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Abstract

The simulation of the flow of water in natural strcams and rivers is of importatice to
n . lines. Hydraalic models are required for flood forecasting and designing of
floou | .on measures, for the design of dams and power stations, and for the analysis
and des:_ .« of stream diversions and water intakes. A correct underst.ading of the flo -
characteristics is also important for analyzing processes related to the flow of water such

as sediment transport, water quality and aquatic habitat protection.

In many flow situations, a one-dimensional approach does not provide the required
details of complex flow phenomena. Examples of these are flow in braided rivers, fiow
around islands, flow in estuaries and river deltas, or flow of a meandering river with a wide

floodp'ain. In these situations, a two-dimensional model may be more appropriate.

A review of the literature on available two-dimensional fiow models indicated sev-
eral areas of difficulties which prevent the models from providing accurate solutions.
Examples of these difficulties are the inability to represent complex topography and
boundaries, poor conservation properties, the need for excessive artificial diffusion, cross-
wind diffusion, and instabilities occurring when attempting to simulate domains contain-
ing wet and dry areas.

This thesis proposes a two-dimensional finite element method that overcomes many
of the numerical difficulties encountered when solving the two-dimensional shallow water
flow equations. The finite element method facilitates the use of an unstructured grid and
thus is able to accommodate complex domain geometry. A routine has been developed
which builds a two-dimensional finite element mesh from a standard one-dimensional
input file. The solution of the flow equations is based on the Characteristic-Dissipative-
Galerkin Finite Element technique, in which application of the Petrov Galerkin Finite Ele-
ment Method results in a higher order artificial diffusion applied in the characteristic
directions of disturbances. The upwinding matrices have the property of reducing cor-
rectly to the optimal one-dimensional system case, thus overcoming the problem of cross-
wind diffusion. Numerical experiments showed that the method is able to accurately simu-

late complex flow features such as standing waves, dambreak problems, and changes



between super- and subcritical flows. As the scheme is based on the conservation form of
the equations, it has excellent conservation prc , (sections 3.2 and 3.4). Integration
by pasts of the governing equations facilitates a .-atore implementation of the boundary

conditicns.

A new meth: Thasbee proposed to simulat  w on dry/wet domains. The method
is si- ple to apply, yet it is accur: i¢ and stable in simulati . steady and unsteady fully
dynainic Now without limitations on dc  .in complexity. The technique has been used to
simulat an experiment of dambicak un a dry beu. The results were in excellent agreement
with laboratory measurements. Simulation of flow in natural fish habitats with dry bed
areas confirmed the rbustness «. the method. The simulated velocities agreed well with

field measurements.

As the two-dimensional model provides a good representation of the flow field, it
can serve as a tool to analyze the complex flows encountered in typical fish habitat
reaches. The good conservation properties of the mode! make it suitable for further devel-
opment to simulate transport phenomena and flow under ice cover. The finite element
mesh could be utilized directly to integrate habitat quality parameters over the simulation

domain.
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Chapter 1

Introduction

The simulation of the flow of water in natural streams and rivers is of importance to
many disciplines. Hydraulic models are required for flood forecasting and designing of
flood protection measures, for the design of dams and power stations, and for the analysis
and design of stream diversions and water intakes. A correct understanding of the flow
characteristics is also important for analyzing processes related to the flow of water such
as sediment transport, water quality and aquatic habitat protection.

The flow simulation approach can be classified with regards to the number of spatial
dimensions as one-, two- or three-dimensional approaches. One-dimensional models treat
ihe stream as a number of cross sections and provide the results in the form of cross-sec-
tion average values. This approach is usually used to analyze long reaches of rivers
extending over many kilometers, where the variation of flow across the channel is not of
much interest. The reader is referred to Hicks and Steffler, (1990), for an overview of dif-

ferent approaches and approximations to solve the ons-dimensional open channel flow
equations.

For some practical applications, the variation of the flow across the stream might be
important. Examples of these are flow in braided channels, estuaries and river deltas, or

flow in a meandering river with a wide floodplain. Also, environmental impact assessment



models often require the distribution of the velocity across the stream as input to other
chemical or biological models. In these situations, the solution of the two-dimensional
shallow water flow equations can provide good < stimates of complex flow features in the
horizontal plane, such as recirculation, flow around islands and obstructions, and flow in

braided channels.

However, because of the depth averaging in the two-dimensional equations, they are
not able to resolve flow features of a three-dimensional nature. For example, when simu-
lating a river bend, the two-dimensional mode! would be able to predict the redistribution
of longitudinal velocity reasonably well, but it would not represent the helical vortex usu-
aliy observed in bends. As this vortex has a large effect on the mixing characteristics and
local bathymetry of the river, the direct application of the two-dimensional model to simu-

late water quality or sediment transport would provide only limited success.

The solution of the three-dimensional Reynolds equations would be able to account
for secondary flows and other flow features, such as horseshoe vortices in the vicinity of
bridge piers, and flow details around obstructions and bed forms. However, the solution of
the three-dimensional equations is not an easy task. The equations are comprised of nne
equation of conservation of mass and three equations of conservation of momentum
applied in the directions of the three space dimensions. The turbulent fluctuations of the
flow are time averaged to yield additional turbulent stress terms in the momentum equa-
tions. The resulting system of four equations has a total of ten unknowns, and therefore
closure models are required to relate the turbulent stresses to mean flow parameters. Fur-
ther, the resolution required to obtain numerically stable solutions in a typical reach ofa
natural stream or river would involve an enormous number of computational nodes, hav-
ing four unknowns each. The free water surface would further complicate the problem, as
the three-dimensional mesh would have to change continually with time.

In view of the enormous data and comruter requirements involved in solving the
three-dimensional equations for flow in natural rivers, the solution of the two-Cimensional
depth averaged equations is attemnpted here. When the underlying assumptions and limita-
tions are understood and considered, a two-dimensional model provides significantly more
detailed information than the one-dimensional approach. As shown in Chapter 4, the use
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of a two-dimensional model could actually result in a reduction in data requirements as

compared to the one-dimensional approach for certain applications.

When solving the two-dimensional equations for natural streams, several difficulties
arise. First, there are the challenges which are also encountered in the one-dimensional
approach such as the simulation of shocks, and the production of wiggle-free solutions. In
addition, new difficulties, related to the two-dimensional nature of the problem, have to be
overcome. Forex ', in the two-dimensional case, the problem of cross-wind diffusion
appears, whichre | 5 special treatment (Brooks and Hughes, 1982). Other difficulties
are introduced by the complex boundaries often encountered in two-dimensional domains.
The computational grid should be able to conform well to complex geometrical shapes.
Another difficulty in two-dimensional modeling is the treatment of boundary conditions.
Also, in the one-dimensional approach, if the water lever drops and the cross section is
only partially full, the area at that cro- . section remains positive. On the other hand, any
drop of water level in the two-dimensional domain usually results in exposing nodes and
elements. These “dry areas” result in mathematical complications and require special
treatment.

Several numerical techniques have been proposed to solve the two-dimensional shal-
low water flow equations. Benque et al. (1982) used a split operator Finite Difference (FD)
technique together with the Alternating Direction Implicit (ADI) method to simulate tidal
currents. However, it is not suitable for rapidly varying or highly nonlinear velocities
(Benque et al., 1982). Jenkins and Keller (1990) applied a two-dimensional FD model
using a boundary fitted coordinate system with subregion grid generation to simulate flow
in a hypothetical river with flood plain. They used first order upwinding for the convective
terms together with the ADI method.

The Finite Volume (FV) method, which is based on the integral form of the conser-
vation equations, has the advantage of having good conservation properties (Hirsch,
1988). Soulis (1992) proposed a two-dimensional FV model to solve dambreak problems
using body fitted non-orthogonal local coordinates. The method assumed the main flow to
be in the positive x-direction and employed a first order upwind scheme. Other FV tech-
niques classified under the approximate Riemann solvers, such as Flux Vector Splitting
and Flux Difference Splitting have been proposed by Steger and Warming, (1981), Van
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Leer, (1982) and Roe, (1981), (Hirsch, 1988). Glaister, (1988), proposed a Flux Difference
Splitting Scheme to solve the shallow water equations. Zhou et al. (1994) overcame the
problem of domain irregularity by allewing the use of an unstructured mesh of triangles
and quadrilaterals together with the explicit FV method. The model used the Osher
scheme as an approximate Riemann solver to give some allowance for discontinuities.
Since the model was based on an explicit scheme, it suffered from the requirement of
small computational time steps. The model was only first order accurate, which would
result in excessive numerical damping. Further, the model could not adequately simulate
domains having discontinuities and shocks (Zhou et al., 1994),

Generally, s me limitations face the FD and FV methods. One is that boundary con-
ditions are imposed artificially. Derivative boundary conditions require the use of fictitious
nodes and/or a reduced accuracy at the boundary. Although the FD method is usually eas-
ier to program than the Finite Element (FE) method, it generally requires more nodes and
computational time to achieve accuracy comparable to the FE method (Lee and Froehlich,
1986). Further, the FD method’s inability to operate on an unstructured grid greatly limits
its applicability to simulate flow in natural water bodies. As stated above, the FV method
has been used on unstructured grids (Zhou et al., 1994). It should however be noted, that
the advantage of ease of implementation attributed to the FV method as compared to the
FE method starts becoming debatable in this class of FV methods.

The FE method is attractive for simulating flow of water in natural streams and water
bodies having irregular boundaries and complex topography. The flexibility of the nicthod
allows the choice from a wide array of linear and higher order elements which can be
combined to give the best representation of complex domains using an unstructured mesh.
It is possible to concentrate nodes in regions of complex geometry and/or interesting flow
features and have a more sparse layout in areas which are more uniform. Further, the FE
method, through integration by parts of the governing equations, facilitates a natural
implementation of boundary conditions. This, together with the overall consistency and
accuracy of the method results in requiring usually less nodes than FD and FV methods to
achieve similar accuracy. Therefore, the FE method has been chosen for this thesis.

As no variational formulation exists for most fluid flow equations (Lee and Froe-
hlich, 1986), the Galerkin technique is usually chosen to solve flow problems using the FE
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raethod. The technique is applied to a system of differential equations by requiring that the
residual resulting from the integration of the weighted equations over the simulation
domain be a minimum. In the Bubnov Galerkin method, using a weight function equal to
the basis function results in minimizing the overall solution error. However, this technique
was found to be unstable for many practical open channel flow problems, especially when
shocks occur in the solution domain (Katopodes, 1984).

The majority of research and commercial FE codes developed to simulate the shal-
low water flow equations employ the concept of mixed interpolation, in which a higher
order interpolation is used for the velocity than for the water surface. This technique is
similar in concept to the staggered FD technique. Among the models based on this
approach are the Finite Element Surface Water Modeling System (FESWMS) (Froehlich,
1989), RMA-2 (King and Norton, 1987), Leclerc et al., (1990), and FASTTABS (Boss
Corporation and Brigham Young University, 1992). The success of this technique to sup-
press spurious oscillations has been attributed to error consistency (Lec and Froehlich,
1986). Walters (1983) explained that the use of mixed interpolation cuts off the short wave
lengths for the depth at 4A (where A is the nodal grid spacing), and thereby eliminates the
spurious oscillation mode. '

However, the mixed interpolation technique is not free from problems. Walters
(1983) applied the method to simulate flow in a rectangular basin with quadratically vary-
ing bathymetry and a periodic forcing function on one boundary. Although the oscillations
in water surface were suppressed, significant spurious oscillations in the predicted velocity
were observed. Walters (1983) explained that these velocity oscillations were due to poor
phase speed behavior and that the solution was generally inferior to the velocity solution
obtained using equal order interpolation. He also noted that the severity of these oscilla-
tions increased with increasing network complexity. An “eddy viscosity™ three to four
orders of magnitude higher than the expected natural values had to be used to damp these
oscillations. No convergence could be achieved with zero eddy viscosity (Walters 1983).
Excessive, element size dependent, values of “turbulent diffusion” were also recom-
mended by King and Norton (1976) for use in the RMA-2 model. These large values of
diffusion could have a distorting effect on the simulated flow, as they would smear out any
interesting flow features. Norton and King (1976 and 1978), Walters and Cheng, (1980),
and Froehlich (1989) reported conservation problems, especially at no flow boundaries
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with sharp corners. Problems in satisfying continuity were also reported by Gee and
McArthur (1978) and Bates et al. (1992). Walters and Cheng, (1980) noticed difficulties to
apply head type boundary conditions. Some remedies were suggested but often led to
problems in convergence. Bates et al. (1992) used a mixed interpolation ¥Z= method to
simulate an 11 km river channel/floodplain reach. They identified stabii'ty problems in
simulating steep lateral and longitudinal slopes, complex topography and sharp changes in
flow direction. Unacceptable conservation properties were also observed. To achieve a
converged solution they had to resort to “some relaxaticn” of the model representation of
the physical environment and concluded that this may constrain certain applications of the
scheme. In their paper they presented limiting values for the above features in order to
avoid numerical instability. It should be noted that these limiting values were much more
restrictive than the assumptions underlying the original governing flow equations. Another
drawback of mixed interpolation is that although a large rumber of nodes is required for
the higher order interpolation, the accuracy of the results is governed by the lower degree

element.

Although the idea of a wiggle-free element might be attractive, in that it would elim-
inate the need for the much criticized artificial diffusion, the above shows that several
problems face this element, including the need for excessive artificial diffusion. In view of
the difficulties related to mixed interpolation, researchers investigated other possibilities
for use with the FE method. Advances had been made in the field of Computational Fluid
Dynamics to solve the Euler and the Navier Stokes Equations. Christie et. al., (1976),
introduced the concept of modifying the weighting functions to achieve upwinding effects
(known as the Petrov Galerkin Finite Element Method). Heinrich et al., (1977), extended
the method to two-dimensional flow. Wang and Adeff (1987) applied a Petrov Galerkin
technique to solve the depth integrated two-dimensional Navier Stckes equations and
Katopodes (1987) applied a similar technique to simulate the surge resulting from a
breached dam. The upwinding matrices chosen by Wang and Adeff and by Katopodes are
discussed in section 3.4. The Streamiine Upwind Petrov Galerkin (SUPG) Finite Element
technique was introduced by Brooks and Hughes (1982). In this technique, modified
weight functions and consideration of the characteristics in quantifying the upwinding led
to a robust third order accurate scheme. Hicks and Steffler (1992) implemented the SUPG
scheme for the one-dimensional open channel flow equations under the name of Charac-
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teristic-Dissipative-Galerkin (CDG) Finite Element Method. In their study they examined
and compared different FE and FD techniques for applicability in unsteady one-dimen-
sional open channel flow modeling using a wide range of challenging test problems. They
concluded that the CDG was the best suited method, as it performed well over a wide
range of steady and unsteady flow problems.

In this thesis, the CDG method is extended to solve the two-dimensional free surface
flow equations. In Chapter 2, the development of the two-dimensional model is provided.
In section 2.2, the governing equations are presented along with the underlying assump-
tions and limitations. The initial and boundary conditions are discussed in section 2.3, and
the finite element formulation including the new Petrov-Galerkin upwinding scheme is
introduced in section 2.4. Section 2.5 presents a new techniqre that has been developed to
simulate domains with partially dry areas, and section 2.6 discusses different aspects of
the automatic generation of an unstructured computational mesh.

Numerical tests to evaluate the model performance are carried - in Chapter 3. The
first test simulates the standing waves resulting from supercriviciii ..ow through a channel
constriction. The computed results compare well to measurcnx a.x .:..xen by Ippen and
Dawson, 1951. The second test (section 3.3) simulates the break of a hypothetical circular
dam. The effect of element shape on the obtained solution is examined by computing the
results on different meshes. The test in section 3.4 simulates the partial failure of a hypo-
thetical dam. This test, proposed by Fennema and Chaudhry in 1990, has been used by
several authors to examine two-dimensional schemes. In section 3.5, the directional
dependency is examined through a one-dimensional hydraulic jump and a one-dimen-
sional dambreak problem. The tests are run first in the direction of the x-coordinate and
then at 45° to the coordinates. It is found that the solutions are independent of mesh orien-
tation. The stability range with regard to the implicitness factor 6 is examined in section
3.6. Finally, the performance of the dry bed simulation routine is tested in sections 3.7 and
3.8. Section 3.7 simulates a dambreak on a dry bed. Computed water surface profiles are
compared to laboratory measurements taken by Schoklitsch (1917), and show excellent
agreement. In section 3.8, a hypothetical test case of flow in a trapezoidal channel with
partly dry side slopes is carried out.
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One of the interesting and challenging applications for a two-dimensional model is
the simulation of flow in natural fish habitats. The highly varying topography usually
encountered in such domains, which results in rapid flow variations, and the complex
boundary conditions, require a robust and accurate scheme. In Chapter 4, the model is
applied to flow ‘. 4ysical fish habitat. Two study cases are examined. In section 4.2, a
hypothetical test case of flow over a side bar is carried out. The test shows that significant
difference between the results of a one-dimensional and a two-dimensional model can
exist for certain flow situations. In section 4.3, flow in a real fish habitat site is simulated.
Computed results compare well with field measurements.

Chapter 5 summarizes the major conclusions. In Appendix A, guidelines for field
data collection, which could further improve the results of the two-dimensional model, are
presented. As one important application of the two-dimensional model is in the field of
simulation of flow in aquatic habitats, Apperdix B reviews and discusses the different
Instream Flow Needs (IFN) assessment methods, with emphasis on the hydraulic model-
ing aspects in these methods.
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Chapter 2

Finite Element Solu.ior of the Two-
Dimensional Shallow Water Flow Equations

2.1 Introduction

The two-dimensional shallow water flow equations describe free surface flow in the
horizontal plane. Section 2.2 provides a description of the equations together with the
underlying assumptions and limitations. The appropriate boundary and initial conditions
are discussed in section 2.3. The Characteristic-Dissipative-Galerkin finite element formu-
lation is presented in section 2.4. Section 2.5 proposes a new technique to simulate fully
dynamic flow on a partly dry domain. In section 2.6, the generation of an unstructured
computational mesh for natural streams is discussed.



2.2 Equations of Two-Dimensional Depth Averaged Free
Surface Flow

The equations describing shallow two-dimensional free surface flow can be obtained
through integrating the three-dimensional Reynolds equations over the depth of flow (e.g.
Weiyan, 1992), or by applying the basic principles of conservation of mass and momen-
tum to a prismatic vertical water column (Figure 2.1) bounded by the bed from the bottom
and the free water surface from the top (e.g. Daubert and Graffe, 1967, Van Rijn, 1990).

<
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Figure 2.1 Two-Dimensional Depth Averaged Free Surface Flow:
Definition Sketch

The equa:ions are comprised of one equation of conservation of mass (continuity

equation) and two equations of conservation of momentum.

Conservation of mass:

oH aqx aqv
b

3 TRty - 0 [2.1]
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Conservation of x-direction momenium:

% 3 2 2,3 4
3 +a—x(qu)+3;(V‘1x)“ Z(E—)—;‘(H))

- - 1o 1 !
= gH (S, = Sp) + 5 (S.(HT ) + S (So(HT)) +/HV+ 51,

[2.2]
Conservation of y-direction momentum:
%y 3 d 8.3 (12
30 * 3w (U8 + 35 (Ve + 5 (5 (H)
1,9 1,9 1
= gH(S . —-S;)+—-(==(Ht ))+-{5=(HT )) —-fHU+ =1
8H (S, =Sp) + 5 (S (1)) + S G5 (e )) ~fHUS g5,

where x and y are the cartesian coordinates in the horizontal plane and  refers to time. The

dependent variables H, g, and g, are functions of the independent variables x, y and t, and
represent point values, where H is the depth of flow (m) and g, and g, are the x- and y-

components of discharge per unit width (m%/sec); U and V are the depth averaged velocity
components (m/sec) which are related to g, ¢ through U=g¢g/HandV = ¢q,/H.

In the above equations S, and S, are bed slope components; S, and S, arc friction
slope components, given by:
U+ V*
S = —5—— [2.4]
) C.gH

s

and

VIR + V2
S = —— [2.5]
Y C,gH

C, being the dimensionless Chezy coefficient, calculated using the formula

C, = K+5.75log (kf!) [2.6]
S
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(Van Rijn, 1990), where k s the height of the bed roughness (m) and K is a constant. Van
Rijn (1990) suggested a value of K = 6.2 for hydraulically rough flow. The same valve
has been used by Hicks and Steffler (1990) for the one-dimensional St. Venant Equations,
and is also used here for the two-dimensional model. Numerical experiments show satis-

factory agreement with measurements for this value of K (e.g. section 3.7.6).

In the above equations g is the gravitational acceleration (m/sec?), p is the density of

water (kg/m3), and t denotes time (sec). The depth averaged fluid shear stresses caused by
turbulence are represented by T, , T, Ty and Tyy Numerous relations have been pro-
posed to relate these stresses to different parameters of the mean flow. The reader is
referred to the ASCE Task Committee on Turbulence Models (1988), or Rodi, (1984) for
details on this topic. In this thesis, a simple turbulence model is used. More sophisticated
models could be readily incorporated later. It should be mentioned that the turbulence
stress terms generally have a stabilizing effect on the numerical solution process, and are
thus sometimes exploited by modelers to stabilize unstable schemes through addition of
excessive and unrealistic values. The turbulence model used relates the turbulence stresses
to the mean flow velocity gradients. For example,

U oV
Ty = pvxy(§§ +$) (2.7

where v is a depth averaged turbulent exchange coefficient (m2/sec), the magnitude of

which is a function of the structure of the turbulence. For practical purposes, isotropic tur-

bulence is often assumed, such that Ve SV =V = vyv = v, wherev is known as

the eddy viscosity. For flow in open channels. a value in the order of:

v = (0.14£0.07)u H (28]

has been proposed (e. g. Fisher et al., 1579).

ug is the shear velocity (m/sec) given by u; = [gHS 5 where S¢is the friction slope in the

principal flow direction.

The terms fV and —fU in equations [ 2.2] and [ 2.3] represent the Coriolis forces,

which are body forces due to the rotation of the earth. The Coriolis factor f = 2@sinA,
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where @ = 7.29*10 sec™" is the angular velocity of the earth’s rotation, and A is the lat-

itude. Generally, the larger the water body, the more important the Coriolis forces become
(Weiyan, 1992).

The shear stresses induced by the wind on the free surface in the x- and y-directions

are represented by the terms T, and T, respectively, givenby T, = Cpp,U J U + V2
x y x

andt, =C DpaVJ U? + V2, where C p is a dimensionless drag coefficient (Weiyan,
¥y
1992),and p,, is the air density.

Equations [ 2.1] to [ 2.3] are a set of nonlinear, predominantly hyperbolic equations
in the three independent variables H, g, and g,. One of the assumptions underlying the
derivation of the above equations is that fiow velocity does not vary in the vertical direc-
tion and that the vertical accelerations are negligible and therefore a hydrostatic pressure
distribution exists. This implies that the depth averaged two-dimensional model can
resolve flow details which are generally larger than the depth of flow. For example, consid-
ering the prediction of wave celerity, for a wavelength to depth ratio of 7, an error of 10%
would be expected. This error would reduce to about 2% for a wavelength to depth ratio of
20 (Steffler and Jin, 1993). Clearly, flow phenomena of a three-dimensional nature such as
the details of flow around a single rock can not be resolved and wou.d require a three-
dimensional model.

In the following derivation of the finite element formulation, the assumption is made
that wind stresses and Coriolis forces are negligible. This assumption is generally accept-
able for simulating flows in smaller domains such as streams and rivers, as these forces
become important only when simulating larger water bodies such as big lakes and estuar-

ies (Bertin, 1987). It should be mentioned that their inclusion does not add to the difficulty
in solving the equations.

It is also assumed that no seepage inflows/outflows or rainfall occur (or are negligi-
ble) and that no scour or deposition takes place. Further, it is assumed that frictional resis-
tance formulae for steady one-dimensional flow are applicable to unsteady two-
dimensional flow. The bed slopes in the flow direction are assumed to be small, such that
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sin® = tan O (slope < 10%), where @ is the angle the bed makes with the horizontal

plane in the principal flow direction. Further, H, g, and gy should be continuous differen-

tiable functions.

It should be noted that the non-symmetric conservative form of the equations is pre-
sented above. Hughes =t al., (1986) used symmetric forms of the Euler and the Navier
Stokes Equations to solve convection dominated flow problems using the SUPG method.
They stated that stability would be guaranteed in finite element methods based upon this
form of the equations. Hicks and Steffler, (1990), compared the symmetric form of the
one-dimensional St. Venant equations to the non-symmetric (conservation) form. They
reported inability of the symmetric form to conserve mass and momentum, especially in
the presence of flow discontinuities. An error of about ten percent was observed in the
momentum conservation for some test problems, whereas no error was observed when
using the conservation form. Therefore, the non-symmetric conservation form of the equa-

tions is used in this work.

Equations [ 2.1] to [ 2.3] can be written in the conservative form:

op OF, aFy P 3
'a—l+*a—x‘ +a—'y —a(VHa—x(Cxx'*'ny))

-2 (VHZ.(C)y#Cpp)) 6 = 0

[2.9]
where:
T
o=(Hgq.q) [2.10]
A ) 010
Fx = qu+g% = qu) = glg Uuo ¢ {2.11}
Ug 0 OU

¥
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A non-conservative form of equation [ 2.9] can be written as follows:

% I 9 3 9 99
5 tAg Aya ~3: Pz ~ YDy
_d o - dp _
ﬁ(VDyxé} vDyyw) +N¢ =0

A, and Ay are known as the convection matrices, given by:

oF 0 10

X
Ax=y¢ =12-v*2U 0
-Uv VU
oF 0 01
Ay=—$’= ~UvV VU
-V 0o2v

[2.12]

(2.13)

[2.14]

{2.15]

[2.16]

{2.17)

(2.18]

[2.19]

{2.20]

where ¢ is the wave celerity given by ¢ = JgH. The turbulent diffusion matrices Dy,

Dyy, Dyy and Dyy are given by:

Chapter 2: Finite Element Solution of the Two-Dimensional Shallow Water Fiow Equations

15



aC,, 0 00

D, = 3 = _2‘51(2)(1) [2.21]
3ny 0 00|

ny = 56 = OU(I) 0 [2.22]
ac,, |00 0|

Dyx = 3% = _Ov(())(1) [2.23]
acyy 0 00
=2V 02

N is the force matrix, such that N¢ = G, and is given by:

0 0 0
2 2
N = |=&5,, g +4q,/ (C2H) 0 [2.25]

¢S, 0 gt + a2/ (CLHP)

¥

2.3 Boundary and Initial Conditions

Proper boundary and initial conditions are required to achieve a well posed problem.
For 2 hyperbolic system of equations with real eigenvalues, as many initial conditions as
unknowns are required (Hirsch, 1987). In most practical hydraulic problems, the exact val-
ues assigned to the variables as initial conditions are not of great importance, since their
eficct would be weakened by information continuously supplied from the boundaries at
times ¢ > 0. In addition, friction and turbulent diffusion terms soon attenuate errors in the
initial data (Katopodes, 1977). Of course, this does not mean that completely erroneous
values could be used, but generally any set of physically reasonable initial conditions

should be adequate.

The interaction between the domain under consideration Q and the surroundings is
reflected in the external boundary conditions of the system, acting on the domain bound-
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ary I". Usually different types of boundary conditions are specified over different segments
of I". For the shallow water equations, these conditions can be classified as either no-flow
boundaries such as rigid walls, or open boundaries such as an interface between 2 and an
adjacent water body (Weiyan, 1992). The latter can be further divided into specified
boundary conditions, which represent the influence of the surroundings on €, and non-
reflective boundary conditions, which allow a wave to travel freely across the boundary. A
combination of these latter two might sometimes be desirable. In this work, only no-flow
and specified boundary conditions are implemented. The non-reflective type has not been
attempted here, and the reader is referred to Hedstrom, (1979) or Verboom et al, (1982),
for details on techniques adopted for these types of problems.

The type of boundary determines the number of boundary conditions that have to be
specified on that boundary. A consideration of the characteristics of the system helps iden-
tifying that number (e.g. Daubert and Graffe, (1967), Hirsch, (1988) or Weiyan (1992)).

For the domain Q with boundary T" depicted in Figure 2.2, n is the unit inward nor-
mal to T at point P(x,y) € I'. The boundary condition is specified through the depth H
and the normal and tangential discharge per unit width g, and g,, respectively. ¢, and ¢,

are then related to ¢, and g, through:

g, = —q,sino.—g,cosa,and g, = q,,c0s0. — g,sino. [ 2.26]

I

Figure 2.2 Boundary Condition Specification

The velocity vectoratPis W = (U V) . If:
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>0 = inflow boundary
W:n <0 = outflow boundary
= 0 =3 no-flow boundary

Further, defining the local Froude number in the two-dimensional domain as:

_ W =JU2+V2
"R JeE

the flow being subcritical for F, < 1, supercritical for F,> 1 and critical for F, =1, then the

F

[2.27]

following possibilities exist:

2.3.1 No-Flow Boundary:

In this case, no flux crosses the boundary. Since for shallow water flow problems the
resistance is mainly due to roughness distributed over the interior of the domain rather
than from the boundary, a zero stress, slip boundary condit.on is assumed. Thus, a tangen-
tial velocity is allowed and computed at the boundary. A no-slip condition could also be
specified. However, this condition could negatively affect the solution in the vicinity of the
boundary, unless small enough elements are used to resolve the boundary layer.

2.3.2 Inflow Boundary:

1. Subcritical:

In this case, two characteristic curves enter the domain at the boundary, and thus two
boundary conditions have to be specified. One possibility is to specify the stage and a zero
tangential velocity at this boundary. Weiyan, (1992), states that such a specification could
lead to virtual vortices in the vicinity of the boundary and disturbances added to the water
surface. Another option would be to specify the two inflow depth averaged discharges g,
and g,. Usually, the boundaries are selected such that g, is zero. If the total discharge cross-

ing the boundary is known, then the distribution of g, over the boundary is based on the

conveyance at each node, based on a uniform flow assumption. For some complex inflow
boundaries, for example if the bed slope is very steep in part of the boundary and flat in
another, instabilities may occur. In this case, an artificial entry reach can be used (about
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one to two stre .n widths long), over which the inflow section changes gradually from
rectangular i) t\«s natural shape.

When there is uncertainty about the distribution of discharge over the inflow bound-
ary for simulating unmeasured flows, a cross-section further upstream could be added to
the reach o allow the flow to adjust itself over a development length. Equating inertial and
friction effects we get:

2

C.H
or
2 2
v g (2
tus  CiH
where L/ is the required upstream development length. The above gives
]
Lys €
H 7 1230

Thus, for a C, in the order of 10, L5 would be in the order of 50 stream depths.
2. Supercritical:

For this type of boundary, all three characteristic curves enter the domain with
increasing time, and thus the three variables H, g, and g, are specified.

2.3.3 Outflow Boundary:

1. Subcritical:

Cnly one characteristic would be entering the domain for such a condition, and thus
»n.. &>undary condition is specified. Usually, g, and g, are unknown, while a water level
hydiosraph is specified. If the outflow boundary is at a control section or a man made
»- 3raunlic structure, then a stage-discharge relation could be entered. If the downstream
-siion can be located in a fairly straight long uniform reach of the stream, locally uniform
cw ¥’ | e assumed to estimate the downstream water elevation.
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if uncertainty about the downstream boundary condition exists, it might be advisable
to add some additional cross sections at the downstream end of the reach. From a consid-
eration of the backwater effects introduced by an error in estimating the depth at the
houndary, a conservative estimate of the additional reach length required (Lps) would be

Lps 1
A S_o [2.31]
2. Supercritical:

In this case, all three characteristics are leaving the domain with increasing time, and

thus no boundary conditions are specified.

2.4 Finite Element Formulation

The Streamline Upwind Petrov Galerkin (SUPG) Finite Element method is applied

here to the system of equations [ 2.9]. The weight functions ﬁ,- for the two-dimensional

case have the form (Brooks and Hughes, 1982):

B; = B,.+coAxWxa +(1)AyWya—v {2.32]
where B; is the matrix of shape functions given by:
b;0 0
B,={00b,0 [233]
00 b

where i = 1, NS; NS being the total number of shape functions b;. In this thesis linear tri-

angular and quadrilateral isoparametric elements are used.

The shape functions are functions of the space dimensions only, such that at any

NS

point (x,v) € Q, ¢ = z B jd)j, where <I>j is the vector of nodal values of the unknowns
j=1

and Q is the solution domain. Figure 2.3 shows typical shape functions for node “A” of

the linear triangular element ABC and for node “F” of the linear quadrilateral element
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DEFG. The value of the shape function for a given node is described by a surface in the x-

Figure 2.3 Shape Functions for Linear Elements

y-z space, x and y being the coordinates in the horizontal plane and the z-coordinate repre-
senting the value of the shape function at any point P(x,y) € Q. As can be seen in Figure

2.3, the shape function has a value of 1.0 at that node and a value of 0.0 at all other nodes.

It is more convenient from a computational poin. of view to express the shape func-
tions mathematically in terms of a local coordinate system r-s (Figure 2.4). For the trian-

A s
Y4 A
Yp B \‘lg\\ LORNE
Yc C ‘ T
\\‘
By N
| b
, |
‘ a 1.0 r
‘ > b) Local Coordinate System
Xg Xc Xa *

a) Global Coordinate Sysiem

Figure 2.4 Elements in Local and Global Coordinate Systems
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gular element depicted in Figure 2.4 b, the shape functions in terms of local coordinates

for node “a” would be given by:

l—-r-s
b(r,s) = r [2.34]

s
The differentials with respect to the local coordinates would then be:
|} b _ |71

52 =|1].and 50 = (l) [235)

', oruer to evaluate the weak statement, an expression in terms of global coordinates
X ‘red, which is obtained through a transformation as follows:

parametric mapping, x and y can be expressed as:

NS NS
x= Y bX, y=3bY [2.36)
ji=1

where X; and Y; are the nodal coordinates in the global coordinate system (Figure 2.4).

Using the chain rule for differentiation, the derivatives with respect to local and glo-
bal coordinates can be related through:

%) fox 2y
ar or odr

= 2.37
EE: o
s ds 9s

Making use of equation [ 2.36], the terms of the Jacobian matrix in equation [ 2.37] can be
written as:

—NS ob. NS ob. ]

dox dy t)'s Y.
j= 3 or _ j;ar J E:lar J

x| Nap NGy
ds ds L,Z E,jxj a—rJYf

[2.38]
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Finally,

[ 2.39)

In the Bubnov Galerkin FE method, weight functions equal to the basis functions arc
used. As this method results in a scheme equivalent to a centered FD scheme, it is not suit-
able for hyperbolic problems. The Petrov Galerkin Finite Element method uses modified
weight functions as shown in equation [ 2.32]. It can be shown that the use of such weight
functions introduces, through error cancelation between time and space derivatives, a third
order accurate scheme (Hughes, 1982). This means that the leading error term would con-
tain a fourth derivative, introducing highly selective artificial diffusion, which filters out
undesirable short wavelengths and dies off quickly for longer wave lengths. Hicks and
Steffler, (1992), through Fourier Analysis on the CDG application to the linearized St.
Venant equations demonstrated this behavior for the one-dimensional case. Leonard,
(1979), showed through numerical tests using the finite difference method in one and two
dimensions the high accuracy that couid be obtained with a third order scheme.

W, and W, are the upwinding matrices. Wang and Adeff. (1987), used the x-direc-
tion velocity U for the diagonal values of W and the y-direction velocity V for the diago-
nal values Wy. The off-diagonal terms were set to zero. Katopodes, (1987), applied the
Dissipative Galerkin (DG) method to the two-dimensional shallow water flow equations
by setting W, = A /|U+ | and Wy = Ay/|V+ c!. Hicks and Steffler, (1992), com-
pared the Dissipative Galerkin (DG) formulation for the one dimensional St. Venant equa-
tions (W = A/|U + c|), to the CDG formulation in which W = A/|A|, A being the
convection matrix for the one-dimensional case. They showed through decomposition of
A that in the DG scheme both wave components are scaled to the positive characteristic
and thus the upwinding applied to the regressive wave might be too small. On the other
hand, in the CDG method, both characteristics were scaled to their absolute values and

thus proper upwinding could be assigned for each component. Hughes and Mallet (1986
b) presented the SUPG method for multidimensional advective diffusive systems. They
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d -12
showed that by scaling the convection matrices by (z A.z) , d being the number of

i=1

space dimensions, the resulting upwinding matrices possessed the properties of reducing

correctly to the optimal one-dimensional system case. They also stated that other schemes
such as Lax-Wendroff and Taylor-Galerkin methods are inferior for systems of equations

because they cannot appropriately treat the independent modal components.

Thus for the two-dimensional system of equations under consideration, the two

upwinding matrices are:

A
W, o= —— [2.40)
JAZ+ Al
A)’
W, o= —L [241]

The inverse of the square root of the matrix is calculated directly using the Cayley-Hamil-
ton theorem (Hoger and Carlson, 1984, see also Appendix C), thus avoiding the solution
of the eigenproblem (Hughes and Mallet, 1986 b). The upwinding matrices are then
obtained by premultiplying the convection matrices with the obtained matrix. Upwinding

matrices of tI  form

w

X

W, = A,/|A

A/|A [242]

J [2.43]

are also examined in section 3.7.4 and their performance is testec and compared to the
matrices of [ 2.40] and [ 2.41]. For the parameters Ax and Ay in equation [ 2 32], Hughes
and Mallet, (1986 a), suggested for quadrilateral elements to use the maximum of the
length of the two diagonals + J2. Hicks and Steffler, (1992), used a value of half the ele-

ment length for the one-dimensional St. Venant equations. Katopodes, (1987), used

’ 2 2 f 2 2
parameters equal to Ax = (%)i) + (g—i) and Ay = (%);)) + (%) , where r and s are

the local coordinates. As the element shape for the problems under consideration is not too
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distorted, a simple expression Ax = Ay = is used, A being the element area. For

more distorted elements, a direction dependent expression such as the one used by Katep-
odes might be advisable. The parameter ® has also been investigated by several authors.
Hicks and Steffler, (1992 b), reviewecd the literature in that regard. They also presented a
Fourier Analysis, showing the effect of @ and also other parameters such as the Courant
Number (C,), and the implicitness factor 6 on the scheme behavior for solving the ore-
dimensional St. Venant Equations. Because the Fourier Analysis is performed for a linear-
ized form of the equations, and because the equations under consideration are for two-
dimensional flow, the results serve only as indicators of model behavior. An extension to
two dimensions would be useful, has however not been attempted in this work. A set of
carefully selected numerical experiments can give good insight into the stability and con-
vergence aspects of the scheme (Lee and Froehlich, 1986). For the numerical experiments
presented in section 3.7, values of ® ranging from 0.25 to 1.0 were tested. It was found
that results are generally not very sensitive to the exact values of ®, but best results were

obtained for values of ® of 0.25 for transient problems and of 0.5 for steady problems.

Applying the Galerkin FE approach with weight functions given by [ 2.32] to the
system of equations [ 2.9], making use of equations [ 2.10] to [ 2.25}, yields.

20 9 9
sj) G + & M0 + L M0 - (VD 77 vD, 50
& vp X _yp ¥ -
’a‘i(VDy@} yya)+N¢)dQ 0

{ 2.44)

Substituting for test functions and basis functions and multiplying through, we obtain:
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‘Ba(bf B.(& (M.B®)+2 (M.B®)
‘.[(Bija‘, +B,(3; (M,B;®) +5°(M,B,%;

3 aBj aBj 3 aBj b Z)Bj B.®
~2(D I+ D, 0 2V (D | 0,4 Dy ®;) +NB®,)

d JB; oB; o=
~dy(D 5/ +D,=—® ) +NB®,) )dQ = 0

a}’ Y"ax ay [ 2.45]

Integrating the underlined terms (Bubnov Galerkin components of convection and diffu-
sion) by parts yields:
oB

, 00, 0B, dB;
(jz(n,.sja—t - 35 MiB;®; - 5 'M,B;®,

B, OB
+§;‘ V( xx?); j+ny-a—; J)

+§§V(Dyxﬁ ¢j+Dyya—y j)+ NB;®,

B, B, OB, 3B

, 3B B, 5o B B
ox¥ Pugy ® = Paygy @) 755" Py @i+ Pyygy @)

+NB;®,) )dQ+i[(B,.MxBj<Dj )dT

+‘[(B,.v(l),‘xa ;4 Dyy5- /0, + Dy @+ Dy 500 )l = 0
[ 2.46]

In the above, the Petrov-Galerkin components are not integrated by parts, as this
would necessitate the use of higher order elements. The last two integrals in [ 2.46] are
integrals on the domain boundary T, which result from the integration by parts of the Bub-
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nov convection and diffusion components, respectively. It can be seen that these terms are
natural convective and diffusive fluxes across the boundary. This provides an accurate and
easy means for specifying natural boundary conditions. For example, to specify a no-flow
boundary condition, the two terms are set equal to zero. A zero stress (slip) boundary is
assumed, thus eliminating the contribution from the diffusive terms on the boundary inte-
gral.

It should be mentioned here that spurious oscillations perpendicular to no-flow
boundaries in the vicinity of shocks are observed, unless the upwinding is set to zero per-
pendicular to the domain boundaries. The reason for this could be that the upwinding
terms are not integrated by parts, and thus do not contribute to the boundary integrals.

Since the <I>j are functions of time only, the partial time derivative in [ 2.46] can be

replaced by an ordinary derivative. The equation can be rearranged to be written in the
form:

d = ==~ B REd .
Sija—t(bj-i- (K,-j+BK,-jCBC)<Dj+ BK;BC®; = 0 [247]

where ® ; is the vector of known boundary values A, § «andg,. The matrix lmij results

from the boundary integral. The matrix BC is a diagonal matrix with a one on the diagon.l

corresponding to a known and a zero to an unknown value of the variables on the bound

ary. The matrix CBC = I —BC, I being the identity matrix. For exampic for the case of a

subcritical inflow boundary (section 2.3.2), where 3, and g,, are known and H is unknown,

the matrix BC would be equal to:

L 000
BC=1(010 [2.48]
001
while CBC would equal:
100
CBC =000 [ 2.49)
000
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The above implementation of boundary conditions facilitates the use of the boundary

integral flux terms directly as shown below, resulting in excellent conservation properties.

Further,
S;; = i[BiBde [2.50]
K i B, - i, B
A ox X1 9y Y
oB; aBj E)Bj
+a—x V(Dx"é} +nya—'y )
oB; BBJ oB B;
+a—y"(Dyxa +D,,~5—)+BNB
N dB; oB A aB aBj
m(AxW N +AyWya )( Ay§;_
oB. oB. oB.
0 j 0 J j
...5}\’ (Dxxé_ —ny_a;") _a—yv (l)yxyv +Dyy'a—y )
+NB;) )dQ [2.51]
ﬁK,‘j = J(BiMxBj
r
BDaBDBfDan a’dl"
+ V( xXXJy a_y' + yxa_'x +D yya )) [252)

Gaussian numerical integration is used to evaluate the above integrals. The use of

one integration point for the linear triangular elements was found to lead to stability prob-

lems due to poor solution matrices. This problem was overcome by using three integration

points. For the linear quadrilateral elements, four integration points are used. Coordinates

and weights as well as corresponding accuracy for the different Gauss points can be found

in Burnett, (1987).
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Applying a finite difference discretization to the time derivative by means of the
implicitness operator 6 € [0, 1], with 8 = 0 for explicit and 0 = 1 for fully implicit solu-
tion, yields:

J

n+l n
ij At

— —— e —— n+l
+6 [ (K;;+BK;;CBC) q>j+BK,-ch&>j]

—_— — n

+ (1-9) [(K;+BK;CBC)®;+BK;BC®] =0

{2.53)
where n denotes the n'! time step. Rewriting:
{8, +0Ar [K, + BR,TBEC]} " o7 !+ oar (BR,BC1" &)

= {8, (1-0)Ar[K,+BK,TBC]} ] - (1-0) &I (B BCI'®] )

or
K;}+l¢;+l+eAtﬁ{‘:}+lB_én+l&);+l = F [2.55]

or
Kz+l¢}‘+l+9Atﬁ—K;}+lﬁ_C—"Hﬁ>;H -F; =0 [2.36]

Applying the Newton-Raphson technique to the above system of nenlinear equations, the

residual R; at the m'" iteration is given by:

n+l,me——n+lmon+tlm _pp

 IASLIES HN ALY S ToRRC S [2.57)

and the corrections vector 5@ * Lm+1 equals:

-1
8¢Z+l'm+l = [J;xk+l.m] (_R;z+l,m) [2.58]
, n+l,m. . . . .
where J;; is the Jacobian matrix given by:
n+l,m _ d n+l,m
i T St (2591
J

Chapter 2: Finitc Element Solution of the Two-Dimensional Shallow Water Flow Equations 2



The above yields a system of linear equations in 5<D}' +hmtl,

J;}+I,m8¢;+l,m+l - _R?+l,m [ 2.60]

After each iteration, the values of the variables are updated through:

¢;1+l.m+l = ¢;+l,m+8¢}1+l.m+l [2.61]

Finally, when the error norm € = [=———— < tolerance , the solution proceeds to the

3 1 (30) )
>0t

next time step.

2.5 Dry Elements

2.5.1 General

Among the challenging problems facing the developers of two-dimensional models,
is the treatment of wetting and drying domain areas. In this case negative or even very
small depths, if not properly accounted for, lead to stability problems and make a solution
impossible. This situation is encounteid in most practical river and coastal engineering
problems, such as flood propagation, dam break analysis, tidal processes etc. Even when
attempting a steady state solution of flow in a natural river or stream for a given discharge,
the distribution of the water surface elevations over the domain are not known a priori, and
usually parts of the domain are found to be wet and other parts dry.

Generally, two options exist for the treatment of this problem, either to solve the
equations everywhere regardless of wet or dry, or to remcve dry areas from the solution
domain. In the first method, special treatments are required for the dry and partially dry
elements. The second approach, might require the definition of new meshes and renum-
bering of the unknowns, resulting in considerable computational effort at every time step.
Further, mass conservation cannot be ensured and propagation of flood waves would be
limited by the process of activating dry elements (Hervonet and Janin, 1994).

Akanbi and Katopodes, (1988), developed a moving grid finite element model to
simulate flood propagation over initially dry land. Although the moving grid eliminated
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the need for redundant computations on dry areas, a significant portion of computational
time was devoted to the regeneration of the grid and tracking of the wave front, and thus
the overall computational efficiency was limited (Akanbi and Katopodes, 1988). Also, the
presented model was restricted to horizontal bathymetry.

Leclerc et al., (1990), presented a model based on the mixed interpolation FE
method. For wet elements, the full dynamic shallow water flow equations were solved. For
dry elements, velocities were set equal to zero, while for partially wet elements, reduced
momentum equations (through neglecting the pressure terms) were introduced. They had
to resort to artificial values of turbulent diffusion to achieve a stable solution, and recom-
mended a judicious choice for the diffusion parameter. Further, they stated that this
approach would be inappropriate for simulating rapid boundary movements produced, for
example, by dam breaks or short frontal tidal waves.

Tchamen and Kahawita, (1994), proposed a technique to simulate wetting and dry-
ing areas using Riemann solvers with the FV method. They presented the results for a one-
dimensional approach, but stated that the same techniques had been extended to a two-
dimensional model. The technique applied well to the case of horizontal bed. However, in
the case of varying bathymetry, problems of evaluating bathymetry and friction source
terms arose, and artificial techniques had to be introduced. They stated that these tech-
niques gave good results for a linear bed slope. For concave bed slopes, reasonable results
could only be obtained with “sufficiently close” grid spacing. No practical guidelines were
provided for the selection of this spacing. In the case of concave bed slopes, existence of a
solution could not be guaranteed altogether. As bathymetry in natural water bodies is usu-
ally not restricted to a monotone curvature, the possible non-existence of a solution could
be generalized to almost any practical flow situation.

Hervonet and Janin, (1994), used a two-dimensional Finite Element model
(TELEMAC-2D), developed and implemented by Laboratoire National d'Hydraulique
(LNH), France, to simulate flood propagation over initially dry beds. They chose a non-
conservative form of the equations to reduce stability problems related to shallow depths.
The SUPG Finite Element Technique (Brooks and Hughes, 1982) was used for the conti-
nuity equation and the Method of Characteristics for the momentum equations. The 6

implicit treatment of the time derivative allowed stable (but not necessarily accurate) solu-
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tions for Courant Numbers up to 50. They included two options in the code regarding the
treatment of dry areas: either solving the equations everywhere, or removing the drying
zones from the computational domain. In the first approach, they assumed that the water
surface coincided with the dry bed (Figure 2.5). This produced a gradient and driving

Free surface as viewed by the model
Free surface —L\/

Figure 2.5 Partially Dry Elements (Hervonet and Janin, 1994)

force from the dry to the wet region in the momentum equations and corrections were
required. They found that the final results greatly depended on the method with which the
corrections were applied and on the algorithms used to detect the half wet/half dry ele-
ments. They also reported problems in areas of steep slopes. They concluded that neither
of the two methods was fully satisfactory, and that further research was required on this

topic.

2.5.2 Treatment of Domains with Partially Dry Beds

A technique has been developed here to allow the inclusion of dry areas in the solu-
tion domain. At each iteration, a test is made for each element to check whether any of its
nodes is dry. If the element is found to be totally dry, equations [ 2.1] to [ 2.3] are replaced
by:

oH 94, 99,
Ssitox tay - ° (262
oH 1

3 T797 5, =0 (263]
oH 1

3 1975, =0 2

These equations can be viewed as analogous to the equations describing the groundwater
flow in the aquifer adjacent to the river depicted in Figure 2.6. § is the aquifer storativity
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and T is the aquifer transmissivity (m%/sec), which is equal to the product of the aquifer
permeability and aquifer thickness.

Surface Water Flow

h

Groundwater
ow

o]
|

Datum

Figure 2.6 Wet and Dry Subdomains (right and left of point A respectively)

In the above figure, z and 4 are the elevations of the ground surface and the free
water surface above a horizontal datum, taken here as the bottom of the aquifer, respec-
tively. Thus & is equal to the aquifer thickness. In all the tests considered, a no flow bound-
ary condition has been specified for all the external aquifer boundaries.

Considering the stream and adjacent aquifer depicted in Figure 2.6, we can arrive at
a rough estimate for the ratio between the amount of groundwater flow and the amount of
surface water flow through the simulation domain. This analysis would help minimizing
the groundwater flow if we are only interested in the surface water fiow. Assuming a
steady uniform flow through the stream, then the discharge per unit width of the stream ¢,

would be approximately equal to:

3/2 o172
g, = CH'"S; [ 265]

For the aquifer, making use of equation [ 2.63], and assuming that the longitudinal water
surface slope in the stream is equal to the longitudinal water surface slope in the aquifer,
the discharge per unit width in the aquifer g, would equal

4, =T5;=T5; [ 2.66]
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Combining equations [ 2.65] and [ 2.66) yields:

2
qu
4, = [2.67]
gt &
or
9, Tqg
£ = 53 [2.68]
9 CH

Now, assuming a depth of flow in the stream of the order of 1 m, a Chezy C; of the order

of 10, and a flow velocity in the stream of around 1 my/sec, and assuming the width of the
simulated portion of the aquifer being approximately equal to the stream width, then an

aquifer transmissivity of 1 mZ%/sec would result in a discharge flowing through the aquifer

around 1% of the discharge in the stream.

The solution for the flow proceeds as follows. During the solution process, a check is
made on the value of depth over all elements. If an element is found to be partially dry (for
example element ABC in Figure 2.7), the line of depth H = H,y; is found. Hyy;p is a mini-
mum value of positive ¢-:}:. below which the groundwater flow equations are applied. It
is important to specify an H,;, > 0.0, to avoid stability problems with the shallow water

equstions related to vanishing depth values. The coordinates of the Gauss integration
points of the i .. <at are then calculated for the two resulting polygons ADEC and BED
separately. 5% -+ i St is assigred proportional to the relative area (Figure 2.7). Then,
equations [ 2 1j i _.3] are used to calculate the contribution from BED to tiw stiffuess
matrix, whereas equations [ 2.62] to | 2.64] are used for ADEC.

Considering triangle ABC in Figure 2.7, and examining equation [ 2.67], it can be
seen that the discharge value at point B (surface water flow) would usually be much larger
than the values at A and C (groundwater flow). As the two different types of equations are
integrated over the same element ABC, the finite element solution will attempt to produce
the best representative values over the domain, which might lead to local inaccuracy in
computed discharges. It was however found that these inaccuracies remain very localized
and do hardly affect the wave propagation speed for unsteady simulations (section 3.7) or
the overall solution (Chapter 4). Perhaps one way to overcome this problem could be to
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Gauss integration points for dry portion
line of H = H,;;, A 7

e
Gauss integration points for wet portion wet (surface water flow)

Figure 2.7 Dividing the Domain into Dry and Wet Regions

compute the water surface and identify areas of wet and dry over the solution domain.
Then, the nodal coordinates of the vertices on either side of the mixed elements (either the
dry or the wet nodes, possibly the ones which give the minimum overall shift) can be
shifted to coincide with the line of H = H,,;,,, and then a final solution could be obtained

with this new node layout. This modification has not been attempted in this work.

The values of H,,;, and T could be related using a simplified argument. This is done

by equating the conveyance of the aquifer with the conveyance of the stream in the vicin-
ity of the aquifer, to prevent retarded response between the two water bodies. If we write
the x-direction momentum equation for steady zero-inertia surfare flow as:

a 2 Fa 10 Pay A -
XxH +ghil, - .S, =0, [ 2.69]

N0y

then, substituting for Sf , simplifying and comparing to equation [ 2.63], we obtain:

CeH  ClgH’
- -
Jiivg ¢

which provides a relation between T and H (which would be H,,;, in this case). For exam-

[2.70]

ple, if H,,;, is selected as 0.01 m, then assuming a q in the vicinity of the wet dry interface
of the order of 0.001 m%/sec, C,~10and g=10 m?/sec, then T would be of the order of

1.0 m¥/sec.
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The value of S can pose a constraint on the time step for unsteady problems. This can
be seen from the analysis below, by considering the one-dimensional form of equation [
2.62]:

aH qu
— 4= = 27

S ox
From the one-dimensional form of equation [ 2.63] we obtain:

H
q, = T(S,,-g—x) [272]
substituting [ 2.72] in [ 2.71] and assuming a constant slope S,:
2 2
oH _ TO'H _ ,0'H [2.73]
dt  S3x° ax°

Equation [ 2.73] is a diffusion equation in H, D = 37: being the diffusion parameter.

The dimensionless diffusion number rp is defined as:

_ DAt

= A 3 [2.74]
X

"p
where At and Ax are the time step and spatial discretization, respectively. A truncat’ n
error analysis suggests a value of rp equal to 1/6 for highest accuracy for an explicit cen-
tered space forward time scheme. A Fourier stability analysis specifies a minimum value
of rp of 1/2. It also indicates that the scheme would be unconditionally stable for 6 2 0.5.
Thus, if we choose for tzansient problems using a semi-implicit scheme a value of rp in

the order of 1.0, we obtain the following relation which computes the time step given the
spatial discretization and aquifer characteristics:
28

At = Ax T [2.75]

On the other hand, if we are only interested in the surface water flow, the parameters S and
T can be chosen to enhance numerical stability by choosing a larger value for § (not
greater than unity) and a smaller value for T. As can be seen from equation [ 2.67], choos-
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ing a smaller value for T will reduce the flow through the aquifer, which would be desir-
able in this case.

For the limited number of tests performed, a value of T =1 m?/sec was found to give

stable and accurate solutions. Values of T=0.1 m%/sec and 0.01 m2/sec were also tried for
the tests in Chapter 4. The impact on the simulated surface water flow predictions was
found to be minimal. The value of S was chosen equal to unity. Changing the value of S to
0.1 in the trapezoidal channel test with dry side slopes (section 3.8) resulted in a slightly
faster rate of drawdown of the water table in the aquifer during the unsteady phase, did
however not affect the final steady state solution.

Generally, if we are not interested in simulating flow in the aquifer, then the choice
of the parameters can be as follows. First, a value of H,,;;,, equal to about 1% of the average
depth of flow in the stream can be selected. The aquifer transmissivity can then be calcu-
lated from equation [ 2.70]. Equation [ 2.75] then provides a guideline for the choice of
aquifer storativity S based on the time and space discretizations. Chapters 3 and 4 contain

examples of the choice of aquifer parameters for differcnt test cases.

2.6 Mesh generation

2.6.1 Introduction

An important aspect of a finite element simulation, especially in multi-dimensions,
is the generation of a proper mesh. This can be done either manually or automatically. In
the case of 2-D flow problems, manual mesh generation is achieved by discretizing the
domain under consideration into polygonal elements by hand, and then estimating the val-
ues for the different parameters such as roughness and bed elevation at all the generated
nodes. The nodes and elements have then to be numbered by the user and tables of nodal
connectivities have to be prepared for each element. Since the horizontal extent of the flow
domain in natural streams usually changes with changes in water levels, a new mesh might
be required whenever the flow varies. This process requires many hours of office work. An
alternative to this is automated mesh generation, in which the finite element program

develops it~ own mesh based on geometric information supplied by the user. Extensive
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research has been done in that field and it is now considered by many developers as an

integral part of the finite elemc.1t simulation.

2.6.2 Unstructured Mesh Generation
The following properties are desirable in a mesh generation routine:
1. Make use of all available data in order to develop the mesh that best represents these

data.

2. Minimize the effort required for preparing input files, by allowing the use of the same
input files used to run widely used 1-D programs such as HEC-2 or IFG-4 directly.

3. Take advantage of any scattered measurements available.

4. Discretize any complex geometry (having islands, boundary irregularities, branches,
etc.) in an efficient and reliable manner.

bd

Perform calculations and storage allocation in a computationally efficient way.
6. Perform smoothing on a generated mesh to obtain more regular triangles.
7

. Renumber nodes to minimize band width.

2.6.3 Description of the mesh generation routine

An automatic mesh generation routine has been developed, which generates an
unstructured triangular element mesh inside the study reach. The process of mesh genera-
tion can be summarized in the following steps:

1. Preparation of input file (manual or automatic).
. Placement of boundary and internal nodes
. Triangulation

Smoothing

oo W

Renumbering

[=)]

. Interpolation

A description of each of the above topics follows. Chapter 4 shows examples of the

different stages of the generation of an unstructured mesh for a natural river domain.
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2.6.3.1 Preparation of input file

The mesh generation routine requires two input files. The first one is used to gener-
ate the finite element calculation mesh. The file contains information about the element
type (either 3 or 6-node triangular elements), the number of loops 'nloops’ (each closed
boundary is considered as a loop), and information about the starting front for node reor-
dering. This is followed by the nodal information (node number and x- and y-coordinatc)
of the external boundary, and then by the nodal information of the (nloops -1) internal
boundaries. At the end is information about the fixed internal nodes.

The second input file, which contains the x- and y-coordinates, elevation, and rough-
ness height values of the field data points, is required to generate the interpolation mesh.
This mesh is used to interpolate data from given data points to find properties such as bed
elevation and friction coefficients for the calculation mesh.

A preprocessor has been developed to generate the above two input files automati-
cally from the one-dimensional IFG-4 input file (used in the Physical Habitat Simulation
System (PHABSIM) program). The preprocessor reads in cross-section data as well as
discharge and water levels. The preprocessor outputs the proper boundary conditions and
initial conditions as well as information for the reordering routine. Because the only avail-
able information about the layout of cross-sections is the spacing between each two con-
secutive sections, the assumption is made that the centerline (based on the two extreme
data points for each cross-section) is straight. More detailed information describing river
meanders can be readily included in the model once they are available.

2.6.3.2 Placement of boundary and interior nodes

The generation of a calculation mesh starts by reading in the calculation mesh input
file. Then, the nodes are placed along internal and external boundary segments according
to a spacing specified by the user. After that, internal nodes are placed by slicing through
the domain and placing nodes in the interior of the domain along horizontal lines. A check
is made to prevent generating a node too close to an already existing node. Other criteria
could be specified for placing the nodes, for example along bed contours.
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2.6.3.3 Triangulation

The element generation uses the advancing front method (Lo. 1985). At the begin-
ning of the process, the advancing front coincides with the external boundary of the
domain. A front segment is the segment lying between two neighboring nodes on the
front. While the given domain boundary remains always the same, the generation front
changes continuously throughout the process and has to be updated whenever a new ele-
ment is formed. The triangulation is initiated by selecting the last segment AB of the front.
The goal is to determine a node C, such that node C lies to the left of the directed segment
AB and that A ABC is in some sense optimal (Figure 2.8). In order to accomplish this, the
two closest nodes C; and C, are chosen, and the node C is chosen which gives the best tri-
angle shape. Then the front is updated by replacing segment AB by segments AC and CB.
CB would now be the active front segment. The process of triangulation is terminated

once the advancing front is reduced to zero.

Figure 2.8 Element Generation Using thc Advancing Front Method

2.6.3.4 Smoothing

A smoothing routine is applied to the node coordinates of the generated mesh to
improve the element shape. The criterion chosen for smoothing is that each node is moved
to the average coordinate of all its neighboring nodes. A neighboring node is any node that
is connected to the node under consideration by an element side. Internal and external
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boundary nodes as well a:. prespecified data nodes are not moved during the smoothing
process. Other criteria could be chosen for smoothing to achieve different mesh shapes by
applying some weight functions to the nodal coordinates as required. For example, higher

weight could be assigned to nodes in locations showing rapid changes in topography.

2.6.3.5 Renumbering

The original numbering of the nodes is inconvenient from a computational point of
view, as it would result in a large front/band width. A routine has been developed, which
renumbers the nodes to reduce this width. This is achieved by moving a fron: across the
domain and numbering the nodes as the front proceeds. The user has to specify the initial
corner nodes that include the ordering front. (As mentioned above, the IFG4 preprocessor
automatically includes this information in the calculation mesh input file.) The front
advances into the domain, its ends always connected to and moving along the external
boundary of the domain, until all nodes have been passed by the front and renumbered. As
for typical river reaches the width is smaller than the length of the domain, the starting

points for the renumbering front are usually specified as the two extreme nodes of the
inflow boundary.

2.6.3.6 Interpolation

A routine has been developed which can make use of any available scattered data
points to find nodal values at the nodes of the calculation mesh. First, a mesh is generated
by the same triangulation routine described in 2.6.3.3, to connect the given data points by
the most suitable triangles for the purpose of interpolation. For the present layout of the
available data points (for example Figure 4.4), the best triangle shape would be as close as
possible to isosceles, as triangles would extend in the longitudinal direction of the stream.
When the same criterion as the one used in the above element generation routine was used
to select nodes to form triangles (choosing the two closest nodes to the front segment),
some triangles appeared which extended from one bank of the stream to the other bank. To
overcome this problem, the criterion was changed to choosing the two nodes closest to
each edge of the front segment under consideration. After the interpolation mesh is devel-
oped, the location of each node of the calculation mesh is determined with respect to the

interpolation triangles. Then, areal interpolation is applied to obtain the nodal values. For
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example for point “A” of the figure below, a weight equal to the area of triangle BCP
divided by the area of triangle ABC is assigned.

Figure 2.9 Interpolation Procedure Using Areal Interpolation

It should be mentioned that the use of data collected for a one-dimensional model
does usually not give the best representation of the study reach. An example of this is the
layout of data points for the Waterton River study as shown in Figure 4.4. It can be seen
that the resolution is generally too fine at cross sections and too coai s in between Cross
sections. Further, actual channel alignment is not represented in the one-dimensional data
file. Therefore, a scattered data point layout would be more appropriate for the two-dimen-

sional model.
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2.7 Summary

In this chapter, the two-dimensional shallow water flow equations describing free
surface flow in the horizontal plane have been presented together with the underlying
assumptions and limitations. The appropriate boundary and initial conditions have been
discussed. The Characteristic-Dissipative-Galerkin (CDG) finite element formulation has
been presented, and a new technique to simulate fully dynamic flow on a partly dry
domain has been proposed. Finally, the generation of an unstructured computational mesh
for natural streams has been discussed. In the coming two chapters, the two-dimensional
model is subjected to a number of hypothetical and real test cases to evaluate the different
aspects of the numerical scheme.
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Chapter 3

Model Evaluation

3.1 Introduction

Several numerical experiments are presented in this chapter, which examine the per-
formance of the two-dimensional scheme. The first test simulates the standing waves
resulting from supercritical flow through a channel constriction Vi:e computed results
compare reasonably well to measurements taken by Ippen and Dawson, 1951. The second
test (section 3.3) simulates the break of a hypothetical circular dam. Different element
types are trie¢ with this test to examine the effect of element shape on the obtained solu-
tion. The test in section 3.4 simulates the partial failure of a hypothetical dam. This test,
proposed by Fennema and Chaudhry in 1990, has been used by several authors to examine
two-dimensional schemes. In section 3.5, the directiona! dependency is examined through
a hydraulic jurip and a one-dimensiorai dambreak probizm. The stability range with
regard to the implicitness factor 0 is examined in secticr: +.¢. Finally, the performance of

the dry bed simulation routine is tested in sections 3.7 and 3.3.



3.2 Supercritical Flow Through a Channel Contraction

This test demonstrates the ability of the method to simulate supercritical flow and to
predict the locations and heights of the standing waves resulting from a channel constric-
tion. It also shows the limitations of the shallow water flow equations used. Calculated val-
ues are compared to laboratory measurements taken by Ippen and Dawson (1951). The
flume has a straight entry length, then changes width from 0.6096 m (2 ft.) to 0.3048 m (1
ft.) over a length of 1.26 m (4.13 ft.), the contraction angle being 6.9°. The flow enters the

flume at a discharge of 0.0669 m/sec (1.44 ft.3/sec), with a depth of 0.0305 m (0.1 ft.) and
a velocity of 2.19 m/sec (7.15 ft./sec), resulting in a Froude number of 4.0. The contrac-
tion results in oblique standing waves as described in Ippen and Dawson (1951). The sim-
ulation is performed using a finite element mesh composed of linear quadrilateral
elements (Figure 3.1).

20m | 1.26 m 20m
: EiRRiEERaataas
pamaBzzisza::
0.6l m 6.9° 0.305 m

Figure 3.1 Finite Element Mesh

The contraction section is described by eight elements across and twenty along the
channel. The boundary conditions are specified as supercritical inflow and outflow condi-
tions and no-flow side walls. The simulation is performed by running an unsteady simula-

tion using a time step of 0.05 seconds (C_ = 2) until a steady state is reached. The initial
conditions are prescribed as a H = 0.03 m, g, = 0.0669 m>/sec and gy = 0.0 throughout. A

steady state solution is obtained after 100 steps (convergence criteria € = 10_")). Figure
3.2 and Figure 3.3 compare measured depth contours (Ippen and Dawson 1951) to the
simulated contours. The overall agreement is not bad, however some discrepancy can be
observed between the measured and simulated 6.0 and 7.5 cm contours. This is probably
because the shallow water equations are not able to account for the small wavelength to
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Figure 3.2 Measured Depth Contours
(Reproduced from Ippen and Dawson, 1951)
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Figure 3.3 Simulated Depth Contours

depth ratio found in this vicinity, and it is unlikely that refining the mesh would be able to
produce much improvement. Other governing equations which account for vertical veloc-

ity components and non-hydrostatic pressure distributions would be needed to resolve
such flow details.

Conservation was checked by comparing the total discharges entering through the
inflow boundary to the total discharge leaving through the outflow boundary at steady
state. The two were found to be exactly equal.
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3.3 Circular Dam Break Problem

This test simulates the flow resulting from the break of a hypothetical circular dam,
25 m in diameter (Alcrudo and Garcia-Navarro, 1993). The main objective of the test is to

examine the effect of different element shapes and directional dependence on the obtained
solution.

Initially, the depth of water inside the dam is 10 m, and 1 m outside, with zero veloc-
ity throughout (Figure 3.4). The domain is square 50 x SO m. A no-flow boundary condi-

‘\ &_‘ 2

Figure 3.4 Circular Dam Break: Initial Water Surface

tion is specified on the boundary of the domain. High velocities and supercritical flows
result from this dam break, which make it an interesting challenge for a numerical scheme.
In addition, the simulated flow can give an indication of mesh dependency of the model.
Thre: meshes are tested, one having linear quadrilateral elements, one having 90° trian-

gles and one having equilateral triangles (Figure 3.5 to Figure 3.7).

The simulation is performed for 30 time steps of 0.023 seconds (maxim::::
C, = 0.4). Depth contours and velocity vectors obtained from the three meshes are plotted

in Figure 3.8 to Figure 3.13. A three-dimensional plot of depth contours obtained from the
quadrilateral element mesh is shown in Figure 3.14.

Generally, all meshes introduce some distortion to the solution. From examining the
figures, it can be seen that the least distortion is obtained by using the equilateral or the
square elements. It can be seen that the 90° triangles have one preferred direction (perpen-

dicular to the hypotenuse), the quadrilaterals have two preferred directions (in the direc-
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Figure 3.5 Finite Element Mesh (Quadrilaterals)

Figure 3.6 Finite Element Mesh (90° Triangles)
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Figure 3.8 Depth Contors (Quadrilateral Elements) at t = 0.69 sec

tion of the two diagonals), whereas the equileteral triangle s have three preferred
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Figure 3.9 Velocity Vectors (Quadrilateral Elements) at t = 0.69 sec

Figure 3.10 Depth Contours (90° Triangular Elements) at t = 0.69 sec

Chapter 3: Model Evaluation

50



Figure 3.11 Velocity Vectors (90° Triangular Elements) at t = 0.69 sec

Figure 3.12 Depth Contours (Equilateral Triangular Elements)
att =0.69 sec
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Figure 3.13 Velocity Vectors (Equilateral Triangular Elements)
att=0.69 sec

directions. The convergence characteristic of the equilateral triangles mesh are slightly

superior to the other meshes. For the specified tolerance of 107, the quadrilaterals and the

90° triangles meshes converge in 5 to 6 iterations per time step, whereas the equilateral

triangles mesh converges in 5 iteration per step throughout the simulation.
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Figure 3.14 Computed Water Surface (quadrilateral mesh)
at time t = 0.69 sec
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3.4 Partial Dam Failure

This test was first introduced by Fennema and Chaudhry, 1990, to test the two-
dimensional McCormack and Gabutti schemes. It has been used later by other authors to
test different two-dimensional models (e. g. Alcrudo and Garcia-Navarro, 1993, and Zhou
et. al., 1994). The test domain is 200x200 m square, with a 10 m thick dam towards the
middle (Figure 3.15). Initially, the water depth is 10 m upstream of the dam and 5 m on the
downstream side, with zero velocity everywhere. An unsymmetrical breach occurs in the
dam at time t=0.0 (Figure 3.16).
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Figure 3.15 Pariial Dam Failure: Definition Sketch

10m

Figure 3.16 Initial Water Surface
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The discontinuous initial conditions and the 90° corners impose severe computa-
tional difficulties, and most numerical schemes fail under such conditions (Fenneima and
Chaudhry, 1990). The bed is assumed frictionless. Linear quadrilateral elements of Sm x
5m are used to develop the finite element mesh (Figure 3.17).

Figure 3.17 Finite Element Mesh

A time step of 0.355 seconds is chosen, which results in a maximum Courant Num-
ber in the order of 1.0 based on the progressive wave speed. Results are presented at the
end of 20 time steps (t=7.1 seconds), when the progressive and regressive wave fronts are
close to the downstream and upstream domain boundaries and the side wave front has
reached one side-wall of the channel. Figure 3.18 shows the depth contours and Figure
3.19 shows the velocity vectors. The three-dimensional water surface is shown in Figure
3.20. Figure 3.21 compares results of the CDG scheme te other numerical schemes
(results of other schemes digitized from Figure 14 in Fennema and Chaudhry, 1990). It
can be seen that the results of the CDG scheme show more details on the negative wave
side and a steeper front for the progressive wave, however, as no measurements are avail-
able for this test, no conclusions can be drawn regarding the accuracy of this or the other
schemes. Mass conservation is checked by comparing the volume of water at the begin-
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Figure 3.18 Computed Depth Contours
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Figuie 3.19 Velocity Vectors at time t = 7.1 seconds
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Figure 3.20 Water Surface at time t = 7.1 seconds
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Figure 3.21 Comparison Between Computed Water Surface Profiles at t =
7.1 seconds,y =140 m

ning to the volume of water at the end of the simulation. The two volumes are exactly

equal.
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3.5 Directional Dependency of Upwinding

Two tests are conducted to test and compare the CDG and the one dimensional CDG
(equations [ 2.42] and [ 2.43]) schemes. In each test, two situations are compared; First,
with the flow direction aligning with the x-axis, and then at 45° with the coordinate axes.

In this way, the directional dependency of the schemes is examined.

3.5.1 Hydraulic Jump

This test simulates a hydraulic jump in a frictionless horizontal channel. The reach is
150 m long and 15 m wide. The flow enters at a discharge per unit width of 4.07172

m2/ (sec ) and adepth of 1.0 m resulting in a Froude number of 1.3. This results in a
supercritical flow in the main flow direction, whereas when run at 45°, the Froude num-
bers based on the x and y velocity components are less than unity. The downstream bound-
ary condition is specified as a subcritical cutflow boundary with a depth of 1.40526 m,
which is the conjugate depth for the given supercritical flow conditions. It should be noted
that since the channel is frictionless, it is important to specify the values of the variables to
a high degree of accuracy in order to be able to achieve convergence. The initial conditions
place the jump at the middle of the channel (75 m downstream). The finite element mesh is
composed of square linear elements of 5 m side length. An upwinding parameter ® of 1.0
and a 0 of 1.0 (fully implicit) are used for this test. A starting time step of 0.25 seconds is
used, which is magnified every time step by a factor of 1.05, resulting in a tirae step of 30
seconds (C, = 45) at the end of 100 steps.

For the CDG scheme, it is found that results are independent of the mesh orientation.
Results obtained for the mesh in the x-direction coincide with those at 45°. Results at the

end of 100 time steps are shown in Figure 3.22. No convergence could be obtained for the
one-dimensional CDG method for either orientation.

3.5.2 Dambreak Problem

Here, a dambreak problem in a horizontal frictionless channel is simulated (Fen-
nema et al., 1987). The reach is 2000 m long and 75 m wide, with the dam located in the
middle of the reach. Initially, water depth is 10 m to the left of the dam and 5 m to the
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Figure 3.22 Hydraulic Jump Inital'y and after 100 Time Steps in the x-Direction
and at 45° Using the CDG method
right, velocity being zero throughout. No-flow boundary conditions are specified on all
boundaries. The mesh is composed of linear square elements of 25 m side length. A time

step of 1.25 seconds is used, resulting in a C, of 0.6 based on the progressive wave speed.

0 is set equal to 0.5 and an ® of 0.25 is used. The water surface is plotted at the end of 48

time steps (t=60 seconds). Results for the x-direction flow simulation are shown in Figure
3.23 and Figure 3.24.
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Figure 3.23 Water Surface After 60 seconds from Dam Break, Flow in the x-
direction (one-dimensional CDG-method).
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Figure 3.24 Water Surface After 60 secends from Dam Break, Flow in the x-
direction and at 45° (CDG-solution)
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It can be seen that the one-dimensional CDG solution shows spurious oscillations. Also,
cross oscillations in water surface and discharge, which are strongest in the vicinity of the
advancing front, are observed. The CDG solution appears more accurate, with no cross-
oscillations. When the mesh is set at 45° to the x-axis, it is found that the CDG results are
not affected. Interestingly, the one-dimensional CDG results at 45° are found to be almost

identical to the CDG results, with no cross-oscillations occurring.

The above tests confirm the directional independence of the CDG method as stated
by Hughes and Mallet, (1986 b). Further, the tests show the directional dependency of the
one-dimensional CDG scheme, with optimal performance obtained for flow at 45° to the

coordinate directions.
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3.6 Stability Range

This test examines the effect of the implicitness factor 6 on the stability of the solu-
tion. The test simulates a stationary hydraulic jump on a frictionless horizontal prismatic
channel, 150 m long and 15 m wide (Katopodes, 1984). Square linear quadrilateral ele-
ments of side length 5 m are used to construct the finite element mesh. A constant time
step of 0.3 seconds is used (C, = 0.5 based on the supercritical flow velocity). The flow

enters the channel at a depth of 1.00829 .., and a discharge per 'mit width of 5 m?/sec F=
1.58). The conjugate depth corresponding to this supercritical flov is 1.80 m, and is speci-
fied as the downstream boundars condition. The initial conditions place the hydraulic
jump at the middle of the reac .75 m downstream). The test is run for values of 0 ranging
from 0.5 to 1.0 (at 0.05 intemal) for an extended period of time (10.000 time steps), and

the minimum value of 6 which provides a stable solution is found

It is found that the soi.. 'n is stable for a value of 8 equz o or greater than 0.65.
Figure 3.25 shows the computed water surface at the end of 1< 10,000 time steps (t =
3,000 secs) for 8 = 0.65.
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Figure 3.25 Initial and Final Water Surface (at 10,000 steps) for 6 = 0.65
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At a 0 of 0.60, spurious waves of wavelength 3 to 5 A (element side length) appear

on the subcritical reach after about 1,000 time steps. They grow with time and eventually
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Figure 3.2: Water Surface after 200} time steps for 6 = 0.6

destroy the solution after about 3,200 steps. Figure 3.26 shows the wave shape after 2000

time steps.
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3.7 Dambreak on Dry Bed

This test examines the ability of the dry-element simulation routine to simulate
unsteady flow over a dry bed. The experimental data are obtained from Schoklitsch
(1917). He performed a number of lab and field experiments, in which he measured the
water surface profile fo. different dambreak problems. In the test under consideration, he
ran a dambreak problem in a laboratory flume made of smoothed wood, 0.096 = wide and
0.08 m high. At time t = 0, a wall located at the middle of the flume and separatir 3 a 0.074
m deep water body from the dry downstream side was swiftly removed. Water surface pro-
files were recorded at times t = 3.75 sec and t = 9.4 sec.

The finite element mesh uses square linear quadrilateral elements of 0.2 m side
length. No-flow boundary conditions are specified at all boundaries. For the roughness
height of smooth wood, Streeter and Wylie, 1981, suggest a value in the range from 0.18
to 0.90 mm. A value of 0.50 mm is thus chosen for this test. The test is run once with a

time step of 0.0625 seconds (maximum C, = 0.4 based on the progressive wave speed) for

60 steps (i.e. t = 3.75 sec), and a second time for a time step of 0.1 seconds (maximum

C, = 0.6 based on the progressive wave speed) for 94 steps (t = 9.4 sec). The choice of

different time steps for the two tests is just to produce results at the exact times measure-
ments were taken. Measured and computed water surface profiles are shown in Figure
3.27. A small wiggle producing negative depth can be observed at the wave front. How-
ever, this wiggle does not result in any computational instability as the program simply
simulates it as a groundwater flow in that region.
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Figure 3.27 Measured and Simulated Water Surfaces for Dambreak on Dry Bed
(Measured Data from Schoklitsch, 1917)
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3.8 Flow in a Trapezoidal Channel With Partly Dry Side Slopes

This test solves for a steady state flow in a hypothetical trapezoidal channel, 5 m bed
width and 7.5 to 1 side slopes. The channel has a total length of 300 m, with 100 m transi-
tion lengths irom rectangular to trapezoidal at the upstream end, and from trapezoidal to
rectangular at the downstream end. The longitudinal bed slope is 0.0013, and the rough-
ness height is 0.2 m, resulting in a normal depth of about 2.5 m at a discharge of

80 m>/sec. The turbulent diffusion coefficient is set equal to zero to increase the compu-

tational challenge. A subcritical inflow boundary condition with a total inflow discharge of

80 m/sec is specified. Initial conditions set the water depth at 2.5 m throughout the chan-
nel. The downstream boundary condition specifies a depth of 1.0 m, slightly higher than
the critical depth of 0.81 m. Thus, the water surface is drawn down with time, exposing

dry nodes and elements on the trapezoidal reach slopes.

The finite element mesh is composed of square linear quadrilateral elements, 5 m

side length. A @ of 0.5 is used and the time step is chosen as 0.5 seconds, resulting in a
maximum C; of 0.6. T'is chosen as 1.0 m?/sec, and H,,;, is taken equal to 0.01 m. A stor-

ativity of 1.0 is used. The test is run for 1000 steps, at the end of which € = 107, Figure
3.28 shows the longitudinal water surface profiles at times ¢ = 0.0, 10.0, 100.0 and 500.0
seconds. Figure 3.29 shows a cross section at x = 200 m and Figure 3.30 shows depth con-
tours for the steady state solution (t = 5C0 seconds). Figure 3.31 shows the computed

103
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Figure 3.28 Computed Longitudinal Water Surface Profiles aty = 15m

steady state velocity vectors.
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Figure 3.31 Steady State Velocity Vectors

The sensitivity of the results to S were examined. Using a value of § of 0.1 resulted
in a sligh:ly faster rate of drawdown of the groundwater table during the unsteady phasc
(about 5% difference in the calculated minimum depth at ¢ = 100 seconds), but did not

affect the final steady state.
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3.9 Summary

Several numerical experiments were presented in this chapter, which examined the
performance of the two-dimensional scheme. The first test simyl’ “ed supercritical flow
through a channel constriction. The computed results compared ceasonably well to mea-
surements taken by Ippen and Dawson, 1951. The second test (section 3.3) simulated the
break of a hvpothetical circular dam to examine the effect of element shape on the
obtained solution. The test in section 3.4 simulated the partial failure of a hypothetical
dam. In section 3.5, two tests, a hydraulic jump and a one-dimensional dambreak problem,
were carried out to test the directional dependency of the upwinding scheme. The stability
range with regard to the iraplicitness factor 8 was examined in section 3.6. Finally, the

performance of ihe dry bed simulation routine was tested in sections 3.7 and 3.8.
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Chapter 4

Siimulation of Flow in Physical Fish Habitat

4.1 Intrcduction

In this chapter, the developed two-dimensional hydraulic model is applied to flow
situations in physical fish habitat. Two test studies are examined, which compare the per-
formance of the two-dimensional approach to the zero/one-dimensional approach found in

the widely used IFN assessment methods!. The first deals with flow over a side bar in a
hypothetical reach. The test is run for tWo different discharges, and results using the two
approaches are compared. The second test examines flow in an actual fish habitat reach of
the Waterton River, Alberta, Canada. First, a high flow of 14.6 m3/sec is simulaied using
both the one-dimensional and the two-dimensional approaches. The test intends to evalu-
ate the performance of the two approaches in the absence of velocity measurements.
Based on the arguments presented in Appendix B regarding the difficulty, and sometimes
impossibility, of collecting the extensive velocity measurements required for the zero/one-

dimensional model, this test appears to provide a valid comparison for certain flow situa-

tions. Then, a low flow of 1.52 m¥/sec is simulated. At this flow, portions of the bed
become exposed. Therefore, this case serves as a test for the dry bed simulation routine.

1. Appendix B gives an overview of these methods
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4.2 Hypothetical Test Case: Flow over a Side Bar

A test problem of flow over a side bar in a straight channel is presented here. Results
using a onc-dimensional approach similar to the one used in PHABSIM are compared to
results of the two-dimensional model. The domain consists of a straight channel 60 m
wide and 720 m long with a roughness height of 0.20 m. At the middle of the reach exists
a side bar 120 m long (Figure 4.1). The longitudinal bed slope is 0.0002, which res=lts in a

normal depth of 3.0 m at a discharge of 180 m/sec.

elevation
(m)
60 > y (m)
120m location of side bar
X1 X2
! /// )
60 m ! //.///'
X1 X2
- 360 m !
720 m
Plan View
60 m . 60 m |
| _.!_0.75 m
imy = 5.25n] / T
X
Section X1-XI1 Section X2-X?2
(looking dewnstream) (looking downstream)

Figure 4.1 Flow Over a Side Bar
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First, it is assumed that no velocity calibration data are available for the one-dimen-
sional model. The friction coefficients are calculated based on the roughness height. A

simulation is performed using both approaches for a discharge of 180 m3/sec. The results
are shown in Figure 4.2. Since the one-dimensional model scales the velocity to the local
depth, it thus predicts the minimum velocity (about 0.4 m/sec) to occur on the shallow
side. On the other hand, the two-dimensional model considers the redistribution of
momentum, and accordingly predicts a higher velocity on the shallow side (about 1.1 nv
sec) than on the deep side, as would be expected.

1.41-

Q=180 m3/sec
1.2+ n\\\ ———
1.04 . ’ .

.. \

08+
061

04+

Longitudinal Velocity (m/sec)

024

0.0 4 4 4 — —
10 20 30 40 50 60
Distance from deep side (m)

Figure 4.2 Transverse Distribution of l.ongitudinal Velocity at Sec. X2-X2
Q = 180 m%/sec

In the second test, it is assumed that one full depth and velocity calibration data sct

for the one-dimensional model are available at a discharge of 180 m?>/s. This set is

obtained from the results of the two-dimensional model for the same discharge. Then the

calibrated model is run to simulate flow at a discharge of 1800 m?/s, and compared to two-
dimensional simulatior. results (Figure 4.3). In this case, the one-dimensional model
builds the calculation of the velocity distribution on conveyance values that are based on
the low discharge, and in which the effect of the bump is very pronounced, and thus pre-
dicts a high value of velocity (about 4.6 m/s) on the shallow side. However, for this large
discharge a large depth of flow (about 11 m) will occur, and the effect of the bump will be
minor. Thus a more uniform velocity distribution would be expected, as predicted by the
two-dimensional model (approximately constant value of 2.5 m/s).
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Figure 4.3 Transverse Distribution of Lorgiiadinal Velocity at Section X2-X2

Q=1800 m3/sec

As no experimental or analytical data are available to compare the results to, this test

serves mainly to indicate that a significant difference between the two approaches can

exist for certain flow situations. Flows where inertia forces are dominant, such as in the

case when rapid changes occur in bed topography, are examples of such. Although the

results of the two-dimensional model appear more reasonable from a hydraulic point of

view, this test cannot be used as conclusive evidence for the superiority of either approach

Chapter 4: Simulation of Flow in Physical Fish Habitat
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4.3 Real Test Case: Simulation of Flow in a Fish Habitat

As an example for simulating flow in a real fish habitat, a reach of the Waterton
River near Glenwood, Alberta, Canada, has been chosen. The flow is simulated for a high

flow of 14.6 m>/sec and for a low flow of 1.52 m3/sec. For the high flow, the river rcach
has an average width of 50 m. An island, which is submerged at the high flow, becomes
exposed at the low flow, a good test for the dry element simulation routine. The average
loagitudinal slope is 0.003. The reach has a length of 245 m and is described by 12 cross
sections. Figure 4.4 shows the cross section layout and the distribution of field data points.
The mesh generation reutine was utilized to develop the two-dimensional finite element
mesh from the one-dimensional IFG-4 input file. As no information about river meander
or channel alignment is availabie in such an input file (as it would be irrelevant for the one-
dimensional model), the shown cross-section alignment has been assumed by the mesh
generation routine. If informaticn about section alignment were available (for example
distance between cross-sections along left and right bank and one diagonal distance), it
could be readily used to get a better picture of the tream and to account for the effect of
channel alignment on the distribution of the fiow. The interpolation mesh developed from
the data points is shown in Figure 4.5. The developed finite element calculation mesh has
853 nodes and 1516 elements (Figure 4.6). The interpolated bed contours are shown ir:
Figure 4.7. The reach contains some interesting features such as a submerged island, a rif-
fle and a pool.
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Figure 4.4 Layout of Cross-Section Data Points and Cross-Section Numbers
Waterton River
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Figure 4.5 Interpolation Mesh (Waterton River)

Figure 4.6 Finite Element Calculation Mesh (Waterton River)
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Figure 4.7 Interpolated Bed Contours, Waterton River

4.3.1 Simulation of High Flow

The simulation discharge was 14.6 m3/sec. No velocity measurements were used to
calibrate the two models. A constant roughness height (k) of 0.15 m was assumed
throughout the domain, as no roughness data were provided in the IFG-4 input file This
value of k, was found to give best agreement with the measured water surface when using
the two-dimensional model. It should be mentioned that the results of the two-dimensional

model were found to be not very sensitive to exact roughness values. For example the use
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of a k; of 0.3 m (i.e. a 100% increase), resulted in about 8% increase in calculated water
depths. This can be attributed to the relatively short length and dynamic topography of
typical fish habitat sites, which make roughness only of secondary importance as com-
pared to a proper geometric description. This shows the weakness in the zero-dimensional

“Manning’s equation” approach, which bases the analyses on roughness and disregards
inertia.

For the one-dimensional model, the depth and roughness data were used to calculate
cell conveyances, which were then used to calculate the velocity distribution across the
river. For the two-dimensional model, the simulation was performed by considering only
the topographic features of the domain together with the assumed constant roughness
height. A value of 0.07u H mZ/sec was used for the turbulent exchange coefficient v. The
sensitivity of the results towards this variable was also tested and was found to be minor as

long as v was kept within physically reasonable values. For example, increasing v to

0.14u H mZ/sec (100% increase) resulted in variations in depths and velocities of less
than 1%.

Depths and velocities were then calculated using the two-dimensional model. Figure
4.8 to Figure 4.10 present results of the two-dimensional model at steady state. Figure 4.8
and Figure 4.9 show simulated longitudinal cross sections at steady state, and Figure 4.10
shows the computed velocity vectors. Figure 4.11 and Figure 4.12 compare measured to
simulated velocity values at cross sections 11 and 10 respectively. Cross section 11 is on
the submerged island just upstream of cross section 10, which is downstream of the island.

Subcritical Flow
>
Water & urface
River Bed. '>

\\/\/‘

Figure 4.8 Longitudinal Section I-1
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Figure 4.10 Computed Steady State Velocity Vectors

In Figure 4.11 it can be seen that both models perform reasonably well, the two-
dimensional model performing slightly better. However Figure 4.12 shows a much better
performance of the two-dimensional model. From the measured velocity data in Figure
4.12 it can be seen that a lower velocity exists in the deeper part of the cross section. This
can be explained by the presence of the submerged island just upstream of that location. It
can be seen that the two-dimensional model correctly predicts a lower velocity in this
region. The one-dimensional model, however, predicts a higher value based on the higher
conveyance. The results of the two-dimensional model could be further improved through
a better distribution of the data points over the domain (i.e. less data points at and more in
between cross-sections, to describe any interesting topographic features present between
the sections), and through knowledge of the actual river alignment.

Conservation has been checked by comparing the values of total discharge entering
the reach at the upstream section and leaving the reach at the downstream section. The dif-
ference was found to be less than 0.001%.
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4.3.2 Simulation of Low Flow

At the low flow of 1.52 m¥/sec, the island becomes exposed. The same values of
roughness height and turbulent exchange coefficient as for the high flow simulation were

used. Figure 4.13 shows the calculated depth contours at a low flow of 1.52 m¥/sec. It can

0.0 depth contour (island) y 0.2 0.4

Y depth in meters

Figure 4.13 Depth Contours at Low Flow (Q = 1.52 m3/sec)

be seen that the width of the river is now smaller and that the island is exposed. Figure

4.14 shows longitudinal cross section (X-X) through the island. Regions of ground- and

x

.

Island

P

.
R Water Surface

Groumﬁ?e; Flow \ el

Figure 4.14 Longitudinal Section X-X

surface water flow can be seen. Figure 4.15 shows cross-section Y-Y through the island. It
can be seen that the water surface on the right side of the island is slightly higher than on
the left side, and therefore, a slight transverse groundwater flow is observed as shown. In
Figure 4.16 the predicted velocity vectors are plotted. Figure 4.17 and Figure 4.18 com-
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Figure 4.16 Velocity Vectors at Low Flow (Q = 1.52 m>/sec)

pare measured to simulated velocity values at cross-sections 11 and 10 respectively (cross-
section numbers are shown in Figure 4.4). Considering that at this low flow the average
depth of flow is about 0.30 m, and considering the large spacing between cross-sections
(e.g. 40.0 m between sections 10 and 11, i.e. a longitudinal spacing be.ween data points
larger than 100 times the depth), it can be expected that topographic details in between
cross-sections, which might have been insignificant at high flows, could become important
for simulating low flows. Therefore, it can be seen that the match between measurced and
calculated velocities is not as good as for the high flow (Figure 4.11 and Figure 4.12).
Hence, when selecting field data points for the two-dimensional model, even when mea-
suring at high flow, the lowest flow to be simulated, and the corresponding small depths,
should always be kept in mind.

Chapter 4: Simulation of Flow in Physical Fish Habitat 80



98.5
99.4
293
99.2
99.1

99
98.9
98.8
987
98.6

98.5
98.4
98.3
98.2
98.1

98
97.9
97.8
97.7
97.6

975

Elevation (m)

085
0.8
075

07

e

foa
e
‘u.l

- \"\
4

v
Te

0.45

0.35

0.3
0.25
0.2
0.15

0.1
0.05

Velocit i

O

Cross Section 11

Island

Water Surface /

Bed

! ! | ] -l |

0 10 20 30 40 50
Transverse Distance (m)

H——x Measured

o—o—0o Calculated

0 10 20 30 40° 50
, Transverse Distance (m)

Figure 4.17 Comparison Between Measured and Simulated Velocities
at Low Flow (Cross-Section 11)

Chapter 4: Simulation of Flow in Physi-al Fish Habitat

81



99
98.9 Cross Section 10
98.8
98.7
98.6
985 I+
98.4
98.3
98.2
98.1
98
97.9
97.8
977

Elevation (m)

Water Surface

97.6 T
97.5 |- \
974 Bed
973
97.2
97.1
97

1 1 | | |

0 10 20 30 40
Transverse Distance (m)

14
13

12 Measured

1.1
15 l o2 Calculated

09

08

07

0.6

05
0.4

Velocily (m/sec)

03
0.2

> m
0

! | J !

0 10 20 30 40
Transverse Distance (m)

Figure 4.18 Comparison Between Measured and Simulated Velocities at
Low Flow (Cross-Section 10)

Chapter 4: Simulation of Flow in Physical Fish Habitat



Chapter 5

Summary and Conclusions

The main purpose of the present research was to develop an accurate and robust two-
dimensional finite element flow simulation model. Several shortcomings in the presently
available two-dimensional computer models have been pointed out in Chapter 1, such as
the need for excessive artificial diffusion, cross-wind diffusion, poor conservation proper-
ties and difficulty to simulate complex flow phenc:nena such as shocks, domains contain-

ing variations between super- and subcritical flows, and partially dry bed conditions.

The Finite Element method has been chosen for this work because of its consistency,
generality and ability to conform well to complex domains. Several features have been
implemented in the model and tested through I -pothetical and real flow situations. The
presented Characteristic-Dissipative-Galerkin = chnique is stable and accurate in simulat-
ing shocks and domains containing variations of super- and subcritical flow. The upwind-
ing is third order accurate, and thus preserves the interesting flow features. Comparison
between laboratory measurements and simulation of standing waves resulting from super-
critical flow in a channel constriction showed satisfactory agreement. Numerical tests of
simulating a hydrau” jump and a dambreak problem first with the mesh aligned with the

x-coordinate axis and then at 45° with the coordinate axes showed that the selected
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upwinding matrices have the property of reducing correctly to the optimal one-dimen-
sional system case.

The integration by parts of the governing equations facilitated a natural implementa-
tion of boundary conditions. The application of the different types of boundary conditions
has been extensively tested and showed satisfactory performance. As the conservation
form of the shallow water fiow equations is used, the model possesses excellent conserva-
tion properties (sections 3.2 and 3.4).

A technique has been proposed to simulate flow in wet/dry domains. Simulation of a
dambreak problem on an initially dry bed compared well to measurements taker. by
Schoklitsch (1917). Other hypothetical and real tests confirmed the robustness of the tech-
nique for any degree of geometr : cumplexity (sections 3.8 and 4.3). This is an impoitant
feature when simulating flow in natural rivers and fish habitats, especially at the low flows
which usually result in limiting conditions for fish. Further, it facilitates the simulation of
other complex flow phenomena such as flow from the main channel to the floodplain and
tidal processes.

The model has been applied to simulate flow in a natural fish habitat and showed
good agreement with field measurements. The model can utilize cross section field data
collected for a one-dimensional model to automatically develop a two-dimensional finite
element mesh.

The numerical properties of the developed two-dimensional model make it a good
tool for simulation the complex flow in natural fish habitat. As the presently used one-
dimensional models require extensive velocity measurements at each cross section for dif-
ferent discharges, using a two-dimensional model would result in a substantial reduction
in total project time and cost. This would be particularly useful when studying non-wad-
able rivers, where it would be difficult to obtain the extensive velocity measurements
requited for the one-dimensional model.

The two-dimensional model would give a better representation of the flow, as it
accounts for the two-dimensional flow features resulting usually from islands, meanders,
water projects, etc., and thus would be able to simulate complex flow patterns such as
recirculation, vortices (horizontal velocity components only) and transverse water surface
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slopes. The modc] would also be able to account for unsteady flow and simu..te sub- and
supercritical flows and localized shocks. The two-dimensional model gives more flexibil-
ity in collecting the data points, thus allowing to collect less data along the transects and
more data along the stream at locations which are interesting from a biological point of
view. The need for cross-section weighting factors, which involve subjectivity in their
determination, would be eliminated. Further, the two-dimen ional model would help in
answering guestions about other uses of the river such as recreational activities, riparian

vegetation, slope stability, relcases from power stations, safe ramping rates etc.

4 '+ wo-dimensional model provides a go: d representation of the flw field and
possess < -onservation properties, it could be further developed to simulate transport
phe~i .o und dow under ice cover. The finite element mesh could be utilized directiy to

- i ibitat quality parameters over the simulation domain.
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Appendix A

Field Data Collection for Two-dimensional
Flow Simulation of Fish Habitat

The two-dimensional model can directly utilize data collected for a one-dimensional
model to generate a two-dimensional finite element mesii. It should be noted however, that
for a one-dimensional model, strict specifications exist for the spacing between data points
along the transect, whereas many interesting and important details between transects can
be lost, as no data are taken (or could be utilized) in between transects for the one-dimen-
sional model. A data point in the one-dimensional model represents a very narrow and
long rectangle (cell), over which stream characteristics are assumed to be constant. This
same cell is used later in the habitat simulation model. On the other hand, the two-dimen-
sional model can make use of any information anywhere in the stream, with a data point
recresenting the stream characteristics at its exact location. Linear interpolation is then
applied to predict properties between data points, resulting in a continuous representation
of the stream topography. Therefore, to make better use of the modeling capabilities of the
two-dimensional model, the following should be taken into consideration while collecting
field data:



1. It should be noted that the two-dimensional model does not require that the data be col-
lected by cross sections (except at the inflow and outflow sections, where it would be
useful to have cross section information for specification of boundary conditions). Any
2--ilable data describing the topography of the domain (e.g. relative location and eicva-
tion of each data point) can be readily read in and used to develop the two-dimensional
finite element mesh. When coliecting field data for the two-dimensional model it
should be kept in mind that it is intended to predict flow phenomena such as recircula-
tion, separation, flow around islands and obstructions etc. Hence, data points should be
placed to adequately represent topographic features such as island - riffles. pools, bars,
dunes, and obstructions, or man-made features such as river trwuning wo: - and mitiga-
tion structures. If a reach does not show much variation, then a Jarge spacing between
data points would be allowed, maybe up to 10 times the average walci depth or one
quarter of the average stream width, whichever is less. It should be noted that in this
case it would still be possible to adequately simulate and predict velocities and depths
at locations where field data points were not placed, as long as the stream characteris-

tics between these data points vary linearly.

2. Velocity measurements are not necessarily required for a two-dimensional model.
However, for the purpose of comparing the performance of the one- and two-dimen-
sional models, velocity measurements taken for the one-dimensional model calibration
should be sufficient. Also, depth measurements are not necessary, but are useful for ver-
ifying roughness heights and checking the model performance. Preferably (but not nec-
essarily), a few depth measurements should be taken at a higher flow. If a one-
dimensional model is to be used as well (e.g. in order to compare results), then the data
requirements for the one-dimensional model should be consulted and will generally be

limiting.

3. For each data point, get an estimate of the “roughness height”. For a gravel bed river
this might be the avernge particle size. For fine substrate rivers with bedforms (ripples),
the roughness height would be the average ripple height. If there are large bedforms
(e.g. dunes or sandbars) which have a wavelength larger than about 5 to 7 times the
depth of flow, then the bedforms should be captured as topographic features (e.g. by
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placing data points at the extremities and the crest), while the roughness height would
be equal to the average grain size. For rivers with vegetation, a description of type and
size of vegetation would be useful.

4, Measure as high as possible over islands and on the overbanks to facilitate imodeling of

high flows. Inforn “ion about vegetation (roughness) would be required here as well.

5. As river meanders are a two-dimensional feature of the stream, it would also be useful
to have a measure of the stream sinuosity. If data points are all related to a global x- and
y-coordinate system, then the shape of the river meanders would be direct!y represented
by the data points. However, if data are collected at cross sections, then, in addition to
distances along the left and right banks, another piece of information, such as the diag-

onal distance between each two cross sections, would be required (as illustrated below).

; outflow
cross section >/ /

inflow

cross section

measure this distance

6. The boundaries (first and last cross sections) should be located at points along the
stream where the stage-discharge relationship can be readily defined. For example, at
gauge sites, weirs, rapids or approximately uniform flow reaches. In the absence of a
well defined stage-discharge relationship, additional cross sections upstream and down-
stream of the study area would be helpful. It is important to note that this is a require-
ment of any hydraulic model (one-dimensional or two-dimensional).
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7. Any information that would aid in completir:g the picture of the flow domain is valu-
able. Photographs, saetches, field notes, maps, GIS type information and description of
vegetation -:nd/o: exposed bedforms could be utilized to develop and/or improve the

simulation :nesh.

8. The degr..: of accuracy required for measurements depends on many factors such as the
depth o} .iow, width of river, type of flow, size of reach etc. As a rough guideline, the
accuracy in measuring bed elevations should be of the order of 2 to 5 cm, whereas for

longitudir ! distasces it could be within 20 to 50 cm.
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Appendix B

Hydraulic Modeling in Instream Flow Needs
Assessment Methods

B.1 Introduction

River engineering projects such as bridges, culverts, dams, weirs, water intake struc-
tures and channel modifications can potentially present harmful environmental conditions
to fish, either by interrupting their migration routes or through changes to their natural
habitat. Instream Flow Needs (IFN) studies are used to provide a means of assessing the
adverse effects of different hydrotechnical projects on fisheries resources in order to pro-
vide guidelines for planners and designers.

Numerous Instream Flow Needs (IFN) assessment techniques have been developed
during the last three decades. While some of these methods have found widespread use,
others have only been applied successfully by their developers. In this chapter, a number
of common IFN methods are presented. Although the methods described do not encom-
pass every single method ever developed, an attempt has been made to consider methods
which have gained wide acceptance in North America.

In this thesis, IFN techniques are classified based on the number of input variables.
As the name implies, Single Variable Methods rely on a single input variable, usually
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hydraulic or hydrologic, to recommend a minimum acceptable flow required to assure an
adequate fish habitat. Multi-variable Methods are more comprehensive in that they con-
sider the effects of several variables on the habitat condition or fish biomass. Among these
are the empirical methods, which are developed through statistical analyses of variables
known to be limiting to some stage of fish life. The alternative is the deterministic
approach such as that used in the Instream Flow Incremental Methodology (IFIM), which
considers ¢ slationships between streamflow and usable habitat area for different life stages

of fish species.

Aside from the suitability of each model to the purpose of defining adequate fish
habitat conditions, a topic beyond the scope of this thesis, there are two key criteria for
assessing the hydraulic component of each model. The first is related to the ability of a
given model to adequately represent the physics of the flow and the second is the way in
which these hydraulic models are implemented and their results interpreted. Therefore,
the discussion presented focuses on the theoretical strengths or weaknesses of the hydrau-

lic components, as well as identifyir.g any potential errors in their implementation.

B.2 Single Variable Methods

B.2.1 Introduction

Single Variable Methods base the recommendation for Instream Flow Needs assess-
ments on a single variable which in turn provides a recommended minimum acceptable
streamflow for planning purposes, in an attempt to assure adequate fish habitat. Although
these methods are relatively simple to use, they cannot quentify changes in available habi-
tat as a result of proposed modifications to the stream channel. Single Variable Methods
may be broadly grouped into two categories: those based on a representative discharge and
those based on channel hydraulic characteristics.

B.2.2 Discharge Methods

B.2.2.1 General

Discharge methods are particularly suited to preliminary feasibility studies as they
are entirely based on readily available data from water survey stations and, therefore,
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require no field data collection. The fundamental concept underlying these methods is
that the minimum discharge required to ensure adequate fish habitat can be related to some

representative streamflow, such as the mean annual flow (Bietz et al., 1985).

B.2.2.2 Tennant's Method (... ..tana Method)

Tennant (1976) presented the results of numerous field studies conducted over scv-
eral years and which involved 11 streams in Montana, Nebraska and Wyoming, U.S.A.
Based on this data, Tennant concluded that the conditions of the aquatic habitat is remark-
ably similar on most streams carrying the same portion of the average flow and conse-
quently proposed the following qualitative relatic:. vetween habitat quality and mean
annual flow (MAF) as a guideline for IFN assessment studies:

% of Mean Annual Flow Description

1G minimum instantaneous flow recom-
mended to sustain short-term survival
habitat

30 base flow recommended to sustain good

survival habitat

60 base flow recommended to provide excel-
lent to outstanding survival habitat

Tennant (1976) observed that width, depth, and velocity all changed more rapidly
from no flow to a flow of 10% of the average, than in any range thereafter, as, on average,
10% of the MAF was found to cover about 60% of the maximum wetted perimeter. He
also observed that depths averaged 1 foot (0.30 m) and velocities averaged 0.75 ft/sec
(0.23 mv/sec) at 10% of the MAF, which he states have been shown to be at the lower limit
of acceptable values, based on other studies. He further concluded that 30% of the MAF
would sustain good survival habitat for most aquatic life forms as this would be reflected
in satisfactory widths, depths and velocities and because most of the shallow riffle and
shoal areas would be covered with water allowing large fish to move. For the 60% flow,
Tennant expected that most of the channel substrate would be covered with water includ-
ing shallow riffle and shoal areas. The majority of banks would serve as cover for fish.
Therefore, Tennant concluded that 60% of the MAF would provide excellent to outstand-

ing habitat conditions. Tennant also stated that these recommendations have been sub-
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stantiated through “Analyses of hundreds of additional flow regimens near U.S.G.S. gages
in 21 different states...” during the period from 1959 to 1976 (Tennant, 1976).

B.2.2.3 Other Discharge Methods

Although a number of other discharge methods have been proposed, few have gained
the wide acceptance that Te~nant’s method enjoys (Bietz et al., 1985). Morhardt (1986)
provided a detailed comparisou . ” these other methods which forms the basis of the fol-
lowing discussion. Hop;.. (1975) based his recommendations for minimum acceptable
flow on the daily flow exceeded 80% of the time. The method has, however, been criti-
cized as being arbitrary and unsupported (Morhardt 1986). The Northern Great Plains
Resource Program (1974) presented a similar model by recommending a minimum flow
for each month equal to the flow exceeded on 90% of the days for the months in question
for the period of record, but excluding from the analysis those months with extreme mean
monthly flows (in the highest and lowest 15%}. This method has also been criticized for
lack of data supporting any of the criteria chosen, which were found to be completely arbi-
trary (Morhardt 1986). Geer (1980) developed a method to establish minimum winter and
summer flows in Utah streams. The minimum allowable winter flow was based on the
average of the minimum monthly flow for the months of October to March, whereas the
minimum allowable summer flows were taken as the average of the minimum monthly
flow from April to September.

B.2.2.4 Discussion

The singular advantage of Tennants method is that the only data it requires is the
mean annual flow, which is readily available for most streams in North America. How-
ever, from a hydraulic perspective it should be noted that this approach does not account
for the magnitude of discharge fluctuations (i.e. the standard deviation associated with the
mean annual flow) and it has been reported that the method overestimates minimum flow
recommendations for streams with a large seasonal variability (Bietz et al., 1985; Cuplin
and Van Haveren, 1979). Although it was intended by its author as a technique for setting
operational flows in a stream, the method can be used to justify a wide range of flows, and
recommendations based on it are therefore neither specific nor easy to defend (Morhardt,
1986).
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In general, the main criticism of discharge methods stems from their inability to
account for seasonal or annual variability of stream flows. Those methods that do atiempt
to consider at least seasonal variability have been criticized for the arbitrary way in which
their criteria are determined. Given that discharge methods can only provide guidelines
for describing the impact of proposed changes in discharge on fish habitat in a qualitative
way, and that they cannot quantify the impact on available habitat area or fish biomass,
refinement is likely not worthwhile. However, their use should be limited to feasibility
level studies as they provide no site specific evaluation of proposed water management
projects nor any predictive capability.

B.2.3 Methods based on Channel Hydraulic Characteristics

B.2.3.1 General

The fundamental concept underlying these methods (which are also known as
hydraulic rating methods) is that the minimum discharge required to ensure adequate fish
habitat can be related to some representative characteristic of the stream channel that is
important to fish habitat or fish survival, such as water surface width, wetted perimeter,
flow area, depth or velocity (Bietz ex al., 1985). In general, stage and streamflow data
measurements and/or cross section surveys are required to develop a rating curve between
the discharge and the parameter of interest.

B.2.3.2 Wetted Perimeter Inflection Point Method

In this method, originally developed and tested by Nelson in 1984 for use in Mon-
tana streams, it is assumed that the wetted perimeter adequately represents limiting habitat
conditions. The method is based on the assumption that the loss of habitat quality is corre-
lated with low discharges which are associated with stages falling below the cover pro-
vided by undercut banks and riparian vegetation. The point, or points, at which this
habitat loss becomes critical is defined by the relationship between wetted perimeter and
discharge.

To illustrate the method, consider the cross section drawn in Figure B.1 (a), and its
corresponding wetted perimeter versus discharge curve, shown in Figure B.1 (b). It is
observed that the rate of increase of wetted perimeter is high from 0 to P, where the chan-
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nel width approaches its maximum. Beyond this stage the rate of change of top width with
respect to stage, is small. At higher stages, an increase in discharge results in a much
smaller increase in wetted perimeter than is obscrved at lower stages. Nelson (1984)

refers to this point on the stage-discharge curve as the inflection point]. A minimum rec-
ommended discharge for a particular study reach is based on the average wetted perime-
ters computed from at least 3 to 10 critical cross sections, although more than 20 cross
sections have been used in some casc: (Bietz et al., 1985). The reach averaged wetted

1. From a mathematical point of view, calling p, an inflection point is incorrect, because a point of inflection
is defined as a point where the curvature of a curve changes sign, i. e. the point where the rate of change of
the first derivative (slope) is zero. In fact, point p, represents the point on the wetted perimeter versus dis-
charge curve, where the rate of change of the slopes is a maximum.
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perimeter is then plotted against discharge to identify the inflection point(s) (Randolph
and White, 1984).
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Figure B.2 Wetted Perimeter Inflection Point Method

Implementation of this method first requires development of a rating curve. A sur-
vey of the cross section geometry at each of the critical sections is then used to provide the
relationship between stage and wetted perimeter. The rating curves are usually developed
by assuming uniform flow and estimating water stage for unmeasured flows, although both

Appendix B: Hydraulic Modeling in Instream Flow Needs Assessment Methods 104



Bietz et al. (1985, referencing ' ~athe and Graham, 1982) and Randolph and White (1984),
suggest that inflection points w..: more easily identified when the rating curve is developed
using measured-stage discharge data. Consideration of this recommendation may expose
a fundamental weakness of this method in that, typically, the development of the rating
curve based on measured stage-discharge data is based on as few as 3 data pairs. Thus,
inflect:on points observed in the resulting wetted perimeter versus discharge curve might
be solely atiributable to a coarsely discretized rating curve, rather than to the physical
attributes of the channel. Although this effect can also occur when r'eveloping a theoreti-
cal rating curve, it is somewhat less likely, as there is ¢ften a tendency to employ a fine
discretization in computing the stage discharge relation. In fact, although many authors
present the inflection point as a discontinuity in the wetted perimeter versus discharge
relationship (Bietz et al., 1985; Randolph and White, 1984; Bovee and Milhous, 1978) its
proper recognition as the point where the curvature is a maximum might faci.itate a more
relizble and consistent means of identification.

It should be noted that averaging the wetted perimeter versus discharge relationship
over a reach might, in some cases, prevent physically based inflection points from being
identified. Finally, given the weak hydraulic basis of this method, and given the question-
able implementation practices currently in use, it is likely that physical identification of a
critical stage in the field and a proper hydraulic analysis to determine the associated dis-
charge would be a more accurate approach.

B.2.3.3 Other Methods Based on Channel Characteristics

Swift (1976) chose a parameter which he called toe width which was defined as the
horizontal distance from the point where the streambed and one bank join to the ground
surface on the other bank. Thus, this method could be correlated to the Wetted Perimeter
Inflection Point Method, as the toe width as it is defined, and as it appears from drawings
in Swift's report (1976), is close to the width of the water surface for the flow at which the
inflection point exists on the wetted perimeter versus discharge curve. Swift (1976) pre-
sented empirical relations which yielded preferred discharges for spawning and rearing for
trout as a fnction of the toe width. It has been stated that this method when applied to
streams in Washington produced coefficients of determination of 0.9 for spawning and
0.87 for rearing habitat (Morhardt, 1986). It is not clear, how these coefficients were
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arrived at. This method provides an interesting alternative to the Wetted Perimeter Inflec-
tion Point method, as less effort would be involved in determining the toe width, as itis a
single parameter which has to be measured in the field. Further testing of the method
would be required for other regions and species.

B.2.3.4 Discussion

These methods represent a slightly more sophisticai d IFN tool than the discharge
methods, both due to the greater amount of datz and analysis required, and due to their
consideration of site specific characteristics. Of particular importance, however, is a
proper understanding and implementation of the hydraulic theory.

A key limitation of these methods is that the characteristics of the stream are exam-
ined only at specific locations. Therefore, it is important to select sections which are criti-
cal in terms of providing adequate habitat, that is, where food production tends to occur
and where spawning and rearing habitat is located (Bietz et al., 1985). Critical sections
have also been defined as those which exhibit sensitivity of width, depth and velocity to
changes in streamflow (Bovee and Milhous, 1978; Randolph and White, 1984). Typicaily,
these critical sections are found to be located at riffles (Bietz et al., 1985; Randolph and
White, 1984).

Of particular importance in the application of these methods is the appropriate
choice and implementation of a hydraulic model for the rating curve. A constraint to this
method is introduced through the analysis of critical sections only. As these sections are
typically located at riffle sections, the investigator should be aware that locai water surface
slopes would be expected to be steeper than the reach averaged water surface, or bed
slopes. The development of a theoretical rating curve based on a reach average slope
(extending over a number of pool-riffle sequences) would most certainly produce errone-
ous results.

Although implementation of a gradually varied flow analysis in conjunction with
these methods may not be common, it could prove to be a significant improvement. A
similar quantity of data would be required, although a variety of representative sections
would have to be measured rather than just riffle sections. This could have the added
advantage of consid=ring habitat characteristics throughout the study reach rather than just
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at critical sections. Given that the almost exclusive choice of riffle sections for these meth-
ods has been, to a large extent, tied to the ease with which the inflection points may be
identified at these, often nearly rectangular, sections (Bietz et al., 1985), the recognition of
the inflection point as the point of maximum curvature (though not necessarily a disconti-
nuity) would simplify impiementation of this refinement. However, it should be stressed
that this refinement is intended to facilitate the development of realistic rating curves at the
criticu: sections, not to extend the evaluation of a recommended minimum acceptable dis-

charge t. non-critical sections.

B.3 Multi-variable Methods

B.3.1 General

Multi-variable Methods, as the name suggests, employ several variables which are
known to be correlated with fish preferences. Among these methods are empirical meth-
ods, which are based on a statistical analysis of stream data to obtain an understanding of
factors governing habitat quality. The objective of such methods is usually to develop
empirical relations which relate these variables to available usable habitat or fish biomass.
The Habitat Quality Index (HQI) method, which is used intensively in the state of Wyo-
ming in the U.S.A., is discussed below as an example o/ these methods. Another Multi-
variable Method is the Instream Flow Incremental Methodology (IFIM), which considers
physical habitat characteristics in the development of relationships between streamflow
and usable habitat area for different life stages of fish species. This method is widely used
in North America. in the U.S.A. it is used in about 35 states and required by law in many
of these states (Reiser, 1992). In Canada it has been used for IFN assessments in the
provinces of British Columbia, Alberta, Saskatchewan and Manitoba (Fernett, 1992).

B.3.2 Empirical Methods

B.3.2.1 The Habitat Quality Index (HQI) Method

Binns and Eiserman (1979) developed this method to predict the trout standing crop
(biomass) in Wyoming streams, based on the assumption that the best habitat for trout is
associated with a high standing crop. Data were collected from 44 study sites on Wvo-
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ming streams to span a wide array of habitat types. The surveyed streams ranged in eleva-
tion from 1,146 to 3,042 m, the average late summer stream width varied from 1.4 to 44

meters (m), the average daily flow was between 0.6 and 14.6 m>/sec and stream gradients
from 0.1 to 10% were observed.

Multiple regression analyses were applied to 22 different attributes representing
physical, chemical and biological characteristics of the streams. Thirteen physical
attributes (late summer stream flow, annual stream flow variation, maximum summer
stream temperature, water velocity, turbidity, cover, stream width, stream depth, stream
morphology, eroding banks, substrate, bed material, and silt deposition), five chemical
attributes (nitrate nitrogen, total alkalinity, total phosphorous, total dissolved solids, and
Hydrogen ion) and four biological attributes (stream bank vegetation, fish food abun-
daice, fish food diversity, and fish food type) were tested.

The determination of some of the attributes required specific defining criteria. Late
summer stream flow was rated by comparing average daily flow during August and in¢
first half of September to year-round average daily flow. A proportion of less than 10%
was considered inadequate to support trout while greater than 55% was regarded as com-
pletely adequate. The water velocity was calculated as the thalweg length of the study
reach divided by the time a fluorescent dye took to travel that distance. Cover was identi-
fied as anything that allowed trout to avoid the impact of the elements or enemies (Binns
and Eiserman, 1979) such as water depth, surface turbulence, loose substrate, large rocks
and othci submerged obstructions, undercut banks, aquatic and overhanging terrestrial
vegetation, dead snags and other debris lodged in the channel (a very broad and subjective
definition). The percentage of eroding banks was estimated by dividing the sum of lengths
in which bank erosion is observed by the total bank length of the study reach. Substrate
condition was judged based on the availability of submerged aquatic vegetation (including
algae and moss growing on rocks).

Each attribute was assigned an integer number from 0 (worst) to 4 (best) to rate it's
suitability for trout life. From these attributes the ones which showed the highest correla-
tion to trout standing crop were chosen to build two empirical predictive models. The first
model (Model I) was developed from data obtained from sites 1 to 20 and verified on sites
21 to 36. This model relates ten habitat attributes to trout standing crop. The development
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of the second model (Model II) was based on data from test sites 1 to 36, and was verified
for study sites 37 to 44. The models were found to explain up to 96 % of the variation in
trout standing crop (Binns and Eiserman, 1979).

The authors claimed that the method has been used to understand potential changes
in habitat which occurred due to a water diversion project and to assess habitat improve-
ment potential. It has been claimed that the HQI should prove useful in other areas as it
performed satisfactorily in Wyoming (Binns and Eiserman, 1979).

With respect to the hydraulic component of the HQI empirical models, it should be
stated that among the four variables: depth, width, discharge and velocity; deterministi-
cally speaking, one is redundant. However, as the regression is performed on variables
representing the suitability of these hydraulic parameters, rather than the physical vari-
ables themselves, this redundancy might not affect the statistical significance of the pro-
posed models.

B.3.2.2 Other Empirical Methods

A number of other empirical methods have been proposed. For example, Layher
(1983) presented a series of empirical relations based solely on chemical variables for pre-
dicting standing crop of different species of fish in prairie streams in Kansas as well as
other relations which included also physical variables such as mean width, percent runs,
percent pools and turbidity. Rabern (1984) presented another collection of empirical rela-
tions for predicting standing crop of several fish species in Georgia streams. The relations
employed hydraulic, chemical and biological variables. White et al. (1976) developed
empirical relations for trout in Midwestern U.S. streams. The relations relied on discharge
variables such as mean monthly flow, maximum monthly flow, maximum daily flow and
peak momentum flow. Although these empirical methods consider hydraulic parameters
in their regressions, they do not employ hydraulic models.

B.3.2.3 Discussion

A major limitation facing the empirical methods in general is the large amount of
data and analysis required, and their site- and species-specific nature. Binns and Eiserman,
1979, claimed that the HQI method should prove useful in other areas as it performed sat-
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isfactorily in Wyoming. However, Bowlby and Roff (1986) tested the two models for
trout biomass in Ontario streams and reported a very poor performance with the model:
accounting for only 6.7 and 9.2% of the variation in trout biomass at Ontario sites.
Bowlby and Roff also found that only late-summer stream flow, annual stream flow varia-
tion and maximum summer stream temperature were significantiy correlated with trout
biomass in Ontario, whereas in contrast Binns and Eiserman (1979) found that of the
eleven variables in their two models, late summer stream flow and maximum summer
stream temperature were the only variables not significantly correlated with trout biomass.
Bowlby and Roff concluded that clearly, different factors limit trout biomass in Wyoming
than in southern Ontario streams, which would indicate that this empirical model is only
regionally valid, at best, and may vary dramatically in form because different aspects of
habitat become the critical, limiting elements for particular species in different regions, or
even in different streams within a region (Hogan and Church, 1989). Consequently, the
HOQI method developed by Binns and Eiserman (1979) does not present a generic predic-
tive model for fish habitat evaluation. It is an empirical model for frout standing crop pre-
diction in Wyoming streams. New models could be developed for other species : 1d/or
regions following a similar procedure. Considerable research and testing would be
required to identify the attributes correlated to fish biomass and to develop an empiri: al
formula. Furthermore, the model would not be usable for impact prediction, unless tools
are available to forecast the physical, chemical and biological impact of any anticipated
project or habitat improvement plan.

Binns and Eiserman, 1979, claimed that the method has been used to understand
potential changes in habitat which occurred due to a water diversion project and to assess
habitat improvement potential. However it is not n.zntioned how the changes in the vari-
ables that would be expected from these projects could be predicted. In order for the
method to be useful in such applications, tools would be required to estimate anticipated
changes in the attributes involved in the empirical models. Among these tools are hydrau-
lic models as well as models to predict changes in temperature and water quality. Such
models have not been addressed by the authors.
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B.3.3 Instream Flow Incremental Methodology

B.3.3.1 General

Because of the natural variability in stream characteristics and the unique habitat
requirements of different fish species, a deterministic approach to the assessment of pro-
posed water management plans is often desirable, particularly as habitat needs usually
vary for different life stages and/or activities of a given fish species. One way to evaluate
the suitability of a certain habitat for fish life ~nder different water management plans is
the Instream Flow Incremental Methodology (IFIM). The IFIM is essentially a collection
of computer models and analytical procedures which combines information about the
biology and life habits of the species under study with computer models that can predict
the impact of different water management policies on the available habitat. The effect of a
disturbance on a systen. s quantified by incrementally evaluating the impact of the distur-
bance on the variables describing the system. For example hydraulic models may be used
to calculate water depth and flow velocity for a given discharge, sediment transport mod-
els can help forecast gcomorphological adjustments to proposed channel modifications,
and environmental models assist in the predicting of the impacts of proposed water man-
agement plans on the water quality or temperature distribution.

Because of the modular approach used, an IFIM system may be continuously
updated and improved by modifying, replacing or adding modules. This modular approach
facilitates growth and expansion of the IFIM system as improved models for the various
physical components are developed. Also new information about the biology and prefer-
ences of the evaluation species can be incorporated into the model.

Implementation of the IFIM method has lead to the development of the Physical
Habitat Simulation System, or PHABSIM, which was developed by the Instream Flow
and Aquatic Systems Group (IFG), U.S. Fish and Wildlife Service in 1981. An updated
version of the model was released in 1989. Because of its deterministic and modular
approa-h and its predictive capabilities, the PHABSIM model has gained wide acceptance
for use in IFN assessment studies in North America. Therefore, the following discussion
concentrates on this model.
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B.3.3.2 Method Description

PHABSIM is used to simulate the physical habitat of fish as a function of discharge
and to transform this information, through knowledge about fish preferences at various life
stages, into a measure of usable habitat (Orth and Maughan, 1982). These relationships
are usually represented as continuous functions between the weighted usable area of habi-
tat and discharge, as each species exhibits preferences within a range of habitat conditions
that it can tolerate. If these ranges can be defined for each species, the area of the stream
providing these conditious can be quantified as a function of discharge and channel struc-
ture. This approach assumes that any change in, or impact on, the fish habitat can be ade-
quately described by the four variables: depth, velocity, substrate and cover. It also
assumes that the entire stream can be modeled on the basis of one or more representative
study reaches and that there is a positive linear relationship between weighted usable arca
and fish standing crop. In order to find the usability of a stream for fish life, habitat suit-
ability functions have been developed for different types and life stages of species (Bovee,
1986). These functions represent the relationship between habitat suitability and the four
variables in mathematical terms. If such functions are not available for the specics and/or
region under investigation, extensive field measurements, analysis and testing would be
required to establish these functions. The reader is referred to Bovee (1986) for more
details on this subject.

To facilitate the computer analysis, the stream surface area is divided intc a number
of quadrilateral cells. These cells are located in such a way to represent an area having
fairly uniform habitat characteristics. These physical characteristics are measured and/or
computed along verticals at a number of locations across the stream width, the spact~g of
which determines the cross-stream cell dimension. The longitudinal extent of a cell is
equal to one half the distance between adjacent upstream and downstream measurement
stations or transects. From these measurements, a representative value for each of the four
variables: depth; velocity; substrate; and cover, is obtained for every cell.

Information about cover and substrate are obtained from field observations and bed
material samples and, generally, no computer simulation is used to provide estimates for
these variables. Hydraulic simulation models are used to forecast changes in depth and
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velocity. This hydraulic modeling is done in two steps. First, a stage-discharge relation-
ship is developed. Then, the velocity distribution across the channel is determined.

i)Development of a Rating Curve

In PHABSIM, the stage-discharge relationship can be determined in one of three

ways:
1.the use of a stage-discharge regression model (IFG-4);
2.a uniform flow model (MANSQ); or

3.a gradually varied flow model (WSP).

The last two models are used in situations where geometric data is available for the
study reach, but actual measurements of corresponding stage discharge data are scarce or
altogether unavailable. The use of a stage-discharge regression model requires that suffi-
cient stage-discharge data be available to define the stage-discharge relationship over the
range of anticipated discharges. For all three models, it is assumed that no scour or deposi-
tion will take place for the type of projects and range of fiows considered. Unlike the grad-
ually varied flow model, the uniform flow and stage-discharge regression models simulate
each cross-section independently of the other cross-sections in the study reach. Care must
be taken to assure that the models used adequately describe the physics of the flow. In par-
ticular, water management proposals in which channel modifications or hydraulic struc-
tures are involved, would alter the stage-discharge relationship and, therefore, a stage-
discharge relationship derived for conditions before the project would be invalid for pre-
dictive purposes.

For most natural streams, particularly gravel bed streams exhibiting pool and riffle
sequences, the uniform flow approximation is invalid. Flow velocities and water surface
slopes are small in pools while depths are large (relatively speaking), whereas flow veloci-
ties and water surface slopes are large and depths shallow over the riffles. Clearly, a
proper evaluation of the hydraulics warrants a gradually varied flow analysis. The gradu-
ally varied flow calculations in PHABSIM are performed through the Water Surface Pro-
file (WSP) program (also referred to as IFG-2) originally developed by the U.S. Bureau of
Reclamation in 1968 and later modified for use in PHABSIM (Milhous et al., 1989). It is
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based on the standard step method and also includes options which provide for step
changes in discharge between cross sections and a variety of methods for averaging fric-
tion slopes between cross sections.

An alternative to the WSP program is the Water Surface Profile Calculation pro-
gram, HEC-2, developed at the Hydraulic Engineering Center of the U.S. Army Corps of
Engineers. Although it is not an integral part of PHABSIM, HEC-2 does have a number
of attractive advantages. First, its wide acceptance across North America makes it a famil-
iar tool for the analysis and one for which data sets may already be available. In addition,
along with the standard step gradually varied flow analysis, HEC-2 incorporates numerous
options which may facilitate the analysis of reaches containing bridges (and piers), cul-
verts, and other hydraulic structures. In addition the effects of flood plain flow and ice cov-
ers may also be evaluated. It is important to realize, however, that these complex flow
problems are handled in an empirical way and therefore the accuracy of the results will
depend heavily on the expertise of the user.

Both WSP and HEC-2 offer an option to calculate the variation in channel roughness
in the study reach using a set of calibration measurements (discharge and water surface
elevation measurements). Some authors have recommended against the use of this option
because the calibration process is cifficult to perform, has limited accuracy and because
the final results in PHABSIM are sensitive to velocities (Milhous et. al. 1989; Bovee and
Milhous 1978). However, many engineers have overcome the difficulties associated with
calibration by avoiding these optional routines and calibrating their model manually. This
merely involves estimating reasonable values of the loss parameter (Manning’s n) for the
initial run and then adjusting these in subsequent runs of the model until the measured
water surface profile is reprod: ced. A systematic and theoretically sound approach simpli-
fies the calibration process significantly. For example, large variations in n between adja-
cent cross sections are physically unrealistic. It should be considered as a reach
characteristic and should only be changed on a reach by reach basis where physical evi-
dence suggests that such a change is warranted. In fact, this is the source of much of the
frustration associated with the use of the calibration routines within the programs, as these
computer routines have no ability to introduce judgment and qualitative assessment into
the process. Another factor to keep in mind during the calibration process is the spatial
direction of the calculations. If the flow is subcritical for example (calculations step in the
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upstream direction), then changes to n values at downstream sections will be reflected in
the computed water surface levels at upstream sections. Consequently, calibration adjust-
ments should start at the downstream end for subcritical flow calculations. Again, this is
an approach not necessarily implemented in the automated calibration routines. Finally, it
is important for the modeler to appreciate that dramatic changes in n between sections or
reaches and/or unrealistic values of n required to achieve calibration may be indicative of a
flow regime change (subcritical to/from supercritical) which requires special modeling

techniques.

ii\Determination of the Velocity Distribution Across the Channel

Once a stage discharge relationship has been obtained, the program IFG-4 is used to
find the velocity distribution across each transect (cross section). These velocity values,
essential to the habitat simulation phase, are quantified by establishing a velocity versus
discharge relation for each vertical within each cross section. As with the development of
a rating curve, the method used to obtain the velocity-discharge relationship depends on

the type and amount of data available.

One approach for establishing a velocity versus discharge relationship for each verti-
cal within each transect, is to perform a linear regression between the logarithms of the
discharge and velocity. This approach assumes that the velocity at each vertical exhibits a
log-log linear relation with discharge and that no change in channel morphology, vegeta-
tion or flow regime occurs. A minimum of three velocity-discharge measurements taken at
all verticals at all transects are required and these data must be taken at exactly the same

verticals each time.

An alternative to this data intensive approach was intreduced in version II of IFG-4
(Milhous et al., 1989) which facilitates the evaluation of the velocity versus discharge rela-
tion for each vertical within each transect using only one set of velocity versus discharge
data. First, this calibration set of velocity measurements across the channel is used to
determine the distribution of roughness across the channel, based on the Manning’s equa-
tion, as follows:

23172
H’S
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where n; is Manning’s n value for the cell i, v; is the depth averaged velocity measured for
the vertical, H; is the corresponding water depth at the same vertical and Sy is the slope of
the energy grade line, which is assumed to remain constant across the channel width at
each transect. The magnitude of Sy may be input by the user or the program will assign a
default value of 0.0025.

Once the flow distribution has been calibrated using equation [ B.1] at all verticals
across a transect, cell velocities may be computed for other discharges by weighting the
cell velocity based on conveyance using the formula:

:2/351/2
V,-=(————r' ! ){—Q-} [B.2]

n;

where r; is the hydraulic radius, Q is the total discharge through the cross section for
which the subsection velocities are required and Q is the total discharge based on a sum-

mation of subsection conveyances, that is:

n 23172
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in which g; is the subsection area perpendicular to the flow.

iii\otermination of the Velocity Distribution Through the Depth

A5 opticn has been included in PHABSIM in the habitat simulation program
HABTAT, to account for the variation of velocity in the vertical direction. However, it
shuuld b2 noweat ¢ the accuracy of these calculations are, at best, only as good as the ini-
tial caleniations - f the depth averaged column velocity performed in IFG-4. The user can
specify 2 ccots » vedtical distance which is excluded from the top and the bottom of the
cell (adefow’ ~aluc of 30 ram is set by the program). Then it is assumed that the fish is
free to mov:. vitical™ ©.+ the remaining portion to select an optimum velocity for its activ-
ity. The o ~tion ot L. velocity in the vertical direction can be calculated either by using
a power relatinn cr the lu;7 law for rough bed (Milhous et. al. 1989).
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B.3.3.3 Dfscussion

Fiist, a brief discussion of the terminology used in hydraulic modeling in PHAB-
SIM, -pecifically the use of the name “one-dimensiona ” model. Generally, a one-dimen-
sior:l approach looks at the stream as a number of cross-sections. Each cross-section is
¢ . .cribed by cross-section average variables. Thus, for each cross section there exists one
sepresentative stage and one representative cross-section average velocity. Hydraulic prin-
ciples are applied to relate these cross-sections to each other and solve for the cross-sec-
tion average variables. Among the assumptions underlying the one-dimensional model are
(Abbott, 1979) that the flow varies only in the lcngitudinal direction, or at the least that
variations in the plane normal to the flow can be considered negligible and that the veloc-
ity distribution is uniform across the channel. Examples for the one-dimensional approach
are the stage determination in PHABSIM using WSP or HEC-2.

However, if we look at the velocity determination in PHABSIM, we find that the
cross-section is devided into cells and verticals, and velocity at each vertical is determined
from measured velocity values at different discharges at that vertical. The vertical is not
tied in any way to other verticals a:ound it through hydrodynamic principles. Therefore,
this approach of velocity determination should be more correctly termed a zero-dimen-
sional approach, which relies solely on interpolation from measured values and not on
physical principles.

Now, looking at the velocity determintation using only one set of velocity measure-
ments together with “Manning’s equation”, since the subsection roughnesses are cali-
brated based on uniform flow in [ B.1] and the computed velocities in [ B.2] are based on
the gradually varied flow solution, the factor Q/Q; is required to adjust the velocities. In
this context then, n; does not really represent a roughness so much as a weighting factor.
This also illustrates why the magnitude of the slope, if assumed constant across the chan-
nel, is not a factor in the analysis and is likely included only to assign a realistic scale to
the values computed for n;. It should be mentioned here, that the use of IFG-4 with only
one velocity set is strongly discouraged in PHABSIM's User’s Manual (Milhous et al,,
1989). Hence, it is important to make a distinction between the approaches used for deter-
mination of stage and the determination of velocities in PHABSIM.
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Regarding the techniques applied for the cvaluation of the stage at different cross
sections, specifically the use of HEC-2 ¢+ "WE&P, are based on sound and widely accepted
hydraulic principles of one-dimensional open channel flow, and, if properly applied under
consideration of the basic underlying assumptions, can provide reliable estimates for the
stage at each cross-section for unmeasered flows.

Now, if we look at practical river situations, we find several difficulties in conform-
ing to the requirement of three velocity sets. For example, considering the cross-section in
Figure B.1 of a natural channel where velocity measurements are taken for three well-
spaced discharges as required by the zero-dimensional model, the three horizontal lines a-

a’, b-b’ and c-c’ represent the water surface at low, medium and high flow, respectively.

Figure B.2 Cross section in a Natural Stream

It can be seen that verticals in the region a-a’ will have three velocity mcasurements.
However, verticals in the regions b-a 2 +! a’-b’ will have two, and verticals in c-band b’-c’
only one velocity measurement. Furthe = ‘v simulating higher unmeasured flows, the
water surface will become even wider, exposing new regions with no velocity measure-
ments. However, from a biological point of view, these regions near the banks (or near
islands) might be quite interesting, but would not be properly simulated when using the
standard IFG-4 approach. Also, considering the situation of non-wadable rivers, for the
standard IFG-4 approach to work properly, velocity measurements for different discharges
have to be taken at exactly the same verticals. This might be quite difficult to achieve in
the case of large rivers. Also, in some studics the IFG-4 model has been used to analyze
river enhancement designs. Although this might have been the only tool available, it is
obvious that once any structure is placed in the river the flow regime, energy grade line...
etc. (not to mention channel morphology) may be changed drastically, and thus velocity
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measurements taken before the modifications would be irrelevant. Further, in natural
streams flow phenomena such as eddies and recirculation are encountered, which cannot
be resolved using a zero- or one-dimensional approach, which assumes a priori a flow
direction perpendicular to the cross section. In the one-dimensional approach the stream is
assumed to be straight, and thus the effect of meanders on the redistribution of longitudi-
nal velocity are neglected. Therefore, the argument is that even if all the funds, manpower
and time required to u== the standard IFG-4 model are available, there are many situations

where it is pr “ity + ry difficult or impossible to apply. Further, Milhous et al., 1989,
page 11.127 s. © - weighted usable area predicted by the habitat simulation pro-
grams is much - : to errors in velocities than to errors in depth values. This
suggests that a m .s approach should be adopted for the detzrmination of veloci-
ties.

B.3.4 Other Multi-variable Methods

A number of other conceptual multi-variable models have been developed. Swank
and Philips (1976) based their recommendations of IFN on the channel usable width,
defined as the channel width having depth and velocity within prescribed limits which
depend on the fish activity under consideration. Waters (1976) presented a method which
calculated relative habitat units (RHU) based on the four variables velocity, depth, sub-
strate and cover. This method is the precursor of the PHABSIM model. None of these

models have gained widespread use.

B.4 Discussion of IFN Methods

The hydraulic models employed in the widely used IFN studies fall into the restric-
tive category of approximations within one-dimensional, steady, rigid boundary models
known as uniform flow and gradually varied flow. Given the simplistic approach of some
of the IFN tools, such as the single variable methods, the elementary nature of the hydrau-
lic solution is likely no more limiting than their biological simplicity. From a hydraulic
viewpoint, these models are adequate for preliminary level studies, although proper appli-
cation of the hydraulic theory cannot be stressed enough.
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With respect to the multi-variable methods, empirical models involve only limited
application of hydraulic theory in terms of the collection and statistical analysis of hydrau-
lic data. Given their site and species specific success and data intensive approach, hydrau-

lic modeling criteria are likely of secondary importance in evaluating the applicability of
such models to IFN studies.

Clearly, for planning and design level studies, the IFIM approach and in particular
the PHABSIM model is the most promising. However, there is a lack of sophistication in
the hydraulic models. For example, even though the determination of the velocity distri-
bution in the stream is a key factor in assessing habitat guality, the hydraulic models cur-
rently in use are woefully inadequate. In particular, projects which propose modification

to the channel or instream structure require more sophisticated modeling techniques.

Fortunately, the modular and deterministic approach used in the PHABSIM medel
easily facilitates the use of more sophisticated hydraulic models, the selection of which
depends on the needs and characteristics of the given problem. It is important to note that
many of these models do not require prohibitive amounts of data (which is the reason for
using hydraulic models in the first place) and may even, in some cases, require less data
than the one-dimensional models currently used.

It should be mentioned here, that other authors have realized the limitations in the
present IFN assessment methods and have moved to using more sophisticated hydraulic
m deling techniques. Leclerc et. al., 1994, used a two-dimensional finite element model
based on the mixed interpolation technique to model spawning habitat in a reach of the
Ashuapmushuan River, Quebec. However, it is observed tnat the general understanding
and acceptance of such techniques from most IFN workers is still unsatisfactory. Further,
as shown in Chapter 1, there is room for improvement on the available two-dimensional
hydraulic models. Therefore, this thesis has two major objectives. First, to increase the
acceptance of advanced hydraulic models and help bridge the gap between hydraulics and
biology, and second, to present numerical modeling techniques for overcoming the diffi-

culties underlying the solution of the two-dimensional shallow water flow equations.
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Appendix C

Evaluation of the Square Root of the

Convection Matrix

The matrices W, and Wy are given by equations [ 2.40] and [ 2.41]. The square root

of the matrices is calculated numerically using the Cayley-Hamilton theorem (Hoger and

Carlson, 1984) as follows:

N

1=,\[m

5y = (,f3c2+2U2+2V2+cfc2+ 16U° +16V%) / (.[2)

53 = W3+ 202 42V — o + 16UP +16V3) / (f3)

ll =Sl+Ss+S3
I3 = 515253

Lo_ 2,2, 2

22 2.3 22
2 = SISZ+SZS3+S3SI

[C1

[C.2]

[C.3]

(C4]
{C.5]

[C.6]

[CT]

[C.8]



jiy =03 [C9]
div = jy (i3 +ipjy ) +i1 Gy +isfy) (C.10)
finally,

-172

(Ai+A§) = (i (iliz‘i3)A2 = (iyiy=i3) (i3+ 1)) A’

+ (iyiy (i3 0 yj)) + 13 (igjy +j3)) 1) /div (1]

where I is the identity matrix.
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