRS), and multiple relay selection (MRS) strategies

based on varying assumptions, optimization goals, or relay selection criteria

[10]–[25].

Some examples of relay selection for SRS scenario are as follows:

• In [10], a selection scheme is given to maximize the weighted sum-rate

capacity for DF relaying.

• In [11] - [13], the worst receive signal-to-noise ratio (SNR) of two users

is maximized for DF relaying.

• In [14], a cross-layer relay selection metric, which depends on both the

instantaneous channel conditions and the queuing status, is investigated.

• In [15], the instantaneous sum-rate of AF relaying is maximized.

• In [17], the mutual information of AF relaying is maximized.

Some of the examples of relay selection for MRS scenario are as follows:

• In [13], for DF relaying, a scheme that selects two relays out of n available

relays to minimize the average bit error rate (BER) is proposed.

• In [25], for AF relaying, maximizing the worst receive SNR is considered.

One of the most intuitive solutions for relay selection is to choose the

relay(s) with the highest end-to-end SNR(s). To find the end-to-end SNR for

each relay, the gain of the channels of the source-relay link and the relay-

destination link must be known. Therefore, one needs to test all the relays

to find their end-to-end SNRs and then selects the relay(s) with the highest

end-to-end SNR(s). Most of the literature dealing with the problem of relay

selection based on maximum end-to-end SNR assume that the channel state

information (CSI) of the source-relay and relay-destination links are known

[26]–[28]. One of the drawbacks of this assumption is that it requires testing

all the channels. This leads to wasting energy and time, especially when
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Figure 1.1: Relaying scenario model. Here n is the number of relays.

there are setups that have a large number of relays such as internet-of-things

(IoT) [29]. IoT is growing large, therefore, it needs higher densities of relays,

sensors, actuators to adapt to the increasing complexity and heterogeneity of

advanced network devices [30]. Handling a large number of relays in IoT setup

is challenging.

This problem gets even more severe for networks that have fast varying

channels in which even if the CSIs are collected, they are quickly outdated.

Then in this case, one may end up testing the relays one by one and deciding

on the spot whether to use them or not.

From this point of view, the problem of relay selection is similar to stopping

rule problems, a family of math problems that try to choose a time to take

a particular action (e.g., relay selection) in order to maximize an expected

reward (e.g., maximizing the rate of the network).

1.2 Thesis contributions

In this thesis, a system with one source node S and one destination node D

and n relays r1, r2, ..., rn as shown in Fig. 1.1 is investigated. Note that there is

no direct link between S and D in this setup, meaning that the communication
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between S and D is made possible by the relays. Hence, a relay or multiple

relays will be selected for data transmission.

In this thesis, we have done two studies. In the first study, we assumed

that collecting the CSI of the relays is not costly and in the second one, the

cost of collecting CSI is also considered.

In the first study, based on the nature of the relay selection problem, we

show that several different scenarios of the relay selection problem can be

modeled as specific versions of stopping rule problems. Using this modeling,

we develop relay selection algorithms inspired by stopping rule problems. In

this way, we select the relay(s) without testing all of them. Since the CSI

changes fast, the secretary approach allows us to make a good selection and

achieve data rates comparable to the case that CSI of all the relays were known

beforehand.

This problem is similar to one of the most popular stopping rule problems

called standard secretary problem [31]. In standard secretary problem there

are n candidates for a secretarial position and the employer is interviewing

(testing) them one by one and should decide on the spot whether to hire or

reject them (should decide when to stop interviewing the candidates). Once

one candidate is selected the employer no longer proceeds with the interview

of the rest of the candidates [32].

In the second study, we have modeled the relay selection problem as a

modified secretary problem and proposed an algorithm to solve it. First, we

propose an algorithm to solve the SRS problem and then we use that algorithm

to solve the MRS problem. For the selections based on the end-to-end SNR,

the CSIs of the channels need to be collected. To collect the CSIs, all the

channels need to be tested which takes time. This means that testing the

relays are costly. Despite the similarities of the standard secretary problem

to the SRS problem, there are some assumptions for the standard secretary

problem that do not fit to model the relay selection problem. For instance,

one assumption is that there is no cost for testing the candidates.

Therefore, we have to modify the standard secretary problem to solve the

relay selection problem. Our assumptions are as follows: (i) we have assumed
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that the distribution of the channel gains are known (ii) there is a cost for

testing the channels, so that when the cost of testing is growing large, one can

stop testing more relays and choose one relay randomly. The goal is to select

some suitable relay(s) that maximize the achievable rate. We have proposed

a strategy to select a suitable relay based on the modified secretary problem.

For ease of discussions, we first solved this problem for SRS and then use the

SRS solution to solve the MRS problem as well.

1.3 Thesis background

This section describes relaying protocols, relay selection and the basics of

the secretary problem. First, two common relaying protocols are introduced.

Second, the achievable rates for SRS and MRS are derived. Third, the original

secretary problem, the approach to solve this problem and its applications are

described in detail.

1.3.1 Relaying protocols

There are many relaying protocols available in the literature such as AF, DF,

compress and forward, incremental relaying, coded cooperation [33]. Two of

the most common relaying protocols are AF and DF. Our solution for the relay

selection in this thesis is for the DF scenario. However, as we will discuss later,

the solution can also be applied to AF subject to an accurate approximation.

Therefore, let us first discuss these two major relaying protocols AF and DF

for the system model shown in Fig. 1.1.

Amplify-and-forward (AF)

In this protocol, first the source sends its message. Then the selected relay will

amplify its received signal and forward it to the destination node. Assuming

relay i is selected, the signal received by relay ri, i ∈ 1, . . . , n and destination

D are:

ysri =
√︁

Pshsris+ nsri (1.1)

yrdi = hrdiMriysri + nrdi (1.2)
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where Mri =
√︃

Pri

Ps|hsri |
2
+N0

. In (1.1), s is the transmitted symbol by source

S, Ps is the transmitted power of source S and Pri is the transmitted power

by relay ri. Also, hsri ∼ CN
(︁
0, σ2

sri

)︁
and hrdi ∼ CN

(︁
0, σ2

rdi

)︁
are the complex

channel gain of the source-relay channels and the relays-destination channels

respectively, where, CN (µ, σ2) denotes a complex circularly symmetric Gaus-

sian distribution with mean µ and variance σ2. Finally, nsri ∼ CN
(︁
0, σ2

sri

)︁
and nrdi ∼ CN

(︁
0, σ2

rdi

)︁
are the additive white Gaussian noise (AWGN) at the

relay and the destination, respectively.

The end-to-end SNR can be found as:

SNReqi =
γsriγrdi

γsri + γrdi + 1
. (1.3)

In the above equation, γsri = |hsri |2 Ps

N0
and γrdi = |hrdi |2 Pr

N0
are the SNRs of the

source-relay and the relay-destination links, respectively. We can approximate

the end-to-end SNR in (1.3) as follows:

approximated SNReqi
= min{γsri , γrdi}. (1.4)

The above equation is a very accurate approximation when either γsri ≫ γrdi

or γrdi ≫ γsri .

Decode-and-forward (DF)

In DF relaying, once the source S sends its message, the selected relay fully

decodes that message, re-encodes it, and forwards it to the destination D.

Since we have assumed that in this setup, there is no direct link from the

source to destination, the end-to-end SNR can be written as follows [3]:

SNReqi = min{γsri , γrdi}. (1.5)

1.4 Relay selection

In a dense communication system, several relays may be available to forward

the transmitted message. Deciding which relay(s) assist with the communi-

cation is quite difficult and highly impacts the performance of the network in
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terms of the achievable rate of the system. In this part, the frequently used

approaches for relay selection are discussed.

Random selection is a simple solution yet not always effective for choosing

the relay(s). Selection based on the achievable rate is an important criterion

that is discussed in here for relaying protocols AF and DF in both SRS and

MRS scenarios.

Achievable rate

One of the most intuitive criteria for relay selection is to select the relay(s) that

lead to maximum achievable rate for a communication system. The achievable

rate of a system where one relay has been selected is as follows:

achievable rate of SRS = 1/2 log2(1 + SNReqi). (1.6)

In the above equation, the SNReqi corresponds to Eqn. (1.3) and (1.5) for AF

and DF protocols respectively.

The achievable rate for SRS can be easily extended to the case where k

relays are selected. Assuming the maximum-ratio-combining (MRC) at the

receiver, the end-to-end SNR of the system is the sum of the end-to-end SNRs

of the k selected relays. According to [34], MRC is the optimal algorithm for

maximizing the achievable rate. So the achievable rate of this system assuming

that the MRC technique is employed at the destination node D can be written

as follows:

achievable rate of MRS = 1/2 log2(1 + Σk
i=1SNReqi), 1 ≤ k ≤ n (1.7)

To find the achievable rate of MRS for the systems with AF and DF proto-

cols, Eqn. (1.3) and (1.5) are plugged as the SNReqi into the above equation

respectively.

Overall achievable rate

To select a relay, one may first test the relay, meaning that the CSI of its

channels to source and destination is collected. This process takes some time,

which we refer to as the test time. If we assume that the transmission time is

7



one unit and testing one relay takes α units of time, we can define a cost for

testing. This cost depends on the ratio of test time to the transmission time

and is defined as follows:

α =
test time

transmission time
. (1.8)

Now let us assume that k relay(s) among n relays is (are) selected and we

have done m number of tests with cost parameter α to select the relay(s).

Since there is a cost for testing the relays, the achievable rate is also affected.

To distinguish from the term “achievable rate”, here we use the term “overall

achievable rate” to refer to the rate of the system taking into account the

cost for testing the relays. Given that 1 + mα units of time are needed to

achieve 1 unit of time for data transmission, the overall achievable rate of the

cooperative communication system shown in Fig. 1.1, is as follows:

overall achievable rate =
1/2 log2(1 + Σk

i=1SNReqi)

1 +mα
, 1 ≤ k ≤ n. (1.9)

1.5 Secretary problem

The optimal stopping rule problems are a family of math problems that try

to choose a time to take a particular action in order to maximize an expected

reward [35]. These types of problems are found in statistics, mathematics,

communication, business, economics, etc [36].

The secretary problem is one of the most popular stopping rule problems

appeared in the late 1950’s and early 1960’s [31]. This problem is also called

marriage problem, beauty contest, dowry problem [37].

Imagine that there is one secretarial position available among n available

applicants. The candidates are interviewed sequentially and a decision for each

candidate needs to be made on the spot. Once a candidate is selected, the

interview process will be terminated. Once rejected, that candidate cannot

be recalled. The goal is to maximize the probability of selecting the best

candidate [38].
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The solution to this problem is a class of stopping rules that for some

integer q ≥ 1 pass over the first q−1 candidates and thereafter stop and select

the next candidate who is better than the first q − 1 candidates [39].

The probability that the best candidate is the jth candidate is:

P (jth is best) =
1

n
. (1.10)

If the jth candidate is the best, then the probability of selecting it is the

probability that the best candidate among the first j − 1 candidates appears

in the first q − 1 candidates:

P (jth selected|jth is best) =
q − 1

j − 1
. (1.11)

Summing over the product of the previously mentioned probabilities gives

the probability of selecting the best candidate when we pass the q − 1 can-

didates and select the first candidate who is better than the previous q − 1

candidates. Let us call this probability Φ(q):

Φ(q) =
n∑︂

j=q

P (jth is the best and is selected)

=
n∑︂

j=q

P (jth is best)P (jth selected|jth is best)

=
1

n

n∑︂
j=q

q − 1

j − 1
=

q − 1

n

n−1∑︂
j=q−1

1

j
, 1 < q ≤ n (1.12)

The optimal q is the one that maximizes the above probability. In order

to find the rule that leads to the optimal q, we can use the following:

Φ(q) ≥ Φ(q + 1) =⇒ q − 1

n

n−1∑︂
j=q−1

1

j
≥ q

n

n−1∑︂
j=q

1

j
=⇒

n−1∑︂
j=q

1

j
≤ 1. (1.13)

For small values of n, computing the optimal q is easy. Among all the

values of q that satisfy Eqn. (1.13), the minimum q is the optimal. For large

values of n (when n → ∞):

x = lim
n→∞

q

n
. (1.14)
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Then we can simply change the summation in Φ(q) to integrals as follows:

Φ(q) =
q − 1

n

n−1∑︂
j=q−1

n

j

1

n
= x

∫︂ 1

x

1

x
dx = −x log(x). (1.15)

By taking a derivative with respect to x and solving that equation one can

find that the optimal x is 1/e [39]. Therefore, the optimal rule for large n is

to reject the first n/e candidates and select the next candidate that is better

than the first n/e candidates.

1.5.1 Applications of the secretary problem

The secretary problem not only can be used to model different problems such

as online auctions [40], but also can be used as a tool to study different phe-

nomenon especially in the field of neuroscience and psychology. As an example,

in [41] there was a study about the neuropsychological behavior of patients

with Parkinson’s disease. They used the secretary problem to assess whether

Parkinson’s disease patients have deficits in a sequential sampling task. In [42],

the secretary problem was used to solve the airline ticket purchasing problem.

For each ticket, one needs to decide to either buy that ticket or reject the

current ticket price and wait for a ticket with a better price in the future. In

this thesis, we apply the secretary problem to the relay selection problem.

1.6 Thesis outline

The outline of the thesis is as follows:

• Chapter 2

This chapter investigates modeling different scenarios of relay selection

problem as specific versions of the secretary problem when cost of testing

relays is assumed to be zero. Also, this chapter further studies how the

algorithms solving the secretary problem can be used to solve the relay

selection problems. Moreover, these studies have been done for both

SRS and MRS. The results show that our method can achieve up to

7.5 dB performance gain compared to the random approach that selects

the relays randomly.
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• Chapter 3

This chapter proposes modeling the relay selection problem as a stopping

rule problem for the case where testing relays is costly. Furthermore,

this chapter proposes an algorithm to select suitable relay(s) based on

the modified secretary problem to solve this problem. Simulation results

verify that our method can achieve 20 dB performance gain compared

to a solution that tests all the relays and picks the best one(s) and 6 dB

performance gain compared to a solution that randomly picks a relay(s).

• Chapter 4

This chapter presents the conclusions of the thesis and future research

directions.

11



Chapter 2

Relay Selection Over Wireless
Networks: An Approach Based
on Secretary Problem and Its
Variants

This chapter presents and analyses relay selection strategies for the system

shown in Fig. 1.1 based on the secretary problem and its variants. In other

words, different scenarios of relay selection have been modeled as a different

version of the secretary problem. The algorithms that fit to solve each problem

are derived. These algorithms try to maximize the achievable rate of the

system. Further, the insights provided by the obtained results are discussed.

2.1 Problem definition

Here, the aim is to select k relays among n relays so that the achievable rate

of the system given in (1.7) is maximized. Since the logarithm is an increasing

function, maximizing the achievable rate is equivalent to maximizing the end-

to-end SNR of the system. Once each relay is tested (the end-to-end SNR

corresponding to that relay is found and its corresponding achievable rate is

calculated), we need to decide whether we want to select that relay or move

on to the next relay. We assume that the CSIs get outdated, meaning that if

we do not select the relay and move forward, this decision cannot be revoked

at a later time.
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The above problem resembles an optimal stopping rule problem called the

secretary problem. The standard secretary problem is defined as below: There

are n candidates for a secretarial position available. The candidates are inter-

viewed one by one in a random order, and a decision for each candidate needs

to be made on the spot. Once rejected, that candidate cannot be recalled.

The goal is to maximize the probability of selecting the best candidate [31].

The above secretary problem is similar to a relay selection problem in which

the relays are the candidates. Let us familiarize ourselves with the general

characteristics of the secretary problem in which relays are the candidates:

• The number of candidates is known.

• The candidates are tested sequentially in a random order.

• An applicant, once rejected, cannot be recalled.

• In case n− 1 candidates are rejected, the last candidate is hired [31].

The secretary problem has various versions that can be applied to a relay

selection problem. These flavors correspond to whether the distribution of

the random quality of the relays is known or unknown (channel statistics are

known or unknown) and whether we need to select one or more than one relay.

In the next section, different scenarios of relay selection are each modeled to

a version of the secretary problem and solved.

2.2 Problem solution

Here, different scenarios of relay selection have been each modeled as a dif-

ferent version of the secretary problem. These scenarios are grouped into two

categories, SRS and MRS.

2.2.1 Various SRS problems as different scenarios of
secretary problem

In this section, we assume that only one candidate is going to be selected

(SRS). We have also assumed a general case that the distance of the source-
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relay link is not equal to the distance of relay-destination link. In other words,

the links are asymmetrical.

Unknown channel statistics

In this scenario, the channels statistics are unknown. We do not have any

information about the distribution of the SNR and the symmetry of the chan-

nels. Such a scenario resembles a standard secretary problem in which the

distribution of the quality of the candidates is unknown. Therefore, the SRS

problem in this case can easily be modeled as a standard secretary problem and

be solved with the solution to the standard secretary problem. The algorithm

for solving this problem is shown in Alg. 1:

Algorithm 1 Secretary problem Algorithm for relay selection

value = max{SNReq1 , SNReq2 , ..., SNReq⌊n/e⌋}
select = 0
for n/e+ 1 ≤ i ≤ n− 1 do
if SNReqi ≥ value then
Select relay i;
select = 1
break

else
Reject relay i

end if
end for
if select == 0 then
Select relay n

end if

According to Alg. 1, one should test the first n/e of the relays and remember

the value of the maximum end-to-end SNR among these n/e relays then once

we test other relays we need to compare their end-to-end SNR value to the

best end-to-end SNR value among first n/e relays. We select any relay whose

value is better than the best value among first n/e relays. Also, in case all

the relays expect the last one are tested and none of them is selected, the last

relay should be selected.

We will see that Alg. 1 finds a really good relay with fewer number of CSI

measurements compared to the solution that tests all the relays. Moreover, a
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solution based on testing all relays needs to make the unrealistic assumption

that CSI does not change otherwise, it won’t be able to pick the relay with

the maximum end-to-end SNR among all the n relays.

Known distribution

Here, we know that the average SNR of the link s-r is η times the average

SNR of the link r-d (γsr = ηγrd) and the distribution of the end-to-end SNR of

the relays are known. Therefore, we can no longer use the standard secretary

problem solution and we need to derive another solution for this problem. Let

us define X as a random variable describing the end-to-end SNR of the relays.

In fact, our goal is to maximize this utility through the relay selection process.

Now let us assume that n− 2 relays have been tested and none of them were

selected and the second last relay (the (n − 1)th relay) is going to be tested.

The options for this relay are as follows:

• Test the (n− 1)th relay and find its corresponding end-to-end SNR. Let

us call this end-to-end SNR as X1.

• Another option is to test the (n− 1)th relay and decide not to select it.

Here, based on our assumption since we have tested n− 1 relays and did

not make our selection, we are supposed to select the last relay without

testing it. The utility of selecting the last relay is the same as the utility

of selecting one relay randomly which is E(X), the expected value of the

end-to-end SNRs.

It becomes clear that our selection process has to be as follows:

If X1 > E(X) =⇒ The (n − 1)th relay is selected. (2.1)

If X1 < E(X) =⇒ The last relay is selected. (2.2)

This means a selection threshold can be defined for the (n−1)th relay as E(X).

Now, we can define the utility of the (n− 1)th relay as:

Y1 = P (X1 > E(X))E(X1|X1 > E(X)) + P (X1 < E(X))E(X). (2.3)
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Now if we do the same procedure for the (n − 2)nd relay, the options will

be as follows:

• Test the (n − 2)nd relay and decide to select this relay. Therefore, the

end-to-end SNR of the system will be X2.

• Test the (n − 2)nd relay and decide not to select it and move on to the

(n− 1)th relay.

If X2 > Y1 =⇒ The (n − 2)nd relay is selected. (2.4)

If X2 < Y1 =⇒ Move on to the (n − 1)th relay. (2.5)

By comparing the above equations, one can find the threshold corresponding

to the (n− 2)nd relay as Y1. Also, we can summarize the above equations and

find the utility of the relay (n− 2) as below:

Y2 = P (X2 > Y1)E(X2|X2 > Y1) + P (X2 < Y1)Y1. (2.6)

As you can see, all the n − 1 thresholds can be found through backward

induction. Now, let us generalize the backward induction and derive a recursive

formula for calculating the thresholds. Without loss of generality, we assume

that the end-to-end SNR of each relay and their corresponding thresholds are

indexed backward. Let Ri and Ri+1 be the thresholds corresponding to the

relays having Xi and Xi+1 as their end-to-end SNRs respectively. Therefore,

we can simply derive the recursive formula as below:

Ri+1 = P (Xi > Ri)E(Xi|Xi > Ri) + P (Xi < Ri)Ri,

R1 = E(X), 1 ≤ i < n− 1. (2.7)

The above equation can also be simplified as:

Ri+1 =

∫︂ ∞

Ri

f(x)dx

(︄∫︁∞
Ri

xf(x)dx∫︁∞
Ri

f(x)dx

)︄
+

(︃∫︂ Ri

0

f(x)dx

)︃
Ri

=

∫︂ ∞

Ri

xf(x)dx+Ri

∫︂ Ri

0

f(x)dx. (2.8)
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Here, f(x) is the distribution of the end-to-end SNRs of the system. The

way the relays, their corresponding thresholds and end-to-end SNRs are in-

dexed is shown in Fig. 2.1 [32].

Xn−1 Xn−i X1

i1 n− 1

Rn−1 Rn−i R1

End-to-end SNR

Thresholds

Relays

i relays are remaining

Figure 2.1: Indexing the known distribution scenario

In this scenario, if we assume that the gain of source-relay and relay-

destination are Rayleigh distributed, their absolute value squared will be ex-

ponentially distributed. Therefore, the distribution of γsr and γrd are also

exponential.

So according to the secretary problem in the case of known distribution,

we need to find the distribution of the end-to-end SNR of the relays. For sim-

plicity, we can approximate the SNReq for the AF protocol and use Eqn. (1.4).

Also, in the DF protocol, (1.5) can be used for the SNReq without any ap-

proximation. Therefore, SNReq for AF/DF relaying will have an exponential

distribution 1 with λSNReq = (η + 1)λsr in which λsr = 1
σ2snr

and σ2 is the

variance of the source-relay and relay-destination gain and SNR = P
N

which

is a fixed number.

By plugging in an exponential distribution with λSNReq as f(x) into (2.8),

the recurrence relation for the thresholds corresponding to each relay would

be as follows:

Ri+1 = Ri +
1

(η + 1)λ
e−λ(η+1)Ri , R1 =

1

(η + 1)λ
(2.9)

This means the end-to-end SNR of each relay is compared to its corre-

sponding threshold. And if the end-to-end SNR is larger than the correspond-

1The minimum of two independent exponential random variables with parameters λ1

and λ2 is another exponential random variable with λ = λ1 + λ2
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ing threshold, that relay is chosen; otherwise, we move on to test the next

relay.

2.2.2 Various MRS problems as different scenarios of
secretary problem

In this section, the original secretary problem is extended to the selection of

more than one relay.

Unknown distribution

Here we are going to select k > 1 relays among n relays. In this scenario, the

distribution of the random quality of the candidates are unknown and we do

not have any information about the distribution of the end-to-end SNR of the

relays. The achievable rate of such a system is shown in Eqn. (1.7). According

to (1.7), in order to maximize the achievable rate one needs to maximize the

sum of the SNReq. Therefore, in order to model the MRS problem as a version

of multiple selection in secretary problem, one needs to look for a version that

aims to maximize the sum of the payoffs.

In [40], a secretary algorithm for choosing k elements from n items trying to

maximize the sum of the payoffs is proposed. The main idea in this algorithm

is to group the candidates. The problem of selecting k candidates among n

number of candidates can be decomposed to two sub problems. In the first sub

problem, one should pick up ⌊k/2⌋ of the candidates among the first candidate

until the (m = B(n, 1/2))th 2 candidate and in the second sub problem, one

should pick up the remaining ones (k−⌊k/2⌋) among the (m+1)th candidate

until the last candidate. To solve the first sub problem, it can be further

decomposed to sub problems recursively until it is reduced to a problem of

size 1, where at this stage Alg. (1) can be used to select one candidate. To

solve the second sub problem, the selection of the k−⌊k/2⌋ candidates is done

compared to the maximum score one have seen among the first candidate until

the (m = B(n, 1/2))th candidate.

2m is a random sample from a binomial distribution
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As an example, for selecting k = 5 candidates among n = 50 candidates,

this problem reduces to two sub problems: the first one is selecting ⌊5/2⌋ = 2

candidates out of m1 = B(50, 1/2) = 21 candidates and the second one is

selecting 5−⌊5/2⌋ = 3 candidates among the (m1+1 = 22)th candidate until

the last candidate (n = 50). In the next step, the first problem is reduced

to selection of ⌊2/2⌋ = 1 candidates out of m2 = B(m1, 1/2) = 12. Now

that the algorithm has reduced to the problem of selecting one candidate, we

can apply the standard secretary solution to select one candidate among the

first m2 = 12 candidates. Also, out of the first m1 = 21 candidates we were

supposed to select two candidates and we have already selected one of them.

Therefore, we have to select another one from m2+1 = 13 to m1 = 21 and this

selection is done compared to the maximum score we have seen so far. Now

for solving the second problem, the remaining three candidates are selected

from the (m1 + 1)th to nth candidates, whose test scores are greater than the

maximum test score we have seen so far within the range of firstm1 candidates.

The pseudo Algorithm of this method is shown in Alg. 2. The proof of this

algorithm is shown in [40].

We can easily apply this algorithm to MRS scenario in which the distri-

bution of the random quality of the relays are unknown. In this problem, the

candidates are the relays and the test score of the candidates are the end-to-

end SNRs of the relays.

Known distribution

Here, we know that the SNR of link s-r is η times the SNR of the link r-d and

the distribution of the end-to-end SNR of the relays are known. And k relays

are going to be selected. The aim is to select the relays that can maximize

the achievable rate of the system. This is equal to maximizing the sum of the

end-to-end SNRs of the relays.

For ease of discussions, let us first solve this problem for the case that

k = 2. In this case, the total end-to-end SNR is the sum of the end-to-end

SNRs of the two relays. Now let Sn be the utility of choosing two relays among

n relays. As a simple example, when n = 2 and k = 2, then the two relays
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Algorithm 2 Secretary problem Algorithm for selection of k candidates
among n candidates
s → Number of Binomial samples
f → Final step.
M = [m0,m1,m2, . . . ,ms] → Binomial samples.
s = 0 → s is initialized to zero.
while k > 1 do

k = ⌊k/2⌋
s = s+ 1

end while
M(0) = n → m0 is initialized to n
for 1 ≤ i ≤ s do

M(i+ 1) = B(M(i), 1/2)
B is Binomial distribution

end for
1) Apply original secretary problem for candidates 1 to ms. The test result of the selected
applicant is called yl
2)
for ms ≤ i ≤ ms−1 do

if yi > yl then
Select the yi as the second applicant yl = yi

end if
end for

...
s) Find the sth applicant in the range m2 to m1 the same as step 2
f) Within the range m1 to n select the remaining n−s applicants that their rank exceeds
yl
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must be selected and their utility S2 = 2E(X), where E(X) is the average

of the distribution of the end-to-end SNR of the relays. The decision tree for

n = 3 and k = 2 is shown in Fig. 2.2. Here X3 is the the end-to-end SNR for

the first selection opportunity and X1 is that for the last. Once one chooses

the first relay, then the problem changes to choose-one-relay scenario.

Figure 2.2: Decision tree for the case that k = 2 and n = 3.

When the end-to-end SNR X3 is presented we accept it, if it exceeds or

equals some number s3, otherwise we reject it. We must find the optimum

value s∗3 of s3. If we take X3, we have left with two more opportunities and

one choice, and we already know that R2 is the gain to be expected. Therefore,

we can write the expected value for s3 as below:

S3(s3) = P (X3 ≥ s3)[E(X3|X3 > s3) +R2] + [1− P (X3 ≥ s3)]S2

= S2 +

∫︂ ∞

s3

xf(x)dx− (S2 −R2)

∫︂ ∞

s3

f(x)dx, (2.10)

where, f(X) is the distribution of the end-to-end SNRs of the relays.

Now, if we get a derivative with respect to s3, we can maximize S3(s3)

dS3 (s3)

ds3
= −s3f (s3) + (S2 −R2) f (s3) . (2.11)

Setting the derivative equal to zero, we have the optimizing value of s3, as

s∗3 = S2 −R2, (2.12)

S3 = S2 +

∫︂ ∞

s∗3

xf(x)dx− (S2 −R2)

∫︂ ∞

s∗3

f(x)dx. (2.13)
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If we extend this scenario to n relays, we will have

s∗n = Sn−1 −Rn−1, (2.14)

Sn = Sn−1 +

∫︂ ∞

s∗n

xf(x)dx− (Sn−1 −Rn−1)

∫︂ ∞

s∗n

f(x)dx. (2.15)

This scenario can be extended to three choice problem. Then in this sce-

nario, we will have Tn which is the same as Sn for two choice problem. Here,

n ≥ 3 and T3 = 3E(X). tn is the threshold for the first choice:

t∗n = Tn−1 − Sn−1 (2.16)

Tn = Tn−1 +

∫︂ ∞

t∗n

xf(x)dx− (Tn−1 − Sn−1)

∫︂ ∞

t∗n

f(x)dx (2.17)

We can extend this scenario to four choice problem. Then, Fn is the utility of

selecting four relays among n relays. We can easily have a recursive formula

for Fn [32].

f ∗
n = Fn−1 − Tn−1 (2.18)

Fn = Fn−1 +

∫︂ ∞

f∗
n

xf(x)dx− (Fn−1 − Tn−1)

∫︂ ∞

f∗
n

f(x)dx (2.19)

This scenario can be extended to k choice problem easily.

2.2.3 SRS with Recall

In all the previous parts, there was an assumption that recall is not allowed.

In other words, an applicant once rejected cannot be recalled. However, in

this part we want to allow limited recalls. This is a type of secretary problem

that at each stage, each of the last m applicants that were interviewed are

available for employment and the aim is to select the best applicant. In the

relay selection problem, if CSI does not change too fast, some of the recently

tested relays can still be used without worrying that their CSI is changed.

Therefore, this type of secretary problem is similar to an SRS problem in

which the CSI of the last m channels are feasible. The algorithm to select a

relay among n relays when the memory is m, is shown in Alg. 3.

The idea to solve this problem is to stop testing in a stage in which the

relatively best applicant is about to become unavailable [43]. Let us call this
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stage as r∗. For a problem in which one candidate needs to be selected among

the n applicants and the memory ism, one needs to test the first r∗ candidates.

Then for any candidate k after r∗, if after testing, the best candidate so far

(among all tested candidates) is the one at the leftmost position of the selection

window [k−m+ 1, k−m+ 2, ..., k], or equivalently, the best candidate so far

is candidate k−m+1, we stop and pick up candidate k−m+1. If we do not

stop until the last candidate, we pick up the last candidate. Here, k represents

the number of the candidates that have been tested so far. The proof and the

detailed algorithm to find the r∗ is discussed in [43]. We have brought the

table for the r∗ corresponding to each m (Table 2.1). For other parameters of

this table, refer to the Table on page 5 of [43].

Algorithm 3 SRS when recall is allowed with memory m

[index, value] = max{SNReq1 , SNReq2 , ..., SNReqr∗}
select = 0
for r∗ + 1 ≤ i ≤ n− 1 do
if SNReqi > value then
value = SNReqi

index = i
else
if i−m+ 1 == index then
Relay i−m+ 1 is selected.
select = 1
break

end if
end if

end for
if select == 0 then
select the last relay

end if

m r* m r*
n = 50 n =100
5 21 10 43
10 24 20 47
15 25 30 49
20 25 40 50

Table 2.1: Recall table for different size of memory m, r∗ and n.
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2.3 Results

In this section we evaluate the secretary-based relay selection methods in terms

of the achievable rate of the network versus SNR.

Simulation results are shown for two relaying protocols AF and DF. Chan-

nel distributions are assumed to be Reyleigh. The results have been tested for

two cases of known and unknown distributions for number of relays n = 15

and n = 50 and the secretary based method is compared to two other meth-

ods: exhaustive search and random selection. The exhaustive search tests all

the relays and then decides which relay(s) is/are the best. It assumes that

the CSIs do not change, so when it picks the best relay, the best CSI is still

available for that relay. In many practical setting, this assumption is not valid.

Hence, exhaustive search results are included as a benchmark only. The ran-

dom approach selects a relay(s) randomly without doing any tests. The range

of the SNR that has been tested is 0-40 dB. These methods are all grouped

and tested for both SRS and MRS scenarios.

2.3.1 SRS methods results

Here, all the simulations were done in order to select one relay among n relays.

The simulations were done for two cases where the distribution of the channels

are once unknown and once known.

Unknown distribution

The original secretary problem has been simulated for two relaying protocols.

We have assumed that the relays have been placed exactly in the middle of the

source and the destination, i.e.,γsr = γrd. The simulations are shown in Fig. 2.3

and Fig. 2.4. As depicted in Fig. 2.3, when comparing the secretary approach

of part a to that of the random approach, there is a 5 dB improvement in

order to achieve 4 b/s/Hz (bits per second per hertz). One can see that when

the number of relays is larger the secretary approach’s performance improves

both in terms of the achievable rate and the percentage of relays tested.
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Figure 2.3: SRS scenario for the case of n = 15 relays when the channel
distribution is unknown. a) AF relaying b) DF relaying. n1 is the average
number of tests needed to select a relay.
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Figure 2.4: SRS scenario for the case of n = 50 relays when the channel
distribution is unknown. a) AF relaying b) DF relaying. n1 is is the average
number of tests needed to select a relay.
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Figure 2.5: SRS scenario for the case of n = 15 relays that the distribution
of the relays are known. a) AF relaying b) DF relaying. n1 is is the average
number of tests needed to select a relay.

Known distribution

The set up of the relays is similar to the set up of the previous part. Also,

the distribution of relays are known so the secretary approach would be the

same as subsection 2.2.1 that requires finding n − 1 thresholds according to

the distribution of the channels in each setup.

The simulations were done for the case that all the links are having Reyleigh

distribution. The results are depicted in Fig. 2.5 and Fig. 2.6. As shown in

Fig. 2.6 part a and b, the secretary approach almost achieves the ultimate

performance possible, depicted by the exhaustive search. Also, in part a of

Fig. 2.6, there is almost 10 dB improvement in order to achieve rate 4 b/s/Hz

when comparing the secretary approach to the random approach. By com-

paring the results of known channel distribution to the results of unknown
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Figure 2.6: SRS scenario for the case of n = 50 relays that the channel distri-
bution is known. a) AF relaying b) DF relaying. n1 is is the average number
of tests needed to select a relay.
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Figure 2.7: Robustness of secretary based SRS scenario for the case of n = 50
relays that the channel distribution is known.

channel distribution, one can see that not only the performance in terms of

the achievable rate is improved but also the number of tests in order to achieve

this performance is reduced. Hence, knowing the channel distribution signif-

icantly helps the secretary approach and allows it to approach the ultimate

performance.

In Fig. 2.7, we have conducted another experiment to test the robustness of

the SRS algorithm when the distribution of the gain of the channels is known.

In this experiment, the secretary algorithm is applied on a case where there

is a 3 dB mismatch between the estimated and actual SNR (pink graph). As

you can see, even with 3 dB mismatch, the results are still promising.
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Figure 2.8: SRS scenario for the case of n = 50 relays where recall with
memory m is allowed. n1 is is the average number of tests needed to select a
relay.

SRS with recall

Here, we have assumed that recall with memory m is allowed. In other words,

at each stage of testing the relays, each of the last m relays are available to be

selected. The simulation results were done for the case where there are n = 50

relays, the relaying protocol is AF. In order to do the simulations, we have

used Table 2.1 to find the r∗ corresponding to each memory size. The results

are shown in Fig. 2.8. As you can see, when the memory size increases the

performance gets better and the gap between to the exhaustive search gets

smaller.
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Figure 2.9: MRS scenario for the case of n = 15 relays with unknown channel
distribution. a) AF relaying b) DF relaying. n1 and n2 are the average number
of tests to select the best and the second best relays.

2.3.2 MRS methods results

The simulations of this section were done in order to select two or more relays.

For simplicity, we have brought the simulations for selecting two cooperative

relays among n relays.

Unknown distribution

The distribution of the relays are unknown. We have assumed that the relays

are placed in the middle of the source and the destination. Fig. 2.9 and

Fig. 2.10 show the results for n = 15 and n = 50 respectively. According to

Fig. 2.10 part b, there is a 4 dB improvement in order to achieve rate 4 b/s/Hz

when comparing the secretary approach to the random approach.
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Figure 2.10: MRS scenario for the case of n = 50 relays with unknown channel
distribution.. a) AF relaying b) DF relaying. n1 and n2 are the average number
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Figure 2.11: MRS scenario for the case of n = 15 relays with known channel
distribution. a) AF relaying b) DF relaying. n1 and n2 are the average number
of tests to select the best and the second best relays.

Known distribution

The set up is similar to the previous part. Since the distribution is known

the approach is the same as section 2.2.2. The simulations were done for

the case that all the links are having Reyleigh distribution. The results are

depicted in Fig. 2.11 and Fig. 2.12. By comparing the results of this part

to the case of unknown channel distribution, one can see that not only the

performance in terms of achievable rate is better but also the number of tests

in order to achieve this performance is smaller. In other words, knowing the

channel distribution significantly helps the secretary approach and allows it to

approach the performance of the exhaustive search.
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Figure 2.12: MRS scenario for the case of n = 50 relays when channel distri-
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Figure 2.13: SRS scenario for n = 50 relays when channel distribution is
unknown and the links are asymmetrical. η is the asymmetrical parameter.

2.3.3 Asymmetric links results

All the previous results are for the case that the source-relay and relay-

destination links are symmetrical (η = 1). Here, we have assumed that the

links are asymmetrical and (η ̸= 1). Since we have discussed different sce-

narios in the previous parts and the results for the ASL (asymmetric link) is

similar to the previous parts, here, we have brought two results that are shown

in Fig. 2.13 and Fig. 2.14. The results show that secretary approach is also

working for the cases that the links are asymmetrical.
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Chapter 3

Relay Selection Over Wireless
Networks: Inspired by the
Secretary Problem when testing
is costly

This chapter proposes modeling the relay selection problem as an stopping

rule problem for the case where testing is costly. Furthermore, this chapter

proposes a novel hybrid algorithm to solve this problem. These algorithms

were derived in order to maximize the overall achievable rate of the system.

The results were derived for both SRS and MRS scenarios and were shown

based on the overall achievable rate versus SNR.

3.1 Problem definition

Here, the aim is to select k relays among n relays in a way that the overall

achievable rate of the system given in (1.9) is maximized. Once each relay

is tested, the end-to-end SNR corresponding to that relay is found and its

corresponding achievable rate is obtained. Then, we need to decide whether

we want to select that relay or move on to the next relay. Since the CSI of

the channels get outdated, if we do not select the relay and move forward, this

decision cannot be revoked at a later time.

The above problem resembles an optimal stopping rule problem called the

secretary problem. The standard secretary problem is defined as below: There
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are n candidates for a secretarial position available. The candidates are in-

terviewed one by one sequentially in random order, and a decision for each

candidate needs to be made on the spot. Once rejected, that candidate can-

not be recalled. The goal is to maximize the probability of selecting the best

candidate [31].

As you see, the above secretary problem is similar to a relay selection prob-

lem in which the relays are the candidates. There are some assumptions for

each of these problems. The similarities and the differences of these assump-

tions are as follows:

3.1.1 Similarities

There are some assumptions in the standard secretary problem that can be

applied to the relay selection problem as well:

• The number of candidates is known.

• The candidates are tested sequentially in random order.

• An applicant, once rejected, cannot be recalled.

• In case n− 1 candidates are tested, and all have been rejected, the last

candidate is hired [31].

3.1.2 Differences

There are also some assumptions in the standard secretary problem that are

not generally true for the relay selection problem.

• There is only one secretarial position available. However, in relay selec-

tion we are going to select k relay(s) (1 ≤ k ≤ n).

• Interviewing each candidate does not involve any costs. However, as

defined in the overall achievable rate, testing the relays is costly (cost

α).

• The secretary problem tries to maximize the chance of success. However,

we need to maximize the overall achievable rate.
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• Once a candidate is interviewed and been rejected, the next candidate

should be interviewed until a candidate is selected. In other words,

the algorithm cannot be interrupted in the middle, and the selected

candidate needs to be interviewed. This assumption does not really apply

to the relay selection problem. Due to the cost of testing, there may occur

a situation in which, after testing some relays, the cost gets very high

that it is worth choosing a relay randomly without testing rather than

continuing testing. In other words, the testing may be interrupted.

Secretary problem has various versions discussed above. However, in all of

them, the algorithm cannot be interrupted in the middle. Due to this reason

and the reasons discussed above, we have come up with a hybrid algorithm

that is a modified version of the secretary problem to solve the relay selection

problem.

In the next section, we will discuss the modified secretary problem algo-

rithm.

3.2 Problem solution

In this section, we will first develop an algorithm to solve the problem for SRS

and then use this algorithm to solve the MRS problem. We have assumed that

the statistics of the channel gains are known and have modified the algorithm

of the secretary problem to fit a relay selection problem so that the testing

cost for each relay will also be included in the scenario of selection. We will

discuss this scenario for simplicity for both SRS and MRS with two common

relaying protocols AF and DF.

3.2.1 Single relay selection

Here, we are going to select one relay. In the standard secretary, each relay is

first tested and then a decision whether to select or reject that relay is made.

In our setup, because of cost, there is a third option, i.e., selecting a relay

without even testing it. Our goal is to maximize a utility function which is the
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overall achievable rate of the system. We have three options when we move

on to each relay:

• We test that relay and select it;

• We test that relay and decide not to select it and decide to move on to

the next relay;

• We do not test that relay and decide to select it.

We have also assumed that in case n − 1 relays have been tested, and we

have not made our selection yet, the last relay will be selected without testing.

To develop our selection algorithm, we note that if we have rejected the first

n− 2 relays and have reached to the (n− 1)th relay, there are three options:

• One option is to test the (n− 1)th relay and decide to select it. Now, let

us assume that the achievable rate of the relay n− 1 is called X1, so in

case we select that relay, its overall achievable rate is X1

1+(n−1)α
.

• The second option is to test that relay and decide not to select. Here,

since we have tested all the n− 1 relays and did not make our selection,

we should select the last relay without testing it. Therefore, the utility

of this selection is E(X)
1+(n−1)α

, where E(X) is the expected value of the

achievable rate of the selected relay.

• We do not test the (n− 1)th relay and select it which means that n− 2

tests have already been done to get to this stage. Therefore, the utility

of this option is E(X)
1+(n−2)α

.

Now let us compare the achievable rates for the first and the second options

above:

If X1

1+(n−1)α
> E(X)

1+(n−1)α
i.e., if X1 > R1 ≜ E(X), the (n−1)th relay is selected.

If X1

1+(n−1)α
< E(X)

1+(n−1)α
i.e., if X1 < R1, the last relay is selected.

As you can see from the two above equations, we can define a threshold for

the (n−1)th relay as E(X) and use this threshold to decide whether we should

take the (n−1)th relay or not. Let us summarize the two above equations and
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define the expected reward (utility) Y1 if we test the (n− 1)th relay. Based on

what was discussed,

Y1 = E[max{ X1

1 + (n− 1)α
,

E(X)

1 + (n− 1)α
}]. (3.1)

Another comparison is for the third option (the option that does not test the

(n−1)th relay). This comparison show that the selection process must be such

that:

If E(X)
1+(n−2)α

≥ Y1, then we should select the (n− 1)th relay without testing

it.

If E(X)
1+(n−2)α

< Y1, then we move on to test the (n− 1)th relay.

To summarize, if the first (n− 2) relays are rejected, the selection process

discussed above gives expected reward:

Z1 = max{ E(X)

1 + (n− 2)α
, Y1}. (3.2)

What we did for the (n− 1)th relay can be extended to other relays and form

the optimal selection algorithm. To see how, let us do the same procedure for

the (n− 2)nd relay. This relay has also three options:

• One option is to test the (n − 2)nd relay and select that relay. Let us

denote the achievable rate of this relay as X2, so the overall achievable

rate of this relay will be X2

1+(n−2)α
.

• The second option is to test that relay and decide not to select. This

means we should move on to the (n − 1)th relay, with expected reward

Z1.

• We decide to select the (n− 2)nd relay without testing it. Since we have

already tested n− 3 relays. The utility of this option is E(X)
1+(n−3)α

.

Now let us compare the achievable rate for the two options where we test

the (n− 2)th relay to find a decision threshold for this relay.

If X2

1+(n−2)α
≥ Z1 i.e., if X2 ≥ R2 ≜ Z1(1 + (n− 2)α), then the (n− 2)nd

relay is selected.

If X2

1+(n−2)α
< Z1 i.e., if X2 < R2, then move on to the (n− 1)th relay.
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We can summarize the two equations and define the expected reward when

we move on to test the (n− 2)nd relay as follows:

Y2 = E[max{ X2

1 + (n− 2)α
,Z1}]. (3.3)

Again, another comparison is with the third option (the option that does not

test the (n−2)th relay) and the expected reward of the two other options that

test the relay. Accordingly, the expected reward of the (n− 2)nd relay is given

as:

Z2 = max{ E(X)

1 + (n− 3)α
, Y2}. (3.4)

The decision tree of the above scenario for n relays is shown in Fig. 3.1. As
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(zero stop)

Stop after one test Stop after two tests

Stop after (n− 2)tests

Figure 3.1: Decision tree for SRS based on secretary approach

you can see, we are dealing with two types of decisions (thresholds). One

type of decision is when testing a relay, whether to select it or not. For this

type of decision, we have previously shown how to find thresholds then decide
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whether to select a relay or not. Fig. 3.2 demonstrates the relays and their

corresponding thresholds. As you can see, Xn−i is the achievable rate of the

Xn−1 Xn−i X1

i1 n− 1

Rn−1 Rn−i R1

Achievable rate

Thresholds

Relays

i relays are remaining

Figure 3.2: Diagram of the ith relay and its corresponding achievable rate and
threshold.

ith relay tested. Another type of decision for a relay is whether to test it

or not. As we will discuss later, this type of decision can be predetermined,

which means that one can figure out the maximum number of tests needed

to select a relay. In other words, one should continue testing relays unless

a relay is selected or we have reached the maximum number of tests. If we

reach the maximum number of tests, we need to select a relay without testing.

Therefore, we have just discussed the thresholds that can be used for deciding

to select a relay after testing it. These n−1 thresholds can be found following

a similar backward induction for each stage of the selection process.

Assuming the maximum number of tests is predetermined, we can test the

relays and compare their achievable rates to their corresponding thresholds.

If the achievable rate is greater than its corresponding threshold, we should

select that relay. Otherwise, test the next relay. We need to continue this

procedure until we reach the maximum number of tests. In case up to the

maximum number of tests, no relay was selected, a relay is selected randomly.

The pseudo-code of the above algorithm is described in Alg. 4.

The detail on how to predetermine the maximum number of tests is men-

tioned below. First, let us start with two simple cases where the maximum

number of tests are one and two, respectively. The decision tree of these two

scenarios and the relation of the thresholds of each stop is as follows:

• Stop after testing one relay: To find the decision tree of this case,
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Algorithm 4 SRS algorithm

Cost α is fixed.
Xn−i denotes the achievable rate of relay i.
Rn−i denotes the threshold when testing relay i.
mmax is the predetermined maximum number of tests.
select = 0
for 1 ≤ i ≤ mmax do
if Xn−i > Rn−i then
Select relay i
select = 1
break;

else
Do not select relay i

end if
end for
if select == 0 then
Select a relay without testing.

end if

we need to cut the decision tree in Fig. 3.1 from stopping point “Stop

after one test”.

E(Xn−1|Xn−1 > Rn−1)
1 + α

E(X)
1 + α

P (
Xn−

1
>

Rn−
1
)

P (X
n−1 <

R
n−1)

Now we can write the utility of the above decision tree and call it stop1.

stop1 = P (Xn−1 > Rn−1)
E(Xn−1|Xn−1 > Rn−1)

1 + α
+

P (Xn−1 < Rn−1)
E(X)

1 + α
=

∫︁∞
Rn−1

xf(x)dx+Rn−1

∫︁ Rn−1

0
f(x)dx

1 + α
. (3.5)

If we take a derivative from Eqn. (3.5) with respect to Rn−1, the optimal

threshold will be Rn−1 = E(X). This optimal threshold is similar to

the case that there are n = 2 relays, which means that there is just one

threshold R1, and we decide to stop after testing one relay. Therefore,

the threshold of a relay selection scenario with n relays that stops testing

after doing one test is equal to the threshold R1 of a problem that there
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are only n = 2 relays.

• Stop after testing two relays: The decision tree for the case that two

relays are tested is as follows:

P (
Xn−

1
>

Rn−
1
)

P (X
n−1 <

R
n−1)

P (
Xn−

2
>

Rn−
2
)

P (Xn−2 < Rn−2)

E(Xn−1|Xn−1 > Rn−1)
1 + α

E(Xn−2|Xn−2 > Rn−2)
1 + 2α

E(X)

1 + 2α

The above decision tree is similar to the case that n = 3 and two relays

have been tested. Therefore, the thresholds Rn−1 and Rn−2 in the above

decision tree would be equal to the thresholds R2 and R1 for n = 3

respectively. Now, we can write the utility of this decision tree and call

it stop2.

stop2 =

∫︁∞
R2

xf(x)dx+R2

∫︁ R2

0
f(x)dx

1 + α
. (3.6)

Now, let us generalize this scenario to the case where we decide to stop testing

the relays after testing i of them (stopi). In other words, if the maximum

number of tests is i, the thresholds of this problem are as of a problem that

there are i + 1 relays, and we are going to select one of them, which means

that there will be i thresholds. The recursive equation in order to find these

thresholds is as follows:

Rk+1 = (︂∫︂ ∞

Rk

xf(x)dx+Rk

∫︂ Rk

0

f(x)dx
)︂ 1 + (i− k)α

1 + (i− k + 1)α
,

R1 = E(X), 1 ≤ k ≤ i− 1. (3.7)

Also, stopi is as follows:

stopi =

∫︁∞
Ri

xf(x)dx+Ri

∫︁ Ri

0
f(x)dx

1 + α
. (3.8)

In the above equation, f(x) is the achievable rate distribution of the relays.

We can find all the n− 1 thresholds analytically based on the achievable rate
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distribution. As you can see in (3.8), since the stop values are only related

to thresholds and the distribution and not the previous observations, we can

easily find the maximum number of tests. To do so, for a problem of size n

where one relay should be selected, we need to find the values of the n − 1

stops. Let us call the option that without any testing selects a relay as stop0.

Therefore, we will have a list of stops {stop0, stop1, stop2, ..., stopn−1}. These

stops represent the utility of the decision tree in Fig. 3.1 with all possible

maximum number of tests. Now, we need to compare the value of these stops

and find the maximum one. The index of that maximum stop corresponds

to the maximum number of tests required to select a relay. This approach

not only simplifies the decision tree but also provides a closed-form for the

thresholds and removes the effect of max from the equations. Therefore, in

case of implementation, the algorithm runs faster.

We have found the thresholds for both AF and DF relaying protocols as

below:

• AF relaying thresholds: In order to find the thresholds for any system,

one needs to find the distribution f(x) of the corresponding system,

which in our case will be the achievable rate distribution for AF protocol.

For simplicity, we can approximate the SNReq with Eqn. (1.4).

By this approximation, if we assume that the gain of the channels are

Rayleigh then the SNReq for AF relaying will have an exponential distri-

bution with λSNReq = 2λsr
1 in which λsr =

1
σ2snr

and σ2 is the variance of

the source-relay and relay-destination gain and snr = P
N

which is a fixed

number. The f(x) for the AF protocol will be 2λsr ln(2)4
xe−λsr(4x−1), x >

0. Here, we have assumed the source-relay link and the relay-destination

links are symmetrical. Therefore, the thresholds will be as follows:

Rk+1 =
(︂
Rk −

eλsr

2 ln(2)
Ei(−4Rkλsr)

)︂ 1 + (i− k)α

1 + (i− k + 1)α
,

R1 =
−eλsr

2 ln(2)
Ei(−λsr), 1 ≤ k ≤ i− 1. (3.9)

1The minimum of two independent exponential random variables with parameters λ1

and λ2 is another exponential random variable with λ = λ1 + λ2
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In the above equation, Ei(·) is the exponential integral defined below:

Ei(z) = −
∫︂ ∞

−z

e−tdt

t
. (3.10)

• DF relaying thresholds: For the DF relaying, the SNReq is Eqn. (1.5).

The SNReq for the DF relaying is the same as the approximated SNReq

for the AF relaying protocol, then, in case of Rayleigh channel gains, the

achievable rate for DF relaying will have the same distribution as the

achievable rate for AF relaying protocols. Therefore, the thresholds will

be the same as the previous part (Eqn. (3.9)).

3.2.2 kRSn(k relay selection among n relays)

Here, we are going to select more than one relay and maximize the overall

achievable rate of the system as defined in Eqn. (1.9). In this equation, k is

the number of selected relays among n relays, and m is the number of the

relays that have been tested so far to choose the k relays. The cost of α is

also defined as Eqn. (1.8). Also, all the assumptions from the previous part

are valid, and testing is costly.

In order to solve this problem, the approach is similar to the SRS scenario

since testing the relays are costly. Here, we are going to generalize the SRS

scenario (1RSn) in which, based on the ratio α, the system decides to go

either with a secretary based approach that tests each relay and compares it

to its corresponding threshold or select a relay(s) randomly. The same as the

previous section, in order to solve this problem, we need to find the distribution

of the achievable rate. However, finding the distribution of the achievable rate

with MRC when selection is for more than one relays is hard. Therefore, for

simplicity, the selection of the relays is according to the sum of the achievable

rates of the relays rather than their MRC. The sum of the achievable rates of

the relays is an upper bound for the selection based on MRC. The proof of the

above lemma is as follows:
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Proof. We know that SNReqi is always positive.

SNReqi ≥ 0 ⇒ 0 ≤
k∏︂

i=1

SNReqi + ...

⇔ 1 + Σk
i=1SNReqi ≤ 1 + Σk

i=1SNReqi +
k∏︂

i=1

SNReqi + ...

⇔ log2(1 + Σk
i=1SNReqi) ≤ log2(

k∏︂
i=1

(1 + SNReqi))

⇔ 0.5 log2(1 + Σk
i=1SNReqi) ≤ Σk

i=10.5 log2(1 + SNReqi). (3.11)

This completes the proof that the sum of the achievable rates of the relays is

an upper bound for reporting the achievable rate based on MRC.

For ease of discussions, let us solve this problem for the case that k = 2

relays are going to be selected among n = 3 relays. The decision tree of this

example is shown in Fig. 3.3. As you see when n = 3, first, we need to decide

to either start testing relays or select the two relays randomly. In case we select

the two relays randomly (without testing), the gain is 2E(X). Also, in case we

decide to test the relays: One needs to compare X3 (the overall achievable rate

of the relay indexed as 1) with the threshold t2∗3 (the corresponding threshold

for relay indexed 1 in the scenario that two relays are going to be selected). If

X3 is smaller than the threshold, this relay is not selected and since we have

to select two relays, we should select the two remaining relays without testing.

Then our gain is 2E(X)
1+α

. Now, if X3 is greater than that threshold, then that

relay is selected. So now we need to select one more relay. In other words, the

problem will shrink to the problem of SRS for n = 2 (1RS2)(selection of one

relay among the two relays).

We can generalize the decision tree in Fig. 3.3 to the case that we are going

to select k relays among n relays. In other words, we are going to solve the

problem of kRSn. To do so, first, we need to decide either to choose the k

relays randomly that in this case, our gain is kE(X) or to compare the overall

achievable rate of the first relay (relay with index 1)(Xn) to its corresponding

threshold. If Xn is greater than its corresponding threshold tk∗n then that relay

is selected and our gain is E(Xn|Xn>tk∗n )
1+α

and we still need to select k − 1 relays
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2

3
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Figure 3.3: Decision tree for 2RS3

among n− 1 remaining relays which means now we need to solve the problem

(k−1)RS(n−1). Also, in case that Xn is less than its corresponding threshold,

then that relay is not selected, and since we have done one test so far, we need

to solve the problem of selecting k relays among n− 1 relays.

Therefore, the generalized decision tree of the selection of k relays among

n relays (kRSn) can be defined as in Fig. 3.4. In this tree, the corresponding

thresholds to each relay are named as tj∗i , n− i is the index of the relay that

has the corresponding threshold, and j shows how many relays still need to

be selected. Remember that when j = 1 (just one more relay needs to be

selected), the thresholds will be like the thresholds of the SRS scenario.

To maximize the probability of selecting the best k relays, we need to find

the maximum number of tests for the decision tree in Fig. 3.4. As you can see,

there is a recursive relation between the decision trees of (k − 1)RS(n − 1),

(k)RS(n − 1), and (k)RS(n). Therefore, we can write the algorithm as of

Alg. 5.

The thresholds named as t in (3.4) can be found with a similar approach

used in the SRS method. However, there is no closed-form for the thresholds

since they vary based on the maximum number of tests in the decision tree.

As an example, let us find the thresholds for the decision tree in Fig. 3.3:

• Path 1 and 3: In order to find the thresholds t2∗3 and R1, we need to
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+ (k − 1)RS(n− 1)

Stop without any
testing

(zero stop)

(k)RS(n− 1)

Figure 3.4: Decision tree for kRSn

Algorithm 5 MRS algorithm for the decision tree in Fig. 3.4

Cost α is fixed.
def MRS(k, n):

if k == 1 then
return Alg. 4

else
if P (Xn ≥ tk∗n )

[︂
E(Xn|Xn>tk∗n )

1+α
+ MRS(k − 1, n − 1)

]︂
+ P (Xn <

tk∗n )MRS(k, n− 1) < kE(X) then
return Select all k relays randomly without testing.

end if
end if
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take a derivative with respect to each of them.

d
(︂
P (X2 > R1)

E(X2|X2>R1)
1+2α

+ P (X2 < R1)
E(X)
1+2α

)︂
dR1

=

1
1+2α

d
(︂ ∫︁∞

R1
xf(x)dx+ E(X)

∫︁ R1

0
f(x)dx

)︂
dR1

=
1

1 + 2α
(−R1f(R1) + E(X)f(R1)) = 0 =⇒

R1 = E(X). (3.12)

Now let us find the threshold t2∗3 . According to Eqn. (3.7) we will have:

P (X2 > R1)
E(X2|X2 > R1)

1 + 2α
+ P (X2 < R1)

E(X)

1 + 2α
=

R2

1 + α
. (3.13)

Therefore, if we take a derivative with respect to t2∗3 , we will have:

d
(︂
(P (X3 > t2∗3 )

E(X3|X3>t2∗3 )+R2

1+α
+ P (X3 < t2∗3 )2E(X)

1+α

)︂
dt2∗3

= −t2∗3 f
(︁
t2∗3
)︁
+ (2E(X)−R2) f

(︁
t2∗3
)︁
= 0

=⇒ t2∗3 = 2E(X)−R2. (3.14)

• Path 1 and 4: In this case, we just need to find the threshold for t2∗3

which is as follows:

d
(︂
(P (X3 > t2∗3 )

E(X3|X3>t2∗3 )+E(X)

1+α
+ P (X3 < t2∗3 )2E(X)

1+α

)︂
dt2∗3

= −t2∗3 f(t2∗3 ) + (2E(X)− E(X))f(t2∗3 ) = 0

=⇒ t2∗3 = E(X).

(3.15)

• Path 2: In this case there are not any thresholds and the two relays

need to be selected randomly.

All the other thresholds can be found similarly to the example above. The

f(x) is the distribution of the achievable rate of the relays that as discussed

in the SRS section is 2λsr ln(2)4
xe−λsr(4x−1), x > 0 for AF/DF.
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3.3 Results

In this section, we evaluate the relay selection methods based on the hybrid

algorithm in terms of the overall achievable rate of the network (the capacity of

the network) versus SNR and compare them to two other methods (exhaustive

search and random approach). The exhaustive search tests all the relays and

then decides which relay(s) is/are the best. Also, the random approach selects

a relay(s) randomly without doing any tests.

Simulation results are shown for two relaying protocols, AF and DF. n

relays are placed between the source and the destination, and their channel

distribution is assumed to be Rayleigh. The results have been tested for two

scenarios, SRS and more than one relay selection (kRSn). These selections

were made for the SNR in the range of 0−40 dB. Also, Eqn. (1.3) and Eqn. (1.5)

were used to produce the SNReq for implementing the AF and DF protocols

respectively.

3.3.1 Single relay selection results

The simulations were done in order to select one relay among n = 50 relays.

Fig. 3.5 shows the simulation results for selecting one relay among 50 relays

for relaying protocols AF and DF with cost α = 0.01. Firstly, to do this

simulation, the Alg. 4 decides the best path for each SNR, and then the relays

are tested based on that path. As you can see, when comparing the hybrid

approach to the exhaustive search approach that tests all the relay and then

selects the best one, there is an 8.5 dB improvement in DF protocol in order

to achieve the overall achievable rate of 4 b/s/Hz (bits per second per hertz).

Fig. 3.6 shows similar simulation results for a higher cost (α = 0.1) for relaying

protocols AF and DF. Since the cost is higher, you can see that the gap between

the exhaustive search method and hybrid method is greater and the effect of

the cost comes more into the picture. Now, suppose we compare the hybrid

method in DF to the random approach and the exhaustive method. In that

case, there is a 4 dB and 28 dB improvement in order to achieve the overall

achievable rate of 1 b/s/Hz, respectively.
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Figure 3.5: SRS for the two relaying protocols a) AF and b) DF with α = 0.01.

3.3.2 Multiple relay selection results

The simulations in this part were done to select k relays among n relays. We

have done the simulations for two cases, 2RS50 and 3RS50. These simulations

were done for two relaying protocols with two costs α = 0.01 and α = 0.1.

Fig. 3.7 and Fig. 3.8 show the simulation results for 2RS50 with cost α = 0.01

and α = 0.1 respectively. By comparing the hybrid method to the exhaustive

approach for DF protocol, you can see that there is almost 10 dB improvement

to achieve the overall achievable rate of 4 b/s/Hz. The similar analysis was

done for 3RS50, and the results are shown in Fig. 3.9 and Fig. 3.10. As you

can see in Fig. 3.10 since selection of three relays with this cost is very costly,

the algorithm decides to move on with the random method for selection.
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Figure 3.6: SRS for the two relaying protocols a) AF and b) DF with with
α = 0.1.
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Figure 3.7: 2RS50 for the two relaying protocols a) AF and b) DF with the
α = 0.01.
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Figure 3.8: 2RS50 for the two relaying protocols a) AF and b) DF with the
α = 0.1.
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Figure 3.9: 3RS50 the two relaying protocols a) AF and b) DF with the
α = 0.01.
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Figure 3.10: 3RS50 for the two relaying protocols a) AF and b) DF with the
α = 0.1.
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Chapter 4

Conclusion and Future Research
Directions

4.1 Conclusions

In this thesis, relay selection strategies inspired by the algorithm to solve the

secretary problem were derived. Two separate studies were discussed in this

thesis:

• The first study was on the secretary problem and its variants that we used

to model the corresponding relay(s) selection problems for both SRS and

MRS scenario with AF and DF relaying protocols. Different algorithms

have been introduced for each case of relay selection scenario. Since the

secretary method is a kind of an optimal stopping rule problem, it tries

to solve the relay selection problem by testing fewer number of relays

compared to the solution that tests all the relays then selects the best

one(s). Also, knowing the channel distribution helps the secretary ap-

proach significantly and allows it to approach the ultimate performance

where all the relays are tested and then selected. Simulation results ver-

ify that the relay selection method based on the secretary problem can

achieve up to 7.5 dB performance gain compared to other approaches

without testing all the relays.

• The second study was for the case where testing relays for the selection

is costly. In this study, a hybrid algorithm (a combination of random

and secretary approach) has been proposed to solve the corresponding
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relay(s) selection problems for both SRS and MRS scenarios with DF

relaying protocol. This method is designed so that the testing cost for

selecting the relay(s) comes into the picture and tries to solve the re-

lay selection problem by testing quite fewer numbers of relays, which

means saving more time. Simulation results verify that without testing

all the relays, the relay selection method based on the hybrid method

can achieve up to 20 dB performance gain compared to the method that

tests all the relays and 6 dB gain compared to the method that selects

the relay(s) randomly.

4.2 Future Research Directions

The possible future works can be as follows:

4.2.1 Relay selection for the recall and the known chan-
nel distributions scenario

We have discussed the cases where recall was allowed for a scenario in which

the channel distributions were unknown. Also, we have separately discussed

the relay selection problem when the distribution of the channels is known.

The intersection of these two matters can create an interesting research area.

This study can be done for both SRS and MRS problems.

4.2.2 Relay selection for a direct link from source to the
destination scenario

In this thesis, we have assumed that there is no direct link from the source

to the destination and solved the relay selection problem for this system. An

interesting observation will be solving this problem when there is a direct link

in the system as well. The possible steps toward solving this problem can be

as follows:

Firstly, one needs to find the end-to-end SNR for a system with a direct

link. Secondly, for the case where the channel distributions are known, one

needs to find the distribution of the end-to-end SNRs of the relays and follow
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the next steps described in Chapter 2 and Chapter 3.

4.2.3 Relay selection for other relaying protocols rather
than AF and DF

In this thesis, all the problems were solved for the two of the common relaying

protocols, AF and DF. One future direction could be applying the secretary

algorithms to solve relay selection problems for other cases of relaying protocols

such as compress and forward. This also can be done by finding the end-to-

end SNR corresponding to the relaying protocols and applying the algorithms

introduced in Chapters 2 and 3.

4.2.4 Multiple relay selection when the number of re-
lays to be selected is unknown

In this thesis, the number of relays that were going to be selected was known.

Further research can investigate the case where one does not have a fixed

number of relays to be selected in mind, and the goal is to achieve a certain

throughput. Therefore, in such a scenario, the number of selected relays may

vary.
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